WO2012086656A1 - Resin substrate having a hard coat film and production method of resin substrate with a hard coat film - Google Patents

Resin substrate having a hard coat film and production method of resin substrate with a hard coat film Download PDF

Info

Publication number
WO2012086656A1
WO2012086656A1 PCT/JP2011/079554 JP2011079554W WO2012086656A1 WO 2012086656 A1 WO2012086656 A1 WO 2012086656A1 JP 2011079554 W JP2011079554 W JP 2011079554W WO 2012086656 A1 WO2012086656 A1 WO 2012086656A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
group
organopolysiloxane
resin substrate
primer layer
Prior art date
Application number
PCT/JP2011/079554
Other languages
French (fr)
Japanese (ja)
Inventor
澁谷 崇
今日子 山本
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012549839A priority Critical patent/JPWO2012086656A1/en
Publication of WO2012086656A1 publication Critical patent/WO2012086656A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Definitions

  • the present invention relates to a resin substrate having a hard coat film and a method for producing a resin substrate having a hard coat film.
  • a film is formed on the surface of the transparent resin plate using various hard coat agents, particularly silicone hard coat agents.
  • various hard coat agents particularly silicone hard coat agents.
  • an adhesive layer such as a primer layer.
  • a technique for further enhancing the adhesion effect by performing surface treatment such as corona treatment on the surface of such an adhesive layer has been reported (for example, see Patent Document 1).
  • the transparent resin plate provided with such a conventional hard coat layer has problems of weather resistance such as generation of cracks and deterioration of adhesion after long-term use.
  • weather resistance means that yellowing, coating film cracking, and peeling do not occur when used outdoors for a long period of time. Therefore, the evaluation requires a long time of several years to more than 10 years. Therefore, in general, weather resistance is evaluated by an accelerated weather resistance test in which ultraviolet rays, temperature and humidity environments are artificially set.
  • a hard coat layer that can impart sufficient scratch resistance, weather resistance, etc. for a long period of time to the transparent resin plate is provided without adhesion deterioration even in an environment where ultraviolet irradiation and high humidity are repeated. Development of a resin substrate is demanded.
  • the present invention has been made to meet the above-mentioned demand, and in a resin substrate having a hard coat film in which a silicone-based hard coat layer is provided on a resin substrate via a primer layer, it has excellent scratch resistance and acceleration.
  • Hard coat film with excellent weather resistance such as adhesion after weathering test (hereinafter also referred to as “weather resistance”) and cracking after accelerated weathering test (hereinafter also referred to as “weather cracking”) It aims at providing the resin substrate which has, and its manufacturing method.
  • a primer layer-forming composition containing an acrylic polymer as a main component is applied onto at least one surface of a resin substrate and dried.
  • the resin substrate having a hard coat film mainly comprises a primer layer containing an acrylic polymer as a main component and a cured product of organopolysiloxane on at least one surface of the resin substrate.
  • a resin substrate having a hard coat film having a hard coat layer as a component in order from the resin substrate side, and a corona discharge treatment and a silane coupling agent treatment are sequentially applied to the hard coat layer side surface of the primer layer. It is characterized by being given.
  • the “hard coat film” refers to a multi-layered film including a hard coat layer formed on a resin substrate. That is, in the present invention, the entire film having the primer layer and the hard coat layer is referred to as “hard coat film”.
  • the method for producing a resin substrate having a hard coat film of the present invention it is possible to obtain a resin substrate having a hard coat film having excellent scratch resistance and weather resistance such as weather adhesion and weather cracking. .
  • the resin substrate having the hard coat film of the present invention is excellent in scratch resistance and weather resistance such as weather adhesion and weather crack resistance.
  • the resin substrate having the hard coat film of the present invention has a hard coat layer joined by a primer layer on at least one surface of the resin substrate, and a corona discharge treatment is performed on the hard coat layer side surface of the primer layer. And silane coupling agent treatment.
  • ⁇ Resin substrate> As the resin constituting the resin substrate used in the present invention, polycarbonate resin, polystyrene resin, aromatic polyester resin, acrylic resin, polyester resin, polyarylate resin, polycondensate of halogenated bisphenol A and ethylene glycol, acrylic Thermoplastic resins such as urethane resins and halogenated aryl group-containing acrylic resins can be mentioned.
  • polycarbonate resins such as aromatic polycarbonate resins
  • acrylic resins such as polymethyl methacrylate acrylic resins
  • polycarbonate resins are more preferable.
  • aromatic polycarbonate resins are more preferable, and bisphenol A polycarbonate resins are particularly preferable.
  • the resin substrate may be a single-layered substrate containing two or more kinds of thermoplastic resins as described above, or may be a laminated substrate in which two or more layers are laminated using these resin substrates. Good.
  • the shape of the resin substrate is not particularly limited, and may be a flat plate or curved.
  • An example of the curved resin substrate is a three-dimensional molded body made by injection molding.
  • the color tone of the resin substrate is preferably colorless and transparent or colored and transparent.
  • a primer layer is provided on at least one surface of the resin substrate.
  • This primer layer is formed by applying and drying a composition (primer layer forming composition) containing an acrylic polymer as a main component on at least one surface of the resin substrate.
  • Primer layer forming composition (1) Acrylic polymer
  • the acrylic polymer that is the main component of the primer layer forming composition is, for example, a homopolymer or copolymer (copolymer) having at least one monomer having a methacrylic group (methacrylic acid ester) as a polymerization unit. Polymer).
  • methacrylic acid ester a methacrylic acid alkyl ester having an alkyl group having 6 or less carbon atoms is preferable.
  • methyl methacrylate hereinafter sometimes referred to as “MMA”
  • n-butyl methacrylate n-butyl methacrylate
  • tert-methacrylic acid tert -Butyl tert-methacrylic acid tert -Butyl
  • ethyl methacrylate and isobutyl methacrylate are preferred.
  • the acrylic polymer includes homopolymers having methyl methacrylate, tert-butyl methacrylate, and ethyl methacrylate as monomer units, that is, polymethyl methacrylate, polytert-butyl methacrylate, polymethacrylic acid.
  • a copolymer of ethyl or methyl methacrylate and at least one selected from the group consisting of n-butyl methacrylate, ethyl methacrylate, and isobutyl methacrylate is preferably used.
  • the monomer unit of the acrylic polymer is particularly preferably methyl methacrylate, and a homopolymer or copolymer containing at least 90 mol% or more of polymerized units based on this methyl methacrylate is particularly preferably used as the acrylic polymer.
  • the acrylic polymer preferably has a mass average molecular weight Mw of 20,000 or more, more preferably 50,000 or more, from the viewpoint of sufficiently exhibiting adhesion and strength performance as a primer layer. .
  • the acrylic polymer preferably has a mass average molecular weight Mw of 1 million or less. When the mass average molecular weight Mw is less than 20,000 or exceeds 1 million, the adhesion and strength performance as the primer layer may not be sufficiently exhibited.
  • the mass average molecular weight Mw of the acrylic polymer is a value measured by using gel permeation chromatography with polystyrene as a standard substance.
  • acrylic polymers are also commercially available.
  • these commercially available products for example, Dianal LR269 (trade name, manufactured by Mitsubishi Rayon Co., Ltd., polymethyl methacrylate (PMMA), mass average molecular weight: 100 , 2,000), LR248 (trade name, manufactured by Mitsubishi Rayon Co., Ltd., polymethyl methacrylate (PMMA), mass average molecular weight: 155,000), and the like, which are commercially available as solutions previously dissolved in an appropriate solvent. Can be used.
  • Dianal BR80 (trade name, manufactured by Mitsubishi Rayon Co., Ltd., polymethyl methacrylate (PMMA), mass average molecular weight: 90,000)
  • Dianal BR88 (trade name, manufactured by Mitsubishi Rayon Co., Ltd., polymethyl methacrylate (PMMA))
  • M-4003 (trade name, manufactured by Negami Kogyo Co., Ltd., polymethyl methacrylate (PMMA), mass average molecular weight: 700,000-1,300,000), etc.
  • the polymer can be used by dissolving in a suitable solvent. Furthermore, it is also possible to use a mixture of two or more of these acrylic polymers.
  • the content of the acrylic polymer in the primer layer forming composition is preferably 50% by mass to 98% by mass, and more preferably 70% by mass to 95% by mass. If the content is less than 50% by mass, the adhesion between the primer layer and the resin substrate is lowered, and peeling may occur. Moreover, when it exceeds 98 mass%, there exists a possibility that it may become difficult to fully improve the adhesiveness with respect to the hard-coat layer of a primer layer.
  • the primer layer forming composition containing an acrylic polymer as a main component contains 50% or more of an acrylic polymer with respect to the total amount of each component of the primer layer forming composition excluding the solvent. It shows that. Note that “to” indicating the numerical range described above is used to mean that the numerical values described before and after that are used as the lower limit value and the upper limit value, unless otherwise specified. Are used with similar meanings.
  • the primer layer forming composition further includes additives such as an ultraviolet absorber, a light stabilizer, a leveling agent, an antifoaming agent, and a viscosity modifier. You may include in the range which does not inhibit an effect.
  • the primer layer forming composition contains an ultraviolet absorber.
  • an ultraviolet absorber the thing similar to the ultraviolet absorber contained in the composition for hard-coat layer formation mentioned later can be used. These may use 1 type and may use 2 or more types together.
  • the content of the ultraviolet absorber in the primer layer is preferably 1 part by mass to 50 parts by mass, and particularly preferably 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the acrylic polymer.
  • the light stabilizer examples include hindered amines or nickel complexes such as nickel bis (octylphenyl) sulfide, nickel complex-3,5-di-tert-butyl-4-hydroxybenzyl phosphate monoethylate, nickel dibutyldithiocarbamate. . These may be used individually by 1 type and may use 2 or more types together.
  • the content of the light stabilizer in the primer layer is preferably 0.01 to 50 parts by mass, and preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the acrylic polymer. Particularly preferred.
  • the primer layer forming composition usually contains a solvent.
  • the solvent is not particularly limited as long as (1) the solvent can stably dissolve the acrylic polymer.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethers such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane; esters such as ethyl acetate, butyl acetate and methoxyethyl acetate Methanol; ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methoxyethanol, diacetone alcohol, 2-butoxyethanol, 1-methoxy-2- Examples include alcohols such as propanol and diacetone alcohol; hydrocarbons such as n-hexane, n-heptane, isoctane, benzene, toluen
  • the amount of the solvent is preferably 50 parts by mass to 10000 parts by mass, more preferably 100 parts by mass to 5000 parts by mass, and 100 parts by mass to 2000 parts by mass with respect to 100 parts by mass of the acrylic polymer. It is particularly preferred.
  • the content of the nonvolatile component (solid content) in the primer layer forming composition is preferably 0.5% by mass to 75% by mass with respect to the total amount of the composition, and is 1% by mass to 50% by mass. More preferably, the content is 3% by mass to 30% by mass.
  • the primer layer forming composition can be obtained by uniformly mixing the various components described above by ordinary methods.
  • the primer layer is formed by applying the composition prepared as described above onto a resin substrate and drying by heating.
  • the method for applying the primer layer forming composition onto the resin substrate is not particularly limited, and spray coating, dip coating, flow coating, spin coating, and the like are used.
  • the heating conditions for drying are not particularly limited, but are preferably 50 ° C. to 140 ° C. for 5 minutes to 3 hours.
  • the primer layer thus formed has a thickness of preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 2 ⁇ m to 8 ⁇ m.
  • the thickness of the primer layer is less than 0.5 ⁇ m, the weather resistance may be insufficient, and when it exceeds 10 ⁇ m, problems such as warping of the substrate may occur.
  • the surface modification treatment including (1) corona discharge treatment and (2) silane coupling agent treatment is performed in this order on the surface of the primer layer.
  • Corona discharge treatment is a treatment for activating the surface of the primer layer of the resin substrate disposed between the electrodes by discharging by applying a high voltage between the electrodes. Specifically, high-energy electrons and ions collide with the surface of the primer layer to generate radicals and ions, which react with surrounding ozone, oxygen, nitrogen, moisture, etc. Polar functional groups such as carboxyl groups, hydroxyl groups, cyano groups are introduced.
  • this corona discharge treatment varies depending on the distance between the electrode and the primer layer, applied voltage, moving speed, humidity, electrode type, primer layer type, etc., but in the present invention, for example, the electrode and primer layer the spacing and 1 mm ⁇ 5 mm, it is preferably subjected to the treatment discharge energy to the primer layer surface is 20W ⁇ min / m 2 ⁇ 500W ⁇ min / m 2.
  • the discharge energy is less than 20 W ⁇ min / m 2 , activation of the primer layer surface (specifically, introduction of polar functional groups such as carbonyl group, carboxyl group, hydroxyl group, cyano group, etc. on the primer layer surface) is insufficient.
  • the weather adhesion between the hard coat layer and the primer layer becomes insufficient, and there is a possibility that good weather resistance cannot be imparted to the resin substrate having the finally obtained hard coat film.
  • the discharge energy exceeds 500 W ⁇ min / m 2 , the activation of the primer layer surface becomes excessive, and the primer layer surface deteriorates, which may reduce the adhesion between the hard coat layer and the primer layer.
  • the discharge energy is more preferably 30 W ⁇ min / m 2 to 300 W ⁇ min / m 2 , and particularly preferably 40 W ⁇ min / m 2 to 200 W ⁇ min / m 2 .
  • a high frequency generating power source generator
  • a high voltage transformer and a corona discharge treatment apparatus including an electrode
  • the moving speed and the electrode width may be adjusted as appropriate. Specifically, for example, a method is used in which processing is performed under processing conditions of an interval between the electrode and the primer layer of 2 mm, power of 100 W, electrode width of 350 mm, and moving speed of 30 mm / s to 90 mm / s.
  • a substrate (resin substrate) on which a primer layer is formed is placed on a plate or belt that moves at a constant speed, and the electrode is oriented in a direction perpendicular to the moving direction of the plate or belt. Is performed by moving the plate or belt at a predetermined speed.
  • the moving speed refers to the relative speed between the substrate on which the primer layer is formed and the electrode.
  • the silane coupling agent treatment is a reactive functional group possessed by a silane coupling agent by applying a silane coupling agent to the surface of the primer layer into which a polar functional group has been introduced by the corona discharge treatment. Is reacted with a polar functional group previously introduced by corona discharge treatment. By reacting the reactive functional group of the silane coupling agent with the polar functional group, the silane coupling agent is bonded to the surface of the primer layer with a strong force.
  • the silane coupling agent used in the silane coupling agent treatment is not particularly limited as long as it has a functional group that reacts with the polar functional group introduced in the corona discharge treatment.
  • a silane coupling agent containing at least one selected from the group consisting of an epoxy group, a mercapto group, an isocyanate group, and a (meth) acryl group is preferable.
  • the (meth) acryl group in this specification means an acryl group or a methacryl group.
  • (meth) acrylate means acrylate or methacrylate
  • (meth) acrylic acid means acrylic acid or methacrylic acid.
  • silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3- (Methacrylopropyl) trimethoxysilane, 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane N-2- (aminoethyl) -3-aminopropylmethyldiethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercapto Propylmethyldimethoxysilane,
  • a silane coupling agent may be used individually by 1 type, and may use 2 or more types together.
  • silane coupling agent composition a composition prepared by dissolving the silane coupling agent in a solvent (hereinafter referred to as “silane coupling agent composition”) is applied to the surface of the primer layer subjected to corona discharge treatment and dried. Is done by.
  • the solvent used for dissolving the silane coupling agent is not particularly limited as long as it is a solvent capable of stably dissolving the silane coupling agent.
  • Examples include alcohols such as -2-propanol and diacetone alcohol; hydrocarbons such as n-hexane, n-heptane, isoctane, benzene, toluene, xylene, gasoline, light oil, and kerosene.
  • the amount of the solvent is preferably such that the non-volatile component (solid content) concentration in the silane coupling agent composition is 0.01% by mass to 20% by mass, more preferably 0.05% by mass to 5% by mass. preferable.
  • the method for applying the silane coupling agent composition to the primer layer surface is not particularly limited, and spray coating, dip coating, flow coating, spin coating, and the like are used.
  • the dip coating method is preferable from the viewpoint of processing uniformity and the like.
  • the drying conditions are not particularly limited, but are preferably about 20 minutes to 1 hour at room temperature.
  • a hard coat layer made of a cured film containing organopolysiloxane is formed on the surface of the primer layer that has been subjected to the corona discharge treatment and the treatment with the silane coupling agent as described above. Is done.
  • the hard coat layer is not particularly limited, and may be formed by applying a composition containing organopolysiloxane (a composition for forming a hard coat layer) as shown below to the surface of the primer layer and curing it by heating. preferable.
  • composition for forming hard coat layer (Organopolysiloxane)
  • organopolysiloxane contained in the hard coat layer forming composition used for forming the hard coat layer of the present invention can be used without particular limitation as long as it is a curable organopolysiloxane.
  • organopolysiloxane is composed of silicon-containing bond units called M units, D units, T units, and Q units.
  • curable organopolysiloxane is an oligomeric polymer mainly composed of T units or Q units, a polymer composed only of T units, a polymer composed only of Q units, T units and Q units.
  • polymer composed of may further contain a small amount of M units and D units.
  • the T unit has one silicon atom, one hydrogen atom or monovalent organic group bonded to the silicon atom, and an oxygen atom bonded to another silicon atom ( Or a unit having three functional groups capable of bonding to other silicon atoms).
  • the monovalent organic group bonded to the silicon atom is a monovalent organic group in which the atom bonded to the silicon atom is a carbon atom.
  • the functional group that can be bonded to another silicon atom is a hydroxyl group or a group that becomes a hydroxyl group by hydrolysis (hereinafter referred to as a hydrolyzable group).
  • the total number of oxygen atoms bonded to other silicon atoms and functional groups that can bond to other silicon atoms is three, and the number of functional groups that can bond to oxygen atoms bonded to other silicon atoms and other silicon atoms is different.
  • the T unit is classified into three types of units called T1, T2, and T3.
  • T1 has one oxygen atom bonded to another silicon atom
  • T2 has two oxygen atoms
  • T3 has three oxygen atoms.
  • an oxygen atom bonded to another silicon atom is represented by O *
  • a monovalent functional group that can be bonded to another silicon atom is represented by Z.
  • O * representing an oxygen atom bonded to another silicon atom is an oxygen atom bonded between two silicon atoms, and is an oxygen atom in a bond represented by Si—O—Si. Accordingly, one O * exists between the silicon atoms of two silicon-containing bond units. In other words, O * represents an oxygen atom shared by two silicon atoms of two silicon-containing bond units. In the chemical formula of the silicon-containing bond unit described later, it is expressed as O * is bonded to one silicon atom, but this O * is an oxygen atom shared with the silicon atom of another silicon-containing bond unit. It does not mean that the bond bond two silicon-containing bond units is represented by Si-O * -O * -Si.
  • the M unit is a unit having 3 organic groups and 1 O *
  • the D unit is a unit having 2 organic groups and 2 O * (or 1 O * and 1 Z group)
  • the Q unit is This is a unit having 0 organic group and 4 O * (or 4 O * 1 to 3 and 3 to 1 Z groups).
  • Each silicon-containing bond unit is formed from a compound (hereinafter also referred to as a monomer) that does not have an oxygen atom (O * ) bonded to another silicon atom (has only a Z group).
  • the monomer forming the T unit is hereinafter referred to as T monomer.
  • the monomers that form the M unit, the D unit, and the Q unit are referred to as the M monomer, the D monomer, and the Q monomer, respectively.
  • the monomer is represented by (R′—) a Si (—Z) 4-a .
  • a represents an integer of 0 to 3
  • R ′ represents a hydrogen atom or a monovalent organic group
  • Z represents a monovalent functional group capable of bonding to a hydroxyl group or another silicon atom.
  • the Z group is usually a hydrolyzable group.
  • R ′ is preferably in the same category as R described later.
  • the curable organopolysiloxane is obtained by a reaction in which a part of the Z group of the monomer is converted to O * .
  • the organopolysiloxane is a copolymer comprising two or more silicon-containing bond units, these copolymers are usually obtained from a mixture of the corresponding monomers.
  • the Z group of the monomer is a hydrolyzable group, the Z group is converted into a hydroxyl group by a hydrolysis reaction, and then two silicon atoms are converted by a dehydration condensation reaction between two hydroxyl groups bonded to separate silicon atoms. Bonding through an oxygen atom (O * ).
  • hydroxyl groups (or Z groups that have not been hydrolyzed) remain, and when the curable organopolysiloxane is cured, these hydroxyl groups and Z groups react and cure as described above.
  • the cured product of the curable organopolysiloxane is a three-dimensionally crosslinked polymer, and the cured product of the curable organopolysiloxane having many T units and Q units is a cured product having a high crosslinking density.
  • the Z group of the curable organopolysiloxane is converted to O * , but a part of the Z group (particularly hydroxyl group) remains and is considered to be a cured product having a hydroxyl group.
  • the curable organopolysiloxane is cured at a high temperature, it may be a cured product in which almost no hydroxyl groups remain.
  • the Z group of the monomer is a hydrolyzable group
  • examples of the Z group include an alkoxy group, a chlorine atom, an acyloxy group, and an isocyanate group.
  • a monomer in which the Z group is an alkoxy group is used as the monomer.
  • the alkoxy group is a hydrolyzable group having a relatively low reactivity as compared with a chlorine atom and the like, and in the curable organopolysiloxane obtained by using a monomer in which the Z group is an alkoxy group, it is not present together with the hydroxyl group as a Z group. Often an alkoxy group of the reaction is present.
  • the Z group of the monomer is a hydrolyzable group having a relatively high reactivity (for example, a chlorine atom)
  • most of the Z groups in the curable organopolysiloxane obtained using the monomer are hydroxyl groups. Therefore, in a normal curable organopolysiloxane, the Z group in each unit constituting it is often composed of a hydroxyl group or a hydroxyl group and an alkoxy group.
  • curable organopolysiloxanes mainly composed of T units as main silicon-containing bond units are preferably used.
  • curable organopolysiloxane is simply referred to as organopolysiloxane.
  • organopolysiloxane having T unit as a main constituent unit hereinafter also referred to as “organopolysiloxane (T)” is M unit, D unit, T unit and Q unit.
  • organopolysiloxane (T) organopolysiloxane having T unit as a main constituent unit
  • the ratio of the number of T units to the total number refers to an organopolysiloxane having a ratio of 50% to 100%.
  • the ratio of the number of T units is preferably from 70% to 100%, particularly preferably an organopolysiloxane.
  • An organopolysiloxane having a T unit ratio of 90% to 100% is used.
  • D units and Q units are preferable, and Q units are particularly preferable.
  • the ratio of the number of M units, D units, T units, and Q units in the organopolysiloxane can be calculated from the value of the peak area ratio by 29 Si-NMR.
  • the organopolysiloxane (T) preferably used in the present invention is an organopolysiloxane having T units represented by the following T1 to T3.
  • T1 R—Si (—OX) 2 (—O * —)
  • T2 R—Si (—OX) (— O * ⁇ ) 2
  • T3 R—Si (—O * ⁇ ) 3
  • R represents a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 10 carbon atoms
  • X represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • O * represents an oxygen atom connecting silicon atoms
  • R in the above chemical formula is not limited to one type, and T1, T2, and T3 may each include a plurality of types of R.
  • —OX represents a hydroxyl group or an alkoxy group.
  • -OX may be the same or different between T1 and T2.
  • the two —OX in T1 may be different.
  • one may be a hydroxyl group and the other may be an alkoxy group.
  • the alkoxy groups may be different alkoxy groups. However, as described later, usually, the two alkoxy groups are the same alkoxy group.
  • T0 The T unit having no oxygen atom (O * ) for bonding two silicon atoms and having only three —OX is hereinafter referred to as T0.
  • T0 actually corresponds to an unreacted T monomer contained in the organopolysiloxane and is not a silicon-containing bond unit. This T0 is measured in the same manner as T1 to T3 in the analysis of units of T1 to T3.
  • T0 to T3 in the organopolysiloxane can be analyzed by measuring the bonding state of silicon atoms in the organopolysiloxane by nuclear magnetic resonance analysis ( 29 Si-NMR). The ratio of the number of T0 to T3 is determined from the peak area ratio of 29 Si-NMR. -OX in the organopolysiloxane molecule can be analyzed by infrared absorption analysis. The ratio of the number of hydroxyl groups and alkoxy groups bonded to silicon atoms is determined from the peak area ratio of the infrared absorption peaks of the two.
  • the weight average molecular weight Mw, the number average molecular weight Mn, and the dispersity Mw / Mn of the organopolysiloxane are values measured by gel permeation chromatography using polystyrene as a standard substance.
  • the characteristics of such an organopolysiloxane do not refer to the characteristics of one molecule but are determined as the average characteristics of each molecule.
  • T two or more different T1, T2, and T3 may be present in each molecule.
  • two or more types of T2 with different R may exist.
  • Such organopolysiloxanes are obtained from a mixture of two or more T monomers.
  • an organopolysiloxane obtained from a mixture of two or more T monomers having different R it is considered that two or more T1, T2, and T3 having different R exist.
  • the ratio of the number of different R in the organopolysiloxane obtained from a mixture of a plurality of T monomers having different R reflects the composition ratio of the T monomer mixture having different R as a whole T unit.
  • the ratio of the number of units with different R in each of T1, T2, and T3 does not necessarily reflect the composition ratio of T monomer mixtures with different R. This is because the reactivity of the T monomer, T1, and T2 may differ depending on the difference in R even if the three —OXs in the T monomer are the same.
  • the organopolysiloxane (T) is preferably produced from at least one T monomer represented by R—Si (—OY) 3 .
  • R is the same as R described above, and Y represents an alkyl group having 1 to 6 carbon atoms.
  • Y may be a substituted alkyl group such as an alkoxy-substituted alkyl group in addition to an unsubstituted alkyl group.
  • Three Y in one molecule may be different. However, usually three Y are the same alkyl group.
  • Y is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably 1 or 2 carbon atoms. Specific examples of Y include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, a t-butyl group, and a 2-methoxyethyl group.
  • R is a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 10 carbon atoms.
  • the organic group means an organic group in which the atom bonded to the silicon atom is a carbon atom as described above.
  • Examples of the unsubstituted monovalent organic group include hydrocarbon groups such as an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, and an aralkyl group. These hydrocarbon groups include alkyl groups having 1 to 10 carbon atoms, alkenyl groups and alkynyl groups having 2 to 10 carbon atoms, cycloalkyl groups having 5 or 6 carbon atoms, aryl groups having 6 to 10 carbon atoms, and 7 carbon atoms. ⁇ 10 aralkyl groups are preferred.
  • Examples of the substituted monovalent organic group include a hydrocarbon group in which a ring hydrogen atom such as a cycloalkyl group, an aryl group, and an aralkyl group is substituted with an alkyl group, and the hydrogen atom of the hydrocarbon group is a halogen atom or a functional group And a substituted organic group substituted with a functional group-containing organic group.
  • the functional group is preferably a hydroxyl group, mercapto group, carboxyl group, epoxy group, amino group, cyano group or the like.
  • an alkyl group having a chlorine atom or a fluorine atom such as a chloroalkyl group or a polyfluoroalkyl group is preferable.
  • the functional group-containing organic group include an alkoxy group, an acyl group, an acyloxy group, an alkoxycarbonyl group, a glycidyl group, an epoxycyclohexyl group, an alkylamino group, a dialkylamino group, an arylamino group, and an N-aminoalkyl-substituted aminoalkyl group. preferable.
  • the T monomer having a substituted organic group substituted with a functional group, a functional group-containing organic group or the like includes a category of compounds called silane coupling agents.
  • substituted organic group examples include 3-chloropropyl group, 3,3,3-trifluoropropyl group, 3-mercaptopropyl group, p-mercaptomethylphenylethyl group, 3-acryloyloxypropyl group, 3-methacryloyl group.
  • a 3-aminopropyl group, a 2-cyanoethyl group and the like can be mentioned.
  • a particularly preferred monovalent organic group as R is an alkyl group having 1 to 4 carbon atoms.
  • the organopolysiloxane (T) is preferably an organopolysiloxane obtained by using a T monomer having an alkyl group having 1 to 4 carbon atoms alone or two or more thereof.
  • An organopolysiloxane obtained by using one or more T monomers having an alkyl group having 1 to 4 carbon atoms and a small amount of other T monomers as the organopolysiloxane (T) is also preferable.
  • the proportion of other T monomers is preferably 30 mol% or less, particularly preferably 15 mol% or less, based on the total amount of T monomers.
  • a T monomer having a substituted organic group substituted with a functional group, a functional group-containing organic group, or the like in a category called a silane coupling agent is preferable.
  • T monomer having an alkyl group having 1 to 4 carbon atoms include, for example, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane. Of these, methyltrimethoxysilane and ethyltrimethoxysilane are preferable.
  • T monomer having a substituted organic group examples include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3,3,3- Trifluoropropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3-acryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltri
  • R-Si (-OY) other than T monomer represented by 3 (R'-) a Si (-Z ) T monomers represented by 4-a (a 3) , for example, methyltrichlorosilane, Examples include ethyltrichlorosilane, phenyltrichlorosilane, 3-glycidoxypropyltrichlorosilane, methyltriacetoxysilane, and ethyltriacetoxysilane.
  • two R ′ may be the same or different.
  • an alkyl group having 1 to 4 carbon atoms is preferred.
  • one R ′ is an alkyl group having 1 to 4 carbon atoms and the other R ′ is a substituted organic group substituted with the functional group or a functional group-containing organic group.
  • the Z group is preferably an alkoxy group having 1 to 4 carbon atoms, an acetoxy group, or the like.
  • Examples of the D monomer include dimethyldimethoxysilane, dimethyldiethoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, phenylmethyldimethoxysilane, phenylmethyldiacetoxysilane, 3-chloropropylmethyldimethoxysilane, 3, 3, 3-trifluoropropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, 3-acryloyloxypropylmethyldimethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldilane, 3-aminopropylmethyldilane, 3-aminopropylmethyldilane. Examples include ethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and 3-
  • the four Z groups may be different but are usually the same.
  • the Z group is preferably an alkoxy group having 1 to 4 carbon atoms, and particularly preferably a methoxy group or an ethoxy group.
  • Examples of the Q monomer include tetramethoxysilane, tetraethoxysilane, tetra n-propoxy silane, tetra n-butoxy silane, tetra sec-butoxy silane, tetra t-butoxy silane, and the like.
  • the organopolysiloxane (T) used in the present invention is obtained by subjecting the above T monomer and the like to partial hydrolysis condensation. Usually, this reaction is performed by heating T monomer or the like and water in a solvent. A catalyst is preferably present in the reaction system.
  • the desired organopolysiloxane can be produced by adjusting the reaction conditions such as the type of monomer, the amount of water, the heating temperature, the type and amount of catalyst, and the reaction time. In some cases, a commercially available organopolysiloxane can be used as it is as a target organopolysiloxane, or a target organopolysiloxane can be produced using a commercially available organopolysiloxane.
  • Acid catalysts include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, nitrous acid, perchloric acid, sulfamic acid; formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, maleic acid, lactic acid, p- An organic acid such as toluenesulfonic acid may be mentioned. Of these, acetic acid is preferred.
  • solvent a hydrophilic organic solvent is preferable, and an alcohol solvent is more preferable.
  • alcohol solvents examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-ethoxyethanol, diacetone alcohol, 2-butoxyethanol and the like. It is done.
  • the reaction temperature can be reacted at room temperature when a catalyst is present. Usually, an appropriate temperature is employed from the reaction temperature of 20 ° C. to 80 ° C. according to the purpose.
  • the hydrolysis condensation reaction is a reaction in which T1 is generated from T0 (T monomer), T2 is generated from T1, and T3 is generated from T2.
  • Condensation reaction in which at least one hydrolyzable group is converted to a hydroxyl group by T0 to T1
  • the respective reaction rates of the condensation reactions generated from T2 to T3 become slower in this order. Even considering the hydrolysis reaction of the hydrolyzable group, it is considered that the peak of the abundance of each unit moves from T0 to T3 as the reaction proceeds.
  • the reaction conditions are relatively mild, the movement of the abundance peak is considered to proceed relatively orderly.
  • the organopolysiloxanes (T) used in the present invention the organopolysiloxane (a) described later has a relatively small amount of T0 and T1, and the ratio of the amounts of T2 and T3 is within a specific range. It is a high molecular weight organopolysiloxane, and such an organopolysiloxane can be produced by selecting relatively mild reaction conditions.
  • the reactivity of the above condensation reaction varies depending on R, and when R is different, the reactivity of the hydroxyl group also varies.
  • R for example, when R is an alkyl group, the smaller the number of carbon atoms in the alkyl group), the higher the reactivity of the hydroxyl group. Accordingly, it is preferable to select the T monomer in consideration of the relationship between the reactivity of the hydrolyzable group and the reactivity of the hydroxyl group.
  • the rate of hydrolysis reaction of a hydrolyzable group to a hydroxyl group varies depending on the type of hydrolyzable group, and it is preferable to consider the relationship with the rate of condensation reaction. For example, when the OX group of T2 is an alkoxy group, if the rate of the hydrolysis reaction is too slow, T2 in which the OX group is a hydroxyl group decreases. Similarly, when the rate of the hydrolysis reaction is too slow, T1 in which the OX group is a hydroxyl group decreases. For this reason, it becomes difficult to obtain a high ratio of the amount of hydroxyl groups to alkoxy groups in the organopolysiloxane.
  • the alkoxy group which is an OX group is preferably a highly reactive alkoxy group, that is, an alkoxy group having a low carbon number, and most preferably a methoxy group.
  • the reactivity of the hydrolyzable group is sufficiently high, an organopolysiloxane having a high proportion of hydroxyl groups can be obtained from an organopolysiloxane having a high proportion of hydrolyzable groups without much progress of the condensation reaction.
  • one kind of curable organopolysiloxane (T) thus obtained may be blended alone, or two or more kinds may be blended together. Is also possible.
  • the combination of organopolysiloxane (a) and organopolysiloxane (b) will be described below as a particularly preferred combination of organopolysiloxane (T) from the viewpoint of scratch resistance.
  • the curable organopolysiloxane used in the present invention is described below. It is not limited to these.
  • organopolysiloxane (a) and the organopolysiloxane (b) are not precluded from being used in the present invention alone as the organopolysiloxane (T). (Organopolysiloxane (a))
  • (T2 + T3) / (T1 + T2 + T3) is preferably in the range of 0.85 to 1.00, 0.90 or more and less than 1.00 It is more preferable that For T3 / T2, the preferred range is 2.0 to 4.0.
  • the organopolysiloxane (a) and the organopolysiloxane (b) described later can be obtained.
  • the scratch resistance of the finally obtained hard coat layer can be improved.
  • (B) / (A) in the organopolysiloxane (a) is a parameter indicating condensation reactivity. The larger this value, that is, the greater the proportion of hydroxyl groups compared to the alkoxy groups, the greater the organopolysiloxane (a).
  • a composition for forming a hard coat layer is formed by combining the organopolysiloxane (b) and the organopolysiloxane (b)
  • the curing reaction during the formation of the cured film is accelerated.
  • alkoxy groups left unreacted during the formation of the cured film may cause a decrease in scratch resistance of the finally obtained hard coat layer, and if post-curing progresses, it may cause micro cracks.
  • (B) / (A) in the organopolysiloxane (a) is 12.0 or more, preferably 16.0 or more. Note that (A) may be zero.
  • the mass average molecular weight of the organopolysiloxane (a) is 800 to 8000, preferably 1000 to 6000.
  • the organopolysiloxane (a) and the organopolysiloxane (b) are used in combination in the composition for forming a hard coat layer of the present invention.
  • the scratch resistance of the finally obtained hard coat layer can be sufficiently improved.
  • the organopolysiloxane (a) used in the hard coat layer forming composition for forming a hard coat layer having particularly excellent scratch resistance all T It is preferable that 70% by mass or more of the monomer is methyltrialkoxysilane, and preferably the alkoxy group has 1 to 4 carbon atoms. However, a small amount of T monomer other than methyltrialkoxysilane can be used in combination for the purpose of improving the adhesion, hydrophilicity, water repellency and the like.
  • a T monomer or the like is subjected to a hydrolysis condensation reaction in a solvent in the presence of an acid catalyst.
  • the water required for the hydrolysis is usually 1 equivalent to 10 equivalents, preferably 1.5 equivalents to 7 equivalents, more preferably 3 equivalents to 5 equivalents, relative to 1 equivalent of the monomer.
  • the monomer is hydrolyzed and condensed, it can also be carried out in a reaction system in which colloidal silica (described later) is present.
  • colloidal silica described later
  • the amount of the acid catalyst used is preferably from 0.1 to 50 parts by weight, particularly preferably from 1 to 20 parts by weight, based on 100 parts by weight of the monomer.
  • the solvent the alcohol solvent is preferable, and methanol, ethanol, 2-propanol, 1-butanol, and 2-butanol are particularly preferable from the viewpoint of good solubility of the resulting organopolysiloxane (a). preferable.
  • the reaction temperature is 20 ° C. to 40 ° C.
  • the reaction time is 1 hour to several days.
  • the temperature of the system does not exceed 60 ° C. It is also preferable to allow the hydrolysis reaction to proceed sufficiently under such conditions, and then to proceed the condensation reaction at 40 ° C. to 80 ° C. for 1 hour to several days in order to stabilize the resulting organopolysiloxane.
  • Organopolysiloxane (a) can also be produced from commercially available organopolysiloxane. Since the commercially available organopolysiloxane is usually an organopolysiloxane having a higher proportion of alkoxy groups than the hydroxyl group, in particular, except for the above (B) / (A), commercially available similar to the desired organopolysiloxane (a). It is preferable to produce the organopolysiloxane (a) by increasing the proportion of hydroxyl groups by hydrolysis reaction using the above organopolysiloxane.
  • organopolysiloxane examples include the following organopolysiloxane that is a partial hydrolysis-condensation product of methyltrimethoxysilane. It should be noted that “ND” is not more than a detected amount when the 29 Si-NMR peak area ratio is measured using a nuclear magnetic resonance analyzer, manufactured by JEOL Ltd., ECP400 (trade name). Shown (the same applies below).
  • the organopolysiloxane (a) When producing the organopolysiloxane (a) from the above-mentioned commercially available organopolysiloxane, it is preferable to hydrolyze the alkoxy group of the commercially available organopolysiloxane mainly in the presence of an acid catalyst. For example, 0 to 10 times (mass) of a solvent is added to a commercially available organopolysiloxane, stirred well, and then an acid aqueous solution having a concentration of about 0.1 to 70% by mass is added to form 15 ° C. Examples of the method include stirring at a temperature of ⁇ 80 ° C., preferably 20 ° C. to 70 ° C., for 1 hour to 24 hours.
  • an aqueous solvent can be used, and in addition, the above alcohol solvent to which water has been added can also be used.
  • the organopolysiloxane (b) is an organopolysiloxane having a mass average molecular weight of 1/10 to 1 / 1.5 times the mass average molecular weight of the organopolysiloxane (a).
  • the organopolysiloxane (b) is an organopolysiloxane having a mass average molecular weight smaller than that of the combined organopolysiloxane (a), and has the T1 to T3 units.
  • the ratio of the numbers of T1, T2, and T3, the ratio of T3 / T2, and the ratio of (B) / (A) are not particularly limited.
  • the mass average molecular weight of the organopolysiloxane (b) is preferably 1/8 to 1 / 1.5 times that of the combined organopolysiloxane (a).
  • the weight average molecular weight of the organopolysiloxane (b) exceeds 1 / 1.5 times the weight average molecular weight of the organopolysiloxane (a), in other words, the weight average molecular weight of the organopolysiloxane (a)
  • the mass average molecular weight of b) is less than 1.5 times, the toughness of the finally obtained hard coat layer is lowered, which causes cracks.
  • the mass average molecular weight of the organopolysiloxane (b) is less than 1/10 times the mass average molecular weight of the organopolysiloxane (a), in other words, the mass average molecular weight of the organopolysiloxane (a) is the organopolysiloxane (b).
  • the weight average molecular weight of 10 exceeds 10 times, the scratch resistance of the finally obtained hard coat layer is lowered, and there is a possibility that a hard coat layer having sufficient scratch resistance cannot be obtained.
  • a large ratio of T0 and T1 in the organopolysiloxane (b) generally indicates that the hydrolysis reaction or condensation reaction of the raw material monomer was insufficient when the organopolysiloxane was produced.
  • the composition for forming a hard coat layer containing this and the organopolysiloxane (a) is used for heat curing when forming a cured film.
  • the occurrence of cracks tends to increase.
  • the ratio of T3 of the resulting organopolysiloxane increases.
  • the composition for forming a hard coat layer containing this and the organopolysiloxane (a) is used, and at the time of thermosetting when forming a cured film, Since appropriate crosslinking reaction becomes difficult, a cured film may not be formed, and a hard coat layer having sufficient scratch resistance may not be finally obtained.
  • the organopolysiloxane (b) can be produced from a T monomer or the like in the same manner as the organopolysiloxane (a).
  • Commercially available organopolysiloxane can be used as organopolysiloxane (b) as it is.
  • Examples of commercially available organopolysiloxanes that can be used as the organopolysiloxane (b) include the following organopolysiloxanes.
  • the notation of “trace” is 0.01 or more and 0.25 when the 29 Si-NMR peak area ratio is measured using an ECP400 (trade name) manufactured by JEOL Ltd., manufactured by JEOL Ltd. Indicates the following (the same applies hereinafter).
  • T0: T1: T2: T3 trace: 21: 58: 21.
  • the ratio of the content of the organopolysiloxane (b) to the organopolysiloxane (a) is preferably 1.5 to 30 times, more preferably 2 to 15 times in terms of mass ratio. If both are contained at such a ratio, the organopolysiloxane three-dimensional crosslinked structure formed by the curing reaction is partially composed of the (a) component organopolysiloxane in the organopolysiloxane (b) -based three-dimensional crosslinked structure.
  • the scratch resistance of the finally obtained hard coat layer can be improved.
  • the composition for forming a hard coat layer used in the present invention contains the curable organopolysiloxane, preferably organopolysiloxane (T).
  • the content of the organopolysiloxane in the composition for forming a hard coat layer is preferably 50% by mass to 100% by mass with respect to the total amount of the composition components excluding the solvent (hereinafter also referred to as “nonvolatile components”). More preferably, it is from 95% by mass. The amount of this non-volatile component is measured based on the mass change after being held at 150 ° C. for 45 minutes.
  • the composition for forming a hard coat layer containing an organopolysiloxane as a main component is 50% or more of the organopolysiloxane with respect to the total amount of each component of the composition for forming a hard coat layer excluding the solvent. It shows that it contains.
  • the hard coat layer forming composition may contain various additives in addition to the organopolysiloxane.
  • various additives in addition to the organopolysiloxane.
  • silica fine particles in order to further improve the scratch resistance of the hard coat layer, it is preferable to add silica fine particles, and it is more preferable to add colloidal silica.
  • Colloidal silica refers to silica fine particles dispersed in water or an organic solvent such as methanol, ethanol, isobutanol, or propylene glycol monomethyl ether.
  • Silica fine particles can also be blended with the raw material monomer in the process of producing the organopolysiloxane.
  • organopolysiloxane By producing organopolysiloxane in a reaction system containing colloidal silica, an organopolysiloxane containing silica fine particles can be obtained.
  • a T monomer and, if necessary, water or an acid catalyst are added to colloidal silica, and the organopolysiloxane can be produced in the colloidal silica dispersion medium as described above.
  • a composition for forming a hard coat layer used in the present invention containing silica fine particles can be produced.
  • the silica fine particles used in the present invention preferably have an average particle size (BET method) of 1 nm to 100 nm. If the average particle diameter exceeds 100 nm, the particles diffusely reflect light, and thus the value of the haze value of the resulting hard coat layer increases, which may be undesirable in terms of optical quality.
  • the average particle size is more preferably 5 nm to 40 nm. This is for imparting scratch resistance to the hard coat layer and maintaining the transparency of the hard coat layer.
  • the colloidal silica may be either water-dispersed or organic solvent-dispersed, but is preferably water-dispersed. It is more preferable to use colloidal silica dispersed in an acidic aqueous solution. Colloidal silica may contain inorganic fine particles other than silica fine particles such as alumina sol, titanium sol, and ceria sol.
  • the content of the silica fine particles is preferably 1% by mass to 50% by mass, and more preferably 5% by mass to 40% by mass with respect to the total amount of the composition components (nonvolatile components) excluding the solvent. If the content of the silica fine particles is less than 1% by mass, sufficient scratch resistance may not be ensured in the obtained hard coat layer, and if the content exceeds 50% by mass, the organopolysiloxane in the nonvolatile component may not be secured.
  • the ratio becomes too low, making it difficult to form a cured film by thermal curing of the organopolysiloxane, cracks in the final hard coat layer, and aggregation of silica particles, resulting in transparency of the hard coat layer There is a risk of problems such as lowering.
  • Additives such as antifoaming agents and viscosity modifiers may be added to the hard coat layer forming composition for the purpose of improving coatability, and adhesion for improving the adhesion to the primer layer.
  • Additives such as imparting agents may be blended, and additives such as leveling agents may be blended for the purpose of improving coatability and smoothness of the resulting coating film.
  • the amount of these additives is preferably 0.01 to 2 parts by mass for each additive component with respect to 100 parts by mass of the organopolysiloxane.
  • a dye, a pigment, a filler, and the like may be blended within a range that does not impair the object of the present invention.
  • the hard coat layer forming composition may further contain a curing catalyst.
  • the curing catalyst include lithium metal salts such as aliphatic carboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, lactic acid, tartaric acid, succinic acid, etc.); alkali metal salts such as sodium salts and potassium salts; benzyltrimethylammonium salts, tetra Quaternary ammonium salts such as methylammonium salt and tetraethylammonium salt; metal alkoxides and chelates such as aluminum, titanium and cerium; ammonium perchlorate, ammonium chloride, ammonium sulfate, sodium acetate, imidazoles and their salts, trifluoromethylsulfonic acid Examples include ammonium and bis (toluomethylsulfonyl) bromomethylammonium.
  • the amount of the curing catalyst is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the organopolysiloxane.
  • the blending amount of the curing catalyst is less than 0.01 parts by mass, it is difficult to obtain a sufficient curing rate, and when it exceeds 10 parts by mass, the storage stability of the composition for forming a hard coat layer is reduced or a precipitate is formed. Sometimes.
  • an ultraviolet absorber to the hard coat layer forming composition in order to suppress yellowing of the resin substrate.
  • UV absorbers benzophenone UV absorbers, benzotriazole UV absorbers, benzimidazole UV absorbers, cyanoacrylate UV absorbers, salicylate UV absorbers, benzylidene malonate UV absorbers, triazine UV An absorbent etc. are mentioned. These ultraviolet absorbers may be used alone or in combination of two or more. Further, in order to prevent the ultraviolet absorber from bleeding out from the finally obtained hard coat layer, an ultraviolet absorber having a trialkoxysilyl group may be used.
  • the ultraviolet absorber having a trialkoxysilyl group is converted into a hydroxyl group by a hydrolysis reaction during the formation of a cured film by thermal curing of the organopolysiloxane, and then incorporated into the cured film by a dehydration condensation reaction. Bleeding out of the absorbent from the hard coat layer can be suppressed.
  • Specific examples of the trialkoxysilyl group include a trimethoxysilyl group and a triethoxysilyl group.
  • the blending amount of the ultraviolet absorber in the hard coat layer forming composition is preferably 0.1 to 50 parts by mass, and 0.1 to 30 parts by mass with respect to 100 parts by mass of the organopolysiloxane. Part is particularly preferred.
  • the pH of the composition for forming a hard coat layer is set to 3.0 to 6.0. It is preferable to adjust to 4.0 to 5.5, and it is more preferable to adjust to 4.0 to 5.5. Under conditions where the pH is 2.0 or lower or 7.0 or higher, the hydroxyl group bonded to the silicon atom is extremely unstable, and thus is not suitable for storage. Examples of the pH adjustment method include addition of an acid and adjustment of the content of the curing catalyst.
  • Acids include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, nitrous acid, perchloric acid, sulfamic acid; formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, maleic acid, lactic acid, p-toluene Organic acids such as sulfonic acids are used.
  • the composition for forming a hard coat layer is usually prepared in a form in which organopolysiloxane, which is an essential component, and various additives, which are optional components, are dissolved and dispersed in a solvent. It is important that all the non-volatile components in the hard coat layer-forming composition described above are stably dissolved or dispersed in the solvent.
  • the solvent contains at least 20% by mass of alcohol, preferably 50% by mass or more. It is preferable to contain.
  • alcohols used in such solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-methoxy-2-propanol, and 2-ethoxyethanol. , Diacetone alcohol, and 2-butoxyethanol.
  • alcohols having a boiling point of 80 ° C. to 160 ° C. are preferable from the viewpoint of good solubility of the organopolysiloxane and good coating properties.
  • ethanol 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-methoxy-2-propanol, 2-ethoxyethanol, diacetone alcohol, and 2 -Butoxyethanol is preferred.
  • the solvent used in the composition for forming a hard coat layer includes, for example, a lower alcohol generated by hydrolyzing a raw material monomer, for example, an alkyltrialkoxysilane, in the production of an organopolysiloxane, a water dispersion type
  • a raw material monomer for example, an alkyltrialkoxysilane
  • an organopolysiloxane for example, a water dispersion type
  • the dispersed organic solvent is also included.
  • a solvent other than the above may be used in combination with a solvent other than alcohol that can be mixed with water / alcohol.
  • a solvent other than alcohol examples include ketones such as acetone and acetylacetone; esters such as ethyl acetate and isobutyl acetate; ethers such as propylene glycol monomethyl ether, dipropylene glycol monomethyl ether and diisopropyl ether.
  • the amount of the solvent used in the hard coat layer forming composition is preferably 50 parts by weight to 3000 parts by weight, and more preferably 150 parts by weight to 100 parts by weight with respect to 100 parts by weight of all nonvolatile components in the hard coat layer forming composition. More preferably, it is 2000 parts by mass.
  • composition for forming a hard coat layer can be obtained by uniformly mixing the various components described above by an ordinary method.
  • the hard coat layer was prepared by applying the composition for forming a hard coat layer prepared as described above onto the primer layer subjected to the corona discharge treatment and the silane coupling agent treatment in this order. It is formed by heat-curing the coating film.
  • the method for applying the hard coat layer forming composition onto the primer layer is not particularly limited, and a normal coating method such as a spray coating method, a dip coating method, a flow coating method, or a spin coating method is used. It is preferable to appropriately adjust the viscosity, solid content concentration and the like of the composition for forming a hard coat layer according to the coating method to be used.
  • the thickness of the coating film formed by applying the hard coat layer forming composition to the surface of the primer layer is affected by the solid content concentration in the composition. It is preferable to adjust the solid content appropriately so that the film thickness after curing is within a predetermined range.
  • the film thickness of the cured film applied on the primer layer is preferably 0.1 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 10 ⁇ m, and more preferably 2 ⁇ m to 10 ⁇ m in the state after curing described below. It is particularly preferred. If the thickness of the hard coat layer is too small, it may be difficult to ensure sufficient scratch resistance and weather resistance. On the other hand, if the thickness of the hard coat layer is too large, cracks and peeling may occur easily. Therefore, in order to suppress the occurrence of cracks and peeling while ensuring sufficient scratch resistance and weather resistance, the thickness of the cured film (that is, the thickness of the hard coat layer) is 0.1 ⁇ m to 20 ⁇ m. Preferably there is. This film thickness means the thickness when a hard coat layer is formed alone on a substrate such as a resin substrate.
  • the organopolysiloxane is cured by subjecting the coating film of the hard coat layer forming composition thus formed to a heat treatment.
  • the hard coat layer forming composition is sometimes cured” means that the organopolysiloxane contained in the hard coat layer forming composition is cured. Prior to this heat treatment, a drying operation may be provided as necessary.
  • the coating film formed on the primer layer as described above is usually placed at a room temperature or under a temperature condition lower than the thermal deformation temperature of the resin substrate for a certain period of time, whereby a part or all of the solvent in the coating film is used. Is an operation to be removed.
  • the solvent drying conditions include a condition of holding at a temperature of 0 ° C. to 60 ° C. for 10 minutes to 10 hours.
  • the solvent may be removed by vacuum drying or the like while adjusting the degree of vacuum.
  • the coating film is subjected to heat treatment to form a cured film.
  • This heat treatment can be a treatment similar to the treatment usually performed to condense and cure the hard coat layer forming composition.
  • the heat treatment is performed at a high temperature within a range where there is no problem with the heat resistance of the resin substrate because curing can be completed more quickly.
  • the heating temperature is preferably 50 ° C. to 200 ° C., more preferably 80 ° C. to 160 ° C., and particularly preferably 100 ° C. to 140 ° C.
  • a heating means a natural convection type thermostat, a constant temperature drier, a hot air circulation drier, a blower drier, a method of heating with a vacuum drier, or the like is used.
  • An electric furnace or the like can also be used.
  • a heating means using an infrared lamp can be used as appropriate. These heating means may be used alone or in combination of two or more.
  • the heat treatment time is not particularly limited as long as the organopolysiloxane contained in the composition for forming a hard coat layer constituting the coating film is sufficiently condensed and cured to form a three-dimensional structure by siloxane bonds. 10 minutes to 4 hours are preferable, 20 minutes to 3 hours are more preferable, and 30 minutes to 2 hours are particularly preferable. ⁇ Topcoat layer>
  • a top coat layer whose main component is SiO 2 may be applied on the hard coat layer.
  • a technique of applying poly (perhydro) silazane on the hard coat layer and curing it, or a technique such as vapor deposition or sputtering can be used.
  • ⁇ Resin substrate having a hard coat film> In the resin substrate having the hard coat film of the present invention, since the hard coat layer is provided on the surface of the primer layer subjected to the corona discharge treatment and the silane coupling agent treatment in order, the conventional surface treatment is performed. Compared to the case where the hard coat layer is provided via a primer layer that is not provided, the weather resistance adhesion between the hard coat layer and the primer layer is improved. As a result, good scratch resistance and high weather resistance of the hard coat layer can be imparted to the resin substrate.
  • the reason why the adhesion between the primer layer and the hard coat layer is improved by the surface treatment as described above is considered as follows. That is, by performing corona discharge treatment on the primer layer, as described above, high-energy electrons and ions collide with the surface of the primer layer to generate radicals and ions, and the surrounding ozone, oxygen, nitrogen, moisture, etc. React to introduce a polar functional group such as a carbonyl group, a carboxyl group, a hydroxyl group, or a cyano group. Next, the surface of the primer layer into which the polar functional group has been introduced in this manner is treated with a silane coupling agent, so that the reactive functional group of the silane coupling agent reacts with the introduced polar functional group and chemically.
  • a polar functional group such as a carbonyl group, a carboxyl group, a hydroxyl group, or a cyano group.
  • the hydrolyzable silyl group of the silane coupling agent and the silanol group or hydrolyzable silyl group of the organopolysiloxane constituting the hard coat layer undergo a hydrolysis reaction, Dehydration condensation.
  • Any bond between the polar functional group introduced into the primer layer and the reactive functional group of the silane coupling agent, and the bond between the hydrolyzable silyl group of the silane coupling agent and the silanol group or hydrolyzable silyl group of the organopolysiloxane Is a strong bond by a covalent bond, and the bond is rarely broken by moisture. Therefore, even under high humidity conditions, the adhesion of the hard coat layer to the primer layer does not decrease.
  • Examples 1 to 6 are examples, and examples 7 and 8 are comparative examples.
  • the organopolysiloxane was analyzed by the following method.
  • Infrared absorption spectrometer (FT-IR, Thermo Fisher Scientific Co., Model: Avatar / Nicolet FT-IR360) using, Si absorption and 900cm around -1 derived from SiO-CH 3 in the vicinity of 2860Cm -1
  • the ratio of Si—OH / SiO—CH 3 was determined from the area ratio of absorption derived from —OH.
  • the measurement conditions were a polytetrafluoroethylene (PTFE) 10 mm ⁇ sample tube, a probe: T10, a resonance frequency of 79.42 MHz, a pulse width of 10 ⁇ sec, a waiting time of 20 sec, an accumulation count of 1500 times, a relaxation reagent: Cr (acac) 3 of 0. 1% by mass, external standard sample: tetramethylsilane.
  • PTFE polytetrafluoroethylene
  • T10 a resonance frequency of 79.42 MHz
  • a pulse width of 10 ⁇ sec a waiting time of 20 sec
  • an accumulation count of 1500 times a relaxation reagent: Cr (acac) 3 of 0. 1% by mass
  • external standard sample tetramethylsilane.
  • the chemical shift of 29 Si-NMR derived from each structure is as follows in the case of methyl-based organopolysiloxane.
  • (M unit to Q unit) M unit: 15 ppm to 5 ppm, D unit: ⁇ 15 ppm to ⁇ 25 ppm, T unit: -35 ppm to -75 ppm, Q unit: -90 ppm to -130 ppm.
  • T0 to T3 T0: ⁇ 40 ppm to ⁇ 41 ppm, T1: -49 ppm to -50 ppm, T2: -57 ppm to -59 ppm, T3: -66 ppm to -70 ppm.
  • PMMA Polymethyl methacrylate
  • DBR ultraviolet absorber dibenzoresorcinol
  • Mn, Mw, and Mw / Mn of polymethyl methacrylate are gel permeation chromatography (GPC, HLC-8220GPC manufactured by Tosoh Corporation, RI detection, column: TSK guard column Super HZ-L + TSKgel Super HZ 4000 + HZ 3000 + HZ 2500 + HZ 2000), eluent: THF Asked.
  • composition for forming hard coat layer [Preparation of composition for forming hard coat layer]
  • methyl silicone resin KR-500 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd .; the peak derived from the Si—OH group was not confirmed by FT-IR, but only substantially SiO—CH 3 .
  • 10 g and 1-butanol 10 g were added and stirred well.
  • Acetic acid 10 g and ion-exchanged water 10 g were added and stirred well. This solution was stirred at 40 ° C. for 1 hour to obtain an organopolysiloxane (a) composition (MSi-1).
  • This composition has a non-volatile component of 40% by mass, and the organopolysiloxane (b) contained has a bond structure mainly composed of T units (the number of T units: the total number of M units, D units, and Q units).
  • T0: T1: T2: T3 ND: 2: 54: 44.
  • the organopolysiloxane (b) there is almost no monomeric T0 form [R—Si (OH) 3 ] (R is a monovalent organic group), and the raw material methyltrimethoxysilane is an oligomeric organopolysiloxane. It was confirmed that it was almost completely converted to siloxane.
  • Mn of organopolysiloxane (b) was 400, Mw was 670, and Mw / Mn was 1.68.
  • composition (MSi-1) To 80 parts of the organopolysiloxane (a) composition (MSi-1), 20 parts of the organopolysiloxane (b) composition (PSi-1) are added and mixed uniformly. HC-1) was obtained.
  • Preparation of Silane Coupling Agent Composition [Preparation of Silane Coupling Agent Composition]
  • Preparation Example 1 3-Glycidoxypropyltrimethoxysilane was dissolved in 2-propanol to prepare a silane coupling agent composition (SiC-1) having a solid content of 0.25% by mass.
  • Preparation Example 2 3-Mercaptopropyltrimethoxysilane was dissolved in 2-propanol to prepare a silane coupling agent composition (SiC-2) having a solid content of 0.25% by mass.
  • Preparation Example 3 3-Isocyanatopropyltrimethoxysilane was dissolved in hexane to prepare a silane coupling agent composition (SiC-3) having a solid content of 0.25% by mass.
  • corona discharge treatment device generator: HV2010 manufactured by TANTEC, transformer: HT10-280IL manufactured by TANTEC, electrode: SUS wire (350 mm width)
  • HV2010 manufactured by TANTEC
  • transformer: HT10-280IL manufactured by TANTEC electrode: SUS wire (350 mm width)
  • Corona discharge treatment was performed under the condition of a moving speed of 90 mm / s. Discharge energy for the primer layer surface by this treatment was 53W ⁇ min / m 2.
  • silane coupling agent composition SiC-1 was coated on the primer layer subjected to the corona discharge treatment by a dipping method (pulling speed 10 mm / s) and dried at room temperature for 30 minutes.
  • a hard coat layer-forming composition (HC-1) was coated on the primer layer that had been subjected to corona discharge treatment and silane coupling agent treatment by a dip method, left at 25 ° C. for 20 minutes, and then 120 ° C. And cured for 1 hour to form a hard coat layer having a thickness of 3 ⁇ m, and a resin substrate sample was produced.
  • This resin substrate sample has a primer layer and a hard coat layer on both sides of a polycarbonate resin plate.
  • Example 2 Example 1 except that the primer layer thickness was 5 ⁇ m, the corona discharge treatment conditions were such that the power was 100 W, the moving speed was 30 mm / s, and the discharge energy for the primer layer surface was 159 W ⁇ min / m 2. Thus, a resin substrate sample was produced.
  • Example 3 A resin substrate sample was produced in the same manner as in Example 1 except that the silane coupling agent composition (SiC-2) was used instead of the silane coupling agent composition (SiC-1).
  • Example 4 A resin substrate sample was produced in the same manner as in Example 2 except that the silane coupling agent composition (SiC-2) was used instead of the silane coupling agent composition (SiC-1).
  • Example 5 A resin substrate sample was produced in the same manner as in Example 1 except that the silane coupling agent composition (SiC-3) was used instead of the silane coupling agent composition (SiC-1).
  • Example 6 A resin substrate sample was produced in the same manner as in Example 2 except that the silane coupling agent composition (SiC-3) was used instead of the silane coupling agent composition (SiC-1).
  • Example 7 A resin substrate sample was produced in the same manner as in Example 2 except that the corona discharge treatment and the silane coupling agent treatment were not performed.
  • Example 8 A resin substrate sample was produced in the same manner as in Example 2 except that the silane coupling agent treatment was not performed.
  • ⁇ 5> Scratch resistance In accordance with JIS K5600 (5.9), a Taber abrasion tester (manufactured by Toyo Seiki Seisakusho Co., Ltd., model ROTARY ABRASION TESTER) and a wear ring (manufactured by TABER, trade name: CALIBRASE (registered trademark) CS-10F ) fitted with a, measuring the haze after 500 revolutions under a load 500 g (haze), we obtain a difference (haze difference) [Delta] H 500 and haze before the test was evaluated. The haze was measured by the same method as in ⁇ 3> above.
  • ⁇ 6> Weather resistance Using an accelerated weather resistance tester using a metal halide lamp as a light source (trade name: KW-R5TP-A, manufactured by Daipura Wintes Co., Ltd.), the following three conditions of light irradiation, condensation, and darkness are repeated in order. After loading, the appearance and adhesion were evaluated in the same manner as in ⁇ 2> and ⁇ 4> above. The load was 50 cycles (600 hours) with light irradiation, condensation and darkness as one cycle, and a shower was performed for 10 seconds each before and after condensation.
  • -Light irradiation Irradiation is performed for 4 hours under the conditions of an illuminance of 80 mW / cm 2 (measured with an illuminance measuring device UIT-101 (model) manufactured by USHIO INC.), A black panel temperature of 63 ° C., and a relative humidity of 80%. Condensation: Without irradiating light, the black panel temperature was naturally cooled from 63 ° C. to 30 ° C. under a relative humidity of 98% and held for 4 hours. ⁇ Dark: No light is irradiated and maintained for 4 hours under conditions of a black panel temperature of 75 ° C. and a relative humidity of 90%.
  • Example 1 the samples of Examples 1 to 6 in which the primer layer was subjected to corona discharge treatment and subsequent silane coupling agent treatment had good initial appearance and hard coat film even after the accelerated weathering test. The adhesion of was maintained.
  • Example 7 where neither the corona discharge treatment nor the silane coupling agent treatment was performed, the hard coat film was completely peeled off by the accelerated weather resistance test, and only the silane coupling agent treatment was performed.
  • Example 8 the hard coat film was completely peeled off. When observed with an optical microscope and FT-IR (ATR method), it was confirmed that the hard coat film was peeled off between the primer layer and the hard coat layer.
  • the resin substrate having a hard coat film obtained according to the present invention has excellent scratch resistance and weather resistance, and is attached to a vehicle window material, a house, a building or the like that is attached to an automobile or various transportations. It is useful as a window material for building materials.

Abstract

Disclosed is a structure comprising a silicon-based hard coat layer provided on a resin substrate with a primer layer therebetween; said structure improves scratch resistance and weather resistance properties such as weather-resistant adhesion and weather crack resistance. The production method of the resin substrate with a hard coat film involves: a step for coating at least one surface of the resin substrate with a primer layer-forming composition containing an acrylic polymer as the main component and for drying said composition to form a primer layer; a step for subjecting the surface of the aforementioned primer layer to corona discharge treatment; a step for performing silane coupling agent treatment by coating the surface of the primer layer, which has been subjected to corona discharge treatment, with a silane coupling agent composition containing a silane coupling agent as the main component and drying said composition; and a step for forming a hard coat layer by coating the surface of the aforementioned primer layer, which has undergone the aforementioned corona discharge treatment and silane coupling agent treatment, with a hard coat layer-forming composition containing organopolysiloxane as a main component and curing said composition.

Description

ハードコート被膜を有する樹脂基板およびハードコート被膜を有する樹脂基板の製造方法Resin substrate having hard coat film and method for producing resin substrate having hard coat film
 本発明は、ハードコート被膜を有する樹脂基板、およびハードコート被膜を有する樹脂基板の製造方法に関する。 The present invention relates to a resin substrate having a hard coat film and a method for producing a resin substrate having a hard coat film.
 近年、自動車等の車両用の窓材や家屋、ビル等の建物に取り付けられる建材用の窓材として、これまでの無機ガラス板に代わって透明樹脂板の需要が高まっている。特に、自動車等の車両では軽量化のために、窓材に透明樹脂板を用いることが提案されており、とりわけ芳香族ポリカーボネート系の透明樹脂板は、耐破壊性、透明性、軽量性、易加工性等に優れるため、有望な車両用窓材としてその使用が検討されている。しかしながら、このような透明樹脂板は、無機ガラス板の代わりに使用するには耐擦傷性や耐候性等の点で問題があった。 In recent years, there has been an increasing demand for transparent resin plates instead of conventional inorganic glass plates as window materials for vehicles such as automobiles and window materials for building materials attached to buildings such as houses and buildings. In particular, in vehicles such as automobiles, it has been proposed to use a transparent resin plate for the window material in order to reduce the weight. In particular, an aromatic polycarbonate-based transparent resin plate is resistant to breakage, transparency, lightness, and ease. Since it is excellent in workability and the like, its use is considered as a promising vehicle window material. However, such a transparent resin plate has a problem in terms of scratch resistance and weather resistance when used in place of the inorganic glass plate.
 そこで、透明樹脂板の耐擦傷性、耐候性等を向上させる目的で、種々のハードコート剤、特にシリコーン系ハードコート剤を用いて透明樹脂板の表面に被膜(ハードコート層)を形成することが提案されている。また、その際、ハードコート層と透明樹脂板との密着性を向上させるために、プライマー層等の接着層を介在させることも提案されている。さらに、このような接着層の表面にコロナ処理等の表面処理を施すことにより、接着効果をより高める技術も報告されている(例えば、特許文献1参照。)。 Therefore, for the purpose of improving the scratch resistance, weather resistance, etc. of the transparent resin plate, a film (hard coat layer) is formed on the surface of the transparent resin plate using various hard coat agents, particularly silicone hard coat agents. Has been proposed. At that time, in order to improve the adhesion between the hard coat layer and the transparent resin plate, it has also been proposed to interpose an adhesive layer such as a primer layer. Furthermore, a technique for further enhancing the adhesion effect by performing surface treatment such as corona treatment on the surface of such an adhesive layer has been reported (for example, see Patent Document 1).
 しかしながら、このような従来のハードコート層を設けた透明樹脂板は、長期使用後のクラックの発生や密着性の低下等、耐候性の問題があった。特に、紫外線照射および高湿度を繰り返す環境下に長時間置くと、プライマー層とシリコーン系ハードコート層との間の密着性が低下し、剥離が生じ易いという問題があった。ここで、耐候性は長期間の屋外使用で黄変、塗膜のクラック、剥離が発生しないことであり、したがって、その評価には数年から10年超の長時間が必要となる。そのため、一般に、人工的に紫外線や温湿度環境等を設定した促進耐候性試験により耐候性を評価することが行われている。そこで、紫外線照射および高湿度を繰り返す環境下であっても密着性が低下することがなく、透明樹脂板に対し長期間十分な耐擦傷性や耐候性等を付与し得るハードコート層を備えた樹脂基板の開発が要望されている。 However, the transparent resin plate provided with such a conventional hard coat layer has problems of weather resistance such as generation of cracks and deterioration of adhesion after long-term use. In particular, when placed in an environment where ultraviolet irradiation and high humidity are repeated for a long time, there is a problem in that the adhesion between the primer layer and the silicone-based hard coat layer is lowered and peeling is likely to occur. Here, the weather resistance means that yellowing, coating film cracking, and peeling do not occur when used outdoors for a long period of time. Therefore, the evaluation requires a long time of several years to more than 10 years. Therefore, in general, weather resistance is evaluated by an accelerated weather resistance test in which ultraviolet rays, temperature and humidity environments are artificially set. Accordingly, a hard coat layer that can impart sufficient scratch resistance, weather resistance, etc. for a long period of time to the transparent resin plate is provided without adhesion deterioration even in an environment where ultraviolet irradiation and high humidity are repeated. Development of a resin substrate is demanded.
日本特表2005-536370号公報Japan Special Table 2005-536370 Publication
 本発明は、上記要望に応えるべくなされたものであって、シリコーン系ハードコート層がプライマー層を介して樹脂基板に設けられたハードコート被膜を有する樹脂基板において、耐擦傷性に優れるとともに、促進耐候性試験後の密着性(以下、「耐候密着性」ともいう。)、促進耐候性試験後のクラック性(以下、「耐候クラック性」ともいう。)等の耐候性に優れたハードコート被膜を有する樹脂基板およびその製造方法を提供することを目的とする。 The present invention has been made to meet the above-mentioned demand, and in a resin substrate having a hard coat film in which a silicone-based hard coat layer is provided on a resin substrate via a primer layer, it has excellent scratch resistance and acceleration. Hard coat film with excellent weather resistance such as adhesion after weathering test (hereinafter also referred to as “weather resistance”) and cracking after accelerated weathering test (hereinafter also referred to as “weather cracking”) It aims at providing the resin substrate which has, and its manufacturing method.
 本発明の一態様に係るハードコート被膜を有する樹脂基板の製造方法は、樹脂基板の少なくとも一方の面上にアクリル系ポリマーを主成分として含有するプライマー層形成用組成物を塗布し乾燥させてプライマー層を形成する工程と、前記プライマー層の表面にコロナ放電処理を施す工程と、コロナ放電処理を施したプライマー層の表面に、シランカップリング剤を主成分として含むシランカップリング剤組成物を塗布し乾燥させてシランカップリング剤処理を施す工程と、前記コロナ放電処理およびシランカップリング剤処理が施された前記プライマー層の表面に、オルガノポリシロキサンを主成分として含有するハードコート層形成用組成物を塗布し硬化させてハードコート層を形成する工程とを有することを特徴としている。 In the method for producing a resin substrate having a hard coat film according to one embodiment of the present invention, a primer layer-forming composition containing an acrylic polymer as a main component is applied onto at least one surface of a resin substrate and dried. A step of forming a layer, a step of performing a corona discharge treatment on the surface of the primer layer, and applying a silane coupling agent composition containing a silane coupling agent as a main component on the surface of the primer layer subjected to the corona discharge treatment. And a step of applying a silane coupling agent treatment by drying, and a composition for forming a hard coat layer containing organopolysiloxane as a main component on the surface of the primer layer subjected to the corona discharge treatment and the silane coupling agent treatment And a step of forming a hard coat layer by applying and curing an object.
 また、本発明の他の態様に係るハードコート被膜を有する樹脂基板は、樹脂基板の少なくとも一方の面上に、アクリル系ポリマーを主成分として含有するプライマー層と、オルガノポリシロキサンの硬化物を主成分として含むハードコート層とを、前記樹脂基板側から順に有するハードコート被膜を有する樹脂基板であって、前記プライマー層の前記ハードコート層側表面に、コロナ放電処理およびシランカップリング剤処理が順に施されていることを特徴としている。 The resin substrate having a hard coat film according to another aspect of the present invention mainly comprises a primer layer containing an acrylic polymer as a main component and a cured product of organopolysiloxane on at least one surface of the resin substrate. A resin substrate having a hard coat film having a hard coat layer as a component in order from the resin substrate side, and a corona discharge treatment and a silane coupling agent treatment are sequentially applied to the hard coat layer side surface of the primer layer. It is characterized by being given.
 本明細書において、「ハードコート被膜」とは、樹脂基板上に形成されたハードコート層を含む多層からなる被膜をいう。すなわち、本発明においては、プライマー層およびハードコート層を有する被膜全体を、「ハードコート被膜」という。 In this specification, the “hard coat film” refers to a multi-layered film including a hard coat layer formed on a resin substrate. That is, in the present invention, the entire film having the primer layer and the hard coat layer is referred to as “hard coat film”.
 本発明のハードコート被膜を有する樹脂基板の製造方法によれば、耐擦傷性に優れるとともに、耐候密着性、耐候クラック性等の耐候性にも優れるハードコート被膜を有する樹脂基板を得ることができる。また、本発明のハードコート被膜を有する樹脂基板は、耐擦傷性に優れるとともに、耐候密着性、耐候クラック性等の耐候性にも優れる。 According to the method for producing a resin substrate having a hard coat film of the present invention, it is possible to obtain a resin substrate having a hard coat film having excellent scratch resistance and weather resistance such as weather adhesion and weather cracking. . The resin substrate having the hard coat film of the present invention is excellent in scratch resistance and weather resistance such as weather adhesion and weather crack resistance.
 以下、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 本発明のハードコート被膜を有する樹脂基板は、樹脂基板の少なくとも一方の面上に、プライマー層により接合されたハードコート層を有するとともに、それらのプライマー層のハードコート層側表面に、コロナ放電処理およびシランカップリング剤処理が順に施されたものである。 The resin substrate having the hard coat film of the present invention has a hard coat layer joined by a primer layer on at least one surface of the resin substrate, and a corona discharge treatment is performed on the hard coat layer side surface of the primer layer. And silane coupling agent treatment.
<樹脂基板>
 本発明に使用される樹脂基板を構成する樹脂としては、ポリカーボネート樹脂、ポリスチレン樹脂、芳香族ポリエステル樹脂、アクリル樹脂、ポリエステル樹脂、ポリアリレート樹脂、ハロゲン化ビスフェノールAとエチレングリコールとの重縮合物、アクリルウレタン樹脂、ハロゲン化アリール基含有アクリル樹脂等の熱可塑性樹脂が挙げられる。
<Resin substrate>
As the resin constituting the resin substrate used in the present invention, polycarbonate resin, polystyrene resin, aromatic polyester resin, acrylic resin, polyester resin, polyarylate resin, polycondensate of halogenated bisphenol A and ethylene glycol, acrylic Thermoplastic resins such as urethane resins and halogenated aryl group-containing acrylic resins can be mentioned.
 これらのなかでもポリカーボネート樹脂(芳香族系ポリカーボネート樹脂等)、アクリル樹脂(ポリメチルメタクリレート系アクリル樹脂等)が好ましく、ポリカーボネート樹脂がより好ましい。さらに、ポリカーボネート樹脂のなかでも、芳香族系ポリカーボネート樹脂がより好ましく、特にビスフェノールA系ポリカーボネート樹脂が好ましい。 Among these, polycarbonate resins (such as aromatic polycarbonate resins) and acrylic resins (such as polymethyl methacrylate acrylic resins) are preferable, and polycarbonate resins are more preferable. Furthermore, among polycarbonate resins, aromatic polycarbonate resins are more preferable, and bisphenol A polycarbonate resins are particularly preferable.
 なお、樹脂基板は、上記のような熱可塑性樹脂を2種以上含む単層構造の基板であってもよいし、これらの樹脂基板を用いて2層以上積層した積層構造の基板であってもよい。また、樹脂基板の形状は、特に限定されず、平板であってもよいし、湾曲していてもよい。湾曲した樹脂基板としては、射出成型により作られる三次元成形体が挙げられる。さらに、樹脂基板の色調は無色透明または着色透明であることが好ましい。 The resin substrate may be a single-layered substrate containing two or more kinds of thermoplastic resins as described above, or may be a laminated substrate in which two or more layers are laminated using these resin substrates. Good. The shape of the resin substrate is not particularly limited, and may be a flat plate or curved. An example of the curved resin substrate is a three-dimensional molded body made by injection molding. Furthermore, the color tone of the resin substrate is preferably colorless and transparent or colored and transparent.
<プライマー層>
 本発明のハードコート被膜を有する樹脂基板においては、上記樹脂基板の少なくとも一方の面上に、プライマー層が設けられる。このプライマー層は、アクリル系ポリマーを主成分として含有する組成物(プライマー層形成用組成物)を上記樹脂基板の少なくとも一方の面上に塗布し乾燥させることによって形成される。
<Primer layer>
In the resin substrate having the hard coat film of the present invention, a primer layer is provided on at least one surface of the resin substrate. This primer layer is formed by applying and drying a composition (primer layer forming composition) containing an acrylic polymer as a main component on at least one surface of the resin substrate.
[プライマー層形成用組成物]
(1)アクリル系ポリマー
 プライマー層形成用組成物の主成分であるアクリル系ポリマーとしては、例えば、メタクリル基を有するモノマー(メタクリル酸エステル)の1種以上を重合単位とするホモポリマーまたはコポリマー(共重合体)が用いられる。
[Primer layer forming composition]
(1) Acrylic polymer The acrylic polymer that is the main component of the primer layer forming composition is, for example, a homopolymer or copolymer (copolymer) having at least one monomer having a methacrylic group (methacrylic acid ester) as a polymerization unit. Polymer).
 メタクリル酸エステルとしては、アルキル基の炭素数が6以下のメタクリル酸アルキルエステルが好ましく、なかでも、メタクリル酸メチル(以下、「MMA」と記すこともある)、メタクリル酸n-ブチル、メタクリル酸tert-ブチル、メタクリル酸エチル、メタクリル酸イソブチルが好ましい。 As the methacrylic acid ester, a methacrylic acid alkyl ester having an alkyl group having 6 or less carbon atoms is preferable. Among them, methyl methacrylate (hereinafter sometimes referred to as “MMA”), n-butyl methacrylate, tert-methacrylic acid tert -Butyl, ethyl methacrylate and isobutyl methacrylate are preferred.
 具体的には、アクリル系ポリマーとしては、メタクリル酸メチル、メタクリル酸tert-ブチル、メタクリル酸エチルをそれぞれモノマー単位とするホモポリマー、つまり、ポリメタクリル酸メチル、ポリメタクリル酸tert-ブチル、ポリメタクリル酸エチル、またはメタクリル酸メチルと、メタクリル酸n-ブチル、メタクリル酸エチル、およびメタクリル酸イソブチルからなる群から選ばれる1種以上とのコポリマー等が好ましく使用される。アクリル系ポリマーのモノマー単位としては、特に、メタクリル酸メチルが好ましく、このメタクリル酸メチルに基づく重合単位を、少なくとも90モル%以上含有するホモポリマーまたはコポリマーが、アクリル系ポリマーとして特に好ましく使用される。 Specifically, the acrylic polymer includes homopolymers having methyl methacrylate, tert-butyl methacrylate, and ethyl methacrylate as monomer units, that is, polymethyl methacrylate, polytert-butyl methacrylate, polymethacrylic acid. A copolymer of ethyl or methyl methacrylate and at least one selected from the group consisting of n-butyl methacrylate, ethyl methacrylate, and isobutyl methacrylate is preferably used. The monomer unit of the acrylic polymer is particularly preferably methyl methacrylate, and a homopolymer or copolymer containing at least 90 mol% or more of polymerized units based on this methyl methacrylate is particularly preferably used as the acrylic polymer.
 このアクリル系ポリマーは、プライマー層としての密着性や強度の性能が十分に発揮される点から、質量平均分子量Mwが20,000以上であることが好ましく、50,000以上であることがより好ましい。また、アクリル系ポリマーは、質量平均分子量Mwが百万以下であることが好ましい。質量平均分子量Mwが20,000未満であるか、または百万を超えると、プライマー層としての密着性や強度の性能が十分に発揮されないおそれがある。なお、このアクリル系ポリマーの質量平均分子量Mwは、ゲルパーミエーションクロマトグラフィー法により、ポリスチレンを標準物質として測定された値である。 The acrylic polymer preferably has a mass average molecular weight Mw of 20,000 or more, more preferably 50,000 or more, from the viewpoint of sufficiently exhibiting adhesion and strength performance as a primer layer. . The acrylic polymer preferably has a mass average molecular weight Mw of 1 million or less. When the mass average molecular weight Mw is less than 20,000 or exceeds 1 million, the adhesion and strength performance as the primer layer may not be sufficiently exhibited. The mass average molecular weight Mw of the acrylic polymer is a value measured by using gel permeation chromatography with polystyrene as a standard substance.
 このようなアクリル系ポリマーは市販もされており、本発明においては、これらの市販品、例えば、ダイヤナールLR269(商品名、三菱レイヨン社製、ポリメタクリル酸メチル(PMMA)、質量平均分子量:100,000)、LR248(商品名、三菱レイヨン社製、ポリメタクリル酸メチル(PMMA)、質量平均分子量:155,000)等のような、予め適当な溶媒に溶解した溶液として市販されているものを使用することができる。また、ダイヤナールBR80(商品名、三菱レイヨン社製、ポリメタクリル酸メチル(PMMA)、質量平均分子量:90,000)、ダイヤナールBR88(商品名、三菱レイヨン社製、ポリメタクリル酸メチル(PMMA)、質量平均分子量:430,000)、M-4003(商品名、根上工業社製、ポリメタクリル酸メチル(PMMA)、質量平均分子量:700,000-1,300,000)等のようなアクリル系ポリマーを、適当な溶媒に溶解して使用することが可能である。さらに、これらのアクリル系ポリマーの2種以上を混合して使用することも可能である。 Such acrylic polymers are also commercially available. In the present invention, these commercially available products, for example, Dianal LR269 (trade name, manufactured by Mitsubishi Rayon Co., Ltd., polymethyl methacrylate (PMMA), mass average molecular weight: 100 , 2,000), LR248 (trade name, manufactured by Mitsubishi Rayon Co., Ltd., polymethyl methacrylate (PMMA), mass average molecular weight: 155,000), and the like, which are commercially available as solutions previously dissolved in an appropriate solvent. Can be used. Further, Dianal BR80 (trade name, manufactured by Mitsubishi Rayon Co., Ltd., polymethyl methacrylate (PMMA), mass average molecular weight: 90,000), Dianal BR88 (trade name, manufactured by Mitsubishi Rayon Co., Ltd., polymethyl methacrylate (PMMA)) , Mass average molecular weight: 430,000), M-4003 (trade name, manufactured by Negami Kogyo Co., Ltd., polymethyl methacrylate (PMMA), mass average molecular weight: 700,000-1,300,000), etc. The polymer can be used by dissolving in a suitable solvent. Furthermore, it is also possible to use a mixture of two or more of these acrylic polymers.
 アクリル系ポリマーのプライマー層形成用組成物中の含有量は、50質量%~98質量%であることが好ましく、70質量%~95質量%であることがより好ましい。含有量が50質量%未満ではプライマー層と樹脂基板との密着性が低下し、剥離が発生する可能性がある。また、98質量%を越えるとプライマー層のハードコート層に対する密着性を十分に向上させることが困難になるおそれがある。
 本発明において、アクリル系ポリマーを主成分として含有するプライマー層形成用組成物とは、溶媒を除いたプライマー層形成用組成物の各成分の合量に対し、アクリル系ポリマーを50%以上含有することを示す。
 なお、上記した数値範囲を示す「~」とは、特段の定めがない限り、その前後に記載された数値を下限値及び上限値として含む意味で使用され、以下本明細書において「~」は、同様の意味をもって使用される。
The content of the acrylic polymer in the primer layer forming composition is preferably 50% by mass to 98% by mass, and more preferably 70% by mass to 95% by mass. If the content is less than 50% by mass, the adhesion between the primer layer and the resin substrate is lowered, and peeling may occur. Moreover, when it exceeds 98 mass%, there exists a possibility that it may become difficult to fully improve the adhesiveness with respect to the hard-coat layer of a primer layer.
In the present invention, the primer layer forming composition containing an acrylic polymer as a main component contains 50% or more of an acrylic polymer with respect to the total amount of each component of the primer layer forming composition excluding the solvent. It shows that.
Note that “to” indicating the numerical range described above is used to mean that the numerical values described before and after that are used as the lower limit value and the upper limit value, unless otherwise specified. Are used with similar meanings.
(2)その他の成分
 プライマー層形成用組成物には、上記アクリル系ポリマー以外に、さらに紫外線吸収剤、光安定剤、レベリング剤、消泡剤、粘性調整剤等の添加剤を、本発明の効果を阻害しない範囲で含んでもよい。
(2) Other components In addition to the acrylic polymer, the primer layer forming composition further includes additives such as an ultraviolet absorber, a light stabilizer, a leveling agent, an antifoaming agent, and a viscosity modifier. You may include in the range which does not inhibit an effect.
 樹脂基板の黄変を抑制するために、前記プライマー層形成用組成物には、紫外線吸収剤が含まれていることが好ましい。紫外線吸収剤としては、後述するハードコート層形成用組成物に含まれる紫外線吸収剤と同様のものを用いることができる。これらは1種を用いてもよく、2種以上を併用してもよい。プライマー層中の紫外線吸収剤の含有量は、アクリル系ポリマー100質量部に対して、1質量部~50質量部であることが好ましく、1質量部~30質量部であることが特に好ましい。 In order to suppress yellowing of the resin substrate, it is preferable that the primer layer forming composition contains an ultraviolet absorber. As an ultraviolet absorber, the thing similar to the ultraviolet absorber contained in the composition for hard-coat layer formation mentioned later can be used. These may use 1 type and may use 2 or more types together. The content of the ultraviolet absorber in the primer layer is preferably 1 part by mass to 50 parts by mass, and particularly preferably 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the acrylic polymer.
 光安定剤としては、ヒンダードアミン類、またはニッケルビス(オクチルフェニル)サルファイド、ニッケルコンプレクス-3,5-ジ-tert-ブチル-4-ヒドロキシベンジルリン酸モノエチラート、ニッケルジブチルジチオカーバメート等のニッケル錯体が挙げられる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。プライマー層中の光安定剤の含有量は、アクリル系ポリマー100質量部に対して、0.01質量部~50質量部であることが好ましく、0.1質量部~10質量部であることが特に好ましい。 Examples of the light stabilizer include hindered amines or nickel complexes such as nickel bis (octylphenyl) sulfide, nickel complex-3,5-di-tert-butyl-4-hydroxybenzyl phosphate monoethylate, nickel dibutyldithiocarbamate. . These may be used individually by 1 type and may use 2 or more types together. The content of the light stabilizer in the primer layer is preferably 0.01 to 50 parts by mass, and preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the acrylic polymer. Particularly preferred.
 また、プライマー層形成用組成物には、通常、溶媒が含まれる。溶媒としては、(1)アクリル系ポリマーを安定に溶解することが可能な溶媒であれば、特に限定されない。具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン等のエーテル類;酢酸エチル、酢酸ブチル、酢酸メトキシエチル等のエステル類;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メトキシエタノール、ジアセトンアルコール、2-ブトキシエタノール、1-メトキシ-2-プロパノール、ジアセトンアルコール等のアルコール類;n-ヘキサン、n-ヘプタン、イソクタン、ベンゼン、トルエン、キシレン、ガソリン、軽油、灯油等の炭化水素類;アセトニトリル、ニトロメタン、水等が挙げられる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。溶媒は、好ましくは、酢酸n-ブチル、1-メトキシ-2-プロパノール、ジアセトンアルコールから選ばれる少なくとも1種である。 Further, the primer layer forming composition usually contains a solvent. The solvent is not particularly limited as long as (1) the solvent can stably dissolve the acrylic polymer. Specifically, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethers such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane; esters such as ethyl acetate, butyl acetate and methoxyethyl acetate Methanol; ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methoxyethanol, diacetone alcohol, 2-butoxyethanol, 1-methoxy-2- Examples include alcohols such as propanol and diacetone alcohol; hydrocarbons such as n-hexane, n-heptane, isoctane, benzene, toluene, xylene, gasoline, light oil, and kerosene; acetonitrile, nitromethane, and water. These may be used individually by 1 type and may use 2 or more types together. The solvent is preferably at least one selected from n-butyl acetate, 1-methoxy-2-propanol, and diacetone alcohol.
 溶媒の量は、アクリル系ポリマー100質量部に対して、50質量部~10000質量部であることが好ましく、100質量部~5000質量部であることがより好ましく、100質量部~2000質量部であることが特に好ましい。なお、プライマー層形成用組成物中の不揮発成分(固形分)の含有量は、組成物全量に対して0.5質量%~75質量%であることが好ましく、1質量%~50質量%であることがより好ましく、3質量%~30質量%であることが特に好ましい。 The amount of the solvent is preferably 50 parts by mass to 10000 parts by mass, more preferably 100 parts by mass to 5000 parts by mass, and 100 parts by mass to 2000 parts by mass with respect to 100 parts by mass of the acrylic polymer. It is particularly preferred. The content of the nonvolatile component (solid content) in the primer layer forming composition is preferably 0.5% by mass to 75% by mass with respect to the total amount of the composition, and is 1% by mass to 50% by mass. More preferably, the content is 3% by mass to 30% by mass.
 プライマー層形成用組成物は、以上説明した各種成分を通常の方法で、均一に混合することにより得られる。 The primer layer forming composition can be obtained by uniformly mixing the various components described above by ordinary methods.
[プライマー層の形成]
 プライマー層は、上記のようにして調製した組成物を、樹脂基板上に塗布し、加熱乾燥することにより形成される。プライマー層形成用組成物を樹脂基板上に塗布する方法としては、特に限定されないが、スプレーコート法、ディップコート法、フローコート法、スピンコート法等が使用される。また、乾燥のための加熱条件は、特に限定されないが、50℃~140℃で5分~3時間であることが好ましい。
[Formation of primer layer]
The primer layer is formed by applying the composition prepared as described above onto a resin substrate and drying by heating. The method for applying the primer layer forming composition onto the resin substrate is not particularly limited, and spray coating, dip coating, flow coating, spin coating, and the like are used. The heating conditions for drying are not particularly limited, but are preferably 50 ° C. to 140 ° C. for 5 minutes to 3 hours.
 このようして形成されるプライマー層は、厚さが0.5μm~10μmであることが好ましく、2μm~8μmであることがより好ましい。プライマー層の厚さが0.5μm未満であると、耐候性が不足することがあり、10μmを超えると、基板の反り等の不具合が発生することがある。 The primer layer thus formed has a thickness of preferably 0.5 μm to 10 μm, and more preferably 2 μm to 8 μm. When the thickness of the primer layer is less than 0.5 μm, the weather resistance may be insufficient, and when it exceeds 10 μm, problems such as warping of the substrate may occur.
[プライマー層の表面処理]
 本発明のハードコート被膜を有する樹脂基板においては、プライマー層の表面に対し、(1)コロナ放電処理および(2)シランカップリング剤処理からなる表面改質処理が、この順でなされる。
[Surface treatment of primer layer]
In the resin substrate having the hard coat film of the present invention, the surface modification treatment including (1) corona discharge treatment and (2) silane coupling agent treatment is performed in this order on the surface of the primer layer.
(1)コロナ放電処理
 コロナ放電処理は、電極間に高電圧をかけて放電し、電極間に配置された樹脂基板のプライマー層の表面を活性化する処理である。具体的には、プライマー層表面に高エネルギーの電子やイオンが衝突してラジカルやイオンが生成し、これに周囲のオゾン、酸素、窒素、水分等が反応して、プライマー層表面にカルボニル基、カルボキシル基、ヒドロキシル基、シアノ基等の極性官能基が導入される。
(1) Corona discharge treatment The corona discharge treatment is a treatment for activating the surface of the primer layer of the resin substrate disposed between the electrodes by discharging by applying a high voltage between the electrodes. Specifically, high-energy electrons and ions collide with the surface of the primer layer to generate radicals and ions, which react with surrounding ozone, oxygen, nitrogen, moisture, etc. Polar functional groups such as carboxyl groups, hydroxyl groups, cyano groups are introduced.
 このコロナ放電処理による効果は、電極とプライマー層との間隔、印加電圧、移動速度、湿度、電極の種類、プライマー層の種類等によっても異なるが、本発明においては、例えば、電極とプライマー層との間隔を1mm~5mmとし、プライマー層表面に対する放電エネルギーが20W・min/m~500W・min/mとなる処理を施すことが好ましい。放電エネルギーが20W・min/m未満では、プライマー層表面の活性化(具体的には、プライマー層表面にカルボニル基、カルボキシル基、ヒドロキシル基、シアノ基等の極性官能基の導入)が不十分となり、ハードコート層とプライマー層間の耐候密着性が不十分となり、最終的に得られるハードコート被膜を有する樹脂基板に良好な耐候性を付与し得ないおそれがある。また、放電エネルギーが、500W・min/mを超えると、プライマー層表面の活性化が過剰になって、プライマー層表面が劣化することで、ハードコート層とプライマー層の密着力が低下するおそれがある。放電エネルギーは30W・min/m~300W・min/mであることがより好ましく、40W・min/m~200W・min/mであることが特に好ましい。 The effect of this corona discharge treatment varies depending on the distance between the electrode and the primer layer, applied voltage, moving speed, humidity, electrode type, primer layer type, etc., but in the present invention, for example, the electrode and primer layer the spacing and 1 mm ~ 5 mm, it is preferably subjected to the treatment discharge energy to the primer layer surface is 20W · min / m 2 ~ 500W · min / m 2. When the discharge energy is less than 20 W · min / m 2 , activation of the primer layer surface (specifically, introduction of polar functional groups such as carbonyl group, carboxyl group, hydroxyl group, cyano group, etc. on the primer layer surface) is insufficient. Thus, the weather adhesion between the hard coat layer and the primer layer becomes insufficient, and there is a possibility that good weather resistance cannot be imparted to the resin substrate having the finally obtained hard coat film. Moreover, if the discharge energy exceeds 500 W · min / m 2 , the activation of the primer layer surface becomes excessive, and the primer layer surface deteriorates, which may reduce the adhesion between the hard coat layer and the primer layer. There is. The discharge energy is more preferably 30 W · min / m 2 to 300 W · min / m 2 , and particularly preferably 40 W · min / m 2 to 200 W · min / m 2 .
 プライマー層に対し、上記のような好ましいコロナ放電処理を行うには、高周波発生電源(ジェネレータ)、高圧トランス、および電極を備えたコロナ放電処理装置を用い、電極とプライマー層との間隔、処理電力、移動速度、および電極幅を適宜調節するようにすればよい。具体的には、例えば、電極とプライマー層との間隔2mm、電力100W、電極幅350mm、移動速度30mm/s~90mm/sの処理条件で処理する方法が用いられる。ここで、コロナ放電処理は、例えば、定速で移動するプレートあるいはベルトの上にプライマー層が形成された基材(樹脂基板)を載せ、プレートあるいはベルトの移動方向に対して垂直な向きに電極を設置し、プレートあるいはベルト所定の速度で移動させることで行う。移動速度とは、プライマー層が形成された基材と電極との相対速度を言う。 In order to perform the preferable corona discharge treatment as described above on the primer layer, a high frequency generating power source (generator), a high voltage transformer, and a corona discharge treatment apparatus including an electrode are used. The moving speed and the electrode width may be adjusted as appropriate. Specifically, for example, a method is used in which processing is performed under processing conditions of an interval between the electrode and the primer layer of 2 mm, power of 100 W, electrode width of 350 mm, and moving speed of 30 mm / s to 90 mm / s. Here, in the corona discharge treatment, for example, a substrate (resin substrate) on which a primer layer is formed is placed on a plate or belt that moves at a constant speed, and the electrode is oriented in a direction perpendicular to the moving direction of the plate or belt. Is performed by moving the plate or belt at a predetermined speed. The moving speed refers to the relative speed between the substrate on which the primer layer is formed and the electrode.
(2)シランカップリング剤処理
 シランカップリング剤処理は、上記コロナ放電処理により極性官能基が導入されたプライマー層表面にシランカップリング剤を塗布して、シランカップリング剤が有する反応性官能基を予めコロナ放電処理で導入されている極性官能基と反応させるものである。シランカップリング剤の反応性官能基と極性官能基が反応することにより、シランカップリング剤がプライマー層表面に強固な力で結合される。
(2) Silane coupling agent treatment The silane coupling agent treatment is a reactive functional group possessed by a silane coupling agent by applying a silane coupling agent to the surface of the primer layer into which a polar functional group has been introduced by the corona discharge treatment. Is reacted with a polar functional group previously introduced by corona discharge treatment. By reacting the reactive functional group of the silane coupling agent with the polar functional group, the silane coupling agent is bonded to the surface of the primer layer with a strong force.
 このシランカップリング剤処理に用いられるシランカップリング剤は、コロナ放電処理で導入された極性官能基と反応する官能基を有するものであれば、特に制限なく使用される。エポキシ基、メルカプト基、イソシアネート基、および(メタ)アクリル基からなる群より選ばれる少なくとも1種を含有するシランカップリング剤が好ましい。なお、本明細書における(メタ)アクリル基は、アクリル基またはメタクリル基を意味する。同様に、(メタ)アクリレートは、アクリレートまたはメタクリレートを意味し、また(メタ)アクリル酸は、アクリル酸またはメタクリル酸を意味する。 The silane coupling agent used in the silane coupling agent treatment is not particularly limited as long as it has a functional group that reacts with the polar functional group introduced in the corona discharge treatment. A silane coupling agent containing at least one selected from the group consisting of an epoxy group, a mercapto group, an isocyanate group, and a (meth) acryl group is preferable. In addition, the (meth) acryl group in this specification means an acryl group or a methacryl group. Similarly, (meth) acrylate means acrylate or methacrylate, and (meth) acrylic acid means acrylic acid or methacrylic acid.
 具体的には、シランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-(メタクリロプロピル)トリメトキシシラン、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン等が挙げられる。これらのなかでも、3-グリシドキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシランが好ましい。シランカップリング剤は、1種を単独で使用してもよく、2種以上を併用してもよい。 Specifically, silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3- (Methacrylopropyl) trimethoxysilane, 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane N-2- (aminoethyl) -3-aminopropylmethyldiethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercapto Propylmethyldimethoxysilane, 3 Isocyanate propyl trimethoxysilane, bis (3-triethoxysilylpropyl) tetrasulfane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, imidazole silane, and the like. Of these, 3-glycidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-isocyanatopropyltrimethoxysilane are preferable. A silane coupling agent may be used individually by 1 type, and may use 2 or more types together.
 シランカップリング剤処理は、上記シランカップリング剤を溶媒に溶解して調製した組成物(以下、「シランカップリング剤組成物」という。)をコロナ放電処理したプライマー層表面に塗布し乾燥させることによって行われる。 In the silane coupling agent treatment, a composition prepared by dissolving the silane coupling agent in a solvent (hereinafter referred to as “silane coupling agent composition”) is applied to the surface of the primer layer subjected to corona discharge treatment and dried. Is done by.
 シランカップリング剤の溶解に用いる溶媒は、シランカップリング剤を安定に溶解することが可能な溶媒であれば、特に限定されない。具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メトキシエタノール、ジアセトンアルコール、2-ブトキシエタノール、1-メトキシ-2-プロパノール、ジアセトンアルコール等のアルコール類;n-ヘキサン、n-ヘプタン、イソクタン、ベンゼン、トルエン、キシレン、ガソリン、軽油、灯油等の炭化水素類等が挙げられる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。溶媒の量は、シランカップリング剤組成物中の不揮発成分(固形分)濃度が0.01質量%~20質量%となる量が好ましく、0.05質量%~5質量%となる量がより好ましい。 The solvent used for dissolving the silane coupling agent is not particularly limited as long as it is a solvent capable of stably dissolving the silane coupling agent. Specifically, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methoxyethanol, diacetone alcohol, 2-butoxyethanol, 1-methoxy Examples include alcohols such as -2-propanol and diacetone alcohol; hydrocarbons such as n-hexane, n-heptane, isoctane, benzene, toluene, xylene, gasoline, light oil, and kerosene. These may be used individually by 1 type and may use 2 or more types together. The amount of the solvent is preferably such that the non-volatile component (solid content) concentration in the silane coupling agent composition is 0.01% by mass to 20% by mass, more preferably 0.05% by mass to 5% by mass. preferable.
 シランカップリング剤組成物をプライマー層表面に塗布する方法としては、特に限定されないが、スプレーコート法、ディップコート法、フローコート法、スピンコート法等が使用される。処理の均一性等の観点からは、ディップコート法が好ましい。また、乾燥条件は、特に限定されないが、室温で、20分~1時間程度が好ましい。 The method for applying the silane coupling agent composition to the primer layer surface is not particularly limited, and spray coating, dip coating, flow coating, spin coating, and the like are used. The dip coating method is preferable from the viewpoint of processing uniformity and the like. The drying conditions are not particularly limited, but are preferably about 20 minutes to 1 hour at room temperature.
<ハードコート層>
 本発明のハードコート被膜を有する樹脂基板においては、上記のようなコロナ放電処理およびシランカップリング剤による処理がなされたプライマー層の表面に、オルガノポリシロキサンを含む硬化膜からなるハードコート層が形成される。このハードコート層は、特に限定されないが、以下に示すようなオルガノポリシロキサンを含む組成物(ハードコート層形成用組成物)を前記プライマー層の表面に塗布し加熱硬化させることによって形成することが好ましい。
<Hard coat layer>
In the resin substrate having the hard coat film of the present invention, a hard coat layer made of a cured film containing organopolysiloxane is formed on the surface of the primer layer that has been subjected to the corona discharge treatment and the treatment with the silane coupling agent as described above. Is done. The hard coat layer is not particularly limited, and may be formed by applying a composition containing organopolysiloxane (a composition for forming a hard coat layer) as shown below to the surface of the primer layer and curing it by heating. preferable.
[ハードコート層形成用組成物]
(オルガノポリシロキサン)
 本発明のハードコート層の形成に用いるハードコート層形成用組成物が含むオルガノポリシロキサンとしては、硬化性のオルガノポリシロキサンであれば、特に制限なく用いることができる。
[Composition for forming hard coat layer]
(Organopolysiloxane)
The organopolysiloxane contained in the hard coat layer forming composition used for forming the hard coat layer of the present invention can be used without particular limitation as long as it is a curable organopolysiloxane.
 一般に、オルガノポリシロキサンはM単位、D単位、T単位、Q単位と呼ばれる含ケイ素結合単位から構成される。このうち、硬化性のオルガノポリシロキサンは主としてT単位またはQ単位から構成されるオリゴマー状のポリマーであり、T単位のみから構成されるポリマー、Q単位のみから構成されるポリマー、T単位とQ単位から構成されるポリマーがある。また、それらポリマーは少量のM単位やD単位をさらに含むこともある。 Generally, organopolysiloxane is composed of silicon-containing bond units called M units, D units, T units, and Q units. Among these, curable organopolysiloxane is an oligomeric polymer mainly composed of T units or Q units, a polymer composed only of T units, a polymer composed only of Q units, T units and Q units. There is a polymer composed of In addition, these polymers may further contain a small amount of M units and D units.
 硬化性のオルガノポリシロキサンにおいて、T単位は、1個のケイ素原子を有し、そのケイ素原子に結合した1個の水素原子または1価の有機基と、他のケイ素原子に結合した酸素原子(または他のケイ素原子に結合できる官能基)3個とを有する単位である。ケイ素原子に結合した1価の有機基はケイ素原子に結合する原子が炭素原子である1価の有機基である。他のケイ素原子に結合できる官能基は水酸基または加水分解により水酸基となる基(以下加水分解性基という)である。他のケイ素原子に結合した酸素原子と他のケイ素原子に結合できる官能基の合計は3個であり、他のケイ素原子に結合した酸素原子と他のケイ素原子に結合できる官能基の数の違いにより、T単位はT1、T2、T3と呼ばれる3種の単位に分類される。T1は他のケイ素原子に結合した酸素原子の数が1個、T2はその酸素原子の数が2個、T3はその酸素原子の数が3個である。本明細書等においては、他のケイ素原子に結合した酸素原子をOで表し、他のケイ素原子に結合できる1価の官能基をZで表す。 In the curable organopolysiloxane, the T unit has one silicon atom, one hydrogen atom or monovalent organic group bonded to the silicon atom, and an oxygen atom bonded to another silicon atom ( Or a unit having three functional groups capable of bonding to other silicon atoms). The monovalent organic group bonded to the silicon atom is a monovalent organic group in which the atom bonded to the silicon atom is a carbon atom. The functional group that can be bonded to another silicon atom is a hydroxyl group or a group that becomes a hydroxyl group by hydrolysis (hereinafter referred to as a hydrolyzable group). The total number of oxygen atoms bonded to other silicon atoms and functional groups that can bond to other silicon atoms is three, and the number of functional groups that can bond to oxygen atoms bonded to other silicon atoms and other silicon atoms is different. Thus, the T unit is classified into three types of units called T1, T2, and T3. T1 has one oxygen atom bonded to another silicon atom, T2 has two oxygen atoms, and T3 has three oxygen atoms. In this specification and the like, an oxygen atom bonded to another silicon atom is represented by O * , and a monovalent functional group that can be bonded to another silicon atom is represented by Z.
 なお、他のケイ素原子に結合した酸素原子を表すOは、2個のケイ素原子間を結合する酸素原子であり、Si-O-Siで表される結合中の酸素原子である。したがって、Oは、2つの含ケイ素結合単位のケイ素原子間に1個存在する。言い換えれば、Oは、2つの含ケイ素結合単位の2つのケイ素原子に共有される酸素原子を表す。後述の含ケイ素結合単位の化学式において、1つのケイ素原子にOが結合している様に表現するが、このOは他の含ケイ素結合単位のケイ素原子と共有している酸素原子であり、2つの含ケイ素結合単位がSi-O-O-Siで表される結合で結合することを意味するものではない。 Note that O * representing an oxygen atom bonded to another silicon atom is an oxygen atom bonded between two silicon atoms, and is an oxygen atom in a bond represented by Si—O—Si. Accordingly, one O * exists between the silicon atoms of two silicon-containing bond units. In other words, O * represents an oxygen atom shared by two silicon atoms of two silicon-containing bond units. In the chemical formula of the silicon-containing bond unit described later, it is expressed as O * is bonded to one silicon atom, but this O * is an oxygen atom shared with the silicon atom of another silicon-containing bond unit. It does not mean that the bond bond two silicon-containing bond units is represented by Si-O * -O * -Si.
 前記M単位は上記有機基3個とO1個を有する単位、D単位は上記有機基2個とO2個(またはO1個とZ基1個)を有する単位、Q単位は上記有機基0個とO4個(またはO1個~3個とZ基3個~1個の計4個)を有する単位である。それぞれの含ケイ素結合単位は、他のケイ素原子に結合した酸素原子(O)を有しない(Z基のみを有する)化合物(以下モノマーともいう)から形成される。T単位を形成するモノマーを以下Tモノマーという。M単位、D単位、Q単位を形成するモノマーも同様に、それぞれMモノマー、Dモノマー、Qモノマーという。 The M unit is a unit having 3 organic groups and 1 O * , the D unit is a unit having 2 organic groups and 2 O * (or 1 O * and 1 Z group), and the Q unit is This is a unit having 0 organic group and 4 O * (or 4 O * 1 to 3 and 3 to 1 Z groups). Each silicon-containing bond unit is formed from a compound (hereinafter also referred to as a monomer) that does not have an oxygen atom (O * ) bonded to another silicon atom (has only a Z group). The monomer forming the T unit is hereinafter referred to as T monomer. Similarly, the monomers that form the M unit, the D unit, and the Q unit are referred to as the M monomer, the D monomer, and the Q monomer, respectively.
 モノマーは、(R’-)Si(-Z)4-aで表される。ただし、aは0~3の整数、R’は水素原子または1価の有機基、Zは水酸基または他のケイ素原子に結合できる1価の官能基を表す。この化学式において、a=3の化合物がMモノマー、a=2の化合物がDモノマー、a=1の化合物がTモノマー、a=0の化合物がQモノマーである。モノマーにおいて、Z基は通常加水分解性基である。また、R’が2または3個存在する場合(aが2または3の場合)、複数のR’は異なっていてもよい。R’としては、後述の好ましいRと同じ範疇のものが好ましい。 The monomer is represented by (R′—) a Si (—Z) 4-a . Here, a represents an integer of 0 to 3, R ′ represents a hydrogen atom or a monovalent organic group, and Z represents a monovalent functional group capable of bonding to a hydroxyl group or another silicon atom. In this chemical formula, a compound with a = 3 is an M monomer, a compound with a = 2 is a D monomer, a compound with a = 1 is a T monomer, and a compound with a = 0 is a Q monomer. In the monomer, the Z group is usually a hydrolyzable group. Further, when 2 or 3 R ′ are present (when a is 2 or 3), the plurality of R ′ may be different. R ′ is preferably in the same category as R described later.
 硬化性オルガノポリシロキサンは、モノマーのZ基の一部をOに変換する反応により得られる。オルガノポリシロキサンが2種以上の含ケイ素結合単位を含むコポリマーの場合、通常、これらコポリマーはそれぞれ対応するモノマーの混合物から得られる。モノマーのZ基が加水分解性基の場合、Z基は加水分解反応により水酸基に変換され、次いで別々のケイ素原子に結合した2個の水酸基の間における脱水縮合反応により、2個のケイ素原子が酸素原子(O)を介して結合する。硬化性オルガノポリシロキサン中には水酸基(または加水分解しなかったZ基)が残存し、硬化性オルガノポリシロキサンの硬化の際にこれら水酸基やZ基が上記と同様に反応して硬化する。硬化性オルガノポリシロキサンの硬化物は3次元的に架橋したポリマーであり、T単位やQ単位の多い硬化性オルガノポリシロキサンの硬化物は架橋密度の高い硬化物となる。硬化の際、硬化性オルガノポリシロキサンのZ基がOに変換されるが、Z基(特に水酸基)の一部は残存し、水酸基を有する硬化物となると考えられる。硬化性オルガノポリシロキサンを高温で硬化させた場合は水酸基がほとんど残存しない硬化物となることもある。 The curable organopolysiloxane is obtained by a reaction in which a part of the Z group of the monomer is converted to O * . When the organopolysiloxane is a copolymer comprising two or more silicon-containing bond units, these copolymers are usually obtained from a mixture of the corresponding monomers. When the Z group of the monomer is a hydrolyzable group, the Z group is converted into a hydroxyl group by a hydrolysis reaction, and then two silicon atoms are converted by a dehydration condensation reaction between two hydroxyl groups bonded to separate silicon atoms. Bonding through an oxygen atom (O * ). In the curable organopolysiloxane, hydroxyl groups (or Z groups that have not been hydrolyzed) remain, and when the curable organopolysiloxane is cured, these hydroxyl groups and Z groups react and cure as described above. The cured product of the curable organopolysiloxane is a three-dimensionally crosslinked polymer, and the cured product of the curable organopolysiloxane having many T units and Q units is a cured product having a high crosslinking density. At the time of curing, the Z group of the curable organopolysiloxane is converted to O * , but a part of the Z group (particularly hydroxyl group) remains and is considered to be a cured product having a hydroxyl group. When the curable organopolysiloxane is cured at a high temperature, it may be a cured product in which almost no hydroxyl groups remain.
 モノマーのZ基が加水分解性基である場合、そのZ基としては、アルコキシ基、塩素原子、アシルオキシ基、イソシアネート基等が挙げられる。多くの場合、モノマーとしてはZ基がアルコキシ基のモノマーが使用される。アルコキシ基は塩素原子等と比較すると反応性の比較的低い加水分解性基であり、Z基がアルコキシ基であるモノマーを使用して得られる硬化性オルガノポリシロキサン中にはZ基として水酸基とともに未反応のアルコキシ基が存在することが多い。モノマーのZ基が反応性の比較的高い加水分解性基(例えば塩素原子)の場合、そのモノマーを使用して得られる硬化性オルガノポリシロキサン中のZ基はそのほとんどが水酸基となる。したがって、通常の硬化性オルガノポリシロキサンにおいては、それを構成する各単位におけるZ基は、水酸基からなるかまたは水酸基とアルコキシ基からなることが多い。 When the Z group of the monomer is a hydrolyzable group, examples of the Z group include an alkoxy group, a chlorine atom, an acyloxy group, and an isocyanate group. In many cases, a monomer in which the Z group is an alkoxy group is used as the monomer. The alkoxy group is a hydrolyzable group having a relatively low reactivity as compared with a chlorine atom and the like, and in the curable organopolysiloxane obtained by using a monomer in which the Z group is an alkoxy group, it is not present together with the hydroxyl group as a Z group. Often an alkoxy group of the reaction is present. When the Z group of the monomer is a hydrolyzable group having a relatively high reactivity (for example, a chlorine atom), most of the Z groups in the curable organopolysiloxane obtained using the monomer are hydroxyl groups. Therefore, in a normal curable organopolysiloxane, the Z group in each unit constituting it is often composed of a hydroxyl group or a hydroxyl group and an alkoxy group.
 本発明においては、これら硬化性のオルガノポリシロキサンのうちでも、主としてT単位を主な含ケイ素結合単位として構成される硬化性のオルガノポリシロキサンが好ましく用いられる。以下、特に言及しない限り、硬化性のオルガノポリシロキサンを単にオルガノポリシロキサンという。ここで、本明細書において、T単位を主な構成単位とするオルガノポリシロキサン(以下、「オルガノポリシロキサン(T)」ともいう。)とは、M単位、D単位、T単位およびQ単位の合計数に対するT単位数の割合が50%~100%のオルガノポリシロキサンをいうが、本発明においてより好ましくは、このT単位数の割合が70%~100%のオルガノポリシロキサンを、特に好ましくはこのT単位数の割合が90%~100%のオルガノポリシロキサンを用いるものである。また、T単位以外に少量含まれる他の単位としてはD単位とQ単位が好ましく、特にQ単位が好ましい。 In the present invention, among these curable organopolysiloxanes, curable organopolysiloxanes mainly composed of T units as main silicon-containing bond units are preferably used. Hereinafter, unless otherwise specified, curable organopolysiloxane is simply referred to as organopolysiloxane. Here, in this specification, organopolysiloxane having T unit as a main constituent unit (hereinafter also referred to as “organopolysiloxane (T)”) is M unit, D unit, T unit and Q unit. The ratio of the number of T units to the total number refers to an organopolysiloxane having a ratio of 50% to 100%. In the present invention, the ratio of the number of T units is preferably from 70% to 100%, particularly preferably an organopolysiloxane. An organopolysiloxane having a T unit ratio of 90% to 100% is used. Moreover, as other units contained in a small amount other than T units, D units and Q units are preferable, and Q units are particularly preferable.
 すなわち、本発明においては、これら硬化性のオルガノポリシロキサンのなかでも、T単位とQ単位のみで構成され、その個数の割合がT:Q=90~100:10~0であるオルガノポリシロキサンが特に好ましく用いられる。 That is, in the present invention, among these curable organopolysiloxanes, organopolysiloxanes composed only of T units and Q units, and the ratio of the number thereof is T: Q = 90-100: 10-0. Particularly preferably used.
 なお、オルガノポリシロキサンにおけるM単位、D単位、T単位、Q単位の数の割合は、29Si-NMRによるピーク面積比の値から計算できる。 The ratio of the number of M units, D units, T units, and Q units in the organopolysiloxane can be calculated from the value of the peak area ratio by 29 Si-NMR.
 本発明において好ましく用いられるオルガノポリシロキサン(T)は、下記T1~T3で表されるT単位を有するオルガノポリシロキサンである。
   T1:R-Si(-OX)(-O-)
   T2:R-Si(-OX)(-O-)
   T3:R-Si(-O-)
(式中、Rは水素原子または炭素数が1~10の置換または非置換の1価の有機基を表し、Xは水素原子または炭素数1~6のアルキル基を表し、Oは2つのケイ素原子を連結する酸素原子を表す)
The organopolysiloxane (T) preferably used in the present invention is an organopolysiloxane having T units represented by the following T1 to T3.
T1: R—Si (—OX) 2 (—O * —)
T2: R—Si (—OX) (— O * −) 2
T3: R—Si (—O * −) 3
(In the formula, R represents a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 10 carbon atoms, X represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and O * (Represents an oxygen atom connecting silicon atoms)
 上記化学式におけるRは、1種に限定されず、T1、T2、T3はそれぞれ複数種のRを含んでいてもよい。また、上記化学式における-OXは水酸基またはアルコキシ基を表す。-OXはT1およびT2の間で同一であっても異なっていてもよい。T1における2つの-OXは異なっていてもよく、例えば、一方が水酸基で他方がアルコキシ基であってもよい。また、2つの-OXがいずれもアルコキシ基である場合、それらのアルコキシ基は異なるアルコキシ基であってもよい。ただし、後述のように、通常は2つのアルコキシ基は同一のアルコキシ基である。 R in the above chemical formula is not limited to one type, and T1, T2, and T3 may each include a plurality of types of R. In the above chemical formula, —OX represents a hydroxyl group or an alkoxy group. -OX may be the same or different between T1 and T2. The two —OX in T1 may be different. For example, one may be a hydroxyl group and the other may be an alkoxy group. In addition, when both of the two —OX are alkoxy groups, the alkoxy groups may be different alkoxy groups. However, as described later, usually, the two alkoxy groups are the same alkoxy group.
 なお、2個のケイ素原子を結合する酸素原子(O)を有しない、-OXのみを3個有するT単位を、以下T0という。T0は、実際には、オルガノポリシロキサン中に含まれる未反応のTモノマーに相当し、含ケイ素結合単位ではない。このT0は、T1~T3の単位の解析においてT1~T3と同様に測定される。 The T unit having no oxygen atom (O * ) for bonding two silicon atoms and having only three —OX is hereinafter referred to as T0. T0 actually corresponds to an unreacted T monomer contained in the organopolysiloxane and is not a silicon-containing bond unit. This T0 is measured in the same manner as T1 to T3 in the analysis of units of T1 to T3.
 オルガノポリシロキサン中のT0~T3は、核磁気共鳴分析(29Si-NMR)によりオルガノポリシロキサン中のケイ素原子の結合状態を測定して解析できる。T0~T3の数の比は、29Si-NMRのピーク面積比から求める。オルガノポリシロキサン分子中の-OXは、赤外吸光分析により解析できる。ケイ素原子に結合した水酸基とアルコキシ基の数の比は両者の赤外吸収ピークのピーク面積比から求める。オルガノポリシロキサンの質量平均分子量Mw、数平均分子量Mn、および分散度Mw/Mnは、ゲルパーミエーションクロマトグラフィー法により、ポリスチレンを標準物質として測定した値をいう。このようなオルガノポリシロキサンの特性は、分子1個の特性をいうものではなく、各分子の平均の特性として求められるものである。 T0 to T3 in the organopolysiloxane can be analyzed by measuring the bonding state of silicon atoms in the organopolysiloxane by nuclear magnetic resonance analysis ( 29 Si-NMR). The ratio of the number of T0 to T3 is determined from the peak area ratio of 29 Si-NMR. -OX in the organopolysiloxane molecule can be analyzed by infrared absorption analysis. The ratio of the number of hydroxyl groups and alkoxy groups bonded to silicon atoms is determined from the peak area ratio of the infrared absorption peaks of the two. The weight average molecular weight Mw, the number average molecular weight Mn, and the dispersity Mw / Mn of the organopolysiloxane are values measured by gel permeation chromatography using polystyrene as a standard substance. The characteristics of such an organopolysiloxane do not refer to the characteristics of one molecule but are determined as the average characteristics of each molecule.
 オルガノポリシロキサン(T)中には、1分子中に複数存在するT1、T2、T3はそれぞれ異なる2種以上が存在していてもよい。例えば、Rが異なる2種以上のT2が存在していてもよい。このようなオルガノポリシロキサンは2種以上のTモノマーの混合物から得られる。例えば、Rが異なる2種以上のTモノマーの混合物から得られるオルガノポリシロキサン中には、Rが異なるそれぞれ2種以上のT1、T2、T3が存在すると考えられる。Rが異なる複数のTモノマーの混合物から得られたオルガノポリシロキサン中の異なるRの数の比は、T単位全体として、Rが異なるTモノマー混合物の組成比を反映している。しかし、T1、T2、T3それぞれにおけるRが異なる単位の数の比は、Rが異なるTモノマー混合物の組成比を反映しているとは限らない。なぜならば、たとえTモノマーにおける3個の-OXが同一であっても、Tモノマー、T1、T2の反応性がRの相違によって異なる場合があるからである。 In the organopolysiloxane (T), two or more different T1, T2, and T3 may be present in each molecule. For example, two or more types of T2 with different R may exist. Such organopolysiloxanes are obtained from a mixture of two or more T monomers. For example, in an organopolysiloxane obtained from a mixture of two or more T monomers having different R, it is considered that two or more T1, T2, and T3 having different R exist. The ratio of the number of different R in the organopolysiloxane obtained from a mixture of a plurality of T monomers having different R reflects the composition ratio of the T monomer mixture having different R as a whole T unit. However, the ratio of the number of units with different R in each of T1, T2, and T3 does not necessarily reflect the composition ratio of T monomer mixtures with different R. This is because the reactivity of the T monomer, T1, and T2 may differ depending on the difference in R even if the three —OXs in the T monomer are the same.
 オルガノポリシロキサン(T)は、R-Si(-OY)で表されるTモノマーの少なくとも1種から製造されることが好ましい。この式において、Rは前記のRと同一であり、Yは炭素数1~6のアルキル基を表す。Yは非置換のアルキル基以外に、アルコキシ置換アルキル基等の置換アルキル基であってもよい。1分子中の3個のYは異なっていてもよい。しかし、通常は3個のYは同一のアルキル基である。Yは、炭素数1~4のアルキル基であることが好ましく、炭素数1または2であることがより好ましい。具体的なYとしては、メチル基、エチル基、n-プロピル基、n-ブチル基、t-ブチル基、2-メトキシエチル基等が挙げられる。 The organopolysiloxane (T) is preferably produced from at least one T monomer represented by R—Si (—OY) 3 . In this formula, R is the same as R described above, and Y represents an alkyl group having 1 to 6 carbon atoms. Y may be a substituted alkyl group such as an alkoxy-substituted alkyl group in addition to an unsubstituted alkyl group. Three Y in one molecule may be different. However, usually three Y are the same alkyl group. Y is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably 1 or 2 carbon atoms. Specific examples of Y include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, a t-butyl group, and a 2-methoxyethyl group.
 Rは水素原子または炭素数が1~10の置換または非置換の1価の有機基である。有機基とは、前記のようにケイ素原子に結合する原子が炭素原子である有機基をいう。 R is a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 10 carbon atoms. The organic group means an organic group in which the atom bonded to the silicon atom is a carbon atom as described above.
 非置換の1価の有機基としては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アルアルキル基等の炭化水素基が挙げられる。これら炭化水素基としては、炭素数1~10のアルキル基、炭素数2~10のアルケニル基やアルキニル基、炭素数5または6のシクロアルキル基、炭素数6~10のアリール基、炭素数7~10のアルアルキル基が好ましい。具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、ビニル基、アリル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基等が挙げられる。 Examples of the unsubstituted monovalent organic group include hydrocarbon groups such as an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, and an aralkyl group. These hydrocarbon groups include alkyl groups having 1 to 10 carbon atoms, alkenyl groups and alkynyl groups having 2 to 10 carbon atoms, cycloalkyl groups having 5 or 6 carbon atoms, aryl groups having 6 to 10 carbon atoms, and 7 carbon atoms. ˜10 aralkyl groups are preferred. Specifically, methyl group, ethyl group, n-propyl group, n-butyl group, i-butyl group, t-butyl group, hexyl group, octyl group, decyl group, vinyl group, allyl group, cyclohexyl group, phenyl Group, benzyl group, phenethyl group and the like.
 置換の1価の有機基としては、シクロアルキル基、アリール基、アルアルキル基等の環の水素原子がアルキル基で置換された炭化水素基、前記炭化水素基の水素原子がハロゲン原子、官能基、官能基含有有機基等で置換された置換有機基等がある。官能基としては水酸基、メルカプト基、カルボキシル基、エポキシ基、アミノ基、シアノ基等が好ましい。ハロゲン原子置換有機基としては、クロロアルキル基、ポリフルオロアルキル基等の塩素原子またはフッ素原子を有するアルキル基が好ましい。官能基含有有機基としては、アルコキシ基、アシル基、アシルオキシ基、アルコキシカルボニル基、グリシジル基、エポキシシクロヘキシル基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、N-アミノアルキル置換アミノアルキル基等が好ましい。特に、塩素原子、メルカプト基、エポキシ基、アミノ基、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジル基、アルキルアミノ基、N-アミノアルキル置換アミノアルキル基等が好ましい。官能基や官能基含有有機基等で置換された置換有機基を有するTモノマーはシランカップリング剤と呼ばれる範疇の化合物を含む。 Examples of the substituted monovalent organic group include a hydrocarbon group in which a ring hydrogen atom such as a cycloalkyl group, an aryl group, and an aralkyl group is substituted with an alkyl group, and the hydrogen atom of the hydrocarbon group is a halogen atom or a functional group And a substituted organic group substituted with a functional group-containing organic group. The functional group is preferably a hydroxyl group, mercapto group, carboxyl group, epoxy group, amino group, cyano group or the like. As the halogen atom-substituted organic group, an alkyl group having a chlorine atom or a fluorine atom such as a chloroalkyl group or a polyfluoroalkyl group is preferable. Examples of the functional group-containing organic group include an alkoxy group, an acyl group, an acyloxy group, an alkoxycarbonyl group, a glycidyl group, an epoxycyclohexyl group, an alkylamino group, a dialkylamino group, an arylamino group, and an N-aminoalkyl-substituted aminoalkyl group. preferable. In particular, a chlorine atom, mercapto group, epoxy group, amino group, acryloyloxy group, methacryloyloxy group, glycidyl group, alkylamino group, N-aminoalkyl-substituted aminoalkyl group and the like are preferable. The T monomer having a substituted organic group substituted with a functional group, a functional group-containing organic group or the like includes a category of compounds called silane coupling agents.
 置換有機基の具体例としては、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、3-メルカプトプロピル基、p-メルカプトメチルフェニルエチル基、3-アクリロイルオキシプロピル基、3-メタクリロイルオキシプロピル基、3-グリシドキシプロピル基、2-(3,4-エポキシシクロヘキシル)エチル基、3-アミノプロピル基、N-フェニル-3-アミノプロピル基、N-(2-アミノエチル)-3-アミノプロピル基、2-シアノエチル基等が挙げられる。 Specific examples of the substituted organic group include 3-chloropropyl group, 3,3,3-trifluoropropyl group, 3-mercaptopropyl group, p-mercaptomethylphenylethyl group, 3-acryloyloxypropyl group, 3-methacryloyl group. Oxypropyl group, 3-glycidoxypropyl group, 2- (3,4-epoxycyclohexyl) ethyl group, 3-aminopropyl group, N-phenyl-3-aminopropyl group, N- (2-aminoethyl)- A 3-aminopropyl group, a 2-cyanoethyl group and the like can be mentioned.
 上記Rとして特に好ましい1価有機基は、炭素数1~4のアルキル基である。オルガノポリシロキサン(T)としては、炭素数1~4のアルキル基を有するTモノマーの単独またはその2種以上を使用して得られるオルガノポリシロキサンが好ましい。また、オルガノポリシロキサン(T)として炭素数1~4のアルキル基を有するTモノマーの1種以上と少量の他のTモノマーを使用して得られるオルガノポリシロキサンもまた好ましい。他のTモノマーの割合はTモノマー全量に対し30モル%以下、特に15モル%以下が好ましい。他のTモノマーとしては、シランカップリング剤と呼ばれる範疇の、官能基や官能基含有有機基等で置換された置換有機基を有するTモノマーが好ましい。 A particularly preferred monovalent organic group as R is an alkyl group having 1 to 4 carbon atoms. The organopolysiloxane (T) is preferably an organopolysiloxane obtained by using a T monomer having an alkyl group having 1 to 4 carbon atoms alone or two or more thereof. An organopolysiloxane obtained by using one or more T monomers having an alkyl group having 1 to 4 carbon atoms and a small amount of other T monomers as the organopolysiloxane (T) is also preferable. The proportion of other T monomers is preferably 30 mol% or less, particularly preferably 15 mol% or less, based on the total amount of T monomers. As the other T monomer, a T monomer having a substituted organic group substituted with a functional group, a functional group-containing organic group, or the like in a category called a silane coupling agent is preferable.
 炭素数1~4のアルキル基を有するTモノマーの具体例としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等が挙げられる。これらのなかでも、メチルトリメトキシシラン、エチルトリメトキシシランが好ましい。 Specific examples of the T monomer having an alkyl group having 1 to 4 carbon atoms include, for example, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane. Of these, methyltrimethoxysilane and ethyltrimethoxysilane are preferable.
 置換有機基等を有するTモノマーの具体例としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-シアノエチルトリメトキシシラン等が挙げられる。 Specific examples of the T monomer having a substituted organic group include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3,3,3- Trifluoropropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3-acryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyl Pills triethoxysilane, N- (2- aminoethyl) -3-aminopropyltrimethoxysilane, 3-cyano-ethyl trimethoxysilane, and the like.
 R-Si(-OY)で表されるTモノマー以外の(R’-)Si(-Z)4-aで表されるTモノマー(a=3)としては、例えば、メチルトリクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン、3-グリシドキシプロピルトリクロロシラン、メチルトリアセトキシシラン、エチルトリアセトキシシラン等が挙げられる。 The R-Si (-OY) other than T monomer represented by 3 (R'-) a Si (-Z ) T monomers represented by 4-a (a = 3) , for example, methyltrichlorosilane, Examples include ethyltrichlorosilane, phenyltrichlorosilane, 3-glycidoxypropyltrichlorosilane, methyltriacetoxysilane, and ethyltriacetoxysilane.
 (R’-)Si(-Z)4-aで表されるDモノマー(a=2)において、2個のR’は同一であっても、異なっていてもよい。同一の場合は、炭素数1~4のアルキル基が好ましい。異なる場合は、一方のR’が炭素数1~4のアルキル基であり、他方のR’が前記官能基や官能基含有有機基等で置換された置換有機基であることが好ましい。また、Z基としては、炭素数1~4のアルコキシ基、アセトキシ基等が好ましい。 In the D monomer (a = 2) represented by (R′—) a Si (—Z) 4-a , two R ′ may be the same or different. In the case of being identical, an alkyl group having 1 to 4 carbon atoms is preferred. When they are different, it is preferable that one R ′ is an alkyl group having 1 to 4 carbon atoms and the other R ′ is a substituted organic group substituted with the functional group or a functional group-containing organic group. The Z group is preferably an alkoxy group having 1 to 4 carbon atoms, an acetoxy group, or the like.
 Dモノマーとしては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジアセトキシシラン、3-クロロプロピルメチルジメトキシシラン、3,3,3-トリフルオロプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-シアノエチルメチルジメトキシシラン等が挙げられる。 Examples of the D monomer include dimethyldimethoxysilane, dimethyldiethoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, phenylmethyldimethoxysilane, phenylmethyldiacetoxysilane, 3-chloropropylmethyldimethoxysilane, 3, 3, 3-trifluoropropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, 3-acryloyloxypropylmethyldimethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldi Examples include ethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and 3-cyanoethylmethyldimethoxysilane.
 (R’-)Si(-Z)4-aで表されるQモノマー(a=0)において、4個のZ基は異なっていてもよいが、通常は同一である。Z基としては、炭素数1~4のアルコキシ基が好ましく、特にメトキシ基またはエトキシ基であることが好ましい。 In the Q monomer (a = 0) represented by (R′—) a Si (—Z) 4-a , the four Z groups may be different but are usually the same. The Z group is preferably an alkoxy group having 1 to 4 carbon atoms, and particularly preferably a methoxy group or an ethoxy group.
 Qモノマーとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトラn-ブトキシシラン、テトラsec-ブトキシシラン、テトラt-ブトキシシラン等が挙げられる。 Examples of the Q monomer include tetramethoxysilane, tetraethoxysilane, tetra n-propoxy silane, tetra n-butoxy silane, tetra sec-butoxy silane, tetra t-butoxy silane, and the like.
 本発明に用いられるオルガノポリシロキサン(T)は、上記Tモノマー等を部分加水分解縮合させることによって得られる。通常、Tモノマー等と水とを溶媒中で加熱することによりこの反応を行う。反応系には触媒を存在させることが好ましい。モノマーの種類、水の量、加熱温度、触媒の種類や量、反応時間等の反応条件を調節して目的のオルガノポリシロキサンを製造することができる。また、場合によっては市販のオルガノポリシロキサンをそのまま、目的のオルガノポリシロキサンとして使用することや、市販のオルガノポリシロキサンを使用して目的とするオルガノポリシロキサンを製造することも可能である。 The organopolysiloxane (T) used in the present invention is obtained by subjecting the above T monomer and the like to partial hydrolysis condensation. Usually, this reaction is performed by heating T monomer or the like and water in a solvent. A catalyst is preferably present in the reaction system. The desired organopolysiloxane can be produced by adjusting the reaction conditions such as the type of monomer, the amount of water, the heating temperature, the type and amount of catalyst, and the reaction time. In some cases, a commercially available organopolysiloxane can be used as it is as a target organopolysiloxane, or a target organopolysiloxane can be produced using a commercially available organopolysiloxane.
 上記触媒としては、酸触媒が好ましい。酸触媒としては、塩酸、硫酸、硝酸、リン酸、亜硝酸、過塩素酸、スルファミン酸等の無機酸;ギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、コハク酸、マレイン酸、乳酸、p-トルエンスルホン酸等の有機酸が挙げられる。これらのなかでも、酢酸が好ましい。上記溶媒としては、親水性の有機溶媒が好ましく、アルコール系溶媒がより好ましい。アルコール系溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-エトキシエタノール、ジアセトンアルコール、2-ブトキシエタノール等が挙げられる。反応温度は、触媒が存在する場合、室温で反応させることができる。通常は、20℃~80℃の反応温度から目的に応じて適切な温度を採用する。 As the catalyst, an acid catalyst is preferable. Acid catalysts include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, nitrous acid, perchloric acid, sulfamic acid; formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, maleic acid, lactic acid, p- An organic acid such as toluenesulfonic acid may be mentioned. Of these, acetic acid is preferred. As the solvent, a hydrophilic organic solvent is preferable, and an alcohol solvent is more preferable. Examples of alcohol solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-ethoxyethanol, diacetone alcohol, 2-butoxyethanol and the like. It is done. The reaction temperature can be reacted at room temperature when a catalyst is present. Usually, an appropriate temperature is employed from the reaction temperature of 20 ° C. to 80 ° C. according to the purpose.
 加水分解縮合反応はT0(Tモノマー)からT1が生成し、T1からT2が生成し、T2からT3が生成する反応である。加水分解性基の1個以上が水酸基変換されたT0からT1が生成する縮合反応、2個の-OXの少なくとも一方が水酸基であるT1からT2が生成する縮合反応、および-OXが水酸基であるT2からT3が生成する縮合反応のそれぞれの反応速度は、この順に遅くなると考えられる。加水分解性基の加水分解反応を考慮しても、反応が進むにしたがって各単位の存在量のピークはT0からT3へ移動していくと考えられる。反応条件が比較的温和である場合には、存在量のピークの移動は比較的整然と進行すると考えられる。本発明に用いるオルガノポリシロキサン(T)のなかでも、後述するオルガノポリシロキサン(a)は、T0やT1の存在量が少なく、かつT2とT3の存在量の比が特定の範囲にある比較的高分子量のオルガノポリシロキサンであり、このようなオルガノポリシロキサンは比較的温和な反応条件を選択することにより製造することができる。 The hydrolysis condensation reaction is a reaction in which T1 is generated from T0 (T monomer), T2 is generated from T1, and T3 is generated from T2. Condensation reaction in which at least one hydrolyzable group is converted to a hydroxyl group by T0 to T1, a condensation reaction in which at least one of two —OX is a hydroxyl group, T1 to T2 is generated, and —OX is a hydroxyl group It is considered that the respective reaction rates of the condensation reactions generated from T2 to T3 become slower in this order. Even considering the hydrolysis reaction of the hydrolyzable group, it is considered that the peak of the abundance of each unit moves from T0 to T3 as the reaction proceeds. When the reaction conditions are relatively mild, the movement of the abundance peak is considered to proceed relatively orderly. Among the organopolysiloxanes (T) used in the present invention, the organopolysiloxane (a) described later has a relatively small amount of T0 and T1, and the ratio of the amounts of T2 and T3 is within a specific range. It is a high molecular weight organopolysiloxane, and such an organopolysiloxane can be produced by selecting relatively mild reaction conditions.
 上記縮合反応の反応性はRによって変化し、Rが異なると水酸基の反応性も変化する。通常Rが小さいほど(例えば、Rがアルキル基の場合、アルキル基の炭素数が少ないほど)、水酸基の反応性は高い。したがって、加水分解性基の反応性と水酸基の反応性の関係を考慮して、Tモノマーを選択することが好ましい。 The reactivity of the above condensation reaction varies depending on R, and when R is different, the reactivity of the hydroxyl group also varies. Usually, the smaller R is (for example, when R is an alkyl group, the smaller the number of carbon atoms in the alkyl group), the higher the reactivity of the hydroxyl group. Accordingly, it is preferable to select the T monomer in consideration of the relationship between the reactivity of the hydrolyzable group and the reactivity of the hydroxyl group.
 さらに、加水分解性基の水酸基への加水分解反応の速度は、加水分解性基の種類により変化し、縮合反応の速度との関係を考慮することが好ましい。例えば、T2のOX基がアルコキシ基である場合、その加水分解反応の速度が遅すぎると、OX基が水酸基であるT2が少なくなる。同様に、加水分解反応の速度が遅すぎるとOX基が水酸基であるT1が少なくなる。このため、オルガノポリシロキサン中のアルコキシ基に対する水酸基の存在量の比が高いものを得ることが困難となる。このため、OX基であるアルコキシ基は反応性の高いアルコキシ基、すなわち炭素数の低いアルコキシ基が好ましく、メトキシ基がもっとも好ましい。加水分解性基の反応性が充分高い場合、加水分解性基の割合の高いオルガノポリシロキサンから、縮合反応をあまり進めることなく、水酸基の割合の高いオルガノポリシロキサンを得ることができる。 Furthermore, the rate of hydrolysis reaction of a hydrolyzable group to a hydroxyl group varies depending on the type of hydrolyzable group, and it is preferable to consider the relationship with the rate of condensation reaction. For example, when the OX group of T2 is an alkoxy group, if the rate of the hydrolysis reaction is too slow, T2 in which the OX group is a hydroxyl group decreases. Similarly, when the rate of the hydrolysis reaction is too slow, T1 in which the OX group is a hydroxyl group decreases. For this reason, it becomes difficult to obtain a high ratio of the amount of hydroxyl groups to alkoxy groups in the organopolysiloxane. For this reason, the alkoxy group which is an OX group is preferably a highly reactive alkoxy group, that is, an alkoxy group having a low carbon number, and most preferably a methoxy group. When the reactivity of the hydrolyzable group is sufficiently high, an organopolysiloxane having a high proportion of hydroxyl groups can be obtained from an organopolysiloxane having a high proportion of hydrolyzable groups without much progress of the condensation reaction.
 本発明に用いるハードコート層形成用組成物には、このようにして得られる硬化性のオルガノポリシロキサン(T)の1種を単独で配合することも、2種以上を併用して配合することも可能である。耐擦傷性の観点から特に好ましいオルガノポリシロキサン(T)の組合せとして、オルガノポリシロキサン(a)およびオルガノポリシロキサン(b)の組合せについて以下に説明するが、本発明に用いる硬化性オルガノポリシロキサンがこれらに限定されるものではない。また、オルガノポリシロキサン(a)およびオルガノポリシロキサン(b)が、それぞれ単独でオルガノポリシロキサン(T)として本発明に使用されることを妨げるものでもない。
(オルガノポリシロキサン(a))
In the composition for forming a hard coat layer used in the present invention, one kind of curable organopolysiloxane (T) thus obtained may be blended alone, or two or more kinds may be blended together. Is also possible. The combination of organopolysiloxane (a) and organopolysiloxane (b) will be described below as a particularly preferred combination of organopolysiloxane (T) from the viewpoint of scratch resistance. The curable organopolysiloxane used in the present invention is described below. It is not limited to these. Further, the organopolysiloxane (a) and the organopolysiloxane (b) are not precluded from being used in the present invention alone as the organopolysiloxane (T).
(Organopolysiloxane (a))
 オルガノポリシロキサン(a)は、T1~T3の各単位を、T1:T2:T3=0~5:15~40:55~85、かつT3/T2=1.5~4.0の割合で含む。また、オルガノポリシロキサン(a)中のOX基について、それがアルコキシ基である個数(A)とそれが水酸基である個数(B)との割合、(B)/(A)が分子平均で12.0以上である。さらに、オルガノポリシロキサン(a)の質量平均分子量は800~8000である。なお、オルガノポリシロキサン(a)は、TモノマーであるT0を実質的に含まない。 The organopolysiloxane (a) contains units T1 to T3 in a ratio of T1: T2: T3 = 0 to 5:15 to 40:55 to 85 and T3 / T2 = 1.5 to 4.0. . Further, regarding the OX group in the organopolysiloxane (a), the ratio of the number (A) that is an alkoxy group to the number (B) that is a hydroxyl group, and (B) / (A) is 12 in terms of molecular average. 0.0 or more. Furthermore, the mass average molecular weight of the organopolysiloxane (a) is 800 to 8000. The organopolysiloxane (a) does not substantially contain T0 which is a T monomer.
 オルガノポリシロキサン(a)を構成するT1、T2およびT3の割合については、(T2+T3)/(T1+T2+T3)が0.85~1.00の範囲にあることが好ましく、0.90以上1.00未満であることがより好ましい。また、T3/T2については、好ましい範囲は2.0~4.0である。 Regarding the ratio of T1, T2 and T3 constituting the organopolysiloxane (a), (T2 + T3) / (T1 + T2 + T3) is preferably in the range of 0.85 to 1.00, 0.90 or more and less than 1.00 It is more preferable that For T3 / T2, the preferred range is 2.0 to 4.0.
 オルガノポリシロキサン(a)を構成するT1、T2およびT3の割合を、各分子の平均組成でこのような範囲にすることで、オルガノポリシロキサン(a)と後述するオルガノポリシロキサン(b)とを組み合わせて本発明に係るハードコート層形成用組成物に用いた際に、最終的に得られるハードコート層の耐擦傷性を向上させることができる。 By making the ratio of T1, T2 and T3 constituting the organopolysiloxane (a) in such a range with the average composition of each molecule, the organopolysiloxane (a) and the organopolysiloxane (b) described later can be obtained. When used in combination in the composition for forming a hard coat layer according to the present invention, the scratch resistance of the finally obtained hard coat layer can be improved.
 オルガノポリシロキサン(a)における(B)/(A)は、縮合反応性を示すパラメータであり、この値が大きいほど、つまりアルコキシ基に比べて水酸基の割合が多いほど、オルガノポリシロキサン(a)とオルガノポリシロキサン(b)とを組み合わせてハードコート層形成用組成物とした際に、硬化膜形成時の硬化反応が促進される。また、硬化膜形成時に未反応で残ったアルコキシ基は、最終的に得られるハードコート層の耐擦傷性の低下を招くおそれがあり、後硬化が進行すればマイクロクラックの原因ともなるため、アルコキシ基に比べて水酸基の割合が多いほどよい。オルガノポリシロキサン(a)における(B)/(A)は、12.0以上であるが、好ましくは16.0以上である。なお、(A)は0であってもよい。 (B) / (A) in the organopolysiloxane (a) is a parameter indicating condensation reactivity. The larger this value, that is, the greater the proportion of hydroxyl groups compared to the alkoxy groups, the greater the organopolysiloxane (a). When a composition for forming a hard coat layer is formed by combining the organopolysiloxane (b) and the organopolysiloxane (b), the curing reaction during the formation of the cured film is accelerated. In addition, alkoxy groups left unreacted during the formation of the cured film may cause a decrease in scratch resistance of the finally obtained hard coat layer, and if post-curing progresses, it may cause micro cracks. The higher the proportion of hydroxyl groups compared to the groups, the better. (B) / (A) in the organopolysiloxane (a) is 12.0 or more, preferably 16.0 or more. Note that (A) may be zero.
 (B)/(A)の値が12.0未満であると、アルコキシ基に比べて水酸基の割合が少なすぎて、硬化反応促進の効果が得られず、またアルコキシ基の影響により耐擦傷性の低下を招くおそれがあり、後硬化が進行してマイクロクラックの原因となる。つまり、(B)/(A)の値が12.0未満であると、硬化膜形成に際して、オルガノポリシロキサン(a)とオルガノポリシロキサン(b)の硬化反応により形成される3次元架橋構造(ネットワーク構造)に、オルガノポリシロキサン(a)の一部が組み込まれずブリードアウトしやすくなること等に起因して、架橋密度が低下し、耐摩耗性が得られない、硬化が十分に進行しにくくなる等の問題が発生するおそれがある。 When the value of (B) / (A) is less than 12.0, the proportion of hydroxyl groups is too small compared to the alkoxy groups, and the effect of promoting the curing reaction cannot be obtained, and scratch resistance is caused by the influence of the alkoxy groups. This may lead to a decrease in the thickness and cause post-curing to cause microcracks. That is, when the value of (B) / (A) is less than 12.0, a three-dimensional cross-linked structure formed by a curing reaction of organopolysiloxane (a) and organopolysiloxane (b) during the formation of a cured film ( In the network structure), a part of the organopolysiloxane (a) is not incorporated and it is easy to bleed out, etc., so that the crosslink density is reduced, the wear resistance is not obtained, and the curing does not proceed sufficiently. There is a risk of problems such as becoming.
 オルガノポリシロキサン(a)の質量平均分子量は800~8000であり、好ましくは、1000~6000である。オルガノポリシロキサン(a)の質量平均分子量がこの範囲にあることで、オルガノポリシロキサン(a)とオルガノポリシロキサン(b)とを組み合わせて本発明のハードコート層形成用組成物に用いた際に、最終的に得られるハードコート層の耐擦傷性を十分に向上させることができる。 The mass average molecular weight of the organopolysiloxane (a) is 800 to 8000, preferably 1000 to 6000. When the weight average molecular weight of the organopolysiloxane (a) is within this range, the organopolysiloxane (a) and the organopolysiloxane (b) are used in combination in the composition for forming a hard coat layer of the present invention. The scratch resistance of the finally obtained hard coat layer can be sufficiently improved.
 本発明において、特に耐擦傷性に優れたハードコート層を形成するためのハードコート層形成用組成物に用いるオルガノポリシロキサン(a)を得るには、原料の加水分解性シラン化合物として、全Tモノマー中70質量%以上がメチルトリアルコキシシラン、好ましくはアルコキシ基の炭素数は1~4を用いることが好ましい。ただし、密着性の改善、親水性、撥水性等の機能発現を目的として少量のメチルトリアルコキシシラン以外のTモノマーを併用することもできる。 In the present invention, in order to obtain the organopolysiloxane (a) used in the hard coat layer forming composition for forming a hard coat layer having particularly excellent scratch resistance, all T It is preferable that 70% by mass or more of the monomer is methyltrialkoxysilane, and preferably the alkoxy group has 1 to 4 carbon atoms. However, a small amount of T monomer other than methyltrialkoxysilane can be used in combination for the purpose of improving the adhesion, hydrophilicity, water repellency and the like.
 オルガノポリシロキサン(a)を製造する方法としては、上記のように、溶媒中で酸触媒存在下にTモノマー等を加水分解縮合反応させる。ここで加水分解に必要な水は、モノマー1当量に対して通常、水1当量~10当量、好ましくは1.5当量~7当量、さらに好ましくは3当量~5当量である。モノマーを加水分解および縮合する際に、コロイダルシリカ(後述する)が存在する反応系で行うこともでき、このコロイダルシリカとして水分散型のコロイダルシリカを使用した場合は、水はこの分散液から供給される。酸触媒の使用量は、モノマー100質量部に対して、0.1質量部~50質量部が好ましく、1質量部~20質量部が特に好ましい。溶媒としては、前記アルコール系溶媒が好ましく、得られるオルガノポリシロキサン(a)の溶解性が良好な点から、具体的には、メタノール、エタノール、2-プロパノール、1-ブタノール、2-ブタノールが特に好ましい。 As a method of producing the organopolysiloxane (a), as described above, a T monomer or the like is subjected to a hydrolysis condensation reaction in a solvent in the presence of an acid catalyst. The water required for the hydrolysis is usually 1 equivalent to 10 equivalents, preferably 1.5 equivalents to 7 equivalents, more preferably 3 equivalents to 5 equivalents, relative to 1 equivalent of the monomer. When the monomer is hydrolyzed and condensed, it can also be carried out in a reaction system in which colloidal silica (described later) is present. When water-dispersed colloidal silica is used as the colloidal silica, water is supplied from this dispersion. Is done. The amount of the acid catalyst used is preferably from 0.1 to 50 parts by weight, particularly preferably from 1 to 20 parts by weight, based on 100 parts by weight of the monomer. As the solvent, the alcohol solvent is preferable, and methanol, ethanol, 2-propanol, 1-butanol, and 2-butanol are particularly preferable from the viewpoint of good solubility of the resulting organopolysiloxane (a). preferable.
 通常、反応温度は20℃~40℃、反応時間は1時間~数日間が採用される。モノマーの加水分解縮合反応は発熱反応であるが、系の温度は60℃を超えないことが好ましい。このような条件で十分に加水分解反応を進行させ、ついで、得られるオルガノポリシロキサンの安定化のため40℃~80℃で1時間~数日間縮合反応を進行させることも好ましく行われる。 Usually, the reaction temperature is 20 ° C. to 40 ° C., and the reaction time is 1 hour to several days. Although the hydrolysis and condensation reaction of the monomer is an exothermic reaction, it is preferable that the temperature of the system does not exceed 60 ° C. It is also preferable to allow the hydrolysis reaction to proceed sufficiently under such conditions, and then to proceed the condensation reaction at 40 ° C. to 80 ° C. for 1 hour to several days in order to stabilize the resulting organopolysiloxane.
 オルガノポリシロキサン(a)は、また、市販のオルガノポリシロキサンから製造することができる。市販のオルガノポリシロキサンは通常水酸基に比較してアルコキシ基の割合が高いオルガノポリシロキサンであるので、特に、前記(B)/(A)以外は目的とするオルガノポリシロキサン(a)に類似した市販のオルガノポリシロキサンを使用して加水分解反応で水酸基の割合を高めて、オルガノポリシロキサン(a)を製造することが好ましい。 Organopolysiloxane (a) can also be produced from commercially available organopolysiloxane. Since the commercially available organopolysiloxane is usually an organopolysiloxane having a higher proportion of alkoxy groups than the hydroxyl group, in particular, except for the above (B) / (A), commercially available similar to the desired organopolysiloxane (a). It is preferable to produce the organopolysiloxane (a) by increasing the proportion of hydroxyl groups by hydrolysis reaction using the above organopolysiloxane.
 オルガノポリシロキサン(a)の原料として使用できる市販のオルガノポリシロキサンとしては、例えば、メチルトリメトキシシランの部分加水分解縮合物である下記のオルガノポリシロキサンがある。なお、「ND」の表記は、核磁気共鳴分析装置、日本電子株式会社製、ECP400(商品名)を用いて29Si-NMRのピーク面積比を測定した際に、検出量以下であることを示す(以下同様)。 Examples of commercially available organopolysiloxane that can be used as a raw material for the organopolysiloxane (a) include the following organopolysiloxane that is a partial hydrolysis-condensation product of methyltrimethoxysilane. It should be noted that “ND” is not more than a detected amount when the 29 Si-NMR peak area ratio is measured using a nuclear magnetic resonance analyzer, manufactured by JEOL Ltd., ECP400 (trade name). Shown (the same applies below).
 メチル系シリコーンレジンKR-220L(商品名、信越化学工業社製);T0:T1:T2:T3=ND:ND:28:72、Si-OH/SiO-CH=11.7、質量平均分子量Mw=4720、数平均分子量Mn=1200、Mw/Mn=3.93。 Methyl silicone resin KR-220L (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.); T0: T1: T2: T3 = ND: ND: 28: 72, Si—OH / SiO—CH 3 = 11.7, mass average molecular weight Mw = 4720, number average molecular weight Mn = 1200, Mw / Mn = 3.93.
 メチル系シリコーンレジンKR-500(商品名、信越化学工業社製);T0:T1:T2:T3=ND:15:58:27、Si-OH基由来のピークはFT-IRにより確認されず、実質SiO-CHのみ存在。Mw=1240、Mn=700、Mw/Mn=1.77。 Methyl silicone resin KR-500 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.); T0: T1: T2: T3 = ND: 15: 58: 27, Si—OH group-derived peaks were not confirmed by FT-IR, Only substantially SiO—CH 3 exists. Mw = 1240, Mn = 700, Mw / Mn = 1.77.
 上記のような市販のオルガノポリシロキサンからオルガノポリシロキサン(a)を製造する場合、市販のオルガノポリシロキサンを、酸触媒存在下で主にアルコキシ基の加水分解を行うことが好ましい。例えば、市販のオルガノポリシロキサンに0倍量~10倍量(質量)の溶媒を加え、よく撹拌し、次いで0.1質量%~70質量%程度の濃度の酸水溶液を添加して、15℃~80℃、好ましくは20℃~70℃の温度で1時間~24時間撹拌する等の方法が挙げられる。用いる溶媒としては水溶媒が使用でき、そのほか水を添加した前記アルコール系溶媒も使用できる。 When producing the organopolysiloxane (a) from the above-mentioned commercially available organopolysiloxane, it is preferable to hydrolyze the alkoxy group of the commercially available organopolysiloxane mainly in the presence of an acid catalyst. For example, 0 to 10 times (mass) of a solvent is added to a commercially available organopolysiloxane, stirred well, and then an acid aqueous solution having a concentration of about 0.1 to 70% by mass is added to form 15 ° C. Examples of the method include stirring at a temperature of ˜80 ° C., preferably 20 ° C. to 70 ° C., for 1 hour to 24 hours. As the solvent to be used, an aqueous solvent can be used, and in addition, the above alcohol solvent to which water has been added can also be used.
(オルガノポリシロキサン(b))
 オルガノポリシロキサン(b)は、オルガノポリシロキサン(a)の質量平均分子量の1/10倍~1/1.5倍の質量平均分子量を有するオルガノポリシロキサンである。オルガノポリシロキサン(b)は、組み合わされるオルガノポリシロキサン(a)よりも質量平均分子量の小さいオルガノポリシロキサンであり、前記T1~T3単位を有する。T1、T2、T3の数の比、T3/T2の割合、(B)/(A)の比は特に限定されない。
(Organopolysiloxane (b))
The organopolysiloxane (b) is an organopolysiloxane having a mass average molecular weight of 1/10 to 1 / 1.5 times the mass average molecular weight of the organopolysiloxane (a). The organopolysiloxane (b) is an organopolysiloxane having a mass average molecular weight smaller than that of the combined organopolysiloxane (a), and has the T1 to T3 units. The ratio of the numbers of T1, T2, and T3, the ratio of T3 / T2, and the ratio of (B) / (A) are not particularly limited.
 オルガノポリシロキサン(b)の質量平均分子量は、好ましくは組み合わされるオルガノポリシロキサン(a)の1/8倍~1/1.5倍である。オルガノポリシロキサン(b)の質量平均分子量がオルガノポリシロキサン(a)の質量平均分子量の1/1.5倍を超えると、言い換えれば、オルガノポリシロキサン(a)の質量平均分子量がオルガノポリシロキサン(b)の質量平均分子量の1.5倍未満では、最終的に得られるハードコート層の靱性が低下し、クラックの発生の要因となる。また、オルガノポリシロキサン(b)の質量平均分子量がオルガノポリシロキサン(a)の質量平均分子量の1/10倍未満では、言い換えれば、オルガノポリシロキサン(a)の質量平均分子量がオルガノポリシロキサン(b)の質量平均分子量の10倍を超えると、最終的に得られるハードコート層の耐擦傷性が低くなり、十分な耐擦傷性を有するハードコート層を得ることができない可能性がある。 The mass average molecular weight of the organopolysiloxane (b) is preferably 1/8 to 1 / 1.5 times that of the combined organopolysiloxane (a). When the weight average molecular weight of the organopolysiloxane (b) exceeds 1 / 1.5 times the weight average molecular weight of the organopolysiloxane (a), in other words, the weight average molecular weight of the organopolysiloxane (a) When the mass average molecular weight of b) is less than 1.5 times, the toughness of the finally obtained hard coat layer is lowered, which causes cracks. Further, when the mass average molecular weight of the organopolysiloxane (b) is less than 1/10 times the mass average molecular weight of the organopolysiloxane (a), in other words, the mass average molecular weight of the organopolysiloxane (a) is the organopolysiloxane (b). When the weight average molecular weight of 10) exceeds 10 times, the scratch resistance of the finally obtained hard coat layer is lowered, and there is a possibility that a hard coat layer having sufficient scratch resistance cannot be obtained.
 より好ましいオルガノポリシロキサン(b)は、T0、T1、T2およびT3で示される各含ケイ素結合単位が、これらの単位の個数の割合で、T0:T1:T2:T3=0~5:0~50:5~70:10~90の範囲にあるオルガノポリシロキサンである。オルガノポリシロキサン(b)中のT0およびT1の割合が大きいということは、一般にそのオルガノポリシロキサンを製造する際に、原料モノマーの加水分解反応や縮合反応が不充分であったことを示す。オルガノポリシロキサン(b)において、T0およびT1の割合が大きいと、これとオルガノポリシロキサン(a)とを含有するハードコート層形成用組成物を用いて、硬化膜を形成させる際の熱硬化時に、クラックの発生が多くなる傾向となる。また、一般にオルガノポリシロキサンを製造する際に、原料モノマーの縮合反応を進行させすぎると、得られるオルガノポリシロキサンのT3の割合が高くなる。オルガノポリシロキサン(b)において、T3の割合が必要以上に高くなると、これとオルガノポリシロキサン(a)を含むハードコート層形成用組成物を用いて、硬化膜を形成させる際の熱硬化時に、適切な架橋反応が困難になるため、硬化膜を形成できなくなるおそれがあり、また最終的に十分な耐擦傷性を有するハードコート層を得ることができないことがある。 More preferable organopolysiloxane (b) is that each silicon-containing bond unit represented by T0, T1, T2 and T3 is in a ratio of the number of these units, T0: T1: T2: T3 = 0 to 5: 0 to An organopolysiloxane in the range of 50: 5 to 70:10 to 90. A large ratio of T0 and T1 in the organopolysiloxane (b) generally indicates that the hydrolysis reaction or condensation reaction of the raw material monomer was insufficient when the organopolysiloxane was produced. In the organopolysiloxane (b), when the ratio of T0 and T1 is large, the composition for forming a hard coat layer containing this and the organopolysiloxane (a) is used for heat curing when forming a cured film. The occurrence of cracks tends to increase. In general, when the organopolysiloxane is produced, if the condensation reaction of the raw material monomer is allowed to proceed excessively, the ratio of T3 of the resulting organopolysiloxane increases. In the organopolysiloxane (b), when the ratio of T3 becomes higher than necessary, the composition for forming a hard coat layer containing this and the organopolysiloxane (a) is used, and at the time of thermosetting when forming a cured film, Since appropriate crosslinking reaction becomes difficult, a cured film may not be formed, and a hard coat layer having sufficient scratch resistance may not be finally obtained.
 オルガノポリシロキサン(b)としては、オルガノポリシロキサン(a)と同様にTモノマー等から製造することができる。また、市販のオルガノポリシロキサンをそのままオルガノポリシロキサン(b)として使用することができる。オルガノポリシロキサン(b)として使用することができる市販のオルガノポリシロキサンとしては、例えば、下記のオルガノポリシロキサンがある。なお、「trace」の表記は、核磁気共鳴分析装置、日本電子株式会社製、ECP400(商品名)を用いて29Si-NMRのピーク面積比を測定した際に、0.01以上0.25以下であることを示す(以下同様)。 The organopolysiloxane (b) can be produced from a T monomer or the like in the same manner as the organopolysiloxane (a). Commercially available organopolysiloxane can be used as organopolysiloxane (b) as it is. Examples of commercially available organopolysiloxanes that can be used as the organopolysiloxane (b) include the following organopolysiloxanes. In addition, the notation of “trace” is 0.01 or more and 0.25 when the 29 Si-NMR peak area ratio is measured using an ECP400 (trade name) manufactured by JEOL Ltd., manufactured by JEOL Ltd. Indicates the following (the same applies hereinafter).
 トスガード510(商品名、モメンティブ・パフォーマンス・マテリアルズ社製);分子量:Mn=1370、Mw=1380、Mw/Mn=1.01。(T単位の個数):(M単位とD単位とQ単位のそれぞれの個数の総量)=99.9以上:ND。T0:T1:T2:T3=ND:2:36:62。 Tosgard 510 (trade name, manufactured by Momentive Performance Materials); molecular weight: Mn = 1370, Mw = 1380, Mw / Mn = 1.01. (Number of T units): (Total amount of each of M units, D units, and Q units) = 99.9 or more: ND. T0: T1: T2: T3 = ND: 2: 36: 62.
 KP851(商品名、信越化学工業社製);分子量:Mn=1390、Mw=1400、Mw/Mn=1.01、(T単位の個数):(M単位とD単位とQ単位のそれぞれの個数の総量)=99.9以上:ND。T0:T1:T2:T3=trace:21:58:21。 KP851 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.); molecular weight: Mn = 1390, Mw = 1400, Mw / Mn = 1.01, (number of T units): (number of M units, D units, and Q units) Total amount) = 99.9 or more: ND. T0: T1: T2: T3 = trace: 21: 58: 21.
 上記オルガノポリシロキサン(a)に対するオルガノポリシロキサン(b)の含有量の割合は、質量比で、1.5倍~30倍であることが好ましく、2倍~15倍であることがより好ましい。このような割合で両者を含有すれば、硬化反応により形成されるオルガノポリシロキサン3次元架橋構造が、オルガノポリシロキサン(b)主体の3次元架橋構造中に(a)成分オルガノポリシロキサンが部分的に組み込まれた構成となり、最終的に得られるハードコート層の耐擦傷性を良好なものとすることができる。 The ratio of the content of the organopolysiloxane (b) to the organopolysiloxane (a) is preferably 1.5 to 30 times, more preferably 2 to 15 times in terms of mass ratio. If both are contained at such a ratio, the organopolysiloxane three-dimensional crosslinked structure formed by the curing reaction is partially composed of the (a) component organopolysiloxane in the organopolysiloxane (b) -based three-dimensional crosslinked structure. Thus, the scratch resistance of the finally obtained hard coat layer can be improved.
 本発明に用いられるハードコート層形成用組成物は、上記硬化性のオルガノポリシロキサン、好ましくはオルガノポリシロキサン(T)を含有する。ハードコート層形成用組成物におけるオルガノポリシロキサンの含有量は、溶媒を除く組成成分(以下、「不揮発成分」ともいう)全量に対して、50質量%~100質量%であることが好ましく、60質量%~95質量%であることがより好ましい。この不揮発成分の量は、150℃で45分間保持した後の質量変化に基づいて測定される。
 本発明において、オルガノポリシロキサンを主成分として含有するハードコート層形成用組成物とは、溶媒を除いたハードコート層形成用組成物の各成分の合量に対し、オルガノポリシロキサンを50%以上含有することを示す。
The composition for forming a hard coat layer used in the present invention contains the curable organopolysiloxane, preferably organopolysiloxane (T). The content of the organopolysiloxane in the composition for forming a hard coat layer is preferably 50% by mass to 100% by mass with respect to the total amount of the composition components excluding the solvent (hereinafter also referred to as “nonvolatile components”). More preferably, it is from 95% by mass. The amount of this non-volatile component is measured based on the mass change after being held at 150 ° C. for 45 minutes.
In the present invention, the composition for forming a hard coat layer containing an organopolysiloxane as a main component is 50% or more of the organopolysiloxane with respect to the total amount of each component of the composition for forming a hard coat layer excluding the solvent. It shows that it contains.
(任意成分)
 ハードコート層形成用組成物には、上記オルガノポリシロキサンの他に、種々の添加剤が含まれていてもよい。例えば、ハードコート層の耐擦傷性をさらに向上させるためには、シリカ微粒子を配合することが好ましく、コロイダルシリカを配合することがより好ましい。なお、コロイダルシリカとは、シリカ微粒子が、水またはメタノール、エタノール、イソブタノール、プロピレングリコールモノメチルエーテル等の有機溶媒中に分散されたものをいう。
(Optional component)
The hard coat layer forming composition may contain various additives in addition to the organopolysiloxane. For example, in order to further improve the scratch resistance of the hard coat layer, it is preferable to add silica fine particles, and it is more preferable to add colloidal silica. Colloidal silica refers to silica fine particles dispersed in water or an organic solvent such as methanol, ethanol, isobutanol, or propylene glycol monomethyl ether.
 シリカ微粒子は、上記オルガノポリシロキサンの製造過程で、原料のモノマーに配合することもできる。コロイダルシリカを含む反応系中でオルガノポリシロキサンを製造することにより、シリカ微粒子を含むオルガノポリシロキサンが得られる。例えば、コロイダルシリカにTモノマーと必要により水や酸触媒を添加し、コロイダルシリカの分散媒中で前記のようにオルガノポリシロキサンを製造することができる。このようにして得られたオルガノポリシロキサンを使用して、シリカ微粒子を含む本発明に用いるハードコート層形成用組成物を製造することができる。 Silica fine particles can also be blended with the raw material monomer in the process of producing the organopolysiloxane. By producing organopolysiloxane in a reaction system containing colloidal silica, an organopolysiloxane containing silica fine particles can be obtained. For example, a T monomer and, if necessary, water or an acid catalyst are added to colloidal silica, and the organopolysiloxane can be produced in the colloidal silica dispersion medium as described above. Using the organopolysiloxane thus obtained, a composition for forming a hard coat layer used in the present invention containing silica fine particles can be produced.
 本発明に用いるシリカ微粒子は、平均粒径(BET法)が1nm~100nmであることが好ましい。平均粒径が100nmを超えると、粒子が光を乱反射するため、得られるハードコート層の曇価(ヘーズ)の値が大きくなり、光学品質上好ましくない場合がある。平均粒径は5nm~40nmであることがより好ましい。これは、ハードコート層に耐擦傷性を付与しつつ、かつハードコート層の透明性を保持するためである。また、コロイダルシリカは水分散型および有機溶剤分散型のいずれであってもよいが、好ましくは水分散型である。酸性水溶液中で分散させたコロイダルシリカを用いることがより好ましい。コロイダルシリカには、アルミナゾル、チタンゾル、セリアゾル等のシリカ微粒子以外の無機質微粒子を含有させることもできる。 The silica fine particles used in the present invention preferably have an average particle size (BET method) of 1 nm to 100 nm. If the average particle diameter exceeds 100 nm, the particles diffusely reflect light, and thus the value of the haze value of the resulting hard coat layer increases, which may be undesirable in terms of optical quality. The average particle size is more preferably 5 nm to 40 nm. This is for imparting scratch resistance to the hard coat layer and maintaining the transparency of the hard coat layer. The colloidal silica may be either water-dispersed or organic solvent-dispersed, but is preferably water-dispersed. It is more preferable to use colloidal silica dispersed in an acidic aqueous solution. Colloidal silica may contain inorganic fine particles other than silica fine particles such as alumina sol, titanium sol, and ceria sol.
 シリカ微粒子の含有量としては、溶媒を除く組成成分(不揮発成分)全量に対して、1質量%~50質量%となる量が好ましく、5質量%~40質量%となる量がより好ましい。シリカ微粒子の含有量が1質量%未満では、得られるハードコート層において十分な耐擦傷性を確保できないことがあり、また、含有量が50質量%を越えると、不揮発成分中のオルガノポリシロキサンの割合が低くなりすぎて、オルガノポリシロキサンの熱硬化による硬化膜形成が困難になる、最終的に得られるハードコート層にクラックが発生する、シリカ微粒子同士の凝集が起こってハードコート層の透明性が低下する等の問題が発生するおそれがある。 The content of the silica fine particles is preferably 1% by mass to 50% by mass, and more preferably 5% by mass to 40% by mass with respect to the total amount of the composition components (nonvolatile components) excluding the solvent. If the content of the silica fine particles is less than 1% by mass, sufficient scratch resistance may not be ensured in the obtained hard coat layer, and if the content exceeds 50% by mass, the organopolysiloxane in the nonvolatile component may not be secured. The ratio becomes too low, making it difficult to form a cured film by thermal curing of the organopolysiloxane, cracks in the final hard coat layer, and aggregation of silica particles, resulting in transparency of the hard coat layer There is a risk of problems such as lowering.
 ハードコート層形成用組成物には、また、塗工性向上の目的で、消泡剤や粘性調整剤等の添加剤を配合してもよく、プライマー層への密着性向上の目的で密着性付与剤等の添加剤が配合してもよく、さらに、塗工性および得られる塗膜の平滑性を向上させる目的でレベリング剤等の添加剤を配合してもよい。これらの添加剤の配合量は、オルガノポリシロキサン100質量部に対して、各添加剤成分毎に0.01質量部~2質量部となる量が好ましい。ハードコート層形成用組成物には、また、本発明の目的を損なわない範囲で、染料、顔料、フィラー等を配合してもよい。 Additives such as antifoaming agents and viscosity modifiers may be added to the hard coat layer forming composition for the purpose of improving coatability, and adhesion for improving the adhesion to the primer layer. Additives such as imparting agents may be blended, and additives such as leveling agents may be blended for the purpose of improving coatability and smoothness of the resulting coating film. The amount of these additives is preferably 0.01 to 2 parts by mass for each additive component with respect to 100 parts by mass of the organopolysiloxane. In the composition for forming a hard coat layer, a dye, a pigment, a filler, and the like may be blended within a range that does not impair the object of the present invention.
 ハードコート層形成用組成物には、さらに、硬化触媒を配合してもよい。硬化触媒としては、例えば、脂肪族カルボン酸(ギ酸、酢酸、プロピオン酸、酪酸、乳酸、酒石酸、コハク酸等)のリチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩;ベンジルトリメチルアンモニウム塩、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩等の四級アンモニウム塩;アルミニウム、チタン、セリウム等の金属アルコキシドやキレート;過塩素酸アンモニウム、塩化アンモニウム、硫酸アンモニウム、酢酸ナトリウム、イミダゾール類およびその塩、トリフルオロメチルスルホン酸アンモニウム、ビス(トルフルオルメチルスルホニル)ブロモメチルアンモニウム等が挙げられる。硬化触媒の配合量は、オルガノポリシロキサン100質量部に対して、好ましくは0.01質量部~10質量部であり、より好ましくは0.1質量部~5質量部である。硬化触媒の配合量が0.01質量部未満では十分な硬化速度が得られにくく、10質量部を超えるとハードコート層形成用組成物の保存安定性が低下したり、沈殿物を生じたりすることがある。 The hard coat layer forming composition may further contain a curing catalyst. Examples of the curing catalyst include lithium metal salts such as aliphatic carboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, lactic acid, tartaric acid, succinic acid, etc.); alkali metal salts such as sodium salts and potassium salts; benzyltrimethylammonium salts, tetra Quaternary ammonium salts such as methylammonium salt and tetraethylammonium salt; metal alkoxides and chelates such as aluminum, titanium and cerium; ammonium perchlorate, ammonium chloride, ammonium sulfate, sodium acetate, imidazoles and their salts, trifluoromethylsulfonic acid Examples include ammonium and bis (toluomethylsulfonyl) bromomethylammonium. The amount of the curing catalyst is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the organopolysiloxane. When the blending amount of the curing catalyst is less than 0.01 parts by mass, it is difficult to obtain a sufficient curing rate, and when it exceeds 10 parts by mass, the storage stability of the composition for forming a hard coat layer is reduced or a precipitate is formed. Sometimes.
 また、ハードコート層形成用組成物には、樹脂基板の黄変を抑制するために、紫外線吸収剤を配合することが好ましい。紫外線吸収剤としては、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾイミダゾール系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、サリシレート系紫外線吸収剤、ベンジリデンマロネート系紫外線吸収剤、トリアジン系紫外線吸収剤等が挙げられる。これらの紫外線吸収剤は、1種を単独で使用してもよく2種以上を併用してもよい。また、最終的に得られるハードコート層から上記紫外線吸収剤がブリードアウトするのを抑制するために、トリアルコキシシリル基を有する紫外線吸収剤を用いてもよい。トリアルコキシシリル基を有する紫外線吸収剤は、オルガノポリシロキサンの熱硬化による硬化膜形成の際に、加水分解反応により水酸基に変換され、次いで脱水縮合反応により硬化膜中に組み込まれ、結果として、紫外線吸収剤のハードコート層からのブリードアウトを抑制することができるものである。トリアルコキシシリル基としては、具体的には、トリメトキシシリル基、トリエトキシシリル基等が挙げられる。ハードコート層形成用組成物中の紫外線吸収剤の配合量は、オルガノポリシロキサン100質量部に対して、0.1質量部~50質量部であることが好ましく、0.1質量部~30質量部であることが特に好ましい。 In addition, it is preferable to add an ultraviolet absorber to the hard coat layer forming composition in order to suppress yellowing of the resin substrate. As UV absorbers, benzophenone UV absorbers, benzotriazole UV absorbers, benzimidazole UV absorbers, cyanoacrylate UV absorbers, salicylate UV absorbers, benzylidene malonate UV absorbers, triazine UV An absorbent etc. are mentioned. These ultraviolet absorbers may be used alone or in combination of two or more. Further, in order to prevent the ultraviolet absorber from bleeding out from the finally obtained hard coat layer, an ultraviolet absorber having a trialkoxysilyl group may be used. The ultraviolet absorber having a trialkoxysilyl group is converted into a hydroxyl group by a hydrolysis reaction during the formation of a cured film by thermal curing of the organopolysiloxane, and then incorporated into the cured film by a dehydration condensation reaction. Bleeding out of the absorbent from the hard coat layer can be suppressed. Specific examples of the trialkoxysilyl group include a trimethoxysilyl group and a triethoxysilyl group. The blending amount of the ultraviolet absorber in the hard coat layer forming composition is preferably 0.1 to 50 parts by mass, and 0.1 to 30 parts by mass with respect to 100 parts by mass of the organopolysiloxane. Part is particularly preferred.
 さらに、本発明においては、常温でのハードコート層形成用組成物のゲル化を防止して、保存安定性を高めるために、ハードコート層形成用組成物のpHを3.0~6.0に調整することが好ましく、4.0~5.5に調整することがより好ましい。pHが2.0以下あるいは7.0以上の条件下では、ケイ素原子に結合した水酸基が極めて不安定であるため保存に適さない。pH調整の手法としては、酸の添加、硬化触媒の含有量の調整等が挙げられる。酸としては、塩酸、硫酸、硝酸、リン酸、亜硝酸、過塩素酸、スルファミン酸等の無機酸;ギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、コハク酸、マレイン酸、乳酸、p-トルエンスルホン酸等の有機酸が使用される。 Further, in the present invention, in order to prevent gelation of the composition for forming a hard coat layer at room temperature and to enhance the storage stability, the pH of the composition for forming a hard coat layer is set to 3.0 to 6.0. It is preferable to adjust to 4.0 to 5.5, and it is more preferable to adjust to 4.0 to 5.5. Under conditions where the pH is 2.0 or lower or 7.0 or higher, the hydroxyl group bonded to the silicon atom is extremely unstable, and thus is not suitable for storage. Examples of the pH adjustment method include addition of an acid and adjustment of the content of the curing catalyst. Acids include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, nitrous acid, perchloric acid, sulfamic acid; formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, maleic acid, lactic acid, p-toluene Organic acids such as sulfonic acids are used.
 ハードコート層形成用組成物は、通常、必須成分であるオルガノポリシロキサン、および任意成分である種々の添加剤等が溶媒中に溶解、分散した形態で調製される。前述したハードコート層形成用組成物中の全不揮発成分が溶媒中に安定に溶解または分散することが重要であり、そのために溶媒は、少なくとも20質量%以上、好ましくは50質量%以上のアルコールを含有することが好ましい。 The composition for forming a hard coat layer is usually prepared in a form in which organopolysiloxane, which is an essential component, and various additives, which are optional components, are dissolved and dispersed in a solvent. It is important that all the non-volatile components in the hard coat layer-forming composition described above are stably dissolved or dispersed in the solvent. For this purpose, the solvent contains at least 20% by mass of alcohol, preferably 50% by mass or more. It is preferable to contain.
 このような溶媒に用いるアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、1-メトキシ-2-プロパノール、2-エトキシエタノール、ジアセトンアルコール、および2-ブトキシエタノール等が挙げられる。これらのなかでも、オルガノポリシロキサンの溶解性が良好な点、塗工性が良好な点から、沸点が80℃~160℃のアルコールが好ましい。具体的には、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、1-メトキシ-2-プロパノール、2-エトキシエタノール、ジアセトンアルコール、および2-ブトキシエタノールが好ましい。 Examples of alcohols used in such solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-methoxy-2-propanol, and 2-ethoxyethanol. , Diacetone alcohol, and 2-butoxyethanol. Among these, alcohols having a boiling point of 80 ° C. to 160 ° C. are preferable from the viewpoint of good solubility of the organopolysiloxane and good coating properties. Specifically, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-methoxy-2-propanol, 2-ethoxyethanol, diacetone alcohol, and 2 -Butoxyethanol is preferred.
 また、ハードコート層形成用組成物に用いる溶媒には、オルガノポリシロキサンを製造する際に、原料モノマー、例えばアルキルトリアルコキシシランを加水分解することに伴って発生する低級アルコール等や、水分散型コロイダルシリカ中の水で加水分解反応に関与しない水分、有機溶媒分散系のコロイダルシリカを使用した場合にはその分散有機溶媒も含まれる。 The solvent used in the composition for forming a hard coat layer includes, for example, a lower alcohol generated by hydrolyzing a raw material monomer, for example, an alkyltrialkoxysilane, in the production of an organopolysiloxane, a water dispersion type In the case of using water in colloidal silica that does not participate in the hydrolysis reaction, or colloidal silica in an organic solvent dispersion system, the dispersed organic solvent is also included.
 さらに、ハードコート層形成用組成物においては、上記以外の溶媒として、水/アルコールと混和することができるアルコール以外の他の溶媒を併用してもよい。このような溶媒としては、アセトン、アセチルアセトン等のケトン類;酢酸エチル、酢酸イソブチル等のエステル類;プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジイソプロピルエーテル等のエーテル類が挙げられる。 Furthermore, in the composition for forming a hard coat layer, a solvent other than the above may be used in combination with a solvent other than alcohol that can be mixed with water / alcohol. Examples of such a solvent include ketones such as acetone and acetylacetone; esters such as ethyl acetate and isobutyl acetate; ethers such as propylene glycol monomethyl ether, dipropylene glycol monomethyl ether and diisopropyl ether.
 ハードコート層形成用組成物において用いる溶媒の量は、ハードコート層形成用組成物中の全不揮発成分100質量部に対して、50質量部~3000質量部であることが好ましく、150質量部~2000質量部であることがより好ましい。 The amount of the solvent used in the hard coat layer forming composition is preferably 50 parts by weight to 3000 parts by weight, and more preferably 150 parts by weight to 100 parts by weight with respect to 100 parts by weight of all nonvolatile components in the hard coat layer forming composition. More preferably, it is 2000 parts by mass.
 ハードコート層形成用組成物は、以上説明した各種成分を通常の方法で、均一に混合することにより得られる。 The composition for forming a hard coat layer can be obtained by uniformly mixing the various components described above by an ordinary method.
[ハードコート層の形成]
 ハードコート層は、上記のようにして調製したハードコート層形成用組成物を、コロナ放電処理およびシランカップリング剤処理が、この順になされたプライマー層上に塗布して塗膜を形成した後、塗膜を加熱硬化させることにより形成される。
[Formation of hard coat layer]
The hard coat layer was prepared by applying the composition for forming a hard coat layer prepared as described above onto the primer layer subjected to the corona discharge treatment and the silane coupling agent treatment in this order. It is formed by heat-curing the coating film.
 ハードコート層形成用組成物をプライマー層上に塗布する方法としては、特に限定されないが、スプレーコート法、ディップコート法、フローコート法、スピンコート法等の通常の塗工方法が使用される。用いる塗工方法に応じて、ハードコート層形成用組成物の粘度、固形分濃度等を適宜調整することが好ましい。 The method for applying the hard coat layer forming composition onto the primer layer is not particularly limited, and a normal coating method such as a spray coating method, a dip coating method, a flow coating method, or a spin coating method is used. It is preferable to appropriately adjust the viscosity, solid content concentration and the like of the composition for forming a hard coat layer according to the coating method to be used.
 ハードコート層形成用組成物をプライマー層の表面に塗布して形成される塗膜の厚さは、組成物における固形分濃度の影響を受ける。硬化後の膜厚が所定の範囲内になるように、固形分濃度を勘案する等して、適宜調整することが好ましい。 The thickness of the coating film formed by applying the hard coat layer forming composition to the surface of the primer layer is affected by the solid content concentration in the composition. It is preferable to adjust the solid content appropriately so that the film thickness after curing is within a predetermined range.
 プライマー層上に施される硬化膜の膜厚は、以下に説明する硬化後の状態で、0.1μm~20μmであることが好ましく、1μm~10μmであることがより好ましく、2μm~10μmであることが特に好ましい。ハードコート層の膜厚が小さすぎると、十分な耐擦傷性、耐候性を確保することが困難になるおそれがある。一方、ハードコート層の膜厚が大きすぎると、クラックや剥離が発生しやすくなるおそれがある。したがって、十分な耐擦傷性、耐候性を確保しつつ、クラックや剥離の発生を抑制するためには、硬化膜の膜厚(すなわち、ハードコート層の膜厚)は、0.1μm~20μmであることが好ましい。なお、この膜厚は、樹脂基板のような基板上にハードコート層を単独で成膜した時の厚さを意味する。 The film thickness of the cured film applied on the primer layer is preferably 0.1 μm to 20 μm, more preferably 1 μm to 10 μm, and more preferably 2 μm to 10 μm in the state after curing described below. It is particularly preferred. If the thickness of the hard coat layer is too small, it may be difficult to ensure sufficient scratch resistance and weather resistance. On the other hand, if the thickness of the hard coat layer is too large, cracks and peeling may occur easily. Therefore, in order to suppress the occurrence of cracks and peeling while ensuring sufficient scratch resistance and weather resistance, the thickness of the cured film (that is, the thickness of the hard coat layer) is 0.1 μm to 20 μm. Preferably there is. This film thickness means the thickness when a hard coat layer is formed alone on a substrate such as a resin substrate.
 このようにして形成されたハードコート層形成用組成物の塗膜に、次いで、熱処理を施すことによって、上記オルガノポリシロキサンを硬化させる。なお、本明細書において、「ハードコート層形成用組成物が硬化する」ということがあるが、これはハードコート層形成用組成物に含まれるオルガノポリシロキサンが硬化することをいう。また、この熱処理に先立って、必要に応じて乾燥の操作を設けてもよい。 The organopolysiloxane is cured by subjecting the coating film of the hard coat layer forming composition thus formed to a heat treatment. In the present specification, “the hard coat layer forming composition is sometimes cured” means that the organopolysiloxane contained in the hard coat layer forming composition is cured. Prior to this heat treatment, a drying operation may be provided as necessary.
 乾燥は、上記のようにしプライマー層上に形成された塗膜を、通常、常温または樹脂基板の熱変形温度未満の温度条件下に一定時間置くことにより、塗膜中の溶媒の一部または全部が除去される操作である。溶媒の乾燥条件としては、例えば、0℃~60℃の温度で、10分~10時間保持する条件が挙げられる。また、減圧度を調整しながら真空乾燥等により溶媒の除去を行ってもよい。 For drying, the coating film formed on the primer layer as described above is usually placed at a room temperature or under a temperature condition lower than the thermal deformation temperature of the resin substrate for a certain period of time, whereby a part or all of the solvent in the coating film is used. Is an operation to be removed. Examples of the solvent drying conditions include a condition of holding at a temperature of 0 ° C. to 60 ° C. for 10 minutes to 10 hours. Alternatively, the solvent may be removed by vacuum drying or the like while adjusting the degree of vacuum.
 このような任意に行われる乾燥の後、塗膜に対し熱処理を施して硬化膜を形成する。この熱処理は、ハードコート層形成用組成物を縮合硬化させるために通常行われる処理と同様の処理とすることができる。 After such optional drying, the coating film is subjected to heat treatment to form a cured film. This heat treatment can be a treatment similar to the treatment usually performed to condense and cure the hard coat layer forming composition.
 熱処理は、樹脂基板の耐熱性に問題がない範囲において高い温度で行うことが、より早く硬化を完了させることができ好ましい。しかし、例えば、1価の有機基としてメチル基を有するオルガノポリシロキサンを用いた場合、加熱硬化時の温度が250℃以上では、熱分解によりメチル基が脱離する。したがって、加熱温度としては、50℃~200℃が好ましく、80℃~160℃がより好ましく、100℃~140℃が特に好ましい。加熱手段としては、自然対流型恒温器、定温型乾燥器、熱風循環式乾燥器、送風型乾燥器、真空乾燥装置で加熱する方法等が用いられる。また、電気炉等も使用できる。さらに赤外線ランプを用いた加熱手段も適宜用いることが可能である。これらの加熱手段は、1種を使用してもよく2種以上を適宜組み合わせて使用してもよい。 It is preferable that the heat treatment is performed at a high temperature within a range where there is no problem with the heat resistance of the resin substrate because curing can be completed more quickly. However, for example, when an organopolysiloxane having a methyl group as a monovalent organic group is used, the methyl group is eliminated by thermal decomposition when the temperature during heat curing is 250 ° C. or higher. Accordingly, the heating temperature is preferably 50 ° C. to 200 ° C., more preferably 80 ° C. to 160 ° C., and particularly preferably 100 ° C. to 140 ° C. As a heating means, a natural convection type thermostat, a constant temperature drier, a hot air circulation drier, a blower drier, a method of heating with a vacuum drier, or the like is used. An electric furnace or the like can also be used. Furthermore, a heating means using an infrared lamp can be used as appropriate. These heating means may be used alone or in combination of two or more.
 熱処理時間は、塗膜を構成するハードコート層形成用組成物に含まれるオルガノポリシロキサンが十分に縮合硬化してシロキサン結合による3次元構造が形成されるような時間であれば特に制限されないが、10分間~4時間が好ましく、20分間~3時間がより好ましく、30分間~2時間が特に好ましい。
<トップコート層>
The heat treatment time is not particularly limited as long as the organopolysiloxane contained in the composition for forming a hard coat layer constituting the coating film is sufficiently condensed and cured to form a three-dimensional structure by siloxane bonds. 10 minutes to 4 hours are preferable, 20 minutes to 3 hours are more preferable, and 30 minutes to 2 hours are particularly preferable.
<Topcoat layer>
 本発明のハードコート被膜を有する樹脂基板においては、耐擦傷性、耐候性、膜強度等をさらに向上させるために、ハードコート層上に、主成分がSiOとなるトップコート層を施してもよい。主成分がSiOとなるトップコート層の形成方法としては、ハードコート層上にポリ(パーヒドロ)シラザンを塗工し硬化する手法や、蒸着、スパッタ等の手法を用いることができる。 In the resin substrate having the hard coat film of the present invention, in order to further improve the scratch resistance, weather resistance, film strength and the like, a top coat layer whose main component is SiO 2 may be applied on the hard coat layer. Good. As a method for forming the top coat layer whose main component is SiO 2 , a technique of applying poly (perhydro) silazane on the hard coat layer and curing it, or a technique such as vapor deposition or sputtering can be used.
<ハードコート被膜を有する樹脂基板>
 本発明のハードコート被膜を有する樹脂基板においては、ハードコート層がコロナ放電処理およびシランカップリング剤処理が順に施されたプライマー層の表面に設けられているため、従来のような表面処理が施されていないプライマー層を介してハードコート層が設けられたものに比べ、ハードコート層とプライマー層の耐候密着性、が向上する。この結果、樹脂基板に対しハードコート層が有する良好な耐擦傷性、高い耐候性を付与することができる。
<Resin substrate having a hard coat film>
In the resin substrate having the hard coat film of the present invention, since the hard coat layer is provided on the surface of the primer layer subjected to the corona discharge treatment and the silane coupling agent treatment in order, the conventional surface treatment is performed. Compared to the case where the hard coat layer is provided via a primer layer that is not provided, the weather resistance adhesion between the hard coat layer and the primer layer is improved. As a result, good scratch resistance and high weather resistance of the hard coat layer can be imparted to the resin substrate.
 なお、上記のような表面処理によりプライマー層とハードコート層の密着性が向上するのは、次のような理由からと考えられる。すなわち、プライマー層をコロナ放電処理することによって、前述したように、プライマー層表面に高エネルギーの電子やイオンが衝突してラジカルやイオンが生成し、これに周囲のオゾン、酸素、窒素、水分等が反応して、カルボニル基、カルボキシル基、ヒドロキシル基、シアノ基等の極性官能基が導入される。次いで、このように極性官能基が導入されたプライマー層表面に、シランカップリング剤処理を行うことによって、導入された極性官能基にシランカップリング剤の反応性官能基が反応して化学的に結合し、その後、ハードコート層を設ける際に、シランカップリング剤の加水分解性シリル基とハードコート層を構成するオルガノポリシロキサンのシラノール基または加水分解性シリル基が、加水分解反応を経て、脱水縮合する。プライマー層に導入された極性官能基とシランカップリング剤の反応性官能基の結合、シランカップリング剤の加水分解性シリル基とオルガノポリシロキサンのシラノール基または加水分解性シリル基との結合はいずれも共有結合による強固な結合であり、水分によって結合が切断されることは少ない。したがって、高湿度条件下であってもハードコート層のプライマー層に対する密着性が低下することはない。一方、上記のような表面が施されていないプライマー層の場合、ハードコート層とは水素結合等によって結合しているだけである。水素結合による結合力は共有結合に比べはるかに弱く、水分によって容易に切断される。したがって、高湿度条件下にあってはハードコート層のプライマー層に対する密着性が低下する。このため、上記のような表面処理したプライマー層上にハードコート層を設けた本発明のハードコート被膜を有する樹脂基板においては、表面処理されていないプライマー層上にハードコート層を設けた従来のハードコート被膜を有する樹脂基板に比べ、高湿度条件下での耐候密着性が大きく向上すると考えられる。 The reason why the adhesion between the primer layer and the hard coat layer is improved by the surface treatment as described above is considered as follows. That is, by performing corona discharge treatment on the primer layer, as described above, high-energy electrons and ions collide with the surface of the primer layer to generate radicals and ions, and the surrounding ozone, oxygen, nitrogen, moisture, etc. React to introduce a polar functional group such as a carbonyl group, a carboxyl group, a hydroxyl group, or a cyano group. Next, the surface of the primer layer into which the polar functional group has been introduced in this manner is treated with a silane coupling agent, so that the reactive functional group of the silane coupling agent reacts with the introduced polar functional group and chemically. Then, when the hard coat layer is provided, the hydrolyzable silyl group of the silane coupling agent and the silanol group or hydrolyzable silyl group of the organopolysiloxane constituting the hard coat layer undergo a hydrolysis reaction, Dehydration condensation. Any bond between the polar functional group introduced into the primer layer and the reactive functional group of the silane coupling agent, and the bond between the hydrolyzable silyl group of the silane coupling agent and the silanol group or hydrolyzable silyl group of the organopolysiloxane Is a strong bond by a covalent bond, and the bond is rarely broken by moisture. Therefore, even under high humidity conditions, the adhesion of the hard coat layer to the primer layer does not decrease. On the other hand, in the case of a primer layer not provided with the surface as described above, it is only bonded to the hard coat layer by hydrogen bonding or the like. The bond strength due to hydrogen bonds is much weaker than covalent bonds and is easily cleaved by moisture. Therefore, the adhesiveness of the hard coat layer to the primer layer decreases under high humidity conditions. For this reason, in the resin substrate having the hard coat film of the present invention in which the hard coat layer is provided on the surface-treated primer layer as described above, the conventional hard coat layer is provided on the primer layer that is not surface-treated. Compared to a resin substrate having a hard coat film, it is considered that the weather resistance adhesion under a high humidity condition is greatly improved.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、例1~6が実施例であり、例7、8が比較例である。なお、オルガノポリシロキサンの分析は以下に示す方法により行った。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Examples 1 to 6 are examples, and examples 7 and 8 are comparative examples. The organopolysiloxane was analyzed by the following method.
(1)ケイ素原子結合水酸基の個数(B)/ケイ素原子結合アルコキシ基の個数(A)
 以下、実施例において用いたオルガノポリシロキサンは、ケイ素原子結合アルコキシ基として、ケイ素原子結合メトキシ基(SiO-CH)を有するもののみであったため、上記(B)/(A)として、以下の方法により求めたSi-OH/SiO-CHの比を用いた。赤外吸光分析装置(FT-IR、サーモフィッシャーサイエンティフィック社製、型式:Avatar/Nicolet FT-IR360)を用い、2860cm-1付近のSiO-CHに由来する吸収と900cm-1付近のSi-OHに由来する吸収の面積比からSi-OH/SiO-CHの比を求めた。
(1) Number of silicon atom-bonded hydroxyl groups (B) / Number of silicon atom-bonded alkoxy groups (A)
Hereinafter, since the organopolysiloxane used in the examples had only a silicon atom-bonded methoxy group (SiO—CH 3 ) as a silicon atom-bonded alkoxy group, the following (B) / (A) The ratio of Si—OH / SiO—CH 3 determined by the method was used. Infrared absorption spectrometer (FT-IR, Thermo Fisher Scientific Co., Model: Avatar / Nicolet FT-IR360) using, Si absorption and 900cm around -1 derived from SiO-CH 3 in the vicinity of 2860Cm -1 The ratio of Si—OH / SiO—CH 3 was determined from the area ratio of absorption derived from —OH.
(2)オルガノポリシロキサン中のケイ素原子の結合状態の解析
 ハードコート層形成用組成物が含有するオルガノポリシロキサン中のケイ素原子の結合状態、具体的には、M単位、D単位、T単位、Q単位の存在の割合、およびT0~T3の存在比を、核磁気共鳴分析装置(29Si-NMR:日本電子株式会社製、ECP400)を用いて、29Si-NMRのピーク面積比からそれぞれ求めた。測定条件はポリテトラフルオロエチレン(PTFE)製10mmφ試料管使用、プローブ:T10、共鳴周波数79.42MHz、パルス幅10μsec、待ち時間20sec、積算回数1500回、緩和試薬:Cr(acac)を0.1質量%、外部標準試料:テトラメチルシランである。また、各構造に由来する29Si-NMRの化学シフトは、メチル系オルガノポリシロキサンの場合、以下のとおりである。
(M単位~Q単位)
   M単位:15ppm~5ppm、
   D単位:-15ppm~-25ppm、
   T単位:-35ppm~-75ppm、
   Q単位:-90ppm~-130ppm。
(T0~T3)
   T0:-40ppm~-41ppm、
   T1:-49ppm~-50ppm、
   T2:-57ppm~-59ppm、
   T3:-66ppm~-70ppm。
(2) Analysis of bonding state of silicon atom in organopolysiloxane Bonding state of silicon atom in organopolysiloxane contained in the composition for forming a hard coat layer, specifically, M unit, D unit, T unit, The proportion of Q units and the ratio of T0 to T3 were determined from the 29 Si-NMR peak area ratio using a nuclear magnetic resonance analyzer ( 29 Si-NMR: ECP400, manufactured by JEOL Ltd.). It was. The measurement conditions were a polytetrafluoroethylene (PTFE) 10 mmφ sample tube, a probe: T10, a resonance frequency of 79.42 MHz, a pulse width of 10 μsec, a waiting time of 20 sec, an accumulation count of 1500 times, a relaxation reagent: Cr (acac) 3 of 0. 1% by mass, external standard sample: tetramethylsilane. The chemical shift of 29 Si-NMR derived from each structure is as follows in the case of methyl-based organopolysiloxane.
(M unit to Q unit)
M unit: 15 ppm to 5 ppm,
D unit: −15 ppm to −25 ppm,
T unit: -35 ppm to -75 ppm,
Q unit: -90 ppm to -130 ppm.
(T0 to T3)
T0: −40 ppm to −41 ppm,
T1: -49 ppm to -50 ppm,
T2: -57 ppm to -59 ppm,
T3: -66 ppm to -70 ppm.
(3)数平均分子量Mn、質量平均分子量Mw、および分散度Mw/Mn
 ゲルパーミエーションクロマトグラフィー(GPC、Waters社製のWaters2695、RI検出、カラム:Styragel ガードカラム+HR1+HR4+HR5E、溶離液:クロロホルム)によって求めた。
(3) Number average molecular weight Mn, mass average molecular weight Mw, and dispersity Mw / Mn
It was determined by gel permeation chromatography (GPC, Waters 2695 manufactured by Waters, RI detection, column: Styragel guard column + HR1 + HR4 + HR5E, eluent: chloroform).
[プライマー層形成用組成物の調製]
 ポリメタクリル酸メチル(PMMA)(Mn=120,000、Mw=340,000、Mw/Mn=2.8)と紫外線吸収剤ジベンゾレゾルシノール(DBR;クラリアント社製、吸光係数ε(350-380)ave:5.5)を、PMMA100質量部に対してDBRを10質量部の割合で配合し、1-メトキシ-2-プロパノール:ジアセトンアルコール=85:15(質量比)からなる混合溶媒に溶解し、不揮発分10質量%のプライマー層形成用組成物(Pr-1)を得た。
[Preparation of primer layer forming composition]
Polymethyl methacrylate (PMMA) (Mn = 120,000, Mw = 340,000, Mw / Mn = 2.8) and ultraviolet absorber dibenzoresorcinol (DBR; manufactured by Clariant, extinction coefficient ε (350-380) ave : 5.5) is mixed with 10 parts by weight of DBR with respect to 100 parts by weight of PMMA and dissolved in a mixed solvent of 1-methoxy-2-propanol: diacetone alcohol = 85: 15 (mass ratio). As a result, a primer layer forming composition (Pr-1) having a nonvolatile content of 10% by mass was obtained.
 なお、ポリメタクリル酸メチルのMn、Mw、およびMw/Mnは、ゲルパーミエーションクロマトグラフィー(GPC、東ソー社製のHLC-8220GPC、RI検出、カラム:TSKguardcolum SuperHZ-L+TSKgel SuperHZ4000+HZ3000+HZ2500+HZ2000、溶離液:THF)によって求めた。 Mn, Mw, and Mw / Mn of polymethyl methacrylate are gel permeation chromatography (GPC, HLC-8220GPC manufactured by Tosoh Corporation, RI detection, column: TSK guard column Super HZ-L + TSKgel Super HZ 4000 + HZ 3000 + HZ 2500 + HZ 2000), eluent: THF Asked.
[ハードコート層形成用組成物の調製]
 0.2Lのフラスコに、メチル系シリコーンレジンKR-500(信越化学工業社製 商品名;Si-OH基由来のピークはFT-IRにより確認されず、実質SiO-CHのみである。各T単位の存在比T0:T1:T2:T3=ND:15:58:27、Mn=700、Mw=1240、Mw/Mn=1.77)10gと1-ブタノール10gを加えてよく撹拌し、さらに酢酸10gとイオン交換水10gを加えてよく撹拌した。この溶液を40℃で1時間撹拌し、オルガノポリシロキサン(a)組成物(MSi-1)を得た。
[Preparation of composition for forming hard coat layer]
In a 0.2 L flask, methyl silicone resin KR-500 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd .; the peak derived from the Si—OH group was not confirmed by FT-IR, but only substantially SiO—CH 3 . Unit abundance ratio T0: T1: T2: T3 = ND: 15: 58: 27, Mn = 700, Mw = 1240, Mw / Mn = 1.77) 10 g and 1-butanol 10 g were added and stirred well. Acetic acid 10 g and ion-exchanged water 10 g were added and stirred well. This solution was stirred at 40 ° C. for 1 hour to obtain an organopolysiloxane (a) composition (MSi-1).
 上記オルガノポリシロキサン(a)について、FT-IRにより、原料であるKR-500との比較を行ったところ、SiO-CH基由来のピークの減少およびSi-OH基由来のピークの出現を確認した。FT-IRのピーク面積比から求めたオルガノポリシロキサン(a)のSi-OH/SiO-CHの比は41.0であった。オルガノポリシロキサン(a)はT単位のみからなり、29Si-NMRの化学シフトから求めた各T単位の存在比は、T0:T1:T2:T3=ND:1.1:30.1:68.8であった。また、Mnは520、Mwは1150、Mw/Mnは2.22であった。 When the organopolysiloxane (a) was compared with the raw material KR-500 by FT-IR, it was confirmed that the peak derived from the SiO—CH 3 group decreased and the peak derived from the Si—OH group appeared. did. The ratio of Si—OH / SiO—CH 3 of the organopolysiloxane (a) obtained from the peak area ratio of FT-IR was 41.0. Organopolysiloxane (a) consists of only T units, and the abundance ratio of each T unit determined from the chemical shift of 29 Si-NMR is T0: T1: T2: T3 = ND: 1.1: 30.1: 68. .8. Moreover, Mn was 520, Mw was 1150, and Mw / Mn was 2.22.
 また、1Lのフラスコに、約30nmの平均粒子径をもつ水分散コロイダルシリカ(pH3.1、固形分20質量%)167gと酢酸14gを仕込み、さらにメチルトリメトキシシラン136gを添加した。1時間撹拌したところ、この混合物のpHは4.5で安定化した。この混合物を25℃で4日間熟成して、部分加水分解縮合させ、オルガノポリシロキサン(b)を含む組成物を得た。 Further, 167 g of water-dispersed colloidal silica (pH 3.1, solid content 20 mass%) having an average particle diameter of about 30 nm and 14 g of acetic acid were added to a 1 L flask, and 136 g of methyltrimethoxysilane was further added. Upon stirring for 1 hour, the pH of the mixture stabilized at 4.5. This mixture was aged at 25 ° C. for 4 days and partially hydrolyzed and condensed to obtain a composition containing organopolysiloxane (b).
 この組成物は不揮発成分が40質量%で、含有するオルガノポリシロキサン(b)はT単位を主とした結合構造(T単位の個数:M単位とD単位とQ単位のそれぞれの個数の総量=100:0)をもち、29Si-NMRの化学シフトから求めた各T単位の存在比は、T0:T1:T2:T3=ND:2:54:44であった。オルガノポリシロキサン(b)には、モノマー状のT0体[R-Si(OH)](Rは1価の有機基)がほぼ存在せず、原料のメチルトリメトキシシランはオリゴマー状のオルガノポリシロキサンにほぼ完全に転換されていることが確認された。オルガノポリシロキサン(b)のMnは400、Mwは670、Mw/Mnは1.68であった。 This composition has a non-volatile component of 40% by mass, and the organopolysiloxane (b) contained has a bond structure mainly composed of T units (the number of T units: the total number of M units, D units, and Q units). The abundance ratio of each T unit obtained from the chemical shift of 29 Si-NMR was T0: T1: T2: T3 = ND: 2: 54: 44. In the organopolysiloxane (b), there is almost no monomeric T0 form [R—Si (OH) 3 ] (R is a monovalent organic group), and the raw material methyltrimethoxysilane is an oligomeric organopolysiloxane. It was confirmed that it was almost completely converted to siloxane. Mn of organopolysiloxane (b) was 400, Mw was 670, and Mw / Mn was 1.68.
 上記で得られたオルガノポリシロキサン(b)100質量部に、ベンゾフェノン系紫外線吸収剤4質量部を加え、25℃で24時間以上熟成した。希釈溶媒として混合溶媒(1-ブタノール:イソプロパノール:メタノール:1-メトキシ-2-プロパノール=40:40:15:5(質量比))を用いて、不揮発分25質量%(150℃、45分)、粘度4.4mPa・sのオルガノポリシロキサン(b)組成物(PSi-1)を調製した。 4 parts by mass of a benzophenone-based ultraviolet absorber was added to 100 parts by mass of the organopolysiloxane (b) obtained above and aged at 25 ° C. for 24 hours or more. Using a mixed solvent (1-butanol: isopropanol: methanol: 1-methoxy-2-propanol = 40: 40: 15: 5 (mass ratio)) as a diluting solvent, a nonvolatile content of 25% by mass (150 ° C., 45 minutes) An organopolysiloxane (b) composition (PSi-1) having a viscosity of 4.4 mPa · s was prepared.
 上記オルガノポリシロキサン(a)組成物(MSi-1)80部に、上記オルガノポリシロキサン(b)組成物(PSi-1)20部を加え均一に混合して、ハードコート層形成用組成物(HC-1)を得た。 To 80 parts of the organopolysiloxane (a) composition (MSi-1), 20 parts of the organopolysiloxane (b) composition (PSi-1) are added and mixed uniformly. HC-1) was obtained.
[シランカップリング剤組成物の調製]
(調製例1)
 3-グリシドキシプロピルトリメトキシシランを2-プロパノールに溶解し、固形分0.25質量%のシランカップリング剤組成物(SiC-1)を調製した。
(調製例2)
 3-メルカプトプロピルトリメトキシシランを2-プロパノールに溶解し、固形分0.25質量%のシランカップリング剤組成物(SiC-2)を調製した。
(調製例3)
 3-イソシアネートプロピルトリメトキシシランをヘキサンに溶解し、固形分0.25質量%のシランカップリング剤組成物(SiC-3)を調製した。
[Preparation of Silane Coupling Agent Composition]
(Preparation Example 1)
3-Glycidoxypropyltrimethoxysilane was dissolved in 2-propanol to prepare a silane coupling agent composition (SiC-1) having a solid content of 0.25% by mass.
(Preparation Example 2)
3-Mercaptopropyltrimethoxysilane was dissolved in 2-propanol to prepare a silane coupling agent composition (SiC-2) having a solid content of 0.25% by mass.
(Preparation Example 3)
3-Isocyanatopropyltrimethoxysilane was dissolved in hexane to prepare a silane coupling agent composition (SiC-3) having a solid content of 0.25% by mass.
[ハードコート被膜を有する樹脂基板サンプルの作製]
(例1)
 厚さ3mmのポリカーボネート樹脂板(旭硝子社製 商品名 カーボグラス(登録商標)ポリッシュ クリヤー)に、プライマー層形成用組成物(Pr-1)をディップ方式でコーティングし、25℃で20分間放置した後、120℃で30分間加熱し硬化させて、膜厚4μmのプライマー層を形成した。
[Preparation of resin substrate sample having hard coat film]
(Example 1)
After a 3 mm thick polycarbonate resin plate (trade name Carboglass (registered trademark) polish clear, manufactured by Asahi Glass Co., Ltd.) is coated with the primer layer forming composition (Pr-1) by the dip method and allowed to stand at 25 ° C. for 20 minutes. Then, it was cured by heating at 120 ° C. for 30 minutes to form a primer layer having a thickness of 4 μm.
 次に、このプライマー層表面に対し、コロナ放電処理装置(ジェネレータ:TANTEC社製 HV2010、トランス:TANTEC社製 HT10-280IL、電極:SUSワイヤ(350mm幅))を用いて、電力100W、距離2mm、移動速度90mm/sの条件でコロナ放電処理を行った。この処理によるプライマー層表面に対する放電エネルギーは53W・min/mであった。 Next, with respect to the surface of the primer layer, using a corona discharge treatment device (generator: HV2010 manufactured by TANTEC, transformer: HT10-280IL manufactured by TANTEC, electrode: SUS wire (350 mm width)), power 100 W, distance 2 mm, Corona discharge treatment was performed under the condition of a moving speed of 90 mm / s. Discharge energy for the primer layer surface by this treatment was 53W · min / m 2.
 次に、コロナ放電処理したプライマー層上に、シランカップリング剤組成物(SiC-1)をディップ方式(引上げ速度10mm/s)でコーティングし、室温で30分乾燥した。 Next, a silane coupling agent composition (SiC-1) was coated on the primer layer subjected to the corona discharge treatment by a dipping method (pulling speed 10 mm / s) and dried at room temperature for 30 minutes.
 次に、コロナ放電処理およびシランカップリング剤処理を施したプライマー層上に、ハードコート層形成用組成物(HC-1)をディップ方式でコーティングし、25℃で20分間放置した後、120℃で1時間加熱し硬化させて、膜厚3μmのハードコート層を形成し、樹脂基板サンプルを作製した。この樹脂基板サンプルは、ポリカーボネート樹脂板の両面にプライマー層およびハードコート層を有する。 Next, a hard coat layer-forming composition (HC-1) was coated on the primer layer that had been subjected to corona discharge treatment and silane coupling agent treatment by a dip method, left at 25 ° C. for 20 minutes, and then 120 ° C. And cured for 1 hour to form a hard coat layer having a thickness of 3 μm, and a resin substrate sample was produced. This resin substrate sample has a primer layer and a hard coat layer on both sides of a polycarbonate resin plate.
(例2)
 プライマー層の膜厚を5μmとし、かつコロナ放電処理条件を、電力100W、移動速度30mm/sで、プライマー層表面に対する放電エネルギーが159W・min/mになるようにした以外は例1と同様にして、樹脂基板サンプルを作製した。
(Example 2)
Example 1 except that the primer layer thickness was 5 μm, the corona discharge treatment conditions were such that the power was 100 W, the moving speed was 30 mm / s, and the discharge energy for the primer layer surface was 159 W · min / m 2. Thus, a resin substrate sample was produced.
(例3)
 シランカップリング剤組成物(SiC-1)に代えて、シランカップリング剤組成物(SiC-2)を用いた以外は例1と同様にして、樹脂基板サンプルを作製した。
(Example 3)
A resin substrate sample was produced in the same manner as in Example 1 except that the silane coupling agent composition (SiC-2) was used instead of the silane coupling agent composition (SiC-1).
(例4)
 シランカップリング剤組成物(SiC-1)に代えて、シランカップリング剤組成物(SiC-2)を用いた以外は例2と同様にして、樹脂基板サンプルを作製した。
(Example 4)
A resin substrate sample was produced in the same manner as in Example 2 except that the silane coupling agent composition (SiC-2) was used instead of the silane coupling agent composition (SiC-1).
(例5)
 シランカップリング剤組成物(SiC-1)に代えて、シランカップリング剤組成物(SiC-3)を用いた以外は例1と同様にして、樹脂基板サンプルを作製した。
(Example 5)
A resin substrate sample was produced in the same manner as in Example 1 except that the silane coupling agent composition (SiC-3) was used instead of the silane coupling agent composition (SiC-1).
(例6)
 シランカップリング剤組成物(SiC-1)に代えて、シランカップリング剤組成物(SiC-3)を用いた以外は例2と同様にして、樹脂基板サンプルを作製した。
(Example 6)
A resin substrate sample was produced in the same manner as in Example 2 except that the silane coupling agent composition (SiC-3) was used instead of the silane coupling agent composition (SiC-1).
(例7)
 コロナ放電処理およびシランカップリング剤処理を行わなかった以外は例2と同様にして、樹脂基板サンプルを作製した。
(Example 7)
A resin substrate sample was produced in the same manner as in Example 2 except that the corona discharge treatment and the silane coupling agent treatment were not performed.
(例8)
 シランカップリング剤処理を行わなかった以外は例2と同様にして、樹脂基板サンプルを作製した。
(Example 8)
A resin substrate sample was produced in the same manner as in Example 2 except that the silane coupling agent treatment was not performed.
[ハードコート被膜を有する樹脂基板サンプルの評価]
 上記例1~8で得られた各樹脂基板サンプルについて、下記項目の評価を行った。
[Evaluation of resin substrate sample having hard coat film]
The following items were evaluated for the resin substrate samples obtained in Examples 1 to 8 above.
<1>膜厚(プライマー層およびハードコート層)
 各サンプルにおけるハードコート層およびプライマー層の膜厚を干渉膜厚測定装置(スペクトラ・コープ社製、商品名 Solid Lambda Thickness)を用いて測定した。なお、屈折率はn=1.46(ハードコート層)およびn=1.56(プライマー層)の値を用いた。
<1> Film thickness (primer layer and hard coat layer)
The film thicknesses of the hard coat layer and the primer layer in each sample were measured using an interference film thickness measuring device (trade name Solid Lambda Thickness, manufactured by Spectra Corp.). In addition, the refractive index used the value of n = 1.46 (hard coat layer) and n = 1.56 (primer layer).
<2>初期外観
 ハードコート層およびプライマー層を合わせた被膜全体(以下、ハードコート被膜という。)を目視で観察し、クラックまたは剥離の有無を調べた。
    ○:クラックまたは剥離なし
    ×:クラックまたは剥離有り
<2> Initial appearance The entire coating film including the hard coat layer and the primer layer (hereinafter referred to as a hard coat film) was visually observed to check for cracks or peeling.
○: No crack or peeling ×: Crack or peeling
<3>初期ヘーズ(曇価)
 JIS K7105(6.4)に準拠し、ヘーズメーター(スガ試験機株式会社製、型式 HGM-2)を用いて測定した。
<3> Initial haze (cloudiness value)
In accordance with JIS K7105 (6.4), the measurement was performed using a haze meter (manufactured by Suga Test Instruments Co., Ltd., model HGM-2).
<4>密着性
 JIS K5600(5.9)に準拠し、カミソリ刃を用いて、ハードコート被膜に1mm間隔で縦、横11本ずつ切れ目を入れて100個の碁盤目を作製し、セロテープ(登録商標)CT24(ニチバン社製)をよく付着させた後、剥離テストを行い、膜が剥離せずに残存したマス目数(x)の割合(x/100)を調べた。
<4> Adhesion In accordance with JIS K5600 (5.9), using a razor blade, the hard coat film was cut into 11 vertical and horizontal cuts at 1 mm intervals to make 100 grids, After a well-registered trademark CT24 (manufactured by Nichiban Co., Ltd.) was peeled off, a peel test was performed to examine the ratio (x / 100) of the number of squares (x) remaining without peeling off the film.
<5>耐擦傷性
 JIS K5600(5.9)に準拠し、テーバー磨耗試験機(東洋精機製作所社製、型式 ROTARY ABRASION TESTER)に磨耗輪(TABER社製 商品名 CALIBRASE(登録商標)CS-10F)を装着し、荷重500g下での500回転後のヘーズ(曇価)を測定し、試験前の曇価との差(曇価差)ΔH500を求め、評価した。なお、ヘーズは上記<3>と同様の方法で測定した。
<5> Scratch resistance In accordance with JIS K5600 (5.9), a Taber abrasion tester (manufactured by Toyo Seiki Seisakusho Co., Ltd., model ROTARY ABRASION TESTER) and a wear ring (manufactured by TABER, trade name: CALIBRASE (registered trademark) CS-10F ) fitted with a, measuring the haze after 500 revolutions under a load 500 g (haze), we obtain a difference (haze difference) [Delta] H 500 and haze before the test was evaluated. The haze was measured by the same method as in <3> above.
<6>耐候性
 光源にメタルハライドランプを用いた促進耐候性試験機(ダイプラ・ウインテス社製、商品名 KW-R5TP-A)を用い、下記に示す光照射、結露、暗黒の3条件を順に繰り返し負荷した後、上記<2>および<4>と同様の方法で外観および密着性を評価した。なお、負荷は光照射、結露および暗黒を1サイクルとして50サイクル(600時間)行い、結露の前後にはシャワーを各10秒間ずつ実施した。
  ・光照射:照度80mW/cm2(ウシオ電機社製の照度測定装置UIT-101(型式)で測定)、ブラックパネル温度63℃、相対湿度80%の条件で4時間光を照射。
  ・結露:光を照射せずに、相対湿度98%の条件下でブラックパネル温度を63℃から30℃に自然冷却して4時間保持。
  ・暗黒:光を照射せずに、ブラックパネル温度75℃、相対湿度90%の条件下に4時間保持。
<6> Weather resistance Using an accelerated weather resistance tester using a metal halide lamp as a light source (trade name: KW-R5TP-A, manufactured by Daipura Wintes Co., Ltd.), the following three conditions of light irradiation, condensation, and darkness are repeated in order. After loading, the appearance and adhesion were evaluated in the same manner as in <2> and <4> above. The load was 50 cycles (600 hours) with light irradiation, condensation and darkness as one cycle, and a shower was performed for 10 seconds each before and after condensation.
-Light irradiation: Irradiation is performed for 4 hours under the conditions of an illuminance of 80 mW / cm 2 (measured with an illuminance measuring device UIT-101 (model) manufactured by USHIO INC.), A black panel temperature of 63 ° C., and a relative humidity of 80%.
Condensation: Without irradiating light, the black panel temperature was naturally cooled from 63 ° C. to 30 ° C. under a relative humidity of 98% and held for 4 hours.
・ Dark: No light is irradiated and maintained for 4 hours under conditions of a black panel temperature of 75 ° C. and a relative humidity of 90%.
 上記の評価結果を、使用した各組成物の種類、およびコロナ放電処理条件(放電エネルギー)とともに、表1に示す。 The above evaluation results are shown in Table 1 together with the type of each composition used and the corona discharge treatment conditions (discharge energy).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、プライマー層に対しコロナ放電処理およびそれに続くシランカップリング剤処理を施した例1~6のサンプルについては、促進耐候性試験後も初期の良好な外観およびハードコート被膜の密着性が維持されていた。これに対し、コロナ放電処理およびシランカップリング剤処理がいずれも施されなかった例7では、促進耐候性試験によって、ハードコート被膜が完全に剥離してしまい、シランカップリング剤処理のみが施された例8でも、同様に、ハードコート被膜が完全に剥離してしまった。なお、光学顕微鏡、FT-IR(ATR法)により観察したところ、このハードコート被膜の剥離は、プライマー層とハードコート層間の剥離であることが確認された。この結果から、コロナ放電処理およびシランカップリング剤処理の両処理を行うことが、ハードコート層の密着性の低下を防止し、樹脂基板に対し長期間にわたって耐擦傷性や耐候性等を付与する上で、極めて重要であることが示唆される。 As is clear from Table 1, the samples of Examples 1 to 6 in which the primer layer was subjected to corona discharge treatment and subsequent silane coupling agent treatment had good initial appearance and hard coat film even after the accelerated weathering test. The adhesion of was maintained. On the other hand, in Example 7 where neither the corona discharge treatment nor the silane coupling agent treatment was performed, the hard coat film was completely peeled off by the accelerated weather resistance test, and only the silane coupling agent treatment was performed. Similarly, in Example 8, the hard coat film was completely peeled off. When observed with an optical microscope and FT-IR (ATR method), it was confirmed that the hard coat film was peeled off between the primer layer and the hard coat layer. From this result, performing both the corona discharge treatment and the silane coupling agent treatment prevents deterioration of the adhesion of the hard coat layer, and imparts scratch resistance, weather resistance, etc. to the resin substrate over a long period of time. Above, it is suggested to be extremely important.
 本発明により得られるハードコート被膜を有する樹脂基板は、優れた耐擦傷性、耐候性を有するものであり、自動車や各種交通機関に取り付けられる車両用の窓材、家屋、ビル等の建物に取り付けられる建材用の窓材等として有用である。
 なお、2010年12月20日に出願された日本特許出願2010-283375号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
The resin substrate having a hard coat film obtained according to the present invention has excellent scratch resistance and weather resistance, and is attached to a vehicle window material, a house, a building or the like that is attached to an automobile or various transportations. It is useful as a window material for building materials.
The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2010-283375 filed on Dec. 20, 2010 are incorporated herein as the disclosure of the present invention.

Claims (7)

  1.  樹脂基板の少なくとも一方の面上にアクリル系ポリマーを主成分として含有するプライマー層形成用組成物を塗布し乾燥させてプライマー層を形成する工程と、
     前記プライマー層の表面にコロナ放電処理を施す工程と、
     コロナ放電処理を施したプライマー層の表面に、シランカップリング剤を主成分として含むシランカップリング剤組成物を塗布し乾燥させてシランカップリング剤処理を施す工程と、
     前記コロナ放電処理およびシランカップリング剤処理が施された前記プライマー層の表面に、オルガノポリシロキサンを主成分として含有するハードコート層形成用組成物を塗布し硬化させてハードコート層を形成する工程と、
     を有することを特徴とするハードコート被膜を有する樹脂基板の製造方法。
    Applying a primer layer forming composition containing an acrylic polymer as a main component on at least one surface of a resin substrate and drying it to form a primer layer;
    Applying corona discharge treatment to the surface of the primer layer;
    A step of applying a silane coupling agent treatment by applying a silane coupling agent composition containing a silane coupling agent as a main component to the surface of the primer layer subjected to the corona discharge treatment, and drying;
    A step of forming a hard coat layer by applying a composition for forming a hard coat layer containing organopolysiloxane as a main component to the surface of the primer layer that has been subjected to the corona discharge treatment and the silane coupling agent treatment, and then curing the composition. When,
    The manufacturing method of the resin substrate which has a hard-coat film characterized by having.
  2.  前記コロナ放電処理は、プライマー層表面に対する放電エネルギーが20W・min/m~500W・min/mとなる処理である、請求項1記載のハードコート被膜を有する樹脂基板の製造方法。 The method for producing a resin substrate having a hard coat film according to claim 1, wherein the corona discharge treatment is a treatment in which the discharge energy on the surface of the primer layer is 20 W · min / m 2 to 500 W · min / m 2 .
  3.  前記シランカップリング剤が、エポキシ基、メルカプト基、イソシアネート基、および(メタ)アクリル基からなる群より選ばれる少なくとも1種を含有する化合物を含む、請求項1または2記載のハードコート被膜を有する樹脂基板の製造方法。 The hard coat film according to claim 1 or 2, wherein the silane coupling agent contains a compound containing at least one selected from the group consisting of an epoxy group, a mercapto group, an isocyanate group, and a (meth) acryl group. Manufacturing method of resin substrate.
  4.  前記シランカップリング剤が、3-グリシドキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、および3-イソシアネートプロピルトリメトキシシランからなる群より選ばれる少なくとも1種を含む、請求項1または2記載のハードコート被膜を有する樹脂基板の製造方法。 The silane coupling agent contains at least one selected from the group consisting of 3-glycidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-isocyanatopropyltrimethoxysilane. The manufacturing method of the resin substrate which has a hard-coat film of description.
  5.  前記オルガノポリシロキサンが、下記T1~T3で表される含ケイ素結合単位を、前記単位の個数の割合で、T1:T2:T3=0~5:15~40:55~85、およびT3/T2=1.5~4.0を満足するように含み、分子内のケイ素原子に結合するアルコキシ基の個数(A)に対するケイ素原子に結合する水酸基の個数(B)の割合(B)/(A)が分子平均で12.0以上であり、かつ質量平均分子量が800~8000であるオルガノポリシロキサンを含む、請求項1乃至4のいずれか1項記載のハードコート被膜を有する樹脂基板の製造方法。
      T1:R-Si(-OX)(-O-)
      T2:R-Si(-OX)(-O-)
      T3:R-Si(-O-)
    (式中、Rは水素原子または炭素数が1~10の置換または非置換の1価の有機基を表し、Xは水素原子または炭素数1~6のアルキル基を表し、Oは2つのケイ素原子を連結する酸素原子を表す。)
    The organopolysiloxane contains silicon-containing bond units represented by the following T1 to T3 in the ratio of the number of the units: T1: T2: T3 = 0 to 5:15 to 40:55 to 85, and T3 / T2 = The ratio of the number of hydroxyl groups bonded to silicon atoms (B) to the number of alkoxy groups bonded to silicon atoms in the molecule (A) (B) / (A The method for producing a resin substrate having a hard coat film according to any one of claims 1 to 4, comprising an organopolysiloxane having a molecular average of 12.0 or more and a mass average molecular weight of 800 to 8000. .
    T1: R—Si (—OX) 2 (—O * —)
    T2: R—Si (—OX) (— O * −) 2
    T3: R—Si (—O * −) 3
    (In the formula, R represents a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 10 carbon atoms, X represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and O * (Represents an oxygen atom connecting silicon atoms.)
  6.  前記樹脂基板が、ポリカーボネート樹脂からなる、請求項1至5のいずれか1項記載のハードコート被膜を有する樹脂基板の製造方法。 The method for producing a resin substrate having a hard coat film according to any one of claims 1 to 5, wherein the resin substrate is made of a polycarbonate resin.
  7.  樹脂基板の少なくとも一方の面上に、アクリル系ポリマーを主成分として含有するプライマー層と、オルガノポリシロキサンの硬化物を主成分として含むハードコート層とを、前記樹脂基板側から順に有するハードコート被膜を有する樹脂基板であって、
     前記プライマー層の前記ハードコート層側表面に、コロナ放電処理およびシランカップリング剤処理が順に施されていることを特徴とするハードコート被膜を有する樹脂基板。
    A hard coat film comprising, on at least one surface of a resin substrate, a primer layer containing an acrylic polymer as a main component and a hard coat layer containing a cured product of organopolysiloxane as a main component in order from the resin substrate side A resin substrate having
    A resin substrate having a hard coat film, wherein a corona discharge treatment and a silane coupling agent treatment are sequentially performed on the surface of the primer layer on the hard coat layer side.
PCT/JP2011/079554 2010-12-20 2011-12-20 Resin substrate having a hard coat film and production method of resin substrate with a hard coat film WO2012086656A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012549839A JPWO2012086656A1 (en) 2010-12-20 2011-12-20 Resin substrate having hard coat film and method for producing resin substrate having hard coat film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-283375 2010-12-20
JP2010283375 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012086656A1 true WO2012086656A1 (en) 2012-06-28

Family

ID=46313924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079554 WO2012086656A1 (en) 2010-12-20 2011-12-20 Resin substrate having a hard coat film and production method of resin substrate with a hard coat film

Country Status (2)

Country Link
JP (1) JPWO2012086656A1 (en)
WO (1) WO2012086656A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067829A (en) * 2012-09-25 2014-04-17 Asahi Kasei E-Materials Corp Insulative material for semiconductor use including silica particles
JP2014193988A (en) * 2013-02-26 2014-10-09 Kansai Paint Co Ltd Method for forming functional layer
JP2015034285A (en) * 2013-07-10 2015-02-19 リケンテクノス株式会社 Method of producing easily-adhesive poly (meth) acryl imide film
JP2016055584A (en) * 2014-09-12 2016-04-21 東レ株式会社 Laminate film and method for producing the same
US10112369B2 (en) 2013-09-20 2018-10-30 Riken Technos Corporation Transparent multilayer film containing poly(meth)acrylimide-based resin layer, and method for producing said transparent multilayer film
US10450431B2 (en) 2013-07-10 2019-10-22 Riken Technos Corporation Poly(meth)acrylimide film, easy-adhesion film using same, and method for manufacturing such films

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309068A (en) * 1999-02-23 2000-11-07 Toto Ltd Film equipped with hydrophilic property, stream droplet property, anti-cloudiness and anti-fouling property, manufacture of the film, method for imparting hydrophilic property, steam droplet property, anti- cloudiness and anti-fouling property to base material by the film, base material to which the film is affixed, coating composition for manufacturing the film, preparation of the coating composition
JP2004238418A (en) * 2003-02-03 2004-08-26 Shin Etsu Chem Co Ltd Highly weatherable hard coat composition and coated article
JP2008156592A (en) * 2006-11-28 2008-07-10 Asahi Rubber:Kk Substrate for bonding and silicone rubber bonded product using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309068A (en) * 1999-02-23 2000-11-07 Toto Ltd Film equipped with hydrophilic property, stream droplet property, anti-cloudiness and anti-fouling property, manufacture of the film, method for imparting hydrophilic property, steam droplet property, anti- cloudiness and anti-fouling property to base material by the film, base material to which the film is affixed, coating composition for manufacturing the film, preparation of the coating composition
JP2004238418A (en) * 2003-02-03 2004-08-26 Shin Etsu Chem Co Ltd Highly weatherable hard coat composition and coated article
JP2008156592A (en) * 2006-11-28 2008-07-10 Asahi Rubber:Kk Substrate for bonding and silicone rubber bonded product using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067829A (en) * 2012-09-25 2014-04-17 Asahi Kasei E-Materials Corp Insulative material for semiconductor use including silica particles
JP2014193988A (en) * 2013-02-26 2014-10-09 Kansai Paint Co Ltd Method for forming functional layer
JP2015034285A (en) * 2013-07-10 2015-02-19 リケンテクノス株式会社 Method of producing easily-adhesive poly (meth) acryl imide film
US10450431B2 (en) 2013-07-10 2019-10-22 Riken Technos Corporation Poly(meth)acrylimide film, easy-adhesion film using same, and method for manufacturing such films
US10112369B2 (en) 2013-09-20 2018-10-30 Riken Technos Corporation Transparent multilayer film containing poly(meth)acrylimide-based resin layer, and method for producing said transparent multilayer film
JP2016055584A (en) * 2014-09-12 2016-04-21 東レ株式会社 Laminate film and method for producing the same

Also Published As

Publication number Publication date
JPWO2012086656A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5821634B2 (en) Hard coat agent composition and resin substrate having hard coat layer
JP5708499B2 (en) Method for producing resin substrate having hard coat layer
JP5923235B2 (en) Flexible thermosetting silicone hard coat
JP5772598B2 (en) Resin substrate with hard coat film and method for producing the same
KR101871867B1 (en) Organic resin laminate
WO2012099125A1 (en) Resin substrate provided with hard-coat coating, and method for producing same
JP6421760B2 (en) Method for producing resin substrate with hard coat film and resin substrate with hard coat film
JP5768748B2 (en) Organic resin laminate
WO2012086659A1 (en) Resin substrate with a hard coat film and production method thereof
JP5369556B2 (en) Method for producing primer composition and coated article
JP2005314616A (en) Silicone coating composition and article to be coated
JP2008274177A (en) Primer composition and coated material
JP2008120986A (en) Primer composition and coated article
WO2012086656A1 (en) Resin substrate having a hard coat film and production method of resin substrate with a hard coat film
WO2012046784A1 (en) Resin substrate having hard coat film attached thereto, and process for production thereof
WO2011105382A1 (en) Resin substrate having hard coat layer formed thereon
JP2016030392A (en) Resin substrate with hard coat layer and method for producing the same
JP2001214121A (en) Coating composition, coating method, and coated article
JP2016016338A (en) Method of manufacturing resin substrate with hard coat layer
JP2014171974A (en) Method for producing resin board with hard coat film, and resin board with hard coat film
JP5316394B2 (en) Method for producing resin substrate having hard coat layer
JP2014162087A (en) Method for producing resin substrate with hard coat film, and the resin substrate with hard coat film
JP5412932B2 (en) Resin substrate with hard coat and method for producing resin substrate with hard coat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549839

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851329

Country of ref document: EP

Kind code of ref document: A1