WO2012087043A2 - Virtual surgical apparatus for dental treatment and method for manufacturing a wafer using same - Google Patents

Virtual surgical apparatus for dental treatment and method for manufacturing a wafer using same Download PDF

Info

Publication number
WO2012087043A2
WO2012087043A2 PCT/KR2011/009975 KR2011009975W WO2012087043A2 WO 2012087043 A2 WO2012087043 A2 WO 2012087043A2 KR 2011009975 W KR2011009975 W KR 2011009975W WO 2012087043 A2 WO2012087043 A2 WO 2012087043A2
Authority
WO
WIPO (PCT)
Prior art keywords
virtual
surgery
dimensional
skeleton
virtual surgical
Prior art date
Application number
PCT/KR2011/009975
Other languages
French (fr)
Korean (ko)
Other versions
WO2012087043A3 (en
Inventor
강석진
권하자
Original Assignee
주식회사 오라픽스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100133538A external-priority patent/KR101316892B1/en
Application filed by 주식회사 오라픽스 filed Critical 주식회사 오라픽스
Publication of WO2012087043A2 publication Critical patent/WO2012087043A2/en
Publication of WO2012087043A3 publication Critical patent/WO2012087043A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/34Making or working of models, e.g. preliminary castings, trial dentures; Dowel pins [4]
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Definitions

  • the present invention relates to a virtual surgical apparatus for dental treatment and a wafer manufacturing method using the same, and more particularly, to form a tracing line and a control point according to the designation of the landmark in the virtual overlapping data,
  • a program storage device for tangibly embodying a program of instructions readable by a computer and executable by the computer for executing the present invention.
  • the teeth ( ⁇ ⁇ ) is made of a structure that can chew food while the upper and lower teeth are occluded according to the jaw joint movement. At this time, the teeth are uneven, so the upper and lower teeth occlusion is referred to as 'negative occlusion'.
  • Such malocclusion includes malocclusion due to dental denial, and skeletal malocclusion due to abnormal growth of the upper jaw (upper jaw) and lower jaw (low jaw).
  • the term "correction surgery” is a procedure for correcting skeletal abnormalities of teeth and face parts to create a functional and esthetic face.
  • the orthodontic treatment is applied to the patient by making the orthodontic device between the upper model and the lower model modeled after the upper and lower teeth of the patient. At this time, the orthodontic device is manufactured according to the tooth arrangement in the state of the upper model and lower model imitating teeth.
  • a composite i.e. resin
  • a mold having a tooth hoof like a mouthpiece.
  • the wafer thus prepared is fixed to the teeth of the jaws that are not incision during surgery, and the teeth of the incision jawbone are aligned to secure the desired position.
  • the wafer holding the position of the maxilla is called an 'intermediate wafer' and the wafer holding the position of the mandible is called a 'final wafer'.
  • This wafer is used as a model for remembering the position of the teeth during orthodontic surgery, and plays an important role in fixing the teeth of the jaws that are not incision during surgery and matching the teeth of the injured jawbone to find the desired position.
  • an object of the present invention has been proposed to improve the problems of the prior art as described above, virtual dental treatment that can provide a high precision without resorting to manual work using a conventional face beam, articulator and plaster model, etc. It is to provide a surgical device and a method of manufacturing a wafer using the same.
  • Another object of the present invention is to provide a program storage device for tangibly embodying a program of instructions readable by a computer and executable by the computer to execute a virtual surgical method using the virtual surgical device for dental treatment.
  • the present invention as a virtual surgical device, at least one virtual surgical skeleton through a tracing line operation according to the landmark designation for the virtual overlap data superimposed two-dimensional teeth image and three-dimensional teeth model
  • a tracing line unit for forming a plurality and generating a plurality of control points for controlling each of the virtual surgical skeletons according to a preset manner;
  • a virtual surgical unit for simultaneously performing virtual surgery on the virtual surgical skeleton as a result of paper surgery as the control point is adjusted.
  • the tracing line unit may designate a common landmark on the lateral virtual surgical skeleton and the front virtual surgical skeleton through a tracing line operation, and common land at the time of paper survival for the lateral virtual surgical skeleton and the front virtual surgical skeleton.
  • a synchronization processing unit for maintaining and synchronizing the virtual surgical results according to the paper surgery to each other.
  • the present invention generates generated data for the intermediate wafer according to the results of the maxillary virtual surgery by the virtual surgery, and final wafer according to the results of the mandibular virtual surgery by the virtual surgery based on the maxillary virtual surgery It further includes a wafer data generation unit for generating the dragon generation data.
  • the present invention further includes a wafer fabrication unit for generating a physically refined intermediate wafer using the generated data for the intermediate wafer, and for generating a final wafer that is physically trimmed using the generated data for the final wafer. do.
  • the tracing line unit may display the plurality of control points after determining a location according to a preset method for each control point based on the landmark.
  • the plurality of control points is characterized in that the virtual surgical skeleton moving in accordance with the user operation is defined.
  • the virtual surgery unit distinguishes and displays in real time the tracing lines before and after the trial.
  • the virtual surgery unit is characterized in that the paper surgery for the virtual surgical skeleton as a value for the virtual surgery is input to a predetermined menu window.
  • the virtual surgical unit is characterized by superimposing and displaying the three-dimensional teeth model before and after the virtual surgery on the basis of the point of the same position on the two-dimensional teeth image of the virtual superimposition data before and after the virtual surgery.
  • the virtual overlapping data is generated by a virtual overlapping device, and the virtual overlapping device includes: a data loading unit for overlaying and loading the 3D tooth model according to a photographing direction of the 2D tooth image; A numerical measuring unit for measuring an inclination angle and a length by using reference points respectively selected by the user on the two-dimensional tooth image and the three-dimensional tooth model; And a virtual superimposition unit for adjusting the inclination angle of the three-dimensional teeth model according to the inclination angle of the two-dimensional teeth image and adjusting and overlapping the size and position of the two-dimensional teeth image according to the length of the three-dimensional radiographic image. It includes;
  • the virtual surgical skeleton is characterized in that any one of the maxilla, mandible, face contour and three-dimensional teeth model.
  • the landmark is characterized in that a number of feature points necessary for measurement, diagnosis and treatment planning for the two-dimensional teeth image for paper surgery.
  • the present invention provides a wafer manufacturing method, the overlapping step of forming a virtual overlapping data overlapping the two-dimensional teeth image and the three-dimensional teeth model; Forming at least one virtual surgical skeleton through a tracing line operation according to a landmark designation for the virtual overlapping data; Generating a plurality of control points for controlling each of the virtual surgical skeletons according to a preset method; An intermediate data generation step of generating generated data for an intermediate wafer as the virtual surgery is performed by paper surgery on the maxillary side of the virtual surgical skeleton; And a final data generation step of generating generated data for the final wafer as the virtual surgery is performed by the paper surgery on the lowermost side of the virtual surgical skeleton based on the virtual surgical result of the uppermost side of the virtual surgical skeleton. It includes;
  • the intermediate data generating step may include fabricating a physically polished intermediate wafer using the generated data for the intermediate wafer.
  • the final data generation step may include fabricating a final wafer that is physically trimmed using the final data generated for the final wafer.
  • the overlapping step may include a loading step of loading the three-dimensional teeth model according to the photographing direction of the two-dimensional teeth image; And adjusting and inclining angles, sizes, and positions of the two-dimensional teeth image and the three-dimensional teeth model by using reference points selected by the user on the two-dimensional teeth image and the three-dimensional teeth model, respectively.
  • Superimposing step may include a loading step of loading the three-dimensional teeth model according to the photographing direction of the two-dimensional teeth image; And adjusting and inclining angles, sizes, and positions of the two-dimensional teeth image and the three-dimensional teeth model by using reference points selected by the user on the two-dimensional teeth image and the three-dimensional teeth model, respectively.
  • the present invention is a program storage device for tangibly embodying a program of instructions readable by a computer and executable by the computer to execute a virtual surgical method for dental treatment
  • the method is a two-dimensional dental image
  • the present invention is a program storage device for tangibly embodying a program of instructions readable by a computer and executable by a computer to execute a wafer fabrication method, wherein the method comprises a two-dimensional tooth image and a three-dimensional image.
  • An overlapping step of forming the virtual overlapping data in which the tooth model is overlapped Forming at least one virtual surgical skeleton through a tracing line operation according to a landmark designation for the virtual overlapping data; Generating a plurality of control points for controlling each of the virtual surgical skeletons according to a preset method;
  • An intermediate data generation step of generating generated data for an intermediate wafer as the virtual surgery is performed by paper surgery on the maxillary side of the virtual surgical skeleton;
  • a final data generation step of generating generated data for the final wafer as the virtual surgery is performed by the paper surgery on the lowermost side of the virtual surgical skeleton based on the virtual surgical result of the uppermost side of the virtual surgical skeleton.
  • the present invention when the surgical plan is established on the two-dimensional teeth image, the three-dimensional teeth model is also moved according to the surgical plan to determine the environment before and after the operation through the three-dimensional teeth model environment It has the effect of providing to the user.
  • the virtual surgery results for the three-dimensional teeth model can be executed simultaneously to check the results in real time.
  • the present invention has the effect of synchronizing the side virtual surgical skeleton and the front virtual surgical skeleton to keep the same when the virtual surgery on the front and the virtual surgery on the side of the patient's head on the same have.
  • the present invention has the effect of displaying the three-dimensional teeth model before the virtual surgery and the three-dimensional teeth model after the virtual surgery overlap each other.
  • FIG. 1 is a block diagram of a virtual superposition device for dental treatment according to the present invention
  • Figure 2 is a view showing a side image of the two-dimensional teeth image
  • Figure 3 is a view showing a front image of the two-dimensional teeth image
  • FIG. 6 is a view showing the Y-Z plane of the three-dimensional teeth model
  • FIG. 7 is a view showing the loading state of the side image of the two-dimensional teeth image and the X-Y plane of the three-dimensional teeth model
  • FIG. 8 is a view showing a loading state of the front image of the two-dimensional teeth image and the Y-Z plane of the three-dimensional teeth model
  • FIG. 9 is a view showing a reference point selection in the side image of the two-dimensional teeth image
  • FIG. 10 is a view showing a reference point selection in the X-Y plane of the three-dimensional teeth model
  • 11 and 12 are views for a virtual overlap operation on the X-Y plane of the side image and the three-dimensional tooth model of the two-dimensional teeth image
  • 13 and 14 are diagrams for a virtual overlap operation on the Y-Z plane of the front image of the two-dimensional teeth image and the three-dimensional teeth model
  • 15 and 16 are views for the virtual overlap operation using the Y-axis rotation with respect to the Y-Z plane of the three-dimensional teeth model
  • FIG. 17 is a block diagram of a virtual surgical device of the present invention.
  • 19 and 20 are views for the virtual surgery by paper surgery
  • 21 is a diagram showing paper surgery by numerical input
  • FIG. 23 is a diagram showing a zero shift of virtual superimposition data before and after virtual surgery.
  • 24 is a view showing the results of superimposition of the three-dimensional teeth model before and after virtual surgery
  • 26 is a flow chart for a virtual surgical method for dental treatment according to the present invention.
  • FIG. 27 is a flowchart illustrating a wafer manufacturing method according to the present invention.
  • FIG. 1 is a block diagram of a virtual superposition device for dental treatment according to the present invention.
  • the general mounting operation is called face bow transfer, which involves creating a plaster model that mimics the patient's teeth prior to surgery and then cuts the plaster model and places it on the articulator as needed. do.
  • face bow transfer involves creating a plaster model that mimics the patient's teeth prior to surgery and then cuts the plaster model and places it on the articulator as needed. do.
  • this overlapping work must be performed again in the above-described series of work if the fabrication work is performed incorrectly when performing the base work on the plaster model.
  • the dental superimposition device (hereinafter, referred to as "virtual superimposition device", 100) according to the embodiment of the present invention shown in FIG. It provides a user interface environment that can perform a series of virtual overlapping work by reproducing the overlapping work for oral posture in a virtual space.
  • the virtual superimposition device 100 obtains a two-dimensional teeth image of the head of the patient and a three-dimensional teeth model of the upper and lower teeth of the patient, respectively, and then two-dimensional three-dimensional tooth model in the virtual space Overlaid on the tooth image to reproduce the superimposed state in the actual situation. That is, the virtual superposition apparatus 100 positions the two-dimensional teeth image on the lower layer, the three-dimensional teeth model on the upper layer, and overlays the corresponding ones.
  • the two-dimensional teeth image means a radiographic image of the head of the patient taken through a dental X-ray or a computed tomography (CT) according to the cephalometrics (Fig. 2 and FIG. 3).
  • CT computed tomography
  • the two-dimensional tooth image is a lateral cephalogram taken from the side of the patient's head in accordance with the direction of the imaging (lateral cephalogram, hereinafter referred to as "side image", 200a), the head of the head radiograph taken from the forward direction of the patient ( posteroanterior cephalogram, hereinafter referred to as "front image” (200b), and submental cephalogram (viewed as "top image”) taken from the top of the patient's head.
  • the two-dimensional teeth image is transmitted to the subject by forming the X-rays through the object to form a film appears as the distance between the film and the subject is enlarged. That is, the two-dimensional teeth image may have some error compared to the actual size of the patient's head.
  • the two-dimensional tooth image can grasp the actual tooth structure of the patient by reflecting the actual facial skeletal structure of the patient's head as it is.
  • the teeth required for the virtual superposition through the two-dimensional tooth image Check the canting of.
  • the inclination angle of the tooth can be confirmed through the inclination of the occlusal surface, which is the tooth surface in contact with each other between the upper teeth and the lower teeth in the two-dimensional teeth image.
  • the 3D tooth model refers to 3D tooth shape data that implements a 3D tooth shape having a volume and texture similar to that of a real patient in a virtual space through rendering (see FIGS. 4 to 6).
  • the 3D dental model may acquire 3D tooth shape data through a 3D scanner of a plaster model that shapes the teeth of a patient, or may obtain 3D tooth shape data through a conventional dental computed tomography. Since the method of obtaining the 3D tooth model is easily understood by those skilled in the art, a detailed description thereof will be omitted.
  • the three-dimensional tooth model is modeling data of actual size corresponding to one-to-one (1: 1) of the patient's actual tooth, and the actual tooth of the patient is implemented in the virtual space as it is.
  • the three-dimensional tooth model is the same as the actual size of the patient's actual tooth only does not reflect the angle of inclination of the tooth.
  • a coordinate system for quantification of measurement in a three-dimensional space is set in the three-dimensional dental model. That is, the XY plane 300a is anatomically a sagittal plane, determined by the midpalatal suture 301 and the junction of the incisive papilla and midpalatal suture 302 (FIG. 4). Reference).
  • the medial palatal suture 301 is an anatomical structure showing a central line that divides the left and right symmetry of the palate of the maxilla
  • the PMRJ 302 is an incisive papilla 303 and the medial palatal suture 301.
  • the X-Z plane 300b is anatomically determined as a frankfort horizontal plane, which is determined to be a plane perpendicular to the X-Y plane 300a including the PMRJ 302 (see FIG. 5).
  • the Y-Z plane 300c is anatomically determined as a coronal plane, which is a plane perpendicular to the X-Y plane 300a and the X-Z plane 300b including the PMRJ 302 (see FIG. 6).
  • the virtual superposition device 100 overlaps the two-dimensional teeth image and the three-dimensional teeth model as follows.
  • the virtual superimposition apparatus 100 according to the occlusal inclination angle confirmed through the side image 200a of the two-dimensional teeth image, the inclination angle of the X axis in the XY plane 300a (ie, the sagittal plane) of the three-dimensional teeth model.
  • the size and position of the side image 200a of the 2D dental image are adjusted to the size and position of the XY plane 300a of the 3D dental model.
  • the virtual superimposition apparatus 100 according to the occlusal inclination angle confirmed through the front image 200b of the two-dimensional teeth image, the inclination angle of the Z axis in the YZ plane 300c (ie, the coronal plane) of the three-dimensional teeth model.
  • the size and position of the front image 200b of the 2D dental image are adjusted to the size and position of the YZ plane 300c of the 3D dental model.
  • the virtual superimposition apparatus 100 corresponds to the superimposed image of the two-dimensional teeth image on the XZ plane 300b (that is, the Frankfort surface) of the three-dimensional teeth model and overlaps the above-described process.
  • the process of reflecting the degree of rotation is made by using the Y axis (that is, the midpoint of the two front teeth) as the rotation axis in the XY plane 300a of the 3D tooth model.
  • the virtual overlapping apparatus 100 includes a data loading unit 110, a numerical measuring unit 120, a virtual overlapping unit 130, a user interface unit 140, and a storage unit 150. do.
  • the data loading unit 110 overlays the two-dimensional tooth image on the lower layer and the three-dimensional tooth model on the upper layer and displays the same through the user interface 140 (see FIGS. 7 and 8).
  • the data loading unit 110 loads a two-dimensional dental image (ie, the side image 200a or the front image 200b) according to the user's photographing direction selection.
  • the data loading unit 110 loads a three-dimensional teeth model (that is, XY plane 300a or YZ plane 300c), it is preferable to load corresponding to the shooting direction of the two-dimensional teeth image selected by the user. Do.
  • the data loading unit 110 displays and loads the XY plane 300a of the 3D dental model when the side image 200a of the 2D dental image is loaded, and the front image 200b of the 2D dental image. If is loaded, the YZ plane (300c) of the three-dimensional teeth model is displayed by loading.
  • the numerical measurer 120 measures the inclination angle and the length between any two reference points with respect to the two-dimensional tooth image or the three-dimensional tooth model loaded by the data loading unit 110. That is, when two reference points are designated by the user in the 2D dental image or the 3D dental model, the numerical measurement unit 120 measures the inclination angle between the two reference points and the line segment length connecting the two reference points. .
  • the reference point is preferably selected for each of teeth 1 and 7 of the occlusal surface of the patient, but any two points may be selected when the angle of inclination of the patient's teeth can be reflected. However, for convenience of description, the present invention will be described for selecting a reference point in the occlusal surface (see FIGS. 9 and 10).
  • FIG. 9 illustrates a case in which the user selects the first reference point 211 and the second reference point 212 as two reference points in the two-dimensional tooth image.
  • the third reference point is referred to as two reference points in the three-dimensional tooth model.
  • the case where the user selects the point 311 and the fourth reference point 312 is shown.
  • the virtual overlapping unit 130 overlaps the two-dimensional tooth image and the three-dimensional tooth model with respect to each axis constituting the three-dimensional space.
  • the virtual overlap unit 130 overlaps with each other based on the occlusal surface of the patient in the two-dimensional teeth image and the three-dimensional teeth model.
  • the virtual superimposition unit 130 overlays the XY plane 300a (sagittal plane) of the three-dimensional teeth model on the side image 200a of the two-dimensional teeth image by using the measurement result by the numerical measuring unit 120. To overlap. That is, the virtual superimposition unit 130 first adjusts the occlusal inclination angle in the three-dimensional teeth model based on the two-dimensional teeth image, and then adjusts the size and position of the occlusal surface in the two-dimensional teeth image based on the three-dimensional teeth model. Overlap.
  • the virtual overlapping unit 130 overlaps the side image 200a of the 2D dental image and the X-Y plane 300a of the 3D dental model through a series of processes as follows.
  • the virtual superimposition unit 130 sets the occlusal inclination angle with respect to the XY plane 300a of the three-dimensional teeth model according to the occlusal inclination angle with respect to the side image 200a of the two-dimensional teeth image, thereby realizing the occlusal surface of the patient.
  • the angle of inclination is reflected in the three-dimensional tooth model (see FIG. 11). This is to match the occlusal inclination angle with respect to the X-Y plane 300a of the three-dimensional teeth model to the occlusal inclination angle with respect to the side image 200a of the two-dimensional teeth image.
  • the occlusal inclination angle represents the degree of inclination with respect to the X axis.
  • the numerical measurement unit 120 measures the occlusal inclination angle using a line segment connecting two reference points specified by the user in the side image 200a of the two-dimensional tooth image.
  • the numerical measurement unit 120 measures the occlusal inclination angle using a line segment connecting two reference points specified by the user in the X-Y plane 300a of the three-dimensional teeth model.
  • the user designates the corresponding reference points at the same positions on the occlusal surface of the lateral plane 200a of the two-dimensional dental image and the XY plane 300a of the three-dimensional dental model. Select tooth 7 to determine the segment.
  • the virtual superimposition unit 130 changes the occlusal inclination angle with respect to the X-Y plane 300a of the three-dimensional teeth model to the occlusal inclination angle with respect to the side image 200a of the two-dimensional teeth image. That is, the virtual superimposition unit 130 rotates the occlusal inclination angle with respect to the X-Y plane 300a of the three-dimensional teeth model according to the occlusal inclination angle with respect to the side image 200a of the two-dimensional teeth image. In other words, the virtual overlap 130 sets the occlusal inclination angle with respect to the X-Y plane 300a of the three-dimensional teeth model as the occlusal inclination angle of the actual patient.
  • the virtual overlap unit 130 overlaps the size and position of the side image 200a of the 2D dental image according to the size and position of the XY plane 300a of the 3D tooth model (see FIG. 12). . This is to match the size and position of the side image 200a of the 2D dental image to the length and position of the X-Y plane 300a of the 3D dental model.
  • the numerical measurement unit 120 uses the line segment connecting two reference points specified by the user in the XY plane 300a of the three-dimensional teeth model to form an occlusal surface in the XY plane 300a of the three-dimensional teeth model. Measure the size and position through.
  • the numerical measurement unit 120 uses a line segment connecting two reference points specified by the user in the side image 200a of the 2D dental image through the occlusal surface in the side image 200a of the 2D dental image. Measure the size and position.
  • the user assigns the reference points to the same positions on the occlusal surface as described above.
  • the virtual overlapping unit 130 overlaps the size and position of the 3D dental model with respect to the X-Y plane 300a according to the size and position of the side image 200a of the 2D dental image.
  • the virtual superimposition unit 130 adjusts the length of the line segment in the two-dimensional teeth image according to the length of the line segment in the three-dimensional teeth model, to match the size of the XY plane 300a of the three-dimensional teeth model Adjust the size for the side image 200a.
  • the occlusal surface of the 2D dental image and the occlusal surface of the 3D dental model do not coincide with each other but have the same inclination angle and size.
  • the virtual superimposition unit 130 checks each center point of the line segment in the 2D tooth image and the line segment in the 3D tooth model, and the center of the line segment in the 2D tooth image as the line center of the 3D tooth model. Adjust the position.
  • the occlusal surface of the two-dimensional dental image is located at the same point coinciding with the occlusal surface of the three-dimensional dental model.
  • the virtual overlapping unit 130 performs the same series of overlapping operations on the YZ plane 300c (the coronal plane) of the 3D dental model with respect to the front image 200b of the 2D dental image as described above. (See FIGS. 13 and 14).
  • the occlusal surface inclination angle represents the degree of inclination of the Z axis. A detailed description thereof will be omitted since it can be easily understood through the overlapping operation on the X-Y plane 300a (sagittal plane) of the 3D tooth model with respect to the side image 200a of the 2D tooth image.
  • the virtual overlapping unit 130 does not perform a series of overlapping operations as described above when the XZ plane 300b (Frankport surface) of the 3D dental model is overlapped with the top image of the 2D dental image. Instead, the Y-axis is rotated by the rotation axis with respect to the YZ plane 300c of the three-dimensional teeth model to adjust.
  • the virtual overlapping unit 130 sets the Y axis as the rotation axis in the Y-Z plane 300c of the 3D tooth model by the user.
  • the user selects the center of the two foremost teeth 321 in the YZ plane 300c of the three-dimensional tooth model as the Y axis (see FIG. 15), and the Y axis is approximately the median palate suture 301 and PMRJ ( Perpendicular to the intersection of 302).
  • the virtual overlap 130 may include the YZ plane ( 300c) rotates the Y axis to a position selected by the user with the rotation axis (see FIG. 16).
  • the virtual superimposition unit 130 performs virtual superimposition on the two-dimensional tooth image and the three-dimensional tooth model, and then, as a part of the virtual treatment diagnosis, paper surgery, wafer fabrication, and orthodontics as a subsequent process. Provide the necessary user interface.
  • the user interface unit 140 provides a user with access to the virtual overlapping apparatus 100 for performing a series of virtual overlapping tasks. That is, the user interface unit 140 connects with various input devices (for example, a keyboard, a mouse, a touch pad, a pen mouse, etc.) to provide an input function for manipulating the virtual overlapping device 100, and the virtual overlapping device. It is connected to various output devices (e.g., monitor, printer, etc.) to provide an output function for displaying the processing result of the 100. For example, when a user inputs a predetermined task for virtual superposition using a keyboard or a mouse, the user may confirm that the result is output through the monitor.
  • various input devices for example, a keyboard, a mouse, a touch pad, a pen mouse, etc.
  • output devices e.g., monitor, printer, etc.
  • the storage unit 150 stores patient personal information for each patient, a two-dimensional tooth image of the patient, and a three-dimensional tooth model.
  • the patient personal information includes a patient name, social security number, medical history, medical treatment schedule information, and the like.
  • the 2D dental image and the 3D dental model may be directly obtained from a corresponding external device (ie, an X-ray device, a 3D scanner, etc.) directly connected to the virtual superimposition device 100, or may be obtained externally and then through wired or wireless communication. May be provided.
  • FIG. 17 is a block diagram of a virtual surgery apparatus according to an embodiment of the present invention.
  • 18 is a diagram illustrating a tracing line operation result.
  • 19 and 20 are diagrams for virtual surgery by paper surgery
  • FIG. 21 is a diagram for paper surgery by numerical input
  • FIG. 22 is a diagram for virtual overlapping data before and after virtual surgery
  • FIG. 23 is virtual It is a figure which shows the zero shift of the virtual superimposition data before and after surgery
  • FIG. 24 is a figure which shows the superimposition result of the 3D tooth model before and after the virtual surgery
  • FIG. 25 is a figure which shows the synchronization of the virtual surgery with respect to the side and front.
  • Virtual surgery apparatus 400
  • the superimposed data for the two-dimensional teeth image and the three-dimensional teeth model through the above-described virtual superimposition device 100 (hereinafter 12 and 14), and then perform paper surgery on tracing lines generated along the two-dimensional teeth image, the three-dimensional teeth model. Simultaneous execution of the virtual surgery results for the results can be confirmed in real time.
  • the virtual superimposition data is preferably generated by the virtual superimposition apparatus 100 shown in FIG. 1, but is not generated in a limited manner.
  • the virtual surgical device 400 moves along with the three-dimensional tooth model according to the corresponding surgical plan to display the results before and after the three-dimensional teeth. It provides the user with an environment to check and analyze through the model. In other words, the virtual surgical apparatus 400 provides an environment in which the 3D surgical results can be predicted through the 2D surgical plan.
  • the two-dimensional teeth image is shown on the paper and paper surgery is performed, and the virtual surgery of the actually mounted gypsum model is confirmed according to the paper surgery results. That is, in this case, even if the surgical plan is established by using the 2D tooth image, since the actual 3D tooth model is not used, mounting work of the 3D tooth model is additionally required.
  • the paper line is not actually performed by showing the tracing line on the paper
  • the term 'paper surgery' is used as it is for convenience of description because the virtual surgery apparatus 400 performs a series of processes corresponding to the actual paper surgery in the virtual space. I will use it.
  • This series of paper surgery and virtual surgery is called STO (Surigal Treatment Object).
  • the paper surgery is mainly performed on the side of the head of the patient, and may be performed on the front of the head of the patient in surgery to balance the left and right of the patient, if necessary.
  • the virtual surgery apparatus 400 includes a tracing line unit 410, a virtual surgery unit 420, a synchronization processor 421, and a wafer data generator 430.
  • the production unit 431 may further include.
  • the tracing line unit 410 performs a tracing line operation based on a landmark designated by a user with respect to the two-dimensional tooth image of the virtual overlapping data.
  • the term 'landmark (M)' refers to a number of feature points necessary for measuring, diagnosing, and establishing a treatment plan for a two-dimensional dental image for paper surgery.
  • the landmark M is represented by a cross point (+).
  • the tracing line unit 410 provides a plurality of landmarks M to the user in a list format so that the plurality of landmarks M can be designated in a predetermined order without omission.
  • the tracing line unit 410 may perform a tracing line operation according to the landmark M by identifying a position (coordinate) and a type (name) for each landmark M on the two-dimensional tooth image.
  • the tracing line portion 410 is along the skeleton of the actual patient shown on the two-dimensional teeth image, the contour of the patient, the maxilla (upper jawbone) and the patient, which is commonly considered in the planning of measurement / diagnosis / surgery of paper surgery
  • the mandible mandibular bone
  • At least one landmark M is disposed along the tracing line of the virtual surgical skeleton.
  • the three-dimensional tooth model is already formed before the tracing line operation, but will be described collectively as a virtual surgical skeleton with a facial contour, maxilla and mandible for convenience.
  • the tracing line unit 410 automatically forms a 'face contour tracing line TL1' using a designated landmark M along the facial contour of the 2D dental image.
  • the tracing line unit 410 has a designated landmark (M) along the contour of the maxilla and mandible of the two-dimensional teeth image by being connected to each other by the user 'the maxillary tracing line (TL2)' and 'mandibular tracing line (TL3) Form '.
  • the tracing line unit 410 distinguishes the face region for performing the virtual surgery as the face contour tracing line TL1 is formed, and forms the maxillary tracing line TL2 to form the maxillary region for the virtual surgery.
  • the mandibular tracing line (TL3) is formed to distinguish the mandible region for proceeding the virtual surgery.
  • Each of these independent areas represents an area that can be independently controlled by a control point to be described later.
  • the tracing line unit 410 connects at least two landmarks M to analyze the condition of the patient and refer to the STO process.
  • the reference line RL connected to the tip of the nose and the chin is a ricketts line for objectively indicating the degree of protruding mouth and further indicating the degree of reference for corrective surgery, and preferably, the upper lip is 1 About mm inward, the lower lip is in contact with the aesthetic gland and the degree of protrusion is confirmed.
  • the tracing line unit 410 controls points for performing paper surgery on the virtual surgical skeleton using at least one landmark M. ).
  • the tracing line unit 410 determines and displays the location according to a preset method for each control point based on the landmark M designated by the user. That is, the tracing line unit 410 has previously set which landmark M coordinate information is used for positioning each control point a to m, and accordingly all landmarks M are selected by the user. If) is specified, the location of each control point, that is, coordinate information, is determined using the coordinate information of the landmark M.
  • the coordinates a 1 , b 1 of the first landmark M1 and the coordinates a 2 , b 2 of the second landmark M2 to determine the coordinates (x, y) of the control point a.
  • the tracing line unit 410 is a method for determining the position of the control point a, the control point at a point away from the midpoint of the first landmark (M1) and the second landmark (M2) by h relative to the y coordinate.
  • the tracing line unit 410 determines the coordinates (x, y) of the control point a as shown in Equation 1.
  • the tracing line unit 410 synchronizes the control points (a to m) with respect to each of the virtual surgical skeletons, thereby synchronizing with the movement of the control points (a to m) by the user during virtual surgery.
  • the surgical skeleton can also be moved at the same time.
  • the virtual surgical skeleton may be represented as a unit region cut for virtual surgery, and each unit region is synchronized with one control point (a to m) for paper surgery for virtual surgery.
  • the maxilla is cut into the front and rear portions to form two unit regions, and the control points correspond to each unit region.
  • each control point (a to m) is defined a virtual surgical skeleton that moves in accordance with the user operation.
  • Table 1 shows the virtual surgical skeleton defined at the control points (a to m).
  • control points ie, a to f
  • seven control points ie, g to m
  • the number, location and movement of the virtual surgical skeleton can be defined differently.
  • control point a is the maxillar maxillar first incisor, the maxillary second incision, and the upper teeth of the three-dimensional tooth model. Used to move parts together.
  • Control point b is used to move the maxillary first incision of the maxillar anterior
  • control point c is used to move the maxillar second incision of the maxillar posterior.
  • the control point d is used to move the front part of the upper teeth using the first upper teeth of the 3D teeth model
  • the control point e is used to move the back part of the upper teeth using the sixth upper teeth of the 3D teeth model.
  • the control point f is used to change the upper lip in the outline of the face.
  • the front teeth of the upper teeth of the three-dimensional teeth model represents the teeth 1 to 3
  • the rear teeth of the upper teeth represent the teeth 4 to 7 times.
  • the first incisor of the maxilla is the portion corresponding to the front of the upper teeth
  • the second incision of the maxilla is the portion corresponding to the back of the upper teeth.
  • the control point a is the maxillary first incision, the maxillary second incision, and the three-dimensional, respectively, to which a separate control point is assigned. Control the tooth model to move simultaneously. That is, the control point a also controls the movement of the virtual surgical skeleton controlled by the control points b to f.
  • control point b controls the upper incisor and the upper lip of the three-dimensional teeth model to move simultaneously with the first incision of the maxilla. That is, the control point b also controls the movement of the virtual surgical skeleton controlled by the control points d and f.
  • control point c controls the upper jaw portion of the three-dimensional teeth model to move simultaneously with the second maxillary incision. That is, the control point c also controls the movement of the virtual surgical skeleton controlled by the control point e.
  • control point d controls the movement of the upper teeth in the three-dimensional teeth model
  • control point e controls the movement of the upper teeth in the three-dimensional teeth model
  • control point f controls the movement for the upper lip.
  • control point g is the mandible as a whole mandible (mandible first mandibular portion, mandibular second incision, third mandibular incision and It is used to move the lower teeth of the 3D tooth model together.
  • the control point h is used to move the first inferior mandibular incision showing the incision through anterior segmental osteotomy (ASO) for virtual surgery, and the control point i uses genoplasty for virtual surgery. It is used to move the mandibular second incision showing the anterior incision through the control point, and the control point j is used to move the mandibular third incision representing the incision center for virtual surgery.
  • ASO anterior segmental osteotomy
  • the control point k is used to move the front of the lower teeth using the first lower teeth (lower 1) of the three-dimensional teeth model, and the control point l is used to move the back of the lower teeth using the sixth lower teeth (lower 6) of the three-dimensional teeth model. Used to move.
  • the control point m is used to change the lower lip in the outline of the face.
  • the control point g is a mandibular first incision, mandibular second incision, mandibular bone, each of which is given a separate control point
  • the third incision and the lower teeth of the 3D tooth model are controlled to move simultaneously. That is, the control point g also controls the movement of the virtual surgical skeleton controlled by the control points h to m.
  • control point h is controlled to simultaneously move the lower teeth of the lower teeth of the three-dimensional teeth model, the lower lip together with the first mandibular incision. That is, the control point h also controls the movement of the virtual surgical skeleton controlled by the control points and m.
  • control point ⁇ controls the lower teeth of the three-dimensional teeth model to move simultaneously with the third mandibular incision. That is, the control point j also controls the movement of the virtual surgical skeleton controlled by the control point l.
  • control point i controls the movement of the mandibular second incision
  • control point k controls the movement of the lower teeth in the three-dimensional teeth model
  • control point l controls the movement of the lower teeth in the three-dimensional teeth model
  • Control point m controls movement for the lower lip.
  • the tracing line unit 410 presets a method for determining the respective control points a to m according to the predetermined landmark M, and thus all the landmarks M by the user. If is specified, each control point (a to m) is determined.
  • the virtual surgical unit 420 will be described with reference to FIGS. 19 to 25.
  • the virtual surgical unit 420 After the tracing line operation is completed through the tracing line unit 410, the virtual surgical unit 420 simultaneously performs virtual surgery on the virtual surgical skeleton according to the paper surgery made by adjusting the control point.
  • the virtual surgery unit 420 when the paper surgery for the two-dimensional maxilla and the mandible of the virtual surgical skeleton proceeds by the user, the virtual surgical operation results for the three-dimensional teeth model 401 of the virtual surgical skeleton in real time To reflect.
  • the virtual surgical unit 420 performs a series of virtual surgery on the virtual surgical skeleton according to the movement of the virtual surgical skeleton defined in the control points shown in Table 1 above (see FIG. 19).
  • the virtual surgery unit 420 distinguishes and displays in real time the tracing lines before and after the trial when paper surgery is performed by the user.
  • the color of the tracing line (Before Line: BL) is displayed in red
  • the color of the tracing line (After Line: AL) is displayed in white.
  • the virtual surgery unit 420 performs paper surgery and virtual surgery on the maxilla and the three-dimensional teeth model (upper part) according to the adjustment of the maxillary control point by the user.
  • the virtual surgical unit 420 may generate generated data for the intermediate wafer as three-dimensional image data through the wafer data generator 430 to generate the intermediate wafer.
  • the virtual surgery unit 420 performs paper surgery and virtual surgery on the mandible and the 3D tooth model (lower part) according to the adjustment of the mandibular control point by the user based on the maxillary virtual surgery result.
  • the virtual surgical unit 420 may generate the final wafer generated data as three-dimensional image data through the wafer data generator 430 to generate the final wafer.
  • the virtual surgery unit 420 simultaneously performs virtual surgery on the three-dimensional teeth models 401a and 401b as the paper surgery by the user progresses (see FIG. 20). This allows for faster diagnosis, prediction, planning, and wafer fabrication of virtual surgery than paper surgery and virtual surgery.
  • the virtual surgical unit 420 may generate data for wafer fabrication through the wafer data generator 430 immediately after the paper surgery by the user.
  • the virtual surgery unit 420 may perform paper surgery by adjusting a control point by a user, and perform paper surgery as a value for virtual surgery is input to a predetermined menu window 402. (See FIG. 21).
  • FIG. 21 shows the result of the entire maxilla moving downward as 4.97 mm is input to the 'MAX6 (L)' menu 403 of the menu window 402.
  • the virtual surgery unit 420 may display the 3D tooth model before the virtual surgery and the 3D tooth model after the virtual surgery overlap each other. At this time, the virtual surgical unit 420 displays the three-dimensional teeth model before and after the virtual surgery on the basis of the points of the same position on the two-dimensional teeth image of the virtual superimposition data before and after the virtual surgery.
  • the virtual surgery unit 420 if the same position (405a, 405b) is specified by the user on the two-dimensional teeth image of the virtual superimposition data (404a, 404b) before and after the virtual surgery, respectively, zero coordinates of the position (See FIGS. 22 and 23). This is to set the corresponding position as a reference point, and to equally match the reference points for each of the three-dimensional tooth models before and after the virtual surgery. Thereafter, the virtual surgical unit 420 displays an overlapping state by displaying each of the pre-virtual 3D tooth model 406a and the post-virtual 3D tooth model 406b on the same screen based on the corresponding reference point (FIG. 24). Reference).
  • the virtual surgery unit 420 uses the virtual superimposition data to identify the reference point in the body that does not change position by surgery from the two-dimensional tooth image and sets it as a reference point, and then mutually overlaps the three-dimensional tooth model based on the reference point. Do this.
  • the side virtual surgery skeletons 407a and 408a and the front virtual surgery skeletons 407b and 408b. are kept identical to each other and synchronized (see FIG. 25).
  • the front virtual surgical skeleton (407b, 408b) is also formed by the tracing line operation by the tracing line unit 410 similar to the above-described side virtual surgical skeleton (407a, 408a). A detailed description thereof will be omitted since it can be easily understood through the tracing line operation of the lateral virtual surgical skeleton 407a and 408a by the tracing line unit 410.
  • common landmarks are assigned to the side and front virtual surgical skeletons 407a, 407b, 408a, and 408b through tracing line operations.
  • these common landmarks represent points that exist at the same location when viewed from the side and front.
  • the first and sixth upper teeth of the three-dimensional teeth model may be marked with landmarks corresponding to the same position when viewed from the side and front, and likewise, the first and sixth lower teeth of the three-dimensional teeth model When viewed from the front, it may be displayed as a landmark corresponding to the same position.
  • the synchronization processor 421 may change the position of the common landmark according to the position change of the common landmark. 407b, 408b).
  • the synchronization processor 421 may reflect the vertical position change with respect to the front virtual surgical skeleton 407b and 408b when the common landmark is changed up and down in the side virtual surgical skeleton 407a and 408a.
  • the synchronization processor 421 checks the lateral virtual surgical skeleton 407b and 408b even when the page surgery for the front virtual surgical skeleton 407b and 408b is not directly made by the user. The results of the page surge for 407a and 408a are reflected.
  • the synchronization processor 421 changes the position of the common landmark in accordance with the position change of the common landmark. And 408a).
  • the synchronization processing unit 421 may check the synchronized surgical plan by reflecting the surgical results of the side and the front without having to establish a separate surgical plan for each of the side and the front.
  • the wafer data generator 430 After the maxillary virtual surgery is completed by the virtual surgery unit 420, the wafer data generator 430 generates generated data for the intermediate wafer at the request of the virtual surgery unit 420. In one example, the wafer data generator 430 generates the generated data for the intermediate wafer as follows. That is, the wafer data generation unit 430 sets a box area for manufacturing the wafer between the maxillary and the mandibular teeth in the 3D tooth model after the maxillary virtual surgery, and uses the data included in the box area to 3D high speed. Generated data for an intermediate wafer, which is a RP model (Rapid Prototyping model) by a layer forming method, is generated. In this case, the wafer data generation unit 430 may transmit the generated data for the intermediate wafer to the wafer fabrication unit 431 to fabricate the actual intermediate wafer.
  • RP model Rapid Prototyping model
  • the wafer data generator 430 After the mandible virtual surgery is completed by the virtual surgical unit 420, the wafer data generator 430 generates the final wafer generated data according to a request of the virtual surgical unit 420. Similarly, the wafer data generator 430 generates the final wafer generated data as follows. That is, the wafer data generation unit 430 sets a box area for manufacturing the wafer between the maxillary and the mandibular teeth in the 3D tooth model after the mandible virtual surgery, and uses the data included in the box area to 3D high speed. Generated data for the final wafer, which is an RP model by the additive molding method, is generated. In this case, the wafer data generation unit 430 may transmit the final wafer generation data to the wafer fabrication unit 431 to fabricate the actual final wafer.
  • the wafer fabrication unit 431 may be included as a component of the virtual surgical apparatus 400 or may be applied as a separate independent component.
  • the wafer fabrication unit 431 has a 3D printer function such as a kind of 3D rapid prototyping system.
  • the wafer fabrication unit 431 when the generated data for the intermediate wafer is transferred from the wafer data generator 430, the wafer fabricator 431 trims the intermediate wafer into a horseshoe shape, and then, from the wafer data generator 430, When the production data for the final wafer is delivered, the final wafer is polished into a horseshoe-shaped object.
  • 26 is a flowchart illustrating a virtual surgical method for dental treatment according to the present invention.
  • the tracing line unit 410 performs a tracing line operation using a landmark designated by a user with respect to the virtual overlapping data (S501). As such, the tracing line unit 410 forms a virtual surgical skeleton through tracing line work. In this case, the tracing line unit 410 forms a control point using a landmark according to a preset method (S502).
  • the virtual surgical unit 420 simultaneously performs virtual surgery according to paper surgery performed by the user on the virtual surgical skeleton (S503).
  • the virtual surgical unit 420 represents a virtual surgical result of a three-dimensional virtual surgical skeleton, that is, a three-dimensional dental model as a result of paper surgery on the two-dimensional virtual surgical skeleton.
  • FIG. 27 is a flowchart illustrating a wafer manufacturing method according to the present invention.
  • the tracing line unit 410 forms control points for the maxillary virtual surgical skeleton and the mandibular virtual surgical skeleton through tracing line operations on the virtual overlapping data (S510). Detailed description thereof is as described above with reference to FIG. 17 and will be omitted.
  • the virtual surgical unit 420 shows a virtual surgical result as paper surgery is performed on the maxillary virtual surgical skeleton (S511).
  • the wafer data generation unit 430 generates and stores the generated data for the intermediate wafer (S512).
  • the wafer fabrication unit 431 actually fabricates the intermediate wafer using the generated data for the intermediate wafer (S513).
  • the virtual surgery unit 420 shows a virtual surgery result of paper surgery performed on the mandible virtual surgery skeleton based on the maxillary virtual surgery result (S514).
  • the wafer data generator 430 generates and stores the final wafer generated data (S515).
  • the wafer fabrication unit 431 actually manufactures the final wafer using the final wafer generated data (S516).
  • the wafer fabrication unit 431 does not produce the intermediate wafer immediately after the generated data for the intermediate wafer is generated by the wafer data generation unit 430 (S505).
  • the final wafer may be manufactured at the time of manufacture.
  • a wafer may be manufactured by forming a tracing line and a control point according to a landmark designation in virtual overlapping data, and performing virtual surgery on a virtual surgical skeleton simultaneously with paper surgery according to adjustment of a control point by a user.
  • the present invention relates to a virtual surgical device and wafer fabrication for dental treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Urology & Nephrology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention relates to a virtual surgical apparatus for dental treatment, a method for manufacturing a wafer using same and to a program storage device, in which a tracing line and control points are formed through the designation of a landmark for virtual overlapped data, and a virtual surgery for a skeleton for virtual surgery is conducted simultaneously with a paper surgery performed based on a user's adjustment to a control point so as to manufacture a wafer. The virtual surgery apparatus comprises: a tracing line unit which forms at least one skeleton for virtual surgery through the formation of tracing line based on the designation of a landmark for virtual overlapped data in which a two-dimensional tooth image and a three-dimensional tooth model are overlapped, and which generates a plurality of control points for controlling each skeleton for virtual surgery in accordance with a predetermined manner; and a virtual surgery unit which performs a virtual surgery for the skeleton for a virtual surgery simultaneously with the paper surgery performed through the adjustment of control points, by referring to the result of the paper surgery.

Description

치과 치료용 가상 수술장치 및 이를 이용한 웨이퍼의 제작방법Virtual surgery apparatus for dental treatment and wafer manufacturing method using the same
본 발명은 치과 치료용 가상 수술장치 및 이를 이용한 웨이퍼의 제작방법에 관한 것으로, 더욱 상세하게는, 가상 중첩 데이터에서 랜드마크의 지정에 따른 트레이싱 라인과 컨트롤 포인트를 형성하고, 사용자에 의한 컨트롤 포인트의 조정에 따른 페이퍼 서저리와 동시에 가상 수술용 골격에 대한 가상 수술을 수행하여 웨이퍼를 제작하기 위한 치과 치료용 가상 수술장치 및 이를 이용한 웨이퍼 제작방법과, 상기 치과 치료용 가상 수술장치를 이용한 가상의 수술방법을 실행하기 위하여 컴퓨터에 의해 판독 가능하고 상기 컴퓨터에 의해 실행 가능한 명령의 프로그램을 실체적으로 구현하는 프로그램 저장장치에 관한 것이다.The present invention relates to a virtual surgical apparatus for dental treatment and a wafer manufacturing method using the same, and more particularly, to form a tracing line and a control point according to the designation of the landmark in the virtual overlapping data, A virtual surgical apparatus for manufacturing a wafer and a wafer manufacturing method using the same, and a virtual surgical method using the virtual surgical apparatus for manufacturing a wafer by performing a virtual surgery on a virtual surgical skeleton at the same time as the paper surgery according to the adjustment A program storage device for tangibly embodying a program of instructions readable by a computer and executable by the computer for executing the present invention.
일반적으로, 치열(齒列)은 턱관절운동에 따라 상하 치아가 교합되면서 음식물을 씹을 수 있는 구조로 이루어진다. 이때, 치열이 고르지 않아 상하의 치아교합이 비정상적인 상태를 '부정교합'이라 한다.In general, the teeth (齒 列) is made of a structure that can chew food while the upper and lower teeth are occluded according to the jaw joint movement. At this time, the teeth are uneven, so the upper and lower teeth occlusion is referred to as 'negative occlusion'.
이러한 부정교합은 치열상의 부정에 의한 부정교합과, 상악(상부턱) 및 하악(하부턱)의 성장 이상에 따른 골격성 부정교합 등을 포함한다.Such malocclusion includes malocclusion due to dental denial, and skeletal malocclusion due to abnormal growth of the upper jaw (upper jaw) and lower jaw (low jaw).
하지만, 골격성 부정교합인 경우에 치과에서는 악 교정 시술을 시행한다. 여기서, '악 교정 시술'이라 함은 치아와 얼굴 부분의 골격 이상을 바로잡아 기능적이고 심미적인 얼굴을 만드는 시술이다. 악 교정 시술은 환자의 상악과 하악의 치아배열을 본떠 제작한 상부모형물과 하부모형물 사이에 교정장치를 제작하여 환자에게 적용한다. 이때, 교정장치는 치아를 본뜬 상부 모형물과 하부 모형물을 교합(咬合)한 상태에서 치아배열에 따라 제작된다.However, in the case of skeletal malocclusion, dental correction is performed. In this case, the term "correction surgery" is a procedure for correcting skeletal abnormalities of teeth and face parts to create a functional and esthetic face. The orthodontic treatment is applied to the patient by making the orthodontic device between the upper model and the lower model modeled after the upper and lower teeth of the patient. At this time, the orthodontic device is manufactured according to the tooth arrangement in the state of the upper model and lower model imitating teeth.
그런데, 악 교정 시술이 성공적이지 않을 경우에는 '악 교정 수술'을 한다. 악 교정 수술은 일부 절개된 턱뼈(위턱뼈 또는 아래턱뼈의 일부)를 원하는 위치에 고정하기 어려워, 환자의 치아 석고모형을 이용해 수술 후를 예측하고 절단한 후 목표위치를 구현한다.However, if the orthodontic treatment is not successful, perform the 'correctional surgery'. Orthodontic surgery is difficult to fix some incision jaw bone (upper jaw or lower jaw bone) in the desired position, using the patient's dental gypsum model to predict and cut the operation after surgery to achieve the target position.
통상의 악 교정 수술에서는 윗니/아랫니 공간 사이를 복합재료(즉, 레진)를 채워 넣어 마우스 피스와 같은 말발굽 형태의 치아 음형이 있는 틀(이하 "웨이퍼"라 함)을 제작한다. 이렇게 제작된 웨이퍼를 수술 시에 절개되지 않은 턱부분의 치아에 고정하고 절개된 턱뼈의 치아를 맞춰 원하는 위치를 잡아준다. 이때, 상악의 위치를 잡아주는 웨이퍼를 '인터미디어트 웨이퍼(intermediate wafer)'라 하고, 하악의 위치를 잡아주는 웨이퍼를 '파이널 웨이퍼(final wafer)'라 한다.In conventional orthodontic surgery, a composite (i.e. resin) is filled between the upper and lower teeth spaces to form a mold ("wafer") having a tooth hoof like a mouthpiece. The wafer thus prepared is fixed to the teeth of the jaws that are not incision during surgery, and the teeth of the incision jawbone are aligned to secure the desired position. At this time, the wafer holding the position of the maxilla is called an 'intermediate wafer' and the wafer holding the position of the mandible is called a 'final wafer'.
이러한 웨이퍼는 악교정 수술 시에 치아의 위치를 기억하기 위한 모형으로 사용되어 수술 시에 절개되지 않은 턱부분의 치아에 고정하고 절개된 턱뼈의 치아를 맞추어 원하는 위치를 찾는데 중요한 역할을 한다.This wafer is used as a model for remembering the position of the teeth during orthodontic surgery, and plays an important role in fixing the teeth of the jaws that are not incision during surgery and matching the teeth of the injured jawbone to find the desired position.
종래에는 악 교정 수술을 위해 필요한 웨이퍼를 제작하기 위해 석고모형을 이용하여 수작업으로 웨이퍼를 제작하였으므로 제작 과정이 복잡하고, 또 의사의 주관적 판단에 의해 제작되므로 각 과정에서 많은 오차가 존재할 수 있다.Conventionally, since the wafer is manufactured by hand using a plaster model to manufacture the wafer necessary for the corrective surgery, the manufacturing process is complicated and produced by the subjective judgment of a doctor, so there may be many errors in each process.
또한, 페이스 보와 교합기 및 석고모형 등을 사용해야 하므로 제작과정도 복잡하고 제작비용도 높은 실정이다.In addition, since the face beam, articulator and plaster model must be used, the manufacturing process is complicated and the manufacturing cost is high.
따라서, 기존에 수작업에 의존하지 않고 높은 정밀도를 제공할 수 있는 웨이퍼 제작방법에 대한 필요성이 요구된다.Therefore, there is a need for a wafer fabrication method that can provide high precision without relying on manual labor.
따라서 본 발명의 목적은 상술한 바와 같은 종래기술의 문제를 개선하기 위해 제안된 것으로, 종래 페이스 보와 교합기 및 석고모형 등을 사용하는 수작업에 의존하지 않고 높은 정밀도를 제공할 수 있는 치과 치료용 가상 수술장치 및 이를 이용한 웨이퍼의 제작방법을 제공하는 것이다.Therefore, an object of the present invention has been proposed to improve the problems of the prior art as described above, virtual dental treatment that can provide a high precision without resorting to manual work using a conventional face beam, articulator and plaster model, etc. It is to provide a surgical device and a method of manufacturing a wafer using the same.
본 발명의 다른 목적은 상기 치과 치료용 가상 수술장치를 이용한 가상의 수술방법을 실행하기 위하여 컴퓨터에 의해 판독 가능하고 상기 컴퓨터에 의해 실행 가능한 명령의 프로그램을 실체적으로 구현하는 프로그램 저장장치를 제공하는 것이다.Another object of the present invention is to provide a program storage device for tangibly embodying a program of instructions readable by a computer and executable by the computer to execute a virtual surgical method using the virtual surgical device for dental treatment. will be.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention which are not mentioned above can be understood by the following description, and will be more clearly understood by the embodiments of the present invention. It will also be appreciated that the objects and advantages of the present invention may be realized by the means and combinations thereof indicated in the claims.
상기 목적을 달성하기 위하여, 본 발명은, 가상 수술장치로서, 2차원 치아이미지와 3차원 치아모델이 중첩된 가상 중첩 데이터에 대한 랜드마크 지정에 따른 트레이싱 라인 작업을 통해 적어도 하나의 가상 수술용 골격을 형성하고, 기 설정된 방식에 따라 상기 가상 수술용 골격 각각을 제어하기 위한 다수의 컨트롤 포인트를 생성하기 위한 트레이싱 라인부; 및 상기 컨트롤 포인트가 조정됨에 따른 페이퍼 서저리 결과로 상기 가상 수술용 골격에 대한 가상 수술을 동시에 진행하기 위한 가상 수술부를 포함한다.In order to achieve the above object, the present invention, as a virtual surgical device, at least one virtual surgical skeleton through a tracing line operation according to the landmark designation for the virtual overlap data superimposed two-dimensional teeth image and three-dimensional teeth model A tracing line unit for forming a plurality and generating a plurality of control points for controlling each of the virtual surgical skeletons according to a preset manner; And a virtual surgical unit for simultaneously performing virtual surgery on the virtual surgical skeleton as a result of paper surgery as the control point is adjusted.
상기 트레이싱 라인부는, 트레싱 라인 작업을 통해 측면 가상 수술용 골격 및 정면 가상 수술용 골격에 공통 랜드마크를 지정하며, 상기 측면 가상 수술용 골격 및 상기 정면 가상 수술용 골격에 대한 페이퍼 서저리시에 공통 랜드마크의 위치 변화에 따라, 페이퍼 서저리에 따른 가상 수술 결과를 서로 동일하게 유지하여 동기화시키기 위한 동기화 처리부를 더 포함한다.The tracing line unit may designate a common landmark on the lateral virtual surgical skeleton and the front virtual surgical skeleton through a tracing line operation, and common land at the time of paper survival for the lateral virtual surgical skeleton and the front virtual surgical skeleton. In accordance with the change in the position of the mark, and further comprises a synchronization processing unit for maintaining and synchronizing the virtual surgical results according to the paper surgery to each other.
본 발명은 상기 가상 수술부에 의한 상악측 가상 수술 결과에 따라 인터미디어트 웨이퍼용 생성 데이터를 생성하고, 상악측 가상 수술 결과에 기초하여 상기 가상 수술부에 의한 하악측 가상 수술 결과에 따라 파이널 웨이퍼용 생성 데이터를 생성하기 위한 웨이퍼용 데이터 생성부를 더 포함한다.The present invention generates generated data for the intermediate wafer according to the results of the maxillary virtual surgery by the virtual surgery, and final wafer according to the results of the mandibular virtual surgery by the virtual surgery based on the maxillary virtual surgery It further includes a wafer data generation unit for generating the dragon generation data.
본 발명은 상기 인터미디어트 웨이퍼용 생성 데이터를 이용하여 실물로 다듬어진 인터미디어트 웨이퍼를 생성하고, 상기 파이널 웨이퍼용 생성 데이터를 이용하여 실물로 다듬어진 파이널 웨이퍼를 생성하기 위한 웨이퍼 제작부를 더 포함한다.The present invention further includes a wafer fabrication unit for generating a physically refined intermediate wafer using the generated data for the intermediate wafer, and for generating a final wafer that is physically trimmed using the generated data for the final wafer. do.
상기 트레이싱 라인부는, 상기 랜드마크에 기초하여 컨트롤 포인트별로 기 설정된 방식에 따라 위치를 결정한 후 상기 다수의 컨트롤 포인트를 표시하는 것을 특징으로 한다.The tracing line unit may display the plurality of control points after determining a location according to a preset method for each control point based on the landmark.
상기 다수의 컨트롤 포인트는 사용자 조작에 따라 움직이는 가상 수술용 골격이 정의되는 것을 특징으로 한다.The plurality of control points is characterized in that the virtual surgical skeleton moving in accordance with the user operation is defined.
상기 가상 수술부는, 사용자에 의한 페이퍼 서저리가 시행될 때, 시행 전후의 트레이싱 라인을 실시간으로 구별하여 표시하는 것을 특징으로 한다.When the paper surgery by the user is performed, the virtual surgery unit distinguishes and displays in real time the tracing lines before and after the trial.
상기 가상 수술부는, 소정의 메뉴창에 가상 수술을 위한 수치가 입력됨에 따라 상기 가상 수술용 골격에 대한 페이퍼 서저리를 수행하는 것을 특징으로 한다.The virtual surgery unit is characterized in that the paper surgery for the virtual surgical skeleton as a value for the virtual surgery is input to a predetermined menu window.
상기 가상 수술부는, 가상 수술 전후 가상 중첩 데이터의 2차원 치아이미지상에서 서로 동일한 위치의 지점을 기준으로 가상 수술 전후의 3차원 치아모델을 중첩하여 표시하는 것을 특징으로 한다.The virtual surgical unit is characterized by superimposing and displaying the three-dimensional teeth model before and after the virtual surgery on the basis of the point of the same position on the two-dimensional teeth image of the virtual superimposition data before and after the virtual surgery.
상기 가상 중첩 데이터는, 가상 중첩 장치에 의해 생성되며, 상기 가상 중첩 장치는, 상기 2차원 치아이미지의 촬영방향에 따라 상기 3차원 치아모델을 오버레이하여 로딩하기 위한 데이터 로딩부; 상기 2차원 치아이미지 및 상기 3차원 치아모델 상에 사용자에 의해 각각 선택된 참조점을 이용하여 경사각도 및 길이를 측정하기 위한 수치 측정부; 및 상기 2차원 치아이미지의 경사각도에 따라 상기 3차원 치아모델의 경사각도를 조정하고, 상기 3차원 방사선이미지의 길이에 따라 상기 2차원 치아이미지의 크기 및 위치를 조정하여 중첩하기 위한 가상 중첩부;를 포함한다.The virtual overlapping data is generated by a virtual overlapping device, and the virtual overlapping device includes: a data loading unit for overlaying and loading the 3D tooth model according to a photographing direction of the 2D tooth image; A numerical measuring unit for measuring an inclination angle and a length by using reference points respectively selected by the user on the two-dimensional tooth image and the three-dimensional tooth model; And a virtual superimposition unit for adjusting the inclination angle of the three-dimensional teeth model according to the inclination angle of the two-dimensional teeth image and adjusting and overlapping the size and position of the two-dimensional teeth image according to the length of the three-dimensional radiographic image. It includes;
상기 가상 수술용 골격은, 상악골, 하악골, 얼굴 윤곽 및 3차원 치아모델 중 어느 하나인 것을 특징으로 한다.The virtual surgical skeleton is characterized in that any one of the maxilla, mandible, face contour and three-dimensional teeth model.
상기 랜드마크는, 페이퍼 서저리를 위해 상기 2차원 치아이미지에 대한 계측, 진단 및 치료 계획 수립을 위해 필요한 다수의 특징점인 것을 특징으로 한다.The landmark is characterized in that a number of feature points necessary for measurement, diagnosis and treatment planning for the two-dimensional teeth image for paper surgery.
한편, 본 발명은 웨이퍼 제작방법으로서, 2차원 치아이미지와 3차원 치아모델이 중첩된 가상 중첩 데이터를 형성하는 중첩 단계; 상기 가상 중첩 데이터에 대한 랜드마크 지정에 따른 트레이싱 라인 작업을 통해 적어도 하나의 가상 수술용 골격을 형성하는 형성 단계; 기 설정된 방식에 따라 상기 가상 수술용 골격 각각을 제어하기 위한 다수의 컨트롤 포인트를 생성하는 생성 단계; 상기 가상 수술용 골격의 상악측에 대한 페이퍼 서저리에 의한 가상 수술을 진행함에 따라, 인터미디어트 웨이퍼용 생성 데이터를 생성하는 인터미디어트 데이터 생성 단계; 및 상기 가상 수술용 골격의 상악측에 대한 가상 수술 결과에 기초하여 상기 가상 수술용 골격의 하악측에 대한 페이퍼 서저리에 의한 가상 수술을 진행함에 따라, 파이널 웨이퍼용 생성 데이터를 생성하는 파이널 데이터 생성 단계;를 포함한다.On the other hand, the present invention provides a wafer manufacturing method, the overlapping step of forming a virtual overlapping data overlapping the two-dimensional teeth image and the three-dimensional teeth model; Forming at least one virtual surgical skeleton through a tracing line operation according to a landmark designation for the virtual overlapping data; Generating a plurality of control points for controlling each of the virtual surgical skeletons according to a preset method; An intermediate data generation step of generating generated data for an intermediate wafer as the virtual surgery is performed by paper surgery on the maxillary side of the virtual surgical skeleton; And a final data generation step of generating generated data for the final wafer as the virtual surgery is performed by the paper surgery on the lowermost side of the virtual surgical skeleton based on the virtual surgical result of the uppermost side of the virtual surgical skeleton. It includes;
상기 인터미디어트 데이터 생성 단계는, 상기 인터미디어트 웨이퍼용 생성 데이터를 이용하여 실물로 다듬어진 인터미디어트 웨이퍼를 제작하는 단계를 포함한다.The intermediate data generating step may include fabricating a physically polished intermediate wafer using the generated data for the intermediate wafer.
상기 파이널 데이터 생성 단계는, 상기 파이널 웨이퍼용 생성 데이터를 이용하여 실물로 다듬어진 파이널 웨이퍼를 제작하는 단계를 포함한다.The final data generation step may include fabricating a final wafer that is physically trimmed using the final data generated for the final wafer.
상기 중첩 단계는, 상기 2차원 치아이미지의 촬영방향에 따라 상기 3차원 치아모델을 로딩하는 로딩 단계; 및 상기 2차원 치아이미지 및 상기 3차원 치아모델 상에 사용자에 의해 각각 선택된 참조점을 이용하여, 상기 2차원 치아이미지 및 상기 3차원 치아모델에 대한 경사각도, 크기 및 위치를 조정하여 중첩하는 가상 중첩 단계;를 포함한다.The overlapping step may include a loading step of loading the three-dimensional teeth model according to the photographing direction of the two-dimensional teeth image; And adjusting and inclining angles, sizes, and positions of the two-dimensional teeth image and the three-dimensional teeth model by using reference points selected by the user on the two-dimensional teeth image and the three-dimensional teeth model, respectively. Superimposing step.
한편, 본 발명은, 치과 치료용 가상 수술방법을 실행하기 위하여 컴퓨터에 의해 판독 가능하고 상기 컴퓨터에 의해 실행 가능한 명령의 프로그램을 실체적으로 구현하는 프로그램 저장장치로서, 상기 방법은, 2차원 치아이미지와 3차원 치아모델이 중첩된 가상 중첩 데이터를 형성하는 중첩 단계; 상기 가상 중첩 데이터에 대한 랜드마크 지정에 따른 트레이싱 라인 작업을 통해 적어도 하나의 가상 수술용 골격을 형성하는 형성 단계; 기 설정된 방식에 따라 상기 가상 수술용 골격 각각을 제어하기 위한 다수의 컨트롤 포인트를 생성하는 생성 단계; 및 상기 컨트롤 포인트가 조정됨에 따른 페이퍼 서저리 결과로 상기 가상 수술용 골격에 대한 가상 수술을 동시에 진행하는 진행 단계;를 포함하는 것을 특징으로 하는 프로그램 저장장치를 구비한다.On the other hand, the present invention is a program storage device for tangibly embodying a program of instructions readable by a computer and executable by the computer to execute a virtual surgical method for dental treatment, the method is a two-dimensional dental image An overlapping step of forming virtual overlapping data in which the 3D tooth model is overlapped with each other; Forming at least one virtual surgical skeleton through a tracing line operation according to a landmark designation for the virtual overlapping data; Generating a plurality of control points for controlling each of the virtual surgical skeletons according to a preset method; And a process of simultaneously performing virtual surgery on the virtual surgical skeleton as a result of paper surgery as the control point is adjusted.
또한, 본 발명은, 웨이퍼 제작방법을 실행하기 위하여 컴퓨터에 의해 판독 가능하고 상기 컴퓨터에 의해 실행 가능한 명령의 프로그램을 실체적으로 구현하는 프로그램 저장장치로서, 상기 방법은, 2차원 치아이미지와 3차원 치아모델이 중첩된 가상 중첩 데이터를 형성하는 중첩 단계; 상기 가상 중첩 데이터에 대한 랜드마크 지정에 따른 트레이싱 라인 작업을 통해 적어도 하나의 가상 수술용 골격을 형성하는 형성 단계; 기 설정된 방식에 따라 상기 가상 수술용 골격 각각을 제어하기 위한 다수의 컨트롤 포인트를 생성하는 생성 단계; 상기 가상 수술용 골격의 상악측에 대한 페이퍼 서저리에 의한 가상 수술을 진행함에 따라, 인터미디어트 웨이퍼용 생성 데이터를 생성하는 인터미디어트 데이터 생성 단계; 및 상기 가상 수술용 골격의 상악측에 대한 가상 수술 결과에 기초하여 상기 가상 수술용 골격의 하악측에 대한 페이퍼 서저리에 의한 가상 수술을 진행함에 따라, 파이널 웨이퍼용 생성 데이터를 생성하는 파이널 데이터 생성 단계;를 포함하는 것을 특징으로 하는 프로그램 저장장치를 구비한다.In addition, the present invention is a program storage device for tangibly embodying a program of instructions readable by a computer and executable by a computer to execute a wafer fabrication method, wherein the method comprises a two-dimensional tooth image and a three-dimensional image. An overlapping step of forming the virtual overlapping data in which the tooth model is overlapped; Forming at least one virtual surgical skeleton through a tracing line operation according to a landmark designation for the virtual overlapping data; Generating a plurality of control points for controlling each of the virtual surgical skeletons according to a preset method; An intermediate data generation step of generating generated data for an intermediate wafer as the virtual surgery is performed by paper surgery on the maxillary side of the virtual surgical skeleton; And a final data generation step of generating generated data for the final wafer as the virtual surgery is performed by the paper surgery on the lowermost side of the virtual surgical skeleton based on the virtual surgical result of the uppermost side of the virtual surgical skeleton. It is provided with a program storage device comprising a.
상기한 바와 같이, 본 발명은 2차원 치아이미지상에서 수술 계획이 수립되면, 해당 수술 계획에 따라 3차원 치아모델도 함께 이동하여 수술 전후 결과를 3차원 치아모델을 통해 확인 및 분석할 수 있는 환경을 사용자에게 제공하는 효과가 있다.As described above, the present invention, when the surgical plan is established on the two-dimensional teeth image, the three-dimensional teeth model is also moved according to the surgical plan to determine the environment before and after the operation through the three-dimensional teeth model environment It has the effect of providing to the user.
또한, 본 발명은 2차원 치아이미지를 따라 생성된 트레이싱 라인에 대한 페이퍼 서저리를 수행하면, 3차원 치아모델에 대한 가상 수술 결과를 동시에 실행하여 그 결과를 실시간으로 확인할 수 있는 효과가 있다.In addition, according to the present invention, if the paper surgery on the tracing line generated along the two-dimensional teeth image is performed, the virtual surgery results for the three-dimensional teeth model can be executed simultaneously to check the results in real time.
또한, 본 발명은 환자 두상의 측면에 대한 가상 수술과 더불어 정면에 대한 가상 수술을 시행할 필요가 있는 경우에, 측면 가상 수술용 골격과 정면 가상 수술용 골격을 서로 동일하게 유지하여 동기화하는 효과가 있다.In addition, the present invention has the effect of synchronizing the side virtual surgical skeleton and the front virtual surgical skeleton to keep the same when the virtual surgery on the front and the virtual surgery on the side of the patient's head on the same have.
또한, 본 발명은 가상 수술 전 3차원 치아모델과 가상 수술 후 3차원 치아모델을 서로 중첩하여 표시하는 효과가 있다.In addition, the present invention has the effect of displaying the three-dimensional teeth model before the virtual surgery and the three-dimensional teeth model after the virtual surgery overlap each other.
도 1은 본 발명에 따른 치과 치료용 가상 중첩 장치의 구성도, 1 is a block diagram of a virtual superposition device for dental treatment according to the present invention,
도 2는 2차원 치아이미지의 측면이미지를 나타낸 도면, Figure 2 is a view showing a side image of the two-dimensional teeth image,
도 3은 2차원 치아이미지의 정면이미지를 나타낸 도면,Figure 3 is a view showing a front image of the two-dimensional teeth image,
도 4는 3차원 치아모델의 X-Y 평면을 나타낸 도면, 4 is a view showing the X-Y plane of the three-dimensional teeth model,
도 5는 3차원 치아모델의 X-Z 평면을 나타낸 도면, 5 is a view showing the X-Z plane of the three-dimensional teeth model,
도 6은 3차원 치아모델의 Y-Z 평면을 나타낸 도면,6 is a view showing the Y-Z plane of the three-dimensional teeth model,
도 7은 2차원 치아이미지의 측면이미지와 3차원 치아모델의 X-Y 평면에 대한 로딩 상태를 나타낸 도면, 7 is a view showing the loading state of the side image of the two-dimensional teeth image and the X-Y plane of the three-dimensional teeth model,
도 8은 2차원 치아이미지의 정면이미지와 3차원 치아모델의 Y-Z 평면에 대한 로딩 상태를 나타낸 도면,8 is a view showing a loading state of the front image of the two-dimensional teeth image and the Y-Z plane of the three-dimensional teeth model,
도 9는 2차원 치아이미지의 측면이미지에서 참조점 선택을 나타낸 도면,9 is a view showing a reference point selection in the side image of the two-dimensional teeth image,
도 10은 3차원 치아모델의 X-Y 평면에서 참조점 선택을 나타낸 도면,10 is a view showing a reference point selection in the X-Y plane of the three-dimensional teeth model,
도 11 및 도 12는 2차원 치아이미지의 측면이미지와 3차원 치아모델의 X-Y 평면에 대한 가상 중첩 작업에 대한 도면, 11 and 12 are views for a virtual overlap operation on the X-Y plane of the side image and the three-dimensional tooth model of the two-dimensional teeth image,
도 13 및 도 14는 2차원 치아이미지의 정면이미지와 3차원 치아모델의 Y-Z 평면에 대한 가상 중첩 작업에 대한 도면,13 and 14 are diagrams for a virtual overlap operation on the Y-Z plane of the front image of the two-dimensional teeth image and the three-dimensional teeth model,
도 15 및 도 16은 3차원 치아모델의 Y-Z 평면에 대해 Y축 회전을 이용한 가상 중첩 작업에 대한 도면, 15 and 16 are views for the virtual overlap operation using the Y-axis rotation with respect to the Y-Z plane of the three-dimensional teeth model,
도 17는 본 발명의 가상 수술장치의 구성도,17 is a block diagram of a virtual surgical device of the present invention,
도 18은 트레이싱 라인 작업 결과를 나타낸 도면,18 is a view showing a tracing line operation result;
도 19 및 도 20는 페이퍼 서저리에 의한 가상 수술에 대한 도면, 19 and 20 are views for the virtual surgery by paper surgery,
도 21은 수치 입력에 의한 페이퍼 서저리에 대한 도면, 21 is a diagram showing paper surgery by numerical input;
도 22는 가상 수술 전후의 가상 중첩 데이터에 대한 도면, 22 is a view of virtual overlapping data before and after virtual surgery,
도 23은 가상 수술 전후의 가상 중첩 데이터의 영점이동을 나타낸 도면, FIG. 23 is a diagram showing a zero shift of virtual superimposition data before and after virtual surgery; FIG.
도 24는 가상 수술 전후의 3차원 치아모델의 중첩 결과를 나타낸 도면, 24 is a view showing the results of superimposition of the three-dimensional teeth model before and after virtual surgery,
도 25는 측면 및 정면에 대한 가상수술의 동기화를 나타낸 도면,25 illustrates the synchronization of virtual surgery for the side and front,
도 26은 본 발명에 따른 치과 치료용 가상 수술방법에 대한 흐름도, 26 is a flow chart for a virtual surgical method for dental treatment according to the present invention,
도 27은 본 발명에 따른 웨이퍼 제작방법에 대한 흐름도이다.27 is a flowchart illustrating a wafer manufacturing method according to the present invention.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 치과 치료용 가상 중첩 장치의 구성도이다. 1 is a block diagram of a virtual superposition device for dental treatment according to the present invention.
일반적인 중첩(마운팅: mounting) 작업은 일명 '페이스 보 트랜스퍼(face bow transfer)'라 하는데, 수술 전 환자의 치아 형상을 본떠 석고 모형을 만든 후 필요에 따라 석고 모형을 자르고 교합기에 위치시키는 과정을 진행한다. 다만, 이러한 중첩 작업은 석고 모형에 대한 베이스 작업을 수행할 때 잘못 제작된 경우에 전술한 일련의 작업을 재수행해야 한다.The general mounting operation is called face bow transfer, which involves creating a plaster model that mimics the patient's teeth prior to surgery and then cuts the plaster model and places it on the articulator as needed. do. However, this overlapping work must be performed again in the above-described series of work if the fabrication work is performed incorrectly when performing the base work on the plaster model.
이에 반해, 도 1에 도시한 본 발명의 일실시예에 따른 치과 치료용 가상 중첩 장치(이하 "가상 중첩 장치"라 함, 100)는, 환자로부터 획득된 치아 모형을 교합기에 결합하여 실제로 환자의 구강 자세를 구현하는 중첩 작업을 가상 공간상에 재현하여 일련의 가상 중첩 작업을 수행할 수 있는 사용자 인터페이스 환경을 제공한다. In contrast, the dental superimposition device (hereinafter, referred to as "virtual superimposition device", 100) according to the embodiment of the present invention shown in FIG. It provides a user interface environment that can perform a series of virtual overlapping work by reproducing the overlapping work for oral posture in a virtual space.
이때, 가상 중첩 장치(100)는 환자의 두부(頭部)에 대한 2차원 치아이미지와 환자의 상하악 치아에 대한 3차원 치아모델을 각각 획득한 후, 가상 공간에서 3차원 치아모델을 2차원 치아이미지에 중첩하여 실제상황에서의 중첩 상태를 재현한다. 즉, 가상 중첩 장치(100)는 하부 레이어(lower layer)에 2차원 치아이미지를 위치시키고 상부 레이어(upper layer)에 3차원 치아모델을 위치시킨 후 서로 대응시켜 오버레이(overlay)한다.At this time, the virtual superimposition device 100 obtains a two-dimensional teeth image of the head of the patient and a three-dimensional teeth model of the upper and lower teeth of the patient, respectively, and then two-dimensional three-dimensional tooth model in the virtual space Overlaid on the tooth image to reproduce the superimposed state in the actual situation. That is, the virtual superposition apparatus 100 positions the two-dimensional teeth image on the lower layer, the three-dimensional teeth model on the upper layer, and overlays the corresponding ones.
여기서, 2차원 치아이미지는 두개골 분석법(cephalometrics)에 따라 치과용 엑스레이(X-ray) 또는 치과용 컴퓨터 단층촬영(Computed Tomography: CT) 등을 통해 촬영된 환자 두부에 대한 방사선이미지를 의미한다(도 2 및 도 3 참조). 이때, 2차원 치아이미지는 촬영방향에 따라 환자 두부의 측방향에서 촬영된 측모 두부 방사선이미지(lateral cephalogram, 이하 "측면이미지"이라 함, 200a), 환자 두부의 정방향에서 촬영된 정모 두부 방사선이미지(posteroanterior cephalogram, 이하 "정면이미지"이라 함, 200b), 환자 두부의 위에서 내려다 본 시점에서 촬영된 이하 두정 방사선이미지(submentovertex cephalogram, 이하 "상면이미지"라 함)로 구분된다.Here, the two-dimensional teeth image means a radiographic image of the head of the patient taken through a dental X-ray or a computed tomography (CT) according to the cephalometrics (Fig. 2 and FIG. 3). At this time, the two-dimensional tooth image is a lateral cephalogram taken from the side of the patient's head in accordance with the direction of the imaging (lateral cephalogram, hereinafter referred to as "side image", 200a), the head of the head radiograph taken from the forward direction of the patient ( posteroanterior cephalogram, hereinafter referred to as "front image" (200b), and submental cephalogram (viewed as "top image") taken from the top of the patient's head.
이러한 2차원 치아이미지는 한 초점으로부터 나온 X선을 피사체에 투과하여 필름에 형성함으로써 필름과 피사체의 거리가 멀어질수록 확대된 이미지로 나타난다. 즉, 2차원 치아이미지는 환자 두부의 실측 크기와 비교하여 어느 정도의 오차가 존재할 수 있다.The two-dimensional teeth image is transmitted to the subject by forming the X-rays through the object to form a film appears as the distance between the film and the subject is enlarged. That is, the two-dimensional teeth image may have some error compared to the actual size of the patient's head.
하지만, 2차원 치아이미지는 환자 두부의 실제 안면 골격 구조를 그대로 반영함으로써 환자의 실제 치아구조를 파악할 수 있다. 다시 말해, 본 발명에서는 일반적으로 페이스 보 및 바이트 포크 등을 통해 환자의 치아와 두개골의 상대적 위치를 실측하여 실제 환자의 치아구조를 확인하는 과정을 대신하여 2차원 치아이미지를 통해 가상 중첩에 필요한 치아의 경사각도(canting)를 확인한다. 여기서, 치아의 경사각도는 2차원 치아이미지에서 윗니와 아랫니 간에 서로 맞닿는 치아면인 교합면에 대한 기울어진 정도를 통해 확인할 수 있다.However, the two-dimensional tooth image can grasp the actual tooth structure of the patient by reflecting the actual facial skeletal structure of the patient's head as it is. In other words, in the present invention, instead of the process of checking the relative position of the patient's teeth and the skull through the face beam and the bite fork to check the actual patient's tooth structure, the teeth required for the virtual superposition through the two-dimensional tooth image Check the canting of. Here, the inclination angle of the tooth can be confirmed through the inclination of the occlusal surface, which is the tooth surface in contact with each other between the upper teeth and the lower teeth in the two-dimensional teeth image.
아울러, 3차원 치아모델은 렌더링(rendering)을 통해 가상공간에 실제 환자의 치아와 비슷한 양감과 질감을 갖는 3차원 치아 형상을 구현한 3차원 치아 형상 데이터를 의미한다(도 4 내지 도 6 참조). 이때, 3차원 치아모델은 환자의 치아를 형상화한 석고모형을 3차원 스캐너를 통해 3차원 치아 형상 데이터를 획득하거나, 통상적인 치과용 컴퓨터 단층촬영을 통해 3차원 치아 형상 데이터를 획득할 수 있다. 이러한 3차원 치아모델 획득 방식은 당업자라면 쉽게 이해할 수 있으므로, 그에 대한 자세한 설명을 생략한다.In addition, the 3D tooth model refers to 3D tooth shape data that implements a 3D tooth shape having a volume and texture similar to that of a real patient in a virtual space through rendering (see FIGS. 4 to 6). . In this case, the 3D dental model may acquire 3D tooth shape data through a 3D scanner of a plaster model that shapes the teeth of a patient, or may obtain 3D tooth shape data through a conventional dental computed tomography. Since the method of obtaining the 3D tooth model is easily understood by those skilled in the art, a detailed description thereof will be omitted.
이러한 3차원 치아모델은 환자의 실제 치아에 일대일(1:1)로 대응하는 실측 크기의 모델링 데이터로서, 가상공간상에 환자의 실제 치아를 그대로 구현한 것이다. 다만, 3차원 치아모델은 환자의 실제 치아의 실측 크기만 동일할 뿐 치아의 경사각도를 반영하지 않는다.The three-dimensional tooth model is modeling data of actual size corresponding to one-to-one (1: 1) of the patient's actual tooth, and the actual tooth of the patient is implemented in the virtual space as it is. However, the three-dimensional tooth model is the same as the actual size of the patient's actual tooth only does not reflect the angle of inclination of the tooth.
이때, 3차원 치아모델에는 3차원 공간에서 계측의 정량화를 위한 좌표계가 설정된다. 즉, X-Y 평면(300a)은 해부학적으로 시상면(sagittal plane)으로서, 정중 구개 봉합부(midpalatal suture, 301)와 PMRJ(junction of the incisive papilla and midpalatal suture, 302)에 의해 결정된다(도 4 참조). 여기서, 정중 구개 봉합부(301)는 상악의 입천장(오목부)의 좌우 대칭을 가르는 중앙선을 나타내는 해부학적 구조물이고, PMRJ(302)는 절치유두(incisive papilla, 303)와 정중 구개 봉합부(301)의 접합부로서 입천장 전방부의 좌우대칭 중앙선상의 돌출된 잇몸 조직이다. 또한, X-Z 평면(300b)은 해부학적으로 프랑크포트면(frankfort horizontal plane)으로서, PMRJ(302)를 포함하여 X-Y 평면(300a)에 수직인 평면으로 결정된다(도 5 참조). 아울러, Y-Z 평면(300c)은 해부학적으로 관상면(coronal plane)으로서, PMRJ(302)를 포함하여 X-Y 평면(300a) 및 X-Z 평면(300b)에 수직인 면으로 결정된다(도 6 참조).In this case, a coordinate system for quantification of measurement in a three-dimensional space is set in the three-dimensional dental model. That is, the XY plane 300a is anatomically a sagittal plane, determined by the midpalatal suture 301 and the junction of the incisive papilla and midpalatal suture 302 (FIG. 4). Reference). Here, the medial palatal suture 301 is an anatomical structure showing a central line that divides the left and right symmetry of the palate of the maxilla, and the PMRJ 302 is an incisive papilla 303 and the medial palatal suture 301. ) Is a protruding gum tissue on the left and right symmetric center line of the anterior palate. In addition, the X-Z plane 300b is anatomically determined as a frankfort horizontal plane, which is determined to be a plane perpendicular to the X-Y plane 300a including the PMRJ 302 (see FIG. 5). In addition, the Y-Z plane 300c is anatomically determined as a coronal plane, which is a plane perpendicular to the X-Y plane 300a and the X-Z plane 300b including the PMRJ 302 (see FIG. 6).
구체적으로, 가상 중첩 장치(100)는 2차원 치아이미지와 3차원 치아모델을 하기와 같이 중첩한다.Specifically, the virtual superposition device 100 overlaps the two-dimensional teeth image and the three-dimensional teeth model as follows.
즉, 가상 중첩 장치(100)는 2차원 치아이미지의 측면이미지(200a)를 통해 확인된 교합면 경사각도에 따라 3차원 치아모델의 X-Y 평면(300a)(즉, 시상면)에서 X축의 경사각도를 조정한 후, 3차원 치아모델의 X-Y 평면(300a)에 대한 크기 및 위치로 2차원 치아이미지의 측면이미지(200a)의 크기 및 위치를 조정한다. 마찬가지로, 가상 중첩 장치(100)는 2차원 치아이미지의 정면이미지(200b)를 통해 확인된 교합면 경사각도에 따라 3차원 치아모델의 Y-Z 평면(300c)(즉, 관상면)에서 Z축의 경사각도를 조정한 후, 3차원 치아모델의 Y-Z 평면(300c)에 대한 크기 및 위치로 2차원 치아이미지의 정면이미지(200b)의 크기 및 위치를 조정한다. 다만, 가상 중첩 장치(100)는 3차원 치아모델의 X-Z 평면(300b)(즉, 프랑크포트면)에 2차원 치아이미지의 상면이미지를 대응시켜 중첩하는 작업의 경우에, 전술한 바와 같은 과정을 별도로 진행하지 않고 3차원 치아모델의 X-Y 평면(300a)에서 Y축(즉, 가장 앞쪽의 두 치아의 중점)을 회전축으로 하여 회전 정도를 반영하는 과정으로 대체한다.That is, the virtual superimposition apparatus 100 according to the occlusal inclination angle confirmed through the side image 200a of the two-dimensional teeth image, the inclination angle of the X axis in the XY plane 300a (ie, the sagittal plane) of the three-dimensional teeth model. After adjusting, the size and position of the side image 200a of the 2D dental image are adjusted to the size and position of the XY plane 300a of the 3D dental model. Similarly, the virtual superimposition apparatus 100 according to the occlusal inclination angle confirmed through the front image 200b of the two-dimensional teeth image, the inclination angle of the Z axis in the YZ plane 300c (ie, the coronal plane) of the three-dimensional teeth model. After adjusting, the size and position of the front image 200b of the 2D dental image are adjusted to the size and position of the YZ plane 300c of the 3D dental model. However, the virtual superimposition apparatus 100 corresponds to the superimposed image of the two-dimensional teeth image on the XZ plane 300b (that is, the Frankfort surface) of the three-dimensional teeth model and overlaps the above-described process. Instead of proceeding separately, the process of reflecting the degree of rotation is made by using the Y axis (that is, the midpoint of the two front teeth) as the rotation axis in the XY plane 300a of the 3D tooth model.
도 1에 도시된 바와 같이, 가상 중첩 장치(100)는 데이터 로딩부(110), 수치 측정부(120), 가상 중첩부(130), 사용자 인터페이스부(140), 저장부(150)를 포함한다.As shown in FIG. 1, the virtual overlapping apparatus 100 includes a data loading unit 110, a numerical measuring unit 120, a virtual overlapping unit 130, a user interface unit 140, and a storage unit 150. do.
데이터 로딩부(110)는 하부 레이어에 2차원 치아이미지, 상부 레이어에 3차원 치아모델을 오버레이하여 사용자 인터페이스부(140)를 통해 표시한다(도 7 및 도 8 참조).The data loading unit 110 overlays the two-dimensional tooth image on the lower layer and the three-dimensional tooth model on the upper layer and displays the same through the user interface 140 (see FIGS. 7 and 8).
구체적으로, 데이터 로딩부(110)는 사용자의 촬영방향 선택에 따른 2차원 치아이미지[즉, 측면이미지(200a) 또는 정면이미지(200b)]를 로딩한다. 아울러, 데이터 로딩부(110)는 3차원 치아모델[즉, X-Y 평면(300a) 또는 Y-Z 평면(300c)]을 로딩하는데, 사용자에 의해 선택된 2차원 치아이미지의 촬영방향에 대응하여 로딩하는 것이 바람직하다.Specifically, the data loading unit 110 loads a two-dimensional dental image (ie, the side image 200a or the front image 200b) according to the user's photographing direction selection. In addition, the data loading unit 110 loads a three-dimensional teeth model (that is, XY plane 300a or YZ plane 300c), it is preferable to load corresponding to the shooting direction of the two-dimensional teeth image selected by the user. Do.
즉, 데이터 로딩부(110)는 2차원 치아이미지의 측면이미지(200a)가 로딩된 경우에 3차원 치아모델의 X-Y 평면(300a)을 표시하여 로딩하고, 2차원 치아이미지의 정면이미지(200b)가 로딩된 경우에 3차원 치아모델의 Y-Z 평면(300c)을 표시하여 로딩한다.That is, the data loading unit 110 displays and loads the XY plane 300a of the 3D dental model when the side image 200a of the 2D dental image is loaded, and the front image 200b of the 2D dental image. If is loaded, the YZ plane (300c) of the three-dimensional teeth model is displayed by loading.
수치 측정부(120)는 데이터 로딩부(110)에 의해 로딩된 2차원 치아이미지 또는 3차원 치아모델에 대해 임의의 두 참조점 간의 경사각도와 길이를 측정한다. 즉, 수치 측정부(120)는 2차원 치아이미지 또는 3차원 치아모델에 사용자에 의해 두 개의 참조점이 지정되면, 두 개의 참조점 사이의 경사각도와 두 개의 참조점 사이를 연결한 선분 길이를 측정한다. 여기서, 참조점은 환자의 교합면의 1번 치아와 7번 치아 각각에 대해 선택되는 것이 바람직하나 환자 치아의 경사각도를 반영할 수 있는 경우에 임의의 두 지점이 선택될 수도 있다. 다만, 설명의 편의상 본 발명에서는 교합면에 참조점을 선택하는 경우에 대해 설명하기로 한다(도 9 및 도 10 참조). 도 9에서는 2차원 치아이미지에서 두 참조점으로 제1 참조점(211) 및 제2 참조점(212)을 사용자가 선택한 경우를 나타내고, 도 10에서는 3차원 치아모델에서 두 참조점으로 제3 참조점(311) 및 제4 참조점(312)을 사용자가 선택한 경우를 나타낸다.The numerical measurer 120 measures the inclination angle and the length between any two reference points with respect to the two-dimensional tooth image or the three-dimensional tooth model loaded by the data loading unit 110. That is, when two reference points are designated by the user in the 2D dental image or the 3D dental model, the numerical measurement unit 120 measures the inclination angle between the two reference points and the line segment length connecting the two reference points. . Here, the reference point is preferably selected for each of teeth 1 and 7 of the occlusal surface of the patient, but any two points may be selected when the angle of inclination of the patient's teeth can be reflected. However, for convenience of description, the present invention will be described for selecting a reference point in the occlusal surface (see FIGS. 9 and 10). 9 illustrates a case in which the user selects the first reference point 211 and the second reference point 212 as two reference points in the two-dimensional tooth image. In FIG. 10, the third reference point is referred to as two reference points in the three-dimensional tooth model. The case where the user selects the point 311 and the fourth reference point 312 is shown.
가상 중첩부(130)는 3차원 공간을 구성하는 각각의 축에 대해 2차원 치아이미지 및 3차원 치아모델을 서로 대응하여 중첩한다. 바람직하게는, 가상 중첩부(130)는 2차원 치아이미지 및 3차원 치아모델에서 환자의 교합면을 기준으로 서로 대응시켜 중첩한다. The virtual overlapping unit 130 overlaps the two-dimensional tooth image and the three-dimensional tooth model with respect to each axis constituting the three-dimensional space. Preferably, the virtual overlap unit 130 overlaps with each other based on the occlusal surface of the patient in the two-dimensional teeth image and the three-dimensional teeth model.
우선, 가상 중첩부(130)는 수치 측정부(120)에 의한 측정결과를 이용하여 2차원 치아이미지의 측면이미지(200a)에 대해 3차원 치아모델의 X-Y 평면(300a)(시상면)을 오버레이하여 중첩한다. 즉, 가상 중첩부(130)는 우선 2차원 치아이미지에 기초하여 3차원 치아모델에서 교합면 경사각도를 조정한 후, 3차원 치아모델에 기초하여 2차원 치아이미지에서 교합면의 크기 및 위치를 중첩한다.First, the virtual superimposition unit 130 overlays the XY plane 300a (sagittal plane) of the three-dimensional teeth model on the side image 200a of the two-dimensional teeth image by using the measurement result by the numerical measuring unit 120. To overlap. That is, the virtual superimposition unit 130 first adjusts the occlusal inclination angle in the three-dimensional teeth model based on the two-dimensional teeth image, and then adjusts the size and position of the occlusal surface in the two-dimensional teeth image based on the three-dimensional teeth model. Overlap.
구체적으로, 가상 중첩부(130)는 2차원 치아이미지의 측면이미지(200a) 및 3차원 치아모델의 X-Y 평면(300a)을 하기와 같은 일련의 과정을 통해 중첩한다.Specifically, the virtual overlapping unit 130 overlaps the side image 200a of the 2D dental image and the X-Y plane 300a of the 3D dental model through a series of processes as follows.
가상 중첩부(130)는 2차원 치아이미지의 측면이미지(200a)에 대한 교합면 경사각도에 따라 3차원 치아모델의 X-Y 평면(300a)에 대한 교합면 경사각도를 설정함으로써, 환자의 실제 교합면 경사각도를 3차원 치아모델에 반영한다(도 11 참조). 이는 3차원 치아모델의 X-Y 평면(300a)에 대한 교합면 경사각도를 2차원 치아이미지의 측면이미지(200a)에 대한 교합면 경사각도에 일치시키기 위함이다. 여기서, 교합면 경사각도는 X축에 대해 기울어진 정도를 나타낸다.The virtual superimposition unit 130 sets the occlusal inclination angle with respect to the XY plane 300a of the three-dimensional teeth model according to the occlusal inclination angle with respect to the side image 200a of the two-dimensional teeth image, thereby realizing the occlusal surface of the patient. The angle of inclination is reflected in the three-dimensional tooth model (see FIG. 11). This is to match the occlusal inclination angle with respect to the X-Y plane 300a of the three-dimensional teeth model to the occlusal inclination angle with respect to the side image 200a of the two-dimensional teeth image. Here, the occlusal inclination angle represents the degree of inclination with respect to the X axis.
이를 위해, 수치 측정부(120)는 2차원 치아이미지의 측면이미지(200a)에서 사용자에 의해 지정된 두 개의 참조점을 연결한 선분을 이용하여 교합면 경사각도를 측정한다. 아울러, 수치 측정부(120)는 3차원 치아모델의 X-Y 평면(300a)에서 사용자에 의해 지정된 두 개의 참조점을 연결한 선분을 이용하여 교합면 경사각도를 측정한다. 이때, 사용자는 2차원 치아이미지의 측면이미지(200a)와 3차원 치아모델의 X-Y 평면(300a)의 교합면에서 서로 동일한 위치에 해당 참조점을 지정하는데, 일례로, 교합면상의 1번 치아와 7번 치아를 선택하여 선분을 결정한다. 그리고, 가상 중첩부(130)는 3차원 치아모델의 X-Y 평면(300a)에 대한 교합면 경사각도를 2차원 치아이미지의 측면이미지(200a)에 대한 교합면 경사각도로 변경한다. 즉, 가상 중첩부(130)는 2차원 치아이미지의 측면이미지(200a)에 대한 교합면 경사각도에 따라 3차원 치아모델의 X-Y 평면(300a)에 대한 교합면 경사각도를 회전한다. 다시 말해, 가상 중첩부(130)는 3차원 치아모델의 X-Y 평면(300a)에 대한 교합면 경사각도를 실제 환자의 교합면 경사각도로 설정한다.To this end, the numerical measurement unit 120 measures the occlusal inclination angle using a line segment connecting two reference points specified by the user in the side image 200a of the two-dimensional tooth image. In addition, the numerical measurement unit 120 measures the occlusal inclination angle using a line segment connecting two reference points specified by the user in the X-Y plane 300a of the three-dimensional teeth model. In this case, the user designates the corresponding reference points at the same positions on the occlusal surface of the lateral plane 200a of the two-dimensional dental image and the XY plane 300a of the three-dimensional dental model. Select tooth 7 to determine the segment. The virtual superimposition unit 130 changes the occlusal inclination angle with respect to the X-Y plane 300a of the three-dimensional teeth model to the occlusal inclination angle with respect to the side image 200a of the two-dimensional teeth image. That is, the virtual superimposition unit 130 rotates the occlusal inclination angle with respect to the X-Y plane 300a of the three-dimensional teeth model according to the occlusal inclination angle with respect to the side image 200a of the two-dimensional teeth image. In other words, the virtual overlap 130 sets the occlusal inclination angle with respect to the X-Y plane 300a of the three-dimensional teeth model as the occlusal inclination angle of the actual patient.
다음으로, 가상 중첩부(130)는 3차원 치아모델의 X-Y 평면(300a)에 대한 크기 및 위치에 따라 2차원 치아이미지의 측면이미지(200a)에 대한 크기 및 위치를 중첩한다(도 12 참조). 이는 2차원 치아이미지의 측면이미지(200a)에 대한 크기 및 위치를 3차원 치아모델의 X-Y 평면(300a)에 대한 길이 및 위치에 일치시키기 위함이다. Next, the virtual overlap unit 130 overlaps the size and position of the side image 200a of the 2D dental image according to the size and position of the XY plane 300a of the 3D tooth model (see FIG. 12). . This is to match the size and position of the side image 200a of the 2D dental image to the length and position of the X-Y plane 300a of the 3D dental model.
이를 위해, 수치 측정부(120)는 3차원 치아모델의 X-Y 평면(300a)에서 사용자에 의해 지정된 두 개의 참조점을 연결한 선분을 이용하여 3차원 치아모델의 X-Y 평면(300a)에서 교합면을 통해 크기 및 위치를 측정한다. 아울러, 수치 측정부(120)는 2차원 치아이미지의 측면이미지(200a)에서 사용자에 의해 지정된 두 개의 참조점을 연결한 선분을 이용하여 2차원 치아이미지의 측면이미지(200a)에서 교합면을 통해 크기 및 위치를 측정한다. 이때, 사용자는 전술한 바와 마찬가지로 해당 참조점을 교합면에 서로 동일한 위치에 지정한다. 그리고, 가상 중첩부(130)는 2차원 치아이미지의 측면이미지(200a)에 대한 크기 및 위치에 따라 3차원 치아모델의 X-Y 평면(300a)에 대한 크기 및 위치를 대응하여 중첩한다. 이때, 가상 중첩부(130)는 3차원 치아모델에서의 선분 길이에 따라 2차원 치아이미지에서의 선분 길이를 조정함으로써, 3차원 치아모델의 X-Y 평면(300a)에 대한 크기에 맞춰 2차원 치아이미지의 측면이미지(200a)에 대한 크기를 조정한다. 이 경우는 2차원 치아이미지에서의 교합면 및 3차원 치아모델에서의 교합면이 서로 일치하지 않을 뿐 경사각도와 크기가 동일하다. 이후, 가상 중첩부(130)는 2차원 치아이미지에서의 선분과 3차원 치아모델에서의 선분에 대한 각 중점을 확인하고, 2차원 치아이미지에서의 선분 중점을 3차원 치아모델에서의 선분 중점으로 위치를 조정한다. 이로써, 2차원 치아이미지의 교합면은 3차원 치아모델의 교합면과 서로 일치하여 동일한 지점에 위치한다.To this end, the numerical measurement unit 120 uses the line segment connecting two reference points specified by the user in the XY plane 300a of the three-dimensional teeth model to form an occlusal surface in the XY plane 300a of the three-dimensional teeth model. Measure the size and position through. In addition, the numerical measurement unit 120 uses a line segment connecting two reference points specified by the user in the side image 200a of the 2D dental image through the occlusal surface in the side image 200a of the 2D dental image. Measure the size and position. At this time, the user assigns the reference points to the same positions on the occlusal surface as described above. The virtual overlapping unit 130 overlaps the size and position of the 3D dental model with respect to the X-Y plane 300a according to the size and position of the side image 200a of the 2D dental image. At this time, the virtual superimposition unit 130 adjusts the length of the line segment in the two-dimensional teeth image according to the length of the line segment in the three-dimensional teeth model, to match the size of the XY plane 300a of the three-dimensional teeth model Adjust the size for the side image 200a. In this case, the occlusal surface of the 2D dental image and the occlusal surface of the 3D dental model do not coincide with each other but have the same inclination angle and size. Thereafter, the virtual superimposition unit 130 checks each center point of the line segment in the 2D tooth image and the line segment in the 3D tooth model, and the center of the line segment in the 2D tooth image as the line center of the 3D tooth model. Adjust the position. Thus, the occlusal surface of the two-dimensional dental image is located at the same point coinciding with the occlusal surface of the three-dimensional dental model.
한편, 가상 중첩부(130)는 2차원 치아이미지의 정면이미지(200b)에 대해 3차원 치아모델의 Y-Z 평면(300c)(관상면)에 대해서도 전술한 바와 같이 일련의 중첩 작업을 동일하게 수행한다(도 13 및 도 14 참조). 이때, 교합면 경사각도는 Z축의 기울어진 정도를 나타낸다. 이에 대한 자세한 설명은 앞서 언급한 2차원 치아이미지의 측면이미지(200a)에 대해 3차원 치아모델의 X-Y 평면(300a)(시상면)에 대한 중첩 작업을 통해 쉽게 이해될 수 있으므로 생략하기로 한다.Meanwhile, the virtual overlapping unit 130 performs the same series of overlapping operations on the YZ plane 300c (the coronal plane) of the 3D dental model with respect to the front image 200b of the 2D dental image as described above. (See FIGS. 13 and 14). At this time, the occlusal surface inclination angle represents the degree of inclination of the Z axis. A detailed description thereof will be omitted since it can be easily understood through the overlapping operation on the X-Y plane 300a (sagittal plane) of the 3D tooth model with respect to the side image 200a of the 2D tooth image.
그런데, 가상 중첩부(130)는 2차원 치아이미지의 상면이미지에 대해 3차원 치아모델의 X-Z 평면(300b)(프랑크포트면)을 중첩하는 경우에, 전술한 바와 같은 일련의 중첩 작업을 수행하지 않고, 3차원 치아모델의 Y-Z 평면(300c)에 대해 Y축을 회전축으로 회전시켜 조정한다.However, the virtual overlapping unit 130 does not perform a series of overlapping operations as described above when the XZ plane 300b (Frankport surface) of the 3D dental model is overlapped with the top image of the 2D dental image. Instead, the Y-axis is rotated by the rotation axis with respect to the YZ plane 300c of the three-dimensional teeth model to adjust.
이를 위해, 가상 중첩부(130)는 사용자에 의해 3차원 치아모델의 Y-Z 평면(300c)에서 Y축을 회전축으로 설정한다. 이때, 사용자는 3차원 치아모델의 Y-Z 평면(300c)에서 가장 앞쪽의 두 치아(321)의 가운데를 Y축으로 선택하는데(도 15 참조), Y축은 대략 정중 구개 봉합부(301) 및 PMRJ(302)의 교점에 수직으로 교차한다. 이후, 가상 중첩부(130)는 3차원 치아모델의 Y-Z 평면(300c)에서 가장 바깥쪽 지점(322)이 이동하기 원하는 위치(323)가 사용자에 의해 선택되면, 3차원 치아모델의 Y-Z 평면(300c)이 Y축을 회전축으로 사용자에 의해 선택된 위치로 회전한다(도 16 참조).To this end, the virtual overlapping unit 130 sets the Y axis as the rotation axis in the Y-Z plane 300c of the 3D tooth model by the user. At this time, the user selects the center of the two foremost teeth 321 in the YZ plane 300c of the three-dimensional tooth model as the Y axis (see FIG. 15), and the Y axis is approximately the median palate suture 301 and PMRJ ( Perpendicular to the intersection of 302). Subsequently, when the position 323 where the outermost point 322 is to be moved by the user is selected by the user in the YZ plane 300c of the three-dimensional teeth model, the virtual overlap 130 may include the YZ plane ( 300c) rotates the Y axis to a position selected by the user with the rotation axis (see FIG. 16).
한편, 가상 중첩부(130)는 2차원 치아이미지 및 3차원 치아모델에 대한 가상 중첩 작업을 수행한 후, 후속 과정으로 가상 치료 진단의 일환으로 페이퍼 서저리(paper surgery), 웨이퍼 제작 및 치아 교정 등에 필요한 사용자 인터페이스를 제공한다.Meanwhile, the virtual superimposition unit 130 performs virtual superimposition on the two-dimensional tooth image and the three-dimensional tooth model, and then, as a part of the virtual treatment diagnosis, paper surgery, wafer fabrication, and orthodontics as a subsequent process. Provide the necessary user interface.
사용자 인터페이스부(140)는 일련의 가상 중첩 작업을 수행하기 위한 가상 중첩 장치(100)에 대한 접근성을 사용자에게 제공한다. 즉, 사용자 인터페이스부(140)는 가상 중첩 장치(100)를 조작하는 입력기능을 제공하기 위해 다양한 입력장치(예를 들어, 키보드, 마우스, 터치패드, 펜 마우스 등)와 연결하며, 가상 중첩 장치(100)의 처리 결과를 표시하는 출력기능을 제공하기 위해 다양한 출력장치(예를 들어, 모니터, 프린터 등)와 연결한다. 일례로, 사용자는 키보드 또는 마우스를 이용하여 가상 중첩을 위한 소정의 작업을 입력하면, 모니터를 통해 그 결과가 출력되는 것을 확인할 수 있다.The user interface unit 140 provides a user with access to the virtual overlapping apparatus 100 for performing a series of virtual overlapping tasks. That is, the user interface unit 140 connects with various input devices (for example, a keyboard, a mouse, a touch pad, a pen mouse, etc.) to provide an input function for manipulating the virtual overlapping device 100, and the virtual overlapping device. It is connected to various output devices (e.g., monitor, printer, etc.) to provide an output function for displaying the processing result of the 100. For example, when a user inputs a predetermined task for virtual superposition using a keyboard or a mouse, the user may confirm that the result is output through the monitor.
저장부(150)는 환자별로 환자 개인 정보, 환자의 2차원 치아이미지 및 3차원 치아모델 등을 저장한다. 여기서, 환자 개인 정보에는 환자 이름, 주민등록번호, 진료 이력, 진료 일정 정보 등을 포함한다. 이때, 2차원 치아이미지 및 3차원 치아모델은 가상 중첩 장치(100)에 직접 연결된 해당 외부기기(즉, 엑스레이 장치, 3차원 스캐너 등)로부터 직접 획득되거나, 외부에서 기 획득된 후 유무선 통신을 통해 제공될 수도 있다.The storage unit 150 stores patient personal information for each patient, a two-dimensional tooth image of the patient, and a three-dimensional tooth model. Here, the patient personal information includes a patient name, social security number, medical history, medical treatment schedule information, and the like. In this case, the 2D dental image and the 3D dental model may be directly obtained from a corresponding external device (ie, an X-ray device, a 3D scanner, etc.) directly connected to the virtual superimposition device 100, or may be obtained externally and then through wired or wireless communication. May be provided.
도 17는 본 발명의 일실시예에 따른 가상 수술장치에 대한 구성도이다. 도 18은 트레이싱 라인 작업 결과를 나타낸 도면이다. 도 19 및 도 20는 페이퍼 서저리에 의한 가상 수술에 대한 도면이고, 도 21는 수치 입력에 의한 페이퍼 서저리에 대한 도면이고, 도 22는 가상 수술 전후의 가상 중첩 데이터에 대한 도면이고, 도 23는 가상 수술 전후의 가상 중첩 데이터의 영점이동을 나타낸 도면이고, 도 24는 가상 수술 전후의 3차원 치아모델의 중첩 결과를 나타낸 도면이고, 도 25는 측면 및 정면에 대한 가상수술의 동기화를 나타낸 도면이다.17 is a block diagram of a virtual surgery apparatus according to an embodiment of the present invention. 18 is a diagram illustrating a tracing line operation result. 19 and 20 are diagrams for virtual surgery by paper surgery, FIG. 21 is a diagram for paper surgery by numerical input, FIG. 22 is a diagram for virtual overlapping data before and after virtual surgery, and FIG. 23 is virtual It is a figure which shows the zero shift of the virtual superimposition data before and after surgery, FIG. 24 is a figure which shows the superimposition result of the 3D tooth model before and after the virtual surgery, and FIG. 25 is a figure which shows the synchronization of the virtual surgery with respect to the side and front.
본 발명의 일실시예에 따른 가상 수술장치(이하 "가상 수술장치"라 함, 400)는, 전술한 가상 중첩 장치(100)를 통해 2차원 치아이미지 및 3차원 치아모델에 대한 중첩 데이터(이하 "가상 중첩 데이터"라 함, 도 12 및 도 14 참조)를 생성한 후, 2차원 치아이미지를 따라 생성된 트레이싱 라인(tracing line)에 대한 페이퍼 서저리(paper surgery)를 수행하면, 3차원 치아모델에 대한 가상 수술 결과를 동시에 실행하여 그 결과를 실시간으로 확인할 수 있도록 한다. 여기서, 가상 중첩 데이터는 도 1에 도시된 가상 중첩 장치(100)에 의해 생성되는 것이 바람직하나, 이에 한정된 방식에 의해 생성되지는 않는다.Virtual surgery apparatus according to an embodiment of the present invention (hereinafter referred to as "virtual surgery apparatus", 400), the superimposed data for the two-dimensional teeth image and the three-dimensional teeth model through the above-described virtual superimposition device 100 (hereinafter 12 and 14), and then perform paper surgery on tracing lines generated along the two-dimensional teeth image, the three-dimensional teeth model. Simultaneous execution of the virtual surgery results for the results can be confirmed in real time. Here, the virtual superimposition data is preferably generated by the virtual superimposition apparatus 100 shown in FIG. 1, but is not generated in a limited manner.
특히, 가상 수술장치(400)는 가상 중첩 기능을 통해 형성된 가상 중첩 데이터의 2차원 치아이미지상에서 수술 계획이 수립되면, 해당 수술 계획에 따라 3차원 치아모델도 함께 이동하여 수술 전후 결과를 3차원 치아모델을 통해 확인 및 분석할 수 있는 환경을 사용자에게 제공한다. 다시 말해, 가상 수술장치(400)는 2차원 수술 계획을 통해 3차원 수술 결과를 예측할 수 있는 환경을 제공한다.In particular, when the surgical plan is established on the two-dimensional teeth image of the virtual overlapping data formed through the virtual overlap function, the virtual surgical device 400 moves along with the three-dimensional tooth model according to the corresponding surgical plan to display the results before and after the three-dimensional teeth. It provides the user with an environment to check and analyze through the model. In other words, the virtual surgical apparatus 400 provides an environment in which the 3D surgical results can be predicted through the 2D surgical plan.
반면에, 일반적인 경우에는 2차원 치아이미지를 페이퍼상에 도시한 후 페이퍼 서저리를 수행하고, 페이퍼 서저리 결과에 따라 실제로 마운팅된 석고모델의 가상 수술을 진행하여 그 결과를 확인한다. 즉, 이 경우에는 2차원 치아이미지를 이용하여 수술 계획을 수립하더라도 실제 3차원 치아모델을 이용한 것이 아니기 때문에 3차원 치아모델의 마운팅 작업이 추가로 필요하다. On the other hand, in general, the two-dimensional teeth image is shown on the paper and paper surgery is performed, and the virtual surgery of the actually mounted gypsum model is confirmed according to the paper surgery results. That is, in this case, even if the surgical plan is established by using the 2D tooth image, since the actual 3D tooth model is not used, mounting work of the 3D tooth model is additionally required.
여기서는 실제로 페이퍼상에 트레이싱 라인을 도시하여 페이퍼 서저리를 수행하지는 않으나, 가상 수술장치(400)에서 실제 페이퍼 서저리에 대응하는 일련의 과정을 가상 공간에서 수행하므로 설명의 편의상 '페이퍼 서저리'라는 용어를 그대로 사용하기로 한다. 이와 같은 페이퍼 서저리 및 가상 수술에 대한 일련의 과정을 일명 'STO(Surigal Treatment Object)'라 한다. 이때, 페이퍼 서저리는 환자 두상 측면에 대해 주로 수행하며, 필요에 따라 환자의 좌, 우측 균형을 맞추기 위한 수술에서 환자 두상 정면에 대해 수행할 수도 있다.In this case, although the paper line is not actually performed by showing the tracing line on the paper, the term 'paper surgery' is used as it is for convenience of description because the virtual surgery apparatus 400 performs a series of processes corresponding to the actual paper surgery in the virtual space. I will use it. This series of paper surgery and virtual surgery is called STO (Surigal Treatment Object). In this case, the paper surgery is mainly performed on the side of the head of the patient, and may be performed on the front of the head of the patient in surgery to balance the left and right of the patient, if necessary.
도 17에 도시된 바와 같이, 가상 수술장치(400)는 트레이싱 라인부(410), 가상 수술부(420), 동기화 처리부(421), 웨이퍼용 데이터 생성부(430)를 포함하며, 추가로 웨이퍼 제작부(431)를 더 포함할 수 있다.As shown in FIG. 17, the virtual surgery apparatus 400 includes a tracing line unit 410, a virtual surgery unit 420, a synchronization processor 421, and a wafer data generator 430. The production unit 431 may further include.
이하, 트레이싱 라인부(410)를 도 18을 참조하여 설명한다.Hereinafter, the tracing line unit 410 will be described with reference to FIG. 18.
트레이싱 라인부(410)는 가상 중첩 데이터의 2차원 치아이미지에 대해 사용자에 의해 지정된 랜드마크(landmark)에 기초하여 트레이싱 라인 작업을 수행한다. 여기서, '랜드마크(M)'라 함은 페이퍼 서저리를 위해 2차원 치아이미지에 대한 계측, 진단 및 치료 계획 수립을 위해 필요한 다수의 특징점들을 통칭한다. 도 18에서는 랜드마크(M)를 십자형(+) 포인트로 표시한다.The tracing line unit 410 performs a tracing line operation based on a landmark designated by a user with respect to the two-dimensional tooth image of the virtual overlapping data. Here, the term 'landmark (M)' refers to a number of feature points necessary for measuring, diagnosing, and establishing a treatment plan for a two-dimensional dental image for paper surgery. In FIG. 18, the landmark M is represented by a cross point (+).
이러한 랜드마크(M)는 통상의 두부방사선 계측 분석법을 통해 알려져 있고, 전비극(Anterior Nasal Spine: ANS), 후비극(Posterior Nasal Spine: PNS), A포인트(Subspinale), B포인트(Supramentale), N(Nasion), Or(Orbitale), Por(Portion) 등이 있다.These landmarks (M) are known through conventional head radiometric analysis, anterior nasal spine (ANS), posterior nasal spine (PNS), A point (Subspinale), B point (Supramentale), N (Nasion), Or (Orbitale), Por (Portion) and the like.
특히, 트레이싱 라인부(410)는 다수의 랜드마크(M)가 생략없이 기 설정된 순서에 따라 지정될 수 있도록, 다수의 랜드마크(M)를 리스트 형식으로 사용자에게 제공한다. 이때, 트레이싱 라인부(410)는 2차원 치아이미지상에서 랜드마크(M)별 위치(좌표)와 종류(명칭)를 식별함으로써, 랜드마크(M)에 따른 트레이싱 라인 작업을 수행할 수 있다. In particular, the tracing line unit 410 provides a plurality of landmarks M to the user in a list format so that the plurality of landmarks M can be designated in a predetermined order without omission. In this case, the tracing line unit 410 may perform a tracing line operation according to the landmark M by identifying a position (coordinate) and a type (name) for each landmark M on the two-dimensional tooth image.
이하, 트레이싱 라인부(410)에서 사용자에 의해 지정된 랜드마크(M)에 따라 트레이싱 라인 작업을 수행하는 과정에 대해 상세히 설명한다.Hereinafter, a process of performing the tracing line operation according to the landmark M designated by the user in the tracing line unit 410 will be described in detail.
먼저, 트레이싱 라인부(410)는 2차원 치아이미지상에 나타난 실제 환자의 골격을 따라, 페이퍼 서저리의 계측/진단/수술 계획 수립에 있어서 통상적으로 고려되는 환자의 얼굴윤곽, 상악골(윗턱뼈) 및 하악골(아래턱뼈)을 트레이싱 라인(TL1 내지 TL3)으로 나타낸 '가상 수술용 골격'을 형성한다. First, the tracing line portion 410 is along the skeleton of the actual patient shown on the two-dimensional teeth image, the contour of the patient, the maxilla (upper jawbone) and the patient, which is commonly considered in the planning of measurement / diagnosis / surgery of paper surgery The mandible (mandibular bone) forms a 'virtual surgical skeleton' with tracing lines TL1 to TL3.
이때, 가상 수술용 골격은 트레이싱 라인을 따라 적어도 하나의 랜드마크(M)가 배치되어 있다. 여기서, 3차원 치아모델은 트레이싱 라인 작업 이전에 이미 형성되어 있지만, 편의상 얼굴윤곽, 상악골 및 하악골과 함께 가상 수술용 골격으로 통칭하여 설명하기로 한다.In this case, at least one landmark M is disposed along the tracing line of the virtual surgical skeleton. Here, the three-dimensional tooth model is already formed before the tracing line operation, but will be described collectively as a virtual surgical skeleton with a facial contour, maxilla and mandible for convenience.
구체적으로, 트레이싱 라인부(410)는 2차원 치아이미지의 얼굴윤곽을 따라 지정된 랜드마크(M)를 이용하여 '얼굴 윤곽 트레이싱 라인(TL1)'을 자동으로 형성한다. 다만, 트레이싱 라인부(410)는 2차원 치아이미지의 상악골과 하악골의 윤곽을 따라 지정된 랜드마크(M)가 사용자에 의해 서로 연결됨으로써 '상악골 트레이싱 라인(TL2)'과 '하악골 트레이싱 라인(TL3)'을 형성한다.In detail, the tracing line unit 410 automatically forms a 'face contour tracing line TL1' using a designated landmark M along the facial contour of the 2D dental image. However, the tracing line unit 410 has a designated landmark (M) along the contour of the maxilla and mandible of the two-dimensional teeth image by being connected to each other by the user 'the maxillary tracing line (TL2)' and 'mandibular tracing line (TL3) Form '.
이로써, 트레이싱 라인부(410)는 얼굴 윤곽 트레이싱 라인(TL1)을 형성함에 따라 가상 수술을 진행하기 위한 얼굴 영역을 구별하고, 상악골 트레이싱 라인(TL2)을 형성함에 따라 가상수술을 진행하기 위한 상악골 영역을 구별하며, 하악골 트레이싱 라인(TL3)을 형성함에 따라 가상 수술을 진행하기 위한 하악골 영역을 구별한다. 이러한 각각의 독립된 영역은 후술할 컨트롤 포인트에 의해 독립적으로 제어될 수 있는 영역을 나타낸다.As a result, the tracing line unit 410 distinguishes the face region for performing the virtual surgery as the face contour tracing line TL1 is formed, and forms the maxillary tracing line TL2 to form the maxillary region for the virtual surgery. The mandibular tracing line (TL3) is formed to distinguish the mandible region for proceeding the virtual surgery. Each of these independent areas represents an area that can be independently controlled by a control point to be described later.
다음으로, 트레이싱 라인부(410)는 사용자에 의해 랜드마크(M)가 모두 지정되면, 적어도 두 개의 랜드마크(M)를 연결하여 환자의 상태를 분석하여 STO 과정에 참조할 수 있는 '참조선(RL)'을 형성한다. 일례로, 코끝과 턱끝이 연결된 참조선(RL)은 돌출입 정도를 객관적으로 표시하고 더 나아가 교정수술시 기준이 되는 정도를 표시하기 위한 심미선(ricketts line)으로서, 바람직하게는 윗입술은 심미선보다 1㎜ 정도 안쪽, 아랫입술은 심미선에 살짝 닿는 정도인지에 따라 돌출입 정도가 확인된다.Next, when all of the landmarks M are designated by the user, the tracing line unit 410 connects at least two landmarks M to analyze the condition of the patient and refer to the STO process. (RL) '. For example, the reference line RL connected to the tip of the nose and the chin is a ricketts line for objectively indicating the degree of protruding mouth and further indicating the degree of reference for corrective surgery, and preferably, the upper lip is 1 About ㎜ inward, the lower lip is in contact with the aesthetic gland and the degree of protrusion is confirmed.
아울러, 트레이싱 라인부(410)는 사용자에 의해 랜드마크(M)가 모두 지정되면, 적어도 하나의 랜드마크(M)를 이용하여 가상 수술용 골격에 대한 페이퍼 서저리 수행을 위한 컨트롤 포인트(ⓐ 내지 ⓜ)를 형성한다. In addition, when all of the landmarks M are designated by the user, the tracing line unit 410 controls points for performing paper surgery on the virtual surgical skeleton using at least one landmark M. ).
이때, 트레이싱 라인부(410)는 사용자에 의해 지정된 랜드마크(M)에 기초하여, 컨트롤 포인트별로 기 설정된 방식에 따라 위치를 결정한 후 표시한다. 즉, 트레이싱 라인부(410)는 각 컨트롤 포인트(ⓐ 내지 ⓜ)의 위치 결정을 위해 어느 랜드마크(M)의 좌표정보를 이용할지가 미리 설정되어 있고, 그에 따라 사용자에 의해 모든 랜드마크(M)가 지정되면 해당 랜드마크(M)의 좌표정보를 이용하여 컨트롤 포인트별 위치 즉, 좌표정보를 결정한다.In this case, the tracing line unit 410 determines and displays the location according to a preset method for each control point based on the landmark M designated by the user. That is, the tracing line unit 410 has previously set which landmark M coordinate information is used for positioning each control point ⓐ to ⓜ, and accordingly all landmarks M are selected by the user. If) is specified, the location of each control point, that is, coordinate information, is determined using the coordinate information of the landmark M.
일례로, 컨트롤 포인트 ⓐ의 좌표 (x,y)를 결정하기 위해 제1 랜드마크(M1)의 좌표 (a1,b1) 및 제2 랜드마크(M2)의 좌표 (a2,b2)를 이용하는 경우를 가정하여 설명한다. 이때, 트레이싱 라인부(410)에는 컨트롤 포인트 ⓐ의 위치를 결정하기 위한 방식으로서, 제1 랜드마크(M1)와 제2 랜드마크(M2)의 중점으로부터 y 좌표에 대해 h만큼 떨어진 지점에 컨트롤 포인트 ⓐ를 배치하도록 미리 설정되어 있다. 이에 따라, 트레이싱 라인부(410)는 사용자에 의해 모든 랜드마크(M)가 지정되면, 컨트롤 포인트 ⓐ의 좌표(x,y)를 수학식 1과 같이 결정한다.In one example, the coordinates a 1 , b 1 of the first landmark M1 and the coordinates a 2 , b 2 of the second landmark M2 to determine the coordinates (x, y) of the control point ⓐ. It will be described assuming a case using. In this case, the tracing line unit 410 is a method for determining the position of the control point ⓐ, the control point at a point away from the midpoint of the first landmark (M1) and the second landmark (M2) by h relative to the y coordinate. Preset to arrange Accordingly, when all the landmarks M are designated by the user, the tracing line unit 410 determines the coordinates (x, y) of the control point ⓐ as shown in Equation 1.
수학식 1
Figure PCTKR2011009975-appb-M000001
Equation 1
Figure PCTKR2011009975-appb-M000001
한편, 트레이싱 라인부(410)는 가상 수술용 골격 각각에 대해 컨트롤 포인트(ⓐ 내지 ⓜ)를 대응시켜 동기화함으로써, 가상 수술시에 사용자의 조정에 의한 컨트롤 포인트(ⓐ 내지 ⓜ)의 움직임에 따라 가상 수술용 골격도 동시에 움직일 수 있게 한다. 이때, 가상 수술용 골격은 가상 수술을 위해 절개된 단위 영역으로 나타낼 수 있으며, 각 단위 영역은 가상 수술을 위한 페이퍼 서저리를 위한 하나의 컨트롤 포인트(ⓐ 내지 ⓜ)가 대응되어 동기화된다. 일례로, 상악골은 앞부분과 뒷부분으로 절개되어 두 개의 단위 영역이 형성되며, 각 단위 영역에는 컨트롤 포인트가 대응된다.Meanwhile, the tracing line unit 410 synchronizes the control points (ⓐ to ⓜ) with respect to each of the virtual surgical skeletons, thereby synchronizing with the movement of the control points (ⓐ to ⓜ) by the user during virtual surgery. The surgical skeleton can also be moved at the same time. In this case, the virtual surgical skeleton may be represented as a unit region cut for virtual surgery, and each unit region is synchronized with one control point (ⓐ to ⓜ) for paper surgery for virtual surgery. For example, the maxilla is cut into the front and rear portions to form two unit regions, and the control points correspond to each unit region.
또한, 각각의 컨트롤 포인트(ⓐ 내지 ⓜ)에는 사용자 조작에 따라 움직이는 가상 수술용 골격이 정의되어 있다.In addition, each control point (ⓐ to ⓜ) is defined a virtual surgical skeleton that moves in accordance with the user operation.
구체적으로, 표 1에는 컨트롤 포인트(ⓐ 내지 ⓜ)에 정의된 가상 수술용 골격에 대해 나타낸다. 여기서는 상악측에 6개의 컨트롤 포인트(즉, ⓐ 내지 ⓕ) 및 하악측에 7개의 컨트롤 포인트(즉, ⓖ 내지 ⓜ)를 배치하는 경우에 대하여 설명하고 있으나, 이에 한정하지 않고 필요에 따라 컨트롤 포인트의 개수, 위치 및 가상 수술용 골격에 대한 움직임을 상이하게 정의할 수 있다.Specifically, Table 1 shows the virtual surgical skeleton defined at the control points (ⓐ to ⓜ). Here, the case where six control points (ie, ⓐ to ⓕ) are arranged on the upper side and seven control points (ie, ⓖ to ⓜ) is arranged on the lower side is described, but the present invention is not limited thereto. The number, location and movement of the virtual surgical skeleton can be defined differently.
표 1
컨트롤 포인트 가상 수술용 골격의 움직임 정의
상악측 상악골 전체
상악골 제1 절개부분
상악골 제2 절개부분
3차원 치아모델 윗니 앞부분
3차원 치아모델 윗니 뒷부분
얼굴윤곽(윗입술)
하악측 하악골 전체
하악골 제1 절개부분
하악골 제2 절개부분
하악골 제3 절개부분
3차원 치아모델 아랫니 앞부분
3차원 치아모델 아랫니 뒷부분
얼굴윤곽(아랫입술)
Table 1
Control point Definition of movement of virtual surgical skeleton
Maxillary side Maxillary bone
Maxilla 1st incision
Maxilla 2nd incision
3D tooth model upper teeth
3D tooth model upper back
Facial Contour (Upper Lip)
Mandibular Whole mandible
Mandibular first incision
Mandibular second incision
Mandibular third incision
3D teeth model lower teeth
3D teeth model lower back
Facial Contour (Lower Lips)
먼저, 상악측의 컨트롤 포인트(즉, ⓐ 내지 ⓕ)의 정의에 대해 간략히 설명하면, 컨트롤 포인트 ⓐ는 상악골 전체(maxillar)로서 상악골 제1 절개부분, 상악골 제2 절개부분 및 3차원 치아모델의 윗니 부분을 함께 이동시킬 때 사용된다. First, the definition of the control point (ie, ⓐ to ⓕ) of the maxillary side is briefly explained. The control point ⓐ is the maxillar maxillar first incisor, the maxillary second incision, and the upper teeth of the three-dimensional tooth model. Used to move parts together.
컨트롤 포인트 ⓑ는 상악골 앞부분(maxillar anterior)의 상악골 제1 절개부분을 이동시킬 때 사용되고, 컨트롤 포인트 ⓒ는 상악골 뒷부분(maxillar posterior)의 상악골 제2 절개부분을 이동시킬 때 사용된다. Control point ⓑ is used to move the maxillary first incision of the maxillar anterior, and control point ⓒ is used to move the maxillar second incision of the maxillar posterior.
컨트롤 포인트 ⓓ는 3차원 치아모델의 첫번째 윗니(upper 1)를 이용하여 윗니 앞부분을 이동시킬 때 사용되고, 컨트롤 포인트 ⓔ는 3차원 치아모델의 여섯번째 윗니(upper 6)를 이용하여 윗니 뒷부분을 이동시킬 때 사용된다. The control point ⓓ is used to move the front part of the upper teeth using the first upper teeth of the 3D teeth model, and the control point ⓔ is used to move the back part of the upper teeth using the sixth upper teeth of the 3D teeth model. When used.
컨트롤 포인트 ⓕ는 얼굴윤곽에서 윗입술(upper lip)을 변경할 때 사용된다.The control point ⓕ is used to change the upper lip in the outline of the face.
여기서, 3차원 치아모델의 윗니 앞부분은 1번부터 3번까지의 치아를 나타내고, 윗니 뒷부분은 4번부터 7번까지의 치아를 나타낸다. 바람직하게는, 상악골 제1 절개부분은 윗니 앞부분에 해당하는 부분이고, 상악골 제2 절개부분은 윗니 뒷부분에 해당하는 부분이다.Here, the front teeth of the upper teeth of the three-dimensional teeth model represents the teeth 1 to 3, the rear teeth of the upper teeth represent the teeth 4 to 7 times. Preferably, the first incisor of the maxilla is the portion corresponding to the front of the upper teeth, and the second incision of the maxilla is the portion corresponding to the back of the upper teeth.
다음으로, 상악측 컨트롤 포인트(즉, ⓐ 내지 ⓕ)의 움직임 제어에 대해 간략히 설명하면, 컨트롤 포인트 ⓐ는 각각 별도의 컨트롤 포인트가 부여되어 있는 상악골 제1 절개부분, 상악골 제2 절개부분 및 3차원 치아모델을 동시에 움직이도록 제어한다. 즉, 컨트롤 포인트 ⓐ는 컨트롤 포인트 ⓑ 내지 ⓕ에 의해 제어되는 가상 수술용 골격의 움직임도 제어한다.Next, the motion control of the maxillary control point (ie, ⓐ to ⓕ) will be briefly described. The control point ⓐ is the maxillary first incision, the maxillary second incision, and the three-dimensional, respectively, to which a separate control point is assigned. Control the tooth model to move simultaneously. That is, the control point ⓐ also controls the movement of the virtual surgical skeleton controlled by the control points ⓑ to ⓕ.
또한, 컨트롤 포인트 ⓑ는 상악골 제1 절개부분과 함께 3차원 치아모델의 윗니 앞부분, 윗입술을 동시에 움직이도록 제어한다. 즉, 컨트롤 포인트 ⓑ는 컨트롤 포인트 ⓓ 및 ⓕ에 의해 제어되는 가상 수술용 골격의 움직임도 제어한다. In addition, the control point ⓑ controls the upper incisor and the upper lip of the three-dimensional teeth model to move simultaneously with the first incision of the maxilla. That is, the control point ⓑ also controls the movement of the virtual surgical skeleton controlled by the control points ⓓ and ⓕ.
아울러, 컨트롤 포인트 ⓒ는 상악골 제2 절개부분과 함께 3차원 치아모델의 윗니 뒷부분을 동시에 움직이도록 제어한다. 즉, 컨트롤 포인트 ⓒ는 컨트롤 포인트 ⓔ에 의해 제어되는 가상 수술용 골격의 움직임도 제어한다.In addition, the control point ⓒ controls the upper jaw portion of the three-dimensional teeth model to move simultaneously with the second maxillary incision. That is, the control point ⓒ also controls the movement of the virtual surgical skeleton controlled by the control point ⓔ.
그리고, 컨트롤 포인트 ⓓ는 3차원 치아모델에서 윗니 앞부분의 움직임을 제어하며, 컨트롤 포인트 ⓔ는 3차원 치아모델에서 윗니 뒷부분의 움직임을 제어하고, 컨트롤 포인트 ⓕ는 윗입술에 대한 움직임을 제어한다.And, the control point ⓓ controls the movement of the upper teeth in the three-dimensional teeth model, the control point ⓔ controls the movement of the upper teeth in the three-dimensional teeth model, the control point ⓕ controls the movement for the upper lip.
한편, 하악측의 컨트롤 포인트(즉, ⓖ 내지 ⓜ)의 정의에 대해 간략히 설명하면, 컨트롤 포인트 ⓖ는 하악골 전체(mandible)로서 하악골 제1 절개부분, 하악골 제2 절개부분, 하악골 제3 절개부분 및 3차원 치아모델의 아랫니 부분을 함께 이동시킬 때 사용된다.On the other hand, briefly explaining the definition of the mandible control point (that is, ⓖ to ⓜ), the control point ⓖ is the mandible as a whole mandible (mandible first mandibular portion, mandibular second incision, third mandibular incision and It is used to move the lower teeth of the 3D tooth model together.
컨트롤 포인트 ⓗ는 가상 수술을 위해 전방 분절 절골술(Anterior Segmental Osteotomy: ASO)을 통해 절개된 앞부분을 나타낸 하악골 제1 절개부분을 이동시킬 때 사용되고, 컨트롤 포인트 ⓘ는 가상 수술을 위해 이부성형술(genioplasty)을 통해 절개된 앞쪽 끝부분을 나타낸 하악골 제2 절개부분을 이동시킬 때 사용되며, 컨트롤 포인트 ⓙ는 가상 수술을 위해 절개된 가운데 부분을 나타낸 하악골 제3 절개부분을 이동시킬 때 사용된다.The control point ⓗ is used to move the first inferior mandibular incision showing the incision through anterior segmental osteotomy (ASO) for virtual surgery, and the control point ⓘ uses genoplasty for virtual surgery. It is used to move the mandibular second incision showing the anterior incision through the control point, and the control point ⓙ is used to move the mandibular third incision representing the incision center for virtual surgery.
컨트롤 포인트 ⓚ는 3차원 치아모델의 첫번째 아랫니(lower 1)를 이용하여 아랫니의 앞부분을 이동시킬 때 사용되고, 컨트롤 포인트 ⓛ는 3차원 치아모델의 여섯번째 아랫니(lower 6)를 이용하여 아랫니의 뒷부분을 이동시킬 때 사용된다.The control point ⓚ is used to move the front of the lower teeth using the first lower teeth (lower 1) of the three-dimensional teeth model, and the control point ⓛ is used to move the back of the lower teeth using the sixth lower teeth (lower 6) of the three-dimensional teeth model. Used to move.
컨트롤 포인트 ⓜ는 얼굴윤곽에서 아랫입술(lower lip)을 변경할 때 사용된다.The control point ⓜ is used to change the lower lip in the outline of the face.
다음으로, 하악측의 컨트롤 포인트(즉, ⓖ 내지 ⓜ)의 움직임 제어에 대해 간략히 설명하면, 컨트롤 포인트 ⓖ는 각각 별도의 컨트롤 포인트가 부여되어 있는 하악골 제1 절개부분, 하악골 제2 절개부분, 하악골 제3 절개부분 및 3차원 치아모델의 아랫니 부분을 동시에 움직이도록 제어한다. 즉, 컨트롤 포인트 ⓖ는 컨트롤 포인트 ⓗ 내지 ⓜ에 의해 제어되는 가상 수술용 골격의 움직임도 제어한다. Next, briefly describe the movement control of the mandible control point (that is, ⓖ to ⓜ), the control point ⓖ is a mandibular first incision, mandibular second incision, mandibular bone, each of which is given a separate control point The third incision and the lower teeth of the 3D tooth model are controlled to move simultaneously. That is, the control point ⓖ also controls the movement of the virtual surgical skeleton controlled by the control points ⓗ to ⓜ.
또한, 컨트롤 포인트 ⓗ는 하악골 제1 절개부분과 함께 3차원 치아모델의 아랫니 앞부분, 아랫입술을 동시에 움직이도록 제어한다. 즉, 컨트롤 포인트 ⓗ는 컨트롤 포인트 ⓚ 및 ⓜ에 의해 제어되는 가상 수술용 골격의 움직임도 제어한다. In addition, the control point ⓗ is controlled to simultaneously move the lower teeth of the lower teeth of the three-dimensional teeth model, the lower lip together with the first mandibular incision. That is, the control point ⓗ also controls the movement of the virtual surgical skeleton controlled by the control points and ⓜ.
아울러, 컨트롤 포인트 ⓙ는 하악골 제3 절개부분과 함께 3차원 치아모델의 아랫니 뒷부분을 동시에 움직이도록 제어한다. 즉, 컨트롤 포인트 ⓙ는 컨트롤 포인트 ⓛ에 의해 제어되는 가상 수술용 골격의 움직임도 제어한다.In addition, the control point 제어 controls the lower teeth of the three-dimensional teeth model to move simultaneously with the third mandibular incision. That is, the control point ⓙ also controls the movement of the virtual surgical skeleton controlled by the control point ⓛ.
그리고, 컨트롤 포인트 ⓘ는 하악골 제2 절개부분의 움직임을 제어하고, 컨트롤 포인트 ⓚ는 3차원 치아모델에서 아랫니 앞부분의 움직임을 제어하며, 컨트롤 포인트 ⓛ는 3차원 치아모델에서 아랫니 뒷부분의 움직임을 제어하고, 컨트롤 포인트 ⓜ는 아랫입술에 대한 움직임을 제어한다.And, the control point ⓘ controls the movement of the mandibular second incision, the control point ⓚ controls the movement of the lower teeth in the three-dimensional teeth model, the control point ⓛ controls the movement of the lower teeth in the three-dimensional teeth model , Control point ⓜ controls movement for the lower lip.
이와 같이, 트레이싱 라인부(410)는 소정의 랜드마크(M)에 따라 각각의 컨트롤 포인트(ⓐ 내지 ⓜ)를 결정하기 위한 방식을 미리 설정하고 있고, 그에 따라 사용자에 의해 모든 랜드마크(M)가 지정되면 각각의 컨트롤 포인트(ⓐ 내지 ⓜ)를 결정한다.As such, the tracing line unit 410 presets a method for determining the respective control points ⓐ to ⓜ according to the predetermined landmark M, and thus all the landmarks M by the user. If is specified, each control point (ⓐ to ⓜ) is determined.
이하, 가상 수술부(420)를 도 19 내지 도 25를 참조하여 설명한다.Hereinafter, the virtual surgical unit 420 will be described with reference to FIGS. 19 to 25.
가상 수술부(420)는 트레이싱 라인부(410)를 통해 트레이싱 라인 작업이 완료된 후, 컨트롤 포인트의 조정을 통해 이루어지는 페이퍼 서저리에 따라 가상 수술용 골격에 대한 가상 수술도 동시에 시행한다. 특히, 가상 수술부(420)는 사용자에 의해 가상 수술용 골격의 2차원 상악골 및 하악골에 대한 페이퍼 서저리가 진행되면, 가상 수술용 골격의 3차원 치아모델(401)에 대한 가상 수술 시행 결과를 실시간으로 반영한다.After the tracing line operation is completed through the tracing line unit 410, the virtual surgical unit 420 simultaneously performs virtual surgery on the virtual surgical skeleton according to the paper surgery made by adjusting the control point. In particular, the virtual surgery unit 420, when the paper surgery for the two-dimensional maxilla and the mandible of the virtual surgical skeleton proceeds by the user, the virtual surgical operation results for the three-dimensional teeth model 401 of the virtual surgical skeleton in real time To reflect.
구체적으로, 가상 수술부(420)는 상기 표 1에 나타난 컨트롤 포인트에 정의된 가상 수술용 골격의 움직임에 따라, 가상 수술용 골격에 대한 일련의 가상 수술을 수행한다(도 19 참조). 이때, 가상 수술부(420)는 사용자에 의한 페이퍼 서저리가 시행될 때, 시행 전후의 트레이싱 라인을 실시간으로 구별하여 표시한다. 도 19에서는 페이퍼 서저리 시행 전 트레이싱 라인(Before Line: BL)의 색을 적색으로 표시하고, 페이퍼 서저리 시행 후 트레이싱 라인(After Line: AL)의 색을 흰색으로 표시한다.Specifically, the virtual surgical unit 420 performs a series of virtual surgery on the virtual surgical skeleton according to the movement of the virtual surgical skeleton defined in the control points shown in Table 1 above (see FIG. 19). In this case, the virtual surgery unit 420 distinguishes and displays in real time the tracing lines before and after the trial when paper surgery is performed by the user. In FIG. 19, the color of the tracing line (Before Line: BL) is displayed in red, and the color of the tracing line (After Line: AL) is displayed in white.
먼저, 가상 수술부(420)는 사용자에 의한 상악측 컨트롤 포인트의 조정에 따라 상악골 및 3차원 치아모델(윗부분)에 대한 페이퍼 서저리 및 가상 수술을 수행한다. 이때, 가상 수술부(420)는 인터미디어트 웨이퍼를 생성할 수 있도록, 웨이퍼용 데이터 생성부(430)를 통해 3차원 이미지 데이터로서 인터미디어트 웨이퍼용 생성 데이터를 생성하도록 한다.First, the virtual surgery unit 420 performs paper surgery and virtual surgery on the maxilla and the three-dimensional teeth model (upper part) according to the adjustment of the maxillary control point by the user. In this case, the virtual surgical unit 420 may generate generated data for the intermediate wafer as three-dimensional image data through the wafer data generator 430 to generate the intermediate wafer.
이후, 가상 수술부(420)는 상악측 가상 수술 결과에 기초하여, 사용자에 의한 하악측 컨트롤 포인트의 조정에 따라 하악골 및 3차원 치아모델(아랫부분)에 대한 페이퍼 서저리 및 가상 수술을 수행한다. 이때, 가상 수술부(420)는 파이널 웨이퍼를 생성할 수 있도록, 웨이퍼용 데이터 생성부(430)를 통해 3차원 이미지 데이터로서 파이널 웨이퍼용 생성 데이터를 생성하도록 한다.Thereafter, the virtual surgery unit 420 performs paper surgery and virtual surgery on the mandible and the 3D tooth model (lower part) according to the adjustment of the mandibular control point by the user based on the maxillary virtual surgery result. In this case, the virtual surgical unit 420 may generate the final wafer generated data as three-dimensional image data through the wafer data generator 430 to generate the final wafer.
이와 같이, 가상 수술부(420)는 사용자에 의한 페이퍼 서저리의 진행에 따라 3차원 치아모델(401a,401b)에 대한 가상 수술도 동시에 진행한다(도 20 참조). 이는 페이퍼 서저리와 가상 수술을 순차적으로 수행하는 일반적인 방식에 비해 가상 수술에 대한 진단/예측/계획 수립/웨이퍼 제작 등을 빠르게 수행하게 한다. 특히, 가상 수술부(420)는 사용자에 의한 페이퍼 서저리 이후에, 곧바로 웨이퍼용 데이터 생성부(430)를 통해 웨이퍼 제작을 위한 데이터를 생성하게 할 수 있다.As such, the virtual surgery unit 420 simultaneously performs virtual surgery on the three- dimensional teeth models 401a and 401b as the paper surgery by the user progresses (see FIG. 20). This allows for faster diagnosis, prediction, planning, and wafer fabrication of virtual surgery than paper surgery and virtual surgery. In particular, the virtual surgical unit 420 may generate data for wafer fabrication through the wafer data generator 430 immediately after the paper surgery by the user.
부가적으로, 가상 수술부(420)는 사용자에 의한 컨트롤 포인트의 조정을 통해 페이퍼 서저리를 수행하는 것과 더불어 소정의 메뉴창(402)에 가상 수술을 위한 수치가 입력됨에 따라 페이퍼 서저리를 수행할 수도 있다(도 21 참조). 도 21에서는 메뉴창(402)의 'MAX6(L)' 메뉴(403)에 4.97㎜가 입력됨에 따라 상악골 전체가 아래로 이동한 결과를 나타낸다.In addition, the virtual surgery unit 420 may perform paper surgery by adjusting a control point by a user, and perform paper surgery as a value for virtual surgery is input to a predetermined menu window 402. (See FIG. 21). FIG. 21 shows the result of the entire maxilla moving downward as 4.97 mm is input to the 'MAX6 (L)' menu 403 of the menu window 402.
또한, 가상 수술부(420)는 가상 수술 전 3차원 치아모델과 가상 수술 후 3차원 치아모델을 서로 중첩하여 표시할 수 있다. 이때, 가상 수술부(420)는 가상 수술 전후 가상 중첩 데이터의 2차원 치아이미지상에서 서로 동일한 위치의 지점을 기준으로 가상 수술 전후의 3차원 치아모델을 중첩하여 표시한다.In addition, the virtual surgery unit 420 may display the 3D tooth model before the virtual surgery and the 3D tooth model after the virtual surgery overlap each other. At this time, the virtual surgical unit 420 displays the three-dimensional teeth model before and after the virtual surgery on the basis of the points of the same position on the two-dimensional teeth image of the virtual superimposition data before and after the virtual surgery.
구체적으로, 가상 수술부(420)는 가상 수술 전후의 가상 중첩 데이터(404a,404b)의 2차원 치아이미지상에 각각 사용자에 의해 동일한 위치(405a,405b)가 지정되면, 해당 위치의 좌표를 영점으로 이동시킨다(도 22 및 도 23 참조). 이는 해당 위치를 기준점으로 설정함으로써, 가상 수술 전후의 3차원 치아모델 각각에 대한 기준점을 동일하게 일치시키기 위함이다. 이후, 가상 수술부(420)는 해당 기준점에 기초하여 가상 수술 전 3차원 치아모델(406a)과 가상 수술 후 3차원 치아모델(406b) 각각을 동일한 화면상에 표시하여 중첩 상태를 나타낸다(도 24 참조). Specifically, the virtual surgery unit 420, if the same position (405a, 405b) is specified by the user on the two-dimensional teeth image of the virtual superimposition data (404a, 404b) before and after the virtual surgery, respectively, zero coordinates of the position (See FIGS. 22 and 23). This is to set the corresponding position as a reference point, and to equally match the reference points for each of the three-dimensional tooth models before and after the virtual surgery. Thereafter, the virtual surgical unit 420 displays an overlapping state by displaying each of the pre-virtual 3D tooth model 406a and the post-virtual 3D tooth model 406b on the same screen based on the corresponding reference point (FIG. 24). Reference).
이처럼, 가상 수술부(420)는 가상 중첩 데이터를 이용함으로써, 2차원 치아이미지로부터 수술에 의해 위치가 변하지 않는 몸속 기준점을 확인하여 기준점으로 설정한 후, 해당 기준점을 토대로 3차원 치아모델의 상호 중첩을 수행한다.As such, the virtual surgery unit 420 uses the virtual superimposition data to identify the reference point in the body that does not change position by surgery from the two-dimensional tooth image and sets it as a reference point, and then mutually overlaps the three-dimensional tooth model based on the reference point. Do this.
반면에, 수술 전후에 촬영된 X-ray 영상을 겹쳐 수술 결과를 확인하는 경우에는, 수술에 따라 위치가 변하지 않는 몸속 기준점을 쉽게 확인할 수 있으나, 3차원 치아모델에 대한 수술 결과를 확인할 수 없다. 아울러, 수술 전후에 촬영된 CT 영상을 겹쳐 수술 결과를 확인하는 경우에는, 3차원 치아모델의 수술 전후 결과를 각각 확인할 수 있으나, CT 영상을 촬영해야 하는 번거로움과 통상적으로 몸속 내부의 지점을 기준점으로 설정하므로 상호 중첩을 위한 기준점을 설정하기 어렵다.On the other hand, in the case of confirming the surgical result by superimposing the X-ray image taken before and after the operation, it is easy to check the reference point in the body does not change the position according to the operation, but the surgical results for the three-dimensional teeth model can not be confirmed. In addition, in the case of confirming the surgical results by superimposing the CT images taken before and after the surgery, the results before and after the operation of the three-dimensional teeth model, respectively, can be confirmed, but the hassle of having to take the CT image and usually the point inside the body Since it is set to, it is difficult to set a reference point for mutual overlap.
동기화 처리부(421)는 환자 두상의 측면에 대한 가상 수술과 더불어 정면에 대한 가상 수술을 시행할 필요가 있는 경우에, 측면 가상 수술용 골격(407a,408a)과 정면 가상 수술용 골격(407b,408b)을 서로 동일하게 유지하여 동기화한다(도 25 참조). 이를 위해, 정면 가상 수술용 골격(407b,408b)도 전술한 측면 가상 수술용 골격(407a,408a)과 마찬가지로 트레이싱 라인부(410)에 의한 트레이싱 라인 작업이 수행되어 형성된다. 이에 대한 자세한 설명은 트레이싱 라인부(410)에 의한 측면 가상 수술용 골격(407a,408a)의 트레이싱 라인 작업을 통해 쉽게 이해할 수 있으므로 생략하기로 한다.When the synchronization processor 421 needs to perform a virtual surgery on the front side as well as a virtual surgery on the side of the head of the patient, the side virtual surgery skeletons 407a and 408a and the front virtual surgery skeletons 407b and 408b. ) Are kept identical to each other and synchronized (see FIG. 25). To this end, the front virtual surgical skeleton (407b, 408b) is also formed by the tracing line operation by the tracing line unit 410 similar to the above-described side virtual surgical skeleton (407a, 408a). A detailed description thereof will be omitted since it can be easily understood through the tracing line operation of the lateral virtual surgical skeleton 407a and 408a by the tracing line unit 410.
이때, 측면 및 정면 가상 수술용 골격(407a,407b,408a,408b)에는, 트레이싱 라인 작업을 통해 공통 랜드마크가 지정된다. 즉, 이러한 공통 랜드마크는 측면과 정면에서 바라볼 때 동일한 위치에 존재하는 지점을 나타낸다. 일례로, 3차원 치아모델의 첫번째 윗니와 여섯번째 윗니는 측면과 정면에서 바라볼 때 동일한 위치에 해당하는 랜드마크로 표시될 수 있으며, 마찬가지로, 3차원 치아모델의 첫번째 아랫니와 여섯번째 아랫니는 측면과 정면에서 바라볼 때 동일한 위치에 해당하는 랜드마크로 표시될 수 있다.At this time, common landmarks are assigned to the side and front virtual surgical skeletons 407a, 407b, 408a, and 408b through tracing line operations. In other words, these common landmarks represent points that exist at the same location when viewed from the side and front. For example, the first and sixth upper teeth of the three-dimensional teeth model may be marked with landmarks corresponding to the same position when viewed from the side and front, and likewise, the first and sixth lower teeth of the three-dimensional teeth model When viewed from the front, it may be displayed as a landmark corresponding to the same position.
이에 따라, 동기화 처리부(421)는 측면 가상 수술용 골격(407a,408a)에 대해 페이지 서저리를 수행할 때 공통 랜드마크의 위치 변화에 따라, 해당 공통 랜드마크의 위치 변화를 정면 가상 수술용 골격(407b,408b)에 반영하여 처리한다. 일례로, 동기화 처리부(421)는 측면 가상 수술용 골격(407a,408a)에서 공통 랜드마크가 상하로 위치를 변하면, 정면 가상 수술용 골격(407b,408b)에 대해 상하 위치 변화를 반영한다.Accordingly, when the page processing is performed on the side virtual surgical skeletons 407a and 408a, the synchronization processor 421 may change the position of the common landmark according to the position change of the common landmark. 407b, 408b). For example, the synchronization processor 421 may reflect the vertical position change with respect to the front virtual surgical skeleton 407b and 408b when the common landmark is changed up and down in the side virtual surgical skeleton 407a and 408a.
이로써, 동기화 처리부(421)는 사용자에 의해 정면 가상 수술용 골격(407b,408b)에 대한 페이지 서저리가 직접적으로 이루어지지 않더라도, 정면 가상 수술용 골격(407b,408b)을 확인할 때 측면 가상 수술용 골격(407a,408a)에 대한 페이지 서저리 결과를 반영하여 나타낸다.As a result, the synchronization processor 421 checks the lateral virtual surgical skeleton 407b and 408b even when the page surgery for the front virtual surgical skeleton 407b and 408b is not directly made by the user. The results of the page surge for 407a and 408a are reflected.
마찬가지로, 동기화 처리부(421)는 정면 가상 수술용 골격(407b,408b)에 대해 페이지 서저리를 수행할 때 공통 랜드마크의 위치 변화에 따라, 해당 공통 랜드마크의 위치 변화를 측면 가상 수술용 골격(407a,408a)에 반영하여 처리한다.Similarly, when the page processing is performed on the front virtual surgical skeletons 407b and 408b, the synchronization processor 421 changes the position of the common landmark in accordance with the position change of the common landmark. And 408a).
즉, 동기화 처리부(421)는 측면과 정면 각각에 대해 개별적인 수술 계획을 수립할 필요없이 측면과 정면의 수술 결과를 서로 반영시켜 동기화된 수술 계획을 확인할 수 있게 한다.That is, the synchronization processing unit 421 may check the synchronized surgical plan by reflecting the surgical results of the side and the front without having to establish a separate surgical plan for each of the side and the front.
웨이퍼용 데이터 생성부(430)는 가상 수술부(420)에 의해 상악측 가상 수술이 완료된 후, 가상 수술부(420)의 요청에 따라 인터미디어트 웨이퍼용 생성 데이터를 생성한다. 일례로, 웨이퍼용 데이터 생성부(430)는 인터미디어트 웨이퍼용 생성 데이터를 다음과 같이 생성한다. 즉, 웨이퍼용 데이터 생성부(430)는 상악측 가상 수술 후에 3차원 치아모델에서 상악 및 하악의 치아 사이에 웨이퍼 제작을 위한 박스영역을 설정하고, 박스영역에 포함된 데이터를 이용하여 3차원 고속 적층 조형법에 의한 RP 모델(Rapid Prototyping model)인 인터미디어트 웨이퍼용 생성 데이터를 생성한다. 이때, 웨이퍼용 데이터 생성부(430)는 인터미디어트 웨이퍼용 생성 데이터를 웨이퍼 제작부(431)로 전송하여 실물 인터미디어트 웨이퍼를 제작하게 할 수 있다.After the maxillary virtual surgery is completed by the virtual surgery unit 420, the wafer data generator 430 generates generated data for the intermediate wafer at the request of the virtual surgery unit 420. In one example, the wafer data generator 430 generates the generated data for the intermediate wafer as follows. That is, the wafer data generation unit 430 sets a box area for manufacturing the wafer between the maxillary and the mandibular teeth in the 3D tooth model after the maxillary virtual surgery, and uses the data included in the box area to 3D high speed. Generated data for an intermediate wafer, which is a RP model (Rapid Prototyping model) by a layer forming method, is generated. In this case, the wafer data generation unit 430 may transmit the generated data for the intermediate wafer to the wafer fabrication unit 431 to fabricate the actual intermediate wafer.
또한, 웨이퍼용 데이터 생성부(430)는 가상 수술부(420)에 의해 하악측 가상 수술이 완료된 후, 가상 수술부(420)의 요청에 따라 파이널 웨이퍼용 생성 데이터를 생성한다. 마찬가지로, 웨이퍼용 데이터 생성부(430)는 파이널 웨이퍼용 생성 데이터를 다음과 같이 생성한다. 즉, 웨이퍼용 데이터 생성부(430)는 하악측 가상 수술 후에 3차원 치아모델에서 상악 및 하악의 치아 사이에 웨이퍼 제작을 위한 박스영역을 설정하고, 박스영역에 포함된 데이터를 이용하여 3차원 고속 적층 조형법에 의한 RP 모델인 파이널 웨이퍼용 생성 데이터를 생성한다. 이때, 웨이퍼용 데이터 생성부(430)는 파이널 웨이퍼용 생성 데이터를 웨이퍼 제작부(431)로 전송하여 실물 파이널 웨이퍼를 제작하게 할 수 있다.In addition, after the mandible virtual surgery is completed by the virtual surgical unit 420, the wafer data generator 430 generates the final wafer generated data according to a request of the virtual surgical unit 420. Similarly, the wafer data generator 430 generates the final wafer generated data as follows. That is, the wafer data generation unit 430 sets a box area for manufacturing the wafer between the maxillary and the mandibular teeth in the 3D tooth model after the mandible virtual surgery, and uses the data included in the box area to 3D high speed. Generated data for the final wafer, which is an RP model by the additive molding method, is generated. In this case, the wafer data generation unit 430 may transmit the final wafer generation data to the wafer fabrication unit 431 to fabricate the actual final wafer.
웨이퍼 제작부(431)는 가상 수술장치(400)의 구성요소로서 포함되거나, 별도 독립적인 구성요소로 적용될 수 있다. 이때, 웨이퍼 제작부(431)는 일종의 3차원 고속 적층 조형기(Rapid Prototyping system)와 같은 3차원 프린터 기능을 구비한다. 이때, 웨이퍼 제작부(431)는 웨이퍼용 데이터 생성부(430)로부터 인터미디어트 웨이퍼용 생성 데이터가 전달되면 인터미디어트 웨이퍼를 말발굽 형태의 실물로 다듬어 제작하며, 웨이퍼용 데이터 생성부(430)로부터 파이널 웨이퍼용 생성 데이터가 전달되면 파이널 웨이퍼를 말발굽 형태의 실물로 다듬어 제작한다.The wafer fabrication unit 431 may be included as a component of the virtual surgical apparatus 400 or may be applied as a separate independent component. In this case, the wafer fabrication unit 431 has a 3D printer function such as a kind of 3D rapid prototyping system. At this time, the wafer fabrication unit 431, when the generated data for the intermediate wafer is transferred from the wafer data generator 430, the wafer fabricator 431 trims the intermediate wafer into a horseshoe shape, and then, from the wafer data generator 430, When the production data for the final wafer is delivered, the final wafer is polished into a horseshoe-shaped object.
도 26은 본 발명에 따른 치과 치료용 가상 수술 방법에 대한 흐름도이다.26 is a flowchart illustrating a virtual surgical method for dental treatment according to the present invention.
먼저, 트레이싱 라인부(410)는 가상 중첩 데이터에 대해 사용자에 의해 지정된 랜드마크를 이용하여 트레이싱 라인 작업을 수행한다(S501). 이로써, 트레이싱 라인부(410)는 트레이싱 라인 작업을 통해 가상 수술용 골격을 형성한다. 이때, 트레이싱 라인부(410)는 기 설정된 방식에 따라 랜드마크를 이용하여 컨트롤 포인트를 형성한다(S502).First, the tracing line unit 410 performs a tracing line operation using a landmark designated by a user with respect to the virtual overlapping data (S501). As such, the tracing line unit 410 forms a virtual surgical skeleton through tracing line work. In this case, the tracing line unit 410 forms a control point using a landmark according to a preset method (S502).
이후, 가상 수술부(420)는 가상 수술용 골격에 대해 사용자에 의한 페이퍼 서저리가 수행됨에 따른 가상 수술을 동시에 진행한다(S503). 특히, 가상 수술부(420)는 2차원 가상 수술용 골격에 대한 페이퍼 서저리 결과로 3차원 가상 수술용 골격 즉, 3차원 치아모델의 가상 수술 결과를 나타낸다.Thereafter, the virtual surgical unit 420 simultaneously performs virtual surgery according to paper surgery performed by the user on the virtual surgical skeleton (S503). In particular, the virtual surgical unit 420 represents a virtual surgical result of a three-dimensional virtual surgical skeleton, that is, a three-dimensional dental model as a result of paper surgery on the two-dimensional virtual surgical skeleton.
도 27은 본 발명에 따른 웨이퍼 제작 방법에 대한 흐름도이다.27 is a flowchart illustrating a wafer manufacturing method according to the present invention.
트레이싱 라인부(410)는 가상 중첩 데이터에 대한 트레이싱 라인 작업을 통해 상악측 가상 수술용 골격 및 하악측 가상 수술용 골격에 대한 컨트롤 포인트를 형성한다(S510). 이에 대한 자세한 설명은 상기 도 17에서 전술한 바와 같으므로 생략하기로 한다.The tracing line unit 410 forms control points for the maxillary virtual surgical skeleton and the mandibular virtual surgical skeleton through tracing line operations on the virtual overlapping data (S510). Detailed description thereof is as described above with reference to FIG. 17 and will be omitted.
이후, 가상 수술부(420)는 상악측 가상 수술용 골격에 대해 페이퍼 서저리가 수행됨에 따른 가상 수술 결과를 나타낸다(S511). 이때, 웨이퍼용 데이터 생성부(430)는 인터미디어트 웨이퍼용 생성 데이터를 생성 및 저장한다(S512). 이후, 웨이퍼 제작부(431)는 인터미디어트 웨이퍼용 생성 데이터를 이용하여 실물로 인터미디어트 웨이퍼를 제작한다(S513).Thereafter, the virtual surgical unit 420 shows a virtual surgical result as paper surgery is performed on the maxillary virtual surgical skeleton (S511). At this time, the wafer data generation unit 430 generates and stores the generated data for the intermediate wafer (S512). Thereafter, the wafer fabrication unit 431 actually fabricates the intermediate wafer using the generated data for the intermediate wafer (S513).
아울러, 가상 수술부(420)는 상악측 가상 수술 결과에 기초하여, 하악측 가상 수술용 골격에 대해 페이퍼 서저리가 수행됨에 따른 가상 수술 결과를 나타낸다(S514). 이때, 웨이퍼용 데이터 생성부(430)는 파이널 웨이퍼용 생성 데이터를 생성 및 저장한다(S515). 이후, 웨이퍼 제작부(431)는 파이널 웨이퍼용 생성 데이터를 이용하여 실물로 파이널 웨이퍼를 제작한다(S516). In addition, the virtual surgery unit 420 shows a virtual surgery result of paper surgery performed on the mandible virtual surgery skeleton based on the maxillary virtual surgery result (S514). At this time, the wafer data generator 430 generates and stores the final wafer generated data (S515). Thereafter, the wafer fabrication unit 431 actually manufactures the final wafer using the final wafer generated data (S516).
다만, 웨이퍼 제작부(431)는 인터미디어트 웨이퍼의 경우에, 웨이퍼용 데이터 생성부(430)에 의해 인터미디어트 웨이퍼용 생성 데이터가 생성된 후(S505), 곧바로 인터미디어트 웨이퍼를 제작하지 않고, 파이널 웨이퍼의 제작시에 함께 제작될 수도 있다.However, in the case of the intermediate wafer, the wafer fabrication unit 431 does not produce the intermediate wafer immediately after the generated data for the intermediate wafer is generated by the wafer data generation unit 430 (S505). In addition, the final wafer may be manufactured at the time of manufacture.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments, and the present invention is not limited to the spirit of the present invention. Various changes and modifications will be possible by those who have the same.
본 발명은 가상 중첩 데이터에서 랜드마크의 지정에 따른 트레이싱 라인과 컨트롤 포인트를 형성하고, 사용자에 의한 컨트롤 포인트의 조정에 따른 페이퍼 서저리와 동시에 가상 수술용 골격에 대한 가상 수술을 수행하여 웨이퍼를 제작할 수 있는 기술에 관한 것으로, 치과 치료용 가상 수술장치 및 웨이퍼 제작에 이용될 수 있다.According to the present invention, a wafer may be manufactured by forming a tracing line and a control point according to a landmark designation in virtual overlapping data, and performing virtual surgery on a virtual surgical skeleton simultaneously with paper surgery according to adjustment of a control point by a user. The present invention relates to a virtual surgical device and wafer fabrication for dental treatment.

Claims (23)

  1. 가상 수술장치로서,As a virtual surgical device,
    2차원 치아이미지와 3차원 치아모델이 중첩된 가상 중첩 데이터에 대한 랜드마크 지정에 따른 트레이싱 라인 작업을 통해 적어도 하나의 가상 수술용 골격을 형성하고, 기 설정된 방식에 따라 상기 가상 수술용 골격을 제어하기 위한 다수의 컨트롤 포인트를 생성하기 위한 트레이싱 라인부; 및At least one virtual surgical skeleton is formed through a tracing line operation according to a landmark designation for virtual overlapping data in which a 2D dental image and a 3D dental model are superimposed, and the virtual surgical skeleton is controlled according to a preset method. A tracing line portion for generating a plurality of control points for And
    상기 컨트롤 포인트의 조정에 따른 페이퍼 서저리 결과로 상기 가상 수술용 골격에 대한 가상 수술을 진행하기 위한 가상 수술부; A virtual surgery unit for performing virtual surgery on the virtual surgical skeleton as a result of paper surgery according to the adjustment of the control point;
    를 포함하는 치과 치료용 가상 수술장치.Dental surgery virtual surgical device comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 트레이싱 라인부는, 트레싱 라인 작업을 통해 측면 가상 수술용 골격 및 정면 가상 수술용 골격에 공통 랜드마크를 지정하며,The tracing line unit assigns a common landmark to the lateral virtual surgical skeleton and the front virtual surgical skeleton through a tracing line operation,
    상기 측면 가상 수술용 골격 및 상기 정면 가상 수술용 골격에 대한 페이퍼 서저리시에 공통 랜드마크의 위치변화에 따라, 페이퍼 서저리에 따른 가상 수술 결과를 서로 동일하게 유지하여 동기화시키기 위한 동기화 처리부를 더 포함하는 치과 치료용 가상 수술장치.The apparatus may further include a synchronization processor configured to maintain and synchronize the virtual surgical results according to the paper surgery according to the positional change of the common landmark in the paper surgery for the side virtual surgery skeleton and the front virtual surgery skeleton. Virtual surgical device for dental treatment.
  3. 제 1 항에 있어서, 상기 가상 수술부에 의한 상악측 가상 수술 결과에 따라 인터미디어트 웨이퍼용 생성 데이터를 생성하고, 상악측 가상 수술 결과에 기초하여 상기 가상 수술부에 의한 하악측 가상 수술 결과에 따라 파이널 웨이퍼용 생성 데이터를 생성하기 위한 웨이퍼용 데이터 생성부를 더 포함하는 치과 치료용 가상 수술장치.The method of claim 1, wherein the generated data for the intermediate wafer is generated according to the maxillary virtual surgical result by the virtual surgical unit, and based on the maxillary virtual surgical result, The virtual surgical apparatus for dental treatment further comprising a wafer data generator for generating the final data generated for the wafer.
  4. 제 3 항에 있어서, 상기 인터미디어트 웨이퍼용 생성 데이터를 이용하여 실물로 다듬어진 인터미디어트 웨이퍼를 생성하고, 상기 파이널 웨이퍼용 생성 데이터를 이용하여 실물로 다듬어진 파이널 웨이퍼를 생성하기 위한 웨이퍼 제작부를 더 포함하는 치과 치료용 가상 수술장치.4. The wafer fabrication apparatus of claim 3, wherein an intermediate wafer is generated using the generated data for the intermediate wafer, and a final wafer is used to generate the final wafer, which is trimmed using the generated data for the final wafer. The virtual surgical device for dental treatment further comprising.
  5. 제 1 항에 있어서, 상기 트레이싱 라인부는, 상기 랜드마크에 기초하여 컨트롤 포인트별로 기 설정된 방식에 따라 위치를 결정한 후 상기 다수의 컨트롤 포인트를 표시하는 것을 특징으로 하는 치과 치료용 가상 수술장치.The virtual surgical apparatus of claim 1, wherein the tracing line unit displays the plurality of control points after determining a location according to a preset method for each control point based on the landmark.
  6. 제 5 항에 있어서, 상기 다수의 컨트롤 포인트는 사용자 조작에 따라 움직이는 가상 수술용 골격이 정의되는 것을 특징으로 하는 치과 치료용 가상 수술장치.The virtual surgical apparatus of claim 5, wherein the plurality of control points are defined by a virtual surgical skeleton moving according to a user's manipulation.
  7. 제 1 항에 있어서, 상기 가상 수술부는, 사용자에 의한 페이퍼 서저리가 시행될 때, 시행 전후의 트레이싱 라인을 실시간으로 구별하여 표시하는 것을 특징으로 하는 치과 치료용 가상 수술장치.The virtual surgery apparatus of claim 1, wherein the virtual surgery unit distinguishes and displays in real time the tracing lines before and after the trial when paper surgery is performed by a user.
  8. 제 1 항에 있어서, 상기 가상 수술부는, 소정의 메뉴창에 가상 수술을 위한 수치가 입력됨에 따라 상기 가상 수술용 골격에 대한 페이퍼 서저리를 수행하는 것을 특징으로 하는 치과 치료용 가상 수술장치.The virtual surgery apparatus of claim 1, wherein the virtual surgery unit performs paper surgery on the virtual surgical skeleton as a value for virtual surgery is input to a predetermined menu window.
  9. 제 1 항에 있어서, 상기 가상 수술부는, 가상 수술 전후 가상 중첩 데이터의 2차원 치아이미지상에서 서로 동일한 위치의 지점을 기준으로 가상 수술 전후의 3차원 치아모델을 중첩하여 표시하는 것을 특징으로 하는 치과 치료용 가상 수술장치.The dental treatment of claim 1, wherein the virtual surgery unit displays the three-dimensional dental models before and after the virtual surgery by overlapping and displaying the three-dimensional dental models before and after the virtual surgery on the two-dimensional teeth image of the virtual superimposition data before and after the virtual surgery. Virtual surgical device.
  10. 제 1 항에 있어서, The method of claim 1,
    상기 가상 중첩 데이터는, 가상 중첩 장치에 의해 생성되며, The virtual overlapping data is generated by a virtual overlapping device,
    상기 가상 중첩 장치는,The virtual overlap device,
    상기 2차원 치아이미지의 촬영방향에 따라 상기 3차원 치아모델을 오버레이하여 로딩하기 위한 데이터 로딩부;A data loading unit for overlaying and loading the 3D tooth model according to the photographing direction of the 2D tooth image;
    상기 2차원 치아이미지 및 상기 3차원 치아모델 상에 사용자에 의해 각각 선택된 참조점을 이용하여 경사각도 및 길이를 측정하기 위한 수치 측정부; 및A numerical measuring unit for measuring an inclination angle and a length by using reference points respectively selected by the user on the two-dimensional tooth image and the three-dimensional tooth model; And
    상기 2차원 치아이미지의 경사각도에 따라 상기 3차원 치아모델의 경사각도를 조정하고, 상기 3차원 방사선이미지의 길이에 따라 상기 2차원 치아이미지의 크기 및 위치를 조정하여 중첩하기 위한 가상 중첩부; A virtual superimposition unit for adjusting the inclination angle of the three-dimensional teeth model according to the inclination angle of the two-dimensional teeth image and adjusting and overlapping the size and position of the two-dimensional teeth image according to the length of the three-dimensional radiographic image;
    를 포함하는 치과 치료용 가상 수술장치.Dental surgery virtual surgical device comprising a.
  11. 제 10 항에 있어서, 상기 가상 수술용 골격은, 상악골, 하악골, 얼굴 윤곽 및 3차원 치아모델 중 어느 하나인 것을 특징으로 하는 치과 치료용 가상 수술장치.The virtual surgical apparatus of claim 10, wherein the virtual surgical skeleton is any one of a maxilla, a mandible, a facial contour, and a three-dimensional tooth model.
  12. 제 10 항에 있어서, 상기 랜드마크는, 페이퍼 서저리를 위해 상기 2차원 치아이미지에 대한 계측, 진단 및 치료 계획 수립을 위해 필요한 다수의 특징점인 것을 특징으로 하는 치과 치료용 가상 수술장치.The virtual surgical apparatus of claim 10, wherein the landmarks are a plurality of feature points necessary for measuring, diagnosing, and establishing a treatment plan for the two-dimensional dental image for paper surgery.
  13. 치과 치료용 가상 수술방법을 실행하기 위하여 컴퓨터에 의해 판독 가능하고 상기 컴퓨터에 의해 실행 가능한 명령의 프로그램을 실체적으로 구현하는 프로그램 저장장치로서, 상기 방법은, A program storage device for tangibly embodying a program of instructions readable by a computer and executable by a computer to execute a virtual surgical method for dental treatment, the method comprising:
    2차원 치아이미지와 3차원 치아모델이 중첩된 가상 중첩 데이터를 형성하는 단계;Forming virtual superimposition data in which the two-dimensional teeth image and the three-dimensional teeth model overlap;
    상기 가상 중첩 데이터에 대한 랜드마크 지정에 따른 트레이싱 라인 작업을 통해 적어도 하나의 가상 수술용 골격을 형성하는 단계;Forming at least one virtual surgical skeleton through a tracing line operation according to a landmark designation for the virtual overlapping data;
    기 설정된 방식에 따라 상기 가상 수술용 골격 각각을 제어하기 위한 다수의 컨트롤 포인트를 생성하는 단계; 및Generating a plurality of control points for controlling each of the virtual surgical skeletons according to a preset manner; And
    상기 컨트롤 포인트가 조정됨에 따른 페이퍼 서저리 결과로 상기 가상 수술용 골격에 대한 가상 수술을 동시에 진행하는 단계;Simultaneously performing virtual surgery on the virtual surgical skeleton as a result of paper surgery as the control point is adjusted;
    를 포함하는 프로그램 저장장치.Program storage device comprising a.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 가상 수술용 골격을 형성하는 단계는, 트레싱 라인 작업을 통해 측면 가상 수술용 골격 및 정면 가상 수술용 골격에 공통 랜드마크를 지정하는 것을 특징으로 하며,Forming the virtual surgical skeleton, characterized in that for assigning a common landmark to the lateral virtual surgical skeleton and the front virtual surgical skeleton through the trekking line operation,
    상기 가상 수술을 동시에 진행하는 단계는, 상기 측면 가상 수술용 골격 및 상기 정면 가상 수술용 골격에 대한 페이퍼 서저리 시에 공통 랜드마크의 위치 변화에 따라, 페이퍼 서저리에 따른 가상 수술 결과를 서로 동일하게 유지하여 동기화하는 단계를 더 포함하는 프로그램 저장장치. Simultaneously performing the virtual surgery, the virtual surgical results according to the paper surgery to maintain the same according to the change in the position of the common landmark at the time of paper surgery for the side virtual surgical skeleton and the front virtual surgical skeleton Program storage device further comprising the step of synchronizing.
  15. 제 13 항에 있어서, 상기 다수의 컨트롤 포인트를 생성하는 단계는, 상기 랜드마크에 기초하여 컨트롤 포인트별로 기 설정된 방식에 따라 위치를 결정한 후에 상기 다수의 컨트롤 포인트를 표시하는 프로그램 저장장치. The program storage device of claim 13, wherein the generating of the plurality of control points comprises displaying the plurality of control points after determining a location according to a preset method for each control point based on the landmark.
  16. 제 15 항에 있어서, 상기 다수의 컨트롤 포인트는, 사용자 조작에 따라 움직이는 가상 수술용 골격이 정의되는 프로그램 저장장치. The program storage device of claim 15, wherein the plurality of control points define a virtual surgical skeleton moving according to user manipulation.
  17. 제 13 항에 있어서, 상기 가상 수술을 동시에 진행하는 단계는, 사용자에 의한 페이퍼 서저리가 시행될 때, 시행 전후의 트레이싱 라인을 실시간으로 구별하여 표시하는 것을 특징으로 하는 치과 치료용 가상 수술 방법.The method of claim 13, wherein the step of simultaneously performing the virtual surgery, when the paper surgery by the user is performed, distinguishing and displaying the tracing line before and after the real-time virtual surgery method for dental treatment.
  18. 제 13 항에 있어서, 상기 가상 수술을 동시에 진행하는 단계는, 소정의 메뉴창에 가상 수술을 위한 수치가 입력됨에 따라 상기 가상 수술용 골격에 대한 페이퍼 서저리를 수행하는 프로그램 저장장치. The program storage device of claim 13, wherein the simultaneously performing the virtual surgery comprises performing paper surgery on the skeleton for the virtual surgery as the numerical value for the virtual surgery is input to a predetermined menu window.
  19. 제 13 항에 있어서, 상기 가상 수술을 동시에 진행하는 단계는, 가상 수술 전후 가상 중첩 데이터의 2차원 치아이미지상에서 서로 동일한 위치의 지점을 기준으로 가상 수술 전후의 3차원 치아모델을 중첩하여 표시하는 프로그램 저장장치. 15. The method of claim 13, wherein the step of simultaneously performing the virtual surgery, a program for superimposing the three-dimensional teeth model before and after the virtual surgery based on the point of the same position on the two-dimensional teeth image of the virtual superimposition data before and after the virtual surgery Storage.
  20. 제 13 항에 있어서,The method of claim 13,
    상기 가상 중첩 데이터를 형성하는 단계는, Forming the virtual overlapping data,
    상기 2차원 치아이미지의 촬영방향에 따라 상기 3차원 치아모델을 로딩하는 로딩 단계; 및A loading step of loading the three-dimensional tooth model according to the photographing direction of the two-dimensional tooth image; And
    상기 2차원 치아이미지 및 상기 3차원 치아모델 상에 사용자에 의해 각각 선택된 참조점을 이용하여, 상기 2차원 치아이미지 및 상기 3차원 치아모델에 대한 경사각도, 크기 및 위치를 조정하여 중첩하는 가상 중첩 단계를 포함하는 프로그램 저장장치. Virtual overlapping by adjusting the tilt angle, size and position of the two-dimensional dental image and the three-dimensional dental model by using reference points selected by the user on the two-dimensional dental image and the three-dimensional dental model, respectively. Program storage comprising the steps.
  21. 웨이퍼 제작방법으로서,As a wafer manufacturing method,
    2차원 치아이미지와 3차원 치아모델이 중첩된 가상 중첩 데이터를 형성하는 중첩 단계;An overlapping step of forming virtual overlapping data in which the two-dimensional teeth image and the three-dimensional teeth model overlap;
    상기 가상 중첩 데이터에 대한 랜드마크 지정에 따른 트레이싱 라인 작업을 통해 적어도 하나의 가상 수술용 골격을 형성하는 형성 단계;Forming at least one virtual surgical skeleton through a tracing line operation according to a landmark designation for the virtual overlapping data;
    기 설정된 방식에 따라 상기 가상 수술용 골격 각각을 제어하기 위한 다수의 컨트롤 포인트를 생성하는 생성 단계;Generating a plurality of control points for controlling each of the virtual surgical skeletons according to a preset method;
    상기 가상 수술용 골격의 상악측에 대한 페이퍼 서저리에 의한 가상 수술을 진행함에 따라, 인터미디어트 웨이퍼용 생성 데이터를 생성하는 인터미디어트 데이터 생성 단계; 및An intermediate data generation step of generating generated data for an intermediate wafer as the virtual surgery is performed by paper surgery on the maxillary side of the virtual surgical skeleton; And
    상기 가상 수술용 골격의 상악측에 대한 가상 수술 결과에 기초하여 상기 가상 수술용 골격의 하악측에 대한 페이퍼 서저리에 의한 가상 수술을 진행함에 따라, 파이널 웨이퍼용 생성 데이터를 생성하는 파이널 데이터 생성 단계;A final data generation step of generating generated data for a final wafer as the virtual surgery is performed by paper surgery on the mandible side of the virtual surgery skeleton based on the virtual surgery result of the maxillary side of the virtual surgery skeleton;
    를 포함하는 웨이퍼 제작방법.Wafer manufacturing method comprising a.
  22. 제 21 항에 있어서, 상기 인터미디어트 데이터 생성 단계는, 상기 인터미디어트 웨이퍼용 생성 데이터를 이용하여 실물로 다듬어진 인터미디어트 웨이퍼를 제작하는 단계를 포함하는 웨이퍼 제작 방법.22. The method of claim 21, wherein generating the intermediate data comprises fabricating a physically polished intermediate wafer using the generated data for the intermediate wafer.
  23. 제 21 항에 있어서, 상기 파이널 데이터 생성 단계는, 상기 파이널 웨이퍼용 생성 데이터를 이용하여 실물로 다듬어진 파이널 웨이퍼를 제작하는 단계를 포함하는 웨이퍼 제작방법.22. The method of claim 21, wherein the final data generation step comprises fabricating a final wafer that is physically trimmed using the final data generated for the final wafer.
PCT/KR2011/009975 2010-12-23 2011-12-22 Virtual surgical apparatus for dental treatment and method for manufacturing a wafer using same WO2012087043A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100133538A KR101316892B1 (en) 2010-06-10 2010-12-23 Imaginary operation apparatus and method thereof for dental treatment, and method for making a wafer using the same
KR10-2010-0133538 2010-12-23

Publications (2)

Publication Number Publication Date
WO2012087043A2 true WO2012087043A2 (en) 2012-06-28
WO2012087043A3 WO2012087043A3 (en) 2012-09-07

Family

ID=46318756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009975 WO2012087043A2 (en) 2010-12-23 2011-12-22 Virtual surgical apparatus for dental treatment and method for manufacturing a wafer using same

Country Status (1)

Country Link
WO (1) WO2012087043A2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070190481A1 (en) * 2006-02-15 2007-08-16 Dental Implant Technologies, Inc. Method For Making A Virtual Computer Model of the Jaws
US20080057466A1 (en) * 1998-01-14 2008-03-06 3M Innovative Properties Company Methods for use in dental articulation
KR100940997B1 (en) * 2008-12-11 2010-02-05 이양구 Method of fabricating the orthognathic surgical wafer by the 3-dimensional scanning of the dental cast with base
KR100954552B1 (en) * 2008-04-01 2010-04-23 이태경 Digitized Articulating Method and Digital Articulator
US7792341B2 (en) * 2004-06-25 2010-09-07 Medicim N.V. Method for deriving a treatment plan for orthognatic surgery and devices therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080057466A1 (en) * 1998-01-14 2008-03-06 3M Innovative Properties Company Methods for use in dental articulation
US7792341B2 (en) * 2004-06-25 2010-09-07 Medicim N.V. Method for deriving a treatment plan for orthognatic surgery and devices therefor
US20070190481A1 (en) * 2006-02-15 2007-08-16 Dental Implant Technologies, Inc. Method For Making A Virtual Computer Model of the Jaws
KR100954552B1 (en) * 2008-04-01 2010-04-23 이태경 Digitized Articulating Method and Digital Articulator
KR100940997B1 (en) * 2008-12-11 2010-02-05 이양구 Method of fabricating the orthognathic surgical wafer by the 3-dimensional scanning of the dental cast with base

Also Published As

Publication number Publication date
WO2012087043A3 (en) 2012-09-07

Similar Documents

Publication Publication Date Title
KR101316892B1 (en) Imaginary operation apparatus and method thereof for dental treatment, and method for making a wafer using the same
WO2018143497A1 (en) Implant surgery guiding method
EP1441641B1 (en) Method and apparatus for fabricating orthognathic surgical splints
WO2019212228A1 (en) Three-dimensional oral model analysis method and prosthesis design method including same
Uechi et al. A novel method for the 3-dimensional simulation of orthognathic surgery by using a multimodal image-fusion technique
US7245753B2 (en) Method for determining dental alignment using radiographs
WO2016003255A2 (en) Patient-specific orthodontic trial procedure, simulation using same, and method for manufacturing orthodontic device or orthodontic procedure guiding device
EP2775956B1 (en) Method for producing a dental element or aid for adjusting the teeth
WO2018066764A1 (en) System and method for generating images for implant evaluation
JP2002528215A (en) Tooth image processing method and system
JP2010533008A (en) Synchronous view of video data and 3D model data
WO2018066765A1 (en) Mobile apparatus-linked implant evaluation system
WO2018066763A1 (en) System and method for generating images for implant evaluation
WO2017171295A1 (en) Augmented reality system in which estimation of jaw movement of patient is reflected and augmented reality providing method therefor
KR20100105461A (en) A device for scanning the dental model images with a articulator
JP2018516708A (en) Maxillofacial surgery image calibration design system and method
KR20100092753A (en) Method for manufacturing surgical wafer
WO2022191575A1 (en) Simulation device and method based on face image matching
WO2023013805A1 (en) Method for deriving head measurement parameters for tooth correction diagnosis based on machine learning from three-dimensional cbct image captured at natural head position
TW202014162A (en) A method of transferring an occlusal relationship to an articulator with no need of a facebow and an occlusal relationship transfer module
WO2019124846A1 (en) Dental implant surgery guide device, and system and method for manufacturing dental implant surgery guide device
WO2012087043A2 (en) Virtual surgical apparatus for dental treatment and method for manufacturing a wafer using same
WO2020185015A1 (en) Method of processing three-dimensional scan data for manufacture of dental prosthesis
WO2020060350A1 (en) Bone elongation device for three-dimensional customizable bone elongation, manufacturing method thereof, recording medium, and device for manufacturing fully customizable bone elongation device
WO2019124845A1 (en) Image generation system and method for implant diagnosis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851226

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851226

Country of ref document: EP

Kind code of ref document: A2