WO2012090897A1 - Pigment accumulation enhancing system, ion generating device, and pigment accumulation enhancing method - Google Patents

Pigment accumulation enhancing system, ion generating device, and pigment accumulation enhancing method Download PDF

Info

Publication number
WO2012090897A1
WO2012090897A1 PCT/JP2011/079998 JP2011079998W WO2012090897A1 WO 2012090897 A1 WO2012090897 A1 WO 2012090897A1 JP 2011079998 W JP2011079998 W JP 2011079998W WO 2012090897 A1 WO2012090897 A1 WO 2012090897A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
pigment
accumulation
ions
positive
Prior art date
Application number
PCT/JP2011/079998
Other languages
French (fr)
Japanese (ja)
Inventor
坂本 勝
藤 寛
太田 敏博
俊輔 宮内
一 古川
Original Assignee
シャープ株式会社
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 公立大学法人大阪府立大学 filed Critical シャープ株式会社
Publication of WO2012090897A1 publication Critical patent/WO2012090897A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants

Definitions

  • the present invention relates to an apparatus, system and method for promoting pigment accumulation in plants.
  • leaf vegetables such as lettuce have a low light intensity necessary for cultivation, and are being cultivated in institutional cultivation and plant factories.
  • red leaf lettuce is in high demand because it is rich in functional components such as anthocyanins, which are a kind of antioxidant, and its color is vivid.
  • Some plants promote pigment accumulation by environmental stimulation (environmental stress).
  • environmental stress environmental stress
  • the red leaf lettuce described above is one of them, and the biosynthesis of anthocyanins is promoted by environmental stress.
  • environmental stresses that promote anthocyanin biosynthesis include ultraviolet light, low temperature stress, salt stress, and drought stress (drying stress).
  • FIG. 13 are diagrams for explaining that the accumulated amount of pigment is lowered in a cultivation environment where sunlight is blocked.
  • the red leaf lettuce is cultivated in the open field ((a) of FIG. 13)
  • accumulation of anthocyanins is promoted by ultraviolet rays contained in sunlight.
  • Patent Document 1 promotes the synthesis of anthocyanins in leaves by irradiating a sunny lettuce with a light beam containing a blue component having a wavelength of 400 to 500 nm.
  • Patent Document 2 discloses a method for promoting the growth of plants (strawberry, eggplant, cucumber, etc.) by irradiating negative ions (3 ⁇ 10 3 to 5 ⁇ 10 4 / cc / day). However, there is no mention of pigment accumulation in plants.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2003-204718 (published July 22, 2003)” Japanese Patent Publication “Japanese Patent Laid-Open No. 11-239418 (published September 7, 1999)”
  • the present invention was made in order to solve the above-mentioned problems, and the object thereof is a pigment that can promote the accumulation of pigment in a plant cultivated under cultivation conditions in which the pigment is difficult to accumulate by a simple method.
  • An object of the present invention is to provide an accumulation promotion system, an ion generator, and a dye accumulation promotion method.
  • a pigment accumulation promotion system is a pigment accumulation promotion system that promotes pigment accumulation in a plant cultivated under cultivation conditions in which pigments are difficult to accumulate in order to solve the above-described problem.
  • an ion generator for generating positive ions and negative ions in a space where the plant is cultivated.
  • a hydroxyl radical which is an active oxygen species, is generated from positive ions and negative ions generated by the ion generator, and this hydroxyl radical causes oxidative stress to the plant.
  • This oxidative stress induces the accumulation of polyphenol, a secondary metabolite.
  • Polyphenol is a pigment source, and plants are colored by the increase of polyphenol. It has been confirmed by the inventors of the present invention that accumulation of anthocyanins is particularly remarkable among polyphenols.
  • a pigment accumulation promoting method is a pigment accumulation promoting method for promoting pigment accumulation in a plant cultivated under cultivation conditions in which pigments are difficult to accumulate in order to solve the above-described problems. And an ion irradiation step of irradiating the plant with positive ions and negative ions.
  • hydroxyl radicals which are active oxygen species, are generated from the irradiated positive ions and negative ions, and oxidative stress is applied to the plant by the hydroxyl radicals.
  • This oxidative stress induces the accumulation of pigments (eg, anthocyanins).
  • the pigment accumulation promoting system is a pigment accumulation promoting system that promotes pigment accumulation in a plant that is cultivated under cultivation conditions in which pigments are difficult to accumulate. It is the structure containing the ion generator which generates a positive ion and a negative ion in the space grown.
  • a pigment accumulation promoting method is a pigment accumulation promoting method for promoting pigment accumulation in a plant cultivated under cultivation conditions in which pigments are difficult to accumulate, wherein positive and negative ions are converted into the above-mentioned plant. It is the structure including the ion irradiation process which irradiates to.
  • FIG. 1 It is a figure which shows the structure of the plant cultivation system which concerns on one embodiment of this invention. It is a figure which shows the structure of the ion generating element with which the ion generator contained in the said plant cultivation system is provided.
  • A is a figure for demonstrating the effect of the plant cultivation system in institutional cultivation
  • (b) is a figure for demonstrating the effect of the plant cultivation system in a plant factory.
  • (A) And (b) is a figure which shows the structure of one Example of this invention. It is a figure which shows the structure of the said Example with a photograph.
  • FIG. 1 It is a figure which shows the external appearance of the ion generator used in the said Example.
  • A is a figure which shows the state of the loro rossa leaf processed by the positive ion and the negative ion for 24 days
  • (b) shows the state of the loro rossa leaf at the time of processing by the wind which does not contain a positive ion and a negative ion
  • FIG. It is a graph which shows the total polyphenol content in the leaf of the Loro Rossa which performed positive / negative ion treatment for 27 days, and the control Loro Rossa. It is a graph which shows the total anthocyanin content in the leaf of the Loro Rossa which performed positive / negative ion treatment for 27 days, and the control Loro Rossa.
  • FIG. 1 is a diagram showing a configuration of a plant cultivation system (pigment accumulation promoting system) 100 according to the present embodiment.
  • the plant cultivation system 100 is a system for cultivating the plant 50 and promoting the accumulation of pigment in the plant 50. As shown in FIG. 1, the plant cultivation system 100 is provided in a green house (plant cultivation structure) 20.
  • the green house 20 has a translucent member made of glass material, vinyl, etc., and part of the sunlight component is transmitted through the translucent member and irradiated to the plant 50, and the component of sunlight (particularly, ultraviolet rays). ) Is blocked.
  • the translucent member is a glass plate fitted in a side surface and / or ceiling frame (window frame).
  • the green house 20 is a so-called greenhouse, it is vinyl stretched around the skeleton of the greenhouse.
  • the green house 20 may be a structure that grows plants using sunlight that has passed through a light-transmitting member that blocks part of the components of sunlight, and the material, shape, and size thereof are not particularly limited.
  • an ion generator 1, a circulation fan (blower) 2, and a cultivation container 5 for cultivating the plant 50 that are included in the plant cultivation system 100 are provided inside the green house 20, an ion generator 1, a circulation fan (blower) 2, and a cultivation container 5 for cultivating the plant 50 that are included in the plant cultivation system 100 are provided.
  • a cultivation container 5 for cultivating the plant 50 that are included in the plant cultivation system 100 are provided.
  • the cultivation container 5 and the light source represented by the LED 7 described later may be excluded from the components of the present invention.
  • the ion generator 1 is an apparatus including an ion generating element 10 that generates positive ions 3 and negative ions 4. Details of the ion generating element 10 will be described later.
  • positive ions and negative ions may be referred to as positive and negative ions.
  • the circulation fan 2 is a blower for circulating the air inside the green house 20.
  • the ion generator 1 is provided in the vicinity (for example, the front) of the air blowing port (outlet) of the circulation fan 2 so that positive ions and negative ions generated by the ion generating device 1 are diffused inside the greenhouse 20. It has been. Therefore, the circulation fan 2 functions as a blower that diffuses the positive ions 3 and the negative ions 4 generated by the ion generator 1.
  • the positive ions 3 and the negative ions 4 When the positive ions 3 and the negative ions 4 are diffused by the circulation fan 2, the positive ions 3 and the negative ions 4 can be uniformly irradiated to the plurality of plants 50.
  • the cultivation container 5 may be a planter for containing culture soil or a solid medium for cultivation (urethane, sponge, etc.), and is a water tank for holding a plant 50 and storing a culture solution for hydroponics. Also good.
  • the plant 50 is, for example, red leafy vegetables such as lettuce (red fire, lororossa, etc.) and perilla, but is not particularly limited as long as it is a plant that accumulates pigments such as anthocyanins.
  • Red leaf vegetables mean leaf vegetables that can accumulate abundant red pigments. In other words, red leafy vegetables are leafy vegetables that are rich in red pigments under general outdoor cultivation conditions.
  • Polyphenol is a pigment source in plants, and anthocyanin is a kind of polyphenol. Therefore, it can be said that red leafy vegetables are plants that can contain abundant polyphenols (particularly anthocyanins).
  • FIG. 2 is a diagram illustrating a configuration of the ion generation element 10 included in the ion generation apparatus 1.
  • the ion generating element 10 includes a dielectric 11, a dielectric electrode 12, an ion generating electrode 13, a lead wire 14, and a high voltage pulse driving circuit 15.
  • the dielectric 11 is provided on the surface of the ion generating element 10, and a dielectric electrode 12 is provided on the back side of the dielectric 11.
  • An ion generating electrode 13 is provided on the surface of the dielectric 11 so as to face the dielectric electrode 12.
  • the shape of the ion generating electrode 13 does not need to be a net shape, and may be a known shape such as a needle shape. Furthermore, in order to generate ions more effectively, the electrode pattern shape, edge shape, material, and the like can be appropriately determined.
  • the dielectric electrode 12 and the ion generating electrode 13 are connected to a high voltage pulse driving circuit 15 through a lead wire 14.
  • the high voltage pulse drive circuit 15 is provided inside the ion generating element 10.
  • the above-described configuration of the ion generating element 10 is merely an example, and the configuration of the ion generating element 10 is not particularly limited as long as the element can generate positive and negative ions with a desired concentration.
  • FIG. 3 is a figure for demonstrating the effect of the plant cultivation system 100 (pigment accumulation promotion method) in institutional cultivation.
  • the plant 50 is grown using the sunlight which permeate
  • FIG. When sunlight passes through the translucent member, at least a part of the ultraviolet rays is blocked. In particular, this blocking effect is great when the translucent member is glass.
  • the plant 50 When the plant 50 is cultivated in such a green house 20, the amount of anthocyanins accumulated in the plant 50 is reduced as compared with the outdoor cultivation because the ultraviolet rays irradiated to the plant 50 are reduced. That is, the plant 50 is a plant that is cultivated under cultivation conditions in which pigments are difficult to accumulate (or has already been cultivated for a certain period of time).
  • the positive ions 3 and the negative ions 4 released from the ion generator 1 ride on the wind sent from the circulation fan 2 and enter the inside of the green house 20.
  • the positive ions 3 are mainly composed of H + (H 2 O) m (m is an arbitrary natural number), and the negative ions 4 are O 2 ⁇ (H 2 O) n (n is an arbitrary natural number).
  • the main ions are mainly composed of H + (H 2 O) m (m is an arbitrary natural number), and the negative ions 4 are O 2 ⁇ (H 2 O) n (n is an arbitrary natural number).
  • hydroxyl radicals are not generated remarkably.
  • water molecules and clusters are formed and stabilized. It is considered that positive ions and negative ions interact with each other and the formation of hydroxyl radicals becomes remarkable.
  • Average concentration of positive ions 3 and negative ions 4 in cultivating space of the plant 50 is preferably 50,000 pieces / cm 3 or more, more preferably 100,000 pieces / cm 3 or more.
  • the induction of pigment accumulation due to oxidative stress depends on the concentration of positive ions 3 and negative ions 4, and when the average concentration is 50,000 / cm 3 or more, pigment accumulation is noticeable.
  • the average concentration of the positive ions 3 and the negative ions 4 is preferably 100,000 / cm 3 or more.
  • positive and negative ions are preferably irradiated uniformly on a plurality of plant individuals, it is not always necessary that positive and negative ions are uniformly distributed in the entire cultivation space of the plant 50.
  • the positive / negative ion concentration described above is a preferable concentration around the individual plant 50.
  • the positive ion concentration and the negative ion concentration are the sum of the positive ion concentration and the negative ion concentration.
  • positive and negative ions do not inhibit the growth of the plant 50, positive and negative ions can be irradiated throughout the cultivation period after raising seedlings. That is, you may irradiate continuously to the plant 50 after raising seedling, without setting especially an irradiation time zone or an irradiation period. Therefore, it is not necessary to set the irradiation time zone and irradiation period of positive and negative ions in detail.
  • the plant cultivation system (pigment accumulation promoting system) of the present invention may be arranged inside a plant factory (artificial weather chamber) that grows plants using artificial lighting that does not contain ultraviolet rays.
  • This embodiment demonstrates the plant cultivation system 110 distribute
  • FIG. 4 is a diagram showing a configuration of the plant cultivation system 110.
  • the ion generator 1 is arranged inside an air conditioner (air conditioning device, blower device) 6.
  • the air conditioner 6 is a blower that adjusts the temperature inside the plant factory 21 and circulates (moves) the air inside the plant factory 21.
  • the positive ions 3 and the negative ions 4 are discharged from the air outlet of the air conditioner 6 into the internal space of the plant factory 21 and diffused together with the temperature-adjusted air. Therefore, the air conditioner 6 functions as a blower that diffuses the positive ions 3 and the negative ions 4 generated by the ion generator 1.
  • the plant factory 21 is provided with an LED (light emitting diode) 7 as a lighting device (light source).
  • the LED 7 is arranged above the cultivation container 5 and emits illumination light having a wavelength longer than that of ultraviolet rays. More specifically, the LED 7 emits red illumination light having a wavelength of 500 nm or more. . Since red light has high absorption efficiency by chlorophyll (chlorophyll) and promotes photosynthesis, in recent years, lettuce has been cultivated using red LEDs.
  • the illumination device used in the plant factory 21 is not limited to red illumination, and may emit white illumination light, and the wavelength range is not particularly limited. Moreover, the illumination device of the plant factory 21 is not limited to the LED, and a known light source such as a fluorescent lamp or a halogen lamp may be used.
  • Embodiment 3 The following will describe another embodiment of the present invention with reference to FIG. In addition, about the member similar to Embodiment 1, the same code
  • a plant cultivation system 120 disposed inside the plant factory 21 will be described.
  • FIG. 5 is a diagram showing the configuration of the plant cultivation system 120.
  • the ion generator 1 is provided as a separate device from the air conditioner 6.
  • the ion generator 1 is disposed on the floor of the plant factory 21 and emits positive ions 3 and negative ions 4 toward the ceiling of the plant factory 21 (more precisely, obliquely upward). Therefore, a blower (not shown) is provided inside the ion generator 1.
  • the ion outlet of the ion generator 1 so that the positive ions 3 and the negative ions 4 are evenly diffused in the internal space of the plant factory 21. The direction of is adjusted.
  • the existing plant factory and cultivation facility can be used as they are, and the initial investment cost can be reduced.
  • the green house 20 and the plant factory 21 that are plant cultivation structures need not be considered as the constituent elements of the present invention.
  • a structure that forms a closed space around the plant 50 is provided, and the structure of the structure from the ion generator 1 is provided. Positive and negative ions may be sent inside.
  • FIGS. 6 to 12 An embodiment of the present invention will be described with reference to FIGS. 6 to 12 as follows.
  • a closed space is formed using a plastic box (structure for plant cultivation) 30 and cultivation of red lettuce (Lolorossa) as the plant 50 will be described.
  • FIG. 6 is a figure which shows the structure of a present Example.
  • A) of FIG. 6 is a figure which shows the structure of the Example at the time of seeing the plant cultivation system of a present Example from upper direction
  • (b) of FIG. 6 is a side view of the plant cultivation system of a present Example. It is a figure which shows the structure of the Example at the time of seeing from.
  • FIG. 7 is a diagram showing the configuration of the present embodiment in a photograph.
  • Lororossa seeds were seeded on urethane cubes, and white fluorescent lamps were lit at an irradiation intensity of 110 ⁇ mol / m 2 / s and lighted at a cycle of 16 hours in the light period and 8 hours in the dark period, and grown for 10 days.
  • the temperature at that time is 25 ° C. in the light period and 15 ° C. in the dark period.
  • the red lettuce seedlings grown for 10 days under the above-mentioned conditions were directly placed on a plastic tapper as the cultivation container 5, and the culture solution was fed.
  • As a culture solution 1/2 unit of Otsuka House A formulation was used.
  • a white fluorescent lamp is used as a light source, and the white fluorescent lamp is disposed above the plastic box 30.
  • the amount of light is 110 ⁇ mol / m 2 / s, and the wavelength of light is about 400 to 700 nm.
  • the fluorescent lamp was turned on with a period of 16 hours in the light period and 8 hours in the dark period.
  • the temperature in the plastic box 30 is 25 ° C. in the light period and 15 ° C. in the dark period.
  • the humidity in the plastic box 30 is about 100%.
  • the ion generator 1, the cultivation container 5, and the plant 50 are arrange
  • FIG. 8 is a diagram showing the appearance of the ion generator 1 used in this example.
  • a plasma cluster ion generator IG-B20 manufactured by Sharp Corporation
  • the ion generator 1 is arranged inside the plastic box 30 so that the wind blown with the positive ions 3 and the negative ions 4 is not directly irradiated to the plant 50 with the ion blowing port directed obliquely upward.
  • This ion generator 1 is provided with a blower inside.
  • the plastic box 30 is sealed, and the total concentration of positive ions and negative ions in the plastic box 30 is about 128000 / cm 3 .
  • the ion generator 1 was always operated during the positive / negative ion treatment period after raising seedlings, and the concentrations of positive ions and negative ions were kept constant (ion irradiation step).
  • the positive / negative ion concentration is measured using a commercially available ion counter (for example, an ion counter NKMH-103 manufactured by Meiko Sangyo Co., Ltd.) and measuring ions having a mobility of 1 cm 3 / V ⁇ s or more. . At that time, the concentrations of positive ions and negative ions are measured. Positive ions and negative ions are generated in approximately equal amounts.
  • the above-mentioned concentration is the sum of the positive ion concentration and the negative ion concentration.
  • FIG. 9 (a) is a diagram showing the state of leaves of Loro Rossa treated with positive and negative ions for 24 days
  • FIG. 9 (b) shows the state of leaves of Loro Rossa when treated with wind containing no positive / negative ions.
  • FIG. 10 is a graph showing the total polyphenol content in leaves of Loro Rossa and control Loro Rossa that were treated with positive and negative ions for 27 days.
  • the tip of the loro rossa leaf was used.
  • the total polyphenol content was measured by a method according to the Folin-Denis method (Plant Environmental Engineering (2009) 21; 51-58).
  • FIG. 11 is a graph showing the total anthocyanin content in the leaves of Loro Rossa and control Loro Rossa that were treated with positive and negative ions for 27 days.
  • the tip of the loro rossa leaf was used.
  • the total anthocyanin content was measured by a method according to the Lee & Francis method (Plant Environmental Engineering (2009) 21; 51-58).
  • FIG. 12 is a graph showing the fresh weight of the whole plant including the roots of Loro Rossa that has been subjected to positive and negative ion treatment for 27 days and Wind-controlling Loro Rossa. As shown in FIG. 12, there was no significant difference in fresh weight between Lolo Rossa treated with positive and negative ions and Lolo Rossa of wind control.
  • the red coloring started to be recognized around 20 days after the positive and negative ion treatment, that is, from the late cultivation stage. From this fact, it can be seen that the dye accumulation induced by positive and negative ion treatment is relatively mild. For this reason, it is considered that positive and negative ion treatment has little influence on plant growth.
  • Anthocyanins are thought to be induced by stress treatments other than positive and negative ion treatment such as blue light irradiation, low temperature treatment, salt stress treatment, drought treatment, etc., but these treatments are likely to have an adverse effect on plant growth. . Furthermore, if the treatment time or treatment concentration is incorrect, the plant may die.
  • the above plant cultivation system may be used in a cultivation facility that uses both sunlight and artificial lighting.
  • the dye accumulation promoting system further includes a blower that diffuses positive ions and negative ions generated by the ion generator.
  • the pigment accumulation promoting system may be arranged inside a plant cultivation structure that grows a plant using light transmitted through a translucent member that blocks at least part of ultraviolet rays contained in sunlight. .
  • the translucent member may include a glass material.
  • At least a part of the ultraviolet rays are blocked by the sunlight passing through the translucent member.
  • this blocking effect is great when the translucent member is glass.
  • the pigment accumulation promoting system can be suitably used as a system that induces accumulation of plant pigments cultivated inside a plant cultivation structure that uses only a part of sunlight.
  • the pigment accumulation promoting system may be disposed inside a plant cultivation structure that grows plants using illumination light of an illumination device that emits illumination light having a wavelength longer than ultraviolet light.
  • the illumination light may have a wavelength of 500 nm or more.
  • the pigment accumulation promoting system can be suitably used as a system for accumulating and guiding the pigments of plants cultivated inside the plant cultivation structure using artificial lighting.
  • the dye may contain a polyphenol-derived dye, and in particular, an anthocyanin-derived dye.
  • polyphenol is a pigment source, and plants can be colored by increasing the amount of polyphenol accumulated.
  • the plant to be irradiated with positive ions and negative ions is a plant that can contain a large amount of polyphenols, particularly anthocyanins.
  • the polyphenol-derived dye may be polyphenol itself, or a dye biosynthesized based on a polyphenol precursor or polyphenol.
  • the anthocyanin-derived dye may be anthocyanin itself, or a dye biosynthesized based on an anthocyanin precursor or anthocyanin.
  • the plant may be a leaf vegetable that can accumulate a red pigment.
  • ⁇ Accumulation of red pigment can be promoted by irradiating red leafy vegetables with positive ions and negative ions.
  • the average concentration of ions including the positive ions and the negative ions in the space around the plant is preferably 50,000 / cm 3 or more, and more preferably 100,000 / cm 3 or more .
  • Induction of pigment accumulation by oxidative stress depends on the concentration of positive ions and negative ions, and the average concentration (the sum of positive ion concentration and negative ion concentration) is 50,000 / cm 3 or more. The accumulation of pigment is noticeable. In order to accumulate the dye more remarkably, the average density is preferably 100,000 / cm 3 or more.
  • the space around the plant does not necessarily mean the entire space inside the plant cultivation structure in which the plant is grown. It is sufficient that at least the average concentration of positive ions and negative ions around the plant is the above-described concentration.
  • the pigment accumulation promoting system is arranged inside a plant cultivation structure for cultivating plants, and the plant cultivation structure is provided with a blower that moves the air inside the plant cultivation structure. It may be done.
  • an ion generator included in the dye accumulation promoting system is also included in the technical scope of the present invention.
  • the ion irradiation step may be continuously performed during the cultivation period after the seedling of the plant.
  • the ion irradiation step may be performed on leaf vegetables that can accumulate red pigment.
  • ⁇ Accumulation of red pigment can be promoted by irradiating red leafy vegetables with positive ions and negative ions.
  • the present invention can be suitably used as an apparatus, system and method for promoting pigment accumulation in existing and new plant factories and plants cultivated inside cultivation facilities.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Hydroponics (AREA)
  • Greenhouses (AREA)

Abstract

A plant cultivation system (100) involves an ion generating device (1) which can generate positive ions and negative ions in a space in which a plant (50) is to be cultivated. This system enables the enhancement of the accumulation of a pigment in the plant in a simple manner.

Description

色素蓄積促進システム、イオン発生装置および色素蓄積促進方法Dye accumulation promotion system, ion generator, and dye accumulation promotion method
 本発明は、植物において色素の蓄積を促進する装置、システムおよび方法に関するものである。 The present invention relates to an apparatus, system and method for promoting pigment accumulation in plants.
 計画的な農作物生産が望まれる中、天候などの影響を受けにくい施設栽培および植物工場への期待が高まっている。特にレタス等の葉菜類は、栽培に必要な光量が低く、施設栽培および植物工場での栽培が進んでいる。葉菜類の中でも、赤色系リーフレタスは、抗酸化物質の一種であるアントシアニンなどの機能性成分に富み、色取りも鮮やかであるため需要が多い。 Demand is expected for facility cultivation and plant factories that are less susceptible to the weather, etc., while planned crop production is desired. In particular, leaf vegetables such as lettuce have a low light intensity necessary for cultivation, and are being cultivated in institutional cultivation and plant factories. Among leaf vegetables, red leaf lettuce is in high demand because it is rich in functional components such as anthocyanins, which are a kind of antioxidant, and its color is vivid.
 しかし、施設栽培および植物工場での栽培では、アントシアニンが不足による着色不良が問題となっている。 However, poor coloration due to lack of anthocyanins is a problem in in-house cultivation and cultivation in plant factories.
 植物(特に、葉菜類)の中には、環境からの刺激(環境ストレス)により色素の蓄積を促進させるものがある。上述の赤色系リーフレタスもそのひとつであり、アントシアニンの生合成は、環境ストレスによって促進される。アントシアニンの生合成を促進する環境ストレスとして、紫外線、低温ストレス、塩ストレス、渇水ストレス(乾燥ストレス)などが挙げられる。 Some plants (especially leaf vegetables) promote pigment accumulation by environmental stimulation (environmental stress). The red leaf lettuce described above is one of them, and the biosynthesis of anthocyanins is promoted by environmental stress. Examples of environmental stresses that promote anthocyanin biosynthesis include ultraviolet light, low temperature stress, salt stress, and drought stress (drying stress).
 図13の(a)~(c)は、太陽光が遮断される栽培環境において色素の蓄積量が低下することを説明するための図である。赤色系リーフレタスを露地栽培した場合(図13の(a))には、太陽光に含まれる紫外線によってアントシアニンの蓄積が促進される。 (A) to (c) of FIG. 13 are diagrams for explaining that the accumulated amount of pigment is lowered in a cultivation environment where sunlight is blocked. When the red leaf lettuce is cultivated in the open field ((a) of FIG. 13), accumulation of anthocyanins is promoted by ultraviolet rays contained in sunlight.
 一方、グリーンハウス(温室)を用いた施設栽培では、太陽光の一部が遮断され、栽培植物に照射される紫外線の量が減るため、露地栽培に比べてアントシアニンの蓄積量が減少する(図13の(b))。さらに植物工場では、人工照明光を用いて栽培されるため、栽培植物に照射される紫外線はきわめて少ない。そのため、植物工場では、露地栽培に比べてアントシアニンの蓄積量がさらに減少する。 On the other hand, in greenhouse cultivation using greenhouses, a part of sunlight is cut off and the amount of ultraviolet rays irradiated to cultivated plants is reduced, so that the amount of anthocyanins accumulated is reduced compared to open-place cultivation (Fig. 13 (b)). Furthermore, since plant plants are cultivated using artificial illumination light, the ultraviolet rays irradiated to the cultivated plants are extremely small. Therefore, in the plant factory, the amount of accumulated anthocyanins is further reduced as compared with open field cultivation.
 このような問題を解決するために、特許文献1の発明では、波長400~500nmの青色成分を含む光線をサニーレタスに照射して葉中のアントシアニンの合成を促進させている。 In order to solve such problems, the invention of Patent Document 1 promotes the synthesis of anthocyanins in leaves by irradiating a sunny lettuce with a light beam containing a blue component having a wavelength of 400 to 500 nm.
 なお、特許文献2には、マイナスイオン(1日当たり3×10~5×10個/cc)を照射することにより植物(イチゴ、なす、キュウリなど)の成長を促進する方法が開示されているが、植物の色素の蓄積に関する記載はない。 Patent Document 2 discloses a method for promoting the growth of plants (strawberry, eggplant, cucumber, etc.) by irradiating negative ions (3 × 10 3 to 5 × 10 4 / cc / day). However, there is no mention of pigment accumulation in plants.
日本国公開特許公報「特開2003-204718号公報(2003年7月22日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-204718 (published July 22, 2003)” 日本国公開特許公報「特開平11-239418号公報(1999年9月7日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 11-239418 (published September 7, 1999)”
 ところが、上記特許文献1に記載の構成では、強い青色光の照射により植物の生育が抑制されると考えられる。そのため、栽培期間が長くなるという問題が生じる。また、青色光を発する光源を設ける必要があるとともに、アントシアニンの蓄積を誘導するために特定の期間にのみ青色光を照射する必要があるため手間がかかるという問題が生じる。 However, in the configuration described in Patent Document 1, it is considered that plant growth is suppressed by irradiation with intense blue light. Therefore, the problem that a cultivation period becomes long arises. In addition, it is necessary to provide a light source that emits blue light, and it is necessary to irradiate the blue light only for a specific period in order to induce the accumulation of anthocyanins.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、色素が蓄積されにくい栽培条件下で栽培される植物における色素の蓄積を簡易な方法で促進させることができる色素蓄積促進システム、イオン発生装置および色素蓄積促進方法を提供することにある。 The present invention was made in order to solve the above-mentioned problems, and the object thereof is a pigment that can promote the accumulation of pigment in a plant cultivated under cultivation conditions in which the pigment is difficult to accumulate by a simple method. An object of the present invention is to provide an accumulation promotion system, an ion generator, and a dye accumulation promotion method.
 本発明の一実施形態に係る色素蓄積促進システムは、上記の課題を解決するために、色素が蓄積されにくい栽培条件下で栽培される植物における色素の蓄積を促進する色素蓄積促進システムであって、上記植物が栽培される空間において正イオンおよび負イオンを発生させるイオン発生装置を含むことを特徴としている。 A pigment accumulation promotion system according to an embodiment of the present invention is a pigment accumulation promotion system that promotes pigment accumulation in a plant cultivated under cultivation conditions in which pigments are difficult to accumulate in order to solve the above-described problem. And an ion generator for generating positive ions and negative ions in a space where the plant is cultivated.
 上記の構成によれば、イオン発生装置が発生させる正イオンおよび負イオンから活性酸素種である水酸基ラジカルが生じ、この水酸基ラジカルによって植物に酸化ストレスがかかると考えられる。この酸化ストレスによって、二次代謝産物であるポリフェノールの蓄積が誘導される。ポリフェノールは、色素源であり、ポリフェノールの増加により植物が色付く。ポリフェノールの中でも特にアントシアニンの蓄積が顕著であることが本発明の発明者によって確認されている。 According to the above configuration, it is considered that a hydroxyl radical, which is an active oxygen species, is generated from positive ions and negative ions generated by the ion generator, and this hydroxyl radical causes oxidative stress to the plant. This oxidative stress induces the accumulation of polyphenol, a secondary metabolite. Polyphenol is a pigment source, and plants are colored by the increase of polyphenol. It has been confirmed by the inventors of the present invention that accumulation of anthocyanins is particularly remarkable among polyphenols.
 正イオンおよび負イオンは、植物の成長に悪影響を及ぼさないことが確認されており、正イオンおよび負イオンの処理条件を厳密に設定する必要は必ずしもない。そのため、簡易な方法で植物において色素の蓄積を促進することができる。 It has been confirmed that positive ions and negative ions do not adversely affect the growth of plants, and it is not always necessary to set the treatment conditions for positive ions and negative ions strictly. Therefore, it is possible to promote pigment accumulation in plants by a simple method.
 また、正負イオンは、空気中の浮遊菌、浮遊ウイルス等を除菌・不活化する効果も有するため、植物栽培環境の除菌等もできるという付加的な効果も得られる。 In addition, since positive and negative ions have the effect of sterilizing and inactivating airborne bacteria, airborne viruses, and the like, an additional effect of sterilizing the plant cultivation environment can be obtained.
 本発明の一実施形態に係る色素蓄積促進方法は、上記の課題を解決するために、色素が蓄積されにくい栽培条件下で栽培される植物における色素の蓄積を促進する色素蓄積促進方法であって、正イオンおよび負イオンを上記植物に照射するイオン照射工程を含むことを特徴としている。 A pigment accumulation promoting method according to an embodiment of the present invention is a pigment accumulation promoting method for promoting pigment accumulation in a plant cultivated under cultivation conditions in which pigments are difficult to accumulate in order to solve the above-described problems. And an ion irradiation step of irradiating the plant with positive ions and negative ions.
 上記の構成によれば、照射された正イオンおよび負イオンから活性酸素種である水酸基ラジカルが生じ、この水酸基ラジカルによって植物に酸化ストレスがかかると推測される。この酸化ストレスによって、色素(例えば、アントシアニン)の蓄積が誘導される。 According to the above configuration, it is presumed that hydroxyl radicals, which are active oxygen species, are generated from the irradiated positive ions and negative ions, and oxidative stress is applied to the plant by the hydroxyl radicals. This oxidative stress induces the accumulation of pigments (eg, anthocyanins).
 正イオンおよび負イオンは、植物の成長に悪影響を及ぼさないことが確認されており、正イオンおよび負イオンの処理条件を厳密に設定する必要は必ずしもない。そのため、簡易な方法で植物において色素の蓄積を誘導することができる。 It has been confirmed that positive ions and negative ions do not adversely affect the growth of plants, and it is not always necessary to set the treatment conditions for positive ions and negative ions strictly. Therefore, pigment accumulation can be induced in plants by a simple method.
 また、正負イオンは、空気中の浮遊菌、浮遊ウイルス等を除菌・不活化する効果も有するため、植物栽培環境の除菌等もできるという付加的な効果も得られる。 In addition, since positive and negative ions have the effect of sterilizing and inactivating airborne bacteria, airborne viruses, and the like, an additional effect of sterilizing the plant cultivation environment can be obtained.
 以上のように、本発明の一実施形態に係る色素蓄積促進システムは、色素が蓄積されにくい栽培条件下で栽培される植物における色素の蓄積を促進する色素蓄積促進システムであって、上記植物が栽培される空間において正イオンおよび負イオンを発生させるイオン発生装置を含む構成である。 As described above, the pigment accumulation promoting system according to an embodiment of the present invention is a pigment accumulation promoting system that promotes pigment accumulation in a plant that is cultivated under cultivation conditions in which pigments are difficult to accumulate. It is the structure containing the ion generator which generates a positive ion and a negative ion in the space grown.
 本発明の一実施形態に係る色素蓄積促進方法は、色素が蓄積されにくい栽培条件下で栽培される植物における色素の蓄積を促進する色素蓄積促進方法であって、正イオンおよび負イオンを上記植物に照射するイオン照射工程を含む構成である。 A pigment accumulation promoting method according to an embodiment of the present invention is a pigment accumulation promoting method for promoting pigment accumulation in a plant cultivated under cultivation conditions in which pigments are difficult to accumulate, wherein positive and negative ions are converted into the above-mentioned plant. It is the structure including the ion irradiation process which irradiates to.
 それゆえ簡易な方法で植物において色素の蓄積を促進することができるという効果を奏する。 Therefore, there is an effect that pigment accumulation can be promoted in a plant by a simple method.
本発明の一実施の形態に係る植物栽培システムの構成を示す図である。It is a figure which shows the structure of the plant cultivation system which concerns on one embodiment of this invention. 上記植物栽培システムに含まれるイオン発生装置が備えるイオン発生素子の構成を示す図である。It is a figure which shows the structure of the ion generating element with which the ion generator contained in the said plant cultivation system is provided. (a)は施設栽培における植物栽培システムの作用効果を説明するための図であり、(b)は植物工場における植物栽培システムの作用効果を説明するための図である。(A) is a figure for demonstrating the effect of the plant cultivation system in institutional cultivation, (b) is a figure for demonstrating the effect of the plant cultivation system in a plant factory. 本発明の別の実施の形態に係る植物栽培システムの構成を示す図である。It is a figure which shows the structure of the plant cultivation system which concerns on another embodiment of this invention. 本発明のさらに別の実施の形態に係る植物栽培システムの構成を示す図である。It is a figure which shows the structure of the plant cultivation system which concerns on another embodiment of this invention. (a)および(b)は、本発明の一実施例の構成を示す図である。(A) And (b) is a figure which shows the structure of one Example of this invention. 上記実施例の構成を写真で示す図である。It is a figure which shows the structure of the said Example with a photograph. 上記実施例で用いたイオン発生装置の外観を示す図である。It is a figure which shows the external appearance of the ion generator used in the said Example. (a)は24日間正イオンおよび負イオンで処理したロロロッサの葉の状態を示す図であり、(b)は正イオンおよび負イオンを含まない風で処理した場合のロロロッサの葉の状態を示す図である。(A) is a figure which shows the state of the loro rossa leaf processed by the positive ion and the negative ion for 24 days, (b) shows the state of the loro rossa leaf at the time of processing by the wind which does not contain a positive ion and a negative ion FIG. 正負イオン処理を27日間行ったロロロッサおよびコントロールのロロロッサの葉における総ポリフェノール含量を示すグラフである。It is a graph which shows the total polyphenol content in the leaf of the Loro Rossa which performed positive / negative ion treatment for 27 days, and the control Loro Rossa. 正負イオン処理を27日間行ったロロロッサおよびコントロールのロロロッサの葉における総アントシアニン含量を示すグラフである。It is a graph which shows the total anthocyanin content in the leaf of the Loro Rossa which performed positive / negative ion treatment for 27 days, and the control Loro Rossa. 正負イオン処理を27日間行ったロロロッサおよびコントロールのロロロッサの根を含む植物全体の新鮮重を示すグラフである。It is a graph which shows the fresh weight of the whole plant containing the root of the loro rossa which performed positive / negative ion treatment for 27 days, and the loro rossa of control. (a)~(c)は、太陽光が遮断される栽培環境において色素の蓄積量が低下することを説明するための図である。(A)-(c) is a figure for demonstrating that the accumulation amount of a pigment | dye falls in the cultivation environment where sunlight is interrupted | blocked.
 〔実施の形態1〕
 本発明の実施の一形態について図1~3に基づいて説明すれば、以下のとおりである。
[Embodiment 1]
An embodiment of the present invention will be described below with reference to FIGS.
 (植物栽培システム100の構成)
 図1は、本実施の形態の植物栽培システム(色素蓄積促進システム)100の構成を示す図である。植物栽培システム100は、植物50を栽培するとともに、植物50における色素の蓄積を促進するためのシステムである。図1に示すように植物栽培システム100は、グリーンハウス(植物栽培用構造体)20の内部に設けられている。
(Configuration of plant cultivation system 100)
FIG. 1 is a diagram showing a configuration of a plant cultivation system (pigment accumulation promoting system) 100 according to the present embodiment. The plant cultivation system 100 is a system for cultivating the plant 50 and promoting the accumulation of pigment in the plant 50. As shown in FIG. 1, the plant cultivation system 100 is provided in a green house (plant cultivation structure) 20.
 グリーンハウス20は、ガラス材、ビニールなどからなる透光部材を有しており、太陽光の成分の一部は透光部材を透過して植物50に照射され、太陽光の成分(特に、紫外線)の一部は遮断される。この透光部材とは、例えば、グリーンハウス20がガラス温室である場合、その側面および/または天井のフレーム(窓枠)にはめ込まれたガラス板である。また、グリーンハウス20が、いわゆるビニールハウスである場合には、ビニールハウスの骨格に張られたビニールである。 The green house 20 has a translucent member made of glass material, vinyl, etc., and part of the sunlight component is transmitted through the translucent member and irradiated to the plant 50, and the component of sunlight (particularly, ultraviolet rays). ) Is blocked. For example, when the green house 20 is a glass greenhouse, the translucent member is a glass plate fitted in a side surface and / or ceiling frame (window frame). Further, when the green house 20 is a so-called greenhouse, it is vinyl stretched around the skeleton of the greenhouse.
 グリーンハウス20は、太陽光の成分の一部を遮断する透光部材を透過した太陽光を利用して植物を栽培する構造体であればよく、その材質、形状および大きさは特に限定されない。 The green house 20 may be a structure that grows plants using sunlight that has passed through a light-transmitting member that blocks part of the components of sunlight, and the material, shape, and size thereof are not particularly limited.
 グリーンハウス20の内部には、植物栽培システム100を構成するイオン発生装置1、循環扇(送風機)2および、植物50を栽培するための栽培容器5が設けられている。ただし、本発明において重要なのは、栽培中の植物50を色付けることであって、栽培することではない。そのため、植物50を栽培するために必要な部材であっても、植物50を色付けることに関連していない部材は、本発明を構成する部材として認識される必要はない。例えば、栽培容器5、後述するLED7に代表される光源は、本発明の構成要素から除外されてもよい。 Inside the green house 20, an ion generator 1, a circulation fan (blower) 2, and a cultivation container 5 for cultivating the plant 50 that are included in the plant cultivation system 100 are provided. However, what is important in the present invention is to color the plant 50 being cultivated, not to be cultivated. Therefore, even if it is a member required in order to grow the plant 50, the member which is not related to coloring the plant 50 does not need to be recognized as a member which comprises this invention. For example, the cultivation container 5 and the light source represented by the LED 7 described later may be excluded from the components of the present invention.
 イオン発生装置1は、正イオン3および負イオン4を発生させるイオン発生素子10を含む装置である。イオン発生素子10の詳細については後述する。なお、以下では、正イオンおよび負イオンを正負イオンと称することもある。 The ion generator 1 is an apparatus including an ion generating element 10 that generates positive ions 3 and negative ions 4. Details of the ion generating element 10 will be described later. Hereinafter, positive ions and negative ions may be referred to as positive and negative ions.
 循環扇2は、グリーンハウス20の内部の空気を循環させるための送風機である。イオン発生装置1が発生させた正イオンおよび負イオンがグリーンハウス20の内部に拡散するように、イオン発生装置1は、循環扇2の送風口(吹き出し口)の近傍(例えば、前方)に設けられている。それゆえ、循環扇2は、イオン発生装置1が発生させた正イオン3および負イオン4を拡散させる送風装置として機能する。 The circulation fan 2 is a blower for circulating the air inside the green house 20. The ion generator 1 is provided in the vicinity (for example, the front) of the air blowing port (outlet) of the circulation fan 2 so that positive ions and negative ions generated by the ion generating device 1 are diffused inside the greenhouse 20. It has been. Therefore, the circulation fan 2 functions as a blower that diffuses the positive ions 3 and the negative ions 4 generated by the ion generator 1.
 正イオン3および負イオン4が循環扇2によって拡散されることにより、複数の植物50に対して均一に正イオン3および負イオン4を照射することができる。 When the positive ions 3 and the negative ions 4 are diffused by the circulation fan 2, the positive ions 3 and the negative ions 4 can be uniformly irradiated to the plurality of plants 50.
 栽培容器5は、培養土または栽培用の固形培地(ウレタン、スポンジなど)を入れるためのプランターであってもよいし、植物50を保持するとともに水耕栽培用の培養液を貯める水槽であってもよい。 The cultivation container 5 may be a planter for containing culture soil or a solid medium for cultivation (urethane, sponge, etc.), and is a water tank for holding a plant 50 and storing a culture solution for hydroponics. Also good.
 植物50は、例えば、レタス(レッドファイヤー、ロロロッサなど)、シソなどの赤色系葉菜類であるが、アントシアニン等の色素を蓄積する植物であれば特に限定されない。赤色系葉菜類とは、赤色色素を豊富に蓄積可能な葉菜類を意味する。換言すれば、赤色系葉菜類とは、一般的な露地栽培条件下で赤色色素を豊富に含む葉菜類である。ポリフェノールは植物における色素源であり、アントシアニンはポリフェノールの一種である。そのため、赤色系葉菜類とは、ポリフェノール(特に、アントシアニン)を豊富に含み得る植物であるといえる。 The plant 50 is, for example, red leafy vegetables such as lettuce (red fire, lororossa, etc.) and perilla, but is not particularly limited as long as it is a plant that accumulates pigments such as anthocyanins. Red leaf vegetables mean leaf vegetables that can accumulate abundant red pigments. In other words, red leafy vegetables are leafy vegetables that are rich in red pigments under general outdoor cultivation conditions. Polyphenol is a pigment source in plants, and anthocyanin is a kind of polyphenol. Therefore, it can be said that red leafy vegetables are plants that can contain abundant polyphenols (particularly anthocyanins).
 なお、栽培容器5において複数の植物体が栽培されるが、互いに異なる品種の植物を同時に栽培してもよい。 In addition, although several plant bodies are cultivated in the cultivation container 5, you may cultivate plants of mutually different varieties at the same time.
 (イオン発生装置1の詳細)
 図2は、イオン発生装置1が備えるイオン発生素子10の構成を示す図である。図2に示すように、イオン発生素子10は、誘電体11、誘電電極12、イオン発生電極13、リード線14および高圧パルス駆動回路15を備えている。
(Details of ion generator 1)
FIG. 2 is a diagram illustrating a configuration of the ion generation element 10 included in the ion generation apparatus 1. As shown in FIG. 2, the ion generating element 10 includes a dielectric 11, a dielectric electrode 12, an ion generating electrode 13, a lead wire 14, and a high voltage pulse driving circuit 15.
 誘電体11は、イオン発生素子10の表面に設けられており、この誘電体11の裏側には誘電電極12が設けられている。この誘電電極12と対向するように、誘電体11の表面にはイオン発生電極13が設けられている。イオン発生電極13の形状は網状である必要はなく、針型など公知の形状を有するものであってもよい。さらに、イオンをより効果的に発生させるために、電極パターン形状、エッジ形状および材料等を適宜定めることができる。 The dielectric 11 is provided on the surface of the ion generating element 10, and a dielectric electrode 12 is provided on the back side of the dielectric 11. An ion generating electrode 13 is provided on the surface of the dielectric 11 so as to face the dielectric electrode 12. The shape of the ion generating electrode 13 does not need to be a net shape, and may be a known shape such as a needle shape. Furthermore, in order to generate ions more effectively, the electrode pattern shape, edge shape, material, and the like can be appropriately determined.
 誘電電極12とイオン発生電極13とは、リード線14を通じて高圧パルス駆動回路15に接続されている。高圧パルス駆動回路15は、イオン発生素子10の内部に設けられている。 The dielectric electrode 12 and the ion generating electrode 13 are connected to a high voltage pulse driving circuit 15 through a lead wire 14. The high voltage pulse drive circuit 15 is provided inside the ion generating element 10.
 このようなイオン発生素子10において、誘電電極12とイオン発生電極13との間に、正負電圧からなるピーク値が例えば、2.7kVであるパルス電圧を印加することにより、正イオン3および負イオン4が空間に放出される。 In such an ion generating element 10, by applying a pulse voltage having a peak value of, for example, 2.7 kV between the dielectric electrode 12 and the ion generating electrode 13, positive ions 3 and negative ions are applied. 4 is released into the space.
 上述のイオン発生素子10の構成は、あくまで一例であり、所望の濃度の正負イオンを発生可能な素子であれば、イオン発生素子10の構成は特に限定されない。 The above-described configuration of the ion generating element 10 is merely an example, and the configuration of the ion generating element 10 is not particularly limited as long as the element can generate positive and negative ions with a desired concentration.
 (植物栽培システム100の作用効果)
 ガラスに代表される透光部材は、太陽光に含まれる、紫外線の少なくとも一部を遮断する。図3の(a)は、施設栽培における植物栽培システム100(色素蓄積促進方法)の作用効果を説明するための図である。図3の(a)に示すように、グリーンハウス20では、ガラス、ビニールなどからなる透光部材を透過した太陽光を利用して植物50を栽培する。太陽光が透光部材を透過することにより紫外線の少なくとも一部が遮断される。特に、この遮断効果は透光部材がガラスである場合に大きい。
(Operational effects of the plant cultivation system 100)
A translucent member typified by glass blocks at least a part of ultraviolet rays contained in sunlight. (A) of FIG. 3 is a figure for demonstrating the effect of the plant cultivation system 100 (pigment accumulation promotion method) in institutional cultivation. As shown to (a) of FIG. 3, in the green house 20, the plant 50 is grown using the sunlight which permeate | transmitted the translucent member which consists of glass, vinyl, etc. As shown in FIG. When sunlight passes through the translucent member, at least a part of the ultraviolet rays is blocked. In particular, this blocking effect is great when the translucent member is glass.
 このようなグリーンハウス20で植物50を栽培すると、植物50に照射される紫外線が少なくなるため、露地栽培に比べて植物50に蓄積するアントシアニンの量が減少する。すなわち、植物50は、色素が蓄積されにくい栽培条件下で栽培される(または、既に一定期間栽培された)植物である。 When the plant 50 is cultivated in such a green house 20, the amount of anthocyanins accumulated in the plant 50 is reduced as compared with the outdoor cultivation because the ultraviolet rays irradiated to the plant 50 are reduced. That is, the plant 50 is a plant that is cultivated under cultivation conditions in which pigments are difficult to accumulate (or has already been cultivated for a certain period of time).
 イオン発生装置1をグリーンハウス20の内部に設け、作動させることにより、イオン発生装置1から放出された正イオン3および負イオン4が、循環扇2から送られる風に乗ってグリーンハウス20の内部に拡散する。正イオン3は、H(H2O)m(mは任意の自然数)を主体とするイオンであり、負イオン4は、O2-(HO)n(nは任意の自然数)を主体とするイオンである。 By providing and operating the ion generator 1 inside the green house 20, the positive ions 3 and the negative ions 4 released from the ion generator 1 ride on the wind sent from the circulation fan 2 and enter the inside of the green house 20. To spread. The positive ions 3 are mainly composed of H + (H 2 O) m (m is an arbitrary natural number), and the negative ions 4 are O 2− (H 2 O) n (n is an arbitrary natural number). The main ions.
 これら正イオン3および負イオン4が空気中に同時に存在すると、下記の(1)~(2)式に示すように化学反応して活性酸素種である水酸基ラジカル(・OH)が効率的に生成されると考えられる。 When these positive ions 3 and negative ions 4 are present in the air at the same time, as shown in the following formulas (1) and (2), a chemical reaction is efficiently generated to generate hydroxyl radicals (.OH) as active oxygen species. It is thought that it is done.
 H(H2O)m+O2-(HO)n
  →・OH+1/2O+(m+n)HO  (1)
 H(H2O)m+H(H2O)m’+O2-(HO)n+O2-(HO)n’
  →2・OH+O+(m+m’+n+n’)H2O  (2)
 なお、正イオンのみまたは負イオンのみを空気中に放出した場合には、水酸基ラジカルは顕著には生成されず、正イオンおよび負イオンを同時に放出することで、水分子とクラスターを形成し安定化した正イオンと負イオンとが相互反応し、水酸基ラジカルの生成が顕著になると考えられる。
H + (H 2 O) m + O 2− (H 2 O) n
→ OH + 1 / 2O 2 + (m + n) H 2 O (1)
H + (H 2 O) m + H + (H 2 O) m ′ + O 2− (H 2 O) n + O 2− (H 2 O) n ′
→ 2.OH + O 2 + (m + m ′ + n + n ′) H 2 O (2)
In addition, when only positive ions or only negative ions are released into the air, hydroxyl radicals are not generated remarkably. By releasing positive ions and negative ions simultaneously, water molecules and clusters are formed and stabilized. It is considered that positive ions and negative ions interact with each other and the formation of hydroxyl radicals becomes remarkable.
 生成された水酸基ラジカルが植物50の表面に到達すると、植物50に酸化ストレスを与え、この酸化ストレスに応答してアントシアニンを代表とするポリフェノールなどの二次代謝産物の合成が誘導されると考えられる。 When the generated hydroxyl radical reaches the surface of the plant 50, it is considered that oxidative stress is applied to the plant 50, and synthesis of secondary metabolites such as polyphenols typified by anthocyanins is induced in response to the oxidative stress. .
 植物50の栽培空間における正イオン3および負イオン4の平均濃度は、5万個/cm以上であることが好ましく、10万個/cm以上であることがより好ましい。酸化ストレスによる色素の蓄積誘導は、正イオン3および負イオン4の濃度に依存しており、その平均濃度が5万個/cm以上であれば、色素の蓄積が顕著に見られる。より顕著に色素を蓄積させるためには、正イオン3および負イオン4の平均濃度は、10万個/cm以上であることが好ましい。 Average concentration of positive ions 3 and negative ions 4 in cultivating space of the plant 50 is preferably 50,000 pieces / cm 3 or more, more preferably 100,000 pieces / cm 3 or more. The induction of pigment accumulation due to oxidative stress depends on the concentration of positive ions 3 and negative ions 4, and when the average concentration is 50,000 / cm 3 or more, pigment accumulation is noticeable. In order to accumulate the dye more remarkably, the average concentration of the positive ions 3 and the negative ions 4 is preferably 100,000 / cm 3 or more.
 なお、正負イオンは、複数の植物個体に均一に照射されることが好ましいが、植物50の栽培空間の全てにおいて均一に正負イオンが分散している必要は必ずしもない。上述の正負イオン濃度は、個々の植物50の周囲における好ましい濃度である。 Although positive and negative ions are preferably irradiated uniformly on a plurality of plant individuals, it is not always necessary that positive and negative ions are uniformly distributed in the entire cultivation space of the plant 50. The positive / negative ion concentration described above is a preferable concentration around the individual plant 50.
 また、正イオンおよび負イオンの濃度とは、正イオンの濃度と負イオンの濃度との和である。 The positive ion concentration and the negative ion concentration are the sum of the positive ion concentration and the negative ion concentration.
 現在市販されているプラズマクラスター(シャープ社製)のうち、高濃度の正負イオンを放出するものは、人間の居住空間に約2万5000個/cmの正負イオンを放出する。それゆえ、植物50に照射される正負イオンの濃度は、菌またはウイルスの除菌・不活化等を目的として人間の居住空間に放出される正負イオンの濃度よりも高いものである。 Among plasma clusters (manufactured by Sharp Corporation) that are currently on the market, those that emit high-concentration positive and negative ions emit about 25,000 ions / cm 3 of positive and negative ions into a human living space. Therefore, the concentration of positive and negative ions irradiated on the plant 50 is higher than the concentration of positive and negative ions released into a human living space for the purpose of sterilizing / inactivating bacteria or viruses.
 正負イオンは、植物50の生育を阻害しないため、育苗後の栽培期間を通じて正負イオンを照射することができる。すなわち、育苗後の植物50に対して、特に照射時間帯または照射期間を設定せずに連続的に照射してもよい。そのため、正負イオンの照射時間帯および照射期間を細かく設定する必要はない。 Since positive and negative ions do not inhibit the growth of the plant 50, positive and negative ions can be irradiated throughout the cultivation period after raising seedlings. That is, you may irradiate continuously to the plant 50 after raising seedling, without setting especially an irradiation time zone or an irradiation period. Therefore, it is not necessary to set the irradiation time zone and irradiation period of positive and negative ions in detail.
 また、正負イオンは、空気中の浮遊菌、浮遊ウイルス等を除菌・不活化する効果も有するため、植物栽培環境の除菌等もできるという付加的な効果も得られる。 In addition, since positive and negative ions have the effect of sterilizing and inactivating airborne bacteria, airborne viruses, and the like, an additional effect of sterilizing the plant cultivation environment can be obtained.
 〔実施の形態2〕
 本発明の他の実施形態について図3~4に基づいて説明すれば、以下のとおりである。なお、実施の形態1と同様の部材に関しては、同じ符号を付し、その説明を省略する。本発明の植物栽培システム(色素蓄積促進システム)は、紫外線を含まない人工照明を利用して植物を栽培する植物工場(人工気象室)の内部に配されてもよい。本実施形態では、照明装置の照明光を利用して植物を栽培する植物工場(植物栽培用構造体)21の内部に配される植物栽培システム110について説明する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIGS. In addition, about the member similar to Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted. The plant cultivation system (pigment accumulation promoting system) of the present invention may be arranged inside a plant factory (artificial weather chamber) that grows plants using artificial lighting that does not contain ultraviolet rays. This embodiment demonstrates the plant cultivation system 110 distribute | arranged inside the plant factory (structure for plant cultivation) 21 which grows a plant using the illumination light of an illuminating device.
 図4は、植物栽培システム110の構成を示す図である。図4に示すように、植物栽培システム110では、イオン発生装置1は、エアコン(空気調節装置、送風装置)6の内部に配されている。エアコン6は、植物工場21の内部の温度を調節するとともに、植物工場21の内部の空気を循環(移動)させる送風装置である。 FIG. 4 is a diagram showing a configuration of the plant cultivation system 110. As shown in FIG. 4, in the plant cultivation system 110, the ion generator 1 is arranged inside an air conditioner (air conditioning device, blower device) 6. The air conditioner 6 is a blower that adjusts the temperature inside the plant factory 21 and circulates (moves) the air inside the plant factory 21.
 正イオン3および負イオン4は、エアコン6の送風口から、温度調整された空気とともに植物工場21の内部空間に放出され、拡散される。それゆえ、エアコン6は、イオン発生装置1が発生させた正イオン3および負イオン4を拡散させる送風装置として機能する。 The positive ions 3 and the negative ions 4 are discharged from the air outlet of the air conditioner 6 into the internal space of the plant factory 21 and diffused together with the temperature-adjusted air. Therefore, the air conditioner 6 functions as a blower that diffuses the positive ions 3 and the negative ions 4 generated by the ion generator 1.
 植物工場21には、照明装置(光源)としてLED(発光ダイオード)7が設けられている。このLED7は、栽培容器5の上方に配されており、紫外線よりも長い波長を有する照明光を出射するものであり、より具体的には、500nm以上の波長を有する赤色の照明光を出射する。赤色光は、葉緑素(クロロフィル)による吸収効率が高く、光合成が促進されることから、近年では赤色LEDを用いたレタスの栽培が行われている。 The plant factory 21 is provided with an LED (light emitting diode) 7 as a lighting device (light source). The LED 7 is arranged above the cultivation container 5 and emits illumination light having a wavelength longer than that of ultraviolet rays. More specifically, the LED 7 emits red illumination light having a wavelength of 500 nm or more. . Since red light has high absorption efficiency by chlorophyll (chlorophyll) and promotes photosynthesis, in recent years, lettuce has been cultivated using red LEDs.
 ただし、植物工場21で利用される照明装置は、赤色照明に限定されず、白色照明光を出射するものであってもよく、波長範囲は特に限定されない。また、植物工場21の照明装置は、LEDに限定されず、蛍光灯、ハロゲンランプ等、公知の光源を用いてもよい。 However, the illumination device used in the plant factory 21 is not limited to red illumination, and may emit white illumination light, and the wavelength range is not particularly limited. Moreover, the illumination device of the plant factory 21 is not limited to the LED, and a known light source such as a fluorescent lamp or a halogen lamp may be used.
 (植物栽培システム110の作用効果)
 図3の(b)は、植物工場における植物栽培システム110の作用効果を説明するための図である。上述のように、植物工場内で植物を栽培する場合にも、紫外線の不足等により植物の葉における色素(特にアントシアニン)の蓄積が起こりにくいという問題が生じる。
(Operational effects of the plant cultivation system 110)
(B) of FIG. 3 is a figure for demonstrating the effect of the plant cultivation system 110 in a plant factory. As described above, even when a plant is cultivated in a plant factory, there is a problem that pigment (particularly anthocyanin) is unlikely to accumulate in the leaves of the plant due to lack of ultraviolet rays or the like.
 そこで、植物栽培システム110を植物工場21の内部で稼動させることによりこの問題を解決できる。すなわち、イオン発生装置1から放出される正負イオンによって、植物50における色素の蓄積を促進することができる。 Therefore, this problem can be solved by operating the plant cultivation system 110 inside the plant factory 21. That is, accumulation of pigment in the plant 50 can be promoted by positive and negative ions released from the ion generator 1.
 〔実施の形態3〕
 本発明の他の実施形態について図5に基づいて説明すれば、以下のとおりである。なお、実施の形態1と同様の部材に関しては、同じ符号を付し、その説明を省略する。本実施形態では、植物工場21の内部に配される植物栽培システム120について説明する。
[Embodiment 3]
The following will describe another embodiment of the present invention with reference to FIG. In addition, about the member similar to Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted. In the present embodiment, a plant cultivation system 120 disposed inside the plant factory 21 will be described.
 図5は、植物栽培システム120の構成を示す図である。図4に示すように、植物栽培システム120では、イオン発生装置1は、エアコン6とは別の装置として設けられている。イオン発生装置1は、植物工場21の床に配置されており、植物工場21の天井に向けて(より正確には、斜め上方に)正イオン3および負イオン4を放出する。そのために、イオン発生装置1の内部に送風装置(不図示)が設けられている。 FIG. 5 is a diagram showing the configuration of the plant cultivation system 120. As shown in FIG. 4, in the plant cultivation system 120, the ion generator 1 is provided as a separate device from the air conditioner 6. The ion generator 1 is disposed on the floor of the plant factory 21 and emits positive ions 3 and negative ions 4 toward the ceiling of the plant factory 21 (more precisely, obliquely upward). Therefore, a blower (not shown) is provided inside the ion generator 1.
 正イオン3および負イオン4が植物50に直接照射されることは好ましくないため、植物工場21の内部空間に均等に正イオン3および負イオン4が拡散するようにイオン発生装置1のイオン吹き出し口の向きが調整されている。 Since it is not preferable that the positive ions 3 and the negative ions 4 are directly irradiated to the plant 50, the ion outlet of the ion generator 1 so that the positive ions 3 and the negative ions 4 are evenly diffused in the internal space of the plant factory 21. The direction of is adjusted.
 植物栽培システム120では、既存の植物工場および栽培施設をそのまま利用することができ、初期投資費用を軽減できる。 In the plant cultivation system 120, the existing plant factory and cultivation facility can be used as they are, and the initial investment cost can be reduced.
 なお、植物栽培用構造体であるグリーンハウス20および植物工場21を本発明の構成要素として捉える必要はない。また、グリーンハウス20または植物工場21の内部において、植物50の周囲の正負イオン濃度を高めるために、植物50の周囲に閉鎖空間を形成する構造体を設け、イオン発生装置1から当該構造体の内部に正負イオンを送り込んでもよい。 It should be noted that the green house 20 and the plant factory 21 that are plant cultivation structures need not be considered as the constituent elements of the present invention. In addition, in order to increase the positive and negative ion concentration around the plant 50 inside the green house 20 or the plant factory 21, a structure that forms a closed space around the plant 50 is provided, and the structure of the structure from the ion generator 1 is provided. Positive and negative ions may be sent inside.
 本発明の一実施例について図6~図12に基づいて説明すれば、以下のとおりである。ここでは、プラスティックボックス(植物栽培用構造体)30を用いて閉鎖的空間を形成し、植物50として赤色系レタス(ロロロッサ)の栽培を行った例について説明する。 An embodiment of the present invention will be described with reference to FIGS. 6 to 12 as follows. Here, an example in which a closed space is formed using a plastic box (structure for plant cultivation) 30 and cultivation of red lettuce (Lolorossa) as the plant 50 will be described.
 (実験条件)
 図6の(a)および(b)は、本実施例の構成を示す図である。図6の(a)は、本実施例の植物栽培システムを上方から見た場合の実施例の構成を示す図であり、図6の(b)は、本実施例の植物栽培システムを側方から見た場合の実施例の構成を示す図である。図7は、本実施例の構成を写真で示す図である。
(Experimental conditions)
(A) and (b) of FIG. 6 is a figure which shows the structure of a present Example. (A) of FIG. 6 is a figure which shows the structure of the Example at the time of seeing the plant cultivation system of a present Example from upper direction, (b) of FIG. 6 is a side view of the plant cultivation system of a present Example. It is a figure which shows the structure of the Example at the time of seeing from. FIG. 7 is a diagram showing the configuration of the present embodiment in a photograph.
 ロロロッサの種子をウレタンキューブには種し、白色蛍光灯を110μmol/m/sの照射強度で、明期16時間、暗期8時間の周期で点灯させて10日間育苗した。そのときの気温は、明期では25℃であり、暗期では15℃である。 Lororossa seeds were seeded on urethane cubes, and white fluorescent lamps were lit at an irradiation intensity of 110 μmol / m 2 / s and lighted at a cycle of 16 hours in the light period and 8 hours in the dark period, and grown for 10 days. The temperature at that time is 25 ° C. in the light period and 15 ° C. in the dark period.
 上述の条件で10日間育苗した赤色系レタスの苗を、栽培容器5としてのプラスティックタッパーの上に直接載置し、培養液を給肥した。培養液として、大塚ハウスA処方の1/2単位を用いた。 The red lettuce seedlings grown for 10 days under the above-mentioned conditions were directly placed on a plastic tapper as the cultivation container 5, and the culture solution was fed. As a culture solution, 1/2 unit of Otsuka House A formulation was used.
 光源として白色蛍光灯を用いており、白色蛍光灯は、プラスティックボックス30の上方に配されている。光量は、110μmol/m/sであり、光の波長は、約400~700nmである。明期16時間、暗期8時間の周期で蛍光灯を点灯させた。 A white fluorescent lamp is used as a light source, and the white fluorescent lamp is disposed above the plastic box 30. The amount of light is 110 μmol / m 2 / s, and the wavelength of light is about 400 to 700 nm. The fluorescent lamp was turned on with a period of 16 hours in the light period and 8 hours in the dark period.
 プラスティックボックス30内の温度は、明期では25℃であり、暗期では15℃である。また、プラスティックボックス30内の湿度は約100%である。プラスティックボックス30内に、イオン発生装置1、栽培容器5および植物50が配置されている。 The temperature in the plastic box 30 is 25 ° C. in the light period and 15 ° C. in the dark period. The humidity in the plastic box 30 is about 100%. In the plastic box 30, the ion generator 1, the cultivation container 5, and the plant 50 are arrange | positioned.
 図8は、本実施例で用いたイオン発生装置1の外観を示す図である。本実施例では、プラズマクラスターイオン発生器IG-B20(シャープ社製)を用いた。イオン発生装置1は、プラスティックボックス30の内部に、イオン吹き出し口を斜め上方に向けて、正イオン3および負イオン4を含む風が直接植物50に照射されないように配置されている。このイオン発生装置1は、その内部に送風装置が設けられているものである。 FIG. 8 is a diagram showing the appearance of the ion generator 1 used in this example. In this example, a plasma cluster ion generator IG-B20 (manufactured by Sharp Corporation) was used. The ion generator 1 is arranged inside the plastic box 30 so that the wind blown with the positive ions 3 and the negative ions 4 is not directly irradiated to the plant 50 with the ion blowing port directed obliquely upward. This ion generator 1 is provided with a blower inside.
 正負イオン処理中は、プラスティックボックス30を密閉しており、プラスティックボックス30内の正イオンおよび負イオンの総濃度は、約128000個/cmである。イオン発生装置1は、育苗後の正負イオン処理期間中は常時作動させ、正イオンおよび負イオンの濃度を一定に維持した(イオン照射工程)。 During the positive and negative ion treatment, the plastic box 30 is sealed, and the total concentration of positive ions and negative ions in the plastic box 30 is about 128000 / cm 3 . The ion generator 1 was always operated during the positive / negative ion treatment period after raising seedlings, and the concentrations of positive ions and negative ions were kept constant (ion irradiation step).
 なお、正負イオン濃度の測定には、市販のイオンカウンター(例えば、明興産業株式会社製イオンカウンターNKMH-103)を用い、1cm/V・s以上の移動度を有するイオンを測定対象としている。そのとき、正イオンおよび負イオンの濃度をそれぞれ測定している。正イオンおよび負イオンは、ほぼ等量発生する。上述の濃度は、正イオンの濃度と負イオンの濃度との和である。 The positive / negative ion concentration is measured using a commercially available ion counter (for example, an ion counter NKMH-103 manufactured by Meiko Sangyo Co., Ltd.) and measuring ions having a mobility of 1 cm 3 / V · s or more. . At that time, the concentrations of positive ions and negative ions are measured. Positive ions and negative ions are generated in approximately equal amounts. The above-mentioned concentration is the sum of the positive ion concentration and the negative ion concentration.
 また、正負イオンを発生しないように改造したイオン発生装置を用いて、正負イオンを含まない風をロロロッサにあてた実験系をコントロールとして用意した。正負イオン以外の条件は、上述の条件と同一にした。 Also, using an ion generator remodeled so as not to generate positive and negative ions, an experimental system in which a wind not containing positive and negative ions was applied to Lolo Rossa was prepared as a control. Conditions other than positive and negative ions were the same as those described above.
 (実験結果)
 上述の条件で24日間、ロロロッサを正負イオン処理した。図9の(a)は24日間正負イオンで処理したロロロッサの葉の状態を示す図であり、図9の(b)は正負イオンを含まない風で処理した場合のロロロッサの葉の状態を示す図である。
(Experimental result)
The Lolorossa was treated with positive and negative ions for 24 days under the above conditions. FIG. 9 (a) is a diagram showing the state of leaves of Loro Rossa treated with positive and negative ions for 24 days, and FIG. 9 (b) shows the state of leaves of Loro Rossa when treated with wind containing no positive / negative ions. FIG.
 図9の(a)および(b)の比較から分かるように、正負イオンで処理した場合には、葉において顕著に赤色の着色が認められたが、風コントロールでは着色はほとんど認められなかった。 As can be seen from the comparison between FIGS. 9A and 9B, when treated with positive and negative ions, remarkably red coloring was observed in the leaves, but almost no coloring was observed in the wind control.
 図10は、正負イオン処理を27日間行ったロロロッサおよびコントロールのロロロッサの葉における総ポリフェノール含量を示すグラフである。総ポリフェノール含量の測定には、ロロロッサの葉の先端部を用いた。総ポリフェノール含量の測定は、Folin-Denis法(植物環境工学(2009)21;51-58)に準じた方法で行った。 FIG. 10 is a graph showing the total polyphenol content in leaves of Loro Rossa and control Loro Rossa that were treated with positive and negative ions for 27 days. For the measurement of the total polyphenol content, the tip of the loro rossa leaf was used. The total polyphenol content was measured by a method according to the Folin-Denis method (Plant Environmental Engineering (2009) 21; 51-58).
 図10に示すように、正負イオン処理した場合には、風コントロールと比べて総ポリフェノール含量が約2倍に増加していた。栽培期間中の継続的な正負イオン処理により、栽培後期にロロロッサの葉で赤色の着色が生じたのは、植物の赤色色素源であるポリフェノールの蓄積量の増加によるものと考えられる。 As shown in FIG. 10, when the positive and negative ions were treated, the total polyphenol content increased about twice as compared with the wind control. It is considered that the red coloration in the leaves of Loro Rossa in the late stage of cultivation due to continuous positive and negative ion treatment during the cultivation period is due to an increase in the amount of polyphenol accumulated as a red pigment source of the plant.
 図11は、正負イオン処理を27日間行ったロロロッサおよびコントロールのロロロッサの葉における総アントシアニン含量を示すグラフである。総アントシアニン含量の測定には、ロロロッサの葉の先端部を用いた。総アントシアニン含量の測定は、Lee & Francis法(植物環境工学(2009)21;51-58)に準じた方法で行った。 FIG. 11 is a graph showing the total anthocyanin content in the leaves of Loro Rossa and control Loro Rossa that were treated with positive and negative ions for 27 days. For the measurement of the total anthocyanin content, the tip of the loro rossa leaf was used. The total anthocyanin content was measured by a method according to the Lee & Francis method (Plant Environmental Engineering (2009) 21; 51-58).
 図11に示すように、正負イオン処理した場合には、風コントロールと比べて総アントシアニン含量が約6倍に増加していた。栽培期間中の継続的な正負イオン処理により、栽培後期にロロロッサの葉で赤色の着色が生じたのは、ポリフェノールの一種であるアントシアニンの蓄積量の増加によるものと考えられる。 As shown in FIG. 11, when the positive and negative ions were treated, the total anthocyanin content increased about 6 times compared with the wind control. It is considered that the red coloration in the loro rossa leaves in the late stage of cultivation due to the continuous positive / negative ion treatment during the cultivation period is due to an increase in the accumulated amount of anthocyanins, a kind of polyphenol.
 図12は、正負イオン処理を27日間行ったロロロッサおよび風コントロールのロロロッサの根を含む植物全体の新鮮重を示すグラフである。図12に示すように、正負イオン処理を施したロロロッサと風コントロールのロロロッサとでは、新鮮重に有意な差は認められなかった。 FIG. 12 is a graph showing the fresh weight of the whole plant including the roots of Loro Rossa that has been subjected to positive and negative ion treatment for 27 days and Wind-controlling Loro Rossa. As shown in FIG. 12, there was no significant difference in fresh weight between Lolo Rossa treated with positive and negative ions and Lolo Rossa of wind control.
 このことから、栽培期間中の継続的な正負イオン処理による栽培後期でのロロロッサの葉におけるポリフェノールの蓄積は、植物の生育に顕著な影響を及ぼさないことが明らかとなった。この結果から、正負イオンを処理することで生育に顕著な影響を与えずにポリフェノール(特にアントシアニン)量を増加させることが可能であることが明らかとなった。 From this, it has been clarified that the accumulation of polyphenols in the leaves of Loro Rossa in the late stage of cultivation by continuous positive and negative ion treatment during the cultivation period does not significantly affect the growth of plants. From this result, it became clear that the amount of polyphenol (especially anthocyanin) can be increased by treating positive and negative ions without significantly affecting the growth.
 なお、赤色の着色は、正負イオン処理後20日前後、すなわち栽培後期から認められ始めた。この事実から、正負イオン処理によって誘導される色素の蓄積は、比較的穏やかなものであることが分かる。そのため、正負イオン処理が植物の生育に与える影響がほとんどないと考えられる。 In addition, the red coloring started to be recognized around 20 days after the positive and negative ion treatment, that is, from the late cultivation stage. From this fact, it can be seen that the dye accumulation induced by positive and negative ion treatment is relatively mild. For this reason, it is considered that positive and negative ion treatment has little influence on plant growth.
 (効果)
 青色光照射、低温処理、塩ストレス処理、渇水処理など、正負イオン処理以外のストレス処理によってもアントシアニンが誘導されると考えられるが、これらの処理は、植物の生育に悪影響を及ぼす可能性が高い。さらには、処理時間または処理濃度を誤れば、植物を枯らせてしまう可能性もある。
(effect)
Anthocyanins are thought to be induced by stress treatments other than positive and negative ion treatment such as blue light irradiation, low temperature treatment, salt stress treatment, drought treatment, etc., but these treatments are likely to have an adverse effect on plant growth. . Furthermore, if the treatment time or treatment concentration is incorrect, the plant may die.
 これに対して、正負イオン処理は、植物の生育に与える影響はほとんどなく、処理時間および処理濃度を厳密に管理する必要もない。そのため、簡易な処理で植物に色素を蓄積させることができる。 In contrast, positive and negative ion treatment has little effect on plant growth, and it is not necessary to strictly manage treatment time and treatment concentration. Therefore, the pigment can be accumulated in the plant by a simple treatment.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 例えば、太陽光と人工照明とを併用する栽培施設において上述の植物栽培システムを用いてもよい。 For example, the above plant cultivation system may be used in a cultivation facility that uses both sunlight and artificial lighting.
 (付記事項)
 上述のように、上記色素蓄積促進システムは、上記イオン発生装置が発生させた正イオンおよび負イオンを拡散させる送風装置をさらに含むことが好ましい。
(Additional notes)
As described above, it is preferable that the dye accumulation promoting system further includes a blower that diffuses positive ions and negative ions generated by the ion generator.
 イオン発生装置が発生させた正イオンおよび負イオンを送風装置からの風により拡散させることによって、複数の植物に均一にイオンを照射することができる。 正 By diffusing positive ions and negative ions generated by the ion generator with the wind from the blower, it is possible to uniformly irradiate a plurality of plants with ions.
 それゆえ、一部の植物体が必要以上に着色したり、一部の植物体が着色しなかったりするという個体間のばらつきを抑制することができる。 Therefore, it is possible to suppress the variation among individuals that some plants are colored more than necessary or some plants are not colored.
 また、上記色素蓄積促進システムは、太陽光に含まれる紫外線の少なくとも一部を遮断する透光部材を透過した光を利用して植物を栽培する植物栽培用構造体の内部に配されてもよい。 In addition, the pigment accumulation promoting system may be arranged inside a plant cultivation structure that grows a plant using light transmitted through a translucent member that blocks at least part of ultraviolet rays contained in sunlight. .
 また、上記透光部材は、ガラス材を含むものであってもよい。 The translucent member may include a glass material.
 太陽光が透光部材を透過することにより紫外線の少なくとも一部が遮断される。特に、この遮断効果は透光部材がガラスである場合に大きい。このような植物栽培用構造体で植物を栽培すると、植物に照射される紫外線が少なくなるため、露地栽培に比べて植物に蓄積する色素、特にアントシアニンの量が減少する。 * At least a part of the ultraviolet rays are blocked by the sunlight passing through the translucent member. In particular, this blocking effect is great when the translucent member is glass. When a plant is cultivated with such a structure for plant cultivation, the amount of ultraviolet rays irradiated to the plant is reduced, so that the amount of pigment, particularly anthocyanin, accumulated in the plant is reduced as compared with outdoor cultivation.
 そのため、上記色素蓄積促進システムは、太陽光の一部のみを利用する植物栽培用構造体の内部で栽培される植物の色素を蓄積誘導させるシステムとして好適に利用できる。 Therefore, the pigment accumulation promoting system can be suitably used as a system that induces accumulation of plant pigments cultivated inside a plant cultivation structure that uses only a part of sunlight.
 また、上記色素蓄積促進システムは、紫外線よりも長い波長を有する照明光を発する照明装置の照明光を利用して植物を栽培する植物栽培用構造体の内部に配されてもよい。 Further, the pigment accumulation promoting system may be disposed inside a plant cultivation structure that grows plants using illumination light of an illumination device that emits illumination light having a wavelength longer than ultraviolet light.
 また、上記照明光は、500nm以上の波長を有するものであってもよい。 Further, the illumination light may have a wavelength of 500 nm or more.
 紫外線や青色光よりも長い波長(例えば、500nm以上の波長)を有する照明光を発する照明装置の照明光を利用して植物を栽培する場合には、植物の着色を促進する波長成分がほとんどないため、露地栽培に比べて植物に蓄積する色素、特にアントシアニンの量が減少する。 When a plant is cultivated using the illumination light of an illumination device that emits illumination light having a longer wavelength than ultraviolet light or blue light (for example, a wavelength of 500 nm or more), there is almost no wavelength component that promotes coloring of the plant. Therefore, the amount of pigments accumulated in plants, particularly anthocyanins, is reduced compared to open field cultivation.
 そのため、上記色素蓄積促進システムは、人工照明を利用する植物栽培用構造体の内部で栽培される植物の色素を蓄積誘導させるシステムとして好適に利用できる。 Therefore, the pigment accumulation promoting system can be suitably used as a system for accumulating and guiding the pigments of plants cultivated inside the plant cultivation structure using artificial lighting.
 また、上記色素には、ポリフェノール由来の色素が含まれていてもよく、特に、アントシアニン由来の色素が含まれていてもよい。 The dye may contain a polyphenol-derived dye, and in particular, an anthocyanin-derived dye.
 正イオンおよび負イオンの照射によりポリフェノール、特にアントシアニンの蓄積量が増加することが本発明の発明者によって確認されている。ポリフェノールは、色素源であり、ポリフェノールの蓄積量を増加させることにより植物を着色することができる。 It has been confirmed by the inventors of the present invention that the amount of accumulated polyphenols, particularly anthocyanins, is increased by irradiation with positive ions and negative ions. Polyphenol is a pigment source, and plants can be colored by increasing the amount of polyphenol accumulated.
 見方を変えれば、正イオンおよび負イオンの照射対象となる植物は、ポリフェノール、特にアントシアニンを多く含み得る植物であることが好ましい。 In other words, it is preferable that the plant to be irradiated with positive ions and negative ions is a plant that can contain a large amount of polyphenols, particularly anthocyanins.
 なお、ポリフェノール由来の色素とは、ポリフェノールそのものであってもよいし、ポリフェノールの前駆体やポリフェノールをもとに生合成された色素であってもよい。また、アントシアニン由来の色素とは、アントシアニンそのものであってもよいし、アントシアニンの前駆体やアントシアニンをもとに生合成された色素であってもよい。 Note that the polyphenol-derived dye may be polyphenol itself, or a dye biosynthesized based on a polyphenol precursor or polyphenol. The anthocyanin-derived dye may be anthocyanin itself, or a dye biosynthesized based on an anthocyanin precursor or anthocyanin.
 また、上記植物は、赤色色素を蓄積可能な葉菜類であってもよい。 Further, the plant may be a leaf vegetable that can accumulate a red pigment.
 赤色系の葉菜類に正イオンおよび負イオンを照射することにより、赤色色素の蓄積を促進することができる。 蓄積 Accumulation of red pigment can be promoted by irradiating red leafy vegetables with positive ions and negative ions.
 また、上記植物の周囲の空間における上記正イオンおよび上記負イオンを含むイオンの平均濃度は、5万個/cm以上であることが好ましく、10万個/cm以上であることがより好ましい。 The average concentration of ions including the positive ions and the negative ions in the space around the plant is preferably 50,000 / cm 3 or more, and more preferably 100,000 / cm 3 or more .
 酸化ストレスによる色素の蓄積誘導は、正イオンおよび負イオンの濃度に依存しており、その平均濃度(正イオンの濃度と負イオンの濃度との和)が5万個/cm以上であれば、色素の蓄積が顕著に見られる。より顕著に色素を蓄積させるためには、上記平均濃度は、10万個/cm以上であることが好ましい。 Induction of pigment accumulation by oxidative stress depends on the concentration of positive ions and negative ions, and the average concentration (the sum of positive ion concentration and negative ion concentration) is 50,000 / cm 3 or more. The accumulation of pigment is noticeable. In order to accumulate the dye more remarkably, the average density is preferably 100,000 / cm 3 or more.
 なお、上記植物の周囲の空間とは、当該植物が栽培されている植物栽培用構造体の内部における空間全体を意味するものでは必ずしもない。少なくとも、上記植物の周囲の正イオンおよび負イオンの平均濃度が上述の濃度になっていればよい。 It should be noted that the space around the plant does not necessarily mean the entire space inside the plant cultivation structure in which the plant is grown. It is sufficient that at least the average concentration of positive ions and negative ions around the plant is the above-described concentration.
 また、上記色素蓄積促進システムは、植物を栽培する植物栽培用構造体の内部に配され、上記植物栽培用構造体には、当該植物栽培用構造体の内部の空気を移動させる送風装置が設けられていてもよい。 The pigment accumulation promoting system is arranged inside a plant cultivation structure for cultivating plants, and the plant cultivation structure is provided with a blower that moves the air inside the plant cultivation structure. It may be done.
 植物栽培用構造体の内部の空気を移動(特に、循環)させる送風装置が植物栽培用構造体の内部に設けられている場合には、その送風装置を利用して、正イオンおよび負イオンを植物栽培用構造体の内部に均一に拡散させることができる。 When an air blower that moves (especially circulates) the air inside the plant cultivation structure is provided inside the plant cultivation structure, positive air and negative ions are produced using the air blower. It can be uniformly diffused inside the structure for plant cultivation.
 また、上記色素蓄積促進システムに含まれるイオン発生装置も本発明の技術的範囲に含まれる。 In addition, an ion generator included in the dye accumulation promoting system is also included in the technical scope of the present invention.
 また、上記イオン照射工程は、上記植物の育苗後の栽培期間において連続的に行われてもよい。 Further, the ion irradiation step may be continuously performed during the cultivation period after the seedling of the plant.
 正イオンおよび負イオンは、植物の成長に悪影響を及ぼさないため、長期間のイオン照射が可能である。 Since positive ions and negative ions do not adversely affect the growth of plants, long-term ion irradiation is possible.
 また、上記イオン照射工程は、赤色色素を蓄積可能な葉菜類に対して行われてもよい。 In addition, the ion irradiation step may be performed on leaf vegetables that can accumulate red pigment.
 赤色系の葉菜類に正イオンおよび負イオンを照射することにより、赤色色素の蓄積を促進することができる。 蓄積 Accumulation of red pigment can be promoted by irradiating red leafy vegetables with positive ions and negative ions.
 本発明は、既存および新規の植物工場および栽培施設の内部で栽培される植物において色素の蓄積を促進する装置、システムおよび方法として好適に利用することができる。 The present invention can be suitably used as an apparatus, system and method for promoting pigment accumulation in existing and new plant factories and plants cultivated inside cultivation facilities.
  1 イオン発生装置
  2 循環扇(送風装置)
  3 正イオン
  4 負イオン
  6 エアコン
  7 LED
 20 グリーンハウス(植物栽培用構造体)
 21 植物工場(植物栽培用構造体)
 30 プラスティックボックス(植物栽培用構造体)
 50 植物
100 植物栽培システム(色素蓄積促進システム)
110 植物栽培システム(色素蓄積促進システム)
120 植物栽培システム(色素蓄積促進システム)
1 Ion generator 2 Circulation fan (blower)
3 Positive ion 4 Negative ion 6 Air conditioner 7 LED
20 Greenhouse (structure for plant cultivation)
21 Plant factory (structure for plant cultivation)
30 Plastic box (structure for plant cultivation)
50 Plant 100 Plant cultivation system (pigment accumulation promotion system)
110 Plant cultivation system (pigment accumulation promotion system)
120 Plant cultivation system (pigment accumulation promotion system)

Claims (16)

  1.  色素が蓄積されにくい栽培条件下で栽培される植物における色素の蓄積を促進する色素蓄積促進システムであって、
     上記植物が栽培される空間において正イオンおよび負イオンを発生させるイオン発生装置を含むことを特徴とする色素蓄積促進システム。
    A pigment accumulation promoting system that promotes pigment accumulation in plants cultivated under cultivation conditions in which pigments are difficult to accumulate,
    A pigment accumulation promoting system comprising an ion generator for generating positive ions and negative ions in a space where the plant is grown.
  2.  上記イオン発生装置が発生させた正イオンおよび負イオンを拡散させる送風装置をさらに含むことを特徴とする請求項1に記載の色素蓄積促進システム。 The dye accumulation promoting system according to claim 1, further comprising a blower for diffusing positive ions and negative ions generated by the ion generator.
  3.  太陽光に含まれる紫外線の少なくとも一部を遮断する透光部材を透過した光を利用して植物を栽培する植物栽培用構造体の内部に配されることを特徴とする請求項1または2に記載の色素蓄積促進システム。 3. The plant cultivation structure for cultivating a plant using light transmitted through a translucent member that blocks at least a part of ultraviolet rays contained in sunlight. The dye accumulation promoting system described.
  4.  上記透光部材は、ガラス材を含むことを特徴とする請求項3に記載の色素蓄積促進システム。 The pigment accumulation promoting system according to claim 3, wherein the translucent member includes a glass material.
  5.  紫外線よりも長い波長を有する照明光を発する照明装置の照明光を利用して植物を栽培する植物栽培用構造体の内部に配されることを特徴とする請求項1または2に記載の色素蓄積促進システム。 The pigment accumulation according to claim 1 or 2, wherein the pigment accumulation is arranged inside a plant cultivation structure for cultivating a plant using illumination light of an illumination device that emits illumination light having a wavelength longer than ultraviolet light. Promotion system.
  6.  上記照明光は、500nm以上の波長を有するものであることを特徴とする請求項5に記載の色素蓄積促進システム。 6. The dye accumulation promoting system according to claim 5, wherein the illumination light has a wavelength of 500 nm or more.
  7.  上記色素には、ポリフェノール由来の色素が含まれることを特徴とする請求項1~6のいずれか1項に記載の色素蓄積促進システム。 The pigment accumulation promoting system according to any one of claims 1 to 6, wherein the pigment contains a pigment derived from polyphenol.
  8.  上記色素には、アントシアニン由来の色素が含まれることを特徴とする請求項7に記載の色素蓄積促進システム。 The pigment accumulation promoting system according to claim 7, wherein the pigment contains a pigment derived from anthocyanin.
  9.  上記植物は、赤色色素を蓄積可能な葉菜類であることを特徴とする請求項1~8のいずれか1項に記載の色素蓄積促進システム。 The pigment accumulation promoting system according to any one of claims 1 to 8, wherein the plant is a leaf vegetable capable of accumulating a red pigment.
  10.  上記植物の周囲の空間における上記正イオンおよび上記負イオンを含むイオンの平均濃度は、5万個/cm以上であることを特徴とする請求項1~9のいずれか1項に記載の色素蓄積促進システム。 The dye according to any one of claims 1 to 9, wherein an average concentration of the ions including the positive ions and the negative ions in the space around the plant is 50,000 / cm 3 or more. Accumulation promotion system.
  11.  上記植物の周囲の空間における上記正イオンおよび上記負イオンを含むイオンの平均濃度は、10万個/cm以上であることを特徴とする請求項10に記載の色素蓄積促進システム。 The pigment accumulation promoting system according to claim 10, wherein an average concentration of the ions including the positive ions and the negative ions in a space around the plant is 100,000 / cm 3 or more.
  12.  植物を栽培する植物栽培用構造体の内部に配され、
     上記植物栽培用構造体には、当該植物栽培用構造体の内部の空気を移動させる送風装置が設けられていることを特徴とする請求項1~11のいずれか1項に記載の色素蓄積促進システム。
    Arranged inside the plant cultivation structure for cultivating plants,
    The pigment accumulation acceleration according to any one of claims 1 to 11, wherein the plant cultivation structure is provided with a blower for moving the air inside the plant cultivation structure. system.
  13.  請求項1~12のいずれか1項に記載の色素蓄積促進システムに含まれることを特徴とするイオン発生装置。 An ion generator, which is included in the dye accumulation promoting system according to any one of claims 1 to 12.
  14.  色素が蓄積されにくい栽培条件下で栽培される植物における色素の蓄積を促進する色素蓄積促進方法であって、
     正イオンおよび負イオンを上記植物に照射するイオン照射工程を含むことを特徴とする色素蓄積促進方法。
    A pigment accumulation promoting method that promotes pigment accumulation in plants cultivated under cultivation conditions in which pigments are difficult to accumulate,
    A method for promoting pigment accumulation, comprising an ion irradiation step of irradiating the plant with positive ions and negative ions.
  15.  上記イオン照射工程は、上記植物の育苗後の栽培期間において連続的に行われることを特徴とする請求項14に記載の色素蓄積促進方法。 The method for promoting the accumulation of pigment according to claim 14, wherein the ion irradiation step is continuously performed during a cultivation period after the seedling of the plant.
  16.  上記イオン照射工程は、赤色色素を蓄積可能な葉菜類に対して行われることを特徴とする請求項14または15に記載の色素蓄積促進方法。 The method for promoting pigment accumulation according to claim 14 or 15, wherein the ion irradiation step is performed on leaf vegetables capable of accumulating red pigment.
PCT/JP2011/079998 2010-12-27 2011-12-26 Pigment accumulation enhancing system, ion generating device, and pigment accumulation enhancing method WO2012090897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010291217A JP2012135288A (en) 2010-12-27 2010-12-27 Pigment accumulation enhancing system, ion generating device, and pigment accumulation enhancing method
JP2010-291217 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090897A1 true WO2012090897A1 (en) 2012-07-05

Family

ID=46383001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079998 WO2012090897A1 (en) 2010-12-27 2011-12-26 Pigment accumulation enhancing system, ion generating device, and pigment accumulation enhancing method

Country Status (2)

Country Link
JP (1) JP2012135288A (en)
WO (1) WO2012090897A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017194502A1 (en) 2016-05-09 2017-11-16 Philips Lighting Holding B.V. Method to naturally brand a lettuce.
CN108697051A (en) * 2016-02-29 2018-10-23 夏普株式会社 plant cultivation method and plant cultivating device
EP3484269A4 (en) * 2016-07-13 2020-07-29 Just Greens, LLC Leaf color pattern creation
IL293912B1 (en) * 2022-06-13 2023-11-01 A I R Agritech Ltd System and method for growing crocus sativus and production of saffron therefrom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6580968B2 (en) * 2015-12-09 2019-09-25 ナチュラルプロセスファクトリー株式会社 Food drying method and drying apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151850A (en) * 2003-11-21 2005-06-16 Ccs Inc Method and device for growing buckwheat
WO2005120219A1 (en) * 2004-06-07 2005-12-22 Sharp Kabushiki Kaisha Facilities and method for breeding animal or plant, animal or plant bred by the facilities and method and apparatus for generating activated gas
JP2009531415A (en) * 2006-03-24 2009-09-03 アンドレス・アントニオ・レショー・サンウエサ Compositions and methods for increasing the product quality, resistance to external factors and polyphenol content of plant products to add value to the product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151850A (en) * 2003-11-21 2005-06-16 Ccs Inc Method and device for growing buckwheat
WO2005120219A1 (en) * 2004-06-07 2005-12-22 Sharp Kabushiki Kaisha Facilities and method for breeding animal or plant, animal or plant bred by the facilities and method and apparatus for generating activated gas
JP2009531415A (en) * 2006-03-24 2009-09-03 アンドレス・アントニオ・レショー・サンウエサ Compositions and methods for increasing the product quality, resistance to external factors and polyphenol content of plant products to add value to the product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108697051A (en) * 2016-02-29 2018-10-23 夏普株式会社 plant cultivation method and plant cultivating device
WO2017194502A1 (en) 2016-05-09 2017-11-16 Philips Lighting Holding B.V. Method to naturally brand a lettuce.
US11666076B2 (en) 2016-05-09 2023-06-06 Signify Holding B.V. Method to naturally brand a lettuce
EP3484269A4 (en) * 2016-07-13 2020-07-29 Just Greens, LLC Leaf color pattern creation
IL293912B1 (en) * 2022-06-13 2023-11-01 A I R Agritech Ltd System and method for growing crocus sativus and production of saffron therefrom
IL293912B2 (en) * 2022-06-13 2024-03-01 A I R Agritech Ltd System and method for growing crocus sativus and production of saffron therefrom

Also Published As

Publication number Publication date
JP2012135288A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
US11925152B2 (en) Plant growth system
TWI248335B (en) Equipment for nursing seedlings, and method for nursing plant seedlings
CN106793757B (en) Photon modulation management system
KR100944359B1 (en) A lamp for plant cultivation with multiple light sources and plant cultivation method thereby
JP2018510656A (en) Method and apparatus for stimulating plant growth and development with near infrared and visible light
EP2433489A2 (en) Plant growing system
KR101415842B1 (en) Indoor Plants Cultivation Apparatus
WO2012090897A1 (en) Pigment accumulation enhancing system, ion generating device, and pigment accumulation enhancing method
KR20040010426A (en) Apparatus for culturing dye plants using LED(Light Emitting Diode) light source.
WO2019031559A1 (en) Plant cultivation method and plant cultivation device
KR20190122456A (en) Plant cultivation method using uv and plant cultivation system therefor
KR20140141066A (en) Growing apparatus of plant with led
JP2005151850A (en) Method and device for growing buckwheat
KR20170025460A (en) Cultivation method of spinach by using light quality in closed-type plant factory system
KR101414473B1 (en) Plant cultivation system and cultivation method using upper and lower growth lamp
JP2007075073A (en) Method for cultivating sprouts
JP2007089445A (en) Plant body cultivating method
JP2006340689A (en) Method for cultivating green vegetables and installation for the same
KR101900643B1 (en) Cultivation method of spinach by using light quality in closed-type plant factory system
Zheleznikova et al. Implementing Comparative Method in Education with the Case of Leaf Lettuce Irradiation Modes.
JP2013215121A (en) Method for raising plant
JP2018113934A (en) Method for producing leafy vegetables and apparatus for producing leafy vegetables
JP7157489B1 (en) Plant cultivation method and plant cultivation device
JP7236186B1 (en) Plant cultivation method and plant cultivation device
KR102686983B1 (en) Method for producing Boehmeria nivea with increased anthocyanin content in smart farm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853514

Country of ref document: EP

Kind code of ref document: A1