WO2012090864A1 - Desulfurization device and fuel cell system - Google Patents
Desulfurization device and fuel cell system Download PDFInfo
- Publication number
- WO2012090864A1 WO2012090864A1 PCT/JP2011/079836 JP2011079836W WO2012090864A1 WO 2012090864 A1 WO2012090864 A1 WO 2012090864A1 JP 2011079836 W JP2011079836 W JP 2011079836W WO 2012090864 A1 WO2012090864 A1 WO 2012090864A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- desulfurization
- flow path
- hydrogen
- fluid
- heat
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
- C10L3/102—Removal of contaminants of acid contaminants
- C10L3/103—Sulfur containing contaminants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
- C01B3/58—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
- H01M8/0675—Removal of sulfur
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Definitions
- Various aspects and embodiments of the present invention relate to a desulfurization apparatus employed in a fuel cell system.
- a desulfurization apparatus employed in a fuel cell system an apparatus having a desulfurization unit that desulfurizes a hydrogen-containing fuel is known.
- a desulfurization part what is heated so that it may become the reaction temperature of a desulfurization catalyst is disclosed (for example, refer patent documents 1-3).
- the desulfurization section described in Patent Document 1 is heated by the heated reformed gas after flowing through the reformer being guided into the desulfurization section.
- the desulfurization part of patent document 2 is arrange
- the desulfurization part described in Patent Document 3 is heated using water supplied to the reforming catalyst and received heat.
- a desulfurization apparatus is a desulfurization apparatus that is used in a fuel cell system that generates electric power from a cell stack using a hydrogen-containing fuel and recovers exhaust heat of the cell stack using a heat medium.
- the desulfurization apparatus includes a desulfurization unit and a desulfurization system heat exchange unit.
- the desulfurization section has a desulfurization flow path containing a desulfurization catalyst, and desulfurizes the hydrogen-containing fuel by flowing through the desulfurization flow path.
- the desulfurization heat exchange unit is disposed so as to cover the side of the desulfurization unit, and causes the heat medium after the exhaust heat of the cell stack is collected to flow to exchange heat between the heat medium and the desulfurization unit.
- the fluid circulation direction of the desulfurization heat exchange section and the fluid circulation direction of the desulfurization flow path are formed so as to face each other.
- the heat medium that recovers the exhaust heat of the cell stack exchanges heat with the desulfurization unit. Since the heat medium is heated by the exhaust heat of the cell stack, the temperature becomes lower than the temperature of the reformed gas, the temperature of the water supplied to the reforming catalyst and receiving heat, and the reaction temperature of the combustion catalyst. For this reason, the desulfurization part which should be kept at a comparatively low temperature can be warmed efficiently. Furthermore, in the desulfurization apparatus according to one aspect of the present invention, the flow direction of the hydrogen-containing fuel and the flow direction of the heat medium are formed so as to face each other. For this reason, a desulfurization part can be heat-retained efficiently.
- the desulfurization flow path is formed with a folded portion that circulates the hydrogen-containing fuel flowing from the fluid inlet to one side to the other side opposite to the one side, and the desulfurization flow channel from the fluid inlet to the folded portion
- the fluid flow direction of the desulfurization flow path from the fluid inlet to the turn-up part and the fluid flow direction of the desulfurization flow path from the turn-up part to the fluid outlet are opposed to each other. It may be formed so that.
- the hydrogen-containing fuel that flows through the desulfurization flow path from the fluid inlet to the turned-up portion and the hydrogen-containing fuel that flows through the heat medium and the desulfurization flow path from the turned-up portion to the fluid outlet flow counter-currently. It is said. That is, the hydrogen-containing fuel that flows through the desulfurization flow path from the fluid inlet to the turn-up portion is heated from the heat medium and is also heated by the hydrogen-containing fuel that flows through the desulfurization flow path from the turn-up portion to the fluid outlet.
- the thermal efficiency can be improved by setting the flow direction of the fluid to be heated and the flow direction of the heating source fluid to be opposite flows, it is possible to keep the desulfurization section warm with high energy efficiency.
- baffle plates that change the flow of fluid may be provided at the fluid inlet and the fluid outlet inside the desulfurization flow path.
- a baffle plate that changes the flow of fluid may be provided in the folded portion inside the desulfurization flow path.
- the desulfurization flow path from the fluid inlet to the turn-up part is defined by the outer peripheral wall of the desulfurization part and the inner wall provided inside the desulfurization part, and the desulfurization flow path from the turn-up part to the fluid outlet is formed by the inner wall.
- the inner wall may be provided such that the desulfurization flow path from the fluid inlet to the turn-up portion and the desulfurization flow path from the turn-up portion to the fluid outlet have the same volume.
- the desulfurization part has a cylindrical shape, and has a radius set so that the surface area obtained based on the radius of the desulfurization part and a predetermined amount of catalyst accommodated in the desulfurization part becomes a minimum value. Good. By comprising in this way, the thermal radiation of the desulfurization apparatus 90 can be suppressed appropriately.
- a fuel cell system includes the above-described desulfurization apparatus and is configured to generate power using the hydrogen-containing fuel after desulfurization. Since the fuel cell system includes the above-described desulfurization apparatus, the temperature of the desulfurization unit can be maintained with high energy efficiency.
- FIG. 4 is a sectional view taken along line IV-IV of the desulfurization apparatus shown in FIG. 3. It is a schematic diagram for demonstrating the internal structure of the upper part of the desulfurization apparatus which concerns on a modification. It is a schematic diagram for demonstrating the internal structure of the lower part of the desulfurization apparatus which concerns on a modification.
- FIG. 6 is a cross-sectional view of the desulfurization apparatus shown in FIG. 5 taken along line VII-VII.
- FIG. 1 is a block diagram showing the configuration of the fuel cell system according to the present embodiment.
- the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7, The water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, and the control part 11 are provided.
- the fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant.
- the type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid.
- PEFC polymer electrolyte fuel cell
- SOFC solid oxide fuel cell
- phosphoric acid a fuel cell
- PAFC Phosphoric Acid Fuel Cell
- MCFC molten carbonate Fuel Cell
- the components shown in FIG. 1 may be omitted as appropriate according to the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
- hydrocarbon fuel a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used.
- hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
- oxygen-enriched air for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
- the desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4.
- the desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel.
- a desulfurization method of the desulfurization unit 2 for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed.
- the desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
- the water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water.
- heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used.
- FIG. 1 only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this.
- the water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
- the hydrogen generation unit 4 generates a hydrogen rich gas (hydrogen-containing gas) using the hydrogen-containing fuel from the desulfurization unit 2.
- the hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst.
- the reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
- the hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5.
- the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part).
- the hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
- the cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9.
- the cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13.
- the cell stack 5 supplies power to the outside via the power conditioner 10.
- the cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas.
- a combustion section for example, a combustor that heats the reformer
- the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
- the off gas combustion unit 6 burns off gas supplied from the cell stack 5.
- the heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
- the hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2.
- the water supply unit 8 supplies water to the water vaporization unit 3.
- the oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5.
- the hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
- the power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
- the control unit 11 performs control processing for the entire fuel cell system 1.
- the control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example.
- the control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown.
- the control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
- the fuel cell system 1 is provided with a heat recovery system that uses the heat generated by the cell stack 5 to change the water into hot water and stores the hot water in a hot water tank. That is, the fuel cell system 1 includes a so-called cogeneration system.
- the heat recovery system in the fuel cell system 1 will be outlined.
- FIG. 2 is a block diagram showing the configuration of the fuel cell system according to the present embodiment. In FIG. 2, parts not related to the heat recovery system are partially omitted.
- the heat recovery system of the fuel cell system 1 recovers the exhaust heat of the cell stack 5, and includes a hot water storage tank 81, a heat exchanger 80, a desulfurization system heat exchange unit 82, and a circulating flow.
- a path 83 is provided.
- the hot water storage tank 81, the heat exchanger 80, and the desulfurization system heat exchange unit 82 are sequentially connected by a circulation channel 83.
- the desulfurization unit 2 includes the desulfurization unit 2 and the desulfurization system heat exchange unit 82.
- the hot water tank 81 is a unit that stores water or hot water.
- water is water that is in a liquid state regardless of its temperature, and warm water is obtained by adding heat to “water”.
- the stored water in the hot water storage tank 81 is supplied to the heat exchanger 80 as a heat medium.
- the heat medium may be cooled by a radiator or the like before being supplied to the heat exchanger 80.
- the heat exchanger 80 is connected to the hot water storage tank 81 via the circulation channel 83 and is connected to the output side of the cell stack 5.
- the heat exchanger 80 exchanges heat between the off gas (exhaust gas) of the cell stack 5 and the heat medium. That is, the heat medium is heated by the heat exchanger 80 using off-gas as a heating source. The heat medium is heated to about 60 ° C. to 80 ° C.
- the heat medium after the heat exchange is supplied to the desulfurization system heat exchange unit 82 of the desulfurization unit 2 through the circulation flow path 83.
- the desulfurization heat exchange unit 82 is connected to the heat exchanger 80 via the circulation channel 83 and is in thermal contact with the desulfurization unit 2.
- the desulfurization heat exchange unit 82 exchanges heat between the heat medium and the desulfurization unit 2. That is, the desulfurization unit 2 is heated by the desulfurization heat exchange unit 82 using the heat medium as a heating source.
- the heat medium after the heat exchange is returned to the hot water storage tank 81 through the circulation flow path 83.
- the low-temperature heat medium is supplied from the hot water storage tank 81 to the heat exchanger 80 and heated, and the heated heat medium is supplied to the desulfurization system heat exchange unit 82 of the desulfurization apparatus. Then, the desulfurization part 2 is heated.
- the reformed gas of the fuel cell system 1 is produced by the hydrogen generator 4 and is said to have a temperature of about 600 ° C. to 700 ° C.
- the reforming water supplied to the reforming catalyst is also superheated and is in a steam state, and therefore has a considerably high temperature.
- the catalytic combustion temperature of a normal combustion catalyst is about 600 ° C.
- the reformed gas, the reformed water, or the combustion catalyst has a very high temperature, so that an energy loss is large even if the temperature of the desulfurization section 2 that should be kept at a relatively low temperature is kept.
- An example of such a low-temperature desulfurization section 2 is a zeolite-based adsorptive desulfurization section (heat retention temperature 60 ° C. to 80 ° C.). Since the fuel cell system 1 uses a heat medium, when the low-temperature desulfurization unit 2 is employed, it is possible to keep warm with little energy loss.
- FIG. 3 is a perspective view of the desulfurization apparatus according to the present embodiment
- FIG. 4 is a cross-sectional view taken along the line IV-IV of the desulfurization apparatus shown in FIG.
- the desulfurization apparatus 90 has a substantially cylindrical shape, and includes a desulfurization unit 2 and a desulfurization system heat exchange unit 82.
- a fluid inlet 20a for introducing the hydrogen-containing fuel before the desulfurization treatment into the desulfurization section 2 and a fluid outlet 20b for leading the hydrogen-containing fuel after the desulfurization treatment from the desulfurization section 2 are formed.
- a fluid inlet 21a is formed on the lower side portion of the desulfurization device 90 to introduce the heat medium after recovering the exhaust heat of the cell stack 5 into the desulfurization system heat exchange unit 82. Is formed with a fluid outlet 21b through which the heat medium after heat exchange is led out from the desulfurization heat exchanging portion 82 at a position farthest from the fluid inlet 21a.
- the desulfurization part 2 is formed in a substantially cylindrical shape with the outer peripheral wall 2a as a side wall.
- the desulfurization catalyst 21 is accommodated in the inside.
- an inner peripheral wall (inner wall) 2 b is erected on the upper inner wall of the desulfurization part 2 toward the lower inner wall of the desulfurization part 2.
- the inner peripheral wall 2b extends along the outer peripheral wall 2a while being separated from the outer peripheral wall 2a.
- a gap (folded portion 25) is provided between the front end side of the inner peripheral wall 2 b and the lower inner wall of the desulfurization portion 2.
- a desulfurization flow path 23 is defined inside the desulfurization section 2 by the outer peripheral wall 2a and the inner peripheral wall 2b, and a desulfurization flow path 24 is defined inside the inner peripheral wall 2b.
- the desulfurization flow path is arranged in the order of the desulfurization flow path 23 and the desulfurization flow path 24 from the outside to the inside of the desulfurization section 2.
- the fluid inlet 20a of the desulfurization section 2 is communicated with a desulfurization flow path 23 defined by the outer peripheral wall 2a and the inner peripheral wall 2b.
- the fluid outlet 20b of the desulfurization part 2 is connected to a desulfurization flow path 24 defined in the inner peripheral wall 2b.
- the hydrogen-containing fuel introduced from the fluid inlet 20a to the desulfurization section 2 flows from the upper side to the lower side (one side) through the desulfurization flow path 23 defined by the outer peripheral wall 2a and the inner peripheral wall 2b.
- the fluid exits as a hydrogen-containing fuel after desulfurization by circulating through the desulfurization flow path 24 defined inside the inner peripheral wall 2b to the upper side (the other side) opposite to the one side. 20b.
- a desulfurization heat exchange unit 82 is disposed on the side of the desulfurization unit 2 so as to cover the desulfurization unit 2.
- the desulfurization heat exchanger 82 is provided with a heat medium flow path 22 through which a heat medium flows. That is, a tank (jacket tank) made of a heated heat medium, for example, hot water, is disposed on the side of the desulfurization unit 2.
- the heat medium introduced from the fluid inlet 21a to the desulfurization heat exchanger 82 flows through the heat medium passage 22 from the lower side to the upper side and is led out from the fluid outlet 21b.
- the desulfurization flow path 23 from the fluid inlet 20a to the turn-up portion 25 is disposed adjacent to the heat medium flow path 22, and the fluid flow direction of the heat medium flow path 22 and the fluid of the desulfurization flow path 23 are arranged. It is formed so that the flow direction is a counter flow. For this reason, heat can be efficiently given from the heat medium flowing through the heat medium flow path 22 to the desulfurization flow path 23 or the hydrogen-containing fuel flowing through the desulfurization flow path 23.
- the fluid flow direction of the desulfurization flow path 23 from the fluid inlet 20a to the folded portion 25 and the fluid flow direction of the desulfurization flow path 24 from the folded portion 25 to the fluid outlet 20b are formed so as to face each other. .
- heat can be efficiently given from the hydrogen-containing fuel flowing through the desulfurization flow path 24 to the hydrogen-containing fuel flowing through the desulfurization flow path 23.
- heat can be efficiently applied from the already heated hydrogen-containing fuel to the hydrogen-containing fuel to be heated.
- fever inside the desulfurization part 2 is accelerated
- the heat medium recovered from the exhaust heat of the cell stack 5 exchanges heat with the desulfurization unit 2. Since the heat medium is heated by the exhaust heat of the cell stack 5, the temperature is lower than the temperature of the reformed gas, the temperature of the water supplied to the reforming catalyst and receiving heat, and the reaction temperature of the combustion catalyst. . For this reason, the desulfurization part 2 which should be heat-retained at a comparatively low temperature can be heat-retained efficiently. Moreover, since the heater for heating the desulfurization part 2 etc. becomes unnecessary, cost is also excellent.
- the flow direction of the hydrogen-containing fuel and the flow direction of the heat medium are formed so as to face each other. It can keep warm efficiently.
- the hydrogen-containing fuel flowing through the desulfurization flow path 24 is counterflowed. That is, the hydrogen-containing fuel that flows through the desulfurization flow path 23 from the fluid inlet 20a to the turn-back portion 25 is heated from the heat medium, and the hydrogen-containing fuel that flows through the desulfurization flow path 24 from the turn-up portion 25 to the fluid outlet 20b. Is also heated.
- the thermal efficiency can be improved by setting the flow direction of the fluid to be heated and the flow direction of the heating source fluid to be opposite flows, it is possible to keep the desulfurization unit 2 warm with high energy efficiency.
- embodiment mentioned above shows an example of the desulfurization apparatus and fuel cell system which concern on this invention.
- the desulfurization apparatus and the fuel cell system according to the present invention are not limited to the desulfurization apparatus 90 and the fuel cell system 1 according to the embodiment, and the desulfurization apparatus according to the embodiment is within a range not changing the gist described in each claim. 90 and the fuel cell system 1 may be modified or applied to others.
- the example in which the exhaust heat is recovered from the off gas of the cell stack 5 has been described.
- the heat generated from the cell stack 5 may be directly recovered.
- the turn-back portion 25 is provided in the desulfurization flow path of the desulfurization portion 2 has been described.
- the turn-back portion 25 may be omitted.
- the fluid inlet and the fluid outlet of the heat medium and the hydrogen-containing fuel have been described.
- the present invention is not limited to the mounting position and the mounting direction shown in the above-described embodiment.
- the fluid inlet and the fluid outlet may be in opposite directions, and the fluid inlet and the fluid outlet of the heat medium may be provided at the lower part and the upper part instead of the side of the desulfurization apparatus 90.
- FIG. 5 is a schematic diagram for explaining an internal structure of an upper part of a desulfurization apparatus according to a modification.
- FIG. 6 is a schematic diagram for explaining the internal structure of the lower part of the desulfurization apparatus according to the modification.
- FIG. 7 is a cross-sectional view taken along line VII-VII of the desulfurization apparatus shown in FIG.
- the description which overlaps with the said embodiment is abbreviate
- a baffle plate 91 is provided on the downstream side of the fluid inlet 20a for introducing the hydrogen-containing fuel before the desulfurization treatment into the desulfurization section 2.
- the baffle plate 91 is provided in the desulfurization flow path 23 on the upstream side of the desulfurization flow path 23 (a position separated from the fluid inlet 20a by a predetermined distance).
- the baffle plate 91 is a rectangular plate member.
- the shape of the baffle plate 91 is not limited to a rectangle, and may be a circle or an ellipse.
- the baffle plate 91 is provided so as to change the flow of the hydrogen-containing fuel flowing from the fluid inlet 20a.
- the baffle plate 91 is provided so that the flow direction of the hydrogen-containing fuel and the main surface of the baffle plate 91 are orthogonal to each other.
- the flow direction of the hydrogen-containing fuel is the axial direction of the desulfurization apparatus 90 (that is, the vertical direction)
- the baffle plate 91 is arranged so that its main surface is orthogonal to the axial direction of the desulfurization apparatus 90 (that is, approximately). Placed horizontally).
- a baffle plate 92 is provided on the upstream side of the fluid outlet 21b for deriving the hydrogen-containing fuel after the desulfurization treatment.
- the baffle plate 92 is provided in the desulfurization flow path 24 on the downstream side of the desulfurization flow path 24 (a position spaced apart from the fluid outlet 21b by a predetermined distance).
- the baffle plate 92 is a circular plate member.
- a through-hole 92 a that penetrates in the thickness direction is formed in the center of the baffle plate 92.
- the shape of the baffle plate 92 is not limited to a circle, and may be a rectangle.
- the baffle plate 92 is provided so as to change the flow of the hydrogen-containing fuel flowing from the fluid outlet 21b.
- the baffle plate 92 is provided so that the flow direction of the hydrogen-containing fuel and the main surface of the baffle plate 92 are orthogonal to each other.
- the flow direction of the hydrogen-containing fuel is the axial direction of the desulfurization apparatus 90 (that is, the vertical direction)
- the baffle plate 92 is arranged so that its main surface is orthogonal to the axial direction of the desulfurization apparatus 90 (that is, substantially Placed horizontally).
- a baffle plate 93 may be provided in the folded portion 25.
- the baffle plate 93 is provided at the lower end portion of the inner peripheral wall 2 b erected from the upper inner wall of the desulfurization unit 2 toward the lower inner wall of the desulfurization unit 2.
- the baffle plate 93 is disposed at the end of the inner peripheral wall 2b so as to protrude inward in the radial direction of the inner peripheral wall 2b.
- the baffle plate 93 is a ring-shaped member having an opening 93a at the center thereof.
- the outer diameter of the baffle plate 93 is substantially the same as the outer diameter or inner diameter of the inner peripheral wall 2b, and the inner diameter of the baffle plate 93 is smaller than the inner diameter of the inner peripheral wall 2b.
- the baffle plate 93 is provided so as to change the flow of the hydrogen-containing fuel in the folded portion 25.
- the baffle plate 93 is disposed so that the main surface thereof is orthogonal to the axial direction of the desulfurization apparatus 90 (that is, substantially horizontal).
- the hydrogen-containing fuel that circulates in the folded portion 25 circulates around the baffle plate 93 and flows into the desulfurization flow path 24 from the opening 93 a having a diameter smaller than the diameter of the desulfurization flow path 24.
- the hydrogen-containing fuel can be uniformly circulated in the desulfurization flow path 24 by allowing the desulfurization flow path 24 to flow into the desulfurization flow path 24 from the center side.
- the first catalyst tank and the second catalyst are suppressed in order to suppress the drift of the hydrogen-containing fuel inside the desulfurization apparatus 90.
- the circular radius of the columnar desulfurization apparatus 90 may be set so that the surface area of the desulfurization apparatus 90 becomes a minimum value.
- the radius of the first catalyst tank is r 1
- the length from the center to the outer diameter of the second catalyst tank is r 2
- the catalyst amount (volume V) is constant (predetermined value). Then, the surface area S of the desulfurization apparatus 90 can be expressed by the following equation.
- r 2 is set so that the surface area S is the minimum value. By setting in this way, heat dissipation of the desulfurization apparatus 90 can be appropriately suppressed.
- the thickness of the heat medium passage 22 is omitted, and the description has been made on the assumption that the outer diameter of the second catalyst tank is equal to the outer diameter of the desulfurization apparatus 90. That is, it has been described that the surface area of the desulfurization apparatus 90 is substantially the same as the surface area of the desulfurization part 2.
- the surface area S may be calculated in consideration of the thickness of the heat medium flow path 22.
- SYMBOLS 1 Fuel cell system, 2 ... Desulfurization part (desulfurization apparatus), 2a ... Outer wall, 2b ... Inner wall, 5 ... Cell stack, 20a ... Fluid inlet, 20b ... Fluid outlet, 21 ... Desulfurization catalyst, 21a ... Fluid inlet, 21b ... Fluid outlet, 22 ... Heat medium flow path, 23, 24 ... Desulfurization flow path, 25 ... Folding part, 82 ... Desulfurization system heat exchange part (desulfurization apparatus).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
This desulfurization device, which is used in a fuel cell system that recovers waste heat of a cell stack using a heating medium and that generates electricity by means of the cell stack using a hydrogen-containing fuel, has a configuration characterized by: being provided with a desulfurization unit, which has a desulfurization duct housing a desulfurization catalyst and desulfurizes by flowing the hydrogen-containing fuel through the desulfurization duct, and a heat exchanger, which is disposed in a manner so as to cover the side of the desulfurization unit and has a heating medium duct that exchanges heat between the heating medium and the desulfurization unit by means of causing the flow-through of the heating medium after the heating medium has recovered cell stack waste heat; and being formed in a manner so that the direction of fluid flow of the heating medium duct and the direction of fluid flow of the desulfurization duct form a countercurrent.
Description
本発明の種々の側面及び実施形態は、燃料電池システムに採用される脱硫装置に関する。
Various aspects and embodiments of the present invention relate to a desulfurization apparatus employed in a fuel cell system.
従来、燃料電池システムに採用される脱硫装置として、水素含有燃料の脱硫を行う脱硫部を備えているものが知られている。このような脱硫部として、脱硫触媒の反応温度となるように加熱されるものが開示されている(例えば、特許文献1~3参照。)。特許文献1記載の脱硫部は、改質器を流通した後の加熱された改質ガスが脱硫部内部へ導かれることで加熱される。特許文献2記載の脱硫部は、外容器内部に配置されており、外容器に収容された燃焼触媒の反応熱を用いて加熱される。特許文献3記載の脱硫部は、改質触媒に供給されて受熱された水を用いて加熱される。
Conventionally, as a desulfurization apparatus employed in a fuel cell system, an apparatus having a desulfurization unit that desulfurizes a hydrogen-containing fuel is known. As such a desulfurization part, what is heated so that it may become the reaction temperature of a desulfurization catalyst is disclosed (for example, refer patent documents 1-3). The desulfurization section described in Patent Document 1 is heated by the heated reformed gas after flowing through the reformer being guided into the desulfurization section. The desulfurization part of patent document 2 is arrange | positioned inside an outer container, and is heated using the reaction heat of the combustion catalyst accommodated in the outer container. The desulfurization part described in Patent Document 3 is heated using water supplied to the reforming catalyst and received heat.
しかしながら、特許文献1~3記載の脱硫装置にあっては、脱硫部を加熱させる加熱媒体の温度が高温となる。このため、脱硫部の保温温度によっては加熱媒体の温度と脱硫部の保温温度との差が著しく大きくなり、効率的な保温ができないおそれがある。本技術分野では、脱硫部をエネルギー効率良く保温することができる脱硫装置及び当該脱硫装置を備える燃料電池システムが望まれている。
However, in the desulfurization apparatus described in Patent Documents 1 to 3, the temperature of the heating medium that heats the desulfurization section becomes high. For this reason, depending on the heat retention temperature of the desulfurization section, the difference between the temperature of the heating medium and the heat retention temperature of the desulfurization section becomes extremely large, and there is a possibility that efficient heat retention cannot be performed. In this technical field, a desulfurization apparatus that can keep the desulfurization part warm in an energy efficient manner and a fuel cell system including the desulfurization apparatus are desired.
本発明の一側面に係る脱硫装置は、水素含有燃料を用いてセルスタックにより発電するとともに熱媒体を用いてセルスタックの排熱を回収する燃料電池システムに用いられる脱硫装置である。この脱硫装置は、脱硫部及び脱硫系熱交換部を備える。脱硫部は、脱硫触媒を収容した脱硫流路を有し、水素含有燃料を脱硫流路に流通させて脱硫する。脱硫系熱交換部は、脱硫部の側方を覆うように配置され、セルスタックの排熱を回収した後の熱媒体を流通させて熱媒体と脱硫部とを熱交換させる。脱硫系熱交換部の流体流通方向及び脱硫流路の流体流通方向は、対向流となるように形成されている。
A desulfurization apparatus according to one aspect of the present invention is a desulfurization apparatus that is used in a fuel cell system that generates electric power from a cell stack using a hydrogen-containing fuel and recovers exhaust heat of the cell stack using a heat medium. The desulfurization apparatus includes a desulfurization unit and a desulfurization system heat exchange unit. The desulfurization section has a desulfurization flow path containing a desulfurization catalyst, and desulfurizes the hydrogen-containing fuel by flowing through the desulfurization flow path. The desulfurization heat exchange unit is disposed so as to cover the side of the desulfurization unit, and causes the heat medium after the exhaust heat of the cell stack is collected to flow to exchange heat between the heat medium and the desulfurization unit. The fluid circulation direction of the desulfurization heat exchange section and the fluid circulation direction of the desulfurization flow path are formed so as to face each other.
本発明の一側面に係る脱硫装置では、セルスタックの排熱を回収した熱媒体が脱硫部と熱交換する。熱媒体は、セルスタックの排熱によって加熱されるため、改質ガスの温度、改質触媒に供給されて受熱された水の温度、及び燃焼触媒の反応温度に比べて、低い温度となる。このため、比較的低い温度で保温されるべき脱硫部をエネルギー効率良く保温することができる。さらに、本発明の一側面に係る脱硫装置では、水素含有燃料の流通方向と熱媒体の流通方向とが対向流となるように形成されている。このため、脱硫部をエネルギー効率良く保温することができる。
In the desulfurization apparatus according to one aspect of the present invention, the heat medium that recovers the exhaust heat of the cell stack exchanges heat with the desulfurization unit. Since the heat medium is heated by the exhaust heat of the cell stack, the temperature becomes lower than the temperature of the reformed gas, the temperature of the water supplied to the reforming catalyst and receiving heat, and the reaction temperature of the combustion catalyst. For this reason, the desulfurization part which should be kept at a comparatively low temperature can be warmed efficiently. Furthermore, in the desulfurization apparatus according to one aspect of the present invention, the flow direction of the hydrogen-containing fuel and the flow direction of the heat medium are formed so as to face each other. For this reason, a desulfurization part can be heat-retained efficiently.
一実施形態では、脱硫流路には、流体入口から一方側へ流通する水素含有燃料を一方側とは反対の他方側へ流通させる折返し部が形成され、流体入口から折返し部までの脱硫流路が、熱媒体流路と隣接するように配置されており、流体入口から折返し部までの脱硫流路の流体流通方向、及び折返し部から流体出口までの脱硫流路の流体流通方向が、対向流となるように形成されていてもよい。
In one embodiment, the desulfurization flow path is formed with a folded portion that circulates the hydrogen-containing fuel flowing from the fluid inlet to one side to the other side opposite to the one side, and the desulfurization flow channel from the fluid inlet to the folded portion However, the fluid flow direction of the desulfurization flow path from the fluid inlet to the turn-up part and the fluid flow direction of the desulfurization flow path from the turn-up part to the fluid outlet are opposed to each other. It may be formed so that.
このように構成されることで、流体入口から折返し部までの脱硫流路を流通する水素含有燃料と、熱媒体及び折返し部から流体出口までの脱硫流路を流通する水素含有燃料とが対向流とされる。すなわち、流体入口から折返し部までの脱硫流路を流通する水素含有燃料は、熱媒体から加熱されるとともに、折返し部から流体出口までの脱硫流路を流通する水素含有燃料によっても加熱される。このように、加熱される流体の流通方向と加熱元の流体の流通方向を対向流とすることで熱効率を向上させることできるので、エネルギー効率良く脱硫部を保温することが可能となる。
With this configuration, the hydrogen-containing fuel that flows through the desulfurization flow path from the fluid inlet to the turned-up portion and the hydrogen-containing fuel that flows through the heat medium and the desulfurization flow path from the turned-up portion to the fluid outlet flow counter-currently. It is said. That is, the hydrogen-containing fuel that flows through the desulfurization flow path from the fluid inlet to the turn-up portion is heated from the heat medium and is also heated by the hydrogen-containing fuel that flows through the desulfurization flow path from the turn-up portion to the fluid outlet. Thus, since the thermal efficiency can be improved by setting the flow direction of the fluid to be heated and the flow direction of the heating source fluid to be opposite flows, it is possible to keep the desulfurization section warm with high energy efficiency.
一実施形態では、脱硫流路の内部において、流体入口及び流体出口に流体の流れを変更する邪魔板が設けられていてもよい。一実施形態では、脱硫流路の内部において、折返し部に流体の流れを変更する邪魔板が設けられていてもよい。このように構成することで、脱硫流路内に生じる偏流を抑制することができる。
In one embodiment, baffle plates that change the flow of fluid may be provided at the fluid inlet and the fluid outlet inside the desulfurization flow path. In one embodiment, a baffle plate that changes the flow of fluid may be provided in the folded portion inside the desulfurization flow path. By comprising in this way, the drift which arises in a desulfurization flow path can be suppressed.
一実施形態では、流体入口から折返し部までの脱硫流路は、脱硫部の外周壁及び脱硫部内部に設けられた内壁によって画成され、折返し部から流体出口までの脱硫流路は、内壁によって画成され、内壁は、流体入口から折返し部までの脱硫流路と、折返し部から流体出口までの脱硫流路とが同一の体積となるように設けられていてもよい。このように構成することで、流体入口から折返し部までの脱硫流路、及び、折返し部から流体出口までの脱硫流路において、流体の流速が平均化され、偏流偏差を小さくすることができる。
In one embodiment, the desulfurization flow path from the fluid inlet to the turn-up part is defined by the outer peripheral wall of the desulfurization part and the inner wall provided inside the desulfurization part, and the desulfurization flow path from the turn-up part to the fluid outlet is formed by the inner wall. The inner wall may be provided such that the desulfurization flow path from the fluid inlet to the turn-up portion and the desulfurization flow path from the turn-up portion to the fluid outlet have the same volume. By comprising in this way, in the desulfurization flow path from a fluid inlet to a folding | returning part, and the desulfurization flow path from a folding | turning part to a fluid outlet, the flow velocity of a fluid is averaged and a deviation deviation can be made small.
一実施形態では、脱硫部は、円筒を呈し、脱硫部の半径と脱硫部に収容される所定の触媒量とに基づいて求まる表面積が最小値となるように設定された半径を有してもよい。このように構成することで、脱硫装置90の放熱を適切に抑制することができる。
In one embodiment, the desulfurization part has a cylindrical shape, and has a radius set so that the surface area obtained based on the radius of the desulfurization part and a predetermined amount of catalyst accommodated in the desulfurization part becomes a minimum value. Good. By comprising in this way, the thermal radiation of the desulfurization apparatus 90 can be suppressed appropriately.
本発明の他の側面に係る燃料電池システムは、上述した脱硫装置を備え、脱硫後の水素含有燃料を用いて発電するように構成される。当該燃料電池システムは、上述した脱硫装置を備えているので、エネルギー効率良く脱硫部を保温することができる。
A fuel cell system according to another aspect of the present invention includes the above-described desulfurization apparatus and is configured to generate power using the hydrogen-containing fuel after desulfurization. Since the fuel cell system includes the above-described desulfurization apparatus, the temperature of the desulfurization unit can be maintained with high energy efficiency.
本発明の種々の側面及び実施形態によれば、エネルギー効率良く脱硫部を保温することができる。
According to various aspects and embodiments of the present invention, it is possible to keep the desulfurization part warm with energy efficiency.
以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
最初に燃料電池の基本構成について概説する。図1は、本実施形態に係る燃料電池システムの構成を示すブロック図である。図1に示されるように、燃料電池システム1は、脱硫部2と、水気化部3と、水素発生部4と、セルスタック5と、オフガス燃焼部6と、水素含有燃料供給部7と、水供給部8と、酸化剤供給部9と、パワーコンディショナー10と、制御部11と、を備えている。燃料電池システム1は、水素含有燃料及び酸化剤を用いて、セルスタック5にて発電を行う。燃料電池システム1におけるセルスタック5の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、リン酸形燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)、及び、その他の種類を採用することができる。なお、セルスタック5の種類、水素含有燃料の種類、及び改質方式等に応じて、図1に示す構成要素を適宜省略してもよい。
First, the basic configuration of the fuel cell will be outlined. FIG. 1 is a block diagram showing the configuration of the fuel cell system according to the present embodiment. As shown in FIG. 1, the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7, The water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, and the control part 11 are provided. The fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant. The type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid. A fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. The components shown in FIG. 1 may be omitted as appropriate according to the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。
As the hydrogen-containing fuel, for example, a hydrocarbon fuel is used. As the hydrocarbon fuel, a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used. Examples of hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。
As the oxidizing agent, for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
脱硫部2は、水素発生部4に供給される水素含有燃料の脱硫を行う。脱硫部2は、水素含有燃料に含有される硫黄化合物を除去するための脱硫触媒を有している。脱硫部2の脱硫方式として、例えば、硫黄化合物を吸着して除去する吸着脱硫方式や、硫黄化合物を水素と反応させて除去する水素化脱硫方式が採用される。脱硫部2は、脱硫した水素含有燃料を水素発生部4へ供給する。
The desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4. The desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel. As the desulfurization method of the desulfurization unit 2, for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed. The desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
水気化部3は、水を加熱し気化させることによって、水素発生部4に供給される水蒸気を生成する。水気化部3における水の加熱は、例えば、水素発生部4の熱、オフガス燃焼部6の熱、あるいは排ガスの熱を回収する等、燃料電池システム1内で発生した熱を用いてもよい。また、別途ヒータ、バーナ等の他熱源を用いて水を加熱してもよい。なお、図1では、一例としてオフガス燃焼部6から水素発生部4へ供給される熱のみ記載されているが、これに限定されない。水気化部3は、生成した水蒸気を水素発生部4へ供給する。
The water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water. For the heating of the water in the water vaporization unit 3, for example, heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used. Moreover, you may heat water using other heat sources, such as a heater and a burner separately. In FIG. 1, only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this. The water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
水素発生部4は、脱硫部2からの水素含有燃料を用いて水素リッチガス(水素含有ガス)を発生させる。水素発生部4は、水素含有燃料を改質触媒によって改質する改質器を有している。水素発生部4での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。なお、水素発生部4は、セルスタック5に要求される水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック5のタイプが固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)であった場合、水素発生部4は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。水素発生部4は、水素リッチガスをセルスタック5のアノード12へ供給する。
The hydrogen generation unit 4 generates a hydrogen rich gas (hydrogen-containing gas) using the hydrogen-containing fuel from the desulfurization unit 2. The hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst. The reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed. The hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5. For example, when the type of the cell stack 5 is a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC), the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part). The hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
セルスタック5は、水素発生部4からの水素リッチガス及び酸化剤供給部9からの酸化剤を用いて発電を行う。セルスタック5は、水素リッチガスが供給されるアノード12と、酸化剤が供給されるカソード13と、アノード12とカソード13との間に配置される電解質14と、を備えている。セルスタック5は、パワーコンディショナー10を介して、電力を外部へ供給する。セルスタック5は、発電に用いられなかった水素リッチガス及び酸化剤をオフガスとして、オフガス燃焼部6へ供給する。なお、水素発生部4が備えている燃焼部(例えば、改質器を加熱する燃焼器など)をオフガス燃焼部6と共用してもよい。
The cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9. The cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13. The cell stack 5 supplies power to the outside via the power conditioner 10. The cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas. Note that a combustion section (for example, a combustor that heats the reformer) provided in the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
オフガス燃焼部6は、セルスタック5から供給されるオフガスを燃焼させる。オフガス燃焼部6によって発生する熱は、水素発生部4へ供給され、水素発生部4での水素リッチガスの発生に用いられる。
The off gas combustion unit 6 burns off gas supplied from the cell stack 5. The heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
水素含有燃料供給部7は、脱硫部2へ水素含有燃料を供給する。水供給部8は、水気化部3へ水を供給する。酸化剤供給部9は、セルスタック5のカソード13へ酸化剤を供給する。水素含有燃料供給部7、水供給部8、及び酸化剤供給部9は、例えばポンプによって構成されており、制御部11からの制御信号に基づいて駆動する。
The hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2. The water supply unit 8 supplies water to the water vaporization unit 3. The oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5. The hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
パワーコンディショナー10は、セルスタック5からの電力を、外部での電力使用状態に合わせて調整する。パワーコンディショナー10は、例えば、電圧を変換する処理や、直流電力を交流電力へ変換する処理を行う。
The power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
制御部11は、燃料電池システム1全体の制御処理を行う。制御部11は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェイスを含んで構成されたデバイスによって構成される。制御部11は、水素含有燃料供給部7、水供給部8、酸化剤供給部9、パワーコンディショナー10、その他、図示されないセンサや補機と電気的に接続されている。制御部11は、燃料電池システム1内で発生する各種信号を取得すると共に、燃料電池システム1内の各機器へ制御信号を出力する。
The control unit 11 performs control processing for the entire fuel cell system 1. The control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example. The control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown. The control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
ここで、燃料電池システム1は、セルスタック5が発生する熱を用いて水を温水に変え、その温水を貯湯槽に貯えて利用する熱回収系を備えている。すなわち、燃料電池システム1は、いわゆるコジェネレーションシステムを備えている。以下、燃料電池システム1における熱回収系を概説する。図2は、本実施形態に係る燃料電池システムの構成を示すブロック図である。図2では、熱回収系に関係のない部分は一部省略している。図2に示されるように、燃料電池システム1の熱回収系は、セルスタック5の排熱を回収するものであって、貯湯槽81、熱交換器80、脱硫系熱交換部82及び循環流路83を備えている。貯湯槽81、熱交換器80及び脱硫系熱交換部82は、循環流路83によって順に接続されている。また、脱硫部2及び脱硫系熱交換部82を備えて脱硫装置が構成されている。
Here, the fuel cell system 1 is provided with a heat recovery system that uses the heat generated by the cell stack 5 to change the water into hot water and stores the hot water in a hot water tank. That is, the fuel cell system 1 includes a so-called cogeneration system. Hereinafter, the heat recovery system in the fuel cell system 1 will be outlined. FIG. 2 is a block diagram showing the configuration of the fuel cell system according to the present embodiment. In FIG. 2, parts not related to the heat recovery system are partially omitted. As shown in FIG. 2, the heat recovery system of the fuel cell system 1 recovers the exhaust heat of the cell stack 5, and includes a hot water storage tank 81, a heat exchanger 80, a desulfurization system heat exchange unit 82, and a circulating flow. A path 83 is provided. The hot water storage tank 81, the heat exchanger 80, and the desulfurization system heat exchange unit 82 are sequentially connected by a circulation channel 83. In addition, the desulfurization unit 2 includes the desulfurization unit 2 and the desulfurization system heat exchange unit 82.
貯湯槽81は、水又は温水を貯留するユニットである。なお、「水」とは、その温度に関係なく液体状態である水のことであって、温水とは「水」に熱を加えたものである。貯湯槽81の貯留水は、熱媒体として熱交換器80へ供給される。なお、熱交換器80への供給前にラジエータ等によって熱媒体が冷やされてもよい。
The hot water tank 81 is a unit that stores water or hot water. Note that “water” is water that is in a liquid state regardless of its temperature, and warm water is obtained by adding heat to “water”. The stored water in the hot water storage tank 81 is supplied to the heat exchanger 80 as a heat medium. Note that the heat medium may be cooled by a radiator or the like before being supplied to the heat exchanger 80.
熱交換器80は、循環流路83を介して貯湯槽81に接続されるとともに、セルスタック5の出力側に接続されている。熱交換器80は、セルスタック5のオフガス(排ガス)と熱媒体とを熱交換させる。すなわち、熱交換器80によってオフガスを加熱源として熱媒体が加熱される。熱媒体は、60℃~80℃程度に加熱される。熱交換後の熱媒体は、循環流路83を巡って脱硫部2の脱硫系熱交換部82へ供給される。
The heat exchanger 80 is connected to the hot water storage tank 81 via the circulation channel 83 and is connected to the output side of the cell stack 5. The heat exchanger 80 exchanges heat between the off gas (exhaust gas) of the cell stack 5 and the heat medium. That is, the heat medium is heated by the heat exchanger 80 using off-gas as a heating source. The heat medium is heated to about 60 ° C. to 80 ° C. The heat medium after the heat exchange is supplied to the desulfurization system heat exchange unit 82 of the desulfurization unit 2 through the circulation flow path 83.
脱硫系熱交換部82は、循環流路83を介して熱交換器80に接続されるとともに、脱硫部2と熱的に接触されている。脱硫系熱交換部82は、熱媒体と脱硫部2とを熱交換させる。すなわち、脱硫系熱交換部82によって熱媒体を加熱源として脱硫部2が加熱される。熱交換後の熱媒体は、循環流路83を巡って貯湯槽81へ戻される。
The desulfurization heat exchange unit 82 is connected to the heat exchanger 80 via the circulation channel 83 and is in thermal contact with the desulfurization unit 2. The desulfurization heat exchange unit 82 exchanges heat between the heat medium and the desulfurization unit 2. That is, the desulfurization unit 2 is heated by the desulfurization heat exchange unit 82 using the heat medium as a heating source. The heat medium after the heat exchange is returned to the hot water storage tank 81 through the circulation flow path 83.
以上、燃料電池システム1の熱回収系では、貯湯槽81から低温の熱媒体が熱交換器80へ供給されて加熱され、加熱された熱媒体が脱硫装置の脱硫系熱交換部82へ供給されて脱硫部2を加熱する。ところで、燃料電池システム1の改質ガスは、水素発生部4で生成されるものであり、600℃~700℃程度の温度を有しているとされている。改質触媒に供給される改質水もまたスーパーヒートされ、水蒸気の状態であるため、かなりの高温となっている。さらに、通常の燃焼触媒の触媒燃焼温度は600℃程度である。このため、改質ガス、改質水又は燃焼触媒は、極めて高温であるため、比較的低温に保温すべき脱硫部2を保温しようとしてもエネルギーロスが大きいこととなる。このような低温の脱硫部2の一例としては、ゼオライト系の吸着脱硫部(保温温度60℃~80℃)がある。燃料電池システム1では、熱媒体を用いるため、低温の脱硫部2を採用する場合にエネルギーロスの少ない保温をすることができる。
As described above, in the heat recovery system of the fuel cell system 1, the low-temperature heat medium is supplied from the hot water storage tank 81 to the heat exchanger 80 and heated, and the heated heat medium is supplied to the desulfurization system heat exchange unit 82 of the desulfurization apparatus. Then, the desulfurization part 2 is heated. By the way, the reformed gas of the fuel cell system 1 is produced by the hydrogen generator 4 and is said to have a temperature of about 600 ° C. to 700 ° C. The reforming water supplied to the reforming catalyst is also superheated and is in a steam state, and therefore has a considerably high temperature. Furthermore, the catalytic combustion temperature of a normal combustion catalyst is about 600 ° C. For this reason, the reformed gas, the reformed water, or the combustion catalyst has a very high temperature, so that an energy loss is large even if the temperature of the desulfurization section 2 that should be kept at a relatively low temperature is kept. An example of such a low-temperature desulfurization section 2 is a zeolite-based adsorptive desulfurization section (heat retention temperature 60 ° C. to 80 ° C.). Since the fuel cell system 1 uses a heat medium, when the low-temperature desulfurization unit 2 is employed, it is possible to keep warm with little energy loss.
次に、図3,4を用いて脱硫装置の構成を説明する。図3は、本実施形態に係る脱硫装置の斜視図、図4は、図3に示す脱硫装置のIV-IV線に沿った断面図である。
Next, the configuration of the desulfurization apparatus will be described with reference to FIGS. FIG. 3 is a perspective view of the desulfurization apparatus according to the present embodiment, and FIG. 4 is a cross-sectional view taken along the line IV-IV of the desulfurization apparatus shown in FIG.
図3,4に示されるように、脱硫装置90は、略円筒状を呈し、脱硫部2及び脱硫系熱交換部82を備えている。脱硫装置90の上側には、脱硫処理前の水素含有燃料を脱硫部2へ導入する流体入口20a、及び、脱硫処理後の水素含有燃料を脱硫部2から導出する流体出口20bが形成されている。一方、脱硫装置90の下側側部には、セルスタック5の排熱を回収した後の熱媒体を脱硫系熱交換部82へ導入する流体入口21aが形成され、脱硫装置90の上側側部には、流体入口21aから最も離れた位置に熱交換後の熱媒体を脱硫系熱交換部82から導出する流体出口21bが形成されている。
3 and 4, the desulfurization apparatus 90 has a substantially cylindrical shape, and includes a desulfurization unit 2 and a desulfurization system heat exchange unit 82. On the upper side of the desulfurization apparatus 90, a fluid inlet 20a for introducing the hydrogen-containing fuel before the desulfurization treatment into the desulfurization section 2 and a fluid outlet 20b for leading the hydrogen-containing fuel after the desulfurization treatment from the desulfurization section 2 are formed. . On the other hand, a fluid inlet 21a is formed on the lower side portion of the desulfurization device 90 to introduce the heat medium after recovering the exhaust heat of the cell stack 5 into the desulfurization system heat exchange unit 82. Is formed with a fluid outlet 21b through which the heat medium after heat exchange is led out from the desulfurization heat exchanging portion 82 at a position farthest from the fluid inlet 21a.
脱硫部2は、外周壁2aを側壁として略円筒状に形成されている。その内部には、脱硫触媒21が収容されている。また、脱硫部2の上部内壁には、脱硫部2の下部内壁に向けて内周壁(内壁)2bが立設されている。内周壁2bは、外周壁2aから離間した状態で外周壁2aに沿って延在している。内周壁2bの先端側と脱硫部2の下部内壁との間には、空隙(折返し部25)が設けられている。このため、脱硫部2の内部には、外周壁2a及び内周壁2bによって脱硫流路23が画成され、内周壁2bの内部に脱硫流路24が画成されている。脱硫流路は、脱硫部2の外側から内側へ向けて、脱硫流路23及び脱硫流路24の順に配置されている。また、脱硫部2の流体入口20aは、外周壁2a及び内周壁2bによって画成された脱硫流路23に連通されている。脱硫部2の流体出口20bは、内周壁2bの内部に画成された脱硫流路24に連通されている。
The desulfurization part 2 is formed in a substantially cylindrical shape with the outer peripheral wall 2a as a side wall. The desulfurization catalyst 21 is accommodated in the inside. Further, an inner peripheral wall (inner wall) 2 b is erected on the upper inner wall of the desulfurization part 2 toward the lower inner wall of the desulfurization part 2. The inner peripheral wall 2b extends along the outer peripheral wall 2a while being separated from the outer peripheral wall 2a. A gap (folded portion 25) is provided between the front end side of the inner peripheral wall 2 b and the lower inner wall of the desulfurization portion 2. Therefore, a desulfurization flow path 23 is defined inside the desulfurization section 2 by the outer peripheral wall 2a and the inner peripheral wall 2b, and a desulfurization flow path 24 is defined inside the inner peripheral wall 2b. The desulfurization flow path is arranged in the order of the desulfurization flow path 23 and the desulfurization flow path 24 from the outside to the inside of the desulfurization section 2. Further, the fluid inlet 20a of the desulfurization section 2 is communicated with a desulfurization flow path 23 defined by the outer peripheral wall 2a and the inner peripheral wall 2b. The fluid outlet 20b of the desulfurization part 2 is connected to a desulfurization flow path 24 defined in the inner peripheral wall 2b.
このため、流体入口20aから脱硫部2へ導入された水素含有燃料は、外周壁2a及び内周壁2bによって画成された脱硫流路23を上側から下側(一方側)へ向かって流通し、折返し部25で折り返して、内周壁2bの内部に画成された脱硫流路24を一方側とは反対の方向である上側(他方側)へ流通して、脱硫後の水素含有燃料として流体出口20bから導出される。
For this reason, the hydrogen-containing fuel introduced from the fluid inlet 20a to the desulfurization section 2 flows from the upper side to the lower side (one side) through the desulfurization flow path 23 defined by the outer peripheral wall 2a and the inner peripheral wall 2b. The fluid exits as a hydrogen-containing fuel after desulfurization by circulating through the desulfurization flow path 24 defined inside the inner peripheral wall 2b to the upper side (the other side) opposite to the one side. 20b.
脱硫部2の側方には、脱硫部2を覆うように脱硫系熱交換部82が配置されている。脱硫系熱交換部82は、その内部に熱媒体を流通させる熱媒体流路22が設けられている。すなわち、脱硫部2の側方は、加熱された熱媒体、例えば温水による槽(ジャケット槽)が配置されている。流体入口21aから脱硫系熱交換部82へ導入された熱媒体は、熱媒体流路22を下側から上側へ向かって流通して流体出口21bから導出される。
A desulfurization heat exchange unit 82 is disposed on the side of the desulfurization unit 2 so as to cover the desulfurization unit 2. The desulfurization heat exchanger 82 is provided with a heat medium flow path 22 through which a heat medium flows. That is, a tank (jacket tank) made of a heated heat medium, for example, hot water, is disposed on the side of the desulfurization unit 2. The heat medium introduced from the fluid inlet 21a to the desulfurization heat exchanger 82 flows through the heat medium passage 22 from the lower side to the upper side and is led out from the fluid outlet 21b.
このように、流体入口20aから折返し部25までの脱硫流路23が、熱媒体流路22と隣接するように配置されており、熱媒体流路22の流体流通方向及び脱硫流路23の流体流通方向が対向流となるように形成されている。このため、熱媒体流路22を流通する熱媒体から脱硫流路23又は脱硫流路23を流通する水素含有燃料へ効率的に熱を与えることができる。
In this way, the desulfurization flow path 23 from the fluid inlet 20a to the turn-up portion 25 is disposed adjacent to the heat medium flow path 22, and the fluid flow direction of the heat medium flow path 22 and the fluid of the desulfurization flow path 23 are arranged. It is formed so that the flow direction is a counter flow. For this reason, heat can be efficiently given from the heat medium flowing through the heat medium flow path 22 to the desulfurization flow path 23 or the hydrogen-containing fuel flowing through the desulfurization flow path 23.
また、流体入口20aから折返し部25までの脱硫流路23の流体流通方向、及び折返し部25から流体出口20bまでの脱硫流路24の流体流通方向が、対向流となるように形成されている。このため、脱硫流路24を流通する水素含有燃料から、脱硫流路23を流通する水素含有燃料へ効率的に熱を与えることができる。言い換えれば、既に加熱された水素含有燃料から、これから加熱する水素含有燃料へ効率的に熱を与えることができる。このように、自己熱回収される構成とされているので、脱硫部2の内部の熱の均一化が促進される。
Further, the fluid flow direction of the desulfurization flow path 23 from the fluid inlet 20a to the folded portion 25 and the fluid flow direction of the desulfurization flow path 24 from the folded portion 25 to the fluid outlet 20b are formed so as to face each other. . For this reason, heat can be efficiently given from the hydrogen-containing fuel flowing through the desulfurization flow path 24 to the hydrogen-containing fuel flowing through the desulfurization flow path 23. In other words, heat can be efficiently applied from the already heated hydrogen-containing fuel to the hydrogen-containing fuel to be heated. Thus, since it is set as the structure which self-heat-recovers, the equalization | homogenization of the heat | fever inside the desulfurization part 2 is accelerated | stimulated.
以上、本実施形態に係る脱硫装置90又は燃料電池システム1によれば、セルスタック5の排熱を回収した熱媒体が脱硫部2と熱交換する。熱媒体は、セルスタック5の排熱によって加熱されるため、改質ガスの温度、改質触媒に供給されて受熱された水の温度、及び燃焼触媒の反応温度に比べて、低い温度となる。このため、比較的低い温度で保温されるべき脱硫部2をエネルギー効率良く保温することができる。また、脱硫部2を加熱するためのヒータ等が不要となるので、コストも優れている。
As described above, according to the desulfurization apparatus 90 or the fuel cell system 1 according to the present embodiment, the heat medium recovered from the exhaust heat of the cell stack 5 exchanges heat with the desulfurization unit 2. Since the heat medium is heated by the exhaust heat of the cell stack 5, the temperature is lower than the temperature of the reformed gas, the temperature of the water supplied to the reforming catalyst and receiving heat, and the reaction temperature of the combustion catalyst. . For this reason, the desulfurization part 2 which should be heat-retained at a comparatively low temperature can be heat-retained efficiently. Moreover, since the heater for heating the desulfurization part 2 etc. becomes unnecessary, cost is also excellent.
また、本実施形態に係る脱硫装置90又は燃料電池システム1によれば、水素含有燃料の流通方向と熱媒体の流通方向とが対向流となるように形成されているため、脱硫部2をエネルギー効率良く保温することができる。
In addition, according to the desulfurization apparatus 90 or the fuel cell system 1 according to the present embodiment, the flow direction of the hydrogen-containing fuel and the flow direction of the heat medium are formed so as to face each other. It can keep warm efficiently.
さらに、本実施形態に係る脱硫装置90又は燃料電池システム1によれば、流体入口20aから折返し部25までの脱硫流路23を流通する水素含有燃料と、熱媒体及び折返し部25から流体出口までの脱硫流路24を流通する水素含有燃料とが対向流とされる。すなわち、流体入口20aから折返し部25までの脱硫流路23を流通する水素含有燃料は、熱媒体から加熱されるとともに、折返し部25から流体出口20bまでの脱硫流路24を流通する水素含有燃料によっても加熱される。このように、加熱される流体の流通方向と加熱元の流体の流通方向を対向流とすることで熱効率を向上させることできるので、エネルギー効率良く脱硫部2を保温することが可能となる。
Furthermore, according to the desulfurization apparatus 90 or the fuel cell system 1 according to the present embodiment, the hydrogen-containing fuel that flows through the desulfurization flow path 23 from the fluid inlet 20a to the folding portion 25, and the heat medium and the folding portion 25 to the fluid outlet. The hydrogen-containing fuel flowing through the desulfurization flow path 24 is counterflowed. That is, the hydrogen-containing fuel that flows through the desulfurization flow path 23 from the fluid inlet 20a to the turn-back portion 25 is heated from the heat medium, and the hydrogen-containing fuel that flows through the desulfurization flow path 24 from the turn-up portion 25 to the fluid outlet 20b. Is also heated. Thus, since the thermal efficiency can be improved by setting the flow direction of the fluid to be heated and the flow direction of the heating source fluid to be opposite flows, it is possible to keep the desulfurization unit 2 warm with high energy efficiency.
なお、上述した実施形態は本発明に係る脱硫装置及び燃料電池システムの一例を示すものである。本発明に係る脱硫装置及び燃料電池システムは、実施形態に係る脱硫装置90及び燃料電池システム1に限られるものではなく、各請求項に記載した要旨を変更しない範囲で、実施形態に係る脱硫装置90及び燃料電池システム1を変形し、又は他のものに適用したものであってもよい。
In addition, embodiment mentioned above shows an example of the desulfurization apparatus and fuel cell system which concern on this invention. The desulfurization apparatus and the fuel cell system according to the present invention are not limited to the desulfurization apparatus 90 and the fuel cell system 1 according to the embodiment, and the desulfurization apparatus according to the embodiment is within a range not changing the gist described in each claim. 90 and the fuel cell system 1 may be modified or applied to others.
例えば、上述した実施形態では、セルスタック5のオフガスから排熱を回収する例を説明したが、セルスタック5から発生する熱を直接回収してもよい。
For example, in the above-described embodiment, the example in which the exhaust heat is recovered from the off gas of the cell stack 5 has been described. However, the heat generated from the cell stack 5 may be directly recovered.
また、上述した実施形態では、脱硫部2の脱硫流路に折返し部25を設ける場合を説明したが、折返し部25を設けずに構成してもよい。
In the above-described embodiment, the case where the turn-back portion 25 is provided in the desulfurization flow path of the desulfurization portion 2 has been described. However, the turn-back portion 25 may be omitted.
また、上述した実施形態では、熱媒体及び水素含有燃料の流体入口及び流体出口について説明したが、上述した実施形態に示す取り付け位置及び取り付け方向に限定されるものではない。例えば、流体入口及び流体出口を逆方向にしてもよいし、熱媒体の流体入口及び流体出口を脱硫装置90の側方ではなく、下部及び上部に設けてもよい。
In the above-described embodiment, the fluid inlet and the fluid outlet of the heat medium and the hydrogen-containing fuel have been described. However, the present invention is not limited to the mounting position and the mounting direction shown in the above-described embodiment. For example, the fluid inlet and the fluid outlet may be in opposite directions, and the fluid inlet and the fluid outlet of the heat medium may be provided at the lower part and the upper part instead of the side of the desulfurization apparatus 90.
また、脱硫装置90内部における水素含有燃料の偏流を抑制するために、邪魔板を設けてもよい。以下、変形例について図5~7を用いて説明する。図5は、変形例に係る脱硫装置の上部の内部構造を説明するための概要図である。図6は、変形例に係る脱硫装置の下部の内部構造を説明するための概要図である。図7は、図5に示す脱硫装置のVII-VII線に沿った断面図である。なお、変形例においては上記実施形態と重複する説明は省略し、相違点を中心に説明する。
Further, a baffle plate may be provided in order to suppress the drift of the hydrogen-containing fuel inside the desulfurization apparatus 90. Hereinafter, modified examples will be described with reference to FIGS. FIG. 5 is a schematic diagram for explaining an internal structure of an upper part of a desulfurization apparatus according to a modification. FIG. 6 is a schematic diagram for explaining the internal structure of the lower part of the desulfurization apparatus according to the modification. FIG. 7 is a cross-sectional view taken along line VII-VII of the desulfurization apparatus shown in FIG. In addition, in the modification, the description which overlaps with the said embodiment is abbreviate | omitted, and it demonstrates centering around difference.
図5,7に示すように、脱硫処理前の水素含有燃料を脱硫部2へ導入する流体入口20aの下流側には、邪魔板91が設けられている。邪魔板91は、脱硫流路23内部において、脱硫流路23の上流側(流体入口20aから所定距離離間した位置)に設けられている。邪魔板91は、矩形の板状部材である。なお、邪魔板91の形状は矩形に限定されず、円形、楕円形であってもよい。邪魔板91は、流体入口20aから流入する水素含有燃料の流れを変更するように設けられる。例えば、水素含有燃料の流れの方向と、邪魔板91の主面とが直交するように、邪魔板91は設けられる。ここでは、水素含有燃料の流れの方向が脱硫装置90の軸線方向(すなわち鉛直方向)であるので、邪魔板91は、その主面が脱硫装置90の軸線方向と直交するように、(すなわち略水平となるように)配置される。邪魔板91を設けることにより、脱硫流路23に流入した水素含有燃料は、邪魔板91にぶつかり、脱硫流路23内部を脱硫装置90の径方向へ拡散する。したがって、流体入口20a近傍において生じる偏流を抑制し、脱硫流路23内部において水素含有燃料を均一に流通させることができる。
As shown in FIGS. 5 and 7, a baffle plate 91 is provided on the downstream side of the fluid inlet 20a for introducing the hydrogen-containing fuel before the desulfurization treatment into the desulfurization section 2. The baffle plate 91 is provided in the desulfurization flow path 23 on the upstream side of the desulfurization flow path 23 (a position separated from the fluid inlet 20a by a predetermined distance). The baffle plate 91 is a rectangular plate member. The shape of the baffle plate 91 is not limited to a rectangle, and may be a circle or an ellipse. The baffle plate 91 is provided so as to change the flow of the hydrogen-containing fuel flowing from the fluid inlet 20a. For example, the baffle plate 91 is provided so that the flow direction of the hydrogen-containing fuel and the main surface of the baffle plate 91 are orthogonal to each other. Here, since the flow direction of the hydrogen-containing fuel is the axial direction of the desulfurization apparatus 90 (that is, the vertical direction), the baffle plate 91 is arranged so that its main surface is orthogonal to the axial direction of the desulfurization apparatus 90 (that is, approximately). Placed horizontally). By providing the baffle plate 91, the hydrogen-containing fuel that has flowed into the desulfurization flow path 23 collides with the baffle plate 91 and diffuses inside the desulfurization flow path 23 in the radial direction of the desulfurization device 90. Accordingly, it is possible to suppress the uneven flow generated in the vicinity of the fluid inlet 20a and to distribute the hydrogen-containing fuel uniformly in the desulfurization flow path 23.
脱硫処理後の水素含有燃料を導出する流体出口21bの上流側には、邪魔板92が設けられている。邪魔板92は、脱硫流路24内部において、脱硫流路24の下流側(流体出口21bから所定距離離間した位置)に設けられている。邪魔板92は、円形の板状部材である。邪魔板92の中央には、厚さ方向に貫通する貫通孔92aが形成されている。なお、邪魔板92の形状は円形に限定されず、矩形であってもよい。邪魔板92は、流体出口21bから流入する水素含有燃料の流れを変更するように設けられる。例えば、水素含有燃料の流れの方向と、邪魔板92の主面とが直交するように、邪魔板92は設けられる。ここでは、水素含有燃料の流れの方向が脱硫装置90の軸線方向(すなわち鉛直方向)であるので、邪魔板92は、その主面が脱硫装置90の軸線方向と直交するように、(すなわち略水平となるように)配置される。邪魔板92を設けることにより、脱硫後の水素含有燃料が導出される際に、水素含有燃料が邪魔板92にぶつかり、脱硫流路24内部を脱硫装置90の径方向へ拡散する。従って、脱硫流路24内部において流体出口21b近傍において生じる偏流を抑制することができる。さらに、貫通孔92aを設けることで、一部の水素含有燃料は邪魔板92にぶつかることなく脱硫装置90から導出される。よって、貫通孔92aを設けることで偏流の抑制度合いを調整することができる。
A baffle plate 92 is provided on the upstream side of the fluid outlet 21b for deriving the hydrogen-containing fuel after the desulfurization treatment. The baffle plate 92 is provided in the desulfurization flow path 24 on the downstream side of the desulfurization flow path 24 (a position spaced apart from the fluid outlet 21b by a predetermined distance). The baffle plate 92 is a circular plate member. A through-hole 92 a that penetrates in the thickness direction is formed in the center of the baffle plate 92. The shape of the baffle plate 92 is not limited to a circle, and may be a rectangle. The baffle plate 92 is provided so as to change the flow of the hydrogen-containing fuel flowing from the fluid outlet 21b. For example, the baffle plate 92 is provided so that the flow direction of the hydrogen-containing fuel and the main surface of the baffle plate 92 are orthogonal to each other. Here, since the flow direction of the hydrogen-containing fuel is the axial direction of the desulfurization apparatus 90 (that is, the vertical direction), the baffle plate 92 is arranged so that its main surface is orthogonal to the axial direction of the desulfurization apparatus 90 (that is, substantially Placed horizontally). By providing the baffle plate 92, when the hydrogen-containing fuel after desulfurization is led out, the hydrogen-containing fuel collides with the baffle plate 92 and diffuses the inside of the desulfurization passage 24 in the radial direction of the desulfurization device 90. Therefore, it is possible to suppress the drift that occurs in the vicinity of the fluid outlet 21b in the desulfurization flow path 24. Furthermore, by providing the through hole 92 a, a part of the hydrogen-containing fuel is led out from the desulfurization device 90 without hitting the baffle plate 92. Therefore, the degree of suppression of drift can be adjusted by providing the through hole 92a.
さらに、図6,7に示すように、折返し部25に邪魔板93を設けてもよい。邪魔板93は、脱硫部2の上部内壁から脱硫部2の下部内壁に向けて立設された内周壁2bの下端部に設けられている。邪魔板93は、内周壁2bの端部において、内周壁2bの径方向内側へ突出するように配置される。邪魔板93は、その中央に開口93aを有するリング状の部材である。邪魔板93の外径は内周壁2bの外径又は内径とほぼ同一とされ、邪魔板93の内径は、内周壁2bの内径よりも小さくされている。邪魔板93は、折返し部25において水素含有燃料の流れを変更するように設けられる。ここでは、邪魔板93は、その主面が脱硫装置90の軸線方向と直交するように、(すなわち略水平となるように)配置される。邪魔板93を設けることにより、折返し部25を流通する水素含有燃料は、邪魔板93を回り込むように流通し、脱硫流路24の径よりも小さい径を有する開口93aから脱硫流路24へ流入する。このように、折返し部25近傍において、より中央側から脱硫流路24へ流入させることで、脱硫流路24内部において水素含有燃料を均一に流通させることができる。
Furthermore, as shown in FIGS. 6 and 7, a baffle plate 93 may be provided in the folded portion 25. The baffle plate 93 is provided at the lower end portion of the inner peripheral wall 2 b erected from the upper inner wall of the desulfurization unit 2 toward the lower inner wall of the desulfurization unit 2. The baffle plate 93 is disposed at the end of the inner peripheral wall 2b so as to protrude inward in the radial direction of the inner peripheral wall 2b. The baffle plate 93 is a ring-shaped member having an opening 93a at the center thereof. The outer diameter of the baffle plate 93 is substantially the same as the outer diameter or inner diameter of the inner peripheral wall 2b, and the inner diameter of the baffle plate 93 is smaller than the inner diameter of the inner peripheral wall 2b. The baffle plate 93 is provided so as to change the flow of the hydrogen-containing fuel in the folded portion 25. Here, the baffle plate 93 is disposed so that the main surface thereof is orthogonal to the axial direction of the desulfurization apparatus 90 (that is, substantially horizontal). By providing the baffle plate 93, the hydrogen-containing fuel that circulates in the folded portion 25 circulates around the baffle plate 93 and flows into the desulfurization flow path 24 from the opening 93 a having a diameter smaller than the diameter of the desulfurization flow path 24. To do. As described above, the hydrogen-containing fuel can be uniformly circulated in the desulfurization flow path 24 by allowing the desulfurization flow path 24 to flow into the desulfurization flow path 24 from the center side.
また、脱硫流路23内部を第1触媒槽、脱硫流路24内部を第2触媒槽とすると、脱硫装置90内部における水素含有燃料の偏流を抑制するために、第1触媒槽と第2触媒槽とを仕切る内周壁2bを、第1触媒槽及び第2触媒槽のそれぞれの触媒量が同一となるように設けてもよい。例えば、図7に示すように、第1触媒槽の半径をr1、中心から第2触媒槽の外径までの長さをr2とすると、以下式を満たす位置に内周壁2bを立設させる。
Further, when the inside of the desulfurization flow path 23 is a first catalyst tank and the inside of the desulfurization flow path 24 is a second catalyst tank, the first catalyst tank and the second catalyst are suppressed in order to suppress the drift of the hydrogen-containing fuel inside the desulfurization apparatus 90. You may provide the inner peripheral wall 2b which partitions a tank so that each catalyst amount of a 1st catalyst tank and a 2nd catalyst tank may become the same. For example, as shown in FIG. 7, when the radius of the first catalyst tank is r 1 and the length from the center to the outer diameter of the second catalyst tank is r 2 , the inner peripheral wall 2b is erected at a position satisfying the following formula: Let
第1触媒槽及び第2触媒槽の何れかの流速が遅い場合には、流れが閉塞して流量偏差が大きくなり、偏流が発生する可能性が高まる。上記式を満たすように内周壁2bを設けることで、第1触媒槽及び第2触媒槽において水素含有燃料の流速が平均化され、偏流の発生を抑制することができる。
When the flow rate of either the first catalyst tank or the second catalyst tank is slow, the flow is blocked and the flow rate deviation becomes large, and the possibility of occurrence of drift increases. By providing the inner peripheral wall 2b so as to satisfy the above equation, the flow rates of the hydrogen-containing fuel are averaged in the first catalyst tank and the second catalyst tank, and the occurrence of drift can be suppressed.
また、脱硫装置90の放熱はエネルギーロスになるため、円柱型の脱硫装置90の円半径は、脱硫装置90の表面積が最小値となるように設定されていてもよい。図7に示すように、第1触媒槽の半径をr1、中心から第2触媒槽の外径までの長さをr2とし、触媒量(体積V)が一定(所定値)であるとすると、脱硫装置90の表面積Sは、以下式で表現することができる。
Further, since the heat radiation of the desulfurization apparatus 90 results in energy loss, the circular radius of the columnar desulfurization apparatus 90 may be set so that the surface area of the desulfurization apparatus 90 becomes a minimum value. As shown in FIG. 7, the radius of the first catalyst tank is r 1 , the length from the center to the outer diameter of the second catalyst tank is r 2 , and the catalyst amount (volume V) is constant (predetermined value). Then, the surface area S of the desulfurization apparatus 90 can be expressed by the following equation.
上記式において表面積Sが最小値となるr2を設定する。このように設定することで脱硫装置90の放熱を適切に抑制することができる。なお、上記式では、熱媒体流路22の厚さを省略し、第2触媒槽の外径が脱硫装置90の外径と等しいと仮定して説明した。すなわち、脱硫装置90の表面積が脱硫部2の表面積と略同一であるとして説明した。これに対して、熱媒体流路22の厚さを考慮して表面積Sを算出してもよい。
In the above formula, r 2 is set so that the surface area S is the minimum value. By setting in this way, heat dissipation of the desulfurization apparatus 90 can be appropriately suppressed. In the above formula, the thickness of the heat medium passage 22 is omitted, and the description has been made on the assumption that the outer diameter of the second catalyst tank is equal to the outer diameter of the desulfurization apparatus 90. That is, it has been described that the surface area of the desulfurization apparatus 90 is substantially the same as the surface area of the desulfurization part 2. On the other hand, the surface area S may be calculated in consideration of the thickness of the heat medium flow path 22.
1…燃料電池システム、2…脱硫部(脱硫装置)、2a…外周壁、2b…内周壁、5…セルスタック、20a…流体入口、20b…流体出口、21…脱硫触媒、21a…流体入口、21b…流体出口、22…熱媒体流路、23,24…脱硫流路、25…折返し部、82…脱硫系熱交換部(脱硫装置)。
DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 2 ... Desulfurization part (desulfurization apparatus), 2a ... Outer wall, 2b ... Inner wall, 5 ... Cell stack, 20a ... Fluid inlet, 20b ... Fluid outlet, 21 ... Desulfurization catalyst, 21a ... Fluid inlet, 21b ... Fluid outlet, 22 ... Heat medium flow path, 23, 24 ... Desulfurization flow path, 25 ... Folding part, 82 ... Desulfurization system heat exchange part (desulfurization apparatus).
Claims (7)
- 水素含有燃料を用いてセルスタックにより発電するとともに熱媒体を用いて前記セルスタックの排熱を回収する燃料電池システムに用いられる脱硫装置であって、
脱硫触媒を収容した脱硫流路を有し、前記水素含有燃料を前記脱硫流路に流通させて脱硫する脱硫部と、
前記脱硫部の側方を覆うように配置され、前記セルスタックの排熱を回収した後の前記熱媒体を流通させて前記熱媒体と前記脱硫部とを熱交換させる熱媒体流路を有する熱交換部と、を備え、
前記熱媒体流路の流体流通方向及び前記脱硫流路の流体流通方向が対向流となるように形成されていること、を特徴とする脱硫装置。 A desulfurization device used in a fuel cell system that generates electricity by a cell stack using a hydrogen-containing fuel and recovers exhaust heat of the cell stack using a heat medium,
A desulfurization section that contains a desulfurization catalyst, and desulfurizes the hydrogen-containing fuel by flowing through the desulfurization path;
Heat having a heat medium flow path that is disposed so as to cover the side of the desulfurization unit and that exchanges heat between the heat medium and the desulfurization unit by circulating the heat medium after recovering the exhaust heat of the cell stack. An exchange part,
A desulfurization apparatus, wherein the fluid flow direction of the heat medium flow path and the fluid flow direction of the desulfurization flow path are opposed to each other. - 前記脱硫流路には、流体入口から一方側へ流通する前記水素含有燃料を一方側とは反対の他方側へ流通させる折返し部が形成され、前記流体入口から前記折返し部までの前記脱硫流路が、前記熱媒体流路と隣接するように配置されており、
前記流体入口から前記折返し部までの前記脱硫流路の流体流通方向、及び前記折返し部から流体出口までの前記脱硫流路の流体流通方向が、対向流となるように形成されている請求項1に記載の脱硫装置。 The desulfurization flow path is formed with a folded portion for flowing the hydrogen-containing fuel flowing from the fluid inlet to one side to the other side opposite to the one side, and the desulfurization flow channel from the fluid inlet to the folded portion Is disposed adjacent to the heat medium flow path,
The fluid flow direction of the desulfurization flow path from the fluid inlet to the turn-up portion and the fluid flow direction of the desulfurization flow path from the turn-up portion to the fluid outlet are formed to face each other. The desulfurization apparatus described in 1. - 前記脱硫流路の内部において、前記流体入口及び前記流体出口に前記流体の流れを変更する邪魔板が設けられている請求項2に記載の脱硫装置。 The desulfurization apparatus according to claim 2, wherein a baffle plate for changing the flow of the fluid is provided at the fluid inlet and the fluid outlet inside the desulfurization flow path.
- 前記脱硫流路の内部において、前記折返し部に前記流体の流れを変更する邪魔板が設けられている請求項2又は3に記載の脱硫装置。 The desulfurization apparatus according to claim 2 or 3, wherein a baffle plate for changing the flow of the fluid is provided in the folded portion inside the desulfurization flow path.
- 前記流体入口から前記折返し部までの前記脱硫流路は、前記脱硫部の外周壁及び前記脱硫部の内部に設けられた内壁によって画成され、
前記折返し部から前記流体出口までの前記脱硫流路は、前記内壁によって画成され、
前記内壁は、前記流体入口から前記折返し部までの前記脱硫流路と、前記折返し部から前記流体出口までの前記脱硫流路とが同一の体積となるように設けられている請求項2~4の何れか一項に記載の脱硫装置。 The desulfurization flow path from the fluid inlet to the folded portion is defined by an outer peripheral wall of the desulfurization portion and an inner wall provided in the desulfurization portion,
The desulfurization flow path from the folded portion to the fluid outlet is defined by the inner wall,
The inner wall is provided so that the desulfurization flow path from the fluid inlet to the folded portion and the desulfurization flow path from the folded portion to the fluid outlet have the same volume. Desulfurization apparatus as described in any one of these. - 前記脱硫部は、円筒を呈し、前記脱硫部の半径と前記脱硫部に収容される所定の触媒量とに基づいて求まる表面積が最小値となるように設定された半径を有する請求項2~5の何れか一項に記載の脱硫装置。 The desulfurization part has a cylindrical shape, and has a radius set so that a surface area obtained based on a radius of the desulfurization part and a predetermined amount of catalyst accommodated in the desulfurization part becomes a minimum value. Desulfurization apparatus as described in any one of these.
- 請求項1~6の何れか一項に記載の脱硫装置を備え、脱硫後の水素含有燃料を用いて発電する燃料電池システム。 A fuel cell system comprising the desulfurization device according to any one of claims 1 to 6 and generating power using the hydrogen-containing fuel after desulfurization.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012550901A JP5738317B2 (en) | 2010-12-27 | 2011-12-22 | Desulfurization apparatus and fuel cell system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010289943 | 2010-12-27 | ||
JP2010-289943 | 2010-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012090864A1 true WO2012090864A1 (en) | 2012-07-05 |
Family
ID=46382970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/079836 WO2012090864A1 (en) | 2010-12-27 | 2011-12-22 | Desulfurization device and fuel cell system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5738317B2 (en) |
TW (1) | TW201238133A (en) |
WO (1) | WO2012090864A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04298228A (en) * | 1991-03-27 | 1992-10-22 | Tokyo Gas Co Ltd | Desulfurization reactor |
JP2004051865A (en) * | 2002-07-23 | 2004-02-19 | Idemitsu Kosan Co Ltd | Desulfurizer and desulfurization method |
JP2009079155A (en) * | 2007-09-26 | 2009-04-16 | Toshiba Fuel Cell Power Systems Corp | Liquid fuel desulfurization apparatus and liquid fuel desulfurization system |
JP2010024402A (en) * | 2008-07-23 | 2010-02-04 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generation system and desulfurizer used therefor |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0412334Y2 (en) * | 1987-10-01 | 1992-03-25 | ||
JPH01188407A (en) * | 1988-01-25 | 1989-07-27 | Fuji Electric Co Ltd | Carbon monoxide converter |
JPH0694923B2 (en) * | 1989-04-18 | 1994-11-24 | 宇部興産株式会社 | Method for preventing adherence of deposits to gas distribution plate of fluidized bed apparatus and gas distribution plate thereof |
JP2630543B2 (en) * | 1992-11-27 | 1997-07-16 | 川崎重工業株式会社 | Centrifugal fluidized bed dust removal / desulfurization / denitration equipment |
JP4298398B2 (en) * | 2002-06-28 | 2009-07-15 | 出光興産株式会社 | Method for suppressing emission of N2O and NOX in a combustion apparatus |
JP2006032046A (en) * | 2004-07-14 | 2006-02-02 | Hagio Koatsu Yoki Kk | Desulfurizer mounting device |
JP2007218108A (en) * | 2006-02-14 | 2007-08-30 | Hino Motors Ltd | Exhaust emission control device |
JP4843427B2 (en) * | 2006-09-07 | 2011-12-21 | 東芝燃料電池システム株式会社 | Liquid fuel desulfurization system and its operating method |
JP5265277B2 (en) * | 2008-09-08 | 2013-08-14 | 本田技研工業株式会社 | Desulfurization equipment |
JP5507119B2 (en) * | 2009-05-21 | 2014-05-28 | Jx日鉱日石エネルギー株式会社 | Fuel cell system |
-
2011
- 2011-12-22 JP JP2012550901A patent/JP5738317B2/en active Active
- 2011-12-22 WO PCT/JP2011/079836 patent/WO2012090864A1/en active Application Filing
- 2011-12-27 TW TW100148979A patent/TW201238133A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04298228A (en) * | 1991-03-27 | 1992-10-22 | Tokyo Gas Co Ltd | Desulfurization reactor |
JP2004051865A (en) * | 2002-07-23 | 2004-02-19 | Idemitsu Kosan Co Ltd | Desulfurizer and desulfurization method |
JP2009079155A (en) * | 2007-09-26 | 2009-04-16 | Toshiba Fuel Cell Power Systems Corp | Liquid fuel desulfurization apparatus and liquid fuel desulfurization system |
JP2010024402A (en) * | 2008-07-23 | 2010-02-04 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generation system and desulfurizer used therefor |
Also Published As
Publication number | Publication date |
---|---|
TW201238133A (en) | 2012-09-16 |
JP5738317B2 (en) | 2015-06-24 |
JPWO2012090864A1 (en) | 2014-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2594394C (en) | Method of starting-up solid oxide fuel cell system | |
JP6030547B2 (en) | Fuel cell module | |
US10320016B2 (en) | High-temperature fuel cell system | |
WO2012137934A1 (en) | Fuel cell module | |
JP2009176660A (en) | Shutdown method of indirect internal reforming solid oxide fuel cell | |
JP5852011B2 (en) | Fuel cell system | |
JP2008016277A (en) | Indirect internal reforming type solid oxide fuel cell system | |
JP6114197B2 (en) | Fuel cell system | |
JP2009059658A (en) | Indirect interior-reformed solid oxide fuel cell | |
WO2012091029A1 (en) | Fuel cell system | |
JP5095264B2 (en) | Reformer and indirect internal reforming type high temperature fuel cell | |
JP5738318B2 (en) | Desulfurization apparatus and fuel cell system | |
WO2011081094A1 (en) | Reforming unit and fuel cell system | |
JP5939858B2 (en) | Fuel cell module | |
JP5738317B2 (en) | Desulfurization apparatus and fuel cell system | |
JP2009059657A (en) | Indirect interior-reformed solid oxide fuel cell | |
WO2012090875A1 (en) | Fuel cell system and desulfurization device | |
JP2008186759A (en) | Indirect internal reforming solid oxide fuel cell system and method for operating indirect internal reforming solid oxide fuel cell | |
WO2012091131A1 (en) | Fuel cell system | |
WO2012091132A1 (en) | Fuel cell system | |
JP2012219008A (en) | Thermal treatment system | |
JP2016062797A (en) | Desulfurization container | |
JPWO2012091030A1 (en) | Fuel cell system | |
US20080171247A1 (en) | Reformer of fuel cell system | |
JP5331596B2 (en) | Fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11853124 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012550901 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11853124 Country of ref document: EP Kind code of ref document: A1 |