WO2012089065A1 - 一种基于hfc网络的宽带接入系统 - Google Patents

一种基于hfc网络的宽带接入系统 Download PDF

Info

Publication number
WO2012089065A1
WO2012089065A1 PCT/CN2011/084503 CN2011084503W WO2012089065A1 WO 2012089065 A1 WO2012089065 A1 WO 2012089065A1 CN 2011084503 W CN2011084503 W CN 2011084503W WO 2012089065 A1 WO2012089065 A1 WO 2012089065A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
uplink
network
downlink
channel
Prior art date
Application number
PCT/CN2011/084503
Other languages
English (en)
French (fr)
Inventor
甘静
甘育裕
Original Assignee
Gan Jing
Gan Yuyu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gan Jing, Gan Yuyu filed Critical Gan Jing
Publication of WO2012089065A1 publication Critical patent/WO2012089065A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2801Broadband local area networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2858Access network architectures
    • H04L12/2861Point-to-multipoint connection from the data network to the subscribers

Definitions

  • the present invention relates to a broadband network access technology, and more particularly to a broadband access system based on an HFC network.
  • the broadband access network based on HFC adopts the DOCSIS (Data-Over-Cable Service Interface Specifications) standard, which is a technology proposed by the United States and accepted by the International Telecommunication Union. standard.
  • Europe proposed the EUR-D0CSIS standard on the basis of DOCSIS, namely the European DOCSIS standard.
  • the Chinese reference to the EUR-D0CSIS V1.1 standard proposes the "HFC cable TV data transmission system" standard, although these three technical standards are in the physical layer.
  • Bandwidth, QAM (Quadrature Amplitude Modulation) modulated constellation and the frequency range used for the reverse channel are somewhat different, but they are based on the network structure and MAC (Media Access Control) layer and The above agreements are the same.
  • the structure is shown in Figure 1.
  • the reference structure of the traditional D0SIS network includes the front-end access system, the terminal access system, and the HFC network.
  • the front-end access system and the terminal access system are connected through the HFC network.
  • the structure of the HFC network can be divided into Optical transmission and coaxial cable transmission are two parts: from the front end of the optical transceiver to the photoelectric conversion node of the user cell is the optical transmission part, the output end of the photoelectric conversion node of the user cell to the user input is the coaxial cable Transfer part.
  • a cell refers to an area covered by an optical node in an HFC network. Usually, there are about 500 home users in a cell. If the information of a cell user is particularly large, the transmission capacity of the HFC network of the cell cannot meet the requirements. The number of users should be reduced, and vice versa.
  • the DOCSIS network relies on the cable network, and the network is modified in both directions so that the uplink and downlink signals are transmitted in the network using the frequency division method.
  • the terminal access system of the network is CM (Cable Modem)
  • the front-end access system is CMTS (Cable Modem Termination System)
  • CM is a single-user device, which is placed in the user's home and connected to the user's device.
  • the CMTS is placed in the HFC network.
  • the front end or the front end which is connected to the front end or the front end switch, and is connected to the backbone network and the front end server through the switch.
  • the downlink signals from the backbone network, the server, and other CMTSs are sent to the CMTS through the switch, processed, modulated, and upconverted by the protocol, and then sent to the CM through the HFC network.
  • CMTS broadcasts the information to be transmitted to the front end to a cell or a plurality of cells in all CMs of the channel, and the CM decides to discard the information according to the address information of the Service Flow Identifier (SFID) in the information. , or forward the information to the appropriate user device.
  • the SFID is assigned to the CM by the CMTS.
  • a CM has at least two SFIDs, one for the downlink and one for the uplink, and sometimes there are several.
  • the user's uplink signal transmission uses Time Division Multiple Access (TDMA) technology.
  • TDMA Time Division Multiple Access
  • the transmitting part of the CM does not normally send information. If there is information to be sent, it must first compete with other CMs to send bandwidth allocation requests to the CMTS. If the information is sent, if the bandwidth allocation request message is sent, the CMTS will allocate bandwidth according to the SFID and network status of the information to be sent by the CM. After the CM receives the bandwidth allocation information, The information is sent at the transmission start time and time interval specified by the CMTS. Therefore, all CMs are required to be in the same time as the CMTS.
  • TDMA Time Division Multiple Access
  • the amplitude, frequency and time are relatively accurate.
  • the CMTS and each CM also need to perform ranging and frequency adjustment frequently. Amplitude adjustment.
  • the uplink signal is sent to the CMTS via the HFC network for demodulation and protocol processing, and then sent to the front-end device or the backbone network through the switch.
  • Coaxial cable network is a tree structure, and there is serious funnel noise in the reverse channel, so that the uplink signal can only adopt 16QAM and QPSK (Quadrature Phase Shift Keying) modulation with strong anti-interference ability. Format, it is difficult to adopt 64QAM or 256QAM with high frequency band utilization efficiency. Moreover, the upstream bandwidth is too narrow to ensure the future business needs.
  • QPSK Quadrature Phase Shift Keying
  • DOCSIS 3. 0 The standard before DOCSIS 3. 0 has no channel bundling technology. Multiple users share one downlink and one uplink channel. For 64QAM modulation, the maximum rate of one downlink channel is 41.712Mb/s. Can provide an interface rate of 100 Mb / s.
  • DOCSIS 3. 0 uses channel bundling technology to provide high-speed interfaces. However, for multiple CMTSs and multiple CMs, users need multiple CMs at a high cost.
  • CMTS and CM of such a network can mix and transmit downlink data and video streams, they only process data information, and do not process the multiplexing/demultiplexing of video signals, etc. Multiple single program streams.
  • the network works in frequency division mode.
  • the bandwidth of a downlink channel is 6 or 8 MHz.
  • a large number of programs are arranged to be transmitted in multiple channels. Even if the set-top box can decompress multiple programs at the same time, the set-top box can only receive one at the same time. Programs on the channel cannot watch programs on different channels at the same time. In this way, if a family wants to watch programs on different channels at the same time, it must have another set-top box.
  • the object of the present invention is to provide a broadband access system solution based on an HFC network
  • the main technical problems are: to propose a new network architecture and operation mode suitable for an HFC broadband access network, fully Effectively use the resources of the HFC network, improve the uplink and downlink transmission capabilities of the HFC network, to meet the needs of future services, reduce the construction cost of the network, enhance the function of the convergence sub-layer to adapt to the needs of the triple play, and ensure the existing Devices such as analog TV, digital TV, EQAM (Edge Quadrature Amplitude Modulator) and set-top boxes can work normally and are unaffected.
  • EQAM Edge Quadrature Amplitude Modulator
  • the present invention adopts the technical solution as follows:
  • the broadband access system includes a front end access system, HFC (Hybrid Fiber Coaxial, mixed light) Fiber coaxial cable) network and terminal access system, the front end access system and the terminal access system are connected through an HFC network;
  • HFC Hybrid Fiber Coaxial, mixed light Fiber coaxial cable
  • the front end access system includes:
  • the Cable Multimedia Forwarder Termination System (CMFTS) group is provided with at least one cable multimedia repeater head end system (CMFTS) for receiving downlink signals sent by external devices and implementing protocol processing of downlink signals. , modulation and up-conversion processing and transmission to the optical transmission part of the HFC network; for receiving the uplink signal of the cable multimedia repeater protocol processing, modulation and mixing processing sent by the HFC network (Hybrid Fiber Coaxial) Realizing demodulation and protocol processing of uplink signals and transmitting to external devices; external devices include switches connected to IP backbone networks or front-end servers in the prior art, and may also include other CMFTS, CMTS, various servers, and the like;
  • a Cable Multimedia Forwarder (CMF) group having at least one cable multimedia repeater (CMF) for receiving, processing, modulation, and the cable multimedia repeater head end system (CMFTS) protocol of the HFC network cable transmission portion
  • CMF Cable Multimedia Forwarder
  • the downlink signal and the digital video signal processed by the up-conversion process, the demodulation and protocol processing of the downlink signal are implemented and transmitted to a plurality of user equipments; and the uplink signal for receiving the plurality of user equipments is used for protocol processing, modulation and mixing of the uplink signal,
  • the cable multimedia repeater (CMF) sends the processed uplink signal to the cable transmission part of the HFC network, and transmits it to the cable multimedia repeater head end system (CMFTS) through the HFC network;
  • the optical transmission portion of the HFC network is connected to the cable transmission portion through a photoelectric conversion node, and the photoelectric conversion node and the cable multimedia repeater (CMF) group are connected by at least one trunk cable.
  • CMF cable multimedia repeater
  • the cable transmission part of the HFC network is provided with a frequency conversion mixing module, and the frequency conversion mixing module includes upconverters and connections respectively set on n-1 different trunk cables and having different frequencies.
  • the mixer that mixes the upstream signals of n-1 different trunk cables between the upconverter and the photoelectric conversion node through frequency conversion of different frequency upconverters ; n is the total number of trunk cables connected by the photoelectric conversion nodes.
  • the cable multimedia repeater head end system (CMFTS) in the front end access system and the cable multimedia repeater (CMF) in the terminal access system adopt a protocol different from DOCSIS, Medium:
  • the cable multimedia repeater head end system is provided with m uplink channels and k downlink channels, including a controller, an uplink high frequency hub and a downlink high frequency hub, and the input end of the uplink high frequency hub and the uplink allocation Connected, the output of the upstream high frequency hub and the controller are connected in parallel by m demodulators, and the controller and the downstream high frequency hub are connected in parallel by k modulators, in each modulation
  • An upconverter is further disposed between the device and the downlink high frequency hub, and an output end of the downlink high frequency hub is connected to the mixer, and a network interface is further disposed on the controller, where the network interface is used for connecting Said switch or front-end server;
  • the cable multimedia repeater is provided with i uplink channels and j downlink channels, including a high frequency hub, a modem, a controller unit, and a switch unit, and one end of the high frequency hub is connected to a coaxial cable network, The other end of the high frequency hub is connected in parallel with the controller unit through i modulators and j demodulators, and the switch unit is further connected to the controller unit, and the switching unit passes through the transmission medium and the plurality of Client device connection;
  • the switch unit in the cable multimedia repeater is connected to the client device through the Category 5 twisted pair cable as an access cable, and blocks the upstream funnel noise introduced through the access cable;
  • the switch unit is connected to the E0C unit, and the E0C unit is connected to the user equipment through a user access cable, and the uplink channel of the user access cable is only Can transmit baseband signals;
  • the uplink channel in the cable multimedia repeater (CMF) and the cable multimedia repeater head end system (CMFTS) adopts a 16QAM, 64QAM or 256QAM modulation format, and the symbol rate of the uplink channel is 1280ksym/s, 2560 ksym. /s or 6952 ksym/s , maximum bandwidth of 1. 6 MHz , 3. 2 MHz or 8 MHz ;
  • both the downlink channel and the downlink channel are provided with an enhanced convergence sublayer for implementing the video stream.
  • the cable multimedia repeater head end system includes a plurality of downlink unicast information transmitters and a plurality of uplink signal receivers
  • the cable multimedia repeater (CMF) includes a plurality of uplink signals. a transmitter and a plurality of downlink signal receivers, an uplink signal receiver of a cable multimedia repeater head end system (CMFTS) corresponding to an uplink signal transmitter in a cable multimedia repeater (CMF), a cable multimedia repeater
  • a downlink unicast information transmitter in the head end system (CMFTS) corresponds to a downlink signal receiver in a cable multimedia repeater (CMF);
  • the cable multimedia repeater is provided with a multicast receiving channel for receiving broadcast information and multicast information, and a digital television broadcast receiving channel for receiving digital television broadcast information.
  • the cable multimedia repeater head end system is further provided with a channel scheduling controller (CDC: Channel Dispatch Controller) for implementing uplink channel and downlink channel scheduling management;
  • the optical transmission part of the HFC network includes a mixer I
  • the optical transmitter, the optical receiver, and the uplink distributor, the downlink signal outputted by the cable multimedia repeater head end system (CMFTS) is mixed with the video signal of the cable television through the mixer I, and the mixed downlink signal is transmitted to the optical transmitter through the optical transmitter.
  • a photoelectric conversion node the photoelectric conversion node transmits a signal to a cable multimedia repeater (CMF) group through a cable;
  • the inverter transmits the uplink signal sent from the cable transmission part to the photoelectric conversion node through the mixer II through frequency conversion of different frequencies, and the photoelectric conversion node is connected to the input end of the optical receiver through the optical fiber, and the output end of the optical receiver
  • An uplink distributor is connected, and the uplink distributor is configured to allocate an uplink signal received by the optical receiver to the cable multimedia repeater front end system (CMFTS).
  • CMS cable multimedia repeater front end system
  • the broadband access system based on HFC network provided by the present invention is different from the existing DOCSIS network in that:
  • the network of the invention divides the users in the cell into a plurality of user groups according to the geographical proximity, a user group is connected with a cable multimedia transponder, and the baseband EOC (Ethernet Over Coax) or the user can be used from the cable multimedia transponder to the user.
  • Twisted-pair cable connection connecting the user equipment through the Category 5 twisted pair cable, blocking the uplink channel connecting the HFC network to the user's access cable, and the cable multimedia repeater CMF can also set the E0C unit, the switch unit and the E0C unit.
  • the E0C unit is connected to the user equipment through a user access cable, and the uplink channel of the user access cable can only transmit the baseband signal.
  • the access cable of the HFC network transmits the downlink signal, does not transmit the modulated uplink signal, and blocks access from the user. Upstream funnel noise introduced by the cable.
  • the photoelectric conversion nodes in the small area are usually connected to users in different locations by n trunk cables in an air-divided manner, and the uplink signals sent by n-1 different trunk cables are up-converted at the photoelectric conversion node.
  • the upstream signals are combined by the mixer and sent back to the front end through the return optical channel.
  • the characteristics of the coaxial cable network space division can also be utilized to increase the downlink transmission capability of the cell by arranging the signals to be transmitted to different trunk cables in different frequency bands, and then combining them to be transmitted by the optical transmission part to the cell optoelectronics. After the nodes are switched, the signals of different frequency bands are separated, and then these frequency bands are converted to a frequency range suitable for cable transmission, and transmitted to the corresponding users by the corresponding trunk cable.
  • the condition for this is that the optical transmission system has sufficient bandwidth.
  • the network equipment mentioned in the present invention mainly includes a channel scheduling controller CDC, a cable multimedia repeater head end system CMFTS and a cable multimedia repeater CMF, and the adopted protocol is different from DOCSIS;
  • the CMFTS in the front-end access system and the CMF in the terminal access system are common devices shared by multiple users, the CMFTS is provided with m uplink channels and k downlink channels, and the CMF is provided with i uplink channels and j channels.
  • Downstream channel where:
  • the cable multimedia repeater head end system CMFTS includes a controller, an uplink high frequency hub and a downlink high frequency hub, and an input end of the uplink high frequency hub is connected to the uplink distributor, and an output end of the uplink high frequency hub is
  • the controllers are connected in parallel by m demodulators, and the controller and the downlink high frequency hub are connected in parallel by k modulators, and an upconverter is further arranged between each modulator and the downlink high frequency hub.
  • the output end of the downlink high frequency hub is connected to the mixer, and a network interface is further disposed on the controller, where the network interface is used to connect to the switch or the front end server;
  • the cable multimedia repeater CMF comprises a high frequency hub, a modem, a controller unit and a switch unit, one end of the high frequency hub is connected to a coaxial cable network, and the other end of the high frequency hub is demodulated by i modulators and j Connected in parallel with the controller unit, on the controller unit
  • the switch unit is also connected, the exchange unit being connected to the user group device via the transmission medium.
  • the CMFTS and CMF in this system differ from the CMTS and CM of the DOCSIS network as follows:
  • CMF is a public device of a user group, which can simultaneously receive unicast, multicast and broadcast information required by the user group, and send uplink signals of users in the group, including unicast and multicast information, which may include multiple Modulators and multiple demodulators, CMF also allows users within the group to exchange information, so there are switches.
  • CMFTS and CMF superimpose the transmission capability of multiple uplink and downlink channels and interface with the front-end switch and user, so that users can provide uplink and downlink interfaces of lOOMb/s, and the downlink rate can reach lGb/s.
  • An upstream signal receiver of a cable multimedia repeater headend system corresponds to an uplink signal transmitter in a cable multimedia repeater (CMF), in a cable multimedia repeater head end system (CMFTS)
  • a downlink unicast information transmitter corresponds to a downlink signal receiver in a cable multimedia repeater (CMF), which does not require time division multiple access and burst operation.
  • both the uplink channel and the downlink channel are provided with an enhanced convergence sublayer for realizing multiplexing and demultiplexing of the video stream.
  • Multiple single video streams and data can be multiplexed into a transport stream, and the transport stream can be demultiplexed into multiple single video streams and data.
  • the uplink channel in the cable multimedia repeater CMF and the cable multimedia repeater head end system CMFTS adopts a 16QAM, 64QAM or 256QAM modulation format, and the symbol rate of the uplink channel is 1280ksym/s, 2560. Ksym/s or 6952 ksym/s with a maximum bandwidth of 1.6 MHz, 3. 2 MHz or 8 MHz.
  • the modulation format of the uplink and downlink channels can also be 512QAM, 1024QAM, 2048QAM or 4096QAM, and the bandwidth can also be increased to reduce the number of transmission devices and increase the transmission rate.
  • the uplink channel in CMF adopts one of 16QAM, 64QAM and 256QAM modulation formats, and the bandwidth can be made into two types: one is narrow in frequency band and low in rate (the highest symbol rate is 2.56Msym/s), and does not process multiple videos.
  • the bandwidth allocation of the upstream channel is the responsibility of the CMF, not the CMFTS of the front end (or sub-front end)
  • the cable multimedia repeater CMF is provided with a multicast receiving channel for receiving broadcast information and multicast information, and a digital television broadcast receiving channel for receiving digital television broadcast information.
  • the cable multimedia repeater head end system CMFTS is further provided with a channel scheduling controller, which is used to implement scheduling management of common uplink and downlink channels of a cell.
  • a channel scheduling controller is set in the network, and the common channel in the network is scheduled according to the condition of the network to adapt to the needs of the user.
  • the channel scheduling controller can be concurrently served by a CMFTS serving as a multicast, and no special equipment is needed.
  • the invention adopts measures in various aspects to make the new system have beneficial effects, and the technical measures adopted and the beneficial effects thereof mainly include the following aspects:
  • each cable can use a frequency band of 60 MHz (5 MHz to 65 MHz) alone.
  • the entire cell has 60n MHz of bandwidth available for upstream transmission.
  • the bandwidth of the upstream channel is increased by (n-1) times, and the noise of the plurality of cables is not superimposed on each other, reducing noise.
  • one cell can have 94 8MHz downlink channels, and if the broadcast channel uses 26, the channels used for unicast and multicast are still available. 68.
  • the use of 64QAM the downlink transmission rate is not less than 2. 8Gb / s.
  • the transmission effect of one multicast channel is equivalent to the transmission of multiple unicast channels; in addition, the characteristics of the space division of the coaxial cable network can be utilized to increase the downlink transmission capability of the cell by transmitting signals to different trunk cables.
  • the signals of different frequency bands are separated, and then these frequency bands are converted to a frequency range suitable for cable transmission, and transmitted to the corresponding trunk cable.
  • the corresponding user If a cell uses four trunk cables, then The downlink data transmission rate of a cell is higher than 10Gb/S. Of course, the condition for doing so is that the optical transmission system has sufficient bandwidth. Therefore, the network of the present invention is stronger than the DOCSIS network in terms of transmission capability.
  • CMTS and CM By changing the functions, operation modes and implementation methods of the CMTS and CM, making them CMFTS and CMF, making the pair of devices a user group device, which can superimpose the transmission capabilities of multiple uplink and downlink channels, and then with the front end.
  • the switch and the user interface can provide users with up and down lOOMb/s interfaces, and if needed, the downlink rate can be increased to lGb/s.
  • the uplink channel of the present invention can adopt 16QAM, 64QAM and 256QAM, and even with 64QAM, the transmission capability of the uplink channel is improved by 50% compared with the adoption of 16QAM.
  • the upstream bandwidth of a cable is 5 ⁇ 65MHz, and the total transmission rate can be higher than 280Mb/s. If the photoelectric conversion node is connected to the user through 4 cables, the total uplink transmission capacity of one cell can be higher than lGb/s.
  • the uplink channel can adopt the bandwidth of 8 MHz, so that on the one hand, the number of uplink channels and devices can be reduced, and on the other hand, such
  • the uplink channel can make the transmission data and the channel for transmitting video uniform at the physical layer, and the channel adopts a continuous working mode to make the uplink channel suitable for the transmission of comprehensive information.
  • the current CMTS and CM are mainly used for data transmission.
  • the downlink channel has a transmission convergence sublayer, it cannot multiplex multiple single video streams into a transport stream.
  • the CM cannot extract PSI (Program Specific Information) and SI (Service Information), and cannot demultiplex the transport stream into a single video stream.
  • the invention enhances the function of the downlink channel convergence sublayer, and the CMFTS and the CMF provide the video stream multiplexing and demultiplexing functions of the downlink channel. Not only can multiple single video streams be transmitted, but also data transmission and video transmission can be mixed and transmitted in the same channel, which ensures the need for downlink integrated service information transmission.
  • the upstream channel bandwidth of the CMTS and CM is narrow, and there is no convergence sub-layer, which is not suitable for the integrated transmission of data and video streams.
  • the uplink channel of the present invention can adopt an 8 MHz bandwidth, adopts the same modulation format as the downlink channel, and also adopts channel coding suitable for data transmission and video transmission, and adopts an enhanced convergence sublayer, and CMF and CMFTS also have an 8 MHz bandwidth.
  • the video stream of the uplink channel is multiplexed and Demultiplexing function, data and multiple video streams can also be mixed and transmitted in the same channel, which can ensure the mixed transmission of uplink data, voice and video, and adapt to the needs of triple play.
  • the cable multimedia repeater of the present invention demultiplexes the video transport stream and then forwards it to the user in a multicast manner, so that the amount of information to be forwarded is greatly reduced, and the different programs that distinguish different channels have the same PID ( Packet Identifier, the problem with the packet identifier).
  • PID Packet Identifier
  • the uplink channel adopts the point-to-point continuous transmission mode, and does not use the time division multiple access protocol. Instead of using the statistical time division multiplexing method, the complexity of the equipment is greatly reduced, and the equipment cost is greatly reduced. In addition, by widening the channel, reducing equipment, and reducing costs, the price of a CMFTS that provides lGb/s transmission capability is currently about the price of a CMTS with the same transmission capability and DOCSIS 3.0 standard. one tenth.
  • the cable multimedia transponder is an inexpensive device, which is also the user's public device. The user does not need the Cable Modem, and the cable multimedia transponder allocates the user to the user at a lower cost than the Cable Modem.
  • the cable multimedia transponder exchanges information with the user with a 100Mb/ s Ethernet switch. On the one hand, it guarantees the user's requirement for the rate. On the other hand, by superimposing the transmission capability of multiple channels, the frequency division multiplexing information is converted into statistics. Time-division multiplexed information allows users to receive video broadcasts using a computer. Set-top boxes and digital TVs do not require high-frequency demodulation, reducing the need for these devices. As long as the user equipment can process multiple video programs at the same time, a family can simultaneously watch multiple programs of different channels at the same time, not only to watch standard-definition programs, but also to watch high-definition programs. DRAWINGS
  • FIG. 1 is a schematic diagram of a reference structure of a current DOCSIS network
  • FIG. 2 is a schematic diagram of a network structure of the present invention.
  • FIG. 3 is a circuit block diagram of a cable multimedia repeater head end system of the present invention.
  • FIG. 4 is a circuit block diagram of a cable multimedia repeater in the present invention
  • Figure 5 is a flowchart of information processing of a modulator pair in the present invention
  • Figure 6 is a protocol stack of the present invention for forwarding information through CMFTS and CMF;
  • Fig. 7 is a schematic diagram showing the bit allocation of the priority and address information of the CMFTS and the CMF in the data transmission process of the present invention.
  • a broadband access system based on an HFC network is composed of a front-end access system, an HFC network, and a terminal access system, and the front-end access system and the terminal access system are connected through an HFC network, and the HFC is connected.
  • the network is composed of an optical transmission part and a coaxial cable transmission part, wherein the optical transmission part comprises an optical transmitter, an optical receiver, a photoelectric conversion node and an optical fiber, and the coaxial cable transmission part is a coaxial cable network;
  • the front end access system is provided with at least one cable multimedia repeater head end system CMFTS and a channel scheduling controller CDC, and the terminal access system is provided with at least one cable multimedia repeater CMF;
  • the HFC network is connected to the switch through the front-end access system, and the switch is connected to the IP backbone network or the front-end server, and the IP backbone network or the front-end server transmits the downlink signal to the electric CMFTS through the switch, where the CMFTS is used to implement the downlink.
  • the protocol processing, modulation and up-conversion processing of the signal, the downlink signal output by the CMFTS is mixed with the video signal of the cable TV through the mixer, the output end of the mixer is connected to the optical transmitter, and the mixed downlink signal passes through the light
  • the transmitter is transmitted to the photoelectric conversion node, and the photoelectric conversion node is connected to at least one CMF, and the CMF is used for demodulation and protocol processing of the downlink signal, and the CMF is connected to the user equipment of the user group through the transmission medium, and the user group includes at least One user;
  • the uplink signal of the user in the user group is aggregated into the CMF by using the transmission medium, and the CMF is used for protocol processing, modulation, and mixing of the uplink signal, and the CMF sends the processed uplink signal to the HFC network, the HFC.
  • the photoelectric conversion node in the network passes through at least one trunk cable with different locations CMF and user connection, at the photoelectric conversion node, different trunk cables are provided with upconverters of different frequencies, and the uplink signals of different trunk cables are mixed into the photoelectric conversion node through the mixer after frequency conversion by different frequencies
  • the photoelectric conversion node is connected to the input end of the optical receiver through a fiber return channel, and the output end of the optical receiver is connected with an uplink distributor, and the uplink distributor is configured to allocate an uplink signal received by the optical receiver to In the CMFTS, the CMFTS is used to implement demodulation and protocol processing of the uplink signal, and then forwarded to the IP backbone network or the front-end server through the switch.
  • Sub-solution 1 The original HFC network is not modified in both directions.
  • the uplink cable is laid from the photoelectric conversion node to the location of the CMF, and is routed from the CMF to the user's home with a Category 5 twisted pair cable.
  • the HFC network thus obtained is still a tree structure. This scheme is applicable to a cell with a large user density, a small coverage of the photoelectric conversion node, and a high requirement for network transmission capability. Because the residents of China are more concentrated, especially in cities, a community often only includes several buildings. The distance between the photoelectric conversion node and the building usually does not exceed 300 meters.
  • the uplink cable is only laid to the location where the cable multimedia transponder is located, and does not enter the user's home. So the workload is not very large, and the cost is not too high. The main advantage of this is to ensure that the uplink has sufficient bandwidth. In addition, the difference in uplink and downlink channel characteristics is small, and the difference in equipment used is small and easy to develop.
  • Sub-program 2 Two-way transformation of the HFC network. The method of transformation is different from the DOCSIS standard. First, the CMF is set up. From the CMF to the user, the Category 5 twisted pair cable is still used, and the user access cable is blocked. Uplink noise. The second is to separate the uplink and downlink signals of each trunk cable at the photoelectric conversion node, and send these uplink signals to their respective upconverters; convert the uplink signals sent by different cables to different frequencies, and then mix them. It is sent to the front-end CMFTS for demodulation through the return optical channel. If the photoelectric conversion node has n cables to the user, the total uplink bandwidth of the cell is 60 ⁇ MHz, which is (n-1) times larger than the original.
  • This scheme is applicable to a cell with a relatively high uplink transmission capability and a user interface rate of 100 Mb/ s .
  • Upconversion only moves the upstream signals sent by different cables to different frequency bands. The cost of this method is not very high.
  • Another method is to demodulate the uplink signals of each cable at the photoelectric conversion node, and then merge them into high-speed data, which is transmitted back to the front end (or the front end) through the optical channel.
  • Sub-solution 3 The two-way transformation of the HFC network is similar to that of the sub-solution 2, except that the cable multimedia transponder to the user is a star structure, and the cable multimedia transponder is connected to the user through the E0C. The rate of the interface provided by the user for this solution is affected by the E0C rate, and the current rate is 10 Mb/s. If you do not need to increase the upstream bandwidth, there is no need to perform spectrum shifting.
  • the signals transmitted to the different trunk cables can be arranged in different frequency bands, and then combined and transmitted to the cell photoelectric conversion node by the optical transmission portion. After that, the signals of different frequency bands are separated, and then these frequency bands are converted to a frequency range suitable for cable transmission, and transmitted to the corresponding users by the corresponding trunk cable. This makes full use of the transmission capacity of the cable network.
  • the user group equipment is needed in the network instead of the single user equipment.
  • the uplink channels of the CM and the CMTS work in a time division multiple access manner, and do not adapt to the needs of the new network, and must be changed accordingly.
  • the CMFTS includes a controller, an uplink high frequency hub, and a downlink high frequency hub, and an input end of the uplink high frequency hub is connected to the uplink distributor, and an output end of the uplink high frequency hub and the control
  • the devices are connected in parallel by m demodulators, and the controller and the downlink high-frequency hub are connected in parallel through k modulators, and an up-converter is further disposed between each modulator and the downlink high-frequency hub.
  • An output end of the downlink high frequency hub is connected to the mixer, and a network interface is further disposed on the controller, where the network interface is used to connect the switch and another cable multimedia repeater head end system (CMFTS) Or front-end server;
  • CMS cable multimedia repeater head end system
  • the CMF includes a high frequency hub, a modem, a controller unit, and a switch unit.
  • One end of the high frequency hub is connected to a coaxial cable network, and the other end of the high frequency hub passes through i modulators and j
  • the demodulator is connected in parallel with the controller unit, and the switch unit is further connected to the controller unit, and the switching unit is connected to the user group device through the transmission medium.
  • the unicast channels of the two key network devices CMFTS and CMF mentioned in the present invention have a one-to-one correspondence, so that the protocol processing of the information by the CMFTS is greatly simplified, and the transmission capacity is relatively large (for example, lGb). /s ) device, which can contain up to 24 downstream channels.
  • the CMF can include unicast, multicast, and broadcast receiving channels.
  • the number of unicast channels depends on the size of the user group and the user's usage requirements. Usually, it is not very large. For example, the user group is 36, and the average transmission rate. For 5 Mb/s, the downlink channel used for unicast is 4 to 5.
  • a CMFTS can provide unicast channels for multiple CMFs, but only needs to be arranged in advance.
  • Multicast can be organized by cell.
  • the amount of data multicast is relatively small, and the number of channels required is small.
  • the number of channels used for video on demand varies greatly. It is more suitable for dynamic adjustment. It is set at the beginning and then increased as needed.
  • the modulator and demodulator should be made into modules for easy addition and subtraction.
  • the processing to be performed by the modulator in each CMF and CMFTS is as shown in Fig. 5, including: forming data block, FEC (Forward Error Correction Coding) coding, generating scrambling code, symbol mapping (generating in phase) And orthogonal components), Nyquist filtering and modulation.
  • the FEC coding includes RS (Reed-Solomon) coding and interleaving coding. To ensure that the 8 MHz channel can simultaneously transmit video and data signals, the interleaving code should have an interleaving depth of 12 in increments of 17.
  • Demodulation is the inverse of modulation.
  • the processing of the demodulator includes: demodulation, filtering, symbol-to-data mapping, descrambling, decoding, and forming a data stream.
  • the funnel noise of the uplink channel is an important factor affecting the uplink transmission capability. There are many factors causing the funnel noise. The most influential is the intrusion noise, and most of the intrusion noise is entered from the user's home. , 20 to 30% of the noise invades the system through the access cable.
  • the coaxial cable used as a trunk or branch line (SYWV-75-12 or SYWV-75-9) has a shield attenuation of more than 100 dB.
  • the cable entering the user is generally SYWV-75-5, and the shielding attenuation is 50 ⁇ 80dB.
  • the shielding attenuation of the trunk or trunk cable is more than 3000 times greater than the shielding attenuation of the access cable. Now the range of a cell is relatively small. Even if the trunk or trunk cable is 100 times longer than the user's access cable, only 1% of the noise power is intruded through the trunk or trunk cable.
  • the present invention blocks the upstream noise from the user access cable at the location of the CMF, which removes most of the funnel noise.
  • the inventor actually measured the funnel noise of the DOCSIS network and the network of the present invention, the network and the user are Similarly, the method of retrofitting is different.
  • the network modified by the method of the present invention can be about 20 dB less noise than the DOCSIS network.
  • the uplink channel of the new network can adopt a modulation format of 64QAM or even 256QAM.
  • the upstream modulator provides 16QAM, 64QAM and 256QAM to accommodate different network conditions.
  • the uplink and downlink channels are transmitted by different cables, and the uplink and downlink modems can be the same, except that the downlink signal can be directly forwarded to the user through the switch, and the uplink signal is forwarded to the backbone network or the front-end device, and the forwarded signal is forwarded. There will be some differences in the software.
  • the uplink bandwidth of a cell is 60n MHz, which is (n-1) times larger than the original.
  • the uplink channel can adopt a relatively wide bandwidth to reduce the number of devices, and the code of the uplink channel.
  • the meta-rates are 1280 ksym/s, 2560 ksym/s, and 6952 ksym/s, with a maximum bandwidth of 1.6 MHz, 3. 2 MHz, and 8 MHz, respectively.
  • the modulator with an upstream bandwidth of 8 MHz is the same as the downstream modulator.
  • the modulators with bandwidths of 1.6 MHz and 3. 2 MHz still use DOCSIS coding and modulation and demodulation techniques, including 64QAM and 256QAM.
  • the frequency range of the uplink signal reception needs to cover the up-converted uplink bandwidth.
  • Figure 6 is a protocol stack for forwarding information through CMFTS and CMF.
  • the most obvious difference compared to the protocol stack for CMTS and CM forwarding information is that the uplink signal also uses the convergence sublayer.
  • the processing function of the convergence sublayer of the video signal debounce, PID remapping, video stream multiplexing, PSI generation and insertion is added in the CMFTS; the extraction of the PSI and SI information and the transmission stream are added in the CMF. Demultiplexing and other functions.
  • the uplink channel also uses a convergence sublayer, except that an uplink channel with a bandwidth less than 8 MHz does not handle multiplexing and demultiplexing of multiple single video streams.
  • the 8 MHz upstream channel provides multiplexing/demultiplexing of multiple single video streams.
  • the CMF has multiple receivers for downstream signals.
  • the video streams of multiple channels are collected in the CMF and then transmitted to the user's home.
  • the channel is divided by frequency, because a set-top box receives a program of a certain channel for a period of time, at which time it cannot receive programs of another channel at the same time, so different programs of different channels can use the same PID. .
  • one user may simultaneously view multiple programs from different channels, and it is possible that different programs have the same PID. This can be an error.
  • the solution to this problem is that the CMF assigns a multicast address to each program, because this multicast address is used by the CMF to forward information to the user, with a small range and a large degree of freedom.
  • This address can be made to include two aspects, one is the channel information, and the other is the program number, so that the display in the EPG (Electronic Program Guide) is the same as the EPG of the current set-top box.
  • the user in the user group who wants to watch the program joins the multicast group and receives the information of the multicast address.
  • each channel also needs a multicast address, which is used to multicast SI information so that the user can generate EPG.
  • This multicast group should include all users of all programs for that channel for this user group. Even if one user simultaneously watches multiple programs of different channels, the PIDs of different programs of different channels are the same. At this time, the user can distinguish the multicast addresses by referring to the multicast address, and there is no error.
  • the CMF is responsible for the bandwidth allocation of the uplink channel, so there is no uplink bandwidth request, and the CMFTS does not need the function of uplink bandwidth allocation.
  • the uplink signal of the user group is first collected into the CMF.
  • the CMF determines its priority according to the type of information. Multiple queues are set in the device for different priority information, and then the information is sent according to a certain algorithm. If the upstream channel bandwidth is insufficient, the cable multimedia repeater may request an increase in the channel from the channel scheduling controller, and vice versa.
  • CMFTS and CMF should back up the uplink channel and downlink channel and be in hot backup state. If the working uplink and downlink channels are overloaded, CMF and CMFTS can respectively propose to the channel scheduling controller.
  • the downlink channel receiver of the CMF backup determines whether to receive the frame according to the user group number information in the extension header, and can receive the unicast information sent by the public CMFTS to the user group at any time. .
  • the bandwidth allocation of the uplink channel is handled by the cable multimedia repeater, and the method of differentiated service is used to implement QoS, and the method of determining the priority and scheduling is consistent with DOCSIS.
  • the DOCSIS network multiple users (multiple CMs) distributed in different locations share an uplink channel, and the uplink communication is a many-to-one burst mode, which requires ranging, and needs to adjust the frequency and output level of the CM.
  • the uplink channel of the present invention is a receiver corresponding to a transmitter, which is a one-to-one continuous operation mode, does not need to perform ranging, and does not need to adjust the frequency and output level.
  • the unicast information transmitted by the CMFTS to the CMF needs to be forwarded to the user.
  • the CMF hopes to know the priority and destination address of the Ethernet frame without opening the "payload" portion of the radio frequency MAC frame.
  • This information is required on the RF MAC frame header.
  • the implementation method is to transmit the message with 3 bytes in the original SFID on the extension header.
  • the reference format is shown in Figure 7, where 3 bits indicate the priority and 4 bits are used to indicate the order of the information. Reserved for future use, the remaining 16 digits indicate the address. One of them is used to indicate whether it is multicast or unicast.
  • the number of the user group is indicated by 7 digits, and the remaining 8 digits are used for the subscriber number. This number can be linked to the port number of the switch. Under multicast conditions, 15 bits are available for multicast addresses.
  • the downlink channel of a cell is actually divided into four parts: a video broadcast channel, a multicast channel, a unicast channel, and a public backup channel.
  • the number of video broadcast channels is determined by the operator.
  • the information in the multicast channel includes broadcast data or multicast data and video-on-demand information.
  • the amount of multicast data is small, and the number of multicast channels is determined mainly.
  • Video on demand because different user requirements, different cells, the same cell also changes at any time, so it must be changed according to the user's requirements at any time.
  • the number of CMF unicast channels depends on the size of the user group and the amount of user information, but at least one uplink and one downlink channel should be maintained to ensure that the user is always available, and then increase or decrease the channel as needed.
  • the uplink bandwidth of the present invention is relatively large, and the uplink channel funnel noise is relatively small, and a relatively wide frequency channel is used, focusing on 8 MHz, 3. 2 MHz and 1.6 MHz.
  • a 40-user user group with an 8MHz and a 1.6MHz uplink channel can also meet the user's requirements, and the rest of the bandwidth can be used for backup.
  • CMFTS and CMF are initialized First, the CMFTS and the CMF respectively set the center frequency, modulation format, symbol rate, interleaving depth, and output level of the respective uplink and downlink channels.
  • the frequency of the CMFTS downlink channel is specified and is known to both CMFTS and CMF.
  • the downlink channel continuously sends an uplink channel descriptor, which tells the center frequency of the CMF uplink channel, the symbol rate, the modulation format, and the depth of the interleaving.
  • the CMF sets the center frequency, symbol rate, modulation format, and interleaving depth of the uplink channel, and then scans the downlink signal near the center frequency of the set downlink channel. If the downlink signal can be received normally, the CMFTS is sent a padding message. Indicates that the downlink channel is working properly.
  • the frequency of the CMF uplink channel is also specified. Both the CMF and the CMFTS know that the uplink channel continuously sends the padding message, and the CMFTS scans the uplink signal near the set center frequency. If the uplink signal can be received normally, the CMF retransmits the padding message. The upstream channel is working properly.
  • the channel parameters are optimized: CMFTS and CMF according to the transmission condition of the channel (the level of the signal level, the level of the bit error rate, etc.), the receiving end proposes an optimization application for the transmission level, symbol rate, modulation format, etc. of the corresponding channel. , the two parties agreed to implement.
  • a request is made by the CMF
  • the CMFTS controller processes the downstream signal.
  • error detection and processing distinguishing information type: video or data
  • user address processing notify CMF of users included in multicast address
  • processing of video information including A, debounce of video signal, program reference clock (Program Processing of Clock Reference, PCR)
  • B PID remapping, processing of PSI generation and insertion
  • C video stream multiplexing processing
  • processing of data information including priority processing, address information processing, information encapsulation, and data
  • the processing of the downlink signal by the modulator includes: forming a data block: dividing the information sent by the controller into blocks, And form a 188-byte MPEG (Moving Picture, Experts Group) data packet; FEC encoding: FEC encoding includes RS (Reed-Solomon) encoding and interleaving encoding; scrambling; symbol mapping; filtering;
  • MPEG Motion Picture, Experts Group
  • the processing of the downlink signal by the demodulator is the inverse of the modulator's processing of the downlink signal.
  • the processing of the uplink signal by the modulation and demodulator is consistent with the processing of the downlink signal.
  • the difference is that the uplink channel is divided into two types, one is a channel with a symbol rate of 6.952 Msym/s, and the other is a symbol rate.
  • the channel is not higher than 2.56M S ym/s.
  • the former is consistent with the downlink channel and can be used for video transmission. The latter is not suitable for video transmission.
  • CMF forwards the downlink signal
  • the controller of the CMF For the information sent by the unicast channel, the controller of the CMF first divides the demodulated information into video and data. For the data, the controller needs to open the MPEG packet, restore the radio frequency MAC frame, and then restore the Ethernet MAC frame. And forward the information to the user according to the priority and user number in the RF MAC frame extension header.
  • the controller For video information, the controller extracts the SI and PSI and demultiplexes the video information based on the information, restores the Ethernet frame, and forwards it to the user.
  • the downlink information also includes broadcast information and multicast information.
  • the broadcast information here refers to the information transmitted by the broadcast channel to the network coverage area, mainly digital television and broadcast information. This information should be forwarded according to the needs of the user, as follows:
  • the CMF forwards the extracted SI and PSI information to the user, so that the user can generate the EPG.
  • the user selects the favorite program according to the EPG, and the user equipment simultaneously sends the information to the CMF, and the CMF adds the user to the group of the program. Broadcast group. In this way, a multicast group of each program is formed.
  • the CMF sends the multicast address of the program to the user, and the user receives the selected program according to the multicast address.
  • the CMF forwards the demultiplexed program information to the user according to the information of the program multicast group, the multicast address and its associated port.
  • the CMF also forms a multicast group for each channel.
  • This multicast group includes users of all programs on this channel.
  • This multicast group is used to send SI and PSI information.
  • the information of the multicast channel involves some usage fees and requires authorization. For such information, the CMFTS and CMF do not have the right to process. Their task is to forward information and form a multicast group according to the authorization information. The information to be forwarded is also There may be three situations:
  • Type of information to be forwarded data information, management information, on-demand information;
  • Multicast management information processing error detection, prioritization, and management of management information
  • the CMF handles the uplink signal
  • the processing of the uplink signal by the CMFTS includes: error detection, prioritization, address and forwarding processing, and finally the uplink data video stream is transmitted to the front-end device (server and CMFTS) or the backbone network according to the address information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本发明公开一种基于HFC网络的宽带接入系统,由前端接入系统、HFC网络及终端接入系统组成,前端接入系统设置有CMFTS和CDC,终端接入系统设置有CMF以及到用户终端的传输媒体,CMFTS通过交换机与IP骨干网连接,CMFTS与CMF之间有混合器、光发送器、光电转换节点、上变频器、光接收器以及上行分配器;通过对DOCSIS网络系统的网络结构、网络设备、网络带宽分配作改进,扩大了上行信道带宽,阻断了接入电缆传来的上行噪声,增强了网络传输能力,提供了上、下行信道视频流复用与解复用功能,保证了上行数据、话音和视频混合传输,保证现有模拟电视、EQAM及机顶盒等设备正常工作的同时,适应了三网融合需要。

Description

一种基于 HFC网络的宽带接入系统
技术领域
本发明涉及到宽带网络接入技术, 具体地说, 是一种基于 HFC网络的宽带 接入系统。
背景技术
目前基于 HFC (Hybrid Fiber Coaxial , 混合光纤同轴电缆) 网络的宽带 接入网, 采用 DOCSIS (Data-Over-Cable Service Interface Specifications) 标准, 这个技术标准是美国提出并被国际电信联盟接受了的技术标准。 欧洲在 DOCSIS 的基础上提出了 EUR-D0CSIS标准, 即欧洲的 DOCSIS标准, 中国参考 EUR-D0CSIS V1. 1标准提出了 "HFC有线电视数据传输系统"标准, 这三种技术 标准虽然在物理层的带宽、 QAM (Quadrature Amplitude Modulation, 正交幅 度调制) 调制的星座图及反向信道所用的频率范围等方面有些不同, 但它们所 基于的网络结构和 MAC (Media Access Control , 媒体访问控制) 层及其以上 的协议是相同的。
结构如图 1所示, 传统的 D0SIS网络的参考结构包括前端接入系统、 终端 接入系统和 HFC网络, 前端接入系统和终端接入系统通过 HFC网络连接, 这种 HFC 网络的结构可以分成光传输和同轴电缆传输两部分: 从前端的光收、 发器 到用户小区的光电转换节点之间是光传输部分, 用户小区的光电转换节点的输 出端到用户的输入端是同轴电缆传输部分。 一个小区是指在 HFC网络中一个光 节点所覆盖的区域, 通常一个小区有大约 500个家庭用户, 如果某个小区用户 的信息量特别大, 这个小区的 HFC网络的传输能力不能达到要求, 小区的用户 数就应该减少, 反之亦然。
在同轴电缆传输部分, DOCSIS网络依赖电缆网,对这种网络进行双向改造, 使上、 下行信号采用频分方式都在这种网络中传送。 网络的终端接入系统是 CM (Cable Modem , 电缆调制解调器), 前端接入系统是 CMTS (Cable Modem Termination System, 电缆调制解调器头端系统), CM 是单用户设备, 置于用 户家中与用户端的设备相连, CMTS置于 HFC网络的前端或分前端, 它与前端或 分前端的交换机相连, 并通过交换机与骨干网及前端的服务器相连。从骨干网、 服务器及其它 CMTS来的下行信号通过交换机送到 CMTS, 经协议处理、 调制和 上变频后, 通过 HFC网络发送给 CM。 通常一个 CMTS和多个 CM共享一个上行信 道和一个下行信道的传输能力。 CMTS以广播的方式将前端要传的信息传送到一 个小区或多个小区使用这个频道的所有 CM中, CM则根据信息中的业务流标识 (SFID, Service Flow Identifier) 的地址信息决定舍弃该信息, 或将该信息 转发给相应的用户设备。 SFID是 CMTS分配给 CM的, 一个 CM最少有两个 SFID, 其中一个用于下行, 一个用于上行, 有时可以有好几个。 用户的上行信号发送 采用时分多址 (TDMA, Time Division Multiple Access ) 技术, CM 的发送部 分平时是不发送信息的,如果有信息要发送,它首先要与其它的 CM竞争给 CMTS 发送带宽分配请求信息的发送机会, 如果不成功还要继续争取, 如果发送了带 宽分配请求信息, CMTS要根据该 CM要发送的信息的 SFID和网络状况, 给它分 配带宽, CM收到带宽分配的信息后, 按 CMTS指定的发送开始时间和时间间隔 发送信息。因此要求所有的 CM时间上要与 CMTS同歩, 此外为了使各个 CM发来 的信息到达 CMTS接收点的幅度、 频率和时间都比较准确, CMTS与各个 CM还需 要经常进行测距、频率调整及幅度调整。上行信号经 HFC网络送到 CMTS经解调 及协议处理后通过交换机送给前端设备或骨干网。
现有的这种网络存在的一些固有缺陷是:
①同轴电缆网是一种树形结构, 反向通道存在严重的漏斗噪声, 使上行信 号只能采用抗干扰能力较强的 16QAM和 QPSK( Quadrature Phase Shift Keying, 正交相移键控) 调制格式, 难于采用频带利用效率高的 64QAM或 256QAM。 而且 上行带宽太窄, 难于保证未来业务的需要。
② DOCSIS 3. 0之前的标准没有信道捆绑技术, 多个用户共享一个下行和一 个上行信道, 对于 64QAM调制, 一个下行信道的最高速率为 41. 712Mb/s, 不可 能提供 100 Mb/s这样的接口速率。 DOCSIS 3. 0采用信道捆绑技术, 可以提供 高速接口, 但要多个 CMTS和多个 CM, 用户要多个 CM, 费用高。
③这种网络的传输设备 CMTS和 CM虽然可以混合传送下行的数据和视频流, 但它们只对数据信息进行处理, 对视频信号的复用 /解复用等问题都不进行处 理, 不能同时传送多个单节目流。
④这种网络多个用户共享一个上行信道, 采用时分多址或码分多址方式工 作, 采用时分多址时, 用户都要先与电缆调制解调器头端系统的时钟同歩, 还 需要不断进行测距、 带宽分配、 时钟同歩等, 不仅操作复杂, 而且额外开销大, 使可用带宽的利用效率低。
⑤由于 DOCSIS协议复杂, CMTS和 CM都要进行复杂的协议处理, 设备比较 贵, 要提供宽带传输能力, 网络建设费用比较高。
⑥网络采用频分方式工作, 一个下行频道的带宽为 6或 8MHz, 数量众多的 节目被安排在多个频道中传输, 即使机顶盒能同时给多个节目解压, 由于机顶 盒在同一时间只能接收一个频道中的节目, 不能同时收看不同频道的节目, 这 样, 一个家庭要同时收看不同频道的节目, 就必须有另外的机顶盒。
⑦ DOCSIS的上行信道不能采用会聚子层, 不适应数据与视频流信号的混合 传送。
发明内容
针对现有技术的不足, 本发明的目的是提供一种基于 HFC网络的宽带接入 系统方案, 主要解决的技术问题是: 提出一种适合 HFC宽带接入网的新型网络 架构和运行方式, 充分、 有效地使用 HFC网络的资源, 提高 HFC网络的上、 下 行传输能力, 以适应未来业务的需要, 同时降低网络的建设费用, 增强会聚子 层的功能适应三网融合的需要,并保证现有的模拟电视、数字电视、 EQAM (Edge Quadrature Amplitude Modulator,边缘正交调幅)及机顶盒等设备能正常工作, 不受影响。
为达到上述目的, 本发明采用技术方案如下:
本宽带接入系统包括前端接入系统、 HFC (Hybrid Fiber Coaxial , 混合光 纤同轴电缆)网络及终端接入系统,所述前端接入系统和终端接入系统通过 HFC 网络连接;
所述前端接入系统包括:
电缆多媒体转发器头端系统 (CMFTS : Cable Multimedia Forwarder Termination System) 组, 设有至少一个电缆多媒体转发器头端系统 (CMFTS ) , 用于接收外部设备送来的下行信号、 实现下行信号的协议处理、 调制以及上变 频处理并输送至 HFC 网络的光传输部分; 用于接收 HFC 网络 (Hybrid Fiber Coaxial , 混合光纤同轴电缆)送来的经电缆多媒体转发器协议处理、 调制及混 合处理的上行信号、 实现上行信号的解调和协议处理并输送至外部设备; 外部 设备包括现有技术中的与 IP骨干网或前端服务器连接的交换机,也可包括其他 CMFTS, CMTS和各种服务器等;
电缆多媒体转发器(CMF: Cable Multimedia Forwarder)组, 设有至少一个 电缆多媒体转发器 (CMF),用于接收 HFC网络电缆传输部分的经过电缆多媒体转 发器头端系统(CMFTS )协议处理、调制以及上变频处理的下行信号及数字视频 信号、 实现下行信号的解调与协议处理并输送至多个用户端设备; 用于接收多 个用户端设备的上行信号实现上行信号的协议处理、 调制及混合, 该电缆多媒 体转发器(CMF)将处理后的上行信号送入所述 HFC网络的电缆传输部分, 并通 过 HFC网络输送至电缆多媒体转发器头端系统 (CMFTS) ;
所述 HFC网络的光传输部分通过光电转换节点与电缆传输部分连接, 所述 光电转换节点与电缆多媒体转发器 (CMF)组之间通过至少一条干线电缆连接。
进一歩, 在所述光电转换节点所在地, HFC 网络的电缆传输部分设有变频 混合模块, 所述变频混合模块包括分别设置于 n-1根不同干线电缆且频率各不 相同的上变频器和连接于上变频器与光电转换节点之间把 n-1根不同干线电缆 的上行信号经不同频率上变频器变频后混合的混合器 Π ; n为光电转换节点连 接的干线电缆总数。
进一歩, 所述前端接入系统中的电缆多媒体转发器头端系统(CMFTS )和所 述终端接入系统中的电缆多媒体转发器 (CMF) 采用的协议与 DOCSIS不同, 其 中:
电缆多媒体转发器头端系统(CMFTS)设置有 m个上行信道和 k个下行信道, 包括控制器、 上行高频集线器和下行高频集线器, 所述上行高频集线器的输入 端与所述上行分配器连接, 该上行高频集线器的输出端与所述控制器之间通过 m个解调器并行连接, 所述控制器与下行高频集线器之间通过 k个调制器并行 连接, 在每个调制器与下行高频集线器之间还设置有上变频器, 所述下行高频 集线器的输出端与所述混合器相连, 在所述控制器上还设置有网络接口, 该网 络接口用于连接所述交换机或前端服务器;
所述电缆多媒体转发器(CMF)设置有 i个上行信道和 j个下行信道, 包括 高频集线器、 调制解调器、 控制器单元以及交换机单元, 所述高频集线器的一 端与同轴电缆网连接, 该高频集线器的另一端通过 i个调制器和 j个解调器与 所述控制器单元并行连接, 在该控制器单元上还连接所述交换机单元, 该交换 单元通过所述传输媒体与多个用户端设备连接;
进一歩, 所述电缆多媒体转发器(CMF) 中的交换机单元通过 5类双绞线作 为接入电缆连接用户端设备, 阻断通过接入电缆引入的上行漏斗噪声;
进一歩, 所述电缆多媒体转发器(CMF) 中设置有 E0C单元时, 所述交换机 单元与该 E0C单元连接, 该 E0C单元通过用户接入电缆连接用户端设备, 用户 接入电缆的上行信道只能传送基带信号;
进一歩, 所述电缆多媒体转发器 (CMF ) 和电缆多媒体转发器头端系统 (CMFTS )中的上行信道采用 16QAM、 64QAM或 256QAM调制格式, 该上行信道的 码元速率为 1280ksym/s、 2560 ksym/s或 6952 ksym/s , 最大带宽为 1. 6 MHz , 3. 2 MHz或 8 MHz ;
进一歩, 所述电缆多媒体转发器 (CMF ) 和电缆多媒体转发器头端系统 (CMFTS)转发信息的协议栈中,下行信道和下行信道都设置有增强的会聚子层, 用于实现视频流的复用和解复用功能;
进一歩, 电缆多媒体转发器头端系统(CMFTS)包括有多个下行单播信息发 送器和多个上行信号接收器, 电缆多媒体转发器(CMF)包括有多个上行信号发 送器和多个下行信号接收器, 一个电缆多媒体转发器头端系统(CMFTS)的一个 上行信号接收器对应于一个电缆多媒体转发器 (CMF)中的一个上行信号发送器, 一个电缆多媒体转发器头端系统(CMFTS)中的一个下行单播信息发送器对应于 一个电缆多媒体转发器 (CMF) 中的一个下行信号接收器;
进一歩, 所述电缆多媒体转发器(CMF) 中设置有组播接收信道, 该组播信 道用于接收广播信息和组播信息, 还设置有数字电视广播接收信道, 用于接收 数字电视广播信息;
进一歩, 电缆多媒体转发器头端系统(CMFTS)还设置有用于实现上行信道 和下行信道调度管理的信道调度控制器(CDC: Channel Dispatch Controller); 所述 HFC网络的光传输部分包括混合器 I、 光发送器、 光接收器和上行分 配器, 电缆多媒体转发器头端系统(CMFTS)输出的下行信号通过混合器 I与有 线电视的视频信号混合,混合后的下行信号通过光发送器传送到光电转换节点, 光电转换节点通过电缆将信号输送至电缆多媒体转发器 (CMF) 组;
变频器将电缆传输部分送来的上行信号经不同频率变频后通过混合器 II混 合到所述光电转换节点中, 光电转换节点通过光纤与光接收器的输入端连接, 该光接收器的输出端连接有上行分配器, 该上行分配器用于将所述光接收器收 到的上行信号分配到所述电缆多媒体转发器前端系统 (CMFTS) 中。
本发明所提供的一种基于 HFC网络的宽带接入系统, 与现有 DOCSIS网络 的不同之处在于:
( 1 ) 网络结构
本发明的网络根据地理位置的远近将小区内的用户划分为若干个用户群, 一个用户群与一个电缆多媒体转发器连接, 从电缆多媒体转发器到用户可采用 基带 EOC (Ethernet Over Coax)或 5类双绞线连接, 通过 5类双绞线连接用户 设备, 阻断把 HFC网络接入到用户的接入电缆的上行通道, 电缆多媒体转发器 CMF也可以设置 E0C单元, 交换机单元与该 E0C单元连接, 该 E0C单元通过用 户接入电缆连接用户设备, 用户接入电缆的上行信道只能传送基带信号。 HFC 网络的接入电缆传送下行的信号, 不传送经调制的上行信号, 阻断从用户接入 电缆引入的上行漏斗噪声。
同时, 小区内的光电转换节点通常以空分的方式通过 n根干线电缆分别连 接到不同位置的用户, 在所述光电转换节点处将 n-1根不同的干线电缆送来的 上行信号上变频到不同的频率(或解调),然后通过混合器把全部上行信号合并 起来, 通过回传光通道送回前端。 此外, 也可以从小区的光电转换节点到各个 CMF敷设回传电缆, 彻底解决上行带宽不足的问题。 实际上, 还可以利用同轴 电缆网空分的特点来增加小区的下行传输能力, 方法就是将要传送给不同干线 电缆的信号安排在不同的频段, 然后合并到一起由光传输部分传送到小区光电 转换节点后, 将不同频段的信号分离出来, 再将这些频段变换到适合电缆传送 的频率范围, 由相应的干线电缆传送给相应的用户。 当然, 这样做的条件是光 传输系统有足够的带宽。
( 2 ) 网络设备
为了适应未来的业务和网络结构的改变, 本发明提及的网络设备主要包括 信道调度控制器 CDC、 电缆多媒体转发器头端系统 CMFTS和电缆多媒体转发器 CMF, 采用的协议与 DOCSIS不同; 所述前端接入系统中的 CMFTS与所述终端接 入系统中的 CMF都是多个用户共享的公共设备, CMFTS设置有 m个上行信道和 k 个下行信道, CMF设置有 i个上行信道和 j个下行信道, 其中:
电缆多媒体转发器头端系统 CMFTS包括控制器、 上行高频集线器和下行高 频集线器, 所述上行高频集线器的输入端与所述上行分配器连接, 该上行高频 集线器的输出端与所述控制器之间通过 m个解调器并行连接, 所述控制器与下 行高频集线器之间通过 k个调制器并行连接, 在每个调制器与下行高频集线器 之间还设置有上变频器, 所述下行高频集线器的输出端与所述混合器相连, 在 所述控制器上还设置有网络接口, 该网络接口用于连接所述交换机或前端服务 器;
电缆多媒体转发器 CMF包括高频集线器、 调制解调器、 控制器单元以及交 换机单元, 所述高频集线器的一端与同轴电缆网连接, 该高频集线器的另一端 通过 i个调制器和 j个解调器与所述控制器单元并行连接, 在该控制器单元上 还连接所述交换机单元, 该交换单元通过所述传输媒体与用户群设备连接。 本系统中的 CMFTS和 CMF与 DOCSIS网络的 CMTS和 CM有如下的差别:
1 ) CMF是一个用户群的公共设备, 它可同时接收本用户群所需的单播、 组 播和广播信息, 发送群内用户的上行信号, 包括单播和组播信息, 可包括多个 调制器和多个解调器, CMF也允许群内用户交换信息, 所以包括有交换机。
2 ) CMFTS和 CMF叠加了多个上行和下行信道的传输能力再与前端交换机及 用户接口, 从而能给用户提供上、 下行各 lOOMb/s 的接口, 下行的速率可达 lGb/s。
3 ) 一个电缆多媒体转发器头端系统 (CMFTS ) 的一个上行信号接收器对应 于一个电缆多媒体转发器(CMF)中的一个上行信号发送器, 一个电缆多媒体转 发器头端系统(CMFTS )中的一个下行单播信息发送器对应于一个电缆多媒体转 发器 (CMF) 中的一个下行信号接收器, 不需要采用时分多址和突发工作方式。
4)所述电缆多媒体转发器 CMF和电缆多媒体转发器头端系统 CMFTS转发信 息的协议栈中, 上、 下行信道都设置有增强的会聚子层, 用于实现视频流的复 用和解复用功能, 都能将多个单视频流及数据复用成传输流, 也能将传输流解 复用成多个单视频流及数据。
5 )根据不同的用户需要,所述电缆多媒体转发器 CMF和电缆多媒体转发器 头端系统 CMFTS中的上行信道采用 16QAM、 64QAM或 256QAM调制格式, 该上行 信道的码元速率为 1280ksym/s、 2560 ksym/s或 6952 ksym/s , 最大带宽分别 为 1. 6 MHz , 3. 2 MHz或8 MHz。 随着电缆传输距离的缩短, 上下行信道的调制 格式还可采用 512QAM、 1024QAM, 2048QAM或 4096QAM, 带宽也可增大, 以减少 传输设备的数量和提高传输速率。
CMF中的上行信道采用 16QAM、 64QAM和 256QAM中的一种调制格式, 带宽 可做成两种类型: 一种频带窄、 速率低 (最高码元速率为 2. 56Msym/s ), 不处 理多视频流的复用问题; 另一种上行信道采用 8MHz 的带宽, 码元速率为 6. 952Msym/s ,提供多视频流的复用与解复用的功能。这样 CMFTS和 CMF都能对 数据、 话音及视频进行双向的综合传输。 6) 上行信道的带宽分配由 CMF 负责, 而不是前端 (或分前端) 的 CMFTS
7) 不采用业务流的方式来提供 QoS (Qual ity of Service, 服务质量) 而 是采用区分服务 (diffServ) 的方式提供 QoS。
( 3 ) 网络带宽的用法
所述电缆多媒体转发器 CMF中设置有组播接收信道, 该组播信道用于接收 广播信息和组播信息, 还设置有数字电视广播接收信道, 用于接收数字电视广 播信息。
所述电缆多媒体转发器头端系统 CMFTS还设置有信道调度控制器,用于实现 一个小区公共的上、 下行信道的调度管理。 网络中设置信道调度控制器, 根据 网络的状况调度网络中的公用信道, 使之适应用户的需要, 所述信道调度控制 器可以由一个担任组播的 CMFTS兼任, 不需要专门的设备。
本发明从多方面采取措施, 使新系统产生有益的效果, 采用的技术措施及 其有益效果主要包括以下几方面:
1 ) 在小区光节点处,通过把 n根干线电缆中的 n-1根干线电缆的上行信 号变换到不同的频段, 这样每根电缆都可单独使用 60MHz (5 MHz〜65 MHz)的 频带, 整个小区就有 60n MHz的带宽可用于上行传输。 使上行信道的带宽增加 了(n-1)倍, 而且多根电缆的噪声也不相互叠加, 降低了噪声。
2) 通过设置组播信道使小区内的组播不占用多个下行频道,一个小区可 以有 94个 8MHz的下行信道,如果广播频道用去 26个,用于单播和组播的频道 还有 68个, 即使用 64QAM, 下行传输速率也不低于 2. 8Gb/s。 而且, 一个组播 信道的传输效果相当于多个单播信道的传输; 此外, 还可以利用同轴电缆网空 分的特点来增加小区的下行传输能力, 方法就是将要传送给不同干线电缆的信 号安排在不同的频段, 然后合并到一起由光传输部分传送到小区光电转换节点 后, 将不同频段的信号分离出来, 再将这些频段变换到适合电缆传送的频率范 围, 由相应的干线电缆传送给相应的用户。 如果一个小区用四根干线电缆, 那 么一个小区的下行数据传输速率就高于 10Gb/S。 当然, 这样做的条件是光传输 系统有足够的带宽。 所以本发明的网络在传输能力方面, 比 DOCSIS网络强。
3 ) 通过改变 CMTS和 CM的功能、 运行方式和实现方法, 使之成为 CMFTS 和 CMF, 使这对设备成为用户群设备, 能将多个上、 下行信道的传输能力叠加 起来,然后再与前端交换机及用户接口,从而能给用户提供上、下行各 lOOMb/s 的接口, 而且如果需要, 下行的速率还可以提高到 lGb/s。
4) 采用 CMF后,通过阻断接入电缆传来的上行噪声,去掉了绝大部分的 漏斗噪声, 漏斗噪声电平有可能降低 20dB。 所以, 本发明的上行信道可采用 16QAM、 64QAM及 256QAM, 即使采用 64QAM, 上行信道的传输能力比采用 16QAM 也提高了 50%。一根电缆的上行带宽为 5〜65MHz,总的传输速率可高于 280Mb/s。 如果光电转换节点通过 4根电缆与用户连接, 那么一个小区总的上行传输能力 可高于 lGb/s。
5) 由于有效地降低了上行漏斗噪声和利用电缆空分增加了 n-1 倍的上 行频带,上行信道可以采用 8MHz的带宽,这样一方面可减少上行信道和设备的 数量, 另一方面这样的上行信道, 可使传输数据与传输视频的信道在物理层得 到统一, 加之信道采用连续工作方式使上行信道有可能适合综合信息的传输。
6) 目前的 CMTS和 CM主要用于数据传输,下行信道虽然有传输会聚子层, 但它不能将多个单视频流复用成传输流。 CM不能提取 PSI (Program Specific Information, 特定节目信息) 禾口 SI (Service Information, 业务信息), 无 法将传输流解复用成单视频流。本发明增强了下行信道会聚子层的功能, CMFTS 和 CMF提供了下行信道的视频流复用与解复用功能。不仅能传输多个单视频流, 而且使数据传输和视频传输可在同一信道中混合传输, 保证了下行综合业务信 息传输的需要。
7) CMTS和 CM的上行信道带宽窄, 也没有会聚子层, 不大适合数据与视 频流的综合传输。本发明的上行信道可以采用 8MHz的带宽,采用与下行信道相 同的调制格式, 也都采用适合数据传输和视频传输的信道编码, 同时采用了增 强的会聚子层, CMF和 CMFTS也具备对 8MHz带宽上行信道的视频流完成复用与 解复用功能, 数据和多个视频流也可在同一信道中混合传输, 能保证上行数据、 话音和视频混合传输, 适应三网融合的需要。
8) 本发明的电缆多媒体转发器将视频的传输流解复用后再用组播方式 转发给用户, 使转发的信息量大为减少, 同时也解决了区分不同频道的不同节 目具有相同 PID (Packet Identifier, 包标识符) 的问题。
9) 与 DOCSIS网络不同, 上行信道采用点对点的连续传输方式, 不采用时 分多址协议, 而采用统计时分复用方式, 设备的复杂性大大下降, 使设备的费 用大幅度下降。 此外, 还可以通过把信道做宽, 减少设备, 降低费用, 一台提 供 lGb/s传输能力的 CMFTS的价格, 目前大约是一台具有相同传输能力、 采用 DOCSIS 3. 0标准的 CMTS的价格的十分之一。 电缆多媒体转发器是一种价廉的 设备, 它又是用户的公用设备, 用户不需要 Cable Modem, 电缆多媒体转发器 分摊给用户的费用比 Cable Modem低。
10) 本方案对网络改造的要求与 DOCSIS网络基本一致, 能保证现有的模 拟电视、 EQAM及机顶盒等设备能照常工作, 不受影响。
11 ) 电缆多媒体转发器用 100Mb/S的以太网交换机与用户交换信息,一方 面保证了用户对速率的要求, 另一方面通过叠加多个信道的传输能力, 把频分 复用的信息转换成统计时分复用的信息,用户使用计算机就可以接收视频广播, 机顶盒和数字电视机不需要高频解调部分, 降低了对这些设备的要求。 一个家 庭只要用户端设备能同时处理多个视频节目, 就可以同时收看多个原来不同频 道的节目, 不仅可以看标清的节目, 也可以看高清的节目。 附图说明
下面结合附图和实施例对本发明作进一歩描述。
图 1现有的 DOCSIS网络参考结构示意图;
图 2本发明的网络结构示意图;
图 3本发明中电缆多媒体转发器头端系统的电路原理框图;
图 4本发明中电缆多媒体转发器的电路原理框图; 图 5本发明中调制器对信息处理流程图;
图 6本发明通过 CMFTS和 CMF转发信息的协议栈;
图 7本发明 CMFTS和 CMF在数据传输过程中的优先级与地址信息的比特分 配示意图。
具体实施方式
以下将参照附图, 对本发明的实施例及其工作原理进行详细的描述。
在实施本发明时, 与 DOCSIS网络不同的技术其实现方法如下:
(一) 系统的网络改造
如图 2所示, 一种基于 HFC网络的宽带接入系统, 由前端接入系统、 HFC 网络及终端接入系统组成, 所述前端接入系统和终端接入系统通过 HFC网络连 接, 该 HFC网络由光传输部分和同轴电缆传输部分组成, 其中光传输部分包括 光发送器、 光接收器、 光电转换节点以及光纤, 同轴电缆传输部分为同轴电缆 网;
所述前端接入系统设置有至少一个电缆多媒体转发器头端系统 CMFTS和一 个信道调度控制器 CDC, 所述终端接入系统设置有至少一个电缆多媒体转发器 CMF;
所述 HFC网络通过前端接入系统与交换机相连,该交换机与 IP骨干网或前 端服务器连接,所述 IP骨干网或前端服务器通过交换机传送下行信号到所述电 CMFTS中,该 CMFTS用于实现下行信号的协议处理、调制以及上变频处理, CMFTS 输出的下行信号通过混合器与有线电视的视频信号混合, 该混合器的输出端与 所述光发送器连接, 混合后的下行信号通过所述光发送器传送到所述光电转换 节点, 该光电转换节点至少与一个 CMF相连, CMF用于实现下行信号的解调与 协议处理, CMF通过传输媒体与用户群的用户设备连接, 该用户群包括至少一 个用户;
所述用户群中用户的上行信号通过所述传输媒体会聚到 CMF中, 该 CMF用 于实现上行信号的协议处理、 调制及混合, CMF将处理后的上行信号送入所述 HFC网络, 该 HFC网络中的光电转换节点通过至少一根干线电缆与与不同位置 的 CMF及用户连接, 在所述光电转换节点处, 不同的干线电缆设置有不同频率 的上变频器, 不同干线电缆的上行信号在经不同频率变频后通过混合器混合到 所述光电转换节点中, 该光电转换节点通过光纤回传通道与光接收器的输入端 连接, 该光接收器的输出端连接有上行分配器, 该上行分配器用于将所述光接 收器收到的上行信号分配到 CMFTS中, CMFTS用于实现上行信号的解调和协议 处理, 再通过所述交换机转发到 IP骨干网络或前端服务器中。
依据小区网络覆盖的范围的大小、 用户的密集程度及对网络传输能力要求 的差别, 具体实施过程中, 网络改造有三种子方案:
子方案一: 对原来的 HFC网络不进行双向改造, 另外从光电转换节点敷设 上行电缆到 CMF所在地, 并用 5类双绞线从 CMF敷设到用户家中。 这样得到的 HFC 网络仍然是树形结构。 此方案适用于用户密度大、 光电转换节点覆盖范围 较小、 对网络传输能力要求高的小区。 因为我国居民居住比较集中, 特别是城 市, 一个小区常常只包括几幢楼, 光电转换节点与大楼的距离通常不超过 300 米, 上行电缆只敷设到电缆多媒体转发器所在的位置不进入用户家庭, 所以工 作量并不很大, 而且费用也不太高。 这样做的主要的优点是保证了上行有充裕 的带宽, 此外, 上下行信道特性差别小, 所用的设备差别小易于开发。
子方案二:对 HFC网络进行双向改造, 改造的方法与 DOCSIS标准有两点不 同: 一是要设置 CMF, 从 CMF到用户仍采用 5类双绞线, 同时要阻断用户接入 电缆送来的上行噪声。 二是在光电转换节点处要将各根干线电缆上、 下行信号 分离, 并将这些上行信号送入各自的上变频器; 将不同电缆送来的上行信号变 换到不同的频率, 然后将他们混合起来, 通过回传光通道送到前端 CMFTS 去解 调。如果光电转换节点到用户有 n根电缆,这样这个小区总的上行带宽就有 60η MHz , 比原来增加(n-1)倍。
此方案适用于对上行传输能力要求比较高、 要求用户接口速率为 100Mb/S 的小区。 上变频只是把不同电缆送来的上行信号搬移到不同的频段, 此法的费 用不会很高。 另一种方法是将各电缆的上行信号在光电转换节点处解调, 然后 合并为高速数据, 通过光通道回传到前端 (或分前端)。 子方案三: HFC 网络的双向改造与子方案二类似, 只是从电缆多媒体转 发器到用户是星形结构, 电缆多媒体转发器通过 E0C与用户连接。 此方案为用 户提供的接口速率受 E0C速率影响, 目前提供的速率为 10Mb/s。 如果不需要增 加上行带宽, 就不需进行频谱搬移。
此外, 如果需要提高同轴电缆网的传输能力, 而且光纤信道能适应, 可 将传送给送给不同干线电缆的信号安排在不同的频段, 然后合并到一起由光传 输部分传送到小区光电转换节点后, 将不同频段的信号分离出来, 再将这些频 段变换到适合电缆传送的频率范围, 由相应的干线电缆传送给相应的用户。 这 样可充分利用电缆网的传输能力。
(二) 网络设备
由于网络的改变,网络中需要用户群设备,而不是单用户设备, CM和 CMTS 的上行信道采用时分多址的方式工作, 不适应新网络的需要, 必须做相应的改 变。
如图 3所示, CMFTS包括控制器、 上行高频集线器和下行高频集线器, 所 述上行高频集线器的输入端与所述上行分配器连接, 该上行高频集线器的输出 端与所述控制器之间通过 m个解调器并行连接, 所述控制器与下行高频集线器 之间通过 k个调制器并行连接, 在每个调制器与下行高频集线器之间还设置有 上变频器, 所述下行高频集线器的输出端与所述混合器相连, 在所述控制器上 还设置有网络接口, 该网络接口用于连接所述交换机、 别的电缆多媒体转发器 头端系统 (CMFTS ) 或前端服务器;
如图 4所示, CMF包括高频集线器、 调制解调器、 控制器单元以及交换机 单元, 所述高频集线器的一端与同轴电缆网连接, 该高频集线器的另一端通过 i个调制器和 j个解调器与所述控制器单元并行连接, 在该控制器单元上还连 接所述交换机单元, 该交换单元通过所述传输媒体与用户群设备连接。
1 ) 本发明中提及的两种关键的网络设备 CMFTS和 CMF的单播信道是一一 对应的关系, 使 CMFTS对信息的协议处理大为简化, 比较适应做成传输容量比 较大 (例如 lGb/s ) 的设备, 它可以包含多至 24个下行信道。 2 ) CMF 中可以包含单播、 组播及广播的接收信道, 单播的信道数量取决 于用户群的大小及用户的使用要求, 通常不是很大, 例如用户群为 36户, 平均 的传输速率为 5Mb/s, 用于单播的下行信道为 4〜5个。 显然, 一个 CMFTS可以 为多个 CMF提供单播信道, 只是事先需要安排好。 组播可以小区为单位组织, 数据组播的信息量比较小, 需要的信道少,用于视频点播的信道数量变化很大, 比较适合动态调整, 开始时设一个, 然后根据需要增加。 当然, 调制器与解调 器应做成模块便于加减。 数字电视的频道多, 如果小区内机顶盒已经很多, 不 愿意接受由 CMF提供服务, 可以不设广播节目接收频道。 如果用户要求由 CMF 提供服务, 就应根据数字广播电视频道的数量设置接收器, 因为所需的数量较 大, 如果与邻近的 CMF距离近, 也可将这部分资源共享。
3 ) 每个 CMF和 CMFTS中的调制器要进行的处理如图 5所示, 包括: 形成 数据块、 FEC (Forward Error Correction Coding, 前向纠错)编码、 生成扰码、 符号映射 (生成同相和正交分量) 、 进行奈奎斯特滤波并进行调制。 FEC 编码 包括 RS (Reed-Solomon)编码和交织编码, 为了保证 8MHz信道能同时传送视频 和数据信号, 交织编码的交织深度应为 12, 增量为 17。
解调是调制的逆过程, 解调器的处理包括: 解调、 滤波、 符号到数据的映 射、 解扰、 译码及形成数据流。
4) 在 HFC网络中,上行信道的漏斗噪声是影响上行传输能力的重要因素, 引起漏斗噪的因素比较多, 影响最大的是侵入噪声, 而侵入噪声的大部分是从 用户家中进入的, 另外, 有 20〜30%的噪声通过接入电缆侵入系统。 用作干线 或支干线的同轴电缆 (SYWV-75-12 或 SYWV-75-9) 的屏蔽衰减都达到 100 dB 以上。 进入用户的那段电缆一般为 SYWV-75-5 , 屏蔽衰减为 50〜80dB, 如果按 65 dB算, 干线或支干线电缆的屏蔽衰减, 比接入电缆的屏蔽衰减大 3000倍以 上。 现在一个小区的范围都比较小, 即使干线或支干线电缆比到用户的接入电 缆长 100倍, 也只有 1%的噪声功率是通过干线或支干线电缆侵入的。 本发明在 CMF所在地阻断了用户接入电缆送来的上行噪声, 这就去掉了大部分的漏斗噪 声。发明人实际测量过 DOCSIS网络及本发明的网络的漏斗噪声, 网络和用户是 一样的, 只是改造的方法不同, 按本发明的方法改造的网络, 噪声比 DOCSIS 网络可以小约 20dB。 新网络的上行信道可以采用 64QAM甚至 256QAM的调制格 式。 上行调制器提供 16QAM、 64QAM和 256QAM, 以适应不同网络的情况。
如果网络改造采用第一种方案, 上、 下行信道由不同的电缆传输, 上下行 的调制解调器可以相同, 只是下行信号可以通过交换机直接转发给用户, 上行 信号则转发到骨干网或前端设备, 转发的软件会有些差别。
如果网络改造采用第二、 三种方案, 一个小区的上行带宽就有 60n MHz , 比原来增加 (n-1)倍, 上行信道可以采用比较宽的带宽, 以减少设备的数量, 上 行信道的码元速率为 1280ksym/s、 2560 ksym/s及 6952 ksym/s , 最大带宽分 别为 1. 6 MHz , 3. 2 MHz及8 MHz。 在 CMF中, 上行带宽虽然变了, 但频率范围 不变。上行带宽为 8 MHz的调制器与下行调制器相同,带宽为 1. 6 MHz和 3. 2 MHz 的调制器仍采用 DOCSIS的编码和调制解调技术, 只是要包括 64QAM和 256QAM。
显然, 在 CMFTS中, 上行信号接收的频率范围需要覆盖经上变频后的上行 带宽。
5 ) 图 6 是通过 CMFTS和 CMF转发信息的协议栈, 与 CMTS和 CM转发信息 的协议栈相比,最明显的差别是上行信号也采用会聚子层。为了使 8MHz的信道 能传送多个单视频流, 需要加强会聚子层的功能。 对于下行信道, 在 CMFTS中 增加视频信号的去抖动、 PID重映射、视频流复用、 PSI的生成和插入等会聚子 层的处理功能; 在 CMF中增加 PSI和 SI信息的提取、 传输流的解复用等功能。 上行信道也都采用会聚子层, 只是宽带小于 8 MHz的上行信道不处理多个单视 频流的复用与解复用。 宽带为 8 MHz的上行信道则要提供对多个单视频流的复 用 /解复用功能。
6) CMF有多个下行信号的接收器, 多个频道的视频流要在 CMF中汇集, 然后传送到用户家中。 在 HFC网络中信道是按频率划分的, 因为一个机顶盒在 一段时间内它接收某一频道的节目, 这时它不能同时接收另一频道的节目, 因 此, 不同频道的不同节目可以使用相同的 PID。 在本发明的网络中, 一个用户 可能同时收视不同频道来的多个节目, 有可能出现不同的节目有相同的 PID, 这可能出现差错。 解决这个问题的方法是 CMF给每个节目分配一个组播地址, 因为这个组播地址是 CMF给用户转发信息时用的, 范围小, 自由度大。 可以使 这个地址包括两方面的内容, 一是频道的信息, 二是节目的编号, 使之在 EPG (Electronic Program Guide , 电子节目指南)的显示与现在机顶盒的 EPG 一样。 用户群中要收看该节目的用户就加入这个组播组, 接收这个组播地址的 信息。 此外, 每个频道还需要一个组播地址, 这个地址用于组播 SI信息, 以便 用户能产生 EPG。这个组播组应包括这个用户群的该频道所有节目的所有用户。 即使一个用户同时收看不同频道的多个节目,不同频道的不同节目的 PID相同, 这时用户参看一下组播地址就可以区分了, 不会出错。
7)—个 CMFTS有多个下行信道同时工作时, 同一个以太帧的信息, 不安排 到多个频道中传送, 而安排在同一个频道中顺序传送。
8) 本发明中 CMF 负责上行信道的带宽分配, 因此不会有上行带宽申请, CMFTS不需要上行带宽分配的功能。 用户群的上行信号首先汇集到 CMF, CMF依 据信息的类型确定它的优先级, 设备中设置多个队列,用于不同优先级的信息, 然后按一定的算法发送信息。如果上行信道带宽不足, 电缆多媒体转发器 可向 信道调度控制器请求增加信道, 反之亦然。
9) 为了适应网络信息量的快速变化, CMFTS和 CMF中要备份上行信道和 下行信道并处于热备份状态, 如果工作的上、 下行信道负荷过重, CMF和 CMFTS 可分别向信道调度控制器提出请求, 要求增加上、 下行信道, 经信道调度控制 器同意并指定信道的数量、 中心频率与带宽后, 通知 CMFTS或 CMF准备接收, 经初始化后, 进行信息传输, 信道负荷正常后归还增加的信道。 如果与别的用 户群有矛盾, 由信道调度控制器仲裁解决。 其实 CMFTS备份的下行信道, 可以 由小区来备份, CMF 备份的下行信道接收器依据扩展头中的用户群编号信息来 确定是否接收该帧, 随时可以接收公共 CMFTS发给本用户群的单播信息。
10) 在本发明中上行信道的带宽分配由电缆多媒体转发器负责, 采用区分 服务的方法来实现 QoS, 决定优先顺序和调度的方法与 DOCSIS—致。 11 ) 在 DOCSIS网络中, 分布在不同位置的多个用户 (多个 CM)共享一个 上行信道, 上行通信是多对一的突发方式, 需要测距、 需要调节 CM 的频率和 输出电平, 本发明的上行信道是一个接收器对应一个发送器, 是一一对应的连 续工作方式, 不需要进行测距, 也不必调节频率和输出电平。
12 ) CMFTS传送到 CMF的单播信息需要转发给用户, 为了及时有效地转发 这些信息, CMF希望不打开射频 MAC帧的 "净负荷"部分就能知道以太网帧的 优先级和目的地址, 这就要求在射频 MAC 帧头上带有这个信息。 实现方法就是 在扩展头上原来传 SFID 的地方, 用 3个字节传这个消息, 其参考格式如图 7 所示, 其中 3 比特标示优先级, 4个比特用于指示信息的顺序, 一位保留给将 来使用, 其余 16位标示地址。其中一位用来指示是组播还是单播, 用 7位来标 示用户群的编号, 剩下的 8位用于用户编号, 这个编号可以和交换机的端口号 连系起来。 组播的条件下, 有 15位可用于组播地址。
(三) 网络带宽的安排
一个小区的下行频道实际分为四部分: 视频广播频道、 组播频道、 单播频 道和公用备份频道。 视频广播频道的数量是由运营者决定的, 组播频道中的信 息包括广播的数据或组播的数据和视频点播的信息, 组播的数据信息量较小, 决定组播频道数量的主要是视频点播, 因用户要求不同, 各个小区之间不同, 同一个小区也随时段的变化而变化, 所以要根据用户随时的要求而变化。
各 CMF单播频道的数量, 取决于用户群的大小和用户信息量的大小, 但最 少应保持一个上行和一个下行信道, 以保证用户随时可用, 然后根据需要增减 信道。
本发明的上行带宽比较宽裕, 上行信道漏斗噪声比较小, 采用比较宽的频 道,着重使用 8MHz, 3. 2 MHz和 1. 6 MHz。通常一个 40户的用户群,有一个 8MHz 和一个 1. 6MHz的上行通道, 也就能很好满足用户的要求了, 其余的带宽可用于 备份。
本系统对信息进行处理的主要歩骤:
第一、 CMFTS和 CMF进行初始化 首先, CMFTS和 CMF分别设置各自的上、 下行信道的中心频率、 调制格式、 码元速率、 交织深度及输出电平等。 CMFTS 下行信道的频率是指定的, CMFTS 和 CMF都知道。 完成设置后, 下行信道不断发送上行信道描述符, 告诉 CMF上 行信道的中心频率、 码元速率、 调制格式及交织的深度等。 CMF 设置好上行信 道的中心频率、 码元速率、 调制格式及交织的深度等, 然后在设定的下行信道 的中心频率附近扫描下行信号, 如果能正常接收下行信号, 就给 CMFTS发填充 报文表示下行信道工作正常。
CMF上行信道的频率也是指定的, CMF和 CMFTS都知道,上行信道不断发送 填充报文, CMFTS 在设置的中心频率附近扫描上行信号, 如果能正常接收上行 信号, 就给 CMF改发填充报文表示上行信道工作正常。
接着, 优化信道参数: CMFTS与 CMF根据信道的传输情况 (信号电平的高 低、 误码率的高低等), 由接收端对相应信道的发送电平、 码元速率、 调制格式 等提出优化申请, 双方约定后进行实施。
然后, 建立 IP连接: 主要包括:
A、 建立 CMF的 IP连接: 由 CMF发出请求;
B、 建立用户设备的 IP连接: CMF和交换机转发用户设备的请求; 接着, 通过 TFTP (Trivial File Transfer Protocol , 小文件传送协议) 下载传输操作参数;
最后, 设备注册, 完成系统初始化;
第二、 CMFTS控制器对下行信号进行处理
主要包括, 差错检测及处理; 区分信息类型: 视频或数据; 用户地址处理: 把组播地址所包含的用户通知 CMF; 视频信息的处理(包括 A、视频信号的去抖 动、 节目参考时钟 (Program Clock Reference, PCR) 的处理; B、 PID重映射、 PSI 的生成和插入等的处理; C、 视频流复用处理); 数据信息的处理 (包括优 先级处理、 地址信息处理、 信息封装以及数据与视频流的复用)。
第三、 调制、 解调器对上、 下行信号的处理
调制器对下行信号的处理包括:形成数据块:把控制器送来的信息分成块, 并形成 188字节的 MPEG (Moving Picture, Experts Group, 活动图像专家组) 数据包; FEC 编码: FEC编码包括 RS (Reed-Solomon)编码和交织编码; 加扰; 符号映射; 滤波; 调制。
解调器对下行信号的处理就是调制器对下行信号处理的逆过程。
调制、 解调器对上行信号的处理与对下行信号的处理一致; 不同的是上行 信道分为两种, 一种是码元速率为 6. 952Msym/s的信道, 另一种是码元速率不 高于 2. 56MSym/s的信道, 前者与下行信道一致, 可用于视频传输, 后者不太适 合视频传输。
第四、 CMF对下行信号的转发
对于单播信道送来的信息, CMF 的控制器先把解调后的信息分为视频与数 据, 对于数据, 控制器要打开 MPEG数据包, 恢复射频 MAC帧, 然后再恢复以太 网的 MAC帧, 并依据射频 MAC帧扩展头中的优先级及用户编号, 把信息转发给 用户。
对于视频信息, 控制器要提取出 SI、 PSI并依据这些信息对视频信息解复 用、 恢复以太网帧并转发给用户。
下行的信息还包括广播信息和组播信息。 这里的广播信息是指广播频道对 网络覆盖地区发送的信息, 主要是数字电视和广播信息。 这种信息应根据用户 的需要进行转发, 方法如下:
1) CMF把提取的 SI和 PSI信息转发给用户,使用户能产生 EPG,用户根 据 EPG选择自己喜欢的节目,用户设备同时把这个信息发送给 CMF, CMF就把这 个用户加入到这个节目的组播组。 以这种方法形成各个节目的组播组。
2) CMF把节目的组播地址发送给用户, 用户则根据组播地址接收所选的 节目。
3) CMF把解复用后的各个节目信息, 按节目组播组的信息、 组播地址及 其相关的端口, 转发给用户。
4) CMF还要形成各个频道的组播组, 这个组播组包括这个频道所有节目 的用户, 这个组播组用于发送 SI和 PSI信息。 组播信道的信息有些涉及使用费, 需要授权, 对于这类信息需要处理授权 问题, CMFTS和 CMF都无权处理, 他们的任务是转发信息并根据授权信息形成 组播组, 要转发的信息还可能包含三种情况:
1) 要转发的信息类型: 数据信息、 管理信息、 点播信息;
2) 数据信息组播的处理: 差错检测、 区分优先级、发现并记录用户地址 形成组播组、 转发信息;
3) 组播的管理信息处理: 差错检测、 区分优先级、 管理信息的处理;
4) 点播信息组播的处理: 差错检测、 区分优先级、发现并记录用户地址 形成组播组、 转发信息;
第五、 CMF对上行信号的处理
主要包括: 差错检测及处理、 区分信息类型(视频或数据)、 把视频送入带 宽为 8MHz的频道及其相关部件处理; 用户地址处理; 视频信息的处理 (包括: 视频信号的去抖动、节目参考时钟的处理、 PID重映射、 PSI的生成和插入等的 处理以及视频流复用); 数据信息的处理(包括优先级处理、信息封装以及数据 视频流复用处理);
第六、 CMFTS对上行信号的处理
CMFTS对上行信号的处理包括: 差错检测、 区分优先级、 地址和转发处理, 最终依据地址信息将上行的数据视频流传送到前端设备 (服务器及 CMFTS ) 或 骨干网络中。
最后要说明的是, 以上实施例仅用以说明本发明的技术方案而非限制, 尽管 参照较佳实施例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的 宗旨和范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权 利 要 求 书
1、 一种基于 HFC网络的宽带接入系统, 包括前端接入系统、 HFC网络及终 端接入系统, 所述前端接入系统和终端接入系统通过 HFC网络连接, 其特征在 于:
所述前端接入系统包括:
电缆多媒体转发器头端系统组,设有至少一个电缆多媒体转发器头端系统, 用于接收外部设备送来的下行信号实现下行信号的协议处理、 调制以及上变频 处理并输送至 HFC网络的光传输部分; 用于接收 HFC网络送来的的上行信号、 实现上行信号的解调和协议处理并输送至外部设备;
所述终端接入系统包括:
电缆多媒体转发器组, 设有至少一个电缆多媒体转发器 (CMF) , 用于接收 HFC 网络电缆传输部分送来的经过电缆多媒体转发器头端系统协议处理、 调制 以及上变频处理的下行信号和数字视频信号、 实现下行信号的解调与协议处理 并输送至多个用户端设备; 用于接收多个用户端设备的上行信号实现上行信号 的协议处理、 调制及混合, 该电缆多媒体转发器将处理后的上行信号送入所述
HFC网络的电缆传输部分, 并通过 HFC网络输送至电缆多媒体转发器头端系统; 所述 HFC网络的光传输部分通过光电转换节点与电缆传输部分连接, 所述 光电转换节点与电缆多媒体转发器 (CMF)组之间通过至少一条干线电缆连接。
2、根据权利要求 1所述的一种基于 HFC网络的宽带接入系统,其特征在于: 在所述光电转换节点所在地, HFC 网络的电缆传输部分设有变频混合模块, 所 述变频混合模块包括分别设置于 n-1根不同干线电缆且频率各不相同的上变频 器和连接于上变频器与光电转换节点之间把 n-1根不同干线电缆的上行信号经 不同频率上变频器变频后混合的混合器 Π ; n为光电转换节点连接的干线电缆 总数。
3、根据权利要求 1或 2所述的一种基于 HFC网络的宽带接入系统,其特征 在于: 所述前端接入系统中的电缆多媒体转发器头端系统和所述终端接入系统 中的电缆多媒体转发器采用的协议与 DOCSIS不同, 其中:
电缆多媒体转发器头端系统设置有 m个上行信道和 k个下行信道, 包括控 制器、 上行高频集线器和下行高频集线器, 所述上行高频集线器的输入端与所 述上行分配器连接, 该上行高频集线器的输出端与所述控制器之间通过 m个解 调器并行连接, 所述控制器与下行高频集线器之间通过 k个调制器并行连接, 在每个调制器与下行高频集线器之间还设置有上变频器, 所述下行高频集线器 的输出端与所述混合器相连, 在所述控制器上还设置有网络接口, 该网络接口 用于连接所述交换机或前端服务器;
所述电缆多媒体转发器设置有 i个上行信道和 j个下行信道, 包括高频集 线器、 调制解调器、 控制器单元以及交换机单元, 所述高频集线器的一端与同 轴电缆网连接, 该高频集线器的另一端通过 i个调制器和 j个解调器与所述控 制器单元并行连接, 在该控制器单元上还连接所述交换机单元, 该交换单元通 过所述传输媒体与多个用户端设备连接。
4、 根据权利要求 3所述的一种基于 HFC网络的宽带接入系统, 其特征在 于: 所述电缆多媒体转发器中的交换机单元通过 5类双绞线连接用户端设备, 阻断通过接入电缆引入的上行漏斗噪声。
5、 根据权利要求 3所述的一种基于 HFC网络的宽带接入系统, 其特征在 于: 所述电缆多媒体转发器中设置有 E0C单元时, 所述交换机单元与该 E0C单 元连接, 该 E0C单元通过用户接入电缆连接用户端设备, 用户接入电缆的上行 信道只能传送基带信号。
6、 根据权利要求 3所述的一种基于 HFC网络的宽带接入系统, 其特征在 于: 所述电缆多媒体转发器和电缆多媒体转发器头端系统中的上行信道采用 16QAM、 64QAM或 256QAM调制格式,该上行信道的码元速率为 1280ksym/s、 2560 ksym/s或 6952 ksym/s , 最大带宽为 1. 6 MHz , 3. 2 MHz或 8 MHz。
7、根据权利要求 3所述的一种基于 HFC网络的宽带接入系统,其特征在于: 所述电缆多媒体转发器和电缆多媒体转发器头端系统转发信息的协议栈中, 下 行信道和上行信道都设置有增强的会聚子层, 用于实现视频流的复用和解复用 功能。
8、根据权利要求 3所述的一种基于 HFC网络的宽带接入系统,其特征在于: 电缆多媒体转发器头端系统包括有多个下行单播信息发送器和多个上行信号接 收器, 电缆多媒体转发器包括有多个上行信号发送器和多个下行信号接收器, 一个电缆多媒体转发器头端系统的一个上行信号接收器对应于一个电缆多媒体 转发器中的一个上行信号发送器, 一个电缆多媒体转发器头端系统中的一个下 行单播信息发送器对应于一个电缆多媒体转发器中的一个下行信号接收器。
9、根据权利要求 3所述的一种基于 HFC网络的宽带接入系统,其特征在于: 所述电缆多媒体转发器中设置有组播接收信道, 该组播信道用于接收广播信息 和组播信息, 还设置有数字电视广播接收信道, 用于接收数字电视广播信息。
10、 根据权利要求 3所述的一种基于 HFC网络的宽带接入系统, 其特征在 于: 电缆多媒体转发器头端系统还设置有用于实现上行信道和下行信道调度管 理的信道调度控制器;
所述 HFC网络的光传输部分包括混合器 I、 光发送器、 光接收器和上行分 配器, 电缆多媒体转发器头端系统输出的下行信号通过混合器 I与有线电视的 视频信号混合, 混合后的下行信号通过光发送器传送到光电转换节点, 光电转 换节点通过电缆将信号输送至电缆多媒体转发器组;
变频器将电缆传输部分送来的上行信号经不同频率变频后通过混合器 Π混 合后送到所述光电转换节点中, 光电转换节点通过光纤与光接收器的输入端连 接, 该光接收器的输出端连接有上行分配器, 该上行分配器用于将所述光接收器 收到的上行信号分配到所述电缆多媒体转发器前端系统中。
PCT/CN2011/084503 2010-12-27 2011-12-23 一种基于hfc网络的宽带接入系统 WO2012089065A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010607052.7 2010-12-27
CN2010106070527A CN102035704B (zh) 2010-12-27 2010-12-27 一种基于hfc网络的宽带接入系统

Publications (1)

Publication Number Publication Date
WO2012089065A1 true WO2012089065A1 (zh) 2012-07-05

Family

ID=43888066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084503 WO2012089065A1 (zh) 2010-12-27 2011-12-23 一种基于hfc网络的宽带接入系统

Country Status (2)

Country Link
CN (1) CN102035704B (zh)
WO (1) WO2012089065A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035704B (zh) * 2010-12-27 2012-07-11 甘静 一种基于hfc网络的宽带接入系统
US9065731B2 (en) * 2012-05-01 2015-06-23 Arris Technology, Inc. Ensure upstream channel quality measurement stability in an upstream channel bonding system using T4 timeout multiplier
CN104410844A (zh) * 2014-10-30 2015-03-11 成都康特电子高新科技有限责任公司 基于广播电视网络的多功能hfc系统
US10033542B2 (en) * 2015-07-15 2018-07-24 Cisco Technology, Inc. Scheduling mechanisms in full duplex cable network environments
CN109617594B (zh) * 2018-12-18 2021-09-10 西安思丹德信息技术有限公司 频分多址与时分多址混合体制的指令图像传输系统及方法
US11228339B2 (en) * 2019-02-04 2022-01-18 Coherent Logix, Incorporated Comprehensive system design to address the needs for virtual segmentation of the coaxial cable plant
CN111372106A (zh) * 2020-03-18 2020-07-03 广西广播电视信息网络股份有限公司 一种通过cmts实现全ip化数字电视有条件接收技术的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1615013A (zh) * 2003-11-05 2005-05-11 华为技术有限公司 一种在有线电视网上实现宽带接入的系统
CN101030907A (zh) * 2007-01-17 2007-09-05 陈勇 基于MoCA技术的HFC网络宽带接入系统
US20090144544A1 (en) * 2007-12-04 2009-06-04 Koo Han Seung Cable network system and method for controlling security in cable network encrypted dynamic multicast session
CN102035704A (zh) * 2010-12-27 2011-04-27 甘静 一种基于hfc网络的宽带接入系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459834A (zh) * 2007-12-11 2009-06-17 潘岩 智能化住宅小区通信hfc系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1615013A (zh) * 2003-11-05 2005-05-11 华为技术有限公司 一种在有线电视网上实现宽带接入的系统
CN101030907A (zh) * 2007-01-17 2007-09-05 陈勇 基于MoCA技术的HFC网络宽带接入系统
US20090144544A1 (en) * 2007-12-04 2009-06-04 Koo Han Seung Cable network system and method for controlling security in cable network encrypted dynamic multicast session
CN102035704A (zh) * 2010-12-27 2011-04-27 甘静 一种基于hfc网络的宽带接入系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Data-Over-Cable Service Interface Specifications Radio Frequency Interface Specification", ETSI ES 201 488 V1.1.1., 30 November 2000 (2000-11-30) *

Also Published As

Publication number Publication date
CN102035704B (zh) 2012-07-11
CN102035704A (zh) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2012089065A1 (zh) 一种基于hfc网络的宽带接入系统
US10200425B2 (en) Methods and apparatus for efficient IP multicasting in a content delivery network
US6738983B1 (en) Video pedestal network
US9800909B2 (en) Method and apparatus for downloading content using channel bonding
US6011548A (en) System for integrating satellite boardband data distributed over a cable TV network with legacy corporate local area networks
US7428238B2 (en) Broadband network bridging various wiring channels
US7849488B2 (en) Video modem termination system and method
JP2004500777A (ja) 通信ネットワークを通じて情報を配信するためのシステム及び方法
CA2380344A1 (en) Hybrid cable/wireless communications system
WO2009121276A1 (zh) 资源调度装置及方法以及点播节目的方法及系统
CN102006503A (zh) 融合ip网络和有线电视网络的宽带数据通信系统及方法
CN1131603C (zh) 宽带多媒体业务的有线接入方法
Kusunoki et al. Improvement of 4K/8K multi-channel IP multicast using DOCSIS over in-building coaxial cable network
CN211352230U (zh) 基于组播vlan技术实现广播视频ip化的系统
CN200941630Y (zh) 一种hfc网络高频宽带接入系统
JP7045254B2 (ja) 棟内伝送システム、光受信装置、カプセル化装置、及びデカプセル化装置
CN203457263U (zh) 一种wifi适配器及使用该适配器的数字电视信号分发系统
CN103036708B (zh) 一种点对点低频调制eoc设备
JP2012060534A (ja) Catvシステム
KR101517501B1 (ko) Iptv 서비스 제공 방법 및 시스템
CN101459834A (zh) 智能化住宅小区通信hfc系统
KR101660438B1 (ko) Ip 패킷 변환장치를 구비한 다채널 방송 시스템
KR20020011653A (ko) 인공위성을 이용한 인터넷 서비스 시스템
KR20110070440A (ko) Docsis 서비스 정보 테이블을 이용한 아이피 기반 멀티캐스트 비디오 서비스의 채널 변경 방법
KR100421850B1 (ko) 엘엠디에스시스템에서망접속장치의에이티엠신호처리구현방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853333

Country of ref document: EP

Kind code of ref document: A1