JP5050911B2 - Laminated body for foaming and foam - Google Patents

Laminated body for foaming and foam Download PDF

Info

Publication number
JP5050911B2
JP5050911B2 JP2008039898A JP2008039898A JP5050911B2 JP 5050911 B2 JP5050911 B2 JP 5050911B2 JP 2008039898 A JP2008039898 A JP 2008039898A JP 2008039898 A JP2008039898 A JP 2008039898A JP 5050911 B2 JP5050911 B2 JP 5050911B2
Authority
JP
Japan
Prior art keywords
laminate
foaming
foam
molecular weight
density polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008039898A
Other languages
Japanese (ja)
Other versions
JP2009196200A (en
Inventor
隆史 逸見
真吾 幸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008039898A priority Critical patent/JP5050911B2/en
Publication of JP2009196200A publication Critical patent/JP2009196200A/en
Application granted granted Critical
Publication of JP5050911B2 publication Critical patent/JP5050911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、加熱発泡することによって断熱性に優れた発泡積層体を得ることのできる積層体およびこれを加熱発泡させて得られる発泡体に関するものであり、特に発泡体表面の凹凸が非常に少なく優れた美粧性を有した発泡積層体を得ることのできる積層体およびこれを加熱発泡させて得られる発泡体に関するものである。   The present invention relates to a laminate capable of obtaining a foam laminate having excellent heat insulation properties by heating and foaming and a foam obtained by heating and foaming the laminate, and particularly, there are very few irregularities on the surface of the foam. The present invention relates to a laminate capable of obtaining a foam laminate having excellent cosmetic properties, and a foam obtained by heating and foaming the laminate.

従来から、断熱性を有する容器として合成樹脂、特にポリスチレンを発泡させたものが多く使用されている。しかし発泡ポリスチレン容器は、廃棄時の環境への負荷が高い、印刷適性に劣るなどの欠点があり、他の素材への代替が検討されている。そのような中、紙カップ胴部の外周面にコルゲートした紙を貼り合わせて断熱層を形成した容器、同紙カップの胴部外周面にパルプ製の不織布とコート紙との積層体を接合した容器などが開発され、使用されている。   Conventionally, a synthetic resin, in particular, a foamed polystyrene is often used as a container having heat insulation properties. However, the expanded polystyrene container has drawbacks such as high environmental load at the time of disposal and poor printability, and alternatives to other materials are being studied. Under such circumstances, a container in which corrugated paper is pasted on the outer peripheral surface of the paper cup body to form a heat insulating layer, a container in which a laminate of pulp nonwoven fabric and coated paper is bonded to the outer peripheral surface of the paper cup, etc. Has been developed and used.

しかしながら、いずれの方法も加工、成形が容易でなく、コスト高になるという欠点があった。そこで、水分を含んだ基材の少なくとも一面に低融点の熱可塑性合成樹脂フィルムをラミネートして加熱することにより、基材に含まれている水分を利用して熱可塑性合成樹脂フィルムを発泡させて断熱層とする技術が考案された(例えば、特許文献1〜4参照。)。   However, each method has a drawback that it is not easy to process and mold, and the cost is high. Therefore, a thermoplastic synthetic resin film having a low melting point is laminated and heated on at least one surface of the moisture-containing base material to foam the thermoplastic synthetic resin film using the moisture contained in the base material. A technique for forming a heat insulating layer has been devised (see, for example, Patent Documents 1 to 4).

特許文献1には、水分を有する紙の少なくとも片面にポリエチレンを押出ラミネートし、ポリエチレンをラミネートしない紙の表面には加熱時に蒸気圧を保持する層を形成させたラミネート加工紙を加熱することにより、表面に不規則な凹凸模様を有するラミネート加工紙を製造する方法が開示されている。また特許文献2には、このようなラミネート加工紙を胴部材および底板部材に使用した断熱性紙製容器およびその製造方法が開示されている。しかし、これらの積層体に使用される発泡層用の熱可塑性樹脂は、低密度ポリエチレンという以外は物性的および性状的に特定されておらず、通常発泡断熱容器の用途に使用される低密度ポリエチレンでは発泡体の厚みが均一になるように発泡させて美麗な外観の発泡体を得ることが難しい。しばしば起きる現象としては、遠目には目立った欠点はないように見えるが、発泡体の発泡厚みが部分的に均等でなく、よく見ると表面に微小な凹凸が多数存在し、あたかも水面にさざ波が立ったかの様な外観を呈する場合が挙げられる。この原因としては、発泡層を構成する樹脂自体が不均一な状態になっていることが推定され、発泡条件や基材の水分調整では改善することは困難であった。   In Patent Document 1, polyethylene is extruded and laminated on at least one side of a paper having moisture, and the surface of the paper not laminated with polyethylene is heated on a laminated paper in which a layer that retains vapor pressure is formed by heating. A method of manufacturing a laminated paper having an irregular pattern on the surface is disclosed. Patent Document 2 discloses a heat-insulating paper container using such a laminated paper as a body member and a bottom plate member, and a manufacturing method thereof. However, the thermoplastic resin for the foam layer used in these laminates is not specified in terms of physical properties or properties other than low-density polyethylene, and is usually low-density polyethylene used for foam insulation containers. Then, it is difficult to obtain a foam having a beautiful appearance by foaming so that the thickness of the foam is uniform. As a phenomenon that often occurs, it seems that there is no conspicuous defect at a distance, but the foam thickness of the foam is not partially uniform, and if you look closely, there are many minute irregularities on the surface, as if ripples on the water surface There are cases where it looks as if it was standing. The cause of this is presumed that the resin itself constituting the foamed layer is in a non-uniform state, and it was difficult to improve by adjusting the foaming conditions and the moisture content of the base material.

特許文献3には、発泡層である低融点の熱可塑性樹脂フィルムの外側に高融点の熱可塑性樹脂フィルムを配した2層構造ラミネート膜を紙の少なくとも片面に接着し、他方の面に高融点の熱可塑性炭層フィルムを接着して容器を形成し、加熱処理することで製造される外観の良好な断熱性紙製容器およびその製造方法が開示されている。この方法によれば外観の良好な断熱性紙製容器を得ることができるが、2層構造のラミネート膜を形成させるためにはタンデムラミネーターあるいは多層ラミネーターでの加工、もしくはシングルラミネーターでの二度貼りが必要となり、加工方法が制約されるといった問題があった。   In Patent Document 3, a two-layer laminate film in which a high-melting point thermoplastic resin film is disposed outside a low-melting point thermoplastic resin film that is a foam layer is bonded to at least one side of paper, and the high-melting point is attached to the other side. A heat-insulating paper container having a good appearance produced by forming a container by adhering the thermoplastic carbon layer film and heat-treating the same and a method for producing the same are disclosed. According to this method, a heat-insulating paper container having a good appearance can be obtained, but in order to form a laminate film having a two-layer structure, processing with a tandem laminator or multilayer laminator, or double pasting with a single laminator. There is a problem that the processing method is restricted.

特許文献4には、発泡層である低融点の熱可塑性合成樹脂フィルムの表面に発泡と同調する成分配合の特定された印刷インキを塗布し、また容器の加熱発泡時の温度条件および経時条件を特定することで、凹凸感のない滑らかな印刷表面を有する断熱性紙製容器およびその製造方法が開示されている。しかし、同調インキは印刷部分の発泡層の膨張を阻害しない効果はあるもののそれ自体には発泡を均一化させる効果はないため、発泡体表面の微小な凹凸に関しては改善することはできない。また、発泡体表面の微小な凹凸は発泡層の樹脂に由来するものであるため、加熱発泡時の条件を特定することではこれを改善することはできないといった問題があった。   In Patent Document 4, a specified printing ink having a composition blending with foaming is applied to the surface of a low-melting thermoplastic synthetic resin film that is a foam layer, and the temperature conditions and aging conditions at the time of heating and foaming the container are set. By specifying, a heat-insulating paper container having a smooth printed surface without unevenness and a method for producing the same are disclosed. However, the synchronization ink has an effect of not inhibiting the expansion of the foam layer of the printed portion, but does not have an effect of uniforming the foam itself, so it cannot improve the minute unevenness on the surface of the foam. In addition, since the fine irregularities on the surface of the foam are derived from the resin of the foam layer, there is a problem that it cannot be improved by specifying the conditions during heating and foaming.

このようにして得られる材料は、食品包装容器、たとえば熱湯を注ぐだけで調理することができる麺類やスープの容器に好適に使用することができる。これらの商品では近年、商品イメージの観点から容器の美粧性の要求レベルが高くなっており、凹凸が少なく美麗な外観を有する発泡体が強く求められていた。   The material thus obtained can be suitably used for food packaging containers, for example, noodles and soup containers that can be cooked simply by pouring hot water. In these products, in recent years, the required level of cosmetics of containers has been increased from the viewpoint of product image, and there has been a strong demand for foams having a beautiful appearance with few irregularities.

特公昭48−32283号公報Japanese Patent Publication No. 48-32283 特開昭57−110439号公報JP-A-57-110439 特開平5−42929号公報JP-A-5-42929 特開2001−270571号公報JP 2001-270571 A

本発明は、上記のような状況を鑑みなされたものであって、加熱発泡することにより優れた断熱性を示すと共に、発泡後の表面に微小な凹凸が生じ難く表面外観が良好な発泡体が得られる積層体およびこれを加熱発泡させて得られる発泡体を提供することを目的とするものである。   The present invention has been made in view of the situation as described above, and exhibits excellent heat insulation by heating and foaming, and is a foam having a good surface appearance that hardly causes minute unevenness on the surface after foaming. The object is to provide a laminate obtained and a foam obtained by heating and foaming the laminate.

本発明者らは前記課題を解決すべく鋭意検討した結果、特定の性状を有する高圧法低密度ポリエチレンを発泡層に用いた積層体を加熱により発泡させた場合に優れた発泡体外観が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors can obtain an excellent foam appearance when a laminate using a high-pressure method low-density polyethylene having specific properties as a foam layer is foamed by heating. As a result, the present invention has been completed.

すなわち、本発明は、(a)GPC法により測定された分子量分布曲線において、分子量10万以上の成分の全体に対する比率が30.0%以下であり、(b)GPC法により測定された数平均分子量(Mn)と重量平均分子量(Mw)の比Mw/Mnの値が8.5以下であることを特徴とする高圧法低密度ポリエチレンよりなる層と水分を含む基材層の少なくとも二層よりなり、加熱により発泡した際に上記高圧法低密度ポリエチレン層が発泡層となることを特徴とする、加熱発泡用積層体に関するものである。さらに、上記高圧法低密度ポリエチレンが、JIS K6922−1(1997年)により測定されたメルトマスフローレートが2〜100g/10分の範囲であり、JIS K6922−1(1997年)により測定された密度が890〜935kg/mの範囲である、加熱発泡用積層体に関するものである。さらに、上記積層体の積層方法が押出ラミネートであることを特徴とする加熱発泡用積層体に関するものである。さらに、上記積層体を加熱発泡して得られる発泡体に関するものである。 That is, according to the present invention, (a) in the molecular weight distribution curve measured by the GPC method, the ratio of components having a molecular weight of 100,000 or more to the whole is 30.0% or less, and (b) the number average measured by the GPC method The ratio Mw / Mn of the molecular weight (Mn) and the weight average molecular weight (Mw) is 8.5 or less. The layer is made of a high-pressure low-density polyethylene and the substrate layer contains water. Thus, the present invention relates to a laminate for heating and foaming, wherein the high-pressure low-density polyethylene layer becomes a foamed layer when foamed by heating. Further, the high-pressure low-density polyethylene has a melt mass flow rate measured in accordance with JIS K6922-1 (1997) in the range of 2 to 100 g / 10 min, and a density measured in accordance with JIS K6922-1 (1997). Relates to a laminate for heating and foaming in a range of 890 to 935 kg / m 3 . Furthermore, the present invention relates to a laminate for heating and foaming, wherein the lamination method is extrusion lamination. Furthermore, it is related with the foam obtained by heat-foaming the said laminated body.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

本発明の積層体を構成する高圧法低密度ポリエチレンは、従来公知の高圧ラジカル重合法により得ることができる。   The high-pressure method low-density polyethylene constituting the laminate of the present invention can be obtained by a conventionally known high-pressure radical polymerization method.

また、本発明の積層体を構成する高圧法低密度ポリエチレンは、以下に示すGPC法により測定された分子量分布曲線において、分子量10万以上の成分の全体に対する比率が30.0%以下である。さらに好ましくは、成形加工性が良好でありかつ発泡体の外観が良好となることから、10.0〜28.0%である。分子量10万以上の成分の全体に対する比率が30.0%を超えると、発泡体の発泡厚みが部分的に不均等となり、表面に微小な凹凸が発生するため好ましくない。   Moreover, the high-pressure method low-density polyethylene constituting the laminate of the present invention has a molecular weight distribution curve measured by the GPC method shown below, and the ratio of components having a molecular weight of 100,000 or more to the whole is 30.0% or less. More preferably, it is 10.0 to 28.0% because the moldability is good and the appearance of the foam is good. When the ratio of the component having a molecular weight of 100,000 or more to the whole exceeds 30.0%, the foam thickness of the foam is partially uneven, and minute irregularities are generated on the surface, which is not preferable.

なお、本発明に使用される高圧法低密度ポリエチレンのように高分子量成分の比率が低い樹脂は、従来は発泡用途には使用されていなかった。発泡用樹脂においては、発泡時に気泡の形状を維持する目的で高い溶融張力を有するものを使用するのが一般的であった。高圧法低密度ポリエチレンでは溶融張力は高分子量成分の含有量と関係があることが知られており、高分子量成分の含有比率が多い方が溶融張力が高くなる傾向がある。したがって、従来発泡用途に使用されていた樹脂は高分子量成分の含有比率が高いものであり、本発明のように高分子量成分の比率が低い高圧法低密度ポリエチレンを用いることによって得られる効果は、容易には予想できないものである。   A resin having a low ratio of high molecular weight components such as the high-pressure low-density polyethylene used in the present invention has not been used for foaming applications. As the foaming resin, it is common to use a resin having a high melt tension for the purpose of maintaining the shape of the bubbles during foaming. In high pressure low density polyethylene, it is known that the melt tension is related to the content of the high molecular weight component, and the higher the content ratio of the high molecular weight component, the higher the melt tension. Therefore, the resin used in conventional foaming applications has a high content of the high molecular weight component, and the effect obtained by using the high pressure method low density polyethylene with a low high molecular weight component ratio as in the present invention is It cannot be easily predicted.

また、本発明の積層体を構成する高圧法低密度ポリエチレンは、GPC法により測定された数平均分子量(Mn)と重量平均分子量(Mw)の比Mw/Mnの値が8.5以下である。さらに好ましくは、成形加工性が良好でありかつ発泡体の外観が良好となることから、3.0〜8.0である。Mw/Mnの値が8.5を超えると、発泡体の発泡厚みが部分的に不均等となり、表面に微小な凹凸が発生するため好ましくない。   Further, the high-pressure method low-density polyethylene constituting the laminate of the present invention has a value of the ratio Mw / Mn of the number average molecular weight (Mn) and the weight average molecular weight (Mw) measured by GPC method is 8.5 or less. . More preferably, it is 3.0 to 8.0 because the moldability is good and the appearance of the foam is good. When the value of Mw / Mn exceeds 8.5, the foam thickness of the foam becomes partially uneven, and minute irregularities are generated on the surface, which is not preferable.

ここで本発明を規定するGPC法による分子量分布曲線、数平均分子量(Mn)および重量平均分子量(Mw)の測定方法について、以下に記す。   Here, the measurement method of the molecular weight distribution curve, number average molecular weight (Mn) and weight average molecular weight (Mw) by the GPC method defining the present invention will be described below.

測定対象となる高圧法低密度ポリエチレンを秤量後、HPLC級1,2,4−トリクロロベンゼン(和光純薬工業(株)製)に酸化防止剤としてBHT(和光純薬工業(株)製)を0.1%添加した溶媒に加えて、140℃で1時間振とうして溶解させたものを試料溶液とした。   After weighing the high-pressure low-density polyethylene to be measured, BHT (manufactured by Wako Pure Chemical Industries, Ltd.) as an antioxidant is added to HPLC grade 1,2,4-trichlorobenzene (manufactured by Wako Pure Chemical Industries, Ltd.). The sample solution was dissolved by shaking at 140 ° C. for 1 hour in addition to 0.1% added solvent.

測定装置として東ソー(株)製HLC−8121GPC/HTを用い、以下のようにして測定した。分離カラムとしてTSKgelGMHHR−H(20)HT(東ソー(株)製、内径7.8mm、長さ30cm)を3本連結して使用した。移動層にはHPLC級1,2,4−トリクロロベンゼン(和光純薬工業(株)製)に酸化防止剤としてBHT(和光純薬工業(株)製)を0.05%添加したものを使用し、140℃に保持した分離カラム中を流速1.0mL/分で移動させた。これに1.0mg/mLに濃度を調整した試料溶液を0.3mL注入し、示差屈折計で分離された試料成分を検出した。標準ポリスチレン(東ソー(株)製)を使用して作成した5次近似曲線を検量線として使用し、分子量分布曲線、数平均分子量(Mn)および重量平均分子量(Mw)を算出した。   Using Tosoh Co., Ltd. HLC-8121GPC / HT as a measuring device, it measured as follows. Three TSKgelGMHHR-H (20) HT (manufactured by Tosoh Corporation, inner diameter 7.8 mm, length 30 cm) were connected and used as a separation column. For the moving layer, HPLC grade 1,2,4-trichlorobenzene (Wako Pure Chemical Industries, Ltd.) with 0.05% BHT (Wako Pure Chemical Industries, Ltd.) added as an antioxidant is used. And moved through a separation column maintained at 140 ° C. at a flow rate of 1.0 mL / min. 0.3 mL of a sample solution whose concentration was adjusted to 1.0 mg / mL was injected into this, and sample components separated by a differential refractometer were detected. A molecular weight distribution curve, a number average molecular weight (Mn), and a weight average molecular weight (Mw) were calculated using a quintic approximation curve prepared using standard polystyrene (manufactured by Tosoh Corporation) as a calibration curve.

本発明の積層体を構成する高圧法低密度ポリエチレンは、MFRが2〜100g/10分、好ましくは3〜50g/10分、より好ましくは3〜25g/10分の範囲であると、積層体の発泡性に優れ、かつ成形加工が容易となるため好ましい。   The high-pressure process low-density polyethylene constituting the laminate of the present invention has a MFR of 2 to 100 g / 10 minutes, preferably 3 to 50 g / 10 minutes, more preferably 3 to 25 g / 10 minutes. It is preferable because of its excellent foamability and easy molding.

また、本発明の積層体を構成する高圧法低密度ポリエチレンは、密度が890〜935kg/m、好ましくは900〜925kg/m、より好ましくは905〜925kg/mの範囲であると、積層体の発泡性に優れることに加え、積層体を加熱発泡する際、発泡のための加熱に必要な熱量が減少できるため好ましい。 Further, the high-pressure method low-density polyethylene constituting the laminate of the present invention has a density of 890 to 935 kg / m 3 , preferably 900 to 925 kg / m 3 , more preferably 905 to 925 kg / m 3 . In addition to being excellent in the foamability of the laminate, when the laminate is heated and foamed, the amount of heat required for heating for foaming can be reduced, which is preferable.

また、本発明の積層体を構成する高圧法低密度ポリエチレンの分子量分布以外の物性については特に制限はないが、毛管粘度計で測定した130℃における溶融張力が80〜300mNの範囲であることが、良好な外観を有する発泡体を得るためには好ましい。溶融張力が80mN未満では、積層体を加熱して発泡させた場合に、発泡セルの結合や破泡、また冷却時に発泡セルが収縮することにより、発泡表面に大きな凹凸が多数生じ表面外観を悪化させる恐れがある。一方溶融張力が300mNを超えると、積層体を加熱して発泡させた場合に十分な発泡層の厚みが得られない恐れがある。なお、溶融張力の測定方法を以下に記す。   The physical properties other than the molecular weight distribution of the high-pressure method low-density polyethylene constituting the laminate of the present invention are not particularly limited, but the melt tension at 130 ° C. measured with a capillary viscometer is in the range of 80 to 300 mN. In order to obtain a foam having a good appearance, it is preferable. When the melt tension is less than 80 mN, when the laminate is heated and foamed, the foamed cells are bonded and broken, and the foamed cells shrink during cooling, resulting in many large irregularities on the foamed surface and worsening the surface appearance. There is a fear. On the other hand, when the melt tension exceeds 300 mN, there is a possibility that a sufficient thickness of the foamed layer cannot be obtained when the laminate is heated and foamed. In addition, the measuring method of melt tension is described below.

23℃に設定した恒温室内において、バレル直径9.55mmの毛管粘度計に、長さが8mm、直径が2.095mm、流入角が90°のダイスを装着した。温度を130℃に設定し、ピストン降下速度を10mm/分、延伸比を24に設定し、引き取りに必要な荷重(mN)を溶融張力とした。最大延伸比が24未満の場合、破断しない最高の延伸比での引き取りに必要な荷重(mN)を溶融張力とした。   In a thermostatic chamber set at 23 ° C., a capillary viscometer with a barrel diameter of 9.55 mm was equipped with a die having a length of 8 mm, a diameter of 2.095 mm, and an inflow angle of 90 °. The temperature was set to 130 ° C., the piston lowering speed was set to 10 mm / min, the stretch ratio was set to 24, and the load (mN) required for take-up was taken as the melt tension. When the maximum draw ratio was less than 24, the load (mN) required for taking up at the highest draw ratio that did not break was taken as the melt tension.

本発明の積層体を構成する高圧法低密度ポリエチレンには、他のポリエチレン系樹脂を1種もしくは複数混合してもかまわない。高圧法低密度ポリエチレンと他のポリエチレン系樹脂を溶融混合した後の分子量分布曲線およびMw/Mnの値には、特に制限はない。ただし、ポリエチレン系樹脂が高圧法低密度ポリエチレンである場合には、これらを溶融混合した後の分子量分布曲線およびMw/Mnの値は、本発明の高圧法低密度ポリエチレンの要件を満たすものでなければならない。   The high pressure low density polyethylene constituting the laminate of the present invention may be mixed with one or more other polyethylene resins. There are no particular restrictions on the molecular weight distribution curve and the value of Mw / Mn after the high pressure method low density polyethylene and other polyethylene resins are melt mixed. However, when the polyethylene resin is high pressure method low density polyethylene, the molecular weight distribution curve and Mw / Mn value after melt-mixing these must satisfy the requirements of the high pressure method low density polyethylene of the present invention. I must.

ポリエチレン系樹脂としては、従来公知の高圧ラジカル重合法によって製造された低密度ポリエチレン、チーグラー・ナッタ触媒あるいはメタロセン触媒を用いて製造されたエチレン・α−オレフィン共重合体、高密度ポリエチレンなどを例示することができる。なお、エチレン・α−オレフィン共重合体を構成するα−オレフィンとしては、プロピレン、1−ブテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセンなどを例示することができる。   Examples of the polyethylene resin include low density polyethylene produced by a conventionally known high pressure radical polymerization method, ethylene / α-olefin copolymer produced using a Ziegler-Natta catalyst or metallocene catalyst, and high density polyethylene. be able to. The α-olefin constituting the ethylene / α-olefin copolymer is propylene, 1-butene, 4-methyl-1-pentene, 3-methyl-1-butene, 1-pentene, 1-hexene, 1 -Heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene and the like can be exemplified.

混合比率については特に制限はないが、良好な発泡性と加工性が得られることから、混合するポリエチレン系樹脂の比率が50%未満であることが好ましく、より好ましくは30%未満である。   Although there is no restriction | limiting in particular about a mixing ratio, Since favorable foamability and workability are obtained, it is preferable that the ratio of the polyethylene-type resin to mix is less than 50%, More preferably, it is less than 30%.

混合の方法には特に制限はなく、ペレット同士を固体状態で混合したペレット混合物であってもよいが、単軸押出機、二軸押出機、ニーダー、バンバリー等で溶融混練した混合物の方が、品質の安定した製品が得られるので好ましい。溶融混練装置を用いる場合、溶融温度はポリエチレン系樹脂の融点〜300℃程度が好ましい。   The mixing method is not particularly limited, and may be a pellet mixture obtained by mixing pellets in a solid state, but the mixture melt-kneaded by a single screw extruder, a twin screw extruder, a kneader, a Banbury, etc. This is preferable because a product with stable quality can be obtained. When using a melt-kneading apparatus, the melting temperature is preferably about the melting point of polyethylene resin to about 300 ° C.

本発明の積層体を構成する高圧法低密度ポリエチレンには、必要に応じて、酸化防止剤、光安定剤、帯電防止剤、滑剤、ブロッキング防止剤等、ポリオレフィン樹脂に一般的に用いられている添加剤を本発明の目的を損なわない範囲で添加してもかまわない。   The high-pressure low-density polyethylene constituting the laminate of the present invention is generally used for polyolefin resins such as antioxidants, light stabilizers, antistatic agents, lubricants, antiblocking agents, etc., as necessary. Additives may be added as long as the object of the present invention is not impaired.

なお、本発明を構成する高圧法低密度ポリエチレンとして使用可能な市販品としては、ペトロセン204、ペトロセン205、ペトロセン207、ペトロセン208、ペトロセン209、ペトロセン214、ペトロセン217、ペトロセン222、ペトロセン225、ペトロセン226、ペトロセン310(いずれも東ソー(株)製)などを例示することができる。   Commercially available products that can be used as the high-pressure method low-density polyethylene constituting the present invention include petrocene 204, petrocene 205, petrocene 207, petrocene 208, petrocene 209, petrocene 214, petrocene 217, petrocene 222, petrocene 225, and petrocene 226. And Petrocene 310 (both manufactured by Tosoh Corporation) and the like.

本発明の積層体を構成する基材については特に制限はないが、基材に含まれる水分は、20〜30g/mであることが好ましく、より好ましくは20〜28g/mである。20g/m未満では、積層体を発泡させた際の発泡層の厚みが不十分となる恐れがある。また、30g/mを超えると、積層体を加熱発泡させた際に、発泡セルの結合や破泡、また冷却時に発泡セルが収縮することにより、発泡表面に大きな凹凸が多数生じ表面外観を悪化させる恐れがある。 There is no particular limitation on the base material constituting the laminate of the present invention, moisture contained in the substrate is preferably 20 to 30 g / m 2, more preferably from 20~28g / m 2. If it is less than 20 g / m 2 , the thickness of the foamed layer when the laminate is foamed may be insufficient. On the other hand, if it exceeds 30 g / m 2 , when the laminate is heated and foamed, the foamed cells are bonded and broken, and the foamed cells shrink during cooling, resulting in many large irregularities on the foamed surface, resulting in a surface appearance. There is a risk of worsening.

このような本発明の積層体を構成する基材として、上質紙、クラフト紙などの天然パルプを主成分とする紙(以下、単に紙と略す)、合成繊維或は合成樹脂フィルムを擬紙化した所謂合成紙、発泡シート、ゼオライトなどの多孔性無機物からなるシートなどを例示することができ、基材中に含まれる水分量の調整が比較的容易なことから紙が好ましい。基材は、従来公知の技術により着色インキなどで印刷されていてもかまわない。基材に紙を使用する場合、水分量の調節が容易なことから、坪量は150〜500g/mであることが好ましく、より好ましくは200〜400g/mである。 As the base material constituting the laminate of the present invention, paper made of natural pulp such as high-quality paper and kraft paper (hereinafter simply referred to as paper), synthetic fiber or synthetic resin film is made pseudo-paper. So-called synthetic paper, foamed sheets, sheets made of porous inorganic materials such as zeolite, and the like can be exemplified, and paper is preferable because it is relatively easy to adjust the amount of water contained in the substrate. The substrate may be printed with colored ink or the like by a conventionally known technique. When using paper substrate, since the easy adjustment of water content, the basis weight is preferably 150~500g / m 2, more preferably from 200 to 400 g / m 2.

本発明の積層体を成形する方法としては、押出ラミネート成形法、ドライラミネート成形法、ウェットラミネート成形法、サーマルラミネート成形法、ホットメルトラミネート成形法、圧縮成形法などを例示することができる。中でも生産効率や成形された積層体の品質などの面から、押出ラミネート成形法が好ましい。押出ラミネート成形法の種類としては、シングルラミネート加工法、タンデムラミネート加工法、サンドウィッチラミネート加工法、共押出ラミネート加工法などの各種押出ラミネート加工法を例示することができる。押出ラミネート法における樹脂の温度は260〜350℃の範囲が好ましく、冷却ロールの表面温度は10〜50℃の範囲が好ましい。   Examples of the method for forming the laminate of the present invention include an extrusion laminate forming method, a dry laminate forming method, a wet laminate forming method, a thermal laminate forming method, a hot melt laminate forming method, and a compression forming method. Among these, the extrusion laminate molding method is preferable from the viewpoints of production efficiency and the quality of the molded laminate. Examples of the extrusion laminating method include various laminating methods such as a single laminating method, a tandem laminating method, a sandwich laminating method, and a coextrusion laminating method. The temperature of the resin in the extrusion laminating method is preferably in the range of 260 to 350 ° C, and the surface temperature of the cooling roll is preferably in the range of 10 to 50 ° C.

また、押出ラミネート加工において、高圧法低密度ポリエチレンを溶融状態で押出し層とした直後に、該層の基材接着面を含酸素気体又は含オゾン気体に曝し、基材と貼り合わせる手法を用いると、基材層との接着性に優れることから好ましい。含オゾン気体により熱可塑製樹脂と基材との接着性を向上させる場合は、オゾンガスの処理量としては、ダイより押出された熱可塑製樹脂よりなるフィルム1m当たり0.5mg以上のオゾンを吹き付けることが好ましい。 Further, in the extrusion laminating process, immediately after the high-pressure method low-density polyethylene is made into an extruded layer in a molten state, the base material adhesion surface of the layer is exposed to an oxygen-containing gas or an ozone-containing gas, and a method of bonding to the base material is used. From the viewpoint of excellent adhesion to the substrate layer. When the adhesiveness between the thermoplastic resin and the substrate is improved by the ozone-containing gas, the ozone gas treatment amount is 0.5 mg or more of ozone per 1 m 2 of the film made of the thermoplastic resin extruded from the die. It is preferable to spray.

本発明の積層体は、高圧法低密度ポリエチレン層と基材層との接着性をさらに向上させるため、高圧法低密度ポリエチレンが発泡しない程度の温度、例えば30℃〜60℃の温度で10時間以上熱処理することができる。また必要に応じて、基材の接着面に対してコロナ処理、フレーム処理、プラズマ処理などの公知の表面処理を施してもよい。また、必要であれば基材にアンカーコート剤を塗布しても良い。   In order to further improve the adhesion between the high-pressure method low-density polyethylene layer and the base material layer, the laminate of the present invention has a temperature at which the high-pressure method low-density polyethylene does not foam, for example, 30 ° C. to 60 ° C. for 10 hours. The heat treatment can be performed as described above. Moreover, you may perform well-known surface treatments, such as a corona treatment, a flame treatment, and a plasma treatment, with respect to the adhesive surface of a base material as needed. If necessary, an anchor coating agent may be applied to the substrate.

本発明の積層体において、加熱により発泡する高圧法低密度ポリエチレン層の厚みは、本発明の目的が達成される限りにおいて特に制限はないが、発泡性に優れ、破損などの問題が小さいことから、30μm〜5mmの厚みであることが好ましく、経済性の観点から、30μm〜150μmの範囲が最も好適である。   In the laminate of the present invention, the thickness of the high-pressure method low-density polyethylene layer that foams by heating is not particularly limited as long as the object of the present invention is achieved, but is excellent in foamability and has few problems such as breakage. The thickness is preferably 30 μm to 5 mm, and the range of 30 μm to 150 μm is most preferable from the viewpoint of economy.

本発明の積層体を加熱により発泡した場合、発泡後の発泡層の厚みが500μm以上であると、発泡積層体の断熱性に優れるため好ましい。   When the laminate of the present invention is foamed by heating, it is preferable that the thickness of the foamed layer after foaming is 500 μm or more because the heat insulation of the foam laminate is excellent.

本発明の積層体において、加熱により発泡する高圧法低密度ポリエチレン層に対する基材層の裏側は、高分子重合体フィルムおよびシート、粘着テープなどにより被覆されていると、基材層の水分が高圧法低密度ポリエチレン層の裏側から放散されるのを防ぎ、効果的に発泡させることが可能である点から好ましい。これら高分子重合体フィルム及びシートはアルミ蒸着、アルミナ蒸着、二酸化珪素蒸着されたものでもよい。また、これら高分子重合体フィルム及びシートはさらにウレタン系インキ等を用い印刷されたものでもよい。被覆法としては、押出ラミネート、ドライラミネート、ウェットラミネートなどのラミネート法や圧着法の他、粘着テープを貼り合わせただけであってもかまわない。その中でも、加熱発泡の際に積層体の水分が抜け発泡を妨げるのを防ぐことが容易なことから、発泡層として使用される高圧法低密度ポリエチレンよりも密度の高い高分子重合体をラミネートすることが特に好ましい。高分子重合体としては、ラミネート成形が比較的容易なこと、融点の調節が容易であることから、高密度ポリエチレンと高圧法低密度ポリエチレンの混合物であることが好ましい。高密度ポリエチレンと高圧法低密度ポリエチレンの混合割合は、重量比で15/85〜85/15であると、ラミネート成形が比較的容易であり、加熱発泡時に溶融するなどして水分が抜け発泡を妨げることを防ぐことが容易になるため好ましい。   In the laminate of the present invention, when the back side of the base material layer with respect to the high-pressure method low-density polyethylene layer foamed by heating is covered with a polymer film and sheet, an adhesive tape, etc., the water content of the base material layer is high. It is preferable because it can be prevented from being diffused from the back side of the low-density polyethylene layer and can be effectively foamed. These polymer films and sheets may be those deposited by aluminum vapor deposition, alumina vapor deposition, or silicon dioxide vapor deposition. Further, these polymer films and sheets may be further printed using urethane ink or the like. As a coating method, in addition to a lamination method such as extrusion lamination, dry lamination, and wet lamination, and a pressure bonding method, only an adhesive tape may be attached. Among them, since it is easy to prevent moisture from being removed from the laminate during heating and foaming, it is easy to prevent foaming. Therefore, a polymer polymer having a higher density than the high-pressure low-density polyethylene used as the foam layer is laminated. It is particularly preferred. The polymer is preferably a mixture of high-density polyethylene and high-pressure low-density polyethylene because laminate molding is relatively easy and the melting point can be easily adjusted. When the mixing ratio of the high-density polyethylene and the high-pressure low-density polyethylene is 15/85 to 85/15 by weight, laminate molding is relatively easy, and moisture is removed by foaming by melting during heating and foaming. This is preferable because it is easy to prevent obstruction.

本発明の積層体は、オーブンなどで加熱することで発泡させて、十分な断熱性を持った発泡体を得ることができる。加熱方法としては、熱風、電熱、電子線の他、積層体を容器状に成形し、高温の物体を内填して充填物の熱を利用するなど、任意の手段を使用できる。加熱は、オーブン内で回分式に行う手法、コンベアなどにより連続的に行う手法などにより行うことができる。   The laminate of the present invention can be foamed by heating in an oven or the like to obtain a foam having sufficient heat insulation. As a heating method, in addition to hot air, electric heat, and electron beam, any means such as forming a laminate into a container shape, filling a high-temperature object and utilizing the heat of the filling can be used. Heating can be performed by a batch method in an oven, a continuous method using a conveyor, or the like.

発泡させる際の加熱温度、加熱時間は、使用する基材、および熱可塑性樹脂の種類に依存して変化するが、一般的に加熱温度は110℃〜200℃であり、加熱時間は10秒〜5分間である。   The heating temperature and the heating time for foaming vary depending on the substrate used and the type of thermoplastic resin, but generally the heating temperature is 110 ° C. to 200 ° C., and the heating time is 10 seconds to 5 minutes.

本発明の発泡体は、コーヒー、スープなどの高温飲料用の紙容器、インスタントラーメンなどの即席食品用の容器等、断熱性を求められ、かつ商品外観の美粧性が求められる容器に好適に使用することができる。   The foam of the present invention is suitably used for containers that are required to have heat insulation properties, such as paper containers for high-temperature beverages such as coffee and soup, and containers for instant foods such as instant noodles, and that require cosmetic appearance of products. can do.

本発明の積層体は、加熱することにより容易に発泡し、優れた断熱性を示すと共に、発泡厚みのわずかな差による微小な凹凸が生じ難く、発泡後の表面の外観が良好で美粧性に非常に優れた発泡積層体を得ることができるものである。   The laminate of the present invention is easily foamed by heating, exhibits excellent heat insulation properties, hardly causes micro unevenness due to a slight difference in foam thickness, has a good appearance on the surface after foaming, and is cosmetic. A very excellent foamed laminate can be obtained.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

以下に、各物性の評価方法を示す。   Below, the evaluation method of each physical property is shown.

(1)基材の水分量
測定温度165℃において、カールフィッシャー法水分測定装置(三菱化学(株)製、商品名CA−05)を使用し測定した。
(1) Moisture content of substrate Measurement was performed using a Karl Fischer method moisture measurement device (trade name CA-05, manufactured by Mitsubishi Chemical Corporation) at a measurement temperature of 165 ° C.

(2)メルトマスフローレート(MFR)
JIS K6922−1(1997年)に準拠し、測定した。
(2) Melt mass flow rate (MFR)
Measured according to JIS K6922-1 (1997).

(3)密度
JIS K6922−1(1997年)に準拠し、測定した。
(3) Density The density was measured according to JIS K6922-1 (1997).

(4)GPC法による分子量分布曲線、数平均分子量(Mn)および重量平均分子量(Mw)の測定
本発明の詳細な説明で記載した方法により、高圧法低密度ポリエチレンの分子量分布曲線、数平均分子量および重量平均分子量を計測した。この方法により得られた分子量分布曲線から、分子量10万以上の成分の全体に対する比率を算出し、数平均分子量と重量平均分子量の値からMw/Mnを算出した。
(4) Measurement of molecular weight distribution curve by GPC method, number average molecular weight (Mn) and weight average molecular weight (Mw) According to the method described in the detailed description of the present invention, molecular weight distribution curve of high-pressure method low density polyethylene, number average molecular weight And the weight average molecular weight was measured. From the molecular weight distribution curve obtained by this method, the ratio of the components having a molecular weight of 100,000 or more to the whole was calculated, and Mw / Mn was calculated from the values of the number average molecular weight and the weight average molecular weight.

(5)溶融張力
バレル直径9.55mmの毛管粘度計(東洋精機製作所、商品名:キャピログラフ)に、長さが8mm、直径が2.095mm、流入角が90°のダイスを装着した。温度を130℃に設定し、ピストン降下速度を10mm/分、延伸比を24に設定し、引き取りに必要な荷重(mN)を溶融張力とした。最大延伸比が24未満の場合、破断しない最高の延伸比での引き取りに必要な荷重(mN)を溶融張力とした。なお、測定は23℃に設定した恒温室内で行った。
(5) Melt tension A capillary viscometer (Toyo Seiki Seisakusho, trade name: Capillograph) having a barrel diameter of 9.55 mm was equipped with a die having a length of 8 mm, a diameter of 2.095 mm, and an inflow angle of 90 °. The temperature was set to 130 ° C., the piston lowering speed was set to 10 mm / min, the stretch ratio was set to 24, and the load (mN) required for take-up was taken as the melt tension. When the maximum draw ratio was less than 24, the load (mN) required for taking up at the highest draw ratio that did not break was taken as the melt tension. The measurement was performed in a constant temperature room set at 23 ° C.

(6)発泡層の厚み
実施例により得られた積層体を20cm×30cmに切り出し、115℃に加熱した小型オーブン(Werner Mathis AG製)中で210秒間静置した後、取り出して空気中で室温まで冷却した。発泡後の積層体、及びブランクとして発泡させる前のラミネート積層体をサンプル取りし、光学顕微鏡により断面写真を撮影した。断面写真から発泡層の厚みを測定し、5箇所で測定した平均の発泡層の厚みを当該発泡体の発泡層厚みとした。
(6) Thickness of foam layer The laminates obtained in the examples were cut into 20 cm × 30 cm, allowed to stand for 210 seconds in a small oven (made by Werner Mathis AG) heated to 115 ° C., and then taken out and room temperature in air. Until cooled. Samples of the laminate after foaming and the laminate laminate before foaming as a blank were taken, and cross-sectional photographs were taken with an optical microscope. The thickness of the foam layer was measured from the cross-sectional photograph, and the average thickness of the foam layer measured at five locations was taken as the foam layer thickness of the foam.

(7)発泡表面の状態
実施例により得られた積層体を20cm×30cmに切り出し、120℃に加熱したスモールオーブン(Werner Mathis AG製)中で120秒間静置した後、取り出して空気中で室温まで冷却した。得られた発泡体の表面に、面に対して45°の角度から蛍光灯による光を当て、発泡体表面の凹凸により表面に浮き出る影の程度を目視した。影がはっきりと確認できる場合を×、ほとんど確認できない場合を○とした。
(7) State of foamed surface The laminate obtained in the example was cut into 20 cm × 30 cm, left standing in a small oven (made by Werner Mathis AG) heated to 120 ° C. for 120 seconds, and then taken out at room temperature in the air. Until cooled. Light from a fluorescent lamp was applied to the surface of the obtained foam from an angle of 45 ° with respect to the surface, and the degree of shadow that appeared on the surface due to irregularities on the surface of the foam was visually observed. The case where the shadow was clearly identifiable was indicated as x, and the case where the shadow was hardly confirmed was indicated as ◯.

実施例1
MFRが8g/10分、密度が920kg/mであり、GPC法によって計測したMw/Mnの値が7.9であり、分子量10万以上の成分の全体に対する比率が26.3%であり、毛管粘度計で測定した130℃における溶融張力が160mNである高圧法低密度ポリエチレン(東ソー(株)製 商品名ペトロセン214)(A1)を、直径90mmφのスクリューを有する単軸押出ラミネーター(ムサシノキカイ(株)製)へ供給し、310℃の温度でTダイより押し出し、水分量が24g/mであり、坪量320g/mである紙基材上に引き取り速度が60m/分、エアギャップ通過時間が0.12秒で70μmの厚さになるよう押出ラミネート成形を行った。さらに、この積層体の、ポリエチレン系樹脂層に対する基材層の裏側に、密度が940kg/mである熱可塑性樹脂(東ソー(株)製 商品名ペトロセンLW04−1)を40μmの厚さになるよう押出ラミネート成形を行い、高圧法低密度ポリエチレン樹脂層、紙基材層、熱可塑性樹脂層の順に積層されてなる積層体を得た。この積層体を加熱して発泡させ、発泡体表面の状態を評価した。発泡性評価の結果を表1に示す。発泡後の発泡体表面の状態は非常に良好であった。
Example 1
The MFR is 8 g / 10 min, the density is 920 kg / m 3 , the Mw / Mn value measured by the GPC method is 7.9, and the ratio of components having a molecular weight of 100,000 or more to the whole is 26.3%. A high-pressure low-density polyethylene (trade name Petrocene 214 manufactured by Tosoh Corporation) (A1) having a melt tension at 130 ° C. of 160 mN measured with a capillary viscometer was converted into a single-screw extrusion laminator (Musashinokikai ( Co., Ltd.), extruded from a T-die at a temperature of 310 ° C., a moisture content of 24 g / m 2 , a grammage of 320 g / m 2 and a take-up speed of 60 m / min, an air gap Extrusion lamination was performed so that the passage time was 0.12 seconds and a thickness of 70 μm. Furthermore, a thermoplastic resin (trade name Petrocene LW04-1 manufactured by Tosoh Corporation) having a density of 940 kg / m 3 is formed to a thickness of 40 μm on the back side of the base material layer with respect to the polyethylene-based resin layer of this laminate. Extrusion lamination was performed to obtain a laminate in which a high-pressure method low-density polyethylene resin layer, a paper base material layer, and a thermoplastic resin layer were laminated in this order. This laminated body was heated and foamed, and the state of the foam surface was evaluated. The results of foamability evaluation are shown in Table 1. The state of the foam surface after foaming was very good.

実施例2
高圧法低密度ポリエチレンとして、MFRが7g/10分、密度が922kg/mであり、GPC法によって計測したMw/Mnの値が8.4であり、分子量10万以上の成分の全体に対する比率が26.4%であり、毛管粘度計で測定した130℃における溶融張力が170mNである高圧法低密度ポリエチレン(東ソー(株)製 商品名ペトロセン204)(A2)を使用した以外は実施例1と同様にして押出ラミネート成形を行い、積層体を得た。この積層体を加熱して発泡させ、発泡体表面の状態を評価した。結果を表1に示す。発泡後の発泡体表面の状態は非常に良好であった。
Example 2
As a high-pressure method low density polyethylene, the MFR is 7 g / 10 min, the density is 922 kg / m 3 , the Mw / Mn value measured by the GPC method is 8.4, and the ratio of components having a molecular weight of 100,000 or more to the whole Example 1 except that high-pressure low-density polyethylene (trade name Petrocene 204 manufactured by Tosoh Corporation) (A2) having a melt tension of 170 mN at 130 ° C. measured by a capillary viscometer was 26.4%. Extrusion lamination was performed in the same manner as described above to obtain a laminate. This laminated body was heated and foamed, and the state of the foam surface was evaluated. The results are shown in Table 1. The state of the foam surface after foaming was very good.

実施例3
高圧法低密度ポリエチレンとして、MFRが3g/10分、密度が924kg/mであり、GPC法によって計測したMw/Mnの値が6.3であり、分子量10万以上の成分の全体に対する比率が26.6%であり、毛管粘度計で測定した130℃における溶融張力が230mNである高圧法低密度ポリエチレン(東ソー(株)製 商品名ペトロセン205)(A3)を使用した以外は実施例1と同様にして押出ラミネート成形を行い、積層体を得た。この積層体を加熱して発泡させ、発泡体表面の状態を評価した。結果を表1に示す。発泡後の発泡体表面の状態は非常に良好であった。
Example 3
The high-pressure method low-density polyethylene has an MFR of 3 g / 10 min, a density of 924 kg / m 3 , a Mw / Mn value measured by the GPC method of 6.3, and a ratio of components having a molecular weight of 100,000 or more to the whole. Example 1 except that high pressure method low density polyethylene (trade name Petrocene 205 manufactured by Tosoh Corporation) (A3) having a melt tension of 230 mN at 130 ° C. measured by a capillary viscometer was 26.6%. Extrusion lamination was performed in the same manner as described above to obtain a laminate. This laminated body was heated and foamed, and the state of the foam surface was evaluated. The results are shown in Table 1. The state of the foam surface after foaming was very good.

実施例4
(A1)にMFRが13g/10分、密度が905kg/mであるエチレン・1−ヘキセン共重合体(東ソー(株)製 商品名ニポロンZ 04P67D)を20重量%配合し、50mm単軸押出機((株)プラコー製)により150℃で溶融混練した後に造粒したものを高圧法低密度ポリエチレンとして使用した以外は実施例1と同様にして押出ラミネート成形を行い、積層体を得た。なお、造粒後の樹脂は、GPC法によって計測したMw/Mnの値が6.5であり、分子量10万以上の成分の全体に対する比率が23.8%であり、毛管粘度計で測定した130℃における溶融張力が130mNであった。この積層体を加熱して発泡させ、発泡体表面の状態を評価した。結果を表1に示す。発泡後の発泡体表面の状態は非常に良好であった。
Example 4
(A1) is blended with 20% by weight of an ethylene / 1-hexene copolymer (trade name Nipolon Z 04P67D manufactured by Tosoh Corporation) having an MFR of 13 g / 10 min and a density of 905 kg / m 3 , and 50 mm single screw extrusion. Extrusion laminate molding was carried out in the same manner as in Example 1 except that a granulated product after melt-kneading at 150 ° C. by a machine (Placo Co., Ltd.) was used as the high-pressure method low-density polyethylene to obtain a laminate. The granulated resin had a Mw / Mn value of 6.5 measured by the GPC method, a ratio of 23.8% of the total components having a molecular weight of 100,000 or more, and was measured with a capillary viscometer. The melt tension at 130 ° C. was 130 mN. This laminated body was heated and foamed, and the state of the foam surface was evaluated. The results are shown in Table 1. The state of the foam surface after foaming was very good.

比較例1
高圧法低密度ポリエチレンとして、MFRが8g/10分、密度が918kg/mであり、GPC法によって計測したMw/Mnの値が9.7であり、分子量10万以上の成分の全体に対する比率が30.6%であり、毛管粘度計で測定した130℃における溶融張力が180mNである高圧法低密度ポリエチレン(東ソー(株)製 商品名ペトロセン213)(A4)を使用した以外は実施例1と同様にして押出ラミネート成形を行い、積層体を得た。この積層体を加熱して発泡させ、発泡体表面の状態を評価した。発泡性評価の結果を表1に示す。発泡体表面の状態は、微小な凹凸が多数見られ、不良であった。
Comparative Example 1
As a high-pressure method low density polyethylene, the MFR is 8 g / 10 min, the density is 918 kg / m 3 , the Mw / Mn value measured by the GPC method is 9.7, and the ratio of the components having a molecular weight of 100,000 or more to the whole Example 1 except that high-pressure low-density polyethylene (trade name Petrocene 213 manufactured by Tosoh Corporation) (A4) having a melt tension of 180 mN at 130 ° C. measured by a capillary viscometer was 30.6%. Extrusion lamination was performed in the same manner as described above to obtain a laminate. This laminated body was heated and foamed, and the state of the foam surface was evaluated. The results of foamability evaluation are shown in Table 1. The state of the surface of the foam was unsatisfactory with many minute irregularities.

比較例2
高圧法低密度ポリエチレンとして、MFRが13g/10分、密度が919kg/mであり、GPC法によって計測したMw/Mnの値が8.7であり、分子量10万以上の成分の全体に対する比率が28.7%であり、毛管粘度計で測定した130℃における溶融張力が100mNである高圧法低密度ポリエチレン(東ソー(株)製 商品名ペトロセン212)(A5)を使用した以外は実施例1と同様にして押出ラミネート成形を行い、積層体を得た。この積層体を加熱して発泡させ、発泡体表面の状態を評価した。発泡性評価の結果を表1に示す。発泡体表面の状態は、微小な凹凸が多数見られ、不良であった。
Comparative Example 2
The high-pressure method low-density polyethylene has an MFR of 13 g / 10 min, a density of 919 kg / m 3 , a Mw / Mn value measured by the GPC method of 8.7, and a ratio of the components having a molecular weight of 100,000 or more to the whole. Example 1 except that high pressure method low density polyethylene (trade name Petrocene 212 manufactured by Tosoh Corporation) (A5) having a melt tension of 100 mN at 130 ° C. measured by a capillary viscometer was 28.7%. Extrusion lamination was performed in the same manner as described above to obtain a laminate. This laminated body was heated and foamed, and the state of the foam surface was evaluated. The results of foamability evaluation are shown in Table 1. The state of the surface of the foam was unsatisfactory with many minute irregularities.

Figure 0005050911
Figure 0005050911

Claims (4)

下記(a)〜(b)の要件を満たす高圧法低密度ポリエチレン層と20〜30g/m の水分を含む基材層の少なくとも二層よりなり、加熱により発泡した際に上記高圧法低密度ポリエチレン層が発泡層となることを特徴とする、加熱発泡用積層体。
(a)GPC法により測定された分子量分布曲線において、分子量10万以上の成分の全体に対する比率が30.0%以下
(b)GPC法により測定された数平均分子量(Mn)と重量平均分子量(Mw)の比Mw/Mnの値が8.5以下
It consists of at least two layers of a high pressure method low density polyethylene layer that satisfies the following requirements (a) to (b) and a base material layer containing 20 to 30 g / m 2 of water, and the high pressure method low density when foamed by heating. A laminate for heating and foaming, wherein the polyethylene layer is a foamed layer.
(A) In the molecular weight distribution curve measured by the GPC method, the ratio of components having a molecular weight of 100,000 or more to the whole is 30.0% or less. (B) The number average molecular weight (Mn) and the weight average molecular weight measured by the GPC method ( Mw) ratio Mw / Mn is 8.5 or less
高圧法低密度ポリエチレン層が下記(c)〜(d)の要件を満たすことを特徴とする、請求項1に記載の加熱発泡用積層体。
(c)JIS K6922−1(1997年)により測定されたメルトマスフローレートが2〜100g/10分
(d)JIS K6922−1(1997年)により測定された密度が890〜935kg/m
The laminate for heating and foaming according to claim 1, wherein the high-pressure method low-density polyethylene layer satisfies the following requirements (c) to (d).
(C) The melt mass flow rate measured by JIS K6922-1 (1997) is 2 to 100 g / 10 min. (D) The density measured by JIS K6922-1 (1997) is 890 to 935 kg / m 3.
高圧法低密度ポリエチレン層と基材層の積層方法が押出ラミネートであることを特徴とする、請求項1又は2に記載の加熱発泡用積層体。 The laminate for heating and foaming according to claim 1 or 2, wherein the lamination method of the high-pressure method low-density polyethylene layer and the base material layer is extrusion lamination. 請求項1〜3のいずれかに記載の加熱発泡用積層体を加熱発泡させることによって得られる発泡体。 The foam obtained by heat-foaming the laminated body for heat foaming in any one of Claims 1-3.
JP2008039898A 2008-02-21 2008-02-21 Laminated body for foaming and foam Active JP5050911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039898A JP5050911B2 (en) 2008-02-21 2008-02-21 Laminated body for foaming and foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039898A JP5050911B2 (en) 2008-02-21 2008-02-21 Laminated body for foaming and foam

Publications (2)

Publication Number Publication Date
JP2009196200A JP2009196200A (en) 2009-09-03
JP5050911B2 true JP5050911B2 (en) 2012-10-17

Family

ID=41140278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039898A Active JP5050911B2 (en) 2008-02-21 2008-02-21 Laminated body for foaming and foam

Country Status (1)

Country Link
JP (1) JP5050911B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331348B2 (en) * 2013-11-18 2018-05-30 東ソー株式会社 Method for producing foam laminate and foam laminate
JP6747114B2 (en) * 2016-07-08 2020-08-26 東ソー株式会社 Foam laminate and foam laminate
JP6897338B2 (en) * 2016-12-09 2021-06-30 東ソー株式会社 Foaming laminate and foaming laminate
JP7031445B2 (en) * 2018-03-30 2022-03-08 東ソー株式会社 Manufacturing method of foam laminate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922711A (en) * 1982-07-30 1984-02-06 Sumitomo Heavy Ind Ltd Feeding and switching device of particulate material
JPS62222837A (en) * 1986-03-17 1987-09-30 出光石油化学株式会社 Article package
JPH10752A (en) * 1996-06-12 1998-01-06 Tokyo Seishi Kk Laminate for packaging material
JPH10128928A (en) * 1996-10-28 1998-05-19 Dainippon Printing Co Ltd Foam finished paper and paper container employing the paper
JP2004161326A (en) * 2002-11-13 2004-06-10 Mitsubishi Gas Chem Co Inc Paper container
JP4724842B2 (en) * 2004-09-30 2011-07-13 東ソー株式会社 Polyethylene cross-linked foam
JP4747827B2 (en) * 2005-12-20 2011-08-17 東ソー株式会社 Extruded laminate for heating and foaming

Also Published As

Publication number Publication date
JP2009196200A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4747827B2 (en) Extruded laminate for heating and foaming
JP5887880B2 (en) Method for producing foam laminate and foam laminate
JP5782895B2 (en) Foamed laminate, foamed paper, and insulated container
JP5050911B2 (en) Laminated body for foaming and foam
JP6093975B2 (en) Method for producing foam laminate and foam laminate
JP6331348B2 (en) Method for producing foam laminate and foam laminate
JP6123211B2 (en) Foam laminate
JP6878838B2 (en) Foaming laminate and foaming laminate
JP6206552B2 (en) Foamed laminate, foamed paper, and heat insulating container using the same
JP6326778B2 (en) Method for producing foam laminate and foam laminate
JP6331347B2 (en) Method for producing foam laminate and foam laminate
JP5707848B2 (en) Foamed laminate for microwave cooking
JP6897338B2 (en) Foaming laminate and foaming laminate
JP6572529B2 (en) BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a foam laminate having a thick foam layer and exhibiting excellent heat insulation properties with high production efficiency.
JP6747114B2 (en) Foam laminate and foam laminate
JP6507705B2 (en) Foam laminate
JP6800406B2 (en) Foam laminate and foam laminate
JP6398179B2 (en) Method for producing foam laminate and foam laminate
JP5966478B2 (en) Foamed laminate, foamed paper, and heat insulating container using the same
JP6069846B2 (en) FOAM LAMINATE, PROCESS FOR PRODUCING THE SAME, FOAMED PAPER AND INSULATION CONTAINER USING THE SAME
JP6984302B2 (en) Foaming laminate and foaming laminate
JP6766345B2 (en) Foaming laminate and foaming laminate
JP6435768B2 (en) Method for producing foam laminate and foam laminate
JP2014124796A (en) Foamed laminate
JP2016165810A (en) Method for producing foam laminate, and the foam laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R151 Written notification of patent or utility model registration

Ref document number: 5050911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3