WO2009101888A1 - Fiber and process for producing the same - Google Patents

Fiber and process for producing the same Download PDF

Info

Publication number
WO2009101888A1
WO2009101888A1 PCT/JP2009/051910 JP2009051910W WO2009101888A1 WO 2009101888 A1 WO2009101888 A1 WO 2009101888A1 JP 2009051910 W JP2009051910 W JP 2009051910W WO 2009101888 A1 WO2009101888 A1 WO 2009101888A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
stretching
resin layer
cavity
core material
Prior art date
Application number
PCT/JP2009/051910
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroki Sasaki
Daisuke Arioka
Yasutomo Goto
Tooru Ogura
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2009101888A1 publication Critical patent/WO2009101888A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/447Yarns or threads for specific use in general industrial applications, e.g. as filters or reinforcement
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch

Definitions

  • the present invention relates to a fiber having excellent durability and having a cavity inside, and a method for producing the same.
  • the hollow fiber-making method described in Patent Document 1 is a technique for laminating a polymer that is melted and discharged from a discharge hole of a die in order to achieve a high hollow ratio in order to reduce the weight of the fiber. Is necessary and the process is complicated.
  • voids are formed in order to increase the hollow ratio while maintaining the strength of the fibers. These voids contain inorganic fine particles and the like, and the inorganic fine particles and the resin interface are formed during the resin film formation. Is formed inside by peeling off.
  • a resin eg, polyester
  • another resin that is incompatible with the resin (incompatible) and kneaded to form a two-phase structure (eg, sea-island structure). It is formed by exfoliation of the interface between the resin which is the main component at the time of film formation and another resin added and kneaded therewith.
  • voids may be formed up to the vicinity of the surface of the fiber, and the smoothness of the surface is impaired.
  • a stress is easily applied to a void formed on the surface (near), a crack is generated, and the fiber is damaged by expanding it. there were.
  • the presence of voids inside the fiber contributes greatly to the improvement of the heat insulation properties of the fiber, so that cracks and breakage of the fiber due to voids formed in the vicinity of the surface and on the surface have a heat insulation effect. It will be significantly reduced.
  • Patent Document 1 is a method in which a different component is mixed in a main component, and a void is expressed using the component as a nucleus. Therefore, the different component remains in the void, which is reflected by the reflectance. In some cases, the improvement was hindered. In addition, since the resin and inorganic materials, or different types of resins are used, the problem of difficulty in recycling is becoming apparent.
  • an object of the present invention is to provide a fiber having high recyclability and durability and having a cavity inside and an efficient manufacturing method thereof.
  • Means for solving the problems are as follows. That is, ⁇ 1> On a resin layer of a core material having a cavity inside and having a substantially circular cross-sectional shape orthogonal to the length direction, a resin layer having a substantially annular cross-sectional shape orthogonal to the length direction It is a fiber characterized by having at least one layer. ⁇ 2> The average of the ratio (Y / X) of the cross-sectional area Y ( ⁇ m 2 ) of the cavity to the cross-sectional area X ( ⁇ m 2 ) of the fiber in the direction perpendicular to the length direction of the resin layer of the core material is 5% or more The fiber according to ⁇ 1>, which is 40% or less.
  • ⁇ 5> Permeation of a fiber having the same crystallinity as that of the polymer having the crystallinity of the fiber, and having the same fineness as the fiber and having no cavity, where the transmittance of the fiber is M (%)
  • ⁇ 7> The fiber according to any one of ⁇ 4> to ⁇ 6>, wherein the polymer having crystallinity includes only one kind.
  • the resin layer of the core material is obtained by melt spinning a resin composition composed only of a polymer having crystallinity, At a speed of 10 to 36,000 mm / min, and When the stretching temperature is T (° C.) and the glass transition temperature of the crystalline polymer is Tg (° C.), (Tg-30) ⁇ T ⁇ (Tg + 50)
  • the stretching step includes At a speed of 10 to 36,000 mm / min, and
  • T (degreeC) the glass transition temperature of the crystalline polymer
  • FIG. 1 is a cross-sectional view showing the structure of the fiber of the present invention.
  • FIG. 2A is a diagram illustrating an example of a spinning step in the fiber manufacturing method of the present invention.
  • FIG. 2B is a diagram illustrating an example of a spinning step in the fiber manufacturing method of the present invention.
  • FIG. 3A is a diagram for explaining an aspect ratio and is a perspective view of a fiber.
  • FIG. 3B is a diagram for explaining the aspect ratio, and is a cross-sectional view taken along the line A-A ′ of the fiber in FIG. 3A.
  • FIG. 3C is a diagram for explaining the aspect ratio, and is a cross-sectional view taken along the line B-B ′ of the fiber in FIG. 3A.
  • FIG. 4 is a schematic view of a coating line.
  • FIG. 5 is a photographic image of the cross section of the fiber of Example 1.
  • FIG. 1 is a cross-sectional view in a direction orthogonal to the length direction of a fiber as an example of the present invention.
  • the fiber 10 of the present invention includes a core resin layer 11 having a cavity 100 therein, and one or more resin layers 12 laminated so as to cover the core resin layer 11 ( Hereinafter, it may be referred to as a coating resin layer 12).
  • the resin layer located in the outermost layer of the cross section in the direction orthogonal to the length direction of the fiber 10 of this invention among the resin layers which comprise the coating resin layer 12 is set as the protective layer 12a.
  • the diameter of the cross section in the direction perpendicular to the length direction of the fiber of the present invention is not generally known, but is preferably 0.1 ⁇ m to 200 ⁇ m, more preferably 1 ⁇ m to 100 ⁇ m, and particularly preferably 1 ⁇ m to 80 ⁇ m.
  • the diameter of the cross section is less than 0.1 ⁇ m, it may be cut at the time of stretching, and when it exceeds 200 ⁇ m, the flexibility and texture of the fiber may be inferior, and the productivity may be lowered.
  • the glossiness of the fiber of the present invention is preferably 60 or more, more preferably 70 or more, and still more preferably 80 or more.
  • the glossiness can be measured by a variable glossmeter.
  • the ratio of the cavity cross-sectional area of the core layer is preferably 5% to 40%, more preferably 8% to 40%, and most preferably 12% to 40%.
  • the thickness of the coating resin layer is appropriately selected depending on the purpose, and for example, it is preferably 3% or more and 30% or less of the radius in the cross section of the resin layer of the core material. It is more preferably 3% or more and 25% or less, and most preferably 3% or more and 20% or less.
  • a fiber having a cavity has low mechanical durability.
  • the provision of the sheath material layer can greatly increase the mechanical durability.
  • a resin different from the resin of the core material layer can be applied to the sheath material layer. For example, by forming a sheath material layer such as polypropylene on the polyester core material layer, the water resistance and the like can be improved.
  • the resin layer of the core material is not particularly limited as long as it has a cavity inside when it is made of fibers, and is appropriately selected according to the purpose. For example, it is disclosed in JP-A-2005-256243. It may be formed by a resin composition or a resin composition made of a crystalline polymer. Among these, a resin composition consisting only of a crystalline polymer is particularly preferable in that cavities are efficiently formed inside without using inorganic fine particles or an incompatible polymer.
  • the resin layer of the core material is produced by melt spinning a resin composition composed only of a crystalline polymer (hereinafter also referred to as a core resin composition) and drawing at high speed.
  • the core resin composition is dried, melted with an extruder, melted and discharged from a melt spinneret, cooled with cooling air, and then wound up and subjected to high-speed stretching. Is done.
  • the resin composition of the core material is formed of a crystalline polymer, and the polymer component is only the crystalline polymer, but the component other than the polymer includes additive components appropriately selected as necessary. May be.
  • the structure of the resin composition of the core material may be a single material or a composite material of two or more materials. As an example, a section of the resin composition of the core material is incorporated into another sheet and integrated. It is good also as a resin composition.
  • Crystalline polymer In general, polymers are divided into crystalline polymers and amorphous (amorphous) polymers.
  • the crystalline polymer is not usually 100% crystalline, a crystalline region in which long chain molecules are regularly arranged in a molecular structure, and an amorphous region that is not regularly arranged. Is included.
  • the crystalline polymer only needs to include at least the crystalline region in a molecular structure, and a crystalline region and an amorphous region may be mixed.
  • the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include high-density polyethylene, polyolefin (for example, polypropylene), polyamide (PA) (for example, nylon-6), Polyacetal (POM), polyester (for example, PET, PEN, PTT, PBT, PBN, etc.), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), liquid crystal polymer (LCP), And fluororesin.
  • polyolefin for example, polypropylene
  • PA polyamide
  • POM Polyacetal
  • polyester for example, PET, PEN, PTT, PBT, PBN, etc.
  • SPS syndiotactic polystyrene
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • LCP liquid crystal polymer
  • polyester syndiotactic polystyrene (SPS), and liquid crystal polymer (LCP) are preferable from the viewpoint of mechanical strength and production, and polyester is more preferable. Two or more of these polymers may be blended or copolymerized.
  • SPS syndiotactic polystyrene
  • LCP liquid crystal polymer
  • the melt viscosity of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 to 700 Pa ⁇ s, more preferably 70 to 500 Pa ⁇ s, and more preferably 80 to 300 Pa ⁇ s. Further preferred.
  • the melt viscosity of 50 to 700 Pa ⁇ s is preferable in that the shape of the melt film discharged from the die head during melt film formation is stable and uniform film formation is facilitated.
  • the melt viscosity is 50 to 700 Pa ⁇ s, the viscosity at the time of melt film formation becomes appropriate and the extrusion becomes easy, or the melt film at the time of film formation is leveled to reduce unevenness. Is preferable.
  • the melt viscosity can be measured by a plate type rheometer or a capillary rheometer.
  • the intrinsic viscosity (IV: Intrinsic Viscosity) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.2, preferably 0.6 to 1.0. Is more preferable, and 0.7 to 0.9 is even more preferable. When the IV is 0.4 to 1.2, the strength of the film formed becomes high and the film can be efficiently stretched.
  • the melting point (Tm) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 40 to 350 ° C, more preferably 100 to 300 ° C, and further preferably 150 to 260 ° C. preferable.
  • the melting point is preferably from 40 to 350 ° C. in that it is easy to maintain the shape in the temperature range expected for normal use, even without using special techniques required for processing at high temperatures. It is preferable at the point which can form a uniform film.
  • the melting point can be measured by a differential thermal analyzer (DSC).
  • the weight average molecular weight of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5,000 to 2,000,000, and 10,000 to 1,500,000. More preferred is 20,000 to 1,200,000.
  • the weight average molecular weight is preferably 5,000 to 2,000,000 from the viewpoints of cavitation in drawing and mechanical stability as a fiber.
  • the weight average molecular weight can be measured by a gel permeation chromatography (GPC Gel Permeation Chromatography) method.
  • polyesters that are particularly preferably used in the present invention will be described from the viewpoint of mechanical strength and production.
  • the polyester is a polymer having an ester bond as a main bond chain of the main chain. Therefore, examples of the polyester suitable as the crystalline polymer include the exemplified PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PTT (polytrimethylene terephthalate), PBT (polybutylene terephthalate), and PBN (polyethylene). Not only butylene naphthalate) but also all polymer compounds obtained by polycondensation reaction of a dicarboxylic acid component and a diol component.
  • the dicarboxylic acid component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, oxycarboxylic acids, and polyfunctional acids. Among them, aromatic dicarboxylic acids are preferable.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, naphthalenedicarboxylic acid, diphenoxyethanedicarboxylic acid, and 5-sodium sulfoisophthalic acid.
  • Acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are preferable, and terephthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are more preferable.
  • Examples of the aliphatic dicarboxylic acid include oxalic acid, succinic acid, eicoic acid, adipic acid, sebacic acid, dimer acid, dodecanedioic acid, maleic acid, and fumaric acid.
  • Examples of the alicyclic dicarboxylic acid include cyclohexyne dicarboxylic acid.
  • Examples of the oxycarboxylic acid include p-oxybenzoic acid.
  • Examples of the polyfunctional acid include trimellitic acid and pyromellitic acid.
  • the diol component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aliphatic diols, alicyclic diols, aromatic diols, diethylene glycol, and polyalkylene glycols. Aliphatic diols are preferred.
  • Examples of the aliphatic diol include ethylene glycol, propane diol, butane diol, pentane diol, hexane diol, neopentyl glycol, and triethylene glycol. Among them, propane diol, butane diol, pentane diol, and hexane diol are exemplified. Particularly preferred. Examples of the alicyclic diol include cyclohexanedimethanol. Examples of the aromatic diol include bisphenol A and bisphenol S.
  • the melt viscosity of the polyester is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 to 700 Pa ⁇ s, more preferably 70 to 500 Pa ⁇ s, and still more preferably 80 to 300 Pa ⁇ s. .
  • the melt viscosity is higher, cavities are more likely to be generated during stretching.
  • the melt viscosity is 50 to 700 Pa ⁇ s, it is easier to extrude during film formation, and the resin flow is stable and retention is less likely to occur. It is preferable in that the quality is stable.
  • the melt viscosity of 50 to 700 Pa ⁇ s is preferable in that the stretching tension is appropriately maintained at the time of stretching, so that uniform stretching is facilitated and breakage is difficult.
  • melt viscosity is 50 to 700 Pa ⁇ s
  • the intrinsic viscosity (IV) of the polyester is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.2, more preferably 0.6 to 1.0, 7 to 0.9 is more preferable.
  • IV is larger, cavities are more likely to appear during stretching.
  • the IV is 0.4 to 1.2, extrusion becomes easier during film formation, and the resin flow becomes stable and stays. This is preferable in that the quality becomes stable.
  • the IV is 0.4 to 1.2, even when a molten resin filter is installed at the time of film formation, it is difficult to apply a load to the filter, and the resin flow is stable and stagnation occurs. It is preferable in that it becomes difficult to do.
  • the stretching tension is appropriately maintained at the time of stretching, so that it is easy to stretch uniformly and it is preferable in that a load is not easily applied to the apparatus.
  • the product is less likely to be damaged, which is preferable in terms of improving physical properties.
  • the melting point of the polyester is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 150 to 300 ° C., more preferably 180 to 270 ° C. from the viewpoints of heat resistance and film forming properties.
  • the said dicarboxylic acid component and the said diol component may each superpose
  • a polymer may be formed.
  • two or more kinds of polymers may be blended and used as the polyester resin.
  • the polymer added to the main polymer has a melt viscosity and an intrinsic viscosity that are close to those of the main polymer, and the addition amount is smaller when the film is formed or melted. It is preferable in that the physical properties are enhanced during extrusion and the extrusion becomes easy.
  • a resin other than polyester may be added to the polyester resin.
  • the resin layer of the core material can form cavities in a simple process even without adding a cavity forming agent such as inorganic fine particles or incompatible resins added in the prior art. it can. Furthermore, no special equipment for dissolving the inert gas in the resin in advance is required. The fiber manufacturing method will be described later.
  • the resin layer of the core material is a component that does not contribute to the development of the cavity, it may contain other components as necessary.
  • the other components include fillers, heat stabilizers, antioxidants, ultraviolet absorbers, organic lubricants, nucleating agents, dyes, pigments, flame retardants, mold release agents, dispersants, and coupling agents. .
  • Whether or not the other component contributes to the development of the cavity can be determined by whether or not a component other than the crystalline polymer (for example, each component described later) is detected in the cavity or at the interface portion of the cavity.
  • antioxidant for example, a phenolic compound, a sulfur type compound, a phosphorus type compound is mentioned, Especially, a well-known hindered phenol is mentioned.
  • the hindered phenol include antioxidants commercially available under trade names such as Irganox 1010, Sumilyzer BHT, Sumilyzer GA-80.
  • the antioxidant can be used as a primary antioxidant and further combined with a secondary antioxidant.
  • the secondary antioxidant include antioxidants commercially available under trade names such as Sumilizer TPL-R, Sumilizer TPM, Sumilizer TP-D, and the like.
  • the release agent examples include plant waxes such as carnauba wax, animal waxes such as beeswax and lanolin, mineral waxes such as montan wax, petroleum waxes such as paraffin wax and polyethylene wax, castor oil and derivatives thereof, fatty acids and Examples of the fatty acid derivatives include esters of higher fatty acids such as lauric acid, stearic acid, and montanic acid, and monohydric or dihydric or higher alcohols.
  • the flame retardant is not particularly limited and may be appropriately selected depending on the purpose, but a brominated flame retardant is particularly preferable.
  • organic halogen flame retardants such as high molecular weight organic halogen compounds and low molecular weight organic halogen compounds may be used alone or in combination of two or more.
  • flame retardants such as a phosphorus type and an inorganic type.
  • the resin layer of the core material has a cavity and is characterized by an aspect ratio of the cavity.
  • the cavity means a vacuum domain or a gas phase domain existing inside the resin molded body.
  • FIG. 3A to 3C are diagrams for explaining the aspect ratio.
  • FIG. 3A is a perspective view of the resin layer of the core material
  • FIG. 3B is an A ⁇ of the resin layer of the core material in FIG. 3A.
  • FIG. 3C is a cross-sectional view taken along line A ′
  • FIG. 3C is a cross-sectional view taken along line BB ′ of the resin layer of the core material in FIG. 3A.
  • the aspect ratio is defined as an average length of the cavity 100 in a direction orthogonal to the surface 10a of the fiber 10 and orthogonal to the orientation direction of the cavity, r ( ⁇ m) (see FIG. 3B), and the core material.
  • L / r ratio when the average length of the cavity 100 in the orientation direction of the cavity is L ( ⁇ m) (see FIG. 3C).
  • the aspect ratio is not particularly limited as long as the effect of the present invention is not impaired, can be appropriately selected according to the purpose, and is preferably 10 or more and 100 or less, more preferably 15 or more and 100 or less, and 20 More preferred is 100 or less.
  • the orientation direction of the cavities indicates the uniaxial stretching direction (first stretching direction) when stretching is uniaxial.
  • first stretching direction corresponds to the orientation direction of the cavities (first stretching direction).
  • stretching is biaxial or more, at least one direction is shown among the extending directions aiming at cavity formation.
  • longitudinal stretching is performed along the flow direction of the molded body during production, and a cavity can be formed by this longitudinal stretching. It corresponds to the orientation direction of the cavity (first stretching direction).
  • the cross-sectional area of the fiber core layer in an arbitrary cross section orthogonal to the length direction is X ( ⁇ m 2 ), and the cross-sectional area of the cavity in the cross-section is Y ( ⁇ m 2 ).
  • the average of these ratios (Y / X) is preferably 0.05 or more and 0.4 or less.
  • each cross-sectional area in the said cross section can be measured with the image of an optical microscope or an electron microscope.
  • the resin layer of the core material is characterized by an average number P of cavities in the film thickness direction, a refractive index difference ⁇ N between the crystalline polymer portion and the cavities, and a product of the ⁇ N and the P. ing.
  • the number of cavities in the film thickness direction is a plane (AA ′ cross section in FIG. 3A) including a direction orthogonal to the surface 10a of the resin layer 10 of the core material and orthogonal to the alignment direction of the cavities. This means the number of cavities 100 included in the film thickness direction.
  • the crystalline polymer portion refers to a portion (a portion made of a crystalline polymer) other than a cavity in the fiber.
  • the average number P of cavities in the film thickness direction is not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose, preferably 5 or more, more preferably 10 or more. Preferably, 15 or more are more preferable.
  • the number of cavities in the film thickness direction can be measured by an image of an optical microscope or an electron microscope.
  • the refractive indexes N1 and N2 of the crystalline polymer portion and the cavity can be measured by an Abbe refractometer or the like.
  • the product of the ⁇ N and the P is not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose, but is preferably 3 or more, more preferably 5 or more, and 7 or more. Is more preferable.
  • the resin layer of the core material has various excellent characteristics in, for example, reflectivity and glossiness due to the hollow inside.
  • characteristics such as reflectance and gloss can be adjusted by changing the shape of the cavity inside the resin layer of the core material.
  • the glossiness of the resin layer of the core material is preferably 60 or more, more preferably 70 or more, and still more preferably 80 or more.
  • the glossiness can be measured by a variable glossmeter.
  • a sheath material is the said coating resin layer.
  • the material of the coating resin layer is not particularly limited as long as the function of the cavity in the resin layer of the core material is not significantly impaired, and is appropriately selected according to the purpose. For example, durability, particularly water resistance, In view of hydrolyzability, tensile modulus, and bendability, hydrophobic polymers such as polyolefins and fluororesins are preferred. Further, from the viewpoint of adhesion with the core material layer, the same resin as the core material layer is preferable.
  • the function of the cavity in the resin layer of the core material is an interference color, reflection, and heat insulation that are manifested by light refraction at the interface of the cavity.
  • the coating resin layer has light transmittance and heat insulation properties that do not hinder the expression of the interference color and reflection.
  • the thickness of the coating resin layer is appropriately selected depending on the purpose, and for example, it is preferably 3% or more and 30% or less of the radius in the cross section of the resin layer of the core material. If the thickness of the coating resin layer is less than 3% of the radius of the cross section of the resin layer of the core material, sufficient mechanical properties may not be imparted, and the thickness of the coating resin layer may be the resin layer of the core material. If it exceeds 30% or less of the radius in the cross section, there may be a decrease in heat insulation, a lack of flexibility and touch as a fiber, or a decrease in productivity.
  • the resin layer located in the outermost layer of the cross section in the direction orthogonal to the length direction of the fiber of the present invention among the resin layers constituting the coating resin layer is a protective layer.
  • the protective layer may not be provided.
  • the coating resin composition that is the above-described coating material, it is important that the wire does not damage the strands (the core layer may be called in this way) during and after the production.
  • the thermoplastic resin constituting the composition It is preferable that the flow start temperature falls within a certain range.
  • thermoplastic resin having a preferable flow start temperature used in the present invention is not particularly limited as long as it has the above-described characteristics.
  • examples include polyethylene, polypropylene, ethylene-vinyl acetate copolymer, nylon (nylon-6, nylon-66, nylon-11, etc.), polyvinyl chloride, ethylene ethyl acrylate copolymer, polyester compound, etc. Of these, polyethylene, polypropylene, and polyester are preferable.
  • These thermoplastic resins exhibit various melting behaviors by changing the molecular weight, molecular weight distribution, branching degree, crosslinking degree, type of terminal functional group, and the like, and the value of the flow start temperature can be controlled.
  • these resins may be mixed as appropriate to adjust to a preferable flow start temperature range.
  • a copolymer of the aforementioned polymer may be used, or a vinyl acetate component may be copolymerized.
  • the flow start temperature may be controlled by adjusting the amount of an additive such as a plasticizer.
  • the difference between the solubility parameter of the resin composition of the coating resin layer and the solubility parameter of the resin composition of the resin layer of the core material is preferably 7 (cal / cm 3 ) 1/2 or less.
  • the solubility parameter is a characteristic value that is a measure of the mixing property between substances
  • the solubility parameter is ⁇
  • the solidification energy (molar evaporation energy) of the substance is E
  • the molecular volume is V
  • (x) (E / V) 1/2 Equation (x)
  • the solubility parameter for example, J. Org. Brandrup, E.I. H, “Polymer Handbook (4th edition), VII / 671 to VII / 714”.
  • the fiber production method of the present invention includes a preform production step (melt spinning) for producing a preform (precursor) in which the coating resin layer is coated on the resin layer of the core material so as to have a concentric cross section. Step) and a drawing step for expressing a cavity in the core resin layer, a spinning step for melt spinning the resin layer of the core material, and drawing the melt-spun undrawn yarn into the inside And a method having a stretching step for developing a cavity and a coating step for forming one or more coating resin layers on the surface of the stretched fiber.
  • the former method for forming a preform (melt spinning step) and a method having a drawing step are preferable in terms of production efficiency. Moreover, as long as the effect of this invention is not impaired, you may combine another process as needed.
  • the melt spinning step is a step of producing a cylindrical preform in which each resin layer is laminated concentrically.
  • the melt spinning step include a coating method and a melt composite spinning method. Among these, the melt composite spinning method is preferable.
  • the coating method is a manufacturing method in which the resin composition of the coating resin layer is dissolved in a solvent, applied to the core resin layer, and then dried to evaporate the solvent.
  • the melt composite spinning method further include a ram extrusion composite spinning method and a continuous composite spinning method.
  • a resin layer of a core material and a polymer rod constituting a plurality of coating resin layers are formed, inserted into a cylinder, and melted at one end of the cylinder by a piston. Pressing and extruding from the other end, into the inflow hole 1 of the core resin layer material formed on the composite spinning die (see FIG. 2A), and the respective inflow holes 2 to 7 of the plurality of coating resin layer materials, respectively.
  • the polymer is quantitatively supplied so as to have a predetermined thickness, sequentially laminated to form a multilayer structure, and then discharged from the discharge port isolated by the guide pipe 8.
  • the discharged filament is fixed. It is cooled while being taken up at a high speed to produce a preform.
  • the polymer constituting each layer is continuously melted by an extruder, and after devolatilization as necessary, the composite spinning die as shown in FIG.
  • quantitative supply is performed, and a multi-layered structure is sequentially laminated, and then discharged from the die.
  • the discharged filament is cooled while being drawn at a constant speed to produce a preform. .
  • the continuous composite spinning method is easy to consistently and continuously perform spinning from polymer polymerization to spinning, and is excellent in productivity, and by introducing a continuous devolatilization process before the spinning process, Since monomers and impurities can be sufficiently removed, a fiber having high permeability and excellent optical durability is preferable.
  • the preform 21 obtained as described above is inserted into, for example, a heating furnace 30 adjusted to 220 to 260 ° C., and the winding machine 32 is passed through an annealing treatment device 31.
  • the fiber of the present invention is produced by being subjected to a heat stretching process while being wound around the fiber. Specifically, the preform (undrawn yarn) is drawn at least uniaxially. Then, the preform (undrawn yarn) is drawn by the drawing step, and a cavity having a major axis in the first drawing direction is formed therein, whereby the fiber of the present invention is obtained.
  • 21a shows an extending
  • cavities are formed by stretching.
  • the polymer having at least one crystallinity constituting the resin layer of the core material is in a phase containing a crystal in which a microcrystalline nucleus state is formed and hardly stretched during stretching, It is considered that a cavity is formed by peeling and stretching in such a manner that the amorphous phase resin between hard microcrystals is torn off.
  • Such void formation by stretching is possible not only when there is only one kind of crystalline polymer, but also when two or more kinds of crystalline polymers are blended or copolymerized. is there.
  • the stretching method is not particularly limited as long as the effects of the present invention are not impaired, and examples thereof include uniaxial stretching, sequential biaxial stretching, and simultaneous biaxial stretching.
  • any stretching method molding is performed during production. Longitudinal stretching is preferably performed along the direction of body flow.
  • the number of longitudinal stretching stages and the stretching speed can be adjusted by the combination of rolls and the speed difference between the rolls.
  • the number of stages of the longitudinal stretching is not particularly limited as long as it is one or more, but it is preferable to perform longitudinal stretching in two or more stages in that it can be more stably stretched at a high speed.
  • longitudinal stretching in two or more stages is advantageous in that a cavity can be formed by second-stage stretching after confirming the occurrence of necking by first-stage stretching.
  • the necking means a constricted deformation that occurs when the preform is stretched, and it is confirmed that the thickness of the preform decreases discontinuously during the stretching. Is expressed ".
  • the stretching speed of the longitudinal stretching is not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose, but is preferably 10 to 36,000 mm / min, and preferably 800 to 24,000 mm. / Min is more preferable, and 1200 to 12,000 mm / min is still more preferable.
  • the stretching speed is 10 mm / min or more, it is preferable in that sufficient necking can be easily expressed.
  • the stretching speed is 36,000 mm / min or less, uniform stretching is facilitated, and the resin is not easily broken. In particular, a large stretching apparatus for high-speed stretching is not required, and the cost is reduced. Is preferable in that it can be reduced.
  • the stretching method examples include single-stage stretching and two-stage stretching, and any of them can be suitably applied to the present invention, but two-stage stretching is more preferable from the viewpoint of manufacturing yield and machine restrictions.
  • the stretching speed in the case of single-stage stretching is preferably 1,000 to 36,000 mm / min, more preferably 1,100 to 24,000 mm / min, and 1,200 to 12,000 mm / min. Is more preferable.
  • the first-stage stretching is a preliminary stretching whose main purpose is to develop necking.
  • the stretching speed of the preliminary stretching is preferably 10 to 300 mm / min, more preferably 40 to 220 mm / min, and further preferably 70 to 150 mm / min.
  • the second-stage stretching speed after the necking is expressed by the preliminary stretching is preferably changed from the preliminary stretching speed.
  • the second stage stretching speed after causing necking by the preliminary stretching is preferably 600 to 36,000 mm / min, more preferably 800 to 24,000 mm / min, and 1,200 to 15,000 mm. / Min is more preferable.
  • Extension temperature-- The temperature during stretching is not particularly limited and can be appropriately selected according to the purpose.
  • T (° C) and the glass transition temperature is Tg (° C), (Tg-30) ⁇ T ⁇ (Tg + 50) It is preferable to stretch at a stretching temperature T (° C.) in the range indicated by (Tg ⁇ 25) ⁇ T ⁇ (Tg + 45) It is more preferable to stretch at a stretching temperature T (° C.) in the range indicated by (Tg ⁇ 20) ⁇ T ⁇ (Tg + 40) More preferably, the film is stretched at a stretching temperature T (° C.) in the range indicated by.
  • the stretching temperature (° C.) the lower the stretching tension, and the easier it can be stretched.
  • the stretching temperature (° C.) is ⁇ glass transition temperature (Tg) +50 ⁇ ° C. or less, cavities are formed.
  • the volume ratio is high, and the aspect ratio is preferably 10 or more.
  • the stretching temperature (° C.) is ⁇ glass transition temperature (Tg) ⁇ 30 ⁇ ° C. or more from the standpoint that cavities are sufficiently developed.
  • the stretching temperature T (° C.) can be measured with a non-contact thermometer.
  • the glass transition temperature Tg (° C.) can be measured by a differential thermal analyzer (DSC).
  • the drawn fiber may be further subjected to heat shrinkage by applying heat or treatment such as tension for the purpose of shape stabilization.
  • the preparation of the preform may be performed independently of the stretching step or may be performed continuously.
  • the core layer of the present invention can be obtained by stretching the preform.
  • the fiber of the present invention is formed through the coating step described below on the core layer.
  • a coating line similar to a conventionally known electric cable or quartz glass optical fiber can be used as the coating line used for producing the fiber of the present invention.
  • FIG. 4 shows a schematic diagram of the coating line.
  • the strands (core fibers having cavities) 110 are fed from the feeder 120 and cooled to a temperature of 5 to 35 ° C. by the cooling device 130 in order to suppress damage to the strands 110 during coating.
  • the cooling device 130 can be omitted.
  • the cable 150 is obtained by covering the wire 110 with the covering material by the covering device 140.
  • the moisture on the surface thereof is removed by the moisture removing device 170.
  • the cooling of the cable 150 is not limited to the water tank, and other devices may be used. And it is conveyed by the roller 180 and wound up by the winder 190.
  • a coating method a melt extrusion method, a method of obtaining a coating layer by applying and curing using an active energy ray curable resin, and the like can be used.
  • a melt extrusion method it is preferable to use a melt extrusion method.
  • Example 1 ⁇ Formation of preform (unstretched fiber)> ⁇ Core resin layer composition >> Polybutylene terephthalate 100% resin PBT1 (manufactured in-house at Fujifilm) was employed as a resin composition (core resin composition) constituting the core resin layer. It was 0.72 (Pa * s) when the intrinsic viscosity (IV) of this composition was measured with the Ubbelohde viscometer (made by Asahi Seisakusho). Further, the glass transition temperature Tg (° C.) and the melting point Tm (° C.) of the PBT 1 were measured with a differential thermal analyzer (manufactured by Seiko II).
  • ⁇ Coating process> As a coating resin, PBT1 pellets used for preform production were coated with a cross extrusion head (die diameter 1.5 mm, nipple diameter 0.5 mm) using a coating line (see FIG. 4) of the strand 110. Coating was carried out at a conveyance speed of 500 m / min to obtain a fiber of the present invention having a coating layer having a thickness of 5 ⁇ m. A photographic image of a cross section of the fiber of Example 1 is shown in FIG.
  • Example 2 ⁇ Preform production> A preform was produced in the same manner as in Example 1 except that the resin layer composition of the core material was changed to 100% polybutylene terephthalate resin PBT2 (produced in-house by Fuji Film).
  • the intrinsic viscosity (IV) of the PBT2 was measured in the same manner as in Example 1, and found to be 0.86 (Pa ⁇ s). Further, the glass transition temperature Tg (° C.) and the melting point Tm (° C.) of the PBT 2 were measured in the same manner as in Example 1. The measurement results are shown in Table 1.
  • the preform obtained is uniaxially stretched in a single step at a speed of 2400 mm / min in a heated atmosphere at 40 ° C. to produce a fiber (also referred to as a strand) corresponding to a core material layer containing a cavity. did.
  • Example 1 Coating was performed in the same manner as in Example 1 except that the coating resin was changed to PET (produced in-house at Fuji Film). In addition, it was 0.6 (Pa * s) when the intrinsic viscosity (IV) of the said PET was measured like Example 1.
  • FIG. Further, the glass transition temperature Tg (° C.) and the melting point Tm (° C.) of the PET were measured in the same manner as in Example 1. The measurement results are shown in Table 1. A fiber of the present invention having a coating layer with a thickness of 3 ⁇ m was obtained.
  • Example 3 A preform was produced in the same manner as in Example 1, except that the resin layer composition of the core material was changed to 100% polybutylene terephthalate resin PHT (produced in-house by Fuji Film).
  • the intrinsic viscosity (IV) of the PHT was measured in the same manner as in Example 1, and found to be 0.7 (Pa ⁇ s).
  • the glass transition temperature Tg (° C.) and melting point Tm (° C.) of the PHT were measured in the same manner as in Example 1. The measurement results are shown in Table 1.
  • the preform obtained was uniaxially stretched at a speed of 100 mm / min in a heated atmosphere at 30 ° C., and after confirming that necking had occurred, it was the same as the beginning at a speed of 6,000 mm / min.
  • a fiber (also referred to as a strand) corresponding to a core material layer containing a cavity was further uniaxially stretched in the direction.
  • Example 1 except that the coating resin was changed to isotactic polypropylene (manufactured by Aldrich, weight average molecular weight 190,000, number average molecular weight 50,000, glass transition temperature -13 ° C., Tm: 170 to 175 ° C.) Coating was carried out.
  • a fiber of the present invention having a coating layer with a thickness of 5 ⁇ m was obtained.
  • Example 4 Preform production>
  • the core resin layer composition was changed to isotactic polypropylene (manufactured by Aldrich, weight average molecular weight 190,000, number average molecular weight 50,000, glass transition temperature ⁇ 13 ° C., Tm: 170 to 175 ° C.).
  • a preform was produced in the same manner as in Example 1 except that.
  • Example 1 except that the coating resin was changed to isotactic polypropylene (manufactured by Aldrich, weight average molecular weight 190,000, number average molecular weight 50,000, glass transition temperature -13 ° C., Tm: 170 to 175 ° C.) Coating was carried out. A fiber of the present invention having a coating layer with a thickness of 5 ⁇ m was obtained.
  • isotactic polypropylene manufactured by Aldrich, weight average molecular weight 190,000, number average molecular weight 50,000, glass transition temperature -13 ° C., Tm: 170 to 175 ° C.
  • LDPE manufactured by Aldrich, weight average molecular weight is unknown, MI value was 25 g / 10 min, glass transition temperature ⁇ 125 ° C., Tm: 146 ° C.
  • Went. A fiber of the present invention having a coating layer with a thickness of 3 ⁇ m was obtained.
  • the preform obtained was uniaxially stretched at a speed of 120 mm / min in a heated atmosphere at 100 ° C., and after confirming that necking occurred, it was the same as the beginning at a speed of 6,000 mm / min.
  • a fiber (also referred to as a strand) corresponding to the core material layer was produced by further uniaxially stretching in the direction. However, the cavity did not develop.
  • ⁇ Coating process> As a coating resin, the PBT1 pellets used for preform production were coated with a coating extruder (die diameter: 1.5 mm, nipple diameter: 0.5 mm) with a cross die head. Coating was carried out at a conveyance speed of 500 m / min to obtain a fiber of the present invention having a coating layer having a thickness of 5 ⁇ m.
  • Comparative Example 2 (Comparative Example 2) ⁇ Production of fiber> The fibers of Comparative Example 2 were prepared in the same manner as in Example 4 until the wires were prepared and the coating step was not performed.
  • Table 1 summarizes the fibers produced in Examples 1 to 4 and Comparative Examples 1 and 2.
  • the transmittance was measured using a spectrophotometer U-4100 manufactured by Hitachi, Ltd. Light was incident at an angle of 5 degrees from the normal direction of the surface of the obtained fiber, and the intensity of light transmitted through the fiber was compared with the value of a blank that did not transmit the fiber. A wavelength of 550 nm was used. Moreover, the transmittance
  • a cross section perpendicular to the surface of the fiber and perpendicular to the longitudinal stretching direction (see FIG. 3B) and a cross section perpendicular to the surface of the fiber and parallel to the longitudinal stretching direction (see FIG. 3C) are scanned.
  • the microscope was examined at an appropriate magnification of 300 to 3,000 times, and a measurement frame was set in each cross-sectional photograph. This measurement frame was set so that 50 to 100 cavities were included in the measurement frame.
  • the number of cavities included in the measurement frame is measured, and the number of cavities included in the measurement frame (see FIG. 3B) of the cross section orthogonal to the longitudinal stretching direction is m, and the cross section parallel to the longitudinal stretching direction.
  • Refractive index difference ⁇ N between crystalline polymer part and cavity The refractive index N1 of the polymer part having crystallinity was measured with an Abbe refractometer by separately preparing a film.
  • the refractive index N2 of the cavity is set such that the refractive index of the air is equal to the refractive index N2 of the cavity because the cavity is separately air.
  • Examples 1 to 4 were confirmed to exhibit performance such as high recyclability and durability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Multicomponent Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

A fiber characterized by comprising: a core resin layer having voids in inner parts thereof and having an almost circular section perpendicular to the lengthwise direction; and one or more resin layers formed on the core resin layer and having an almost annular section perpendicular to the lengthwise direction. It is preferable that with respect to directions perpendicular to the lengthwise direction for the core resin layer, the proportion of the sectional area of the voids (Y, µm2) to the sectional area of the fiber (X, µm2), Y/X, be 5-40% on the average. When the average dimension of the voids in a diameter direction perpendicular to the direction of orientation for the voids is expressed by r (µm) and the average dimension of the voids in the direction of orientation for the voids is expressed by L (µm), then the L/r ratio is preferably 10-100.

Description

繊維及びその製造方法Fiber and method for producing the same
 本発明は、耐久性に優れ、内部に空洞を有する繊維及びその製造方法に関する。 The present invention relates to a fiber having excellent durability and having a cavity inside, and a method for producing the same.
 近年、繊維の機能性や審美性を向上させるべく、様々な努力がなされている。例えば、繊維の断面形状を変化させ、吸水性を向上させたり、ポリマーを改質させることで、軽量性を高めたり、フィブリル性を向上させたり、深色性を向上させたりしている(例えば、特許文献1参照)。
 一方、繊維の審美性を向上させるために、屈折率の異なる二種類のポリマーを交互に積層し、それらを保護層で被覆した光学干渉機能を有する複合繊維などが各種提案されている(例えば、特許文献2参照)。
In recent years, various efforts have been made to improve the functionality and aesthetics of fibers. For example, by changing the cross-sectional shape of the fiber, improving water absorption, or modifying the polymer, the lightness is improved, the fibrillation is improved, or the deep color is improved (for example, , See Patent Document 1).
On the other hand, in order to improve the aesthetics of the fiber, various composite fibers having an optical interference function in which two kinds of polymers having different refractive indexes are alternately laminated and covered with a protective layer have been proposed (for example, Patent Document 2).
 しかしながら、特許文献1に記載された中空構造の繊維の製糸方法は、繊維の軽量化のために、高い中空率を達成しようとすると、口金の吐出孔から溶融吐出されるポリマーの貼り合せの技術が必要であり、工程が煩雑であった。
 また、繊維の強度を保ちながら、中空率を上げるために空隙が形成されているが、この空隙は、無機系微粒子などを含有させておき、樹脂の延伸製膜時に該無機微粒子と樹脂界面とが剥離することにより、内部に形成させている。また、主たる成分である樹脂(例えば、ポリエステル)に、その樹脂と相溶しない(非相溶の)別の樹脂を添加して混練することにより二相構造(例えば海島構造)を形成し、樹脂の延伸製膜時に主たる成分である樹脂と、そこに添加及び混練された別の樹脂との界面の剥離によって形成させている。
However, the hollow fiber-making method described in Patent Document 1 is a technique for laminating a polymer that is melted and discharged from a discharge hole of a die in order to achieve a high hollow ratio in order to reduce the weight of the fiber. Is necessary and the process is complicated.
In addition, voids are formed in order to increase the hollow ratio while maintaining the strength of the fibers. These voids contain inorganic fine particles and the like, and the inorganic fine particles and the resin interface are formed during the resin film formation. Is formed inside by peeling off. In addition, a resin (eg, polyester) that is a main component is added with another resin that is incompatible with the resin (incompatible) and kneaded to form a two-phase structure (eg, sea-island structure). It is formed by exfoliation of the interface between the resin which is the main component at the time of film formation and another resin added and kneaded therewith.
 しかしながら、このような空隙の形成方法によれば、繊維の表面近傍まで空隙が形成されることがあり、表面の平滑性が損なわれる問題があった。その結果、織物などに用いるために繊維を折り曲げたりした場合、表面(近傍)に形成された空隙に応力がかかりやすくなり、亀裂が発生し、それが拡大することによって繊維が破損するという問題があった。
 また、繊維の内部に空隙が存在することは、該繊維の断熱性の向上に高く寄与しているため、表面近傍及び表面に形成された空隙による該繊維の亀裂や破損は、断熱性効果を著しく低下させることになる。
 また、特許文献1に記載の技術は、主たる成分中に異種の成分を混入させ、それを核として空隙を発現させる方法であるため、該空隙の中に異種の成分が残り、それが反射率向上を阻害してしまうことがあった。また、樹脂と無機物、あるいは種類の異なる樹脂の系になるため、リサイクルが困難になる問題も顕在化しつつある。
However, according to such a method of forming voids, voids may be formed up to the vicinity of the surface of the fiber, and the smoothness of the surface is impaired. As a result, when a fiber is bent for use in a woven fabric or the like, a stress is easily applied to a void formed on the surface (near), a crack is generated, and the fiber is damaged by expanding it. there were.
In addition, the presence of voids inside the fiber contributes greatly to the improvement of the heat insulation properties of the fiber, so that cracks and breakage of the fiber due to voids formed in the vicinity of the surface and on the surface have a heat insulation effect. It will be significantly reduced.
In addition, the technique described in Patent Document 1 is a method in which a different component is mixed in a main component, and a void is expressed using the component as a nucleus. Therefore, the different component remains in the void, which is reflected by the reflectance. In some cases, the improvement was hindered. In addition, since the resin and inorganic materials, or different types of resins are used, the problem of difficulty in recycling is becoming apparent.
特開2005-256243号公報JP 2005-256243 A 特許第3356438号公報Japanese Patent No. 3356438
 本発明は、前記従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、リサイクル性及び耐久性が高く、内部に空洞を有する繊維及びその効率的な製造方法を提供することを目的とする。 This invention makes it a subject to solve the said conventional problems and to achieve the following objectives. That is, an object of the present invention is to provide a fiber having high recyclability and durability and having a cavity inside and an efficient manufacturing method thereof.
 前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 内部に空洞を有し、長さ方向に直交する断面形状が略円形である芯材の樹脂層上に、長さ方向に直交する断面形状が略円環形である樹脂層を鞘材として一層以上有してなることを特徴とする繊維である。
<2> 芯材の樹脂層の長さ方向に直交する方向における該繊維の断面積X(μm)に対する空洞の断面積Y(μm)の比(Y/X)の平均が5%以上、40%以下である前記<1>に記載の繊維である。
<3> 空洞の配向方向に直交する直径方向における前記空洞の平均長さをr(μm)とし、前記空洞の配向方向における前記空洞の平均長さをL(μm)とした際のL/r比が10以上、100以下である前記<1>から<2>のいずれかに記載の繊維である。
<4> 芯材の樹脂層が、結晶性を有するポリマーのみからなる前記<1>から<3>のいずれかに記載の繊維である。
<5> 該繊維の透過率をM(%)とし、該繊維の結晶性を有するポリマーと同一の結晶性を有するポリマーからなり、該繊維と同じ繊度であってかつ空洞を有しない繊維の透過率をN(%)としたときのM/N比が0.2以下であり、かつ、該繊維の光沢度が50以上である前記<4>に記載の繊維である。
<6> 空洞の配向方向に直交する直径方向の任意の断面における空洞の平均の個数をP個とし、結晶性ポリマー部の屈折率をN1とし、空洞の屈折率をN2とし、N1とN2との差をΔN(=N1-N2)とするとき、ΔNとPとの積が3以上である前記<4>から<5>のいずれかに記載の繊維である。
<7> 結晶性を有するポリマーが、一種のみからなる前記<4>から<6>のいずれかに記載の繊維である。
<8> 結晶性を有するポリマーが、ポリオレフィン類、ポリエステル類およびポリアミド類である前記<4>から<7>のいずれかに記載の繊維である。
<9> 芯材の樹脂層は、結晶性を有するポリマーのみからなる樹脂組成物を溶融紡糸し、
10~36,000mm/minの速度で、かつ、
 延伸温度をT(℃)、該結晶性を有するポリマーのガラス転移温度をTg(℃)としたときに、
 (Tg-30)≦T≦(Tg+50)
 で表される延伸温度T(℃)で延伸して得られた前記<1>から<8>のいずれかに記載の繊維である。
<10> 前記<1>から<9>のいずれかに記載の繊維の製造方法であって、結晶性を有するポリマーのみからなる芯材の樹脂層上に複数の樹脂層を積層して紡糸する積層紡糸工程と、前記芯材の樹脂層の長さ方向に延伸する延伸工程とを含み、
前記延伸工程は、
10~36,000mm/minの速度で、かつ、
 延伸温度をT(℃)、該結晶性を有するポリマーのガラス転移温度をTg(℃)としたときに、
 (Tg-30)≦T≦(Tg+50)
 で表される延伸温度T(℃)で延伸することを特徴とする繊維の製造方法である。
Means for solving the problems are as follows. That is,
<1> On a resin layer of a core material having a cavity inside and having a substantially circular cross-sectional shape orthogonal to the length direction, a resin layer having a substantially annular cross-sectional shape orthogonal to the length direction It is a fiber characterized by having at least one layer.
<2> The average of the ratio (Y / X) of the cross-sectional area Y (μm 2 ) of the cavity to the cross-sectional area X (μm 2 ) of the fiber in the direction perpendicular to the length direction of the resin layer of the core material is 5% or more The fiber according to <1>, which is 40% or less.
<3> L / r when the average length of the cavity in the diameter direction perpendicular to the orientation direction of the cavity is r (μm) and the average length of the cavity in the orientation direction of the cavity is L (μm) The fiber according to any one of <1> to <2>, wherein the ratio is 10 or more and 100 or less.
<4> The fiber according to any one of <1> to <3>, wherein the resin layer of the core material is made of only a crystalline polymer.
<5> Permeation of a fiber having the same crystallinity as that of the polymer having the crystallinity of the fiber, and having the same fineness as the fiber and having no cavity, where the transmittance of the fiber is M (%) The fiber according to <4>, wherein the M / N ratio when the rate is N (%) is 0.2 or less, and the glossiness of the fiber is 50 or more.
<6> The average number of cavities in an arbitrary cross section in the diameter direction perpendicular to the orientation direction of the cavities is P, the refractive index of the crystalline polymer portion is N1, the refractive index of the cavities is N2, and N1 and N2 Is a fiber according to any one of <4> to <5>, wherein a product of ΔN and P is 3 or more, where ΔN (= N1−N2).
<7> The fiber according to any one of <4> to <6>, wherein the polymer having crystallinity includes only one kind.
<8> The fiber according to any one of <4> to <7>, wherein the polymer having crystallinity is a polyolefin, a polyester, or a polyamide.
<9> The resin layer of the core material is obtained by melt spinning a resin composition composed only of a polymer having crystallinity,
At a speed of 10 to 36,000 mm / min, and
When the stretching temperature is T (° C.) and the glass transition temperature of the crystalline polymer is Tg (° C.),
(Tg-30) ≦ T ≦ (Tg + 50)
The fiber according to any one of <1> to <8>, obtained by stretching at a stretching temperature T (° C.) represented by:
<10> The method for producing a fiber according to any one of <1> to <9>, wherein a plurality of resin layers are laminated and spun on a resin layer of a core material made only of a crystalline polymer. A lamination spinning process, and a stretching process of stretching in the length direction of the resin layer of the core material,
The stretching step includes
At a speed of 10 to 36,000 mm / min, and
When the stretching temperature is T (° C.) and the glass transition temperature of the crystalline polymer is Tg (° C.),
(Tg-30) ≦ T ≦ (Tg + 50)
It is the manufacturing method of the fiber characterized by extending | stretching with the extending | stretching temperature T (degreeC) represented by these.
 本発明によると、従来における諸問題を解決することができ、リサイクル性及び耐久性が高く、内部に空洞を有する繊維及びその効率的な製造方法を提供することができる。 According to the present invention, it is possible to solve conventional problems, provide a fiber having high recyclability and durability, and having a cavity inside, and an efficient manufacturing method thereof.
図1は、本発明の繊維の構成を示す断面図である。FIG. 1 is a cross-sectional view showing the structure of the fiber of the present invention. 図2Aは、本発明の繊維の製造方法における紡糸工程の一例を示す図である。FIG. 2A is a diagram illustrating an example of a spinning step in the fiber manufacturing method of the present invention. 図2Bは、本発明の繊維の製造方法における紡糸工程の一例を示す図である。FIG. 2B is a diagram illustrating an example of a spinning step in the fiber manufacturing method of the present invention. 図3Aは、アスペクト比を説明するための図であって、繊維の斜視図である。FIG. 3A is a diagram for explaining an aspect ratio and is a perspective view of a fiber. 図3Bは、アスペクト比を説明するための図であって、図3Aにおける繊維のA-A’断面図である。FIG. 3B is a diagram for explaining the aspect ratio, and is a cross-sectional view taken along the line A-A ′ of the fiber in FIG. 3A. 図3Cは、アスペクト比を説明するための図であって、図3Aにおける繊維のB-B’断面図である。FIG. 3C is a diagram for explaining the aspect ratio, and is a cross-sectional view taken along the line B-B ′ of the fiber in FIG. 3A. 図4は、被覆ラインの概略図である。FIG. 4 is a schematic view of a coating line. 図5は、実施例1の繊維の断面の写真画像である。FIG. 5 is a photographic image of the cross section of the fiber of Example 1.
(繊維)
 図1は、本発明の一例としての繊維の長さ方向に直交する方向における断面図である。図1に示すように、本発明の繊維10は、内部に空洞100を有する芯材の樹脂層11と、該芯材の樹脂層11を覆うようにして積層された一以上の樹脂層12(以下、被覆樹脂層12ということがある。)とを有してなる。
 ここで、被覆樹脂層12を構成する樹脂層のうち、本発明の繊維10の長さ方向に直交する方向における断面の最外層に位置する樹脂層を保護層12aとする。
 本発明の繊維における、長さ方向に直交する方向における断面の直径としては、一概に言えるわけではないが、0.1μm~200μm が好ましく、1μm~100μmがより好ましく、1μm~80μm が特に好ましい。前記断面の直径が、0.1μm未満であると、延伸時に切れるということがあり、200μmを超えると繊維のしなやかさ、肌触りが劣る場合があったり、生産性が低下するということがある。
(fiber)
FIG. 1 is a cross-sectional view in a direction orthogonal to the length direction of a fiber as an example of the present invention. As shown in FIG. 1, the fiber 10 of the present invention includes a core resin layer 11 having a cavity 100 therein, and one or more resin layers 12 laminated so as to cover the core resin layer 11 ( Hereinafter, it may be referred to as a coating resin layer 12).
Here, the resin layer located in the outermost layer of the cross section in the direction orthogonal to the length direction of the fiber 10 of this invention among the resin layers which comprise the coating resin layer 12 is set as the protective layer 12a.
The diameter of the cross section in the direction perpendicular to the length direction of the fiber of the present invention is not generally known, but is preferably 0.1 μm to 200 μm, more preferably 1 μm to 100 μm, and particularly preferably 1 μm to 80 μm. When the diameter of the cross section is less than 0.1 μm, it may be cut at the time of stretching, and when it exceeds 200 μm, the flexibility and texture of the fiber may be inferior, and the productivity may be lowered.
<繊維の光沢度>
 本発明の繊維の光沢度としては、60以上であることが好ましく、70以上であることがより好ましく、80以上であることが更に好ましい。
 ここで、前記光沢度は、変角光沢計により測定することができる。
<Glossiness of fiber>
The glossiness of the fiber of the present invention is preferably 60 or more, more preferably 70 or more, and still more preferably 80 or more.
Here, the glossiness can be measured by a variable glossmeter.
<繊維の断熱性>
 本発明の繊維の断熱性としては、芯材層の空洞断面積が大きくなればなるほど、静止空気層が形成され、断熱性が良好になる。ただし、芯材層の空洞断面積が大きくなるほど繊維としての力学特性が悪化する。そのために、芯材層の空洞断面積の割合が、5%から40%が好ましく、更には8%から40%が好ましく、12%から40%がもっとも好ましい。前記被覆樹脂層の厚みとしては、目的に応じて適宜選択されるが、例えば、前記芯材の樹脂層の断面における半径の3%以上30%以下が好ましい。3%以上25%以下が更に好ましく、3%以上20%以下がもっとも好ましい。
<Insulation of fiber>
As the heat insulating property of the fiber of the present invention, the larger the cavity cross-sectional area of the core material layer, the more the still air layer is formed and the better the heat insulating property. However, as the cavity cross-sectional area of the core material layer increases, the mechanical properties as fibers deteriorate. Therefore, the ratio of the cavity cross-sectional area of the core layer is preferably 5% to 40%, more preferably 8% to 40%, and most preferably 12% to 40%. The thickness of the coating resin layer is appropriately selected depending on the purpose, and for example, it is preferably 3% or more and 30% or less of the radius in the cross section of the resin layer of the core material. It is more preferably 3% or more and 25% or less, and most preferably 3% or more and 20% or less.
<繊維の耐久性>
 本発明の繊維の耐久性としては、基本的には空洞を有する繊維は力学的な耐久性は低い。しかし、鞘材層を設けることにより大幅に力学的な耐久性を上げることができる。しかも、芯材層の樹脂と異なる樹脂を鞘材層に適用することもでき、例えばポリエステルの心材層にポリプロピレンなどの鞘材層を構成することにより、耐水性なども向上することができる。
<Durability of fiber>
As the durability of the fiber of the present invention, basically, a fiber having a cavity has low mechanical durability. However, the provision of the sheath material layer can greatly increase the mechanical durability. In addition, a resin different from the resin of the core material layer can be applied to the sheath material layer. For example, by forming a sheath material layer such as polypropylene on the polyester core material layer, the water resistance and the like can be improved.
<芯材の樹脂層>
 前記芯材の樹脂層は、繊維としたときに内部に空洞を有していれば、特に制限はなく、目的に応じて適宜選択されるが、例えば、特開2005-256243号公報に開示された樹脂組成物によって形成されてもよいし、結晶性ポリマーからなる樹脂組成物によって形成されてもよい。これらのうち、無機微粒子や非相溶のポリマーを用いないで効率よく内部に空洞が形成される点で、結晶性ポリマーのみからなる樹脂組成物が特に好ましい。
 前記芯材の樹脂層は、結晶性ポリマーのみからなる樹脂組成物(以下、芯材の樹脂組成物ということがある。)を溶融紡糸し、高速延伸することによって作製される。具体的には、前記芯材の樹脂組成物を乾燥し、押出成型機で溶融し、溶融紡糸口金から溶融吐出し、冷却風で冷却し、その後、巻き取って、高速延伸を行うことにより作製される。
 前記芯材の樹脂組成物としては、結晶性ポリマーで形成され、ポリマー成分としては、該結晶性ポリマーのみであるが、ポリマー以外の成分としては、必要に応じて適宜選択した添加成分を含んでいてもよい。
 前記芯材の樹脂組成物の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フィルム状やシート状が挙げられる。
 また、前記芯材の樹脂組成物の構造としては、一種単独、二以上の材料で複合材料としてもよく、この例として、該芯材の樹脂組成物の切片を他のシートに組み込み、一体化して樹脂組成物としてもよい。
<Resin layer of core material>
The resin layer of the core material is not particularly limited as long as it has a cavity inside when it is made of fibers, and is appropriately selected according to the purpose. For example, it is disclosed in JP-A-2005-256243. It may be formed by a resin composition or a resin composition made of a crystalline polymer. Among these, a resin composition consisting only of a crystalline polymer is particularly preferable in that cavities are efficiently formed inside without using inorganic fine particles or an incompatible polymer.
The resin layer of the core material is produced by melt spinning a resin composition composed only of a crystalline polymer (hereinafter also referred to as a core resin composition) and drawing at high speed. Specifically, the core resin composition is dried, melted with an extruder, melted and discharged from a melt spinneret, cooled with cooling air, and then wound up and subjected to high-speed stretching. Is done.
The resin composition of the core material is formed of a crystalline polymer, and the polymer component is only the crystalline polymer, but the component other than the polymer includes additive components appropriately selected as necessary. May be.
There is no restriction | limiting in particular as a shape of the resin composition of the said core material, According to the objective, it can select suitably, For example, a film form and a sheet form are mentioned.
Further, the structure of the resin composition of the core material may be a single material or a composite material of two or more materials. As an example, a section of the resin composition of the core material is incorporated into another sheet and integrated. It is good also as a resin composition.
<<結晶性ポリマー>>
 一般に、ポリマーは、結晶性ポリマーと非晶性(アモルファス)ポリマーとに分けられる。前記結晶性ポリマーは、通常、100%結晶ということはなく、分子構造の中に長い鎖状の分子が規則的に並んだ結晶性領域と、規則的に並んでいない非結晶(アモルファス)領域とを含んでいる。
 本発明において、前記結晶性ポリマーは、分子構造の中に少なくとも前記結晶性領域を含んでいればよく、結晶性領域と非結晶領域とが混在していてもよい。
<< Crystalline polymer >>
In general, polymers are divided into crystalline polymers and amorphous (amorphous) polymers. The crystalline polymer is not usually 100% crystalline, a crystalline region in which long chain molecules are regularly arranged in a molecular structure, and an amorphous region that is not regularly arranged. Is included.
In the present invention, the crystalline polymer only needs to include at least the crystalline region in a molecular structure, and a crystalline region and an amorphous region may be mixed.
 前記結晶性ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、高密度ポリエチレン、ポリオレフィン(例えば、ポリプロピレンなど)、ポリアミド(PA)(例えば、ナイロン-6など)、ポリアセタール(POM)、ポリエステル(例えば、PET、PEN、PTT、PBT、PBNなど)、シンジオタクチック・ポリスチレン(SPS)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、フッ素樹脂、などが挙げられる。その中でも、力学強度や製造の観点から、ポリエステル、シンジオタクチック・ポリスチレン(SPS)、液晶ポリマー(LCP)が好ましく、ポリエステルがより好ましい。また、これらのうちの二種以上のポリマーをブレンドしたり、共重合させたりして使用してもよい。 The crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include high-density polyethylene, polyolefin (for example, polypropylene), polyamide (PA) (for example, nylon-6), Polyacetal (POM), polyester (for example, PET, PEN, PTT, PBT, PBN, etc.), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), liquid crystal polymer (LCP), And fluororesin. Among these, polyester, syndiotactic polystyrene (SPS), and liquid crystal polymer (LCP) are preferable from the viewpoint of mechanical strength and production, and polyester is more preferable. Two or more of these polymers may be blended or copolymerized.
 前記結晶性ポリマーの溶融粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、50~700Pa・sが好ましく、70~500Pa・sがより好ましく、80~300Pa・sが更に好ましい。前記溶融粘度が、50~700Pa・sであると、溶融製膜時にダイヘッドから吐出される溶融膜の形状が安定し、均一に製膜しやすくなる点で好ましい。また、前記溶融粘度が、50~700Pa・sであると、溶融製膜時の粘度が適切になって押出ししやすくなったり、製膜時の溶融膜がレベリングされて凹凸を低減できたりする点で好ましい。
 ここで、前記溶融粘度は、プレートタイプのレオメーターやキャピラリーレオメーターにより測定することができる。
The melt viscosity of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 to 700 Pa · s, more preferably 70 to 500 Pa · s, and more preferably 80 to 300 Pa · s. Further preferred. The melt viscosity of 50 to 700 Pa · s is preferable in that the shape of the melt film discharged from the die head during melt film formation is stable and uniform film formation is facilitated. In addition, when the melt viscosity is 50 to 700 Pa · s, the viscosity at the time of melt film formation becomes appropriate and the extrusion becomes easy, or the melt film at the time of film formation is leveled to reduce unevenness. Is preferable.
Here, the melt viscosity can be measured by a plate type rheometer or a capillary rheometer.
 前記結晶性ポリマーの極限粘度(IV:Intrinsic Viscosity)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.4~1.2が好ましく、0.6~1.0がより好ましく、0.7~0.9が更に好ましい。前記IVが、0.4~1.2であると、製膜されたフィルムの強度が高くなり、効率よく延伸することができる。 The intrinsic viscosity (IV: Intrinsic Viscosity) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.2, preferably 0.6 to 1.0. Is more preferable, and 0.7 to 0.9 is even more preferable. When the IV is 0.4 to 1.2, the strength of the film formed becomes high and the film can be efficiently stretched.
 前記結晶性ポリマーの融点(Tm)としては、特に制限はなく、目的に応じて適宜選択することができるが、40~350℃が好ましく、100~300℃がより好ましく、150~260℃が更に好ましい。前記融点が、40~350℃であると、通常の使用で予想される温度範囲で形を保ちやすくなる点で好ましく、高温での加工に必要とされる特殊な技術を特に用いなくても、均一な製膜ができる点で好ましい。
 ここで、前記融点は、示差熱分析装置(DSC)により測定することができる。
The melting point (Tm) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 40 to 350 ° C, more preferably 100 to 300 ° C, and further preferably 150 to 260 ° C. preferable. The melting point is preferably from 40 to 350 ° C. in that it is easy to maintain the shape in the temperature range expected for normal use, even without using special techniques required for processing at high temperatures. It is preferable at the point which can form a uniform film.
Here, the melting point can be measured by a differential thermal analyzer (DSC).
 前記結晶性ポリマーの重量平均分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、5,000~2,000,000が好ましく、10,000~1,500,000がより好ましく、20,000~1,200,000が更に好ましい。前記重量平均分子量が、5,000~2,000,000であると、延伸での空洞発現性と繊維としての力学安定性の点で好ましい。
 ここで、前記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC Gel Permeation Chromatography)法により測定することができる。
The weight average molecular weight of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5,000 to 2,000,000, and 10,000 to 1,500,000. More preferred is 20,000 to 1,200,000. The weight average molecular weight is preferably 5,000 to 2,000,000 from the viewpoints of cavitation in drawing and mechanical stability as a fiber.
Here, the weight average molecular weight can be measured by a gel permeation chromatography (GPC Gel Permeation Chromatography) method.
-ポリエステル-
 ここで、前記結晶性ポリマーのうち、力学強度や製造の観点から、本発明において特に好ましく用いられるポリエステルについて説明する。
 前記ポリエステルは、エステル結合を主鎖の主要な結合鎖とするポリマーである。したがって、前記結晶性ポリマーとして好適な前記ポリエステルとしては、前記例示したPET(ポリエチレンテレフタエレート)、PEN(ポリエチレンナフタレート)、PTT(ポリトリメチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PBN(ポリブチレンナフタレート)だけでなく、ジカルボン酸成分とジオール成分との重縮合反応によって得られる高分子化合物が全て含まれる。
-polyester-
Here, among the crystalline polymers, polyesters that are particularly preferably used in the present invention will be described from the viewpoint of mechanical strength and production.
The polyester is a polymer having an ester bond as a main bond chain of the main chain. Therefore, examples of the polyester suitable as the crystalline polymer include the exemplified PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PTT (polytrimethylene terephthalate), PBT (polybutylene terephthalate), and PBN (polyethylene). Not only butylene naphthalate) but also all polymer compounds obtained by polycondensation reaction of a dicarboxylic acid component and a diol component.
 前記ジカルボン酸成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環族ジカルボン酸、オキシカルボン酸、多官能酸などが挙げられ、中でも、芳香族ジカルボン酸が好ましい。 The dicarboxylic acid component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, oxycarboxylic acids, and polyfunctional acids. Among them, aromatic dicarboxylic acids are preferable.
 前記芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ナフタレンジカルボン酸、ジフェノキシエタンジカルボン酸、5-ナトリウムスルホイソフタル酸などが挙げられ、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸が好ましく、テレフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸がより好ましい。 Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, naphthalenedicarboxylic acid, diphenoxyethanedicarboxylic acid, and 5-sodium sulfoisophthalic acid. Acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are preferable, and terephthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are more preferable.
 前記脂肪族ジカルボン酸としては、例えば、シュウ酸、コハク酸、エイコ酸、アジピン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、マレイン酸、フマル酸が挙げられる。前記脂環族ジカルボン酸としては、例えば、シクロヘキシンジカルボン酸などが挙げられる。前記オキシカルボン酸としては、例えば、p-オキシ安息香酸などが挙げられる。前記多官能酸としては、例えば、トリメリット酸、ピロメリット酸などが挙げられる。 Examples of the aliphatic dicarboxylic acid include oxalic acid, succinic acid, eicoic acid, adipic acid, sebacic acid, dimer acid, dodecanedioic acid, maleic acid, and fumaric acid. Examples of the alicyclic dicarboxylic acid include cyclohexyne dicarboxylic acid. Examples of the oxycarboxylic acid include p-oxybenzoic acid. Examples of the polyfunctional acid include trimellitic acid and pyromellitic acid.
 前記ジオ-ル成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、脂肪族ジオール、脂環族ジオール、芳香族ジオール、ジエチレングリコール、ポリアルキレングリコールなどが挙げられ、中でも、脂肪族ジオールが好ましい。 The diol component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aliphatic diols, alicyclic diols, aromatic diols, diethylene glycol, and polyalkylene glycols. Aliphatic diols are preferred.
 前記脂肪族ジオールとしては、例えば、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、トリエチレングリコールなどが挙げられ、中でも、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオールが特に好ましい。前記脂環族ジオールとしては、例えば、シクロヘキサンジメタノールなどが挙げられる。前記芳香族ジオールとしては、例えば、ビスフェノールA、ビスフェノールSなどが挙げられる。 Examples of the aliphatic diol include ethylene glycol, propane diol, butane diol, pentane diol, hexane diol, neopentyl glycol, and triethylene glycol. Among them, propane diol, butane diol, pentane diol, and hexane diol are exemplified. Particularly preferred. Examples of the alicyclic diol include cyclohexanedimethanol. Examples of the aromatic diol include bisphenol A and bisphenol S.
 前記ポリエステルの溶融粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、50~700Pa・sが好ましく、70~500Pa・sがより好ましく、80~300Pa・sが更に好ましい。前記溶融粘度が大きいほうが延伸時に空洞を発現しやすいが、前記溶融粘度が50~700Pa・sであると、製膜時に押出しがしやすくなったり、樹脂の流れが安定して滞留が発生しづらくなり、品質が安定する点で好ましい。また、前記溶融粘度が50~700Pa・sであると、延伸時に延伸張力が適切に保たれるために、均一に延伸しやすくなり、破断しづらくなる点で好ましい。更に、前記溶融粘度が50~700Pa・sであると、製膜時にダイヘッドから吐出される溶融膜の形態が維持しやすくなって、安定的に成形できたり、製品が破損しにくくなったりするなど、物性が高まる点で好ましい。 The melt viscosity of the polyester is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 to 700 Pa · s, more preferably 70 to 500 Pa · s, and still more preferably 80 to 300 Pa · s. . When the melt viscosity is higher, cavities are more likely to be generated during stretching. However, when the melt viscosity is 50 to 700 Pa · s, it is easier to extrude during film formation, and the resin flow is stable and retention is less likely to occur. It is preferable in that the quality is stable. Further, the melt viscosity of 50 to 700 Pa · s is preferable in that the stretching tension is appropriately maintained at the time of stretching, so that uniform stretching is facilitated and breakage is difficult. Furthermore, when the melt viscosity is 50 to 700 Pa · s, it is easy to maintain the form of the melt film discharged from the die head during film formation, and it is possible to form stably and the product is difficult to break. , Which is preferable in terms of enhancing physical properties.
 前記ポリエステルの極限粘度(IV)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.4~1.2が好ましく、0.6~1.0がより好ましく、0.7~0.9が更に好ましい。前記IVが大きいほうが延伸時に空洞を発現しやすいが、前記IVが、0.4~1.2であると、製膜時に押出しがしやすくなったり、樹脂の流れが安定して滞留が発生しづらくなり、品質が安定する点で好ましい。また、前記IVが、0.4~1.2であると、製膜時に溶融樹脂のフィルターを設置した場合であっても、フィルターに負荷がかかりにくく、樹脂の流れが安定して滞留が発生しづらくなる点で好ましい。更に、前記IVが、0.4~1.2であると、延伸時に延伸張力が適切に保たれるために、均一に延伸しやすくなり、装置に負荷がかかりにくい点で好ましい。加えて、前記IVが、0.4~1.2であると、製品が破損しにくくなって、物性が高まる点で好ましい。 The intrinsic viscosity (IV) of the polyester is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.2, more preferably 0.6 to 1.0, 7 to 0.9 is more preferable. When the IV is larger, cavities are more likely to appear during stretching. However, when the IV is 0.4 to 1.2, extrusion becomes easier during film formation, and the resin flow becomes stable and stays. This is preferable in that the quality becomes stable. Further, when the IV is 0.4 to 1.2, even when a molten resin filter is installed at the time of film formation, it is difficult to apply a load to the filter, and the resin flow is stable and stagnation occurs. It is preferable in that it becomes difficult to do. Further, when the IV is 0.4 to 1.2, the stretching tension is appropriately maintained at the time of stretching, so that it is easy to stretch uniformly and it is preferable in that a load is not easily applied to the apparatus. In addition, when the IV is 0.4 to 1.2, the product is less likely to be damaged, which is preferable in terms of improving physical properties.
 前記ポリエステルの融点としては、特に制限はなく、目的に応じて適宜選択することができるが、耐熱性や製膜性などの観点から、150~300℃が好ましく、180~270℃がより好ましい。 The melting point of the polyester is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 150 to 300 ° C., more preferably 180 to 270 ° C. from the viewpoints of heat resistance and film forming properties.
 なお、前記ポリエステルとして、前記ジカルボン酸成分と前記ジオール成分とが、それぞれ一種で重合してポリマーを形成していてもよく、前記ジカルボン酸成分及び/又は前記ジオール成分が、二種以上で共重合してポリマーを形成していてもよい。また、前記ポリエステル樹脂として、二種以上のポリマーをブレンドして使用してもよい。 In addition, as said polyester, the said dicarboxylic acid component and the said diol component may each superpose | polymerize, and the polymer may be formed, and the said dicarboxylic acid component and / or the said diol component are copolymerized by 2 or more types. Thus, a polymer may be formed. Further, two or more kinds of polymers may be blended and used as the polyester resin.
 前記二種以上でのポリマーのブレンドにおいて、主たるポリマーに対して添加されるポリマーは、前記主たるポリマーに対して、溶融粘度及び極限粘度が近く、添加量が少量であるほうが、製膜時や溶融押出し時に物性が高まり、押出ししやすくなる点で好ましい。 In the blend of two or more polymers, the polymer added to the main polymer has a melt viscosity and an intrinsic viscosity that are close to those of the main polymer, and the addition amount is smaller when the film is formed or melted. It is preferable in that the physical properties are enhanced during extrusion and the extrusion becomes easy.
 また、前記ポリエステル樹脂の流動特性の改良、光線透過性の制御、塗布液との密着性の向上などを目的として、前記ポリエステル樹脂に対してポリエステル系以外の樹脂を添加してもよい。 In addition, for the purpose of improving the flow characteristics of the polyester resin, controlling light transmittance, and improving the adhesion with the coating solution, a resin other than polyester may be added to the polyester resin.
 このように、前記芯材の樹脂層は、従来技術において添加されていた無機系微粒子、相溶しない樹脂などの空洞形成剤を特に添加しなくても、簡便な工程で空洞を形成させることができる。さらに、不活性ガスを予め樹脂の中に溶け込ませるための特殊な設備も必要としない。なお、繊維の製造方法については、後記する。 As described above, the resin layer of the core material can form cavities in a simple process even without adding a cavity forming agent such as inorganic fine particles or incompatible resins added in the prior art. it can. Furthermore, no special equipment for dissolving the inert gas in the resin in advance is required. The fiber manufacturing method will be described later.
 ここで、前記芯材の樹脂層は、空洞の発現に寄与しない成分であれば、必要に応じてその他の成分を含んでいてもよい。前記その他の成分としては、フィラー、耐熱安定剤、酸化防止剤、紫外線吸収剤、有機の易滑剤、核剤、染料、顔料、難燃剤、離型剤、分散剤、カップリング剤などが挙げられる。前記その他の成分が空洞の発現に寄与したかどうかは、空洞内又は空洞の界面部分に、結晶性ポリマー以外の成分(例えば、後記する各成分など)が検出されるかどうかで判別できる。 Here, as long as the resin layer of the core material is a component that does not contribute to the development of the cavity, it may contain other components as necessary. Examples of the other components include fillers, heat stabilizers, antioxidants, ultraviolet absorbers, organic lubricants, nucleating agents, dyes, pigments, flame retardants, mold release agents, dispersants, and coupling agents. . Whether or not the other component contributes to the development of the cavity can be determined by whether or not a component other than the crystalline polymer (for example, each component described later) is detected in the cavity or at the interface portion of the cavity.
 前記酸化防止剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノール系化合物、イオウ系化合物、リン系化合物が挙げられ、中でも、公知のヒンダードフェノールが挙げられる。前記ヒンダードフェノールとしては、例えば、イルガノックス1010、同スミライザーBHT、同スミライザーGA-80などの商品名で市販されている酸化防止剤が挙げられる。
 また、前記酸化防止剤を一次酸化防止剤として利用し、更に二次酸化防止剤を組み合わせて適用することもできる。前記二次酸化防止剤としては、例えば、スミライザーTPL-R、同スミライザーTPM、同スミライザーTP-Dなどの商品名で市販されている酸化防止剤が挙げられる。
There is no restriction | limiting in particular as said antioxidant, According to the objective, it can select suitably, For example, a phenolic compound, a sulfur type compound, a phosphorus type compound is mentioned, Especially, a well-known hindered phenol is mentioned. . Examples of the hindered phenol include antioxidants commercially available under trade names such as Irganox 1010, Sumilyzer BHT, Sumilyzer GA-80.
Further, the antioxidant can be used as a primary antioxidant and further combined with a secondary antioxidant. Examples of the secondary antioxidant include antioxidants commercially available under trade names such as Sumilizer TPL-R, Sumilizer TPM, Sumilizer TP-D, and the like.
 前記離型剤としては、カルナバワックス等の植物系ワックス、蜜蝋、ラノリン等の動物系ワックス、モンタンワックス等の鉱物系ワックス、パラフィンワックス、ポリエチレンワックス等の石油系ワックス、ひまし油及びその誘導体、脂肪酸及びその誘導体等の油脂系ワックスが挙げられ、高級脂肪酸誘導体としては、ラウリン酸、ステアリン酸、モンタン酸等の高級脂肪酸と一価又は二価以上のアルコールとのエステル等が挙げられる。 Examples of the release agent include plant waxes such as carnauba wax, animal waxes such as beeswax and lanolin, mineral waxes such as montan wax, petroleum waxes such as paraffin wax and polyethylene wax, castor oil and derivatives thereof, fatty acids and Examples of the fatty acid derivatives include esters of higher fatty acids such as lauric acid, stearic acid, and montanic acid, and monohydric or dihydric or higher alcohols.
 前記難燃剤としては、特に制限はなく、目的に応じて適宜選択できるが、臭素系難燃剤が特に好ましい。臭素系難燃剤としては、高分子量有機ハロゲン化合物、低分子量有機ハロゲン化合物等の有機ハロゲン系難燃剤を単独で使用しても、二種以上併用してもよい。また、リン系、無機系等の難燃剤を用いてもよい。 The flame retardant is not particularly limited and may be appropriately selected depending on the purpose, but a brominated flame retardant is particularly preferable. As brominated flame retardants, organic halogen flame retardants such as high molecular weight organic halogen compounds and low molecular weight organic halogen compounds may be used alone or in combination of two or more. Moreover, you may use flame retardants, such as a phosphorus type and an inorganic type.
<空洞>
 前記芯材の樹脂層は、空洞を有し、前記空洞のアスペクト比に特徴を有している。
 前記空洞とは、樹脂成形体内部に存在する、真空状態のドメインもしくは気相のドメインを意味する。
<Cavity>
The resin layer of the core material has a cavity and is characterized by an aspect ratio of the cavity.
The cavity means a vacuum domain or a gas phase domain existing inside the resin molded body.
 図3A~3Cは、アスペクト比を説明するための図であって、図3Aは、前記芯材の樹脂層の斜視図であり、図3Bは、図3Aにおける前記芯材の樹脂層のA-A’断面図であり、図3Cは、図3Aにおける前記芯材の樹脂層のB-B’断面図である。 3A to 3C are diagrams for explaining the aspect ratio. FIG. 3A is a perspective view of the resin layer of the core material, and FIG. 3B is an A− of the resin layer of the core material in FIG. 3A. FIG. 3C is a cross-sectional view taken along line A ′, and FIG. 3C is a cross-sectional view taken along line BB ′ of the resin layer of the core material in FIG. 3A.
 前記アスペクト比とは、前記繊維10の表面10aに直交し、かつ、前記空洞の配向方向に直交する方向における空洞100の平均の長さをr(μm)(図3B参照)とし、前記芯材の樹脂層の表面に直交し、かつ、前記空洞の配向方向における空洞100の平均の長さをL(μm)(図3C参照)とした際のL/r比を意味する。
 前記アスペクト比としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができ、10以上100以下であることが好ましく、15以上100以下がより好ましく、20以上100以下が更に好ましい。
The aspect ratio is defined as an average length of the cavity 100 in a direction orthogonal to the surface 10a of the fiber 10 and orthogonal to the orientation direction of the cavity, r (μm) (see FIG. 3B), and the core material. L / r ratio when the average length of the cavity 100 in the orientation direction of the cavity is L (μm) (see FIG. 3C).
The aspect ratio is not particularly limited as long as the effect of the present invention is not impaired, can be appropriately selected according to the purpose, and is preferably 10 or more and 100 or less, more preferably 15 or more and 100 or less, and 20 More preferred is 100 or less.
 なお、前記空洞の配向方向とは、延伸が一軸のみの場合には、その一軸の延伸方向(第一の延伸方向)を示す。通常は、製造時に成形体の流れる方向に沿って縦延伸を行うため、この縦延伸の方向が前記空洞の配向方向(第一の延伸方向)に相当する。
 また、延伸が二軸以上の場合には、空洞形成を目的とした延伸方向のうち少なくとも一方向を示す。通常は、二軸以上の延伸においても、製造時に成形体の流れる方向に沿って縦延伸が行われ、かつ、この縦延伸により空洞を形成することが可能であるため、この縦延伸の方向が前記空洞の配向方向(第一の延伸方向)に相当する。
The orientation direction of the cavities indicates the uniaxial stretching direction (first stretching direction) when stretching is uniaxial. Usually, since longitudinal stretching is performed along the direction in which the molded body flows during production, this longitudinal stretching direction corresponds to the orientation direction of the cavities (first stretching direction).
Moreover, when extending | stretching is biaxial or more, at least one direction is shown among the extending directions aiming at cavity formation. Usually, even in the case of biaxial or more stretching, longitudinal stretching is performed along the flow direction of the molded body during production, and a cavity can be formed by this longitudinal stretching. It corresponds to the orientation direction of the cavity (first stretching direction).
<芯材層の空洞の占有面積>
 また、本発明の繊維は、その長さ方向に直交する任意の断面における繊維の芯材層の断面積をX(μm)とし、前記断面における空洞の断面積をY(μm)としたとき、これらの比(Y/X)の平均が0.05以上、0.4以下であることが好ましい。
 なお、前記断面における各断面積は、光学顕微鏡や電子顕微鏡の画像により測定することができる。
<Occupied area of core layer cavity>
In the fiber of the present invention, the cross-sectional area of the fiber core layer in an arbitrary cross section orthogonal to the length direction is X (μm 2 ), and the cross-sectional area of the cavity in the cross-section is Y (μm 2 ). In this case, the average of these ratios (Y / X) is preferably 0.05 or more and 0.4 or less.
In addition, each cross-sectional area in the said cross section can be measured with the image of an optical microscope or an electron microscope.
 また、前記芯材の樹脂層は、膜厚方向の空洞の平均の個数P、結晶性ポリマー部と空洞との屈折率差ΔN、及び、前記ΔNと前記Pとの積に、特徴を有している。
 前記膜厚方向の空洞の個数とは、前記芯材の樹脂層10の表面10aに直交し、かつ、前記空洞の配向方向に直交する方向を含む面(図3AにおけるA-A’断面)において、膜厚方向に含まれる空洞100の個数を意味する。
 また、前記結晶性ポリマー部とは、前記繊維において空洞以外の部分(結晶性ポリマーよりなる部分)を指す。
 前記膜厚方向の空洞の平均の個数Pとしては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができ、5個以上が好ましく、10個以上がより好ましく、15個以上が更に好ましい。
 ここで、前記膜厚方向の空洞の個数は、光学顕微鏡や電子顕微鏡の画像により測定することができる。
In addition, the resin layer of the core material is characterized by an average number P of cavities in the film thickness direction, a refractive index difference ΔN between the crystalline polymer portion and the cavities, and a product of the ΔN and the P. ing.
The number of cavities in the film thickness direction is a plane (AA ′ cross section in FIG. 3A) including a direction orthogonal to the surface 10a of the resin layer 10 of the core material and orthogonal to the alignment direction of the cavities. This means the number of cavities 100 included in the film thickness direction.
The crystalline polymer portion refers to a portion (a portion made of a crystalline polymer) other than a cavity in the fiber.
The average number P of cavities in the film thickness direction is not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose, preferably 5 or more, more preferably 10 or more. Preferably, 15 or more are more preferable.
Here, the number of cavities in the film thickness direction can be measured by an image of an optical microscope or an electron microscope.
 前記結晶性ポリマー部と空洞との屈折率差ΔNとは、具体的には、結晶性ポリマー部の屈折率をN1として、空洞の屈折率をN2とした際に、N1とN2との差であるΔN(=N1-N2)の値を意味する。
 ここで、結晶性ポリマー部や空洞の屈折率N1、N2は、アッベ屈折計などにより測定することができる。
 前記前記ΔNと前記Pとの積は、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができるが、3以上が好ましく、5以上がより好ましく、7以上が更に好ましい。
The refractive index difference ΔN between the crystalline polymer portion and the cavity is specifically the difference between N1 and N2 when the refractive index of the crystalline polymer portion is N1 and the refractive index of the cavity is N2. It means a value of ΔN (= N1−N2).
Here, the refractive indexes N1 and N2 of the crystalline polymer portion and the cavity can be measured by an Abbe refractometer or the like.
The product of the ΔN and the P is not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose, but is preferably 3 or more, more preferably 5 or more, and 7 or more. Is more preferable.
 このように、前記芯材の樹脂層は、その内部に前記空洞を有していることにより、例えば、反射率や光沢性などにおいて、様々な優れた特性を有している。言い換えると、前記芯材の樹脂層の内部の空洞の態様を変化させることで、反射率や光沢性などの特性を調節することができる。 Thus, the resin layer of the core material has various excellent characteristics in, for example, reflectivity and glossiness due to the hollow inside. In other words, characteristics such as reflectance and gloss can be adjusted by changing the shape of the cavity inside the resin layer of the core material.
-光沢度-
 前記芯材の樹脂層の光沢度としては、60以上であることが好ましく、70以上であることがより好ましく、80以上であることが更に好ましい。
 ここで、前記光沢度は、変角光沢計により測定することができる。
-Glossiness-
The glossiness of the resin layer of the core material is preferably 60 or more, more preferably 70 or more, and still more preferably 80 or more.
Here, the glossiness can be measured by a variable glossmeter.
<被覆樹脂層>
 本発明において、鞘材とは、前記被覆樹脂層のことである。
 前記被覆樹脂層の材料としては、前記芯材の樹脂層における空洞の機能を著しく損なわない限り、特に制限はなく、目的に応じて適宜選択されるが、例えば、耐久性、特に耐水性、耐加水分解性、引っ張り弾性率、および折れ曲げ性の点で、疎水的なポリマー、たとえばポリオレフィン類やフッ素樹脂が好ましい。また、芯材層との密着の観点では、芯材層と同じ樹脂が好ましい。ここで、前記芯材の樹脂層における空洞の機能とは、該空洞の界面における光の屈折によって発現する干渉色や反射、および断熱性である。即ち、前記被覆樹脂層は、前記干渉色や反射の発現を妨げない光透過率や、断熱性を有することが好ましい。
 前記被覆樹脂層の厚みとしては、目的に応じて適宜選択されるが、例えば、前記芯材の樹脂層の断面における半径の3%以上30%以下が好ましい。前記被覆樹脂層の厚みが前記芯材の樹脂層の断面における半径の3%未満であると、力学特性が十分に付与できないということがあり、前記被覆樹脂層の厚みが前記芯材の樹脂層の断面における半径の30%以下を超えると、断熱性の低下、繊維としてのしなやかさや肌触りが不足したり、生産性が低下するということがある。
<Coating resin layer>
In this invention, a sheath material is the said coating resin layer.
The material of the coating resin layer is not particularly limited as long as the function of the cavity in the resin layer of the core material is not significantly impaired, and is appropriately selected according to the purpose. For example, durability, particularly water resistance, In view of hydrolyzability, tensile modulus, and bendability, hydrophobic polymers such as polyolefins and fluororesins are preferred. Further, from the viewpoint of adhesion with the core material layer, the same resin as the core material layer is preferable. Here, the function of the cavity in the resin layer of the core material is an interference color, reflection, and heat insulation that are manifested by light refraction at the interface of the cavity. That is, it is preferable that the coating resin layer has light transmittance and heat insulation properties that do not hinder the expression of the interference color and reflection.
The thickness of the coating resin layer is appropriately selected depending on the purpose, and for example, it is preferably 3% or more and 30% or less of the radius in the cross section of the resin layer of the core material. If the thickness of the coating resin layer is less than 3% of the radius of the cross section of the resin layer of the core material, sufficient mechanical properties may not be imparted, and the thickness of the coating resin layer may be the resin layer of the core material. If it exceeds 30% or less of the radius in the cross section, there may be a decrease in heat insulation, a lack of flexibility and touch as a fiber, or a decrease in productivity.
<<保護層>>
 本発明では、前記被覆樹脂層を構成する樹脂層のうち、本発明の繊維の長さ方向に直交する方向における断面の最外層に位置する樹脂層を保護層とすることが好ましい。特に、被覆樹脂層が保護層を兼ねられる場合が多いので、保護層を設けなくてもよい。
<< Protective layer >>
In the present invention, it is preferable that the resin layer located in the outermost layer of the cross section in the direction orthogonal to the length direction of the fiber of the present invention among the resin layers constituting the coating resin layer is a protective layer. In particular, since the coating resin layer often serves as a protective layer, the protective layer may not be provided.
(被覆樹脂・保護層樹脂)
 前述した被覆材である被覆用樹脂組成物を選択する際には、製造時および製造後に素線(芯材層をこのように呼ぶ場合もある)へダメージを与えないものが重要である。溶融押出法で被覆を行う場合、樹脂溶融によって被覆材に加えられた熱が、被覆工程で、素線へ伝播して素線に悪影響を与えてしまうため、組成物を構成する熱可塑性樹脂の流動開始温度が一定の範囲内に収まることが好ましい。
(Coating resin / Protective layer resin)
When selecting the coating resin composition that is the above-described coating material, it is important that the wire does not damage the strands (the core layer may be called in this way) during and after the production. When coating by the melt extrusion method, heat applied to the coating material by melting the resin propagates to the strands in the coating step and adversely affects the strands. Therefore, the thermoplastic resin constituting the composition It is preferable that the flow start temperature falls within a certain range.
 本発明で使用される、好ましい流動開始温度を有する熱可塑性樹脂としては、前述した特徴を有するものであれば特に制限されるものではない。例えば、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、ナイロン(ナイロン-6、ナイロン-66、ナイロン-11など)、ポリ塩化ビニル、エチレンアクリル酸エチル共重合体、ポリエステル化合物などが挙げられ、その中でも好ましくはポリエチレン、ポリプロピレン、ポリエステルである。これらの熱可塑性樹脂はその分子量、分子量分布、枝分かれ度、架橋度、末端官能基の種類などを変えることにより、種々の溶融挙動を示し、流動開始温度の値を制御することが可能となる。
 また、これらの樹脂を適宜混合して好ましい流動開始温度の範囲に調整してよい。また同様に流動開始温度を低下するために、前述したポリマーの共重合体を用いたり、酢酸ビニル成分を共重合したりしてもよい。または、可塑剤などの添加剤量を調整することにより、流動開始温度を制御してもよい。
The thermoplastic resin having a preferable flow start temperature used in the present invention is not particularly limited as long as it has the above-described characteristics. Examples include polyethylene, polypropylene, ethylene-vinyl acetate copolymer, nylon (nylon-6, nylon-66, nylon-11, etc.), polyvinyl chloride, ethylene ethyl acrylate copolymer, polyester compound, etc. Of these, polyethylene, polypropylene, and polyester are preferable. These thermoplastic resins exhibit various melting behaviors by changing the molecular weight, molecular weight distribution, branching degree, crosslinking degree, type of terminal functional group, and the like, and the value of the flow start temperature can be controlled.
Further, these resins may be mixed as appropriate to adjust to a preferable flow start temperature range. Similarly, in order to lower the flow start temperature, a copolymer of the aforementioned polymer may be used, or a vinyl acetate component may be copolymerized. Alternatively, the flow start temperature may be controlled by adjusting the amount of an additive such as a plasticizer.
 ここで、前記被覆樹脂層は、前記保護層であるか否かにかかわらず、前記芯材の樹脂層を保護するために、繊維として引っ張られても切れないことが好ましいため、前記芯材の樹脂層に対する密着性が高いことが要求される。
 そこで、前記被覆樹脂層の樹脂組成物の溶解性パラメータと、前記芯材の樹脂層の樹脂組成物の溶解性パラメータとの差が7(cal/cm1/2以下であることが好ましい。
 ここで、前記溶解性パラメータ(Solubility Parameter)とは、物質間の混合性の尺度となる特性値であり、溶解性パラメータをδとし、物質の凝固エネルギー(モル蒸発エネルギー)をEとし、分子容(モル体積)をVとしたとき、下記式(x)によって表される。
δ=(E/V)1/2・・・・・・・・・・・・・・・・・・・・・・・・・式(x)
 また、この溶解性パラメータについては、例えば、J.Brandrup、E.Hなどの「PolymerHandbook(4th.edition)、VII/671~VII/714」に記載されている。
Here, regardless of whether or not the covering resin layer is the protective layer, in order to protect the resin layer of the core material, it is preferable that the coating resin layer does not break even when pulled as a fiber. High adhesion to the resin layer is required.
Therefore, the difference between the solubility parameter of the resin composition of the coating resin layer and the solubility parameter of the resin composition of the resin layer of the core material is preferably 7 (cal / cm 3 ) 1/2 or less. .
Here, the solubility parameter is a characteristic value that is a measure of the mixing property between substances, the solubility parameter is δ, the solidification energy (molar evaporation energy) of the substance is E, and the molecular volume. When (molar volume) is V, it is represented by the following formula (x).
δ = (E / V) 1/2 Equation (x)
As for the solubility parameter, for example, J. Org. Brandrup, E.I. H, “Polymer Handbook (4th edition), VII / 671 to VII / 714”.
(繊維の製造方法)
 以下、本発明の繊維の製造方法について説明する。
 本発明の繊維の製造方法としては、前記芯材の樹脂層に対して前記被覆樹脂層が同心円状の断面となるように被覆したプリフォーム(前駆体)を作製するプリフォーム作製工程(溶融紡糸工程)と、芯材の樹脂層の内部に空洞を発現させる延伸工程とを有する方法や、前記芯材の樹脂層を溶融紡糸する紡糸工程と、溶融紡糸された未延伸糸を延伸して内部に空洞を発現させる延伸工程と、延伸された繊維の表面に一層以上の被覆樹脂層を形成するコーティング工程とを有する方法などが挙げられる。これらの中でも、前者のプリフォーム作製工程(溶融紡糸工程)、及び延伸工程を有する方法が製造効率の点で好ましい。また、本発明の効果を損なわない限り、必要に応じて、その他の工程を組み合わせてもよい。
(Fiber manufacturing method)
Hereinafter, the manufacturing method of the fiber of this invention is demonstrated.
The fiber production method of the present invention includes a preform production step (melt spinning) for producing a preform (precursor) in which the coating resin layer is coated on the resin layer of the core material so as to have a concentric cross section. Step) and a drawing step for expressing a cavity in the core resin layer, a spinning step for melt spinning the resin layer of the core material, and drawing the melt-spun undrawn yarn into the inside And a method having a stretching step for developing a cavity and a coating step for forming one or more coating resin layers on the surface of the stretched fiber. Among these, the former method for forming a preform (melt spinning step) and a method having a drawing step are preferable in terms of production efficiency. Moreover, as long as the effect of this invention is not impaired, you may combine another process as needed.
[プリフォーム作製工程(溶融紡糸工程)]
 前記溶融紡糸工程は、同心円状に各樹脂層が積層された円筒形状のプリフォームを作製する工程である。前記溶融紡糸工程としては、コーティング法、溶融複合紡糸法などが挙げられ、これらのうちでも、溶融複合紡糸法が好ましい。
 前記コーティング法は、被覆樹脂層の樹脂組成物を溶剤に溶かして、芯材の樹脂層に塗布した後、乾燥して溶剤を蒸発させる製法である。
 前記溶融複合紡糸法としては、ラム押出複合紡糸法、連続複合紡糸法等が更に挙げられる。
[Preform production process (melt spinning process)]
The melt spinning step is a step of producing a cylindrical preform in which each resin layer is laminated concentrically. Examples of the melt spinning step include a coating method and a melt composite spinning method. Among these, the melt composite spinning method is preferable.
The coating method is a manufacturing method in which the resin composition of the coating resin layer is dissolved in a solvent, applied to the core resin layer, and then dried to evaporate the solvent.
Examples of the melt composite spinning method further include a ram extrusion composite spinning method and a continuous composite spinning method.
 前記ラム押出複合紡糸法は、芯材の樹脂層、及び複数の被覆樹脂層を構成する重合体のロッドを形成し、それらをシリンダに挿入し、シリンダの一端においてこのロッドを溶融しながらピストンにより他端から押圧して押し出し、複合紡糸ダイ(図2A参照)に形成された芯材の樹脂層の材料の流入孔1、及び複数の被覆樹脂層の材料の各流入孔2~7に、それぞれの重合体が所定の厚みになるように定量的に供給し、順次積層して多層構造とした後に、ガイドパイプ8によって隔絶された吐出口より吐出する方法であり、吐出された糸状体は定速で引き取られながら冷却され、プリフォームが作製される。 In the ram extrusion compound spinning method, a resin layer of a core material and a polymer rod constituting a plurality of coating resin layers are formed, inserted into a cylinder, and melted at one end of the cylinder by a piston. Pressing and extruding from the other end, into the inflow hole 1 of the core resin layer material formed on the composite spinning die (see FIG. 2A), and the respective inflow holes 2 to 7 of the plurality of coating resin layer materials, respectively The polymer is quantitatively supplied so as to have a predetermined thickness, sequentially laminated to form a multilayer structure, and then discharged from the discharge port isolated by the guide pipe 8. The discharged filament is fixed. It is cooled while being taken up at a high speed to produce a preform.
 前記連続複合紡糸法は、押出機で連続的に各層を構成する重合体を溶融し、必要に応じて脱揮を行った後、図2Aに示すような複合紡糸ダイに、前述したラム押出複合紡糸法と同様にして定量的に供給し、順次積層して多層構造とした後にダイより吐出する方法であり、吐出された糸状体は定速で引き取られながら冷却され、プリフォームが作製される。 In the continuous composite spinning method, the polymer constituting each layer is continuously melted by an extruder, and after devolatilization as necessary, the composite spinning die as shown in FIG. In the same manner as the spinning method, quantitative supply is performed, and a multi-layered structure is sequentially laminated, and then discharged from the die. The discharged filament is cooled while being drawn at a constant speed to produce a preform. .
 特に、連続複合紡糸法は、ポリマーの重合から紡糸までを一貫して連続的に紡糸することが容易であり、生産性に優れるとともに紡糸の工程以前に連続脱揮工程を導入することにより、残留モノマーや不純物等を十分に取り除くことができるため、透過性が高く、光学耐久性に優れた繊維が得られることから好適である。 In particular, the continuous composite spinning method is easy to consistently and continuously perform spinning from polymer polymerization to spinning, and is excellent in productivity, and by introducing a continuous devolatilization process before the spinning process, Since monomers and impurities can be sufficiently removed, a fiber having high permeability and excellent optical durability is preferable.
[延伸工程]
 図2Bに示すように、上記のようにして得られたプリフォーム21は、例えば、220~260℃に調整された加熱炉30内に挿入され、アニーリング処理装置31を介して、巻取り機32に巻き取られながら熱延伸処理が施され、本発明の繊維が作製される。
 具体的には、前記プリフォーム(未延伸糸)が少なくとも一軸に延伸される。そして、前記延伸工程により、プリフォーム(未延伸糸)が延伸されるとともに、その内部に第一の延伸方向を長軸とした空洞が形成されることで、本発明の繊維が得られる。
 なお、図2B中、21aは、延伸開始点を示す。
[Stretching process]
As shown in FIG. 2B, the preform 21 obtained as described above is inserted into, for example, a heating furnace 30 adjusted to 220 to 260 ° C., and the winding machine 32 is passed through an annealing treatment device 31. The fiber of the present invention is produced by being subjected to a heat stretching process while being wound around the fiber.
Specifically, the preform (undrawn yarn) is drawn at least uniaxially. Then, the preform (undrawn yarn) is drawn by the drawing step, and a cavity having a major axis in the first drawing direction is formed therein, whereby the fiber of the present invention is obtained.
In addition, in FIG. 2B, 21a shows an extending | stretching start point.
 延伸により空洞が形成される理由としては、前記芯材の樹脂層を構成する少なくとも一種類の結晶性を有するポリマーが、微結晶核状態が形成され、延伸時に伸張し難い結晶を含む相で、硬い微結晶間のアモルファス相の樹脂が引きちぎられるような形で剥離延伸されることにより、これが空洞形成源となって空洞が形成されるものと考えられる。
 なお、このような延伸による空洞形成は、結晶性を有するポリマーが一種類の場合だけではなく、二種類以上の結晶性を有するポリマーが、ブレンド又は共重合されている場合であっても可能である。
The reason why cavities are formed by stretching is that the polymer having at least one crystallinity constituting the resin layer of the core material is in a phase containing a crystal in which a microcrystalline nucleus state is formed and hardly stretched during stretching, It is considered that a cavity is formed by peeling and stretching in such a manner that the amorphous phase resin between hard microcrystals is torn off.
Such void formation by stretching is possible not only when there is only one kind of crystalline polymer, but also when two or more kinds of crystalline polymers are blended or copolymerized. is there.
 前記延伸の方法としては、本発明の効果を損なわない限り、特に制限はなく、例えば、一軸延伸、逐次二軸延伸、同時二軸延伸が挙げられるが、いずれの延伸方法においても、製造時に成形体の流れる方向に沿って縦延伸が行われることが好ましい。 The stretching method is not particularly limited as long as the effects of the present invention are not impaired, and examples thereof include uniaxial stretching, sequential biaxial stretching, and simultaneous biaxial stretching. In any stretching method, molding is performed during production. Longitudinal stretching is preferably performed along the direction of body flow.
 一般に、縦延伸においては、ロールの組合せやロール間の速度差により、縦延伸の段数や延伸速度を調節することができる。
 前記縦延伸の段数としては、一段以上であれば特に制限はないが、より安定して高速に延伸することができる点で、二段以上に縦延伸することが好ましい。また、二段以上に縦延伸することは、一段目の延伸によりネッキングの発生を確認したうえで、二段目の延伸により空洞を形成させることができる点においても、有利である。
 ここで、前記ネッキングとは、前記プリフォームの延伸時に生じるくびれ状の変形を意味し、前記延伸時において、前記プリフォームがその厚みが不連続に減少することが確認されることにより、「ネッキングが発現した」と定義する。
In general, in the longitudinal stretching, the number of longitudinal stretching stages and the stretching speed can be adjusted by the combination of rolls and the speed difference between the rolls.
The number of stages of the longitudinal stretching is not particularly limited as long as it is one or more, but it is preferable to perform longitudinal stretching in two or more stages in that it can be more stably stretched at a high speed. Further, longitudinal stretching in two or more stages is advantageous in that a cavity can be formed by second-stage stretching after confirming the occurrence of necking by first-stage stretching.
Here, the necking means a constricted deformation that occurs when the preform is stretched, and it is confirmed that the thickness of the preform decreases discontinuously during the stretching. Is expressed ".
--延伸速度--
 前記縦延伸の延伸速度としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができるが、10~36,000mm/minが好ましく、800~24,000mm/minがより好ましく、1,200~12,000mm/minが更に好ましい。前記延伸速度が、10mm/min以上であると、充分なネッキングを発現させやすい点で好ましい。また、前記延伸速度が、36,000mm/min以下であると、均一な延伸がしやすくなり、樹脂が破断しづらくなり、特に、高速延伸を目的とした大型な延伸装置を必要とせず、コストを低減できる点で好ましい。
--Stretching speed--
The stretching speed of the longitudinal stretching is not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose, but is preferably 10 to 36,000 mm / min, and preferably 800 to 24,000 mm. / Min is more preferable, and 1200 to 12,000 mm / min is still more preferable. When the stretching speed is 10 mm / min or more, it is preferable in that sufficient necking can be easily expressed. Further, when the stretching speed is 36,000 mm / min or less, uniform stretching is facilitated, and the resin is not easily broken. In particular, a large stretching apparatus for high-speed stretching is not required, and the cost is reduced. Is preferable in that it can be reduced.
 また、前記延伸の方法としては、例えば、一段延伸、二段延伸が挙げられ、そのいずれでも本発明に好適に適用できるが、製造の歩留まりや機械の制約の点から、二段延伸がより好ましい。
 より具体的には、一段延伸の場合の延伸速度としては、1,000~36,000mm/minが好ましく、1,100~24,000mm/minがより好ましく、1,200~12,000mm/minが更に好ましい。
In addition, examples of the stretching method include single-stage stretching and two-stage stretching, and any of them can be suitably applied to the present invention, but two-stage stretching is more preferable from the viewpoint of manufacturing yield and machine restrictions. .
More specifically, the stretching speed in the case of single-stage stretching is preferably 1,000 to 36,000 mm / min, more preferably 1,100 to 24,000 mm / min, and 1,200 to 12,000 mm / min. Is more preferable.
 二段延伸の場合には、一段目の延伸を、ネッキングを発現させることを主なる目的とした予備的な延伸とすることが好ましい。前記予備的な延伸の延伸速度としては、10~300mm/minが好ましく、40~220mm/minがより好ましく、70~150mm/minが更に好ましい。 In the case of two-stage stretching, it is preferable that the first-stage stretching is a preliminary stretching whose main purpose is to develop necking. The stretching speed of the preliminary stretching is preferably 10 to 300 mm / min, more preferably 40 to 220 mm / min, and further preferably 70 to 150 mm / min.
 そして、二段延伸における、前記予備的な延伸(一段目の延伸)によりネッキングを発現させた後の二段目の延伸速度は、前記予備的な延伸の延伸速度と変えることが好ましい。前記予備的延伸によりネッキングを発現させた後の、二段目の延伸速度としては、600~36,000mm/minが好ましく、800~24,000mm/minがより好ましく、1,200~15,000mm/minが更に好ましい。 In the two-stage stretching, the second-stage stretching speed after the necking is expressed by the preliminary stretching (first-stage stretching) is preferably changed from the preliminary stretching speed. The second stage stretching speed after causing necking by the preliminary stretching is preferably 600 to 36,000 mm / min, more preferably 800 to 24,000 mm / min, and 1,200 to 15,000 mm. / Min is more preferable.
--延伸温度--
 延伸時の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、
 延伸温度をT(℃)、ガラス転移温度をTg(℃)としたときに、
 (Tg-30)≦T≦(Tg+50)
で示される範囲の延伸温度T(℃)で延伸することが好ましく、
 (Tg-25)≦T≦(Tg+45)
で示される範囲の延伸温度T(℃)で延伸することがより好ましく、
 (Tg-20)≦T≦(Tg+40)
で示される範囲の延伸温度T(℃)で延伸することが更に好ましい。
--Extension temperature--
The temperature during stretching is not particularly limited and can be appropriately selected according to the purpose.
When the stretching temperature is T (° C) and the glass transition temperature is Tg (° C),
(Tg-30) ≦ T ≦ (Tg + 50)
It is preferable to stretch at a stretching temperature T (° C.) in the range indicated by
(Tg−25) ≦ T ≦ (Tg + 45)
It is more preferable to stretch at a stretching temperature T (° C.) in the range indicated by
(Tg−20) ≦ T ≦ (Tg + 40)
More preferably, the film is stretched at a stretching temperature T (° C.) in the range indicated by.
 一般に、延伸温度(℃)が高いほど延伸張力も低めに抑えられて容易に延伸できるが、前記延伸温度(℃)が、{ガラス転移温度(Tg)+50}℃以下であると、空洞が形成される体積割合が高くなり、アスペクト比が10以上になりやすい点で好ましい。また、前記延伸温度(℃)が、{ガラス転移温度(Tg)-30}℃以上であると、充分に空洞が発現する点で好ましい。 In general, the higher the stretching temperature (° C.), the lower the stretching tension, and the easier it can be stretched. However, when the stretching temperature (° C.) is {glass transition temperature (Tg) +50} ° C. or less, cavities are formed. The volume ratio is high, and the aspect ratio is preferably 10 or more. Further, it is preferable that the stretching temperature (° C.) is {glass transition temperature (Tg) −30} ° C. or more from the standpoint that cavities are sufficiently developed.
 ここで、前記延伸温度T(℃)は、非接触式温度計により測定することができる。また、前記ガラス転移温度Tg(℃)は、示差熱分析装置(DSC)により測定することができる。 Here, the stretching temperature T (° C.) can be measured with a non-contact thermometer. The glass transition temperature Tg (° C.) can be measured by a differential thermal analyzer (DSC).
 なお、前記延伸工程において、延伸後の繊維は、形状安定化などの目的で、更に熱を加えて熱収縮させたり、張力を加える等の処理をしたりしてもよい。 In the drawing step, the drawn fiber may be further subjected to heat shrinkage by applying heat or treatment such as tension for the purpose of shape stabilization.
 また、前記プリフォームの作製は、前記延伸工程と独立に行ってもよく、連続的に行ってもよい。 Moreover, the preparation of the preform may be performed independently of the stretching step or may be performed continuously.
 前記プリフォームを延伸することにより、本発明の芯材層を得ることができる。該芯材層に次に述べる被覆工程を経ることにより本発明の繊維が形成される。
 本発明の繊維の製造に用いられる被覆ラインは、従来から知られている電気ケーブルや石英ガラス製光ファイバと同様な被覆ラインを使用することができる。
The core layer of the present invention can be obtained by stretching the preform. The fiber of the present invention is formed through the coating step described below on the core layer.
As the coating line used for producing the fiber of the present invention, a coating line similar to a conventionally known electric cable or quartz glass optical fiber can be used.
 図4にその被覆ラインの概略図を示す。素線(空洞を有する芯材繊維)110は、送出機120より送り出され、冷却装置130により5~35℃の温度まで冷却することが、被覆する際に素線110へのダメージを抑制するために好ましいが、この冷却装置130は省略することも可能である。その後に、被覆装置140により素線110に被覆材を被覆してケーブル150が得られる。ケーブル150は、水槽160で冷水により冷却された後に、水分除去装置170によりその表面の水分が除去される。なお、ケーブル150の冷却は、水槽に限定されず、他の装置を用いてもよい。そして、ローラ180により搬送されて巻取機190に巻き取られる。
 なお、被覆方法としては溶融押出し方法、活性エネルギー線硬化型樹脂を用いて、塗布・硬化させて被覆層を得る方法等を用いることができる。本発明においては、溶融押出し方法を用いることが好ましい。
FIG. 4 shows a schematic diagram of the coating line. The strands (core fibers having cavities) 110 are fed from the feeder 120 and cooled to a temperature of 5 to 35 ° C. by the cooling device 130 in order to suppress damage to the strands 110 during coating. However, the cooling device 130 can be omitted. After that, the cable 150 is obtained by covering the wire 110 with the covering material by the covering device 140. After the cable 150 is cooled with cold water in the water tank 160, the moisture on the surface thereof is removed by the moisture removing device 170. The cooling of the cable 150 is not limited to the water tank, and other devices may be used. And it is conveyed by the roller 180 and wound up by the winder 190.
In addition, as a coating method, a melt extrusion method, a method of obtaining a coating layer by applying and curing using an active energy ray curable resin, and the like can be used. In the present invention, it is preferable to use a melt extrusion method.
 以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.
(実施例1)
<プリフォーム(未延伸繊維)の形成>
<<芯材の樹脂層組成物>>
 芯材の樹脂層を構成する樹脂組成物(芯材の樹脂組成物)として、ポリブチレンテレフタレート100%樹脂PBT1(富士フイルム社内で作製)を採用した。この組成物の極限粘度(IV)をウベローデ型粘度計(旭製作所社製)により測定したところ、0.72(Pa・s)であった。また、前記PBT1のガラス転移温度Tg(℃)及び融点Tm(℃)を示差熱分析装置(セイコーII社製)により測定した。
Example 1
<Formation of preform (unstretched fiber)>
<< Core resin layer composition >>
Polybutylene terephthalate 100% resin PBT1 (manufactured in-house at Fujifilm) was employed as a resin composition (core resin composition) constituting the core resin layer. It was 0.72 (Pa * s) when the intrinsic viscosity (IV) of this composition was measured with the Ubbelohde viscometer (made by Asahi Seisakusho). Further, the glass transition temperature Tg (° C.) and the melting point Tm (° C.) of the PBT 1 were measured with a differential thermal analyzer (manufactured by Seiko II).
<延伸工程>
 次に、得られたプリフォームを40℃の加温雰囲気下で、120mm/minの速度で一軸延伸し、ネッキングが発生したことを確認した後、6,000mm/minの速度で、初めと同一方向に更に一軸延伸して空洞を含有する芯材層に相当する繊維(素線ともいう)を作製した。
<Extension process>
Next, the preform obtained was uniaxially stretched at a speed of 120 mm / min in a heated atmosphere at 40 ° C., and after confirming that necking had occurred, it was the same as the beginning at a speed of 6,000 mm / min. A fiber (also referred to as a strand) corresponding to a core material layer containing a cavity was further uniaxially stretched in the direction.
<被覆工程>
 被覆樹脂として、プリフォーム作製に用いたPBT1のペレットをクロスダイヘッド付の被覆押し出し機(ダイス直径1.5mm、ニップル直径0.5mm)を用いた被覆ライン(図4参照)により、素線110の搬送速度を500m/minとして被覆を行い、厚みが5μmの被覆層を有する本発明の繊維を得た。
 本実施例1の繊維の断面の写真画像を、図5に示す。
<Coating process>
As a coating resin, PBT1 pellets used for preform production were coated with a cross extrusion head (die diameter 1.5 mm, nipple diameter 0.5 mm) using a coating line (see FIG. 4) of the strand 110. Coating was carried out at a conveyance speed of 500 m / min to obtain a fiber of the present invention having a coating layer having a thickness of 5 μm.
A photographic image of a cross section of the fiber of Example 1 is shown in FIG.
(実施例2)
<プリフォームの作製>
 実施例1において、芯材の樹脂層組成物をポリブチレンテレフタレート100%樹脂PBT2(富士フイルム社内で作製)に変えた以外は、実施例1と同様にしてプリフォームを作製した。
 なお、前記PBT2の極限粘度(IV)を実施例1と同様にして測定したところ、0.86(Pa・s)であった。また、前記PBT2のガラス転移温度Tg(℃)、融点Tm(℃)を実施例1と同様にして測定した。測定結果を表1に示す。
(Example 2)
<Preform production>
A preform was produced in the same manner as in Example 1 except that the resin layer composition of the core material was changed to 100% polybutylene terephthalate resin PBT2 (produced in-house by Fuji Film).
The intrinsic viscosity (IV) of the PBT2 was measured in the same manner as in Example 1, and found to be 0.86 (Pa · s). Further, the glass transition temperature Tg (° C.) and the melting point Tm (° C.) of the PBT 2 were measured in the same manner as in Example 1. The measurement results are shown in Table 1.
<延伸工程>
 次に、得られたプリフォームを40℃の加温雰囲気下で、2400mm/minの速度で、一段で一軸延伸して空洞を含有する芯材層に相当する繊維(素線ともいう)を作製した。
<Extension process>
Next, the preform obtained is uniaxially stretched in a single step at a speed of 2400 mm / min in a heated atmosphere at 40 ° C. to produce a fiber (also referred to as a strand) corresponding to a core material layer containing a cavity. did.
<被覆工程>
 被覆樹脂として、PET(富士フイルム社内で作製)に変えた以外は、実施例1と同様にして被覆を行った。
 なお、前記PETの極限粘度(IV)を実施例1と同様にして測定したところ、0.6(Pa・s)であった。また、前記PETのガラス転移温度Tg(℃)、融点Tm(℃)を実施例1と同様にして測定した。測定結果を表1に示す。
 厚みが3μmの被覆層を有する本発明の繊維を得た。
<Coating process>
Coating was performed in the same manner as in Example 1 except that the coating resin was changed to PET (produced in-house at Fuji Film).
In addition, it was 0.6 (Pa * s) when the intrinsic viscosity (IV) of the said PET was measured like Example 1. FIG. Further, the glass transition temperature Tg (° C.) and the melting point Tm (° C.) of the PET were measured in the same manner as in Example 1. The measurement results are shown in Table 1.
A fiber of the present invention having a coating layer with a thickness of 3 μm was obtained.
(実施例3)
<プリフォームの作製>
 実施例1において、芯材の樹脂層組成物をポリブチレンテレフタレート100%樹脂PHT(富士フイルム社内で作製)に変えた以外は、実施例1と同様にしてプリフォームを作製した。
 なお、前記PHTの極限粘度(IV)を実施例1と同様にして測定したところ、0.7(Pa・s)であった。また、前記PHTのガラス転移温度Tg(℃)、融点Tm(℃)、を実施例1と同様にして測定した。測定結果を表1に示す。
(Example 3)
<Preform production>
A preform was produced in the same manner as in Example 1, except that the resin layer composition of the core material was changed to 100% polybutylene terephthalate resin PHT (produced in-house by Fuji Film).
The intrinsic viscosity (IV) of the PHT was measured in the same manner as in Example 1, and found to be 0.7 (Pa · s). The glass transition temperature Tg (° C.) and melting point Tm (° C.) of the PHT were measured in the same manner as in Example 1. The measurement results are shown in Table 1.
<延伸工程>
 次に、得られたプリフォームを30℃の加温雰囲気下で、100mm/minの速度で一軸延伸し、ネッキングが発生したことを確認した後、6,000mm/minの速度で、初めと同一方向に更に一軸延伸して空洞を含有する芯材層に相当する繊維(素線ともいう)を作製した。
<Extension process>
Next, the preform obtained was uniaxially stretched at a speed of 100 mm / min in a heated atmosphere at 30 ° C., and after confirming that necking had occurred, it was the same as the beginning at a speed of 6,000 mm / min. A fiber (also referred to as a strand) corresponding to a core material layer containing a cavity was further uniaxially stretched in the direction.
<被覆工程>
 被覆樹脂として、アイソタクティックポリプロピレン(Aldrich社製、重量平均分子量19万、数平均分子量5万、ガラス転移温度-13℃、Tm:170から175℃)に変えた以外は、実施例1と同様にして被覆を行った。厚みが5μmの被覆層を有する本発明の繊維を得た。
<Coating process>
Example 1 except that the coating resin was changed to isotactic polypropylene (manufactured by Aldrich, weight average molecular weight 190,000, number average molecular weight 50,000, glass transition temperature -13 ° C., Tm: 170 to 175 ° C.) Coating was carried out. A fiber of the present invention having a coating layer with a thickness of 5 μm was obtained.
(実施例4)
<プリフォームの作製>
 実施例1において、芯材の樹脂層組成物をアイソタクティックポリプロピレン(Aldrich社製、重量平均分子量19万、数平均分子量5万、ガラス転移温度-13℃、Tm:170から175℃)に変えた以外は、実施例1と同様にしてプリフォームを作製した。
Example 4
<Preform production>
In Example 1, the core resin layer composition was changed to isotactic polypropylene (manufactured by Aldrich, weight average molecular weight 190,000, number average molecular weight 50,000, glass transition temperature −13 ° C., Tm: 170 to 175 ° C.). A preform was produced in the same manner as in Example 1 except that.
<延伸工程>
 次に、得られたプリフォームを35℃の加温雰囲気下で、100mm/minの速度で一軸延伸し、ネッキングが発生したことを確認した後、6,000mm/minの速度で、初めと同一方向に更に一軸延伸して空洞を含有する芯材層に相当する繊維(素線ともいう)を作製した。
<Extension process>
Next, the preform obtained was uniaxially stretched at a speed of 100 mm / min in a heated atmosphere at 35 ° C., and after confirming that necking occurred, the same as the beginning at a speed of 6,000 mm / min. A fiber (also referred to as a strand) corresponding to a core material layer containing a cavity was further uniaxially stretched in the direction.
<一次被覆工程>
 被覆樹脂として、アイソタクティックポリプロピレン(Aldrich社製、重量平均分子量19万、数平均分子量5万、ガラス転移温度-13℃、Tm:170から175℃)に変えた以外は、実施例1と同様にして被覆を行った。厚みが5μmの被覆層を有する本発明の繊維を得た。
<Primary coating process>
Example 1 except that the coating resin was changed to isotactic polypropylene (manufactured by Aldrich, weight average molecular weight 190,000, number average molecular weight 50,000, glass transition temperature -13 ° C., Tm: 170 to 175 ° C.) Coating was carried out. A fiber of the present invention having a coating layer with a thickness of 5 μm was obtained.
<二次被覆工程>
 被覆樹脂として、LDPE(Aldrich社製、重量平均分子量は不明だが、MI値が25g/10min、ガラス転移温度-125℃、Tm:146℃)に変えた以外は、実施例1と同様にして被覆を行った。厚みが3μmの被覆層を有する本発明の繊維を得た。
<Secondary coating process>
Coating was carried out in the same manner as in Example 1 except that LDPE (manufactured by Aldrich, weight average molecular weight is unknown, MI value was 25 g / 10 min, glass transition temperature −125 ° C., Tm: 146 ° C.) was used as the coating resin. Went. A fiber of the present invention having a coating layer with a thickness of 3 μm was obtained.
(比較例1)
<繊維の作製>
<プリフォーム(未延伸繊維)の形成>
<<芯材の樹脂層組成物>>
 芯材の樹脂層を構成する樹脂組成物(芯材の樹脂組成物)として、ポリブチレンテレフタレート100%樹脂PBT1(富士フイルム社内で作製)を採用した。この組成物の極限粘度(IV)をウベローデ型粘度計(旭製作所社製)により測定したところ、0.72(Pa・s)であった。また、前記PBT1のガラス転移温度Tg(℃)及び融点Tm(℃)を示差熱分析装置(セイコーII社製)により測定した。
(Comparative Example 1)
<Production of fiber>
<Formation of preform (unstretched fiber)>
<< Core resin layer composition >>
Polybutylene terephthalate 100% resin PBT1 (manufactured in-house at Fujifilm) was employed as a resin composition (core resin composition) constituting the core resin layer. It was 0.72 (Pa * s) when the intrinsic viscosity (IV) of this composition was measured with the Ubbelohde viscometer (made by Asahi Seisakusho). Further, the glass transition temperature Tg (° C.) and the melting point Tm (° C.) of the PBT 1 were measured with a differential thermal analyzer (manufactured by Seiko II).
<延伸工程>
 次に、得られたプリフォームを100℃の加温雰囲気下で、120mm/minの速度で一軸延伸し、ネッキングが発生したことを確認した後、6,000mm/minの速度で、初めと同一方向に更に一軸延伸して芯材層に相当する繊維(素線ともいう)を作製した。しかし、空洞は発現しなかった。
<Extension process>
Next, the preform obtained was uniaxially stretched at a speed of 120 mm / min in a heated atmosphere at 100 ° C., and after confirming that necking occurred, it was the same as the beginning at a speed of 6,000 mm / min. A fiber (also referred to as a strand) corresponding to the core material layer was produced by further uniaxially stretching in the direction. However, the cavity did not develop.
<被覆工程>
 被覆樹脂として、プリフォーム作製に用いたPBT1のペレットをクロスダイヘッド付の被覆押し出し機(ダイス直径1.5mm、ニップル直径0.5mm)を用いた被覆ライン(図4参照)により、素線11の搬送速度を500m/minとして被覆を行い、厚みが5μmの被覆層を有する本発明の繊維を得た。
<Coating process>
As a coating resin, the PBT1 pellets used for preform production were coated with a coating extruder (die diameter: 1.5 mm, nipple diameter: 0.5 mm) with a cross die head. Coating was carried out at a conveyance speed of 500 m / min to obtain a fiber of the present invention having a coating layer having a thickness of 5 μm.
(比較例2)
<繊維の作製>
 実施例4と同様にして素線まで作製し、被覆工程を行わなかったものを、比較例2の繊維とした。
(Comparative Example 2)
<Production of fiber>
The fibers of Comparative Example 2 were prepared in the same manner as in Example 4 until the wires were prepared and the coating step was not performed.
 実施例1~4及び比較例1及び2において作製した繊維について、表1にまとめて示す。 Table 1 summarizes the fibers produced in Examples 1 to 4 and Comparative Examples 1 and 2.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<測定及び評価>
 前記実施例1~4及び比較例1及び2の繊維について、下記の評価を行った。測定結果を表2に示し、評価結果を表3に示す。
<Measurement and evaluation>
The fibers of Examples 1 to 4 and Comparative Examples 1 and 2 were evaluated as follows. The measurement results are shown in Table 2, and the evaluation results are shown in Table 3.
<<透過率の測定>>
 日立製作所製分光光度計U-4100を用いて透過率を測定した。前記得られた繊維の表面の法線方向から5度傾けて光を入射させ、該繊維を透過する光の強度を、該繊維を透過させないブランクの値と比較した。波長は550nmを使用した。
 また、得られた繊維に対しても、前記樹脂組成物の透過率の測定と同様にして透過率を測定した。
 なお、前記樹脂組成物の透過率と、繊維の透過率との比については、Lambert-Beerの法則に従い、前記樹脂組成物の透過率を、繊維の厚み(断面径)と同じ寸法に換算して、算出した。
<< Measurement of transmittance >>
The transmittance was measured using a spectrophotometer U-4100 manufactured by Hitachi, Ltd. Light was incident at an angle of 5 degrees from the normal direction of the surface of the obtained fiber, and the intensity of light transmitted through the fiber was compared with the value of a blank that did not transmit the fiber. A wavelength of 550 nm was used.
Moreover, the transmittance | permeability was measured similarly to the measurement of the transmittance | permeability of the said resin composition also with respect to the obtained fiber.
Regarding the ratio between the transmittance of the resin composition and the transmittance of the fiber, the transmittance of the resin composition is converted into the same dimension as the thickness (cross-sectional diameter) of the fiber according to Lambert-Beer's law. And calculated.
<<アスペクト比の測定>>
 繊維の表面に直交し、かつ、縦延伸方向に直交する断面(図3B参照)と、前記繊維の表面に直交し、かつ、前記縦延伸方向に平行な断面(図3C参照)を、走査型電子顕微鏡を用いて300~3,000倍の適切な倍率で検鏡し、前記各断面写真において計測枠をそれぞれ設定した。この計測枠は、その枠内に空洞が50~100個含まれるように設定した。
 次に、計測枠に含まれる空洞の数を計測し、前記縦延伸方向に直交する断面の計測枠(図3B参照)に含まれる空洞の数をm個、前記縦延伸方向に平行な断面の計測枠(図3C参照)に含まれる空洞の数をn個とした。
 そして、前記縦延伸方向に直交する断面の計測枠(図3B参照)に含まれる空洞の1個ずつの長さ(r)を測定し、その平均の長さをrとした。また、前記縦延伸方向に平行な断面の計測枠(図3C参照)に含まれる空洞の1個ずつの長さ(L)を測定し、その平均の長さをLとした。
 即ち、r及びLは、それぞれ下記の(1)式及び(2)式で表すことができる。
 r=(Σr)/m   ・・・(1)
 L=(ΣL)/n   ・・・(2)
 そして、L/rを算出し、アスペクト比とした。
<< Aspect ratio measurement >>
A cross section perpendicular to the surface of the fiber and perpendicular to the longitudinal stretching direction (see FIG. 3B) and a cross section perpendicular to the surface of the fiber and parallel to the longitudinal stretching direction (see FIG. 3C) are scanned. Using an electron microscope, the microscope was examined at an appropriate magnification of 300 to 3,000 times, and a measurement frame was set in each cross-sectional photograph. This measurement frame was set so that 50 to 100 cavities were included in the measurement frame.
Next, the number of cavities included in the measurement frame is measured, and the number of cavities included in the measurement frame (see FIG. 3B) of the cross section orthogonal to the longitudinal stretching direction is m, and the cross section parallel to the longitudinal stretching direction. The number of cavities included in the measurement frame (see FIG. 3C) was n.
Then, the longitudinal stretching direction orthogonal cross section of the measurement frame determined (Fig. 3B see) on one by one the length of the cavity included a (r i), and the length of the average and r. Further, the length (L i ) of each cavity included in the measurement frame (see FIG. 3C) having a cross section parallel to the longitudinal stretching direction was measured, and the average length was defined as L.
That is, r and L can be represented by the following formulas (1) and (2), respectively.
r = (Σr i ) / m (1)
L = (ΣL i ) / n (2)
Then, L / r was calculated as an aspect ratio.
<<空洞の平均の個数P>>
 まず、走査型電子顕微鏡により、縦延伸方向に直交する断面を撮影した。
 そして、断面写真において繊維径方向に直線を引き、前記直線に接する空洞の個数を計測した。この作業を20本の直線について行い、平均を求めた。
<< Average number of cavities P >>
First, a cross section perpendicular to the longitudinal stretching direction was photographed with a scanning electron microscope.
Then, in the cross-sectional photograph, a straight line was drawn in the fiber diameter direction, and the number of cavities in contact with the straight line was measured. This operation was performed for 20 straight lines, and the average was obtained.
<<結晶性ポリマー部と空洞との屈折率差ΔN>>
 結晶性を有するポリマー部の屈折率N1は、別途フィルムを作製しアッベ屈折計により測定した。空洞部の屈折率N2は、別途空洞部が空気であることから空気の屈折率=空洞部の屈折率N2=1とした。測定波長は589nmである。そして、その差ΔN(=N1-N2)を算出した。
<< Refractive index difference ΔN between crystalline polymer part and cavity >>
The refractive index N1 of the polymer part having crystallinity was measured with an Abbe refractometer by separately preparing a film. The refractive index N2 of the cavity is set such that the refractive index of the air is equal to the refractive index N2 of the cavity because the cavity is separately air. The measurement wavelength is 589 nm. Then, the difference ΔN (= N1−N2) was calculated.
<<空洞の断面積比>>
 芯材層の断面SEMの写真を用いて画像処理を行い、全ての空洞を用いて、全体断面積と空洞部の断面積を別々に求め、空洞の断面積比を算出、評価した。
<< Cavity cross-sectional area ratio >>
Image processing was performed using a photograph of the cross-sectional SEM of the core material layer, and the overall cross-sectional area and the cross-sectional area of the cavity portion were separately obtained using all the cavities, and the cross-sectional area ratio of the cavities was calculated and evaluated.
<保温性の評価>
 保温性の評価は、本発明の織編物を製造し、熟練者5名にて以下の評価基準に基づき評価した。
[評価基準]
  ○:かなり暖かいと感じる
  △:暖かくなったと感じる
  ×:変化無し
<Evaluation of heat retention>
For evaluation of heat retention, the woven or knitted fabric of the present invention was manufactured and evaluated by five skilled workers based on the following evaluation criteria.
[Evaluation criteria]
○: Feels warm △: Feels warm ×: No change
<<耐久性の評価>>
 保温性の評価で用いた織編物を40℃の一定温度に設定したウォーターバスの中に入れ、30rpmの回転数で1時間攪拌させた。いったん取り出し、脱水機で水分をとり、50℃の乾燥機で1時間乾燥させた。このサイクルを100回おこなった。そして、下記評価基準に基づき耐久性を評価した。
<< Durability Evaluation >>
The woven or knitted fabric used in the evaluation of heat retention was placed in a water bath set at a constant temperature of 40 ° C. and stirred for 1 hour at a rotation speed of 30 rpm. Once taken out, the water was removed with a dehydrator and dried with a dryer at 50 ° C. for 1 hour. This cycle was performed 100 times. And durability was evaluated based on the following evaluation criteria.
[評価基準]
○:100サイクル前と変化無し
△:100サイクル前に比べ、肌触りが悪く感じるが、見た目にはそれほど変化がない。
×:100サイクル前に比べ、明らかに肌触り、見た目が変化した。
[Evaluation criteria]
○: 100 cycles before and no change Δ: Compared to 100 cycles before, the touch feels worse, but there is not much change in appearance.
X: Compared with 100 cycles before, the touch and the appearance were clearly changed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例1から4は、リサイクル性及び耐久性が高いといった性能を示すことが確認された。 As shown in Table 3, Examples 1 to 4 were confirmed to exhibit performance such as high recyclability and durability.

Claims (10)

  1.  内部に空洞を有し、長さ方向に直交する断面形状が略円形である芯材の樹脂層上に、長さ方向に直交する断面形状が略円環形である樹脂層を鞘材として一層以上有してなることを特徴とする繊維。 One or more resin layers having a hollow inside and a resin layer having a substantially circular cross section perpendicular to the length direction as a sheath material on the resin layer of the core material having a substantially circular cross section perpendicular to the length direction A fiber characterized by comprising.
  2.  芯材の樹脂層の長さ方向に直交する方向における該繊維の断面積X(μm)に対する空洞の断面積Y(μm)の比(Y/X)の平均が5%以上、40%以下である請求項1に記載の繊維。 Average ratio (Y / X) of the cross-sectional area Y (μm 2 ) of the cavity to the cross-sectional area X (μm 2 ) of the fiber in the direction perpendicular to the length direction of the resin layer of the core material is 5% or more and 40% The fiber according to claim 1, wherein:
  3.  空洞の配向方向に直交する直径方向における前記空洞の平均長さをr(μm)とし、前記空洞の配向方向における前記空洞の平均長さをL(μm)とした際のL/r比が10以上、100以下である請求項1から2のいずれかに記載の繊維。 The L / r ratio is 10 when the average length of the cavity in the diameter direction perpendicular to the orientation direction of the cavity is r (μm) and the average length of the cavity in the orientation direction of the cavity is L (μm). The fiber according to claim 1, wherein the fiber is 100 or less.
  4.  芯材の樹脂層が、結晶性を有するポリマーのみからなる請求項1から3のいずれかに記載の繊維。 The fiber according to any one of claims 1 to 3, wherein the resin layer of the core material is composed only of a polymer having crystallinity.
  5.  該繊維の透過率をM(%)とし、該繊維の結晶性を有するポリマーと同一の結晶性を有するポリマーからなり、該繊維と同じ繊度であってかつ空洞を有しない繊維の透過率をN(%)としたときのM/N比が0.2以下であり、かつ、該繊維の光沢度が50以上である請求項4に記載の繊維。 The transmittance of the fiber is M (%), and the transmittance of a fiber made of a polymer having the same crystallinity as the polymer having the crystallinity of the fiber and having the same fineness as that of the fiber and having no cavity is N. The fiber according to claim 4, wherein the M / N ratio is 0.2 or less and the glossiness of the fiber is 50 or more.
  6.  空洞の配向方向に直交する直径方向の任意の断面における空洞の平均の個数をP個とし、結晶性ポリマー部の屈折率をN1とし、空洞の屈折率をN2とし、N1とN2との差をΔN(=N1-N2)とするとき、ΔNとPとの積が3以上である請求項4から5のいずれかに記載の繊維。 The average number of cavities in an arbitrary cross section in the diameter direction perpendicular to the orientation direction of the cavities is P, the refractive index of the crystalline polymer part is N1, the refractive index of the cavities is N2, and the difference between N1 and N2 is 6. The fiber according to claim 4, wherein the product of ΔN and P is 3 or more when ΔN (= N1−N2).
  7.  結晶性を有するポリマーが、一種のみからなる請求項4から6のいずれかに記載の繊維。 The fiber according to any one of claims 4 to 6, wherein the polymer having crystallinity comprises only one kind.
  8.  結晶性を有するポリマーが、ポリオレフィン類、ポリエステル類およびポリアミド類である請求項4から7のいずれかに記載の繊維。 The fiber according to any one of claims 4 to 7, wherein the polymer having crystallinity is a polyolefin, a polyester or a polyamide.
  9.  芯材の樹脂層は、結晶性を有するポリマーのみからなる樹脂組成物を溶融紡糸し、
    10~36,000mm/minの速度で、かつ、
     延伸温度をT(℃)、該結晶性を有するポリマーのガラス転移温度をTg(℃)としたときに、
     (Tg-30)≦T≦(Tg+50)
     で表される延伸温度T(℃)で延伸して得られた請求項1から8のいずれかに記載の繊維。
    The resin layer of the core material is obtained by melt spinning a resin composition composed only of a crystalline polymer,
    At a speed of 10 to 36,000 mm / min, and
    When the stretching temperature is T (° C.) and the glass transition temperature of the crystalline polymer is Tg (° C.),
    (Tg-30) ≦ T ≦ (Tg + 50)
    The fiber according to any one of claims 1 to 8, obtained by stretching at a stretching temperature T (° C) represented by:
  10.  請求項1から9のいずれかに記載の繊維の製造方法であって、結晶性を有するポリマーのみからなる芯材の樹脂層上に複数の樹脂層を積層して紡糸する積層紡糸工程と、前記芯材の樹脂層の長さ方向に延伸する延伸工程とを含み、
    前記延伸工程は、
    10~36,000mm/minの速度で、かつ、
     延伸温度をT(℃)、該結晶性を有するポリマーのガラス転移温度をTg(℃)としたときに、
     (Tg-30)≦T≦(Tg+50)
     で表される延伸温度T(℃)で延伸することを特徴とする繊維の製造方法。
    A method for producing a fiber according to any one of claims 1 to 9, wherein a plurality of resin layers are laminated and spun on a resin layer of a core material made of only a crystalline polymer, A stretching step of stretching in the length direction of the resin layer of the core material,
    The stretching step includes
    At a speed of 10 to 36,000 mm / min, and
    When the stretching temperature is T (° C.) and the glass transition temperature of the crystalline polymer is Tg (° C.),
    (Tg-30) ≦ T ≦ (Tg + 50)
    A method for producing a fiber, wherein the fiber is drawn at a drawing temperature T (° C.) represented by:
PCT/JP2009/051910 2008-02-12 2009-02-04 Fiber and process for producing the same WO2009101888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008031035A JP2009191383A (en) 2008-02-12 2008-02-12 Fiber and method for producing the same
JP2008-031035 2008-02-12

Publications (1)

Publication Number Publication Date
WO2009101888A1 true WO2009101888A1 (en) 2009-08-20

Family

ID=40956920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051910 WO2009101888A1 (en) 2008-02-12 2009-02-04 Fiber and process for producing the same

Country Status (2)

Country Link
JP (1) JP2009191383A (en)
WO (1) WO2009101888A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101957749B1 (en) * 2017-01-12 2019-03-14 삼성교역(주) Method for manufacturing high stretch coating yarn

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693516A (en) * 1992-09-10 1994-04-05 Kuraray Co Ltd Decomposable conjugate fiber
JP2000226737A (en) * 1999-02-08 2000-08-15 Toray Ind Inc Conjugate fiber and its production
JP2004277932A (en) * 2003-03-17 2004-10-07 Toray Ind Inc Method for producing conjugate fiber having excellent lightweightness
JP2006345920A (en) * 2005-06-13 2006-12-28 Toray Ind Inc Stuffing
JP2008057082A (en) * 2006-08-31 2008-03-13 Toray Ind Inc Method for producing polylactic acid monofilament
WO2008126464A1 (en) * 2007-03-30 2008-10-23 Fujifilm Corporation Void-containing resin molded product, process for producing the molded product, and reflector plate
WO2008129715A1 (en) * 2007-03-30 2008-10-30 Fujifilm Corporation Void-containing resin molded product, process for producing the void-containing resin molded product, and image receiving film or sheet for sublimation transfer recording material or thermal transfer recording material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693516A (en) * 1992-09-10 1994-04-05 Kuraray Co Ltd Decomposable conjugate fiber
JP2000226737A (en) * 1999-02-08 2000-08-15 Toray Ind Inc Conjugate fiber and its production
JP2004277932A (en) * 2003-03-17 2004-10-07 Toray Ind Inc Method for producing conjugate fiber having excellent lightweightness
JP2006345920A (en) * 2005-06-13 2006-12-28 Toray Ind Inc Stuffing
JP2008057082A (en) * 2006-08-31 2008-03-13 Toray Ind Inc Method for producing polylactic acid monofilament
WO2008126464A1 (en) * 2007-03-30 2008-10-23 Fujifilm Corporation Void-containing resin molded product, process for producing the molded product, and reflector plate
WO2008129715A1 (en) * 2007-03-30 2008-10-30 Fujifilm Corporation Void-containing resin molded product, process for producing the void-containing resin molded product, and image receiving film or sheet for sublimation transfer recording material or thermal transfer recording material

Also Published As

Publication number Publication date
JP2009191383A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP4977054B2 (en) Fiber and method for producing the same
KR101537131B1 (en) Polyethylene naphthalate fiber and process for producing the polyethylene naphthalate fiber
WO2010110211A1 (en) White film for reflector
KR102078451B1 (en) White polyester film and reflective sheet using the same
WO2000043581A1 (en) Method for producing polyester-based combined filament yarn
KR20100014503A (en) Void-containing resin molded product, process for producing the molded product, and reflector plate
WO2009101888A1 (en) Fiber and process for producing the same
JP2013087153A (en) Copolyester, and polyester fiber with excellent moisture absorbency including the same
JP2015140487A (en) Core-sheath type composite fiber and manufacturing method therefor
WO2010024068A1 (en) Process for production of void-containing resin moldings and void-containing resin moldings obtained by the process
JP5450941B2 (en) Biaxially stretched laminated polyester film for molding
JP2004232159A (en) Direct spun and drawn yarn composed of high-shrinkage polyester fiber and method for producing the same
JP2019178235A (en) Heat shrinkable polyester-based film
WO2012090626A1 (en) Thread material for void-containing thread production, and void-containing thread
JP5586452B2 (en) Method for producing void-containing yarn
WO2012026249A1 (en) Spinning method and spinning apparatus
JP5038824B2 (en) Biaxially stretched laminated film for reflectors
JP4729410B2 (en) Crimpable polyester fiber and method for producing the same
KR100721808B1 (en) White porous single layer polyester film and preparing method therefof
JP2010191112A (en) Reflecting sheet
JP2007332517A (en) Method for melt-spinning polyethylene naphthalate fibers
JP2007046194A (en) Cheese package of concentric sheath-core conjugated fiber and method for producing the same
KR20140089159A (en) Process for preparing polyester fiber having excellent dimensional stability and adhesion for tire cord
JP2010196207A (en) Composite string-like article
WO2005021849A1 (en) Composite fiber with light interference coloring function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09711005

Country of ref document: EP

Kind code of ref document: A1