WO2012090626A1 - Thread material for void-containing thread production, and void-containing thread - Google Patents

Thread material for void-containing thread production, and void-containing thread Download PDF

Info

Publication number
WO2012090626A1
WO2012090626A1 PCT/JP2011/077063 JP2011077063W WO2012090626A1 WO 2012090626 A1 WO2012090626 A1 WO 2012090626A1 JP 2011077063 W JP2011077063 W JP 2011077063W WO 2012090626 A1 WO2012090626 A1 WO 2012090626A1
Authority
WO
WIPO (PCT)
Prior art keywords
void
yarn
containing yarn
stretching
producing
Prior art date
Application number
PCT/JP2011/077063
Other languages
French (fr)
Japanese (ja)
Inventor
清一 渡辺
小倉 徹
後藤 靖友
伸輔 高橋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012090626A1 publication Critical patent/WO2012090626A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof

Definitions

  • the present invention relates to a void-containing yarn production yarn and a void-containing yarn produced from the void-containing yarn production yarn.
  • a hollow structure fiber can also be produced by adding a sodium sulfonate compound in the polymerization step, and melt-kneading polystyrene or polymethylmethacrylate into the resulting polymer pellets and melt-extruding from a melt spinning hollow die.
  • a sodium sulfonate compound in the polymerization step, and melt-kneading polystyrene or polymethylmethacrylate into the resulting polymer pellets and melt-extruding from a melt spinning hollow die.
  • a fiber having improved aesthetics and design it is strongly desired to provide a fiber having a metallic luster (shininess).
  • a fiber having a metallic luster As such a fiber, an excellent fiber such as a reflectance has been proposed by having a void inside (refer to Patent Document 3).
  • Such a fiber can be produced by drawing a filament having a fine crystal nucleus inside.
  • the quality of such fibers greatly depends on the properties of the yarn for producing the yarn, that is, the crystallite size and crystallinity of the crystal nucleus included in the yarn.
  • the type of resin used as a raw material and the drawing conditions have been studied, but the properties of the yarn have not been sufficiently studied, and the wire breaks during drawing.
  • the present situation is that an improvement in the quality of the yarn used for the production of yarn is desired in order to stably produce a yarn having a metallic luster, high reflectivity and excellent aesthetics and design.
  • the present invention encloses fine crystal nuclei with conditions capable of stably and efficiently producing a void-containing yarn having a metallic luster, high reflectivity and excellent aesthetics and design by stretching.
  • An object of the present invention is to provide a yarn for producing void-containing yarn.
  • the present inventors have made extensive studies and obtained the following knowledge. That is, the quality, such as reflectivity, in the void-containing yarn (also referred to as void yarn or void-containing yarn) depends on the crystallite size and crystallization of the crystal nucleus inside the void-containing yarn production yarn used for producing the void-containing yarn. Therefore, it has a metal-like luster by drawing a void-containing yarn for producing yarn containing a specific crystallite size and having a specific crystallinity and stretching it. The inventors have found that a void-containing yarn having high reflectivity and excellent aesthetics and design can be produced stably and efficiently, and the present invention has been completed.
  • the present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is, ⁇ 1> A void-containing yarn-manufacturing yarn for producing a void-containing yarn having an independent cavity inside. When drawn, the void is formed in an oriented state in the drawing direction.
  • the L / r ratio is 10 or more when the average length is L ( ⁇ m) and the average diameter of the cavities in the direction perpendicular to the orientation direction of the cavities is r ( ⁇ m), and the crystal plane of the (010) plane
  • ⁇ 2> The void-containing yarn producing yarn according to ⁇ 1>, wherein the average diameter is 10 ⁇ m to 500 ⁇ m.
  • ⁇ 4> The void according to any one of ⁇ 1> to ⁇ 3>, wherein the reflectance is 0.1% to 10%, and the reflectance of the void-containing yarn obtained by stretching is 30% to 90%. This is a yarn for producing contained yarn.
  • ⁇ 5> Any one of ⁇ 1> to ⁇ 4>, in which a crystal nucleus of a (010) plane has a crystallite size of 2.5 nm to 3.5 nm and a crystallinity of 7% to 10%
  • ⁇ 6> A void-containing yarn obtained by drawing the void-containing yarn-producing yarn according to any one of ⁇ 1> to ⁇ 5>, wherein a cavity is formed in an oriented state in the drawing direction.
  • the L / r ratio is 10 or more when the average length of the cavity is L ( ⁇ m) and the average diameter of the cavity in the direction orthogonal to the orientation direction of the cavity is r ( ⁇ m). It is a void-containing yarn.
  • ⁇ 7> The void-containing yarn according to ⁇ 6>, wherein the reflectance is 30% to 90%.
  • the above-mentioned problems can be solved and the above-mentioned object can be achieved, and by stretching, a void-containing yarn having a metallic luster, high reflectivity and excellent aesthetics and design is stabilized.
  • a void-containing yarn-producing yarn that includes fine crystal nuclei with conditions that allow efficient production.
  • FIG. 1A is an example of a cross-sectional view of a void-containing yarn produced using the void-containing yarn-producing yarn of the present invention.
  • FIG. 1B is an example of a cross-sectional view of a void-containing yarn produced using the void-containing yarn-producing yarn of the present invention.
  • FIG. 2A is a diagram for explaining an aspect ratio, and is a perspective view of a void-containing yarn.
  • FIG. 2B is a view for explaining the aspect ratio, and is a cross-sectional view taken along the line A-A ′ of the void-containing yarn in FIG. 2A.
  • FIG. 2C is a diagram for explaining the aspect ratio, and is a cross-sectional view taken along the line B-B ′ of the void-containing yarn in FIG. 2A.
  • FIG. 3A is a perspective view of the void-containing yarn for explaining the aspect ratio.
  • FIG. 3B is a diagram for explaining the aspect ratio, and is a cross-sectional view taken along the line A-A ′ of the void-containing yarn in FIG. 3A.
  • FIG. 3C is a diagram for explaining the aspect ratio, and is a B-B ′ sectional view of the void-containing yarn in FIG. 3A.
  • FIG. 4 is a diagram showing an example of a drawing method when producing a void-containing yarn using the void-containing yarn-producing yarn of the present invention.
  • FIG. 5 is a diagram showing the relationship between the crystallite size of the (010) plane of the crystal nucleus of the void-containing yarn-producing yarn and the yield of the void-containing yarn.
  • Vertical axis yield of void-containing yarn (%)
  • horizontal axis crystallite size (nm) on (010) plane.
  • FIG. 6 is a diagram showing the relationship between the crystallinity of the void-containing yarn-manufacturing yarn and the yield of the void-containing yarn.
  • Vertical axis yield of void-containing yarn (%)
  • horizontal axis crystallinity (%).
  • the void-containing yarn-producing yarn of the present invention includes at least a crystal nucleus.
  • the void-containing yarn manufacturing yarn can be produced by drawing the void-containing yarn.
  • the crystallite size of the crystal plane of the (010) plane of the crystal nucleus included in the void-containing yarn-producing yarn is 2 nm to 5 nm, preferably 2.1 nm to 4 nm, and preferably 2.5 nm to 3.5 nm. Particularly preferred.
  • the crystallite size of the (010) plane is less than 2 nm, the crystallite size is too small, and when producing a void-containing yarn, sufficient metal-like gloss and high reflectivity are obtained even when drawn. In some cases, when the thickness exceeds 5 nm, the crystallite size is too large, and the void-containing yarn may be cut by stretching.
  • the “(010) plane” herein refers to a crystal plane represented by a set of three disjoint integers (hkl) generally called a plane index or a Miller index. This is explained in the literature on X-ray diffraction (for example, X-ray diffraction technology Kazutake Takara and Satoshi Kikuta, The University of Tokyo Press, 1981, p23-p39). The crystallite size of the (010) plane can be measured by, for example, X-ray diffraction.
  • the degree of crystallinity of the void-containing yarn manufacturing yarn is 5% to 15%, preferably 5% to 12%, more preferably 7% to 10%.
  • the degree of crystallinity can be measured by, for example, a refractive index method, an infrared spectroscopy method, an X-ray diffraction method, a hydrometer or a density gradient tube method.
  • the average diameter of the void-containing yarn-producing yarn is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 ⁇ m to 500 ⁇ m, more preferably 30 ⁇ m to 200 ⁇ m. If the average diameter is less than 10 ⁇ m, sufficient voids may not be expressed inside the void-containing yarn after stretching, and if it exceeds 500 ⁇ m, the stretching tension becomes high, making it difficult to stretch, and containing voids after stretching. It may be difficult to reduce the diameter of the yarn sufficiently.
  • the average diameter means the average of the maximum diameters in the cross section perpendicular to the extrusion direction of the resin when manufacturing the void-containing yarn manufacturing yarn when the void-containing yarn manufacturing yarn is a circular shape.
  • the containing yarn-producing yarn When the containing yarn-producing yarn is an irregular shape, it means the length of the longest portion in the cross section orthogonal to the resin extrusion direction when producing the void-containing yarn-producing yarn.
  • the average diameter can be measured by, for example, a photograph of a cross-sectional SEM after embedding a void-containing yarn-producing yarn with an epoxy resin and cutting with a razor or a microtome.
  • the reflectivity (%) of the void-containing yarn-producing yarn is not particularly limited and can be appropriately selected according to the purpose. However, the reflectivity is not usually high and is about 0.1% to 10%. It is.
  • the reflectance can be measured by, for example, a spectrophotometer, an integrating sphere, or a device that combines a spectrophotometer and an integrating sphere.
  • the void-containing yarn manufacturing yarn has a low reflectance (%), but by drawing it into a void-containing yarn, it has a metallic luster and a high reflectance (%). A void-containing yarn excellent in aesthetics and design can be obtained.
  • the void-containing yarn manufacturing yarn is produced by melt spinning a resin composition containing at least a thermoplastic resin. Specifically, the resin composition is dried, melted with an extruder, melted and discharged from a melt spinneret, cooled, and then wound up.
  • the resin composition contains at least a thermoplastic resin, and further contains other components as necessary.
  • a thermoplastic resin Although it can select suitably according to the objective, It is preferable that it is a polymer which has crystallinity.
  • polymers are divided into crystalline polymers and amorphous (amorphous) polymers.
  • a crystalline polymer is not usually 100% crystalline, and includes a crystalline region in which long chain molecules are regularly arranged in a molecular structure and an amorphous region that is not regularly arranged. Contains.
  • the polymer having crystallinity may include at least a crystalline region in the molecular structure, and a crystalline region and an amorphous region may be mixed, but the crystalline polymer is made of a crystalline polymer. Is particularly preferred.
  • polystyrene resin polyamide resin
  • polyester resin polyacetal (POM), syndiotactic polystyrene (SPS), polyphenylene
  • PPS polyether ether ketone
  • LCP liquid crystal polymer
  • fluororesin sulfide
  • PPS polyether ether ketone
  • LCP liquid crystal polymer
  • fluororesin sulfide
  • PES polyether ether ketone
  • LCP liquid crystal polymer
  • fluororesin fluororesin.
  • a resin that melts at about 300 ° C. or less is preferable
  • a polyolefin resin, a polyester resin, or a polyamide resin is more preferable
  • a polyester resin is particularly preferable.
  • the melt viscosity of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa ⁇ s to 1,000 Pa ⁇ s, more preferably 70 Pa ⁇ s to 750 Pa ⁇ s. 80 Pa ⁇ s to 450 Pa ⁇ s is particularly preferable.
  • a melt viscosity of 50 Pa ⁇ s to 1,000 Pa ⁇ s is preferred in that the shape of the melt-spun extruded from the nozzle during spinning is stable and it is easy to form a uniform yarn for producing void-containing yarns. .
  • the melt viscosity when the melt viscosity is 50 Pa ⁇ s to 1,000 Pa ⁇ s, the viscosity of the resin becomes appropriate during spinning, and it is easy to extrude from the nozzle, and the average diameter of the void-containing yarn manufacturing yarn is It is preferable in terms of stability.
  • the melt viscosity can be measured by, for example, a plate type rheometer, a capillary rheometer, or the like.
  • the intrinsic viscosity (IV) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.5, preferably 0.6 to 1. 2 is more preferable, and 0.7 to 1.0 is particularly preferable.
  • the larger the IV the easier to express a cavity during drawing, but when the IV is 0.4 to 1.5, Even if it is easy to extrude the molten resin, the resin flow is stable and it is difficult for stagnation to occur, the quality is stable, even when a molten resin filter is installed during spinning, It is difficult to apply a load to the filter, the resin flow is stable, and it is difficult for stagnation to occur.
  • the intrinsic viscosity (IV) can be measured by, for example, an Ubbelohde viscometer.
  • the melting point (Tm) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 40 ° C to 350 ° C, more preferably 100 ° C to 300 ° C, and more preferably 150 ° C to 260 ° C. is particularly preferred.
  • the melting point is 40 ° C to 350 ° C, it is easy to maintain the average diameter of the void-containing yarn manufacturing yarn within the temperature range expected for normal use, and special technology required for processing at high temperatures Even if it does not use especially, it is preferable at the point which can manufacture the yarn for void containing yarn manufacture uniformly.
  • the melting point can be measured by, for example, a differential thermal analyzer (DSC).
  • the weight average molecular weight of the polymer having crystallinity is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5,000 to 1,000,000, more preferably 10,000 to 800,000. 15,000 to 700,000 is particularly preferable. If the weight-average molecular weight is less than 5,000, when the void-containing yarn-manufacturing yarn is used for the production of void-containing yarn, there is a concern of breaking during stretching, and the weight-average molecular weight exceeds 1,000,000. In some cases, the void-containing yarn-producing yarn is difficult to be stretched, and even if it is stretched, cavities are difficult to develop.
  • the weight average molecular weight is 15,000 to 700,000, it is preferable from the standpoint that both the ease of drawing the void-containing yarn-producing yarn and the ease of expression of cavities can be achieved.
  • the weight average molecular weight can be measured by, for example, a gel permeation chromatography (GPC Gel Permeation Chromatography) method.
  • Polyolefin resin-- The polyolefin resin is not particularly limited and can be appropriately selected depending on the purpose. For example, polyethylene, polypropylene (PP), a random copolymer of ethylene and propylene, a block copolymer of ethylene and propylene, And a random copolymer of ethylene and ⁇ -olefin (eg, 1-octene, 1-hexene, etc.) and a random copolymer of propylene and ⁇ -olefin (eg, 1-octene, 1-hexene, etc.). It is done. These may be used alone or in combination of two or more.
  • polypropylene a random copolymer of ethylene and propylene, and a block copolymer of ethylene and propylene are preferable, and a random copolymer of polypropylene and ethylene and propylene is particularly preferable.
  • polyamide resin-- There is no restriction
  • polyester resin-- The polyester resin is a polymer having an ester bond obtained by a polycondensation reaction of a dicarboxylic acid component and a diol component as a main bond chain of the main chain.
  • the dicarboxylic acid component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, oxycarboxylic acids, and polyfunctional acids. It is done. Among these, aromatic dicarboxylic acids are particularly preferable.
  • the aromatic dicarboxylic acid is not particularly limited and may be appropriately selected depending on the intended purpose.
  • terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, naphthalenedicarboxylic acid, diphenoxyethanedicarboxylic acid examples include 5-sodium sulfoisophthalic acid.
  • terephthalic acid, isophthalic acid, diphenyl dicarboxylic acid, preferably naphthalene dicarboxylic acid, terephthalic acid, diphenyl dicarboxylic acid, naphthalene dicarboxylic acid are more preferable.
  • Examples of the aliphatic dicarboxylic acid include oxalic acid, succinic acid, eicoic acid, adipic acid, sebacic acid, dimer acid, dodecanedioic acid, maleic acid, and fumaric acid.
  • Examples of the alicyclic dicarboxylic acid include cyclohexyne dicarboxylic acid.
  • Examples of the oxycarboxylic acid include p-oxybenzoic acid.
  • Examples of the polyfunctional acid include trimellitic acid and pyromellitic acid.
  • the Le component is not particularly limited and may be appropriately selected depending on the intended purpose, for example, aliphatic diols, alicyclic diols, aromatic diols, diethylene glycol, polyalkylene glycol. Of these, aliphatic diols are particularly preferred.
  • Examples of the aliphatic diol include ethylene glycol, propane diol, butane diol, 1,4 butylene glycol, pentane diol, hexane diol, neopentyl glycol, triethylene glycol, and the like. Among these, ethylene glycol, 1,4 butylene glycol, propanediol, and butanediol are particularly preferable.
  • Examples of the alicyclic diol include cyclohexanedimethanol.
  • Examples of the aromatic diol include bisphenol A and bisphenol S.
  • polyester resin examples include PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PTT (polytrimethylene terephthalate), PBT (polybutylene terephthalate), PBN (polybutylene naphthalate) PLA ( Polylactic acid), PBS (polybutylene succinate), PHN (polyhexamethylene naphthalate), PHT (polyhexamethylene terephthalate) and the like.
  • PET, PBT, PEN, and PBS are preferable, and PET and PBT are particularly preferable.
  • the number average molecular weight of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 12,000 to 40,000, more preferably 18,000 to 40,000, and 18,500 ⁇ 30,000 is particularly preferred. When the number average molecular weight is less than 12,000, the mechanical strength of the void-containing yarn production yarn may be insufficient during spinning. When the number average molecular weight exceeds 40,000, polymerization of the void-containing yarn production yarn is performed. Can be difficult.
  • the melt viscosity of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa ⁇ s to 700 Pa ⁇ s, more preferably 70 Pa ⁇ s to 500 Pa ⁇ s, and more preferably 80 Pa ⁇ s to 80 Pa ⁇ s. 300 Pa ⁇ s is particularly preferable.
  • melt viscosity is higher when the void-containing yarn production yarn is used for the production of the void-containing yarn, cavities are likely to appear during drawing, but if the melt viscosity is 50 Pa ⁇ s to 700 Pa ⁇ s, At this time, it is preferable in that the resin can be easily extruded, the flow of the resin is stable, the retention is difficult to occur, and the quality is stable.
  • the melt viscosity is 50 Pa ⁇ s to 700 Pa ⁇ s
  • the drawing tension is appropriately maintained at the time of drawing. This is preferable in that it is easy to break and is difficult to break.
  • melt viscosity is 50 Pa ⁇ s to 700 Pa ⁇ s, it becomes easy to maintain the form of the molten resin extruded from the nozzle during spinning, so that it can be stably molded and the product is less likely to be damaged. , Which is preferable in terms of enhancing physical properties.
  • the dicarboxylic acid component and the diol component may each be polymerized as a single type to form a polymer, and the dicarboxylic acid component and / or the diol component may be copolymerized as two or more types to form a polymer. It may be formed. Moreover, you may blend and use 2 or more types of polymers as a polyester resin.
  • the polymer added to the main polymer has a melt viscosity and an intrinsic viscosity close to that of the main polymer, and the addition amount is smaller when spinning. It is preferable in that the physical properties are enhanced when the resin is extruded, and the resin is easily extruded.
  • a resin other than the polyester resin may be added to the polyester resin for the purpose of improving the flow characteristics of the polyester resin, controlling the light transmittance, and improving the adhesion with the coating solution.
  • the other components in the resin composition are not particularly limited and can be appropriately selected depending on the purpose.
  • fillers, heat stabilizers, antioxidants, ultraviolet absorbers, organic lubricants, nucleating agents examples include dyes, pigments, flame retardants, mold release agents, dispersants, and coupling agents.
  • Whether other components contributed to the development of cavities inside the void-containing yarn is whether components other than the polymer having crystallinity (for example, each component described later) are detected in the cavities or at the interface portions of the cavities. It can be determined by how. For example, it can be detected by a scanning electron microscope with an energy-dispersive X-ray analyzer or a microscopic Raman method.
  • antioxidant there is no restriction
  • the hindered phenol include an antioxidant commercially available under trade names such as Irganox 1010 (manufactured by Ciba Specialty Chemicals), Sumilizer BHT, Sumilizer GA-80 (all of which are manufactured by Sumitomo Chemical Co., Ltd.). Etc.
  • an antioxidant can be used as a primary antioxidant, and a secondary antioxidant can be used in combination. Examples of the secondary antioxidant include antioxidants marketed under trade names such as Sumilizer TPL-R, Sumilizer TPM, Sumilizer TP-D (all manufactured by Sumitomo Chemical Co., Ltd.). .
  • the release agent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include plant waxes such as carnauba wax, animal waxes such as beeswax and lanolin; mineral waxes such as montan wax; paraffins
  • examples thereof include petroleum waxes such as wax and polyethylene wax; oil-based waxes such as castor oil or derivatives thereof, fatty acids or derivatives thereof, and the like.
  • Examples of the higher fatty acid derivatives include esters of higher fatty acids such as lauric acid, stearic acid, and montanic acid with monovalent or divalent alcohols.
  • a brominated flame retardant is especially preferable.
  • organic halogen flame retardants such as high molecular weight organic halogen compounds and low molecular weight organic halogen compounds may be used singly or in combination of two or more.
  • ⁇ Melting method There is no restriction
  • the molten resin composition becomes a high-temperature viscous liquid and is extruded from the nozzle. Moreover, it is preferable that the molten resin composition is devolatilized as needed.
  • Spinning method Spinning of the melted resin composition is performed by extruding the resin composition from a nozzle into a thread and cooling.
  • the nozzle is formed with a large number of small holes, and the resin composition melted through the nozzle is extruded, whereby the resin composition can be formed into a thread.
  • a shape of the hole of a nozzle opening part According to the objective, it can select suitably, For example, a circular shape, an atypical shape, etc. are mentioned.
  • a variant means various variants that are not circular (perfect circles), such as a gear, ellipse, petal, multileaf, star, C, Y, cross, well, etc. Is mentioned.
  • the shape of the cross section perpendicular to the extrusion direction of the resin composition of the void-containing yarn manufacturing element yarn is determined by the shape of the hole in the nozzle opening, and thus the shape of the cross-section orthogonal to the drawing direction of the void-containing yarn is also determined. It is determined.
  • the yarn for producing a void-containing yarn is an undrawn yarn (UDY).
  • the undrawn yarn refers to a yarn that is in the form of a fiber but has a low degree of molecular chain orientation and can be easily stretched 3 to 4 times as it is and does not return to its original state.
  • extrusion speed at the time of manufacturing an undrawn yarn Although it can select suitably according to the quantity of a resin composition, a nozzle diameter, etc., Usually, the extrusion speed of about 2,000 m / min or less (Also called spinning speed).
  • the cooling temperature air temperature, water temperature, etc.
  • the cooling temperature is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ° C to 60 ° C, more preferably 10 ° C to 40 ° C, and more preferably 15 ° C to 35 ° C. ° C is particularly preferred.
  • the crystallite size of the (010) plane contained in the void-containing yarn manufacturing yarn is too small, and even if the void-containing yarn manufacturing yarn is stretched as it is, it contains voids. In some cases, the yarn cannot be produced.
  • the temperature exceeds 60 ° C. the crystallite size of the (010) plane becomes too large, and when used for producing a void-containing yarn, it may be cut during stretching.
  • Winding method There is no restriction
  • the winding speed (also referred to as “winding speed”) of the void-containing yarn manufacturing yarn is not particularly limited and is appropriately selected according to the purpose. However, 5 m / min to 1,000 m / min is preferable, 20 m / min to 500 m / min is more preferable, and 25 m / min to 200 m / min is particularly preferable. When the winding speed is less than 5 m / min, the void-containing yarn manufacturing yarn may be easily uneven. When the winding speed exceeds 1,000 m / min, the void-containing yarn manufacturing yarn is cut by stress. There is.
  • the yarn When producing a void-containing yarn from a yarn for producing a void-containing yarn, the yarn may be drawn immediately after winding or may be drawn after a certain time at a certain temperature.
  • setting the fixed temperature for a fixed time may be referred to as annealing.
  • annealing There is no restriction
  • the void-containing yarn production yarn has a metal-like gloss, high reflectivity and high aesthetics because the crystallite size and crystallinity of the contained crystal nucleus are suitable conditions for the production of void-containing yarn. And can be suitably used for the production of void-containing yarns having excellent design properties.
  • the void-containing yarn of the present invention is a yarn having a metallic luster having a cavity inside, and can be produced by stretching the void-containing yarn-producing yarn of the present invention.
  • the cavity means a vacuum domain or a gas phase domain existing inside the void-containing yarn.
  • FIGS. 1A and 1B An example of a cross-sectional view of the void-containing yarn is shown in FIGS. 1A and 1B.
  • FIG. 1A is a cross-sectional view of a void-containing yarn when the shape of the hole in the nozzle opening is circular
  • FIG. 1B is a cross-sectional view of the void-containing yarn when the shape of the hole in the nozzle opening is irregular. It is.
  • the void-containing yarn 43 has a cavity 60 inside the resin portion 61.
  • yarn may have the coating layer 12, as shown to FIG. 2B and FIG. 3B.
  • FIG. 2A ⁇ 2C are cases voided yarn is circular, a diagram for explaining the aspect ratio
  • FIG. 2A is a perspective view of the void-containing yarn
  • FIG. 2B the void in Figure 2A
  • FIG. 2C is a cross-sectional view taken along line AA ′ of the containing yarn
  • FIG. 2C is a cross-sectional view taken along line BB ′ of the void-containing yarn in FIG. 2A.
  • Figure 3A ⁇ 3C are cases voided yarn is atypical, a diagram for explaining the aspect ratio
  • FIG. 3A is a perspective view of the void-containing yarn
  • FIG. 3B voided in Figure 3A
  • FIG. 3C is a cross-sectional view taken along line AA ′ of the yarn
  • FIG. 3C is a cross-sectional view taken along line BB ′ of the void-containing yarn in FIG. 3A.
  • the aspect ratio is the average diameter r ( ⁇ m) of the cavities 60 in a direction (AA ′ cross section) perpendicular to the surface 43a of the void-containing yarn 43 and perpendicular to the orientation direction of the cavities (FIGS. 2B and 3B).
  • the average length of the cavities 60 in the orientation direction of the cavities (BB ′ cross section) is L ( ⁇ m) (see FIGS. 2C and 3C). It means the L / r ratio.
  • the aspect ratio can be calculated by the following method. (1) AA ′ cross section and BB ′ cross section are embedded with epoxy resin, cut with a razor or microtome, and examined with a scanning electron microscope. 2B and FIG. 3B) is set so that 50 to 100 cavities are included in the frame. (2) The number of cavities included in the measurement frame 62 is measured, and the number of cavities included in the measurement frame 62 (see FIGS. 2B and 3B) having a cross section perpendicular to the longitudinal stretching direction is parallel to the longitudinal stretching direction. The number of cavities included in the measurement frame 62 (see FIGS. 2C and 3C) having a simple cross section is n.
  • the aspect ratio is 10 or more, preferably 10 to 100, more preferably 15 to 100, and particularly preferably 20 to 90. If the aspect ratio is less than 10, the reflectivity may be lowered, and if it exceeds 100, the mechanical properties may be lowered. When the aspect ratio is 10 to 100, it is advantageous from the viewpoint of coexistence of various properties such as reflection and heat insulation and mechanical properties.
  • the orientation direction of the cavities usually indicates the stretching direction.
  • longitudinal stretching is performed along the direction in which the void-containing yarn-producing yarn flows during production, the direction of longitudinal stretching becomes the orientation direction of the cavities.
  • the cross-sectional area of the void-containing yarn in an arbitrary cross section orthogonal to the length direction (stretching direction) is a ( ⁇ m 2 ), and the cross-sectional area of the cavity in the cross section is A ( ⁇ m 2 ).
  • the average of these ratios (A / a) is preferably 0.05 or more and 0.4 or less.
  • Each cross-sectional area in a cross section can be measured by, for example, an image of an optical microscope or an electron microscope.
  • the product of the average number P of cavities in the thickness direction and the refractive index difference ⁇ N between the resin part having crystallinity and the cavities is preferably 2 or more, more preferably 2.5 or more. 3 or more is particularly preferable. If the product of ⁇ N and P is less than 2, the reflectivity may decrease.
  • the number of cavities in the thickness direction refers to a plane perpendicular to the surface 43a of the void-containing yarn 43 and including a direction perpendicular to the orientation direction of the cavities (cross section AA ′ in FIGS. 2A and 3A, That is, in the cross section in the thickness direction, this means the number of cavities 60 included in the thickness direction.
  • the average number P of voids in the thickness direction in the void-containing yarn is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 or more, more preferably 10 or more, and 15 or more. Is particularly preferred.
  • the number of cavities in the thickness direction can be measured by, for example, images from an optical microscope or an electron microscope. On these images, a plurality of straight lines are drawn in parallel in the thickness direction and exist on the plurality of straight lines.
  • the average number P can be obtained by calculating the average value of the number of cavities.
  • the resin part 61 having crystallinity refers to a part other than the cavity (part made of a resin having crystallinity) in the void-containing yarn 43 (shaded part in FIGS. 1A and 1B).
  • the void-containing yarn has various excellent characteristics in, for example, metallic luster, reflectivity, concealability, heat insulation, cushioning property and the like by having a cavity inside. Yes. That is, characteristics such as metallic luster, reflectivity, concealing property, heat insulating property, and cushioning property can be adjusted by changing the aspect of the void inside the void-containing yarn.
  • the average diameter of the void-containing yarn is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ⁇ m to 200 ⁇ m, more preferably 5 ⁇ m to 100 ⁇ m, and particularly preferably 5 ⁇ m to 50 ⁇ m. If the average diameter of the void-containing yarn is less than 5 ⁇ m, the void-containing yarn may be cut at the time of drawing, or a sufficient cavity may not be formed, and a sufficient metallic luster and high reflectance may not be obtained. If the ratio is more than 50%, the ratio of the cavities is too high, and the color becomes worse, and the texture becomes stiff, so that the texture may be inferior when the cloth is further woven.
  • the average diameter of the void-containing yarn means the average of the maximum diameter in the cross section in the direction orthogonal to the length direction of the void-containing yarn when the void-containing yarn is circular, and the void diameter when the void-containing yarn is irregular.
  • yarn is said.
  • the diameter of the void-containing yarn can be measured by a photograph of a cross-sectional SEM.
  • the reflectance (%) of the void-containing yarn is literally the reflectivity when the void-containing yarn is woven or knitted into a cloth shape.
  • the reflectance (%) is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30% or more, more preferably 50% or more, and particularly preferably 60% or more. If the reflectance is less than 30%, the aesthetics and design of the void-containing yarn may be deteriorated. In addition, since the one where a reflectance is higher is excellent in the aesthetics and design nature by metal-like luster, the upper limit has no critical significance.
  • the reflectance can be measured by, for example, a spectrophotometer, an integrating sphere, or the like.
  • the density of the void-containing yarn is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1.20 g / cm 3 or less, 0.5g / cm 3 ⁇ 1.05g / cm 3 Gayori preferable.
  • a method for measuring the density for example, when the density is 1.05 g / cm 3 or more, a 5 mm void-containing yarn can be measured by the density gradient tube method.
  • a weighted yarn-containing pycnometer 25 mL is accurately weighed with an electronic balance and weighing about 1 g of void-containing yarn. can do.
  • the void-containing yarn may have a coating layer.
  • the material of the coating layer is not particularly limited as long as the effects of the invention are not impaired, and can be appropriately selected according to the purpose.
  • hydrophobic polymers such as polyolefins and fluororesins, UV curable polymers, etc. Is mentioned. Thereby, especially water resistance, hydrolysis resistance, tensile elastic modulus, bending resistance, etc. can be improved.
  • the coating layer may contain a dye.
  • a void-containing yarn with a polymer containing a dye such as black or blue, a yarn having a metallic luster such as metallic black or metallic blue can be obtained, and the range of uses of the void-containing yarn is widened.
  • the thickness of the coating layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 3% to 30% of the radius in the cross section (including the resin part and the cavity part) of the void-containing yarn. If the thickness of the coating layer is less than 3% of the radius in the cross section of the void-containing yarn, sufficient mechanical properties may not be imparted. If the thickness exceeds 30% of the radius in the cross section of the void-containing yarn, The suppleness and feel may be insufficient, and the productivity may be reduced.
  • the void-containing yarn can be produced by drawing the yarn for producing the void-containing yarn of the present invention.
  • the method for drawing the void-containing yarn-producing yarn is not particularly limited and can be appropriately selected according to the purpose.
  • the direction in which the void-containing yarn-producing yarn flows in the production process. It is preferable that the stretching is performed along the thread, and it is more preferable that the void-containing yarn-producing yarn is stretched so that necking is expressed.
  • necking means a constriction-like deformation that occurs during drawing of a void-containing yarn manufacturing yarn that is an undrawn raw yarn (Polymer Engineering Lecture 6 Edited by Plastics Society of Polymer Science, published by Jijin Shoin, (Refer to the first edition issued on April 25, 1966).
  • a phenomenon in which the void-containing yarn-producing yarn is deformed while being constricted at the time of drawing and the cross-section is sharply reduced at the constricted portion is defined as “necking has occurred”.
  • FIG. 4 is a diagram illustrating an example of a stretching method.
  • the void-containing yarn manufacturing yarn 5 is inserted into, for example, a heating furnace 30 adjusted to 25 ° C. to 150 ° C., and a tensile force is applied by adding a difference in rotational speed between the nip rolls 41 and 42.
  • the void-containing yarn 43 having a cavity is produced by stretching by applying and causing necking.
  • the same void-containing yarn 43 can be produced simply by heating the nip roll 41 (25 ° C. to 150 ° C.) except for the heating furnace 30.
  • 31 represents an annealing furnace
  • 32 represents a winding device.
  • the void-containing yarn 43 of the present invention is formed by stretching the void-containing yarn-producing yarn 5 (undrawn yarn) and forming a cavity having a major axis in the drawing direction therein. can get.
  • the reason why the cavities are formed by stretching is that the polymer having at least one crystallinity constituting the void-containing yarn-producing yarn has microcrystals that are difficult to stretch, and the microcrystals that are difficult to stretch during stretching. This is because the amorphous resin that is not crystallized between other hard-to-stretch microcrystals is peeled and stretched in such a way that it is torn off at the interface with the microcrystalline phase or inside the amorphous phase. It is considered that a cavity is formed as a cavity forming source. Such void formation by stretching is possible not only when there is only one kind of crystalline polymer but also when two or more kinds of crystalline polymers are blended or copolymerized. is there.
  • the number of stretching stages and the stretching speed can be adjusted by the combination of rolls and the speed difference between the rolls.
  • the number of stages of longitudinal stretching is not particularly limited as long as it is one or more, and can be appropriately selected according to the purpose.
  • the fiber structure is not changed. It is also possible to adopt a fluid stretching process or the like that makes the diameter only ultrafine. By such a method, the average diameter of the void-containing yarn can be reduced to an ultrafine diameter of 10 ⁇ m or less.
  • the stretching speed of stretching is not particularly limited as long as the effect of the present invention is not impaired, and can be appropriately selected according to the purpose, but is preferably 50 m / min to 5,000 m / min, preferably 100 m / min to 1 1,000 m / min is more preferable. If the stretching speed is less than 50 m / min, sufficient necking is less likely to occur, and the voids are not uniformly formed, resulting in uneven thickness and metal-like gloss. When the drawing speed exceeds 5,000 m / min, the yarn is liable to be broken, the yield is lowered, and the equipment becomes complicated and costs may be increased in order to maintain handling properties.
  • the stretching speed is 50 m / min or more, it is preferable in that sufficient necking is easily expressed. Also, when the stretching speed is 5,000 m / min or less, the yarn is not easily broken and uniform stretching is easy, and in particular, a large-scale stretching device for high-speed stretching is not required and the cost is reduced. It is preferable in that it can be performed.
  • the temperature during stretching is not particularly limited and can be appropriately selected according to the purpose.
  • T (° C) and the glass transition temperature is Tg (° C)
  • Tg-30 ⁇ T ⁇ (Tg + 50)
  • Tg glass transition temperature
  • Tg + 50 It is preferable to stretch at a stretching temperature T (° C.) in the range indicated by (Tg ⁇ 25) ⁇ T ⁇ (Tg + 45)
  • Tg ⁇ 20 ⁇ T ⁇ (Tg + 40)
  • the stretching temperature (° C.) the higher the stretching temperature (° C.), the lower the stretching tension, and the easier it can be stretched.
  • the stretching temperature (° C.) is ⁇ glass transition temperature (Tg) +50 ⁇ ° C. or less, cavities are formed. This is preferable in that the volume ratio is high and the aspect ratio tends to be in a preferable range.
  • the stretching temperature (° C.) is ⁇ glass transition temperature (Tg) ⁇ 30 ⁇ ° C. or higher from the viewpoint that a cavity is sufficiently developed.
  • the stretching temperature T (° C.) can be measured with a non-contact thermometer.
  • the glass transition temperature Tg (° C.) can be measured by a differential thermal analyzer (DSC).
  • the void-containing yarn after drawing may be further subjected to heat shrinkage by applying heat or treatment such as tension for the purpose of shape stabilization.
  • the yield of the void-containing yarn having a metallic luster obtained by stretching the void-containing yarn production yarn of the present invention is set according to the business purpose, profitability, etc., and is not particularly limited.
  • the yield is, for example, the length remaining after sampling the void-containing yarn over 100 m after 5 seconds after stretching starts, and by cutting the transparent to milky white portion by visual inspection for the entire length.
  • the void-containing yarn is produced using the void-containing yarn-producing yarn of the present invention, the void-containing yarn is uniformly stretched. Therefore, the void-containing yarn has a metallic luster and is excellent in aesthetics and design. It is a thing.
  • the void-containing yarn contains voids that do not communicate with each other, and is light and excellent in heat insulation and light shielding properties, so that it can be suitably used for various applications such as clothing, building materials, medical materials, electronic equipment members, and electric vehicle members. it can.
  • Example 1 ⁇ Preparation of void-containing yarn production yarn (undrawn yarn)> A polybutylene terephthalate (PBT) resin (manufactured by Wintech Polymer Co., Ltd.) having an intrinsic viscosity (IV) of 0.72 and a glass transition temperature (Tg) of 37 ° C. is melt-spun (single-screw melt extruder having a screw diameter of 35 mm ⁇ (Co., Ltd.) The yarn for producing the void-containing yarn of Example 1 was produced by melting at 255 ° C. using Chubu Chemical Machinery Co., Ltd., and cooling and solidifying through water. Was wound at a winding speed of 35 m / min, and the shape of the hole in the nozzle opening of the melt spinning machine was substantially circular, and the water temperature for solidifying the void-containing yarn manufacturing yarn was 30 ° C. Set to.
  • PBT polybutylene terephthalate
  • the crystallinity (%) of the void-containing yarn-producing yarn was measured by a density gradient tube method using a carbon tetrachloride / heptane mixed solution.
  • the average diameter ( ⁇ m) of the void-containing yarn-producing yarn is the maximum diameter of the cross-section SEM photograph after cutting a section perpendicular to the extrusion direction of the resin when producing the void-containing yarn-producing yarn. was measured and the average value was calculated.
  • V-570 reflectance- Spectrophotometer
  • INN-472 integrating sphere
  • the drawing of the void-containing yarn-producing yarn was performed using two sets of drawing nip rollers and a plate heater installed therebetween. That is, the void-containing yarn manufacturing yarn 1 is uniaxially stretched by a nip roller (with a low-speed nip roller) at a speed of 35 m / min and a nip roller (high-speed nip roller) at a speed of 195 m / min in a heated atmosphere at 39 ° C. (Magnification: 5.5 times). At this time, the void-containing yarn-producing yarn was stretched while exhibiting necking. This produced the void-containing yarn of Example 1.
  • yield of the void-containing yarn was calculated from the following calculation formula (I).
  • Yield of void-containing yarn (%) (A) / 100 ⁇ 100 Formula (I)
  • (A) indicates that the void-containing yarn is sampled over 100 m after the elapse of 5 seconds after the neck stretching has started, and the entire length is transparent to milky white by visual inspection. Indicates the length (m) remaining after excision.
  • the yield is preferably 70% or more from the viewpoint of continuous productivity.
  • the average diameter ( ⁇ m) of the void-containing yarn was obtained by measuring the diameter with a photograph of the cross-section SEM after cutting a cross section perpendicular to the drawing direction of the void-containing yarn with a razor and calculating the average value of the maximum diameter.
  • V-570 reflectance- Spectrophotometer
  • INN-472 integrating sphere
  • Example 2 to 6 and Comparative Examples 1 to 9 In the production of the void-containing yarn production yarn (undrawn yarn) of Example 1, the resin and melt spinning conditions were in accordance with the conditions of Examples 2 to 6 and Comparative Examples 1 to 9 described in Table 1 below. Except for the above, the void-containing yarn production yarns of Examples 2 to 6 and Comparative Examples 1 to 9 were produced in the same manner as in Example 1, and each void-containing yarn production yarn was produced in the same manner as in Example 1. The crystallinity of the yarn, the crystallite size of the (010) plane, the average diameter of the void-containing yarn manufacturing yarn, and the reflectance were measured. The results are shown in Table 2.
  • Polybutylene terephthalate (PBT) resin having an intrinsic viscosity (IV) of 0.69 and a glass transition temperature (Tg) of 36 ° C. is manufactured by Daicel Chemical Industries, Ltd., and has an intrinsic viscosity (IV) of 0.7 and a glass transition temperature (Tg).
  • Example 2 the void-containing yarn production yarns produced in Examples 2 to 6 and Comparative Examples 1 to 9 were used, and Examples 2 to 6 and Comparative Examples described in Table 1 below were used. Except that the conditions 1 to 9 were followed, the void-containing yarns of Examples 2 to 6 and Comparative Examples 1 to 9 were produced in the same manner as in Example 1, and the void-containing yarns were produced in the same manner as in Example 1. Calculation of the yield of the yarn, measurement of the average diameter, reflectance and aspect ratio of the void-containing yarn, and sensory evaluation of the metallic luster were performed. The results are shown in Table 2.
  • Comparative Examples 1 and 5 showed no metallic luster
  • Comparative Examples 2 and 4 showed white turbidity but no metallic luster
  • Comparative Examples 3 and 6-9 were subjected to stretching. Since the yarns were cut, void-containing yarns having a metallic luster could not be stably obtained when the yarns of Comparative Examples 1 to 9 were used.
  • FIG. 5 is a plot of the relationship between the yield of the void-containing yarns of Examples 1 to 6 and Comparative Examples 1 to 9 and the crystallite size of the (010) plane of the crystal nucleus of the void-containing yarn-producing yarn. The scatter diagram was shown.
  • FIG. 6 is a scatter diagram in which the relationship between the yield of void-containing yarns of Examples 1 to 6 and Comparative Examples 1 to 9 and the crystallinity of the yarn for producing void-containing yarns is plotted.
  • the void-containing yarn can be stably and efficiently produced by drawing the void-containing yarn production yarn of Examples 1 to 6, and the void-containing yarn production yarn is drawn. It was found that the void-containing yarn obtained in this way had a metallic luster, high reflectivity, and excellent aesthetics and design. On the other hand, from Comparative Examples 1 to 9, when the crystallite size of the (010) plane crystal plane is less than 2 nm, a void-containing yarn cannot be obtained. It was found that the wire was broken when it was stretched. Further, when the degree of crystallinity is 5% or less, a void-containing yarn cannot be obtained. When the degree of crystallinity exceeds 15%, the void-containing yarn manufacturing strand may be broken or extreme unevenness may occur. It was found to occur.
  • the void-containing yarn manufacturing yarn according to the present invention is suitable for the production of void-containing yarns, the crystallite size and crystallinity of the internal crystal nucleus are suitable for the production of void-containing yarns. It is suitable for stably and efficiently producing a void-containing yarn having excellent properties and design properties. Since the void-containing yarn is produced using the void-containing yarn-producing yarn of the present invention, the void-containing yarn is uniformly stretched. Therefore, the void-containing yarn has a metallic luster and is excellent in aesthetics and design. It is a thing.
  • the void-containing yarn contains voids that do not communicate with each other, and is light and excellent in heat insulation and light shielding properties, so that it can be suitably used for various applications such as clothing, building materials, medical materials, electronic equipment members, and electric vehicle members. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

Provided is thread material for void-containing thread production including a minute crystal nucleus and satisfying conditions such that it is possible by stretching to stably and efficiently produce void-containing thread having a metallic luster, a high degree of reflection, and excellent aesthetics and design. Thread material for void-containing thread production for producing void-containing thread having an independent void therein, wherein: when stretched, the void is formed so as to be positioned in the interior thereof in the direction of stretching; given that the average length of the void is L (μm), and the average diameter of the void in the direction orthogonal to the direction in which the void is positioned is r (μm), then the ratio of L/r is 10 or greater; a crystal nucleus having a crystallite size of 2-5nm in a crystal surface of a (010) surface is included therein the thread material; and the degree of crystallization is 5-15%, inclusive.

Description

ボイド含有糸製造用素糸及びボイド含有糸Void-containing yarn manufacturing yarn and void-containing yarn
 本発明は、ボイド含有糸製造用素糸及びボイド含有糸製造用素糸により製造されたボイド含有糸に関する。 The present invention relates to a void-containing yarn production yarn and a void-containing yarn produced from the void-containing yarn production yarn.
 近年、繊維の機能性、審美性、意匠性などを向上させるべく、様々な努力がなされている。例えば、繊維の断面形状を変化させ、吸水性を向上させたり、ポリマーを改質させることで、軽量性を高めたり、フィブリル性を向上させたり、深色性を向上させたりしている(例えば、特許文献1参照)。
 しかし、特許文献1に記載された中空構造の繊維の製糸方法は、繊維の軽量化のために、高い中空率を達成しようとすると、口金の吐出孔から溶融押出しされるポリマーを貼り合せる技術が必要であり、工程が煩雑である。
In recent years, various efforts have been made to improve the functionality, aesthetics, and design of fibers. For example, by changing the fiber cross-sectional shape, or improve the water absorption, by reforming a polymer, and increasing the light weight, or improve fibril resistance, and or improve the bathochromic (e.g. , See Patent Document 1).
However, in the method for producing a fiber having a hollow structure described in Patent Document 1, in order to achieve a high hollow ratio in order to reduce the weight of the fiber, there is a technique in which a polymer melt-extruded from a discharge hole of a die is bonded. It is necessary and the process is complicated.
 また、スルフォン酸ナトリウム化合物を重合工程で添加し、得られたポリマーペレットに、更にポリスチレン又はポリメチルメタアクリレートを溶融混練して溶融紡糸用中空口金から溶融押出しすることによっても中空構造の繊維を製造することはできる(特許文献2参照)。
 しかし、特許文献2に記載された方法では、添加材料の比率管理などに設備的な対応が必要になって工程が複雑になり、均一な製品を得るのが難しく、また、ポリエステルに異種のポリマーを混合するため、リサイクルする際に分別が難しく、場合によっては廃棄せざるを得ないなどの問題がある。
A hollow structure fiber can also be produced by adding a sodium sulfonate compound in the polymerization step, and melt-kneading polystyrene or polymethylmethacrylate into the resulting polymer pellets and melt-extruding from a melt spinning hollow die. (See Patent Document 2).
However, in the method described in Patent Document 2, it is difficult to obtain a uniform product because it requires complicated measures to manage the ratio of additive materials and the like, and it is difficult to obtain a uniform product. Therefore, there is a problem that separation is difficult during recycling, and in some cases it must be discarded.
 審美性や意匠性を向上させた繊維としては、金属様光沢(きらきら感)を有する繊維の提供が強く望まれている。このような繊維としては、内部に空洞(ボイド)を有することにより、反射率などの優れた繊維が提案されている(特許文献3参照)。このような繊維は、内部に微細な結晶核を有する素糸を延伸して製造することができる。 As a fiber having improved aesthetics and design, it is strongly desired to provide a fiber having a metallic luster (shininess). As such a fiber, an excellent fiber such as a reflectance has been proposed by having a void inside (refer to Patent Document 3). Such a fiber can be produced by drawing a filament having a fine crystal nucleus inside.
特開2002-173824号公報JP 2002-173824 A 特開2005-256243号公報JP 2005-256243 A 特開2009-191383号公報JP 2009-191383 A
  しかし、このような繊維の品質は、その糸を製造するための素糸の特性、即ち、素糸に内包される結晶核の結晶子サイズや結晶化度に大きく依存する。
 また、これまで特許文献3などに示された繊維の製造において、原料となる樹脂の種類や延伸条件などは検討されてきたものの、素糸の特性については十分検討されておらず、延伸時に断線して安定した延伸ができない点や、延伸しても十分な反射率が得られないなどの問題がある。
 したがって、金属様光沢を有し反射率が高く審美性及び意匠性に優れる糸を安定に製造するための、糸の製造に用いる素糸の品質の向上が望まれているのが現状である。
However, the quality of such fibers greatly depends on the properties of the yarn for producing the yarn, that is, the crystallite size and crystallinity of the crystal nucleus included in the yarn.
In addition, in the production of fibers shown in Patent Document 3 and the like, the type of resin used as a raw material and the drawing conditions have been studied, but the properties of the yarn have not been sufficiently studied, and the wire breaks during drawing. Thus, there are problems such that stable stretching cannot be performed and sufficient reflectance cannot be obtained even when stretching.
Therefore, the present situation is that an improvement in the quality of the yarn used for the production of yarn is desired in order to stably produce a yarn having a metallic luster, high reflectivity and excellent aesthetics and design.
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、延伸により、金属様光沢を有し反射率が高く審美性及び意匠性に優れるボイド含有糸を安定して効率よく製造することができる条件を備えた微細な結晶核を内包するボイド含有糸製造用素糸を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention encloses fine crystal nuclei with conditions capable of stably and efficiently producing a void-containing yarn having a metallic luster, high reflectivity and excellent aesthetics and design by stretching. An object of the present invention is to provide a yarn for producing void-containing yarn.
 前記課題を解決するため、本発明者らは鋭意検討した結果、以下のような知見を得た。即ち、ボイド含有糸(ボイド糸、空洞含有糸とも称する)における反射率等の品質は、当ボイド含有糸の製造に用いられるボイド含有糸製造用素糸内部の結晶核の結晶子サイズや結晶化度が大きく影響すること、したがって、特定の結晶子サイズの結晶核を内包し、特定の結晶化度を有するボイド含有糸製造用素糸を用い、これを延伸することで、金属様光沢を有し反射率が高く審美性及び意匠性に優れるボイド含有糸を安定して効率よく製造できることを知見し、本発明の完成に至った。 In order to solve the above-mentioned problems, the present inventors have made extensive studies and obtained the following knowledge. That is, the quality, such as reflectivity, in the void-containing yarn (also referred to as void yarn or void-containing yarn) depends on the crystallite size and crystallization of the crystal nucleus inside the void-containing yarn production yarn used for producing the void-containing yarn. Therefore, it has a metal-like luster by drawing a void-containing yarn for producing yarn containing a specific crystallite size and having a specific crystallinity and stretching it. The inventors have found that a void-containing yarn having high reflectivity and excellent aesthetics and design can be produced stably and efficiently, and the present invention has been completed.
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 内部に独立した空洞を有するボイド含有糸を製造するためのボイド含有糸製造用素糸であって、延伸されると、内部に、延伸方向に配向した状態で空洞が形成され、空洞の平均の長さをL(μm)とし、空洞の配向方向と直交方向における空洞の平均径をr(μm)とした際のL/r比が10以上であり、(010)面の結晶面の結晶子サイズが2nm~5nmの結晶核を内包し、結晶化度が5%~15%であることを特徴とするボイド含有糸製造用素糸である。
 <2> 平均直径が10μm~500μmである<1>に記載のボイド含有糸製造用素糸である。
 <3> 結晶性ポリマーからなる<1>から<2>のいずれかに記載のボイド含有糸製造用素糸である。
 <4> 反射率が0.1%~10%であり、延伸されて得られたボイド含有糸の反射率が30%~90%である<1>から<3>のいずれかに記載のボイド含有糸製造用素糸である。
 <5> (010)面の結晶面の結晶子サイズが2.5nm~3.5nmの結晶核を内包し、結晶化度が7%~10%である<1>から<4>のいずれかに記載のボイド含有糸製造用素糸である。
 <6> <1>から<5>のいずれかに記載のボイド含有糸製造用素糸を延伸することにより得られるボイド含有糸であって、内部に、延伸方向に配向した状態で空洞が形成され、空洞の平均の長さをL(μm)とし、空洞の配向方向と直交方向における空洞の平均径をr(μm)とした際のL/r比が10以上であることを特徴とするボイド含有糸である。
 <7> 反射率が30%~90%である<6>に記載のボイド含有糸である。
The present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is,
<1> A void-containing yarn-manufacturing yarn for producing a void-containing yarn having an independent cavity inside. When drawn, the void is formed in an oriented state in the drawing direction. The L / r ratio is 10 or more when the average length is L (μm) and the average diameter of the cavities in the direction perpendicular to the orientation direction of the cavities is r (μm), and the crystal plane of the (010) plane A void-containing yarn for producing a yarn containing voids having a crystallite size of 2 nm to 5 nm and a crystallinity of 5% to 15%.
<2> The void-containing yarn producing yarn according to <1>, wherein the average diameter is 10 μm to 500 μm.
<3> A void-containing yarn manufacturing yarn according to any one of <1> to <2>, which is made of a crystalline polymer.
<4> The void according to any one of <1> to <3>, wherein the reflectance is 0.1% to 10%, and the reflectance of the void-containing yarn obtained by stretching is 30% to 90%. This is a yarn for producing contained yarn.
<5> Any one of <1> to <4>, in which a crystal nucleus of a (010) plane has a crystallite size of 2.5 nm to 3.5 nm and a crystallinity of 7% to 10% The void-containing yarn-producing yarn described in 1.
<6> A void-containing yarn obtained by drawing the void-containing yarn-producing yarn according to any one of <1> to <5>, wherein a cavity is formed in an oriented state in the drawing direction. The L / r ratio is 10 or more when the average length of the cavity is L (μm) and the average diameter of the cavity in the direction orthogonal to the orientation direction of the cavity is r (μm). It is a void-containing yarn.
<7> The void-containing yarn according to <6>, wherein the reflectance is 30% to 90%.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、延伸により、金属様光沢を有し反射率が高く審美性及び意匠性に優れるボイド含有糸を安定して効率よく製造することができる条件を備えた微細な結晶核を内包するボイド含有糸製造用素糸を提供することができる。 According to the present invention, the above-mentioned problems can be solved and the above-mentioned object can be achieved, and by stretching, a void-containing yarn having a metallic luster, high reflectivity and excellent aesthetics and design is stabilized. Thus, it is possible to provide a void-containing yarn-producing yarn that includes fine crystal nuclei with conditions that allow efficient production.
図1Aは、本発明のボイド含有糸製造用素糸を用いて作製したボイド含有糸の断面図の一例である。図1Bは、本発明のボイド含有糸製造用素糸を用いて作製したボイド含有糸の断面図の一例である。FIG. 1A is an example of a cross-sectional view of a void-containing yarn produced using the void-containing yarn-producing yarn of the present invention. FIG. 1B is an example of a cross-sectional view of a void-containing yarn produced using the void-containing yarn-producing yarn of the present invention. 図2Aは、アスペクト比を説明するための図であって、ボイド含有糸の斜視図である。図2Bは、アスペクト比を説明するための図であって、図2Aにおけるボイド含有糸のA-A’断面図である。図2Cは、アスペクト比を説明するための図であって、図2Aにおけるボイド含有糸のB-B’断面図である。FIG. 2A is a diagram for explaining an aspect ratio, and is a perspective view of a void-containing yarn. FIG. 2B is a view for explaining the aspect ratio, and is a cross-sectional view taken along the line A-A ′ of the void-containing yarn in FIG. 2A. FIG. 2C is a diagram for explaining the aspect ratio, and is a cross-sectional view taken along the line B-B ′ of the void-containing yarn in FIG. 2A. 図3Aは、アスペクト比を説明するための図であって、ボイド含有糸の斜視図である。図3Bは、アスペクト比を説明するための図であって、図3Aにおけるボイド含有糸のA-A’断面図である。図3Cは、アスペクト比を説明するための図であって、図3Aにおけるボイド含有糸のB-B’断面図である。FIG. 3A is a perspective view of the void-containing yarn for explaining the aspect ratio. FIG. 3B is a diagram for explaining the aspect ratio, and is a cross-sectional view taken along the line A-A ′ of the void-containing yarn in FIG. 3A. FIG. 3C is a diagram for explaining the aspect ratio, and is a B-B ′ sectional view of the void-containing yarn in FIG. 3A. 図4は、本発明のボイド含有糸製造用素糸を用いてボイド含有糸を製造する際の延伸方法の一例を示す図である。FIG. 4 is a diagram showing an example of a drawing method when producing a void-containing yarn using the void-containing yarn-producing yarn of the present invention. 図5は、ボイド含有糸製造用素糸の結晶核の(010)面の結晶子サイズと、ボイド含有糸の得率との関係を示す図である。縦軸:ボイド含有糸の得率(%)、横軸:(010)面の結晶子サイズ(nm)。FIG. 5 is a diagram showing the relationship between the crystallite size of the (010) plane of the crystal nucleus of the void-containing yarn-producing yarn and the yield of the void-containing yarn. Vertical axis: yield of void-containing yarn (%), horizontal axis: crystallite size (nm) on (010) plane. 図6は、ボイド含有糸製造用素糸の結晶化度と、ボイド含有糸の得率との関係を示す図である。縦軸:ボイド含有糸の得率(%)、横軸:結晶化度(%)。FIG. 6 is a diagram showing the relationship between the crystallinity of the void-containing yarn-manufacturing yarn and the yield of the void-containing yarn. Vertical axis: yield of void-containing yarn (%), horizontal axis: crystallinity (%).
(ボイド含有糸製造用素糸)
 本発明のボイド含有糸製造用素糸は、少なくとも結晶核を内包する。ボイド含有糸製造用素糸は、延伸することによりボイド含有糸を製造することができるものである。
(Various yarn for yarn containing voids)
The void-containing yarn-producing yarn of the present invention includes at least a crystal nucleus. The void-containing yarn manufacturing yarn can be produced by drawing the void-containing yarn.
<(010)面の結晶面の結晶子サイズ>
 ボイド含有糸製造用素糸に内包される結晶核の(010)面の結晶面の結晶子サイズは、2nm~5nmであるが、2.1nm~4nmが好ましく、2.5nm~3.5nmが特に好ましい。(010)面の結晶面の結晶子サイズが、2nm未満であると、結晶子サイズが小さすぎて、ボイド含有糸を製造する際、延伸しても十分な金属様光沢や高い反射率を得ることができないことがあり、5nmを超えると、結晶子サイズが大きすぎて、ボイド含有糸を製造する際、延伸により切断してしまうことがある。なお、ここでいう「(010)面」とは、一般に面指数あるいはミラー指数と呼ばれる互いに素な3つの整数の組(hkl)で表される結晶面のことをいうものである。これについての説明は、X線回折に関する文献(たとえば、X線回折技術 高良和武、菊田惺志著、東京大学出版会、1981、p23~p39)に解説がなされている。
(010)面の結晶面の結晶子サイズは、例えば、X線回折により測定することができる。
<Crystallite size of crystal plane of (010) plane>
The crystallite size of the crystal plane of the (010) plane of the crystal nucleus included in the void-containing yarn-producing yarn is 2 nm to 5 nm, preferably 2.1 nm to 4 nm, and preferably 2.5 nm to 3.5 nm. Particularly preferred. When the crystallite size of the (010) plane is less than 2 nm, the crystallite size is too small, and when producing a void-containing yarn, sufficient metal-like gloss and high reflectivity are obtained even when drawn. In some cases, when the thickness exceeds 5 nm, the crystallite size is too large, and the void-containing yarn may be cut by stretching. The “(010) plane” herein refers to a crystal plane represented by a set of three disjoint integers (hkl) generally called a plane index or a Miller index. This is explained in the literature on X-ray diffraction (for example, X-ray diffraction technology Kazutake Takara and Satoshi Kikuta, The University of Tokyo Press, 1981, p23-p39).
The crystallite size of the (010) plane can be measured by, for example, X-ray diffraction.
<結晶化度>
 ボイド含有糸製造用素糸の結晶化度としては、5%~15%であるが、5%~12%が好ましく、7%~10%がより好ましい。結晶化度が、5%未満であると、ボイド含有糸を製造する際、延伸しても十分な金属様光沢や高い反射率を得ることができないことがあり、15%を超えると、ボイド含有糸を製造する際、延伸により切断してしまうことがある。
 結晶化度は、例えば、屈折率法、赤外分光法、X線回折法、比重計や密度勾配管法などにより測定することができる。
<Crystallinity>
The degree of crystallinity of the void-containing yarn manufacturing yarn is 5% to 15%, preferably 5% to 12%, more preferably 7% to 10%. When producing a void-containing yarn with a crystallinity of less than 5%, sufficient metal-like luster and high reflectivity may not be obtained even when drawn, and when it exceeds 15%, a void is contained. When manufacturing a thread | yarn, it may cut | disconnect by extending | stretching.
The degree of crystallinity can be measured by, for example, a refractive index method, an infrared spectroscopy method, an X-ray diffraction method, a hydrometer or a density gradient tube method.
<平均直径>
 ボイド含有糸製造用素糸の平均直径としては、特に制限はなく、目的に応じて適宜選択することができるが、10μm~500μmが好ましく、30μm~200μmがより好ましい。平均直径が10μm未満であると、延伸後のボイド含有糸内部に十分な空洞が発現しないことがあり、500μmを超えると、延伸張力が高くなるため延伸しにくくなることや、延伸後のボイド含有糸が十分細径化しにくいことがある。
 ここで、平均直径とは、ボイド含有糸製造用素糸が円型の場合、ボイド含有糸製造用素糸を製造する際の樹脂の押出し方向に直交する断面における最大径の平均をいい、ボイド含有糸製造用素糸が異型の場合、ボイド含有糸製造用素糸を製造する際の樹脂の押出し方向に直交する断面における最長部分の長さをいう。
 平均直径は、例えば、ボイド含有糸製造用素糸をエポキシ樹脂などで包埋してカミソリやミクロトームで切断後、断面SEMの写真により測定することができる。
<Average diameter>
The average diameter of the void-containing yarn-producing yarn is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 μm to 500 μm, more preferably 30 μm to 200 μm. If the average diameter is less than 10 μm, sufficient voids may not be expressed inside the void-containing yarn after stretching, and if it exceeds 500 μm, the stretching tension becomes high, making it difficult to stretch, and containing voids after stretching. It may be difficult to reduce the diameter of the yarn sufficiently.
Here, the average diameter means the average of the maximum diameters in the cross section perpendicular to the extrusion direction of the resin when manufacturing the void-containing yarn manufacturing yarn when the void-containing yarn manufacturing yarn is a circular shape. When the containing yarn-producing yarn is an irregular shape, it means the length of the longest portion in the cross section orthogonal to the resin extrusion direction when producing the void-containing yarn-producing yarn.
The average diameter can be measured by, for example, a photograph of a cross-sectional SEM after embedding a void-containing yarn-producing yarn with an epoxy resin and cutting with a razor or a microtome.
<反射率>
 ボイド含有糸製造用素糸の反射率(%)としては、特に制限はなく、目的に応じて適宜選択することができるが、通常反射率が高いものではなく、0.1%~10%程度である。
 反射率は、例えば、分光光度計、積分球、分光光度計と積分球を組合せた装置などにより測定することができる。
ボイド含有糸製造用素糸は、反射率(%)が低いものであるが、これを延伸してボイド含有糸にすることにより、金属様光沢を有し、反射率(%)が高くなり、審美性及び意匠性に優れたボイド含有糸を得ることができる。
<Reflectance>
The reflectivity (%) of the void-containing yarn-producing yarn is not particularly limited and can be appropriately selected according to the purpose. However, the reflectivity is not usually high and is about 0.1% to 10%. It is.
The reflectance can be measured by, for example, a spectrophotometer, an integrating sphere, or a device that combines a spectrophotometer and an integrating sphere.
The void-containing yarn manufacturing yarn has a low reflectance (%), but by drawing it into a void-containing yarn, it has a metallic luster and a high reflectance (%). A void-containing yarn excellent in aesthetics and design can be obtained.
<製造方法>
 ボイド含有糸製造用素糸は、少なくとも熱可塑性樹脂を含む樹脂組成物を溶融紡糸することによって作製される。具体的には、樹脂組成物を乾燥し、押出成型機で溶融し、溶融紡糸口金から溶融吐出し、冷却し、その後、巻き取ることにより作製される。
<Manufacturing method>
The void-containing yarn manufacturing yarn is produced by melt spinning a resin composition containing at least a thermoplastic resin. Specifically, the resin composition is dried, melted with an extruder, melted and discharged from a melt spinneret, cooled, and then wound up.
<<樹脂組成物>>
 樹脂組成物は、少なくとも熱可塑性樹脂を含み、必要に応じて更にその他の成分を含む。
 熱可塑性樹脂としては、特に制限はなく、目的に応じて適宜選択することができるが、結晶性を有するポリマーであることが好ましい。
<< Resin composition >>
The resin composition contains at least a thermoplastic resin, and further contains other components as necessary.
There is no restriction | limiting in particular as a thermoplastic resin, Although it can select suitably according to the objective, It is preferable that it is a polymer which has crystallinity.
-結晶性を有するポリマー-
 一般に、ポリマーは、結晶性ポリマーと、非晶性(アモルファス)ポリマーとに分けられる。結晶性ポリマーは、通常、100%結晶ということはなく、分子構造の中に長い鎖状の分子が規則的に並んだ結晶性領域と、規則的に並んでいない非結晶(アモルファス)領域とを含んでいる。
 本発明において、結晶性を有するポリマーは、分子構造の中に少なくとも結晶性領域を含んでいればよく、結晶性領域と非結晶領域とが混在していてもよいが、結晶性ポリマーからなることが特に好ましい。
-Polymer with crystallinity-
In general, polymers are divided into crystalline polymers and amorphous (amorphous) polymers. A crystalline polymer is not usually 100% crystalline, and includes a crystalline region in which long chain molecules are regularly arranged in a molecular structure and an amorphous region that is not regularly arranged. Contains.
In the present invention, the polymer having crystallinity may include at least a crystalline region in the molecular structure, and a crystalline region and an amorphous region may be mixed, but the crystalline polymer is made of a crystalline polymer. Is particularly preferred.
 結晶性を有するポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリアセタール(POM)、シンジオタクチック・ポリスチレン(SPS)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、フッ素樹脂などが挙げられる。これらは、1種単独で使用してもよく、2種以上のポリマーをブレンドしたり、共重合させたりして使用してもよい。
 これらの中でも、力学強度や製造の観点から、約300℃以下で溶融する樹脂が好ましく、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂がより好ましく、ポリエステル樹脂が特に好ましい。
There is no restriction | limiting in particular as a polymer which has crystallinity, According to the objective, it can select suitably, For example, polyolefin resin, polyamide resin, polyester resin, polyacetal (POM), syndiotactic polystyrene (SPS), polyphenylene Examples thereof include sulfide (PPS), polyether ether ketone (PEEK), liquid crystal polymer (LCP), and fluororesin. These may be used singly or may be used by blending or copolymerizing two or more polymers.
Among these, from the viewpoint of mechanical strength and production, a resin that melts at about 300 ° C. or less is preferable, a polyolefin resin, a polyester resin, or a polyamide resin is more preferable, and a polyester resin is particularly preferable.
 結晶性を有するポリマーの溶融粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、50Pa・s~1,000Pa・sが好ましく、70Pa・s~750Pa・sがより好ましく、80Pa・s~450Pa・sが特に好ましい。溶融粘度が、50Pa・s~1,000Pa・sであると、紡糸の際にノズルから押し出される溶融紡糸の形状が安定し、均一にボイド含有糸製造用素糸を形成しやすくなる点で好ましい。また、溶融粘度が、50Pa・s~1,000Pa・sであると、紡糸の際に、樹脂の粘度が適切になりノズルから押出ししやすくなる点、ボイド含有糸製造用素糸の平均直径が安定する点で好ましい。
 ここで、溶融粘度は、例えば、プレートタイプのレオメーター、キャピラリーレオメーターなどにより測定することができる。
The melt viscosity of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa · s to 1,000 Pa · s, more preferably 70 Pa · s to 750 Pa · s. 80 Pa · s to 450 Pa · s is particularly preferable. A melt viscosity of 50 Pa · s to 1,000 Pa · s is preferred in that the shape of the melt-spun extruded from the nozzle during spinning is stable and it is easy to form a uniform yarn for producing void-containing yarns. . In addition, when the melt viscosity is 50 Pa · s to 1,000 Pa · s, the viscosity of the resin becomes appropriate during spinning, and it is easy to extrude from the nozzle, and the average diameter of the void-containing yarn manufacturing yarn is It is preferable in terms of stability.
Here, the melt viscosity can be measured by, for example, a plate type rheometer, a capillary rheometer, or the like.
 結晶性を有するポリマーの極限粘度(IV:Intrinsic Viscosity)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.4~1.5が好ましく、0.6~1.2がより好ましく、0.7~1.0が特に好ましい。IVが大きい方が、ボイド含有糸製造用素糸をボイド含有糸の製造に用いた場合、延伸時に空洞を発現しやすいが、IVが、0.4~1.5であると、紡糸の際に溶融樹脂の押出しがしやすくなることや、樹脂の流れが安定して滞留が発生しづらくなり、品質が安定すること、紡糸の際に、溶融樹脂のフィルターを設置した場合であっても、フィルターに負荷がかかりにくく、樹脂の流れが安定して滞留が発生しづらくなること、ボイド含有糸製造用素糸をボイド含有糸の製造に用いた場合、引っ張り強度が高くなり、延伸時に延伸張力が適切に保たれるために、効率よく延伸することができること、これにより均一に延伸しやすくなり、装置に負荷がかかりにくいこと、更に製品(ボイド含有糸)が破断しにくくなって、物性が高まること、などの点で好ましい。
 ここで、極限粘度(IV)は、例えば、ウベローデ型粘度計により測定することができる。
The intrinsic viscosity (IV) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.5, preferably 0.6 to 1. 2 is more preferable, and 0.7 to 1.0 is particularly preferable. When the yarn containing the void-containing yarn is used for producing the void-containing yarn, the larger the IV, the easier to express a cavity during drawing, but when the IV is 0.4 to 1.5, Even if it is easy to extrude the molten resin, the resin flow is stable and it is difficult for stagnation to occur, the quality is stable, even when a molten resin filter is installed during spinning, It is difficult to apply a load to the filter, the resin flow is stable, and it is difficult for stagnation to occur. When the void-containing yarn production yarn is used for the production of void-containing yarn, the tensile strength is high, and the drawing tension during drawing Is maintained properly, it can be efficiently stretched, it is easy to stretch uniformly, it is difficult to apply a load to the device, and the product (void-containing yarn) is not easily broken, the physical properties are To increase Preferable in terms of such.
Here, the intrinsic viscosity (IV) can be measured by, for example, an Ubbelohde viscometer.
 結晶性を有するポリマーの融点(Tm)としては、特に制限はなく、目的に応じて適宜選択することができるが、40℃~350℃が好ましく、100℃~300℃がより好ましく、150℃~260℃が特に好ましい。融点が、40℃~350℃であると、通常の使用で予想される温度範囲でボイド含有糸製造用素糸の平均直径を保ちやすくなる点、高温での加工に必要とされる特殊な技術を特に用いなくても、均一にボイド含有糸製造用素糸を製造できる点で好ましい。
 ここで、融点は、例えば、示差熱分析装置(DSC)により測定することができる。
The melting point (Tm) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 40 ° C to 350 ° C, more preferably 100 ° C to 300 ° C, and more preferably 150 ° C to 260 ° C. is particularly preferred. When the melting point is 40 ° C to 350 ° C, it is easy to maintain the average diameter of the void-containing yarn manufacturing yarn within the temperature range expected for normal use, and special technology required for processing at high temperatures Even if it does not use especially, it is preferable at the point which can manufacture the yarn for void containing yarn manufacture uniformly.
Here, the melting point can be measured by, for example, a differential thermal analyzer (DSC).
 結晶性を有するポリマーの重量平均分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、5,000~1,000,000が好ましく、10,000~800,000がより好ましく、15,000~700,000が特に好ましい。重量平均分子量が、5,000未満であると、ボイド含有糸製造用素糸をボイド含有糸の製造に用いた場合、延伸時に破断する懸念があり、重量平均分子量が1,000,000を超えると、ボイド含有糸製造用素糸が延伸されにくいことや、延伸しても空洞が発現しにくいことがある。一方、重量平均分子量が、15,000~700,000であると、ボイド含有糸製造用素糸の延伸の容易性と空洞の発現容易性とを両立できる点で好ましい。
 ここで、重量平均分子量は、例えば、ゲル浸透クロマトグラフィー(GPC Gel Permeation Chromatography)法により測定することができる。
The weight average molecular weight of the polymer having crystallinity is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5,000 to 1,000,000, more preferably 10,000 to 800,000. 15,000 to 700,000 is particularly preferable. If the weight-average molecular weight is less than 5,000, when the void-containing yarn-manufacturing yarn is used for the production of void-containing yarn, there is a concern of breaking during stretching, and the weight-average molecular weight exceeds 1,000,000. In some cases, the void-containing yarn-producing yarn is difficult to be stretched, and even if it is stretched, cavities are difficult to develop. On the other hand, when the weight average molecular weight is 15,000 to 700,000, it is preferable from the standpoint that both the ease of drawing the void-containing yarn-producing yarn and the ease of expression of cavities can be achieved.
Here, the weight average molecular weight can be measured by, for example, a gel permeation chromatography (GPC Gel Permeation Chromatography) method.
--ポリオレフィン樹脂--
 ポリオレフィン樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレン、ポリプロピレン(PP)、エチレンとプロピレンとのランダム共重合体、エチレンとプロピレンとのブロック共重合体、エチレンとα-オレフィン(例えば、1-オクテン、1-ヘキセンなど)とのランダム共重合体、プロピレンとα-オレフィン(例えば、1-オクテン、1-ヘキセンなど)とのランダム共重合体などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
 これらの中でも、ポリプロピレン、エチレンとプロピレンとのランダム共重合体、エチレンとプロピレンとのブロック共重合体が好ましく、ポリプロピレン、エチレンとプロピレンとのランダム共重合体が特に好ましい。
--- Polyolefin resin--
The polyolefin resin is not particularly limited and can be appropriately selected depending on the purpose. For example, polyethylene, polypropylene (PP), a random copolymer of ethylene and propylene, a block copolymer of ethylene and propylene, And a random copolymer of ethylene and α-olefin (eg, 1-octene, 1-hexene, etc.) and a random copolymer of propylene and α-olefin (eg, 1-octene, 1-hexene, etc.). It is done. These may be used alone or in combination of two or more.
Among these, polypropylene, a random copolymer of ethylene and propylene, and a block copolymer of ethylene and propylene are preferable, and a random copolymer of polypropylene and ethylene and propylene is particularly preferable.
--ポリアミド樹脂--
 ポリアミド樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリカプロアミド(ナイロン6)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン6/10)、ポリヘキサメチレンドデカミド(ナイロン6/12)、ポリウンデカメチレンアジパミド(ナイロン11/6)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリトリメチルヘキサメチレンテレフタルアミド、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリヘキサメチレンテレフタル/イソフタルアミド(ナイロン6T/6I)、ポリビス(4-アミノシクロヘキシル)メタンドデカミド(ナイロンPACM12)、ポリビス(3-メチル-4-アミノシクロヘキシル)メタンドデカミド(ナイロンジメチルPACM12)、ポリメタキシリレンアジパミド(ナイロンMXD6)、ポリウンデカメチレンテレフタルアミド(ナイロン11T)、ポリウンデカメチレンヘキサヒドロテレフタルアミド(ナイロン11T(H))などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
 これらの中でも、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン6/10、ナイロン6/12、ナイロン11/6が好ましく、ナイロン6、ナイロン66、ナイロン11が特に好ましい。
--- Polyamide resin--
There is no restriction | limiting in particular as a polyamide resin, According to the objective, it can select suitably, For example, polycaproamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon) 66), polyhexamethylene sebamide (nylon 6/10), polyhexamethylene dodecamide (nylon 6/12), polyundecane adipamide (nylon 11/6), polyundecanamide (nylon 11), Polydodecanamide (nylon 12), polytrimethylhexamethylene terephthalamide, polyhexamethylene isophthalamide (nylon 6I), polyhexamethylene terephthale / isophthalamide (nylon 6T / 6I), polybis (4-aminocyclohexyl) methane dodecamide ( Nylon P CM12), polybis (3-methyl-4-aminocyclohexyl) methane dodecamide (nylon dimethyl PACM12), polymetaxylylene adipamide (nylon MXD6), polyundecamethylene terephthalamide (nylon 11T), polyundecamethylene hexa And hydroterephthalamide (nylon 11T (H)). These may be used alone or in combination of two or more.
Among these, nylon 6, nylon 66, nylon 11, nylon 12, nylon 6/10, nylon 6/12, and nylon 11/6 are preferable, and nylon 6, nylon 66, and nylon 11 are particularly preferable.
--ポリエステル樹脂--
 ポリエステル樹脂は、ジカルボン酸成分とジオール成分との重縮合反応によって得られるエステル結合を主鎖の主要な結合鎖とするポリマーである。
--- Polyester resin--
The polyester resin is a polymer having an ester bond obtained by a polycondensation reaction of a dicarboxylic acid component and a diol component as a main bond chain of the main chain.
 ジカルボン酸成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環族ジカルボン酸、オキシカルボン酸、多官能酸などが挙げられる。これらの中でも、芳香族ジカルボン酸が特に好ましい。 The dicarboxylic acid component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, oxycarboxylic acids, and polyfunctional acids. It is done. Among these, aromatic dicarboxylic acids are particularly preferable.
 芳香族ジカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ナフタレンジカルボン酸、ジフェノキシエタンジカルボン酸、5-ナトリウムスルホイソフタル酸などが挙げられる。
 これらの中でも、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸が好ましく、テレフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸がより好ましい。
The aromatic dicarboxylic acid is not particularly limited and may be appropriately selected depending on the intended purpose.For example, terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, naphthalenedicarboxylic acid, diphenoxyethanedicarboxylic acid, Examples include 5-sodium sulfoisophthalic acid.
Among these, terephthalic acid, isophthalic acid, diphenyl dicarboxylic acid, preferably naphthalene dicarboxylic acid, terephthalic acid, diphenyl dicarboxylic acid, naphthalene dicarboxylic acid are more preferable.
 脂肪族ジカルボン酸としては、例えば、シュウ酸、コハク酸、エイコ酸、アジピン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、マレイン酸、フマル酸が挙げられる。
 脂環族ジカルボン酸としては、例えば、シクロヘキシンジカルボン酸などが挙げられる。
 オキシカルボン酸としては、例えば、p-オキシ安息香酸などが挙げられる。
 多官能酸としては、例えば、トリメリット酸、ピロメリット酸などが挙げられる。
Examples of the aliphatic dicarboxylic acid include oxalic acid, succinic acid, eicoic acid, adipic acid, sebacic acid, dimer acid, dodecanedioic acid, maleic acid, and fumaric acid.
Examples of the alicyclic dicarboxylic acid include cyclohexyne dicarboxylic acid.
Examples of the oxycarboxylic acid include p-oxybenzoic acid.
Examples of the polyfunctional acid include trimellitic acid and pyromellitic acid.
 ジオ-ル成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、脂肪族ジオール、脂環族ジオール、芳香族ジオール、ジエチレングリコール、ポリアルキレングリコールなどが挙げられる。
 これらの中でも、脂肪族ジオールが特に好ましい。
Geo - The Le component is not particularly limited and may be appropriately selected depending on the intended purpose, for example, aliphatic diols, alicyclic diols, aromatic diols, diethylene glycol, polyalkylene glycol.
Of these, aliphatic diols are particularly preferred.
 脂肪族ジオールとしては、例えば、エチレングリコール、プロパンジオール、ブタンジオール、1,4ブチレングリコール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、トリエチレングリコールなどが挙げられる。
 これらの中でも、エチレングリコール、1,4ブチレングリコール、プロパンジオール、ブタンジオールが特に好ましい。
 脂環族ジオールとしては、例えば、シクロヘキサンジメタノールなどが挙げられる。
 芳香族ジオールとしては、例えば、ビスフェノールA、ビスフェノールSなどが挙げられる。
Examples of the aliphatic diol include ethylene glycol, propane diol, butane diol, 1,4 butylene glycol, pentane diol, hexane diol, neopentyl glycol, triethylene glycol, and the like.
Among these, ethylene glycol, 1,4 butylene glycol, propanediol, and butanediol are particularly preferable.
Examples of the alicyclic diol include cyclohexanedimethanol.
Examples of the aromatic diol include bisphenol A and bisphenol S.
 このようなポリエステル樹脂の具体例としては、PET(ポリエチレンテレフタエレート)、PEN(ポリエチレンナフタレート)、PTT(ポリトリメチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PBN(ポリブチレンナフタレート)PLA(ポリ乳酸)、PBS(ポリブチレンサクシネート)、PHN(ポリヘキサメチレンナフタレート)、PHT(ポリヘキサメチレンテレフタレート)などが挙げられる。
 これらの中でも、PET、PBT、PEN、PBSが好ましく、PET、PBTが特に好ましい。
Specific examples of such a polyester resin include PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PTT (polytrimethylene terephthalate), PBT (polybutylene terephthalate), PBN (polybutylene naphthalate) PLA ( Polylactic acid), PBS (polybutylene succinate), PHN (polyhexamethylene naphthalate), PHT (polyhexamethylene terephthalate) and the like.
Among these, PET, PBT, PEN, and PBS are preferable, and PET and PBT are particularly preferable.
 ポリエステル樹脂の数平均分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、12,000~40,000が好ましく、18,000~40,000がより好ましく、18,500~30,000が特に好ましい。数平均分子量が、12,000未満であると、紡糸の際にボイド含有糸製造用素糸の力学強度が不足することがあり、40,000を超えると、ボイド含有糸製造用素糸の重合が困難になることがある。 The number average molecular weight of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 12,000 to 40,000, more preferably 18,000 to 40,000, and 18,500 ˜30,000 is particularly preferred. When the number average molecular weight is less than 12,000, the mechanical strength of the void-containing yarn production yarn may be insufficient during spinning. When the number average molecular weight exceeds 40,000, polymerization of the void-containing yarn production yarn is performed. Can be difficult.
 ポリエステル樹脂の溶融粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、50Pa・s~700Pa・sが好ましく、70Pa・s~500Pa・sがより好ましく、80Pa・s~300Pa・sが特に好ましい。溶融粘度が大きい方が、ボイド含有糸製造用素糸をボイド含有糸の製造に用いた場合、延伸時に空洞を発現しやすいが、溶融粘度が50Pa・s~700Pa・sであると、紡糸の際に、樹脂の押出しがしやすくなることや、樹脂の流れが安定して滞留が発生しづらくなり、品質が安定する点で好ましい。
 また、溶融粘度が50Pa・s~700Pa・sであると、ボイド含有糸製造用素糸をボイド含有糸の製造に用いた場合、延伸時に延伸張力が適切に保たれるために、均一に延伸しやすくなり、破断しづらくなることがある点で好ましい。
 更に、溶融粘度が50Pa・s~700Pa・sであると、紡糸の際にノズルから押し出される溶融樹脂の形態が維持化しやすくなり、安定的に成形できたり、製品が破損しにくくなったりするなど、物性が高まる点で好ましい。
The melt viscosity of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa · s to 700 Pa · s, more preferably 70 Pa · s to 500 Pa · s, and more preferably 80 Pa · s to 80 Pa · s. 300 Pa · s is particularly preferable. If the melt viscosity is higher when the void-containing yarn production yarn is used for the production of the void-containing yarn, cavities are likely to appear during drawing, but if the melt viscosity is 50 Pa · s to 700 Pa · s, At this time, it is preferable in that the resin can be easily extruded, the flow of the resin is stable, the retention is difficult to occur, and the quality is stable.
In addition, when the melt viscosity is 50 Pa · s to 700 Pa · s, when the yarn for producing void-containing yarn is used for producing the void-containing yarn, the drawing tension is appropriately maintained at the time of drawing. This is preferable in that it is easy to break and is difficult to break.
Furthermore, when the melt viscosity is 50 Pa · s to 700 Pa · s, it becomes easy to maintain the form of the molten resin extruded from the nozzle during spinning, so that it can be stably molded and the product is less likely to be damaged. , Which is preferable in terms of enhancing physical properties.
 なお、ポリエステル樹脂として、ジカルボン酸成分とジオール成分とが、それぞれ一種で重合してポリマーを形成していてもよく、ジカルボン酸成分及び/又はジオール成分が、2種以上で共重合してポリマーを形成していてもよい。また、ポリエステル樹脂として、2種以上のポリマーをブレンドして使用してもよい。 In addition, as a polyester resin, the dicarboxylic acid component and the diol component may each be polymerized as a single type to form a polymer, and the dicarboxylic acid component and / or the diol component may be copolymerized as two or more types to form a polymer. It may be formed. Moreover, you may blend and use 2 or more types of polymers as a polyester resin.
 2種以上でのポリマーのブレンドにおいて、主たるポリマーに対して添加されるポリマーは、主たるポリマーに対して、溶融粘度及び極限粘度が近く、添加量が少量である方が、紡糸の際に、溶融樹脂の押出し時に物性が高まり、押出ししやすくなる点で好ましい。 In a blend of two or more kinds of polymers, the polymer added to the main polymer has a melt viscosity and an intrinsic viscosity close to that of the main polymer, and the addition amount is smaller when spinning. It is preferable in that the physical properties are enhanced when the resin is extruded, and the resin is easily extruded.
 また、ポリエステル樹脂の流動特性の改良、光線透過性の制御、塗布液との密着性の向上などを目的として、ポリエステル樹脂に対してポリエステル樹脂以外の樹脂を添加してもよい。 Also, a resin other than the polyester resin may be added to the polyester resin for the purpose of improving the flow characteristics of the polyester resin, controlling the light transmittance, and improving the adhesion with the coating solution.
--その他の成分--
 樹脂組成物におけるその他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フィラー、耐熱安定剤、酸化防止剤、紫外線吸収剤、有機の易滑剤、核剤、染料、顔料、難燃剤、離型剤、分散剤、カップリング剤などが挙げられる。
 その他の成分がボイド含有糸内部の空洞の発現に寄与したかどうかは、空洞内又は空洞の界面部分に、結晶性を有するポリマー以外の成分(例えば、後述する各成分など)が検出されるかどうかで判別できる。例えば、エネルギ-分散型X線分析装置付き走査型電子顕微鏡や顕微ラマン法などで検出可能である。
-Other ingredients-
The other components in the resin composition are not particularly limited and can be appropriately selected depending on the purpose. For example, fillers, heat stabilizers, antioxidants, ultraviolet absorbers, organic lubricants, nucleating agents, Examples include dyes, pigments, flame retardants, mold release agents, dispersants, and coupling agents.
Whether other components contributed to the development of cavities inside the void-containing yarn is whether components other than the polymer having crystallinity (for example, each component described later) are detected in the cavities or at the interface portions of the cavities. It can be determined by how. For example, it can be detected by a scanning electron microscope with an energy-dispersive X-ray analyzer or a microscopic Raman method.
---酸化防止剤---
 酸化防止剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノール系化合物、イオウ系化合物、リン系化合物などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
 これらの中でも、酸化防止剤は、公知のヒンダードフェノールが特に好ましい。ヒンダードフェノールとしては、例えば、イルガノックス1010(チバ・スペシャルティ・ケミカルズ社製)、スミライザーBHT、スミライザーGA-80(いずれも、住友化学株式会社製)などの商品名で市販されている酸化防止剤などが挙げられる。
 また、酸化防止剤を一次酸化防止剤として利用し、更に二次酸化防止剤を組み合わせて適用することもできる。二次酸化防止剤としては、例えば、スミライザーTPL-R、同スミライザーTPM、同スミライザーTP-D(いずれも、住友化学株式会社製)などの商品名で市販されている酸化防止剤などが挙げられる。
---Antioxidant---
There is no restriction | limiting in particular as antioxidant, According to the objective, it can select suitably, For example, a phenol type compound, a sulfur type compound, a phosphorus type compound etc. are mentioned. These may be used alone or in combination of two or more.
Among these, a known hindered phenol is particularly preferable as the antioxidant. Examples of the hindered phenol include an antioxidant commercially available under trade names such as Irganox 1010 (manufactured by Ciba Specialty Chemicals), Sumilizer BHT, Sumilizer GA-80 (all of which are manufactured by Sumitomo Chemical Co., Ltd.). Etc.
In addition, an antioxidant can be used as a primary antioxidant, and a secondary antioxidant can be used in combination. Examples of the secondary antioxidant include antioxidants marketed under trade names such as Sumilizer TPL-R, Sumilizer TPM, Sumilizer TP-D (all manufactured by Sumitomo Chemical Co., Ltd.). .
---離型剤---
 離型剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルナバワックス等の植物系ワックス、蜜蝋、ラノリン等の動物系ワックス;モンタンワックス等の鉱物系ワックス;パラフィンワックス、ポリエチレンワックス等の石油系ワックス;ひまし油又はその誘導体、脂肪酸又はその誘導体等の油脂系ワックスなどが挙げられる。
 高級脂肪酸誘導体としては、例えば、ラウリン酸、ステアリン酸、モンタン酸等の高級脂肪酸と一価又は二価以上のアルコールとのエステル等が挙げられる。
---Release agent---
The release agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include plant waxes such as carnauba wax, animal waxes such as beeswax and lanolin; mineral waxes such as montan wax; paraffins Examples thereof include petroleum waxes such as wax and polyethylene wax; oil-based waxes such as castor oil or derivatives thereof, fatty acids or derivatives thereof, and the like.
Examples of the higher fatty acid derivatives include esters of higher fatty acids such as lauric acid, stearic acid, and montanic acid with monovalent or divalent alcohols.
---難燃剤---
 難燃剤としては、特に制限はなく、目的に応じて適宜選択できるが、臭素系難燃剤が特に好ましい。臭素系難燃剤としては、高分子量有機ハロゲン化合物、低分子量有機ハロゲン化合物等の有機ハロゲン系難燃剤を、1種単独で使用してもよく、2種以上併用してもよい。また、リン系難燃剤、無機系難燃剤を用いてもよい。
---Flame retardants---
There is no restriction | limiting in particular as a flame retardant, Although it can select suitably according to the objective, A brominated flame retardant is especially preferable. As brominated flame retardants, organic halogen flame retardants such as high molecular weight organic halogen compounds and low molecular weight organic halogen compounds may be used singly or in combination of two or more. Moreover, you may use a phosphorus flame retardant and an inorganic flame retardant.
<<溶融方法>>
 樹脂組成物を溶融する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、樹脂組成物を加熱溶融させる方法などが挙げられる。
 加熱の温度としては、特に制限はなく、樹脂組成物中の樹脂の種類などに応じて適宜選択することができる。溶融された樹脂組成物は、高温の粘調な液状となり、ノズルから押出しされる。また、溶融された樹脂組成物は、必要に応じて、脱揮されることが好ましい。
<< Melting method >>
There is no restriction | limiting in particular as a method of fuse | melting a resin composition, According to the objective, it can select suitably, For example, the method etc. which heat-melt a resin composition etc. are mentioned.
There is no restriction | limiting in particular as heating temperature, According to the kind etc. of resin in a resin composition, it can select suitably. The molten resin composition becomes a high-temperature viscous liquid and is extruded from the nozzle. Moreover, it is preferable that the molten resin composition is devolatilized as needed.
<<紡糸方法>>
 溶融された樹脂組成物の紡糸は、樹脂組成物をノズルから糸状に押出し、冷却することにより行われる。
<< Spinning method >>
Spinning of the melted resin composition is performed by extruding the resin composition from a nozzle into a thread and cooling.
-ノズル-
 ノズルは、小さな孔が多数形成されたものであり、ノズルを通じて溶融された樹脂組成物が押出しされることにより、樹脂組成物を糸状とすることができる。
 ノズル開口部の孔の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円型、異型などが挙げられる。異型とは、円型(真円)でない各種異型であることを意味し、例えば、歯車型、楕円型、花びら型、多葉型、星型、C型、Y型、十字型、井型などが挙げられる。
 ノズル開口部の孔の形状により、ボイド含有糸製造用素糸の、樹脂組成物の押出し方向に直交する断面の形状が決定され、これにより、ボイド含有糸の延伸方向に直交する断面の形状も決定される。
-nozzle-
The nozzle is formed with a large number of small holes, and the resin composition melted through the nozzle is extruded, whereby the resin composition can be formed into a thread.
There is no restriction | limiting in particular as a shape of the hole of a nozzle opening part, According to the objective, it can select suitably, For example, a circular shape, an atypical shape, etc. are mentioned. A variant means various variants that are not circular (perfect circles), such as a gear, ellipse, petal, multileaf, star, C, Y, cross, well, etc. Is mentioned.
The shape of the cross section perpendicular to the extrusion direction of the resin composition of the void-containing yarn manufacturing element yarn is determined by the shape of the hole in the nozzle opening, and thus the shape of the cross-section orthogonal to the drawing direction of the void-containing yarn is also determined. It is determined.
-押出し速度-
 ボイド含有糸製造用素糸は、未延伸糸(UDY:undrawn yarn)である。ここで、未延伸糸とは、繊維の形をしているが、分子鎖の配向度が低く、そのまま3倍~4倍に容易に伸ばすことができて元に戻らない糸をいう。
 未延伸糸を製造する際の押出し速度としては、特に制限はなく、樹脂組成物の量やノズル径などに応じて適宜選択することができるが、通常、2,000m/分間程度以下の押出し速度(紡糸速度ともいう)で製造される。
-Extrusion speed-
The yarn for producing a void-containing yarn is an undrawn yarn (UDY). Here, the undrawn yarn refers to a yarn that is in the form of a fiber but has a low degree of molecular chain orientation and can be easily stretched 3 to 4 times as it is and does not return to its original state.
There is no restriction | limiting in particular as extrusion speed at the time of manufacturing an undrawn yarn, Although it can select suitably according to the quantity of a resin composition, a nozzle diameter, etc., Usually, the extrusion speed of about 2,000 m / min or less (Also called spinning speed).
-冷却-
 冷却する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、冷却風で冷却する方法、水槽に溜めた水に通す方法などが挙げられる。
 冷却温度(風温、水温など)としては、特に制限はなく、目的に応じて適宜選択することができるが、5℃~60℃が好ましく、10℃~40℃がより好ましく、15℃~35℃が特に好ましい。
 冷却温度が、5℃未満であると、ボイド含有糸製造用素糸に内包される(010)面の結晶子サイズが小さすぎて、ボイド含有糸製造用素糸をそのまま延伸してもボイド含有糸を製造できないことがあり、60℃を超えると、(010)面の結晶子サイズが大きくなりすぎ、ボイド含有糸の製造に用いる場合、延伸時に切断されてしまうことがある。
-cooling-
There is no restriction | limiting in particular as a method to cool, According to the objective, it can select suitably, For example, the method of cooling with cooling air, the method of letting the water stored in the water tank, etc. are mentioned.
The cooling temperature (air temperature, water temperature, etc.) is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ° C to 60 ° C, more preferably 10 ° C to 40 ° C, and more preferably 15 ° C to 35 ° C. ° C is particularly preferred.
When the cooling temperature is less than 5 ° C., the crystallite size of the (010) plane contained in the void-containing yarn manufacturing yarn is too small, and even if the void-containing yarn manufacturing yarn is stretched as it is, it contains voids. In some cases, the yarn cannot be produced. When the temperature exceeds 60 ° C., the crystallite size of the (010) plane becomes too large, and when used for producing a void-containing yarn, it may be cut during stretching.
<<巻取り方法>>
 巻取り方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ローラで巻き上げる方法などが挙げられる。
<< Winding method >>
There is no restriction | limiting in particular as a winding method, According to the objective, it can select suitably, For example, the method etc. which wind up with a roller are mentioned.
 ボイド含有糸製造用素糸(以下、「未延伸糸」と称することがある。)の巻上げ速度(巻き取り速度と称することもある)としては、特に制限はなく、目的に応じて適宜選択することができるが、5m/分間~1,000m/分間が好ましく、20m/分間~500m/分間がより好ましく、25m/分間~200m/分間が特に好ましい。巻上げ速度が5m/分間未満であると、ボイド含有糸製造用素糸にムラが出来やすくなることがあり、1,000m/分間を超えると、ボイド含有糸製造用素糸がストレスにより切断することがある。 The winding speed (also referred to as “winding speed”) of the void-containing yarn manufacturing yarn (hereinafter sometimes referred to as “undrawn yarn”) is not particularly limited and is appropriately selected according to the purpose. However, 5 m / min to 1,000 m / min is preferable, 20 m / min to 500 m / min is more preferable, and 25 m / min to 200 m / min is particularly preferable. When the winding speed is less than 5 m / min, the void-containing yarn manufacturing yarn may be easily uneven. When the winding speed exceeds 1,000 m / min, the void-containing yarn manufacturing yarn is cut by stress. There is.
 ボイド含有糸製造用素糸からボイド含有糸を製造する場合、巻取りを行った直後に延伸してもよく、一定の温度で一定時間おいてから延伸してもよい。この一定温度で一定時間おくことを、本発明ではアニールと称することがある。
 アニールの温度及び時間としては、特に制限はなく、目的に応じて適宜選択することができる。
When producing a void-containing yarn from a yarn for producing a void-containing yarn, the yarn may be drawn immediately after winding or may be drawn after a certain time at a certain temperature. In the present invention, setting the fixed temperature for a fixed time may be referred to as annealing.
There is no restriction | limiting in particular as temperature and time of annealing, According to the objective, it can select suitably.
<用途>
 ボイド含有糸製造用素糸は、内包される結晶核の結晶子サイズ及び結晶化度などが、ボイド含有糸の製造に好適な条件であるため、金属様光沢を有し反射率が高く審美性及び意匠性に優れるボイド含有糸の製造に好適に利用可能である。
<Application>
The void-containing yarn production yarn has a metal-like gloss, high reflectivity and high aesthetics because the crystallite size and crystallinity of the contained crystal nucleus are suitable conditions for the production of void-containing yarn. And can be suitably used for the production of void-containing yarns having excellent design properties.
(ボイド含有糸)
 本発明のボイド含有糸は、内部に空洞を有する金属様光沢を有する糸であり、本発明のボイド含有糸製造用素糸を延伸することにより製造できる。ここで、空洞とは、ボイド含有糸内部に存在する、真空状態のドメインもしくは気相のドメインを意味する。
 ボイド含有糸の断面図の一例を図1A及び図1Bに示す。図1Aは、ノズル開口部の孔の形状が円型である場合のボイド含有糸の断面図であり、図1Bは、ノズル開口部の孔の形状が異型である場合のボイド含有糸の断面図である。図1A及び図1Bに示すように、ボイド含有糸43は、樹脂部61の内部に空洞60を有する。また、ボイド含有糸は、図2B及び図3Bに示すように被覆層12を有していてもよい。
(Void-containing yarn)
The void-containing yarn of the present invention is a yarn having a metallic luster having a cavity inside, and can be produced by stretching the void-containing yarn-producing yarn of the present invention. Here, the cavity means a vacuum domain or a gas phase domain existing inside the void-containing yarn.
An example of a cross-sectional view of the void-containing yarn is shown in FIGS. 1A and 1B. FIG. 1A is a cross-sectional view of a void-containing yarn when the shape of the hole in the nozzle opening is circular, and FIG. 1B is a cross-sectional view of the void-containing yarn when the shape of the hole in the nozzle opening is irregular. It is. As shown in FIGS. 1A and 1B, the void-containing yarn 43 has a cavity 60 inside the resin portion 61. Moreover, the void containing thread | yarn may have the coating layer 12, as shown to FIG. 2B and FIG. 3B.
<空洞>
<<アスペクト比>>
 図2A~2Cは、ボイド含有糸が円型である場合の、アスペクト比を説明するための図であって、図2Aは、ボイド含有糸の斜視図であり、図2Bは、図2Aにおけるボイド含有糸のA-A’断面図であり、図2Cは、図2Aにおけるボイド含有糸のB-B’断面図である。
 図3A~3Cは、ボイド含有糸が異型である場合の、アスペクト比を説明するための図であって、図3Aは、ボイド含有糸の斜視図であり、図3Bは、図3Aにおけるボイド含有糸のA-A’断面図であり、図3Cは、図3Aにおけるボイド含有糸のB-B’断面図である。
<Cavity>
<< Aspect ratio >>
Figures 2A ~ 2C are cases voided yarn is circular, a diagram for explaining the aspect ratio, FIG. 2A is a perspective view of the void-containing yarn, FIG. 2B, the void in Figure 2A FIG. 2C is a cross-sectional view taken along line AA ′ of the containing yarn, and FIG. 2C is a cross-sectional view taken along line BB ′ of the void-containing yarn in FIG. 2A.
Figure 3A ~ 3C are cases voided yarn is atypical, a diagram for explaining the aspect ratio, FIG. 3A is a perspective view of the void-containing yarn, FIG. 3B, voided in Figure 3A FIG. 3C is a cross-sectional view taken along line AA ′ of the yarn, and FIG. 3C is a cross-sectional view taken along line BB ′ of the void-containing yarn in FIG. 3A.
 アスペクト比とは、ボイド含有糸43の表面43aに直交し、かつ、空洞の配向方向に直交する方向(A-A’断面)における空洞60の平均径をr(μm)(図2B及び図3B参照)とし、ボイド含有糸43の表面に直交し、かつ、空洞の配向方向(B-B’断面)における空洞60の平均の長さをL(μm)(図2C及び図3C参照)とした際のL/r比を意味する。 The aspect ratio is the average diameter r (μm) of the cavities 60 in a direction (AA ′ cross section) perpendicular to the surface 43a of the void-containing yarn 43 and perpendicular to the orientation direction of the cavities (FIGS. 2B and 3B). And the average length of the cavities 60 in the orientation direction of the cavities (BB ′ cross section) is L (μm) (see FIGS. 2C and 3C). It means the L / r ratio.
 アスペクト比は、以下の方法により算出できる。
(1)A-A’断面及びB-B’断面を、それぞれエポキシ樹脂などで包埋してカミソリやミクロトームで切断し、走査型電子顕微鏡で検鏡し、各断面写真において計測枠62(図2B及び図3B参照)を、その枠内に空洞が50個~100個含まれるように設定する。
(2)計測枠62に含まれる空洞の数を測定し、縦延伸方向に直交する断面の計測枠62(図2B及び図3B参照)に含まれる空洞の数をm個、縦延伸方向に平行な断面の計測枠62(図2C及び図3C参照)に含まれる空洞の数をn個とする。
(3)A-A’断面に含まれる空洞の1個ずつの最大径(r)を測定し、その平均径をrとし(図2B及び図3B参照)、B-B’断面の計測枠62(図2C及び図3C参照)に含まれる空洞の1個ずつの最長部分の長さ(L)を測定し、その平均の長さをLとする。
 即ち、r及びLは、それぞれ下記の式(1)及び式(2)で表すことができ、これによりアスペクト比L/rを算出することができる。
 r=(Σr)/m   ・・・式(1)
 L=(ΣL)/n   ・・・式(2)
The aspect ratio can be calculated by the following method.
(1) AA ′ cross section and BB ′ cross section are embedded with epoxy resin, cut with a razor or microtome, and examined with a scanning electron microscope. 2B and FIG. 3B) is set so that 50 to 100 cavities are included in the frame.
(2) The number of cavities included in the measurement frame 62 is measured, and the number of cavities included in the measurement frame 62 (see FIGS. 2B and 3B) having a cross section perpendicular to the longitudinal stretching direction is parallel to the longitudinal stretching direction. The number of cavities included in the measurement frame 62 (see FIGS. 2C and 3C) having a simple cross section is n.
(3) The maximum diameter (r i ) of each cavity included in the AA ′ cross section is measured, the average diameter is r (see FIGS. 2B and 3B), and the measurement frame of the BB ′ cross section is measured. 62 (see FIG. 2C and FIG. 3C), the length (L i ) of each longest portion of the cavities is measured, and the average length is defined as L.
That is, r and L can be expressed by the following formulas (1) and (2), respectively, whereby the aspect ratio L / r can be calculated.
r = (Σr i ) / m (1)
L = (ΣL i ) / n Expression (2)
 アスペクト比としては、10以上であるが、10~100であることが好ましく、15~100がより好ましく、20~90が特に好ましい。アスペクト比が、10未満であると反射率が低下することがあり、100を超えると力学特性の低下が起こることがある。アスペクト比が10~100であると、反射、断熱などの諸性能と力学特性との両立の点で有利である。 The aspect ratio is 10 or more, preferably 10 to 100, more preferably 15 to 100, and particularly preferably 20 to 90. If the aspect ratio is less than 10, the reflectivity may be lowered, and if it exceeds 100, the mechanical properties may be lowered. When the aspect ratio is 10 to 100, it is advantageous from the viewpoint of coexistence of various properties such as reflection and heat insulation and mechanical properties.
 なお、空洞の配向方向とは、通常、延伸方向を示す。通常は、製造時にボイド含有糸製造用素糸の流れる方向に沿って縦延伸を行うため、この縦延伸の方向が空洞の配向方向になる。 The orientation direction of the cavities usually indicates the stretching direction. Usually, since longitudinal stretching is performed along the direction in which the void-containing yarn-producing yarn flows during production, the direction of longitudinal stretching becomes the orientation direction of the cavities.
<<空洞の占有面積>>
 また、ボイド含有糸は、その長さ方向(延伸方向)に直交する任意の断面におけるボイド含有糸の断面積をa(μm)とし、断面における空洞の断面積をA(μm)としたとき、これらの比(A/a)の平均が0.05以上、0.4以下であることが好ましい。
 断面における各断面積は、例えば、光学顕微鏡や電子顕微鏡の画像により計測することができる。
<< Cavity occupied area >>
In the void-containing yarn, the cross-sectional area of the void-containing yarn in an arbitrary cross section orthogonal to the length direction (stretching direction) is a (μm 2 ), and the cross-sectional area of the cavity in the cross section is A (μm 2 ). In this case, the average of these ratios (A / a) is preferably 0.05 or more and 0.4 or less.
Each cross-sectional area in a cross section can be measured by, for example, an image of an optical microscope or an electron microscope.
 また、ボイド含有糸は、太さ方向の空洞の平均の個数Pと、結晶性を有する樹脂部と空洞との屈折率差ΔNとの積が、2以上が好ましく、2.5以上がより好ましく、3以上が特に好ましい。ΔNとPとの積が、2未満であると反射率が低下することがある。 In the void-containing yarn, the product of the average number P of cavities in the thickness direction and the refractive index difference ΔN between the resin part having crystallinity and the cavities is preferably 2 or more, more preferably 2.5 or more. 3 or more is particularly preferable. If the product of ΔN and P is less than 2, the reflectivity may decrease.
 ここで、太さ方向の空洞の個数とは、ボイド含有糸43の表面43aに直交し、かつ、空洞の配向方向に直交する方向を含む面(図2A及び図3AにおけるA-A’断面、即ち、太さ方向断面)において、太さ方向に含まれる空洞60の個数を意味する。
 ボイド含有糸における太さ方向の空洞の平均の個数Pとしては、特に制限はなく、目的に応じて適宜選択することができるが、5個以上が好ましく、10個以上がより好ましく、15個以上が特に好ましい。
 太さ方向の空洞の個数は、例えば、光学顕微鏡や電子顕微鏡の画像により測定することができ、これらの画像上において、太さ方向に複数の直線をそれぞれ平行にひき、複数の直線上に存在する空洞の個数の平均値を算出することで、平均の個数Pを求めることができる。
Here, the number of cavities in the thickness direction refers to a plane perpendicular to the surface 43a of the void-containing yarn 43 and including a direction perpendicular to the orientation direction of the cavities (cross section AA ′ in FIGS. 2A and 3A, That is, in the cross section in the thickness direction, this means the number of cavities 60 included in the thickness direction.
The average number P of voids in the thickness direction in the void-containing yarn is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 or more, more preferably 10 or more, and 15 or more. Is particularly preferred.
The number of cavities in the thickness direction can be measured by, for example, images from an optical microscope or an electron microscope. On these images, a plurality of straight lines are drawn in parallel in the thickness direction and exist on the plurality of straight lines. The average number P can be obtained by calculating the average value of the number of cavities.
 また、結晶性を有する樹脂部61とは、ボイド含有糸43において空洞以外の部分(結晶性を有する樹脂よりなる部分)を指す(図1A及び図1Bの斜線部)。
 ボイド含有糸における結晶性を有する樹脂部と空洞との屈折率差ΔNは、具体的には、を有する樹脂部の屈折率をN1として、空洞の屈折率をN2とした際に、N1とN2との差であるΔN(=N1-N2)の値を意味する。
 結晶性を有する樹脂部や空洞の屈折率N1、N2は、例えば、アッベ屈折計などにより測定することができる。
Further, the resin part 61 having crystallinity refers to a part other than the cavity (part made of a resin having crystallinity) in the void-containing yarn 43 (shaded part in FIGS. 1A and 1B).
Refractive index difference ΔN between the resin portion and the cavity having a crystallinity in the void-containing yarn is specifically a refractive index of the resin portion as N1 having a refractive index of the cavity upon the N2, N1 and N2 ΔN (= N1−N2), which is the difference between
The refractive indexes N1 and N2 of the resin part having a crystallinity and the cavity can be measured by, for example, an Abbe refractometer.
 このように、ボイド含有糸は、その内部に空洞を有していることにより、例えば、金属様光沢、反射率、隠蔽性、断熱性、クッション性などにおいて、様々な優れた特性を有している。即ち、ボイド含有糸の内部の空洞の態様を変化させることで、金属様光沢、反射率、隠蔽性、断熱性、クッション性などの特性を調節することができる。 As described above, the void-containing yarn has various excellent characteristics in, for example, metallic luster, reflectivity, concealability, heat insulation, cushioning property and the like by having a cavity inside. Yes. That is, characteristics such as metallic luster, reflectivity, concealing property, heat insulating property, and cushioning property can be adjusted by changing the aspect of the void inside the void-containing yarn.
<平均直径>
 ボイド含有糸の平均直径としては、特に制限はなく、目的に応じて適宜選択することができるが、5μm~200μmが好ましく、5μm~100μmがより好ましく、5μm~50μmが特に好ましい。ボイド含有糸の平均直径が、5μm未満であると、延伸の際に切断されることや、十分な空洞が空かず、十分な金属様光沢や高い反射率を得ることができないことがあり、200μmを超えると、空洞の比率が多すぎ、色味が悪くなることや、剛直になるため、更に加工をして布を織ったりした際に風合いに劣ることがある。また例えば、FRP(繊維強化プラスチック)などの複合材料に用いる際に、所望の形態が得にくいことがある。一方、ボイド含有糸の平均直径が特に好ましい範囲内であると、十分な金属様光沢や高い反射率を得ることができる点で有利である。
 なお、ボイド含有糸の平均直径とは、ボイド含有糸が円型の場合、ボイド含有糸の長さ方向に直交する方向における断面における最大径の平均をいい、ボイド含有糸が異型の場合、ボイド含有糸の長さ方向に直交する方向における断面における最長部分の長さをいう。
 ここで、例えば、ボイド含有糸をカミソリやミクロトームにより切断後、ボイド含有糸の直径は、断面SEMの写真により測定することができる。
<Average diameter>
The average diameter of the void-containing yarn is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 μm to 200 μm, more preferably 5 μm to 100 μm, and particularly preferably 5 μm to 50 μm. If the average diameter of the void-containing yarn is less than 5 μm, the void-containing yarn may be cut at the time of drawing, or a sufficient cavity may not be formed, and a sufficient metallic luster and high reflectance may not be obtained. If the ratio is more than 50%, the ratio of the cavities is too high, and the color becomes worse, and the texture becomes stiff, so that the texture may be inferior when the cloth is further woven. For example, when used for a composite material such as FRP (fiber reinforced plastic), it may be difficult to obtain a desired form. On the other hand, when the average diameter of the void-containing yarn is in a particularly preferable range, it is advantageous in that a sufficient metallic luster and high reflectance can be obtained.
The average diameter of the void-containing yarn means the average of the maximum diameter in the cross section in the direction orthogonal to the length direction of the void-containing yarn when the void-containing yarn is circular, and the void diameter when the void-containing yarn is irregular. The length of the longest part in the cross section in the direction orthogonal to the length direction of a containing thread | yarn is said.
Here, for example, after the void-containing yarn is cut with a razor or a microtome, the diameter of the void-containing yarn can be measured by a photograph of a cross-sectional SEM.
<反射率>
 ボイド含有糸の反射率(%)とは、文字通りボイド含有糸を布形状に織ったり、編んだりした際の反射性のことである。
 反射率(%)としては、特に制限はなく、目的に応じて適宜選択することができるが、30%以上が好ましく、50%以上がより好ましく、60%以上が特に好ましい。反射率が、30%未満であると、ボイド含有糸の審美性や意匠性が低下することがある。なお、反射率は高い方が、金属様光沢による審美性及び意匠性に優れるため、その上限に臨界的な意義はない。
 反射率は、例えば、分光光度計、積分球などにより測定することができる。
<Reflectance>
The reflectance (%) of the void-containing yarn is literally the reflectivity when the void-containing yarn is woven or knitted into a cloth shape.
The reflectance (%) is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30% or more, more preferably 50% or more, and particularly preferably 60% or more. If the reflectance is less than 30%, the aesthetics and design of the void-containing yarn may be deteriorated. In addition, since the one where a reflectance is higher is excellent in the aesthetics and design nature by metal-like luster, the upper limit has no critical significance.
The reflectance can be measured by, for example, a spectrophotometer, an integrating sphere, or the like.
<密度>
 ボイド含有糸の密度としては、特に制限はなく、目的に応じて適宜選択することができるが、1.20g/cm以下が好ましく、0.5g/cm~1.05g/cmがより好ましい。
 密度の測定方法としては、例えば、密度が1.05g/cm以上の場合は、5mmのボイド含有糸を密度勾配管法により測定することができる。密度が1.05g/cm未満の場合は、JIS K6920記載の方法において、例えば温度付ゲ-リュサック型ピクノメータ(25mL)にボイド含有糸を1g程度の重量を電子天秤で精確に秤量して測定することができる。
<Density>
The density of the void-containing yarn is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1.20 g / cm 3 or less, 0.5g / cm 3 ~ 1.05g / cm 3 Gayori preferable.
As a method for measuring the density, for example, when the density is 1.05 g / cm 3 or more, a 5 mm void-containing yarn can be measured by the density gradient tube method. When the density is less than 1.05 g / cm 3 , for example, in the method described in JIS K6920, for example, a weighted yarn-containing pycnometer (25 mL) is accurately weighed with an electronic balance and weighing about 1 g of void-containing yarn. can do.
<被覆層>
 ボイド含有糸は、被覆層を有していてもよい。
 被覆層の材料としては、発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリオレフィン類やフッ素樹脂等の疎水的なポリマー、UV硬化性ポリマーなどが挙げられる。これにより、特に耐水性、耐加水分解性、引っ張り弾性率、及び耐折れ曲げ性などを向上させることができる。
 また、被覆層に、染料を含有していてもよい。例えば、ブラックやブルー等の染料を含むポリマーをボイド含有糸に被覆することにより、メタリックブラックやメタリックブルーなどの金属様光沢を有する糸を得ることができ、ボイド含有糸の用途の幅が広がる点で好ましい。
 被覆層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ボイド含有糸の断面(樹脂部及び空洞部を含む)における半径の3%~30%が好ましい。被覆層の厚みが、ボイド含有糸の断面における半径の3%未満であると、力学特性が十分に付与できないということがあり、ボイド含有糸の断面における半径の30%を超えると、繊維としてのしなやかさや肌触りが不足することや、生産性が低下することがある。
<Coating layer>
The void-containing yarn may have a coating layer.
The material of the coating layer is not particularly limited as long as the effects of the invention are not impaired, and can be appropriately selected according to the purpose. For example, hydrophobic polymers such as polyolefins and fluororesins, UV curable polymers, etc. Is mentioned. Thereby, especially water resistance, hydrolysis resistance, tensile elastic modulus, bending resistance, etc. can be improved.
Moreover, the coating layer may contain a dye. For example, by covering a void-containing yarn with a polymer containing a dye such as black or blue, a yarn having a metallic luster such as metallic black or metallic blue can be obtained, and the range of uses of the void-containing yarn is widened. Is preferable.
The thickness of the coating layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 3% to 30% of the radius in the cross section (including the resin part and the cavity part) of the void-containing yarn. If the thickness of the coating layer is less than 3% of the radius in the cross section of the void-containing yarn, sufficient mechanical properties may not be imparted. If the thickness exceeds 30% of the radius in the cross section of the void-containing yarn, The suppleness and feel may be insufficient, and the productivity may be reduced.
<製造方法>
 ボイド含有糸は、本発明のボイド含有糸製造用素糸を延伸することにより製造できる。
<Manufacturing method>
The void-containing yarn can be produced by drawing the yarn for producing the void-containing yarn of the present invention.
<<延伸方法>>
 ボイド含有糸製造用素糸を延伸する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、いずれの延伸方法においても、製造時にボイド含有糸製造用素糸の流れる方向に沿って延伸が行われることが好ましく、ボイド含有糸製造用素糸を、ネッキングが発現するように延伸することがより好ましい。
 ここで、ネッキングとは、未延伸原糸であるボイド含有糸製造用素糸の延伸時に生じるくびれ状の変形を意味する(高分子工学講座6 プラスチック成形加工 高分子学会編集、地人書院発行、昭和41年4月25日初版発行参照)。また、延伸時において、ボイド含有糸製造用素糸がくびれながら変形し、くびれ部分では急激に断面が減少する現象を「ネッキングが発現した」と定義する。
<< Drawing method >>
The method for drawing the void-containing yarn-producing yarn is not particularly limited and can be appropriately selected according to the purpose. In any drawing method, the direction in which the void-containing yarn-producing yarn flows in the production process. It is preferable that the stretching is performed along the thread, and it is more preferable that the void-containing yarn-producing yarn is stretched so that necking is expressed.
Here, necking means a constriction-like deformation that occurs during drawing of a void-containing yarn manufacturing yarn that is an undrawn raw yarn (Polymer Engineering Lecture 6 Edited by Plastics Society of Polymer Science, published by Jijin Shoin, (Refer to the first edition issued on April 25, 1966). In addition, a phenomenon in which the void-containing yarn-producing yarn is deformed while being constricted at the time of drawing and the cross-section is sharply reduced at the constricted portion is defined as “necking has occurred”.
 図4は、延伸方法の一例を示す図である。図4に示すように、ボイド含有糸製造用素糸5は、例えば、25℃~150℃に調整された加熱炉30内に挿入され、ニップロール41と42の回転速度差をつけて引張力を付与することにより延伸し、ネッキングを起こすことにより空洞を有するボイド含有糸43が作製される。場合によっては、加熱炉30を除き、ニップロール41を加温(25℃~150℃)するだけでも同様のボイド含有糸43を作製できる。図4において、31はアニーリング処理炉、32は巻取り装置を表す。
 具体的には、ボイド含有糸製造用素糸5(未延伸糸)が延伸されるとともに、その内部に延伸方向を長軸とした空洞が形成されることで、本発明のボイド含有糸43が得られる。
FIG. 4 is a diagram illustrating an example of a stretching method. As shown in FIG. 4, the void-containing yarn manufacturing yarn 5 is inserted into, for example, a heating furnace 30 adjusted to 25 ° C. to 150 ° C., and a tensile force is applied by adding a difference in rotational speed between the nip rolls 41 and 42. The void-containing yarn 43 having a cavity is produced by stretching by applying and causing necking. In some cases, the same void-containing yarn 43 can be produced simply by heating the nip roll 41 (25 ° C. to 150 ° C.) except for the heating furnace 30. In FIG. 4, 31 represents an annealing furnace, and 32 represents a winding device.
Specifically, the void-containing yarn 43 of the present invention is formed by stretching the void-containing yarn-producing yarn 5 (undrawn yarn) and forming a cavity having a major axis in the drawing direction therein. can get.
 延伸により空洞が形成される理由としては、ボイド含有糸製造用素糸を構成する少なくとも1種類の結晶性を有するポリマーが、延伸し難い微結晶を有し、延伸時にこの伸張し難い微結晶と他の延伸し難い微結晶の間にある、結晶化の進んでいない非晶相の樹脂が微結晶相との界面や非晶相内部で引きちぎられるような形で剥離延伸されることにより、これが空洞形成源となって空洞が形成されるものと考えられる。
 なお、このような延伸による空洞形成は、結晶性を有するポリマーが一種類の場合だけではなく、2種類以上の結晶性を有するポリマーが、ブレンド又は共重合されている場合であっても可能である。
The reason why the cavities are formed by stretching is that the polymer having at least one crystallinity constituting the void-containing yarn-producing yarn has microcrystals that are difficult to stretch, and the microcrystals that are difficult to stretch during stretching. This is because the amorphous resin that is not crystallized between other hard-to-stretch microcrystals is peeled and stretched in such a way that it is torn off at the interface with the microcrystalline phase or inside the amorphous phase. It is considered that a cavity is formed as a cavity forming source.
Such void formation by stretching is possible not only when there is only one kind of crystalline polymer but also when two or more kinds of crystalline polymers are blended or copolymerized. is there.
 一般に、延伸においては、ロールの組合せやロール間の速度差により、延伸の段数や延伸速度を調節することができる。
 縦延伸の段数としては、1段以上であれば、特に制限はなく、目的に応じて適宜選択することができる。
Generally, in stretching, the number of stretching stages and the stretching speed can be adjusted by the combination of rolls and the speed difference between the rolls.
The number of stages of longitudinal stretching is not particularly limited as long as it is one or more, and can be appropriately selected according to the purpose.
 なお、特に最近、糸に機能性を持たせるために糸を更に細径化することが検討されているが、更に細径化したボイド含有糸を得るために、繊維構造は変化させずに繊維径のみを極細化する、流動延伸工程などを採用することもできる。このような方法によって、ボイド含有糸の平均直径を10μm以下の極細径にすることもできる。 In particular, recently, it has been studied to further reduce the diameter of the yarn in order to give the yarn functionality, but in order to obtain a void-containing yarn having a further reduced diameter, the fiber structure is not changed. It is also possible to adopt a fluid stretching process or the like that makes the diameter only ultrafine. By such a method, the average diameter of the void-containing yarn can be reduced to an ultrafine diameter of 10 μm or less.
-延伸速度-
 延伸の延伸速度としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができるが、50m/分間~5,000m/分間が好ましく、100m/分間~1,000m/分間がより好ましい。延伸速度が、50m/分間未満であると、十分なネッキングが発生しにくくなり、空隙の出来方が均一でなくなるため太さムラや、金属様光沢のムラが出やすいことがある。延伸速度が5,000m/分間を超えると、糸が破断しやすくなって、歩留まりが低下するほか、ハンドリング性を維持するために設備が複雑になりコストもかかることがある。
 一方、延伸速度が、50m/分間以上であると、十分なネッキングを発現させやすい点で好ましい。また、延伸速度が、5,000m/分間以下であると、糸が破断しづらく、均一な延伸がしやすくなり、特に、高速延伸を目的とした大型な延伸装置を必要とせず、コストを低減できる点で好ましい。
-Stretching speed-
The stretching speed of stretching is not particularly limited as long as the effect of the present invention is not impaired, and can be appropriately selected according to the purpose, but is preferably 50 m / min to 5,000 m / min, preferably 100 m / min to 1 1,000 m / min is more preferable. If the stretching speed is less than 50 m / min, sufficient necking is less likely to occur, and the voids are not uniformly formed, resulting in uneven thickness and metal-like gloss. When the drawing speed exceeds 5,000 m / min, the yarn is liable to be broken, the yield is lowered, and the equipment becomes complicated and costs may be increased in order to maintain handling properties.
On the other hand, when the stretching speed is 50 m / min or more, it is preferable in that sufficient necking is easily expressed. Also, when the stretching speed is 5,000 m / min or less, the yarn is not easily broken and uniform stretching is easy, and in particular, a large-scale stretching device for high-speed stretching is not required and the cost is reduced. It is preferable in that it can be performed.
-延伸温度-
 延伸時の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、
 延伸温度をT(℃)、ガラス転移温度をTg(℃)としたときに、
 (Tg-30)≦T≦(Tg+50)
で示される範囲の延伸温度T(℃)で延伸することが好ましく、
 (Tg-25)≦T≦(Tg+45)
で示される範囲の延伸温度T(℃)で延伸することがより好ましく、
 (Tg-20)≦T≦(Tg+40)
で示される範囲の延伸温度T(℃)で延伸することが特に好ましい。
-Stretching temperature-
The temperature during stretching is not particularly limited and can be appropriately selected according to the purpose.
When the stretching temperature is T (° C) and the glass transition temperature is Tg (° C),
(Tg-30) ≦ T ≦ (Tg + 50)
It is preferable to stretch at a stretching temperature T (° C.) in the range indicated by
(Tg−25) ≦ T ≦ (Tg + 45)
It is more preferable to stretch at a stretching temperature T (° C.) in the range indicated by
(Tg−20) ≦ T ≦ (Tg + 40)
It is particularly preferable to stretch at a stretching temperature T (° C.) in the range indicated by
 一般に、延伸温度(℃)が高いほど延伸張力も低めに抑えられて容易に延伸できるが、延伸温度(℃)が、{ガラス転移温度(Tg)+50}℃以下であると、空洞が形成される体積割合が高くなり、アスペクト比が好ましい範囲になりやすい点で好ましい。また、延伸温度(℃)が、{ガラス転移温度(Tg)-30}℃以上であると、十分に空洞が発現する点で好ましい。
 ここで、延伸温度T(℃)は、非接触式温度計により計測することができる。また、ガラス転移温度Tg(℃)は、示差熱分析装置(DSC)により計測することができる。
In general, the higher the stretching temperature (° C.), the lower the stretching tension, and the easier it can be stretched. However, when the stretching temperature (° C.) is {glass transition temperature (Tg) +50} ° C. or less, cavities are formed. This is preferable in that the volume ratio is high and the aspect ratio tends to be in a preferable range. Further, it is preferable that the stretching temperature (° C.) is {glass transition temperature (Tg) −30} ° C. or higher from the viewpoint that a cavity is sufficiently developed.
Here, the stretching temperature T (° C.) can be measured with a non-contact thermometer. The glass transition temperature Tg (° C.) can be measured by a differential thermal analyzer (DSC).
 なお、延伸後のボイド含有糸は、形状安定化などの目的で、更に熱を加えて熱収縮させたり、張力を加える等の処理をしたりしてもよい。 In addition, the void-containing yarn after drawing may be further subjected to heat shrinkage by applying heat or treatment such as tension for the purpose of shape stabilization.
<得率>
 本発明のボイド含有糸製造素糸を延伸して得られる金属様光沢を有するボイド含有糸の得率は、事業目的や採算性等により目標設定されるものであって特に制限はない。
 得率は、例えば、延伸が始まった後、5秒間経過後から100mに渡ってボイド含有糸をサンプリングし、その全長に対して目視検査にて透明から乳白色の部分を切除して残った長さ(m)を(A)とし、下記計算式(I)より算出することができる。
  ボイド含有糸得率(%)=(A)/100×100・・・式(I)
<Yield>
The yield of the void-containing yarn having a metallic luster obtained by stretching the void-containing yarn production yarn of the present invention is set according to the business purpose, profitability, etc., and is not particularly limited.
The yield is, for example, the length remaining after sampling the void-containing yarn over 100 m after 5 seconds after stretching starts, and by cutting the transparent to milky white portion by visual inspection for the entire length. (M) is (A), and can be calculated from the following calculation formula (I).
Yield of void-containing yarn (%) = (A) / 100 × 100 Formula (I)
<用途>
 ボイド含有糸は、本発明のボイド含有糸製造用素糸を用いて製造されるため、均一に延伸されたものであり、そのため、金属様光沢を有する反射率の高い審美性及び意匠性に優れたものである。ボイド含有糸は、その中に連通しないボイドを含み、軽く、断熱性、遮光性にも優れるため衣料や建築材料、医療材料、電子機器部材、電気自動車部材等の各種用途に好適に用いることができる。
<Application>
Since the void-containing yarn is produced using the void-containing yarn-producing yarn of the present invention, the void-containing yarn is uniformly stretched. Therefore, the void-containing yarn has a metallic luster and is excellent in aesthetics and design. It is a thing. The void-containing yarn contains voids that do not communicate with each other, and is light and excellent in heat insulation and light shielding properties, so that it can be suitably used for various applications such as clothing, building materials, medical materials, electronic equipment members, and electric vehicle members. it can.
 以下に本発明の実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples of the present invention, but the present invention is not limited to these examples.
(実施例1)
<ボイド含有糸製造用素糸(未延伸糸)の作製>
 極限粘度(IV)0.72、ガラス転移温度(Tg)37℃のポリブチレンテレフタレート(PBT)樹脂(ウインテックポリマー社製)を、溶融紡糸機(スクリュー径35mmφの単軸溶融押出機(株式会社中部化学機械製作所製)を用いて255℃で溶融し、水中を通して冷却固化することにより、実施例1のボイド含有糸製造用素糸を作製した。また、冷却後のボイド含有糸製造用素糸は、巻上げ速度35m/分間で巻取りを行った。なお、溶融紡糸機のノズル開口部の孔の形状は略円形であり、ボイド含有糸製造用素糸を固化するための水温は、30℃に設定した。
Example 1
<Preparation of void-containing yarn production yarn (undrawn yarn)>
A polybutylene terephthalate (PBT) resin (manufactured by Wintech Polymer Co., Ltd.) having an intrinsic viscosity (IV) of 0.72 and a glass transition temperature (Tg) of 37 ° C. is melt-spun (single-screw melt extruder having a screw diameter of 35 mmφ (Co., Ltd.) The yarn for producing the void-containing yarn of Example 1 was produced by melting at 255 ° C. using Chubu Chemical Machinery Co., Ltd., and cooling and solidifying through water. Was wound at a winding speed of 35 m / min, and the shape of the hole in the nozzle opening of the melt spinning machine was substantially circular, and the water temperature for solidifying the void-containing yarn manufacturing yarn was 30 ° C. Set to.
<ボイド含有糸製造用素糸の評価>
 以下に示す方法で、ボイド含有糸製造用素糸の(010)面の結晶面の結晶子サイズ、結晶化度、ボイド含有糸製造用素糸の平均直径、及び反射率を測定した。結果を表2に示す。
<Evaluation of yarn for producing void-containing yarn>
By the method shown below, the crystallite size, crystallinity, average diameter of the void-containing yarn-producing yarn, and reflectance were measured on the crystal plane of the (010) plane of the void-containing yarn-producing yarn. The results are shown in Table 2.
-ボイド含有糸製造用素糸内部の(010)面の結晶面の結晶子サイズの測定-
 X線回折装置(RINT-TTR III、株式会社リガク製)を用い、糸を幅25mmになるようにガラス試料ホルダー上に並べて貼り付けて測定した。結晶ピークと非晶ピーク(2θ=21°)とのピーク分離を行った。各ピークの半値幅を用いて、結晶子サイズをScherrerの式(Scherrer係数=0.9)からボイド含有糸製造用素糸内部の(010)面の結晶面の結晶子サイズ(nm)を求めた。
-Measurement of crystallite size of crystal plane of (010) plane inside void-containing yarn manufacturing yarn-
Using an X-ray diffractometer (RINT-TTR III, manufactured by Rigaku Corporation), the measurement was performed by arranging the yarns on a glass sample holder so as to have a width of 25 mm. A peak separation between a crystal peak and an amorphous peak (2θ = 21 °) was performed. Using the full width at half maximum of each peak, the crystallite size (nm) of the crystal plane of the (010) plane inside the void-containing yarn manufacturing yarn is obtained from the Scherrer equation (Scherrer coefficient = 0.9). It was.
-結晶化度の測定-
 ボイド含有糸製造用素糸の結晶化度(%)は、四塩化炭素/ヘプタン混合溶液を使用した密度勾配管法により測定した。
-Measurement of crystallinity-
The crystallinity (%) of the void-containing yarn-producing yarn was measured by a density gradient tube method using a carbon tetrachloride / heptane mixed solution.
-ボイド含有糸製造用素糸の平均直径の測定-
 ボイド含有糸製造用素糸の平均直径(μm)は、ボイド含有糸製造用素糸を製造する際の樹脂の押出し方向に直交する断面をカミソリにより切断後、断面SEMの写真により直径の最大径を測定し、その平均値を算出した。
-Measurement of average diameter of yarn containing void-containing yarn-
The average diameter (μm) of the void-containing yarn-producing yarn is the maximum diameter of the cross-section SEM photograph after cutting a section perpendicular to the extrusion direction of the resin when producing the void-containing yarn-producing yarn. Was measured and the average value was calculated.
-反射率の測定-
 分光光度計(V-570、日本分光株式会社製)と積分球(ILN-472、日本分光株式会社製)を用いて550nmの波長でボイド含有糸の光線反射率(%)を測定した。
-Measurement of reflectance-
Spectrophotometer (V-570, manufactured by JASCO Corporation) and an integrating sphere (ILN-472, manufactured by JASCO Corporation) void containing yarn light reflectance (%) was measured at a wavelength of 550nm using.
<ボイド含有糸の作製>
 ボイド含有糸製造用素糸の延伸は、2組の延伸ニップローラーと、その間に設置したプレートヒーターとを用いて行った。即ち、ボイド含有糸製造用素糸1を39℃の加温雰囲気下で、35m/分間の速度のニップローラー(低速ニップローラーと)195m/分間の速度のニップローラー(高速ニップローラー)で一軸延伸(倍率:5.5倍)した。この際、ボイド含有糸製造用素糸は、ネッキングを発現しながら延伸された。これにより実施例1のボイド含有糸を作製した。
<Production of void-containing yarn>
The drawing of the void-containing yarn-producing yarn was performed using two sets of drawing nip rollers and a plate heater installed therebetween. That is, the void-containing yarn manufacturing yarn 1 is uniaxially stretched by a nip roller (with a low-speed nip roller) at a speed of 35 m / min and a nip roller (high-speed nip roller) at a speed of 195 m / min in a heated atmosphere at 39 ° C. (Magnification: 5.5 times). At this time, the void-containing yarn-producing yarn was stretched while exhibiting necking. This produced the void-containing yarn of Example 1.
<ボイド含有糸の評価>
 以下に示す方法で、ボイド含有糸の得率を算出し、ボイド含有糸の平均直径、反射率、及びアスペクト比の測定を行った。また、以下に示す方法で、ボイド含有糸の金属様光沢の官能評価を行った。結果を表2に示す。
<Evaluation of void-containing yarn>
The yield of void-containing yarn was calculated by the method described below, and the average diameter, reflectance, and aspect ratio of the void-containing yarn were measured. In addition, the sensory evaluation of the metallic luster of the void-containing yarn was performed by the method described below. The results are shown in Table 2.
-ボイド含有糸の得率の算出-
 ボイド含有糸の得率は、下記計算式(I)より算出した。
  ボイド含有糸得率(%)=(A)/100×100・・・式(I)
 ただし、式(I)において、(A)は、ネック延伸が始まった後、5秒間経過後から100mに渡ってボイド含有糸をサンプリングし、その全長に対して目視検査にて透明から乳白色の部分を切除して残った長さ(m)を示す。なお、得率は70%以上であることが連続生産性の観点で好ましい。
-Calculation of yield of void-containing yarn-
The yield of the void-containing yarn was calculated from the following calculation formula (I).
Yield of void-containing yarn (%) = (A) / 100 × 100 Formula (I)
However, in the formula (I), (A) indicates that the void-containing yarn is sampled over 100 m after the elapse of 5 seconds after the neck stretching has started, and the entire length is transparent to milky white by visual inspection. Indicates the length (m) remaining after excision. The yield is preferably 70% or more from the viewpoint of continuous productivity.
-ボイド含有糸の平均直径の測定-
 ボイド含有糸の平均直径(μm)は、ボイド含有糸の延伸方向に直交する断面をカミソリにより切断後、断面SEMの写真により直径を測定し、その最大径の平均値を算出した。
-Measurement of mean diameter of void-containing yarn-
The average diameter (μm) of the void-containing yarn was obtained by measuring the diameter with a photograph of the cross-section SEM after cutting a cross section perpendicular to the drawing direction of the void-containing yarn with a razor and calculating the average value of the maximum diameter.
-反射率の測定-
 分光光度計(V-570、日本分光株式会社製)と積分球(ILN-472、日本分光株式会社製)を用いて550nmの波長でボイド含有糸の光線反射率(%)を測定した。
-Measurement of reflectance-
Spectrophotometer (V-570, manufactured by JASCO Corporation) and an integrating sphere (ILN-472, manufactured by JASCO Corporation) void containing yarn light reflectance (%) was measured at a wavelength of 550nm using.
-アスペクト比の測定-
 ボイド含有糸の表面に直交し、かつ、縦延伸方向に直交する断面(図2B参照)と、ボイド含有糸の表面に直交し、かつ、縦延伸方向に平行な断面(図2C参照)を、カミソリにより切断し、走査型電子顕微鏡を用いて300倍~3,000倍の適切な倍率で検鏡し、各断面写真において計測枠62(図2B参照)をそれぞれ設定した。この計測枠62は、その枠内に空洞が50個~100個含まれるように設定した。
 次に、計測枠62に含まれる空洞の数を測定し、縦延伸方向に直交する断面の計測枠62(図2B参照)に含まれる空洞の数をm個、縦延伸方向に平行な断面の計測枠62(図2C参照)に含まれる空洞の数をn個とした。
 そして、縦延伸方向に直交する断面の計測枠62(図2B参照)に含まれる空洞の1個ずつの最大径(r)を測定し、その平均径をrとした。また、縦延伸方向に平行な断面の計測枠62(図2C参照)に含まれる空洞の1個ずつの最長部分の長さ(L)を測定し、その平均の長さをLとした。
 即ち、r及びLは、それぞれ下記の式(1)及び式(2)で表すことができる。
 r=(Σr)/m   ・・・式(1)
 L=(ΣL)/n   ・・・式(2)
 そして、L/rを算出し、アスペクト比とした。
-Measurement of aspect ratio-
A cross section perpendicular to the surface of the void-containing yarn and perpendicular to the longitudinal stretching direction (see FIG. 2B), and a cross section perpendicular to the surface of the void-containing yarn and parallel to the longitudinal stretching direction (see FIG. 2C), The sample was cut with a razor and examined with a scanning electron microscope at an appropriate magnification of 300 to 3,000, and a measurement frame 62 (see FIG. 2B) was set in each cross-sectional photograph. The measurement frame 62 was set so that 50 to 100 cavities were included in the measurement frame.
Next, the number of cavities included in the measurement frame 62 is measured, and the number of cavities included in the measurement frame 62 (see FIG. 2B) having a cross section perpendicular to the longitudinal stretching direction is m, and the cross section parallel to the longitudinal stretching direction. The number of cavities included in the measurement frame 62 (see FIG. 2C) is n.
Then, the cross section of the measurement frame 62 perpendicular to the longitudinal stretching direction maximum diameter of each one of the cavities included in (see FIG. 2B) to (r i) was measured, and the average diameter of the r. Further, the length (L i ) of each longest portion of the cavities included in the measurement frame 62 (see FIG. 2C) having a cross section parallel to the longitudinal stretching direction was measured, and the average length was defined as L.
That is, r and L can be represented by the following formulas (1) and (2), respectively.
r = (Σr i ) / m (1)
L = (ΣL i ) / n Expression (2)
Then, L / r was calculated as an aspect ratio.
-金属様光沢の官能評価-
 延伸後のボイド含有糸を20本採取し、黒色板上に緊密に並べて貼りつけたものを評価サンプルとした。一方、AL製ワイヤー(φ0.12mm)20本をボイド含有糸と同様に黒色板上に緊密に並べて貼りつけたものを参照サンプルとして用意した。
 これらのサンプルを、金属様光沢糸の専門パネリスト5名が、白色蛍光灯下で目視にて比較した。このとき、サンプル表面の照度は1,300Lxから1,500Lxとした。照度は、ポケット照度計(ANA-F9、東京光電株式会社製)にて測定した。
 ボイド含有糸の金属様光沢が、参照サンプルと同等以上であると判断したパネリストの人数を評点(1~5)とした。即ち、評点が高いほど良好な金属様光沢を示す。結果を、表2に示す。また、このときの外観及び状態について併せて表2に示す。
-Sensory evaluation of metallic luster-
Twenty void-containing yarns after stretching were collected, and the samples that were closely arranged on the black plate and attached were used as evaluation samples. On the other hand, 20 wires made of AL (φ0.12 mm) were prepared as a reference sample in the same manner as the void-containing yarns, which were closely arranged and pasted on a black plate.
These samples were visually compared by five panelists of metal-like glossy yarn under a white fluorescent lamp. At this time, the illuminance on the sample surface was changed from 1,300 Lx to 1,500 Lx. The illuminance was measured with a pocket illuminometer (ANA-F9, manufactured by Tokyo Koden Co., Ltd.).
The number of panelists who judged that the metal-like gloss of the void-containing yarn was equal to or higher than that of the reference sample was rated (1-5). That is, the higher the score, the better the metallic luster. The results are shown in Table 2. Table 2 also shows the appearance and state at this time.
(実施例2~6及び比較例1~9)
 実施例1のボイド含有糸製造用素糸(未延伸糸)の作製において、樹脂及び溶融紡糸条件を、下記表1に記載の実施例2~6及び比較例1~9の条件に従ったこと以外は、実施例1と同様の方法で実施例2~6及び比較例1~9のボイド含有糸製造用素糸を製造し、実施例1と同様の方法で、各ボイド含有糸製造用素糸の結晶化度、(010)面の結晶面の結晶子サイズ、ボイド含有糸製造用素糸の平均直径、及び反射率を測定した。結果を表2に示す。
 なお、極限粘度(IV)0.69、ガラス転移温度(Tg)36℃のポリブチレンテレフタレート(PBT)樹脂はダイセル化学工業株式会社製、極限粘度(IV)0.7、ガラス転移温度(Tg)75℃のポリエチレンテレフタレート(PET)及び極限粘度(IV)0.76、ガラス転移温度(Tg)75℃のポリエチレンテレフタレート(PET)は富士フイルム株式会社製のものを用いた。
(Examples 2 to 6 and Comparative Examples 1 to 9)
In the production of the void-containing yarn production yarn (undrawn yarn) of Example 1, the resin and melt spinning conditions were in accordance with the conditions of Examples 2 to 6 and Comparative Examples 1 to 9 described in Table 1 below. Except for the above, the void-containing yarn production yarns of Examples 2 to 6 and Comparative Examples 1 to 9 were produced in the same manner as in Example 1, and each void-containing yarn production yarn was produced in the same manner as in Example 1. The crystallinity of the yarn, the crystallite size of the (010) plane, the average diameter of the void-containing yarn manufacturing yarn, and the reflectance were measured. The results are shown in Table 2.
Polybutylene terephthalate (PBT) resin having an intrinsic viscosity (IV) of 0.69 and a glass transition temperature (Tg) of 36 ° C. is manufactured by Daicel Chemical Industries, Ltd., and has an intrinsic viscosity (IV) of 0.7 and a glass transition temperature (Tg). A polyethylene terephthalate (PET) having a polyethylene terephthalate (PET) of 75 ° C. and an intrinsic viscosity (IV) of 0.76 and a glass transition temperature (Tg) of 75 ° C. was manufactured by FUJIFILM Corporation.
 また、実施例1のボイド含有糸の作製において、実施例2~6及び比較例1~9で作製したボイド含有糸製造用素糸を用い、下記表1に記載実施例2~6及び比較例1~9の条件に従ったこと以外は、実施例1と同様の方法で実施例2~6及び比較例1~9のボイド含有糸を製造し、実施例1と同様の方法で、ボイド含有糸の得率の算出、並びに、ボイド含有糸の平均直径、反射率及びアスペクト比の測定、並びに金属様光沢の官能評価を行った。結果を表2に示す。
 なお、比較例1及び5は、金属様光沢が認められず、比較例2及び4は白色の濁りが認められたものの金属様光沢は認められず、比較例3及び6~9は、延伸時に切断したため、これらの比較例1~9の素糸を用いた場合、金属様光沢を有するボイド含有糸を安定して得ることができなかった。
Further, in the production of the void-containing yarn of Example 1, the void-containing yarn production yarns produced in Examples 2 to 6 and Comparative Examples 1 to 9 were used, and Examples 2 to 6 and Comparative Examples described in Table 1 below were used. Except that the conditions 1 to 9 were followed, the void-containing yarns of Examples 2 to 6 and Comparative Examples 1 to 9 were produced in the same manner as in Example 1, and the void-containing yarns were produced in the same manner as in Example 1. Calculation of the yield of the yarn, measurement of the average diameter, reflectance and aspect ratio of the void-containing yarn, and sensory evaluation of the metallic luster were performed. The results are shown in Table 2.
Comparative Examples 1 and 5 showed no metallic luster, Comparative Examples 2 and 4 showed white turbidity but no metallic luster, and Comparative Examples 3 and 6-9 were subjected to stretching. Since the yarns were cut, void-containing yarns having a metallic luster could not be stably obtained when the yarns of Comparative Examples 1 to 9 were used.
 実施例1~6及び比較例1~9のボイド含有糸製造用素糸及びボイド含有糸の作製条件を下記表1にまとめて示す。また、実施例1~6及び比較例1~9の評価結果を下記表2に示す。
 また、図5は、実施例1~6及び比較例1~9のボイド含有糸の得率と、ボイド含有糸製造用素糸の結晶核の(010)面の結晶子サイズとの関係をプロットした散布図を示した。図6は、実施例1~6及び比較例1~9のボイド含有糸の得率と、ボイド含有糸製造用素糸の結晶化度との関係をプロットした散布図を示した。
The production conditions of the void-containing yarn production yarns and the void-containing yarns of Examples 1 to 6 and Comparative Examples 1 to 9 are summarized in Table 1 below. The evaluation results of Examples 1 to 6 and Comparative Examples 1 to 9 are shown in Table 2 below.
FIG. 5 is a plot of the relationship between the yield of the void-containing yarns of Examples 1 to 6 and Comparative Examples 1 to 9 and the crystallite size of the (010) plane of the crystal nucleus of the void-containing yarn-producing yarn. The scatter diagram was shown. FIG. 6 is a scatter diagram in which the relationship between the yield of void-containing yarns of Examples 1 to 6 and Comparative Examples 1 to 9 and the crystallinity of the yarn for producing void-containing yarns is plotted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2及び図5~7の結果より、実施例1~6のボイド含有糸製造用素糸を延伸することによりボイド含有糸を安定して効率よく製造でき、ボイド含有糸製造用素糸を延伸して得られたボイド含有糸は、金属様光沢を有し反射率が高く審美性及び意匠性に優れることが分かった。
 一方、比較例1~9より、(010)面の結晶面の結晶子サイズが、2nm未満であると、ボイド含有糸を得ることができず、5nmを超えると、ボイド含有糸製造用素糸を延伸する際断線することがわかった。また、結晶化度が、5%以下であると、ボイド含有糸を得ることができず、15%を超えると、ボイド含有糸製造用素糸を延伸する際断線することや、極度のムラが発生することがわかった。
From the results in Table 2 and FIGS. 5 to 7, the void-containing yarn can be stably and efficiently produced by drawing the void-containing yarn production yarn of Examples 1 to 6, and the void-containing yarn production yarn is drawn. It was found that the void-containing yarn obtained in this way had a metallic luster, high reflectivity, and excellent aesthetics and design.
On the other hand, from Comparative Examples 1 to 9, when the crystallite size of the (010) plane crystal plane is less than 2 nm, a void-containing yarn cannot be obtained. It was found that the wire was broken when it was stretched. Further, when the degree of crystallinity is 5% or less, a void-containing yarn cannot be obtained. When the degree of crystallinity exceeds 15%, the void-containing yarn manufacturing strand may be broken or extreme unevenness may occur. It was found to occur.
 本発明のボイド含有糸製造用素糸は、内部の結晶核の結晶子サイズ及び結晶化度が、ボイド含有糸の製造に好適な条件であるため、金属様光沢を有し反射率が高く審美性及び意匠性に優れるボイド含有糸を安定して効率よく製造するために好適である。
 ボイド含有糸は、本発明のボイド含有糸製造用素糸を用いて製造されるため、均一に延伸されたものであり、そのため、金属様光沢を有する反射率の高い審美性及び意匠性に優れたものである。ボイド含有糸は、その中に連通しないボイドを含み、軽く、断熱性、遮光性にも優れるため衣料や建築材料、医療材料、電子機器部材、電気自動車部材等の各種用途に好適に用いることができる。
Since the void-containing yarn manufacturing yarn according to the present invention is suitable for the production of void-containing yarns, the crystallite size and crystallinity of the internal crystal nucleus are suitable for the production of void-containing yarns. It is suitable for stably and efficiently producing a void-containing yarn having excellent properties and design properties.
Since the void-containing yarn is produced using the void-containing yarn-producing yarn of the present invention, the void-containing yarn is uniformly stretched. Therefore, the void-containing yarn has a metallic luster and is excellent in aesthetics and design. It is a thing. The void-containing yarn contains voids that do not communicate with each other, and is light and excellent in heat insulation and light shielding properties, so that it can be suitably used for various applications such as clothing, building materials, medical materials, electronic equipment members, and electric vehicle members. it can.
  5  ボイド含有糸製造用素糸
 12  被覆層
 30  加熱炉
 31  アニーリング処理炉
 32  巻取り装置
 41  ニップロール
 42  ニップロール
 43  ボイド含有糸
 43a ボイド含有糸の表面
 60  空洞
 61  樹脂部
 62  計測枠
DESCRIPTION OF SYMBOLS 5 Element yarn for void containing yarn 12 Coating layer 30 Heating furnace 31 Annealing treatment furnace 32 Winding device 41 Nip roll 42 Nip roll 43 Void containing yarn 43a Surface of void containing yarn 60 Cavity 61 Resin part 62 Measurement frame

Claims (5)

  1.  内部に独立した空洞を有するボイド含有糸を製造するためのボイド含有糸製造用素糸であって、
     延伸されると、内部に、延伸方向に配向した状態で前記空洞が形成され、該空洞の平均の長さをL(μm)とし、前記空洞の配向方向と直交方向における該空洞の平均径をr(μm)とした際のL/r比が10以上であり、
     (010)面の結晶面の結晶子サイズが2nm~5nmの結晶核を内包し、結晶化度が5%~15%であることを特徴とするボイド含有糸製造用素糸。
    A void-containing yarn-manufacturing yarn for producing a void-containing yarn having an independent cavity inside,
    When stretched, the cavities are formed in a state of being oriented in the stretching direction inside, the average length of the cavities is L (μm), and the average diameter of the cavities in the direction orthogonal to the orientation direction of the cavities is L / r ratio when r (μm) is 10 or more,
    A void-containing yarn-producing yarn characterized by including a crystal nucleus having a crystallite size of 2 nm to 5 nm on a (010) plane and a crystallinity of 5% to 15%.
  2.  平均直径が10μm~500μmである請求項1に記載のボイド含有糸製造用素糸。 2. The void-containing yarn manufacturing yarn according to claim 1, wherein the average diameter is 10 μm to 500 μm.
  3.  結晶性ポリマーからなる請求項1から2のいずれかに記載のボイド含有糸製造用素糸。 3. A void-containing yarn manufacturing yarn according to claim 1, comprising a crystalline polymer.
  4.  反射率が0.1%~10%であり、延伸されて得られたボイド含有糸の反射率が30%~90%である請求項1から3のいずれかに記載のボイド含有糸製造用素糸。 4. The void-containing yarn-producing element according to claim 1, wherein the reflectance is 0.1% to 10%, and the reflectance of the void-containing yarn obtained by stretching is 30% to 90%. yarn.
  5.  請求項1から4のいずれかに記載のボイド含有糸製造用素糸を延伸することにより得られるボイド含有糸であって、
     内部に、延伸方向に配向した状態で前記空洞が形成され、該空洞の平均の長さをL(μm)とし、前記空洞の配向方向と直交方向における該空洞の平均径をr(μm)とした際のL/r比が10以上であることを特徴とするボイド含有糸。
    A void-containing yarn obtained by drawing the yarn for producing the void-containing yarn according to any one of claims 1 to 4,
    Inside, the cavity is formed in the state of being oriented in the stretching direction, the average length of the cavity is L (μm), and the average diameter of the cavity in the direction orthogonal to the orientation direction of the cavity is r (μm). A void-containing yarn having an L / r ratio of 10 or more.
PCT/JP2011/077063 2010-12-28 2011-11-24 Thread material for void-containing thread production, and void-containing thread WO2012090626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-293946 2010-12-28
JP2010293946A JP2012140721A (en) 2010-12-28 2010-12-28 Raw yarn for producing void-containing yarn and void-containing yarn

Publications (1)

Publication Number Publication Date
WO2012090626A1 true WO2012090626A1 (en) 2012-07-05

Family

ID=46382746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077063 WO2012090626A1 (en) 2010-12-28 2011-11-24 Thread material for void-containing thread production, and void-containing thread

Country Status (2)

Country Link
JP (1) JP2012140721A (en)
WO (1) WO2012090626A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101889A1 (en) * 2008-02-12 2009-08-20 Fujifilm Corporation Fiber and process for producing the same
JP2010189794A (en) * 2009-02-17 2010-09-02 Fujifilm Corp Modified cross-sectional fiber, and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101889A1 (en) * 2008-02-12 2009-08-20 Fujifilm Corporation Fiber and process for producing the same
JP2010189794A (en) * 2009-02-17 2010-09-02 Fujifilm Corp Modified cross-sectional fiber, and method for producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. NURUL HUDA ET AL.: "A study of the crystallinity index of polypropylene fibres", COLLOID & POLYMER SCIENCE, vol. 263, no. 9, September 1985 (1985-09-01), pages 730 - 737 *
M. NURUL HUDA ET AL.: "Qualitative analysis of molecular structure of polypropylene fibres on the basis of X-ray diffraction patterns", COLLOID & POLYMER SCIENCE, vol. 262, no. 2, February 1984 (1984-02-01), pages 110 - 114 *

Also Published As

Publication number Publication date
JP2012140721A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP4977054B2 (en) Fiber and method for producing the same
KR100491648B1 (en) Polyester film and manufacturing method
TW442583B (en) Polyester filament yarn having an improved winding performance
WO2000043581A1 (en) Method for producing polyester-based combined filament yarn
KR20100014503A (en) Void-containing resin molded product, process for producing the molded product, and reflector plate
WO2012090626A1 (en) Thread material for void-containing thread production, and void-containing thread
JP5586452B2 (en) Method for producing void-containing yarn
JP2015140487A (en) Core-sheath type composite fiber and manufacturing method therefor
JP2010189794A (en) Modified cross-sectional fiber, and method for producing the same
JP5643452B2 (en) Reflective film, and liquid crystal display device, lighting device, and decorative article comprising the same
WO2010024068A1 (en) Process for production of void-containing resin moldings and void-containing resin moldings obtained by the process
WO2010095624A1 (en) Heat insulator
JP2019178235A (en) Heat shrinkable polyester-based film
WO2009101888A1 (en) Fiber and process for producing the same
JP2010221455A (en) White laminated polyester film
WO2014129372A1 (en) Reflective film, and liquid crystal display device, lighting device and ornamental article, each of which is provided with reflective film
JP5643451B2 (en) Reflective film, and liquid crystal display device, lighting device, and decorative article comprising the same
CN106149086A (en) One crosses ocean fishery netting superpower melt-spun slivers processing method
JP2010059381A (en) Method for producing void-containing resin molding and void-containing resin molding produced by the same
JP5173271B2 (en) Method for producing high toughness fiber
CN105463614B (en) Method for producing moisture-absorbing and releasing polyester fiber
JP2010069830A (en) Method of manufacturing unextended polymer molding, method of manufacturing cavity-containing resin molding using the unextended polymer molding, and cavity-containing resin molding obtained by the manufacturing method
Kim et al. Internal structure and physical properties of thermotropic liquid crystal polymer/poly (ethylene 2, 6-naphthalate) composite fibers
WO2012026249A1 (en) Spinning method and spinning apparatus
CN114502784B (en) Polyethylene yarn, method of manufacturing the same, and skin cooling fabric comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853381

Country of ref document: EP

Kind code of ref document: A1