WO2012086613A1 - Rotating electrical machine - Google Patents

Rotating electrical machine Download PDF

Info

Publication number
WO2012086613A1
WO2012086613A1 PCT/JP2011/079426 JP2011079426W WO2012086613A1 WO 2012086613 A1 WO2012086613 A1 WO 2012086613A1 JP 2011079426 W JP2011079426 W JP 2011079426W WO 2012086613 A1 WO2012086613 A1 WO 2012086613A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor core
peripheral side
stator
magnetic pole
Prior art date
Application number
PCT/JP2011/079426
Other languages
French (fr)
Japanese (ja)
Inventor
大矢 聡義
阿部 典行
重光 圷
石川 聡
隆仁 金澤
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2012086613A1 publication Critical patent/WO2012086613A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts

Definitions

  • the present invention relates to a rotating electrical machine that can be used as an electric motor or a generator, and more particularly to a multi-rotor rotating electrical machine that includes two rotors that can rotate independently.
  • a multi-rotor rotating electrical machine is disposed between an annular stator, an inner rotor (first rotor) that can rotate inside the stator, and the stator and the inner rotor, and can rotate concentrically with the inner rotor.
  • the stator includes an armature array that includes a plurality of armatures and generates a rotating magnetic field that rotates along the circumferential direction.
  • the inner rotor includes a magnetic pole array that includes a plurality of permanent magnets.
  • the rotor includes an induction magnetic pole row composed of a plurality of induction magnetic poles made of a soft magnetic material. Further, the armature row of the stator and the magnetic pole row of the inner rotor face each other on both sides in the radial direction of the induction magnetic pole row of the outer rotor (see, for example, Patent Document 1).
  • the outer periphery of the first flange and the second flange disposed so as to be rotatable around the axis is made of a weak magnetic material and disposed at predetermined intervals in the circumferential direction.
  • a configuration is adopted in which both ends of the plurality of connecting members are fixed and an induction magnetic pole made of a soft magnetic material is supported between the connecting members adjacent in the circumferential direction.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to simplify the configuration of the second rotor having the induction magnetic pole row to improve the assemblability, and to improve the rigidity of the second rotor against the centrifugal force. It is in providing the rotary electric machine which can improve.
  • An annular stator for example, a stator 10 in an embodiment described later
  • a first rotor for example, an inner rotor 20 in an embodiment described later
  • the stator and the A second rotor for example, an outer rotor 30 in an embodiment described later
  • a magnetic pole array configured by arranging a plurality of permanent magnets (for example, permanent magnets 23 in embodiments described later) so as to have magnetic poles of different polarities alternately at a predetermined pitch in the circumferential direction;
  • armatures for example, a plurality of armatures 12 in an embodiment described later
  • a plurality of armature rows that generate a rotating magnetic field in the circumferential direction by a plurality of predetermined armature magnetic poles generated in the armature, and wherein the second rotor is a plurality of soft magnetic bodies arranged at a predetermined pitch in the circumferential direction.
  • a rotating electrical machine including an induction magnetic pole array (for example, a magnetic portion 41 in an embodiment described later) and including an induction magnetic pole array disposed between the magnetic pole array of the first rotor and the armature array of the stator
  • the two rotors are positioned at both ends in the axial direction of the rotor core so as to support a cylindrical rotor core (for example, a rotor core 40 in an embodiment described later) positioned at the center in the axial direction of the second rotor.
  • a disk-shaped first flange for example, a first flange 31 in an embodiment described later
  • a second flange for example, a second flange 32 in an embodiment described later
  • the rotor core is configured by a laminated body in which integral annular soft magnetic bodies are laminated in the axial direction, and the rotor core includes a plurality of connecting portions that respectively connect the adjacent induction magnetic poles (for example, connecting portions in embodiments described later). 43), and the adjacent induction magnetic pole and the connecting portion define a space portion (for example, a space portion 42 in an embodiment described later) constituting a nonmagnetic portion.
  • the connecting portion connects an inner peripheral side connecting portion (for example, described later) that connects the adjacent induction magnetic poles on the inner peripheral side and the outer peripheral side, respectively. It is comprised from the inner peripheral side connection part 43a) and outer peripheral side connection part (For example, the outer peripheral side connection part 43b in embodiment mentioned later), and the radial direction distance of this outer peripheral side connection part and the said stator is said induction
  • the outer peripheral side connecting portion has a substantially linear shape when viewed from the axial direction.
  • the outer peripheral side connecting portion is formed such that a radial width increases from a circumferential center to a circumferential end. It is characterized by.
  • the invention according to claim 5 is the rotating electrical machine according to any one of claims 2 to 4, wherein the connecting portion connects a circumferential side surface of each induction magnetic pole and an inner surface of the outer peripheral side connecting portion. And a pair of reinforcing portions (for example, a reinforcing portion 43c in an embodiment described later).
  • the connecting member that interconnects the first flange and the second flange (for example, a shoulder bolt in an embodiment described later) 50), and the connecting member penetrates the space portion of the rotor core so as to be located on the inner peripheral side with respect to the radially intermediate portion of the rotor core.
  • the structure of the rotor core is simplified, the assembly is simplified, and the rigidity of the second rotor against the centrifugal force can be improved.
  • the rigidity of the rotor core can be improved, and the central portion in the circumferential direction of the outer peripheral side connecting portion is formed thinner than the peripheral end portion, so that the connecting member is disposed in the space portion.
  • the radial direction distance of an outer peripheral side connection part and a connection member does not become short, but it can suppress that a magnetic flux short-circuits to a connection member via an outer peripheral side connection part from a stator.
  • the first flange and the second flange can be firmly coupled by the connecting member while effectively using the empty space, without adversely affecting the induction magnetic pole of the rotor core.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • FIG. 4 is a half sectional view taken along line IV-IV in FIG. 3. It is a disassembled perspective view of the outer rotor of the same electric motor.
  • FIG. 3 is a partially expanded sectional view of FIG. 3 showing a configuration of a portion where the torque transmission pin of the outer rotor is arranged
  • FIG. 3B is a cross-sectional view taken along the line VII-VII of FIG. FIG.
  • FIG. 1 is the perspective view of the rotor core of the outer rotor of the electric motor as a rotary electric machine of 2nd Embodiment
  • (b) is the front view which looked at (a) from the axial direction
  • (c) is (a). It is principal part sectional drawing explaining the state which the shoulder bolt has penetrated the space part of this rotor core. It is a figure which shows the 1st modification of the said rotor core, and is principal part sectional drawing explaining the state which the shoulder bolt has penetrated the space part of the same rotor core.
  • FIGS. 1 to 4 are views showing an electric motor as a rotating electric machine according to the first embodiment.
  • the electric motor includes a casing 1, an annular stator 10 fixed to the inner periphery of the casing 1, and an axis line that is housed on the inner periphery side of the stator 10 and is common to the stator 10.
  • second rotor that rotates around x
  • first rotor 20 that is housed concentrically inside the outer rotor 30 and rotates about the axis x.
  • the casing 1 includes a bottomed cylindrical main body 2 and a lid 3 fixed to the opening of the main body 2.
  • the stator 10 includes an annular stator core 11 in which electromagnetic steel plates are laminated.
  • a plurality (48 in this embodiment) of teeth 13 and a plurality (48 in this embodiment) are provided on the inner peripheral surface of the stator core 11.
  • the slots 14 are alternately formed in the circumferential direction.
  • a U-phase, V-phase, and W-phase coil is distributedly wound in the slot 14 of the stator core 11, and each tooth 13 and each coil constitute a plurality of armatures 12, and each armature 12 is constant in the circumferential direction.
  • An armature row is configured by being arranged at a pitch.
  • the armature row of the stator 10 faces a magnetic pole row of the inner rotor 2 described later.
  • a three-phase alternating current from three terminals (not shown) provided in the casing 1 to the U-phase, V-phase, and W-phase coils a plurality of predetermined virtual elements generated in the plurality of armatures 12 are provided.
  • a circumferential rotating magnetic field is generated by a typical armature magnetic pole.
  • the number of armature magnetic poles generated in the stator 10 is set to 16, and therefore the number of magnetic pole pairs of the armature magnetic poles is set to 8.
  • the outer rotor 30 that houses the inner rotor 20 includes a cylindrical rotor core 40 that is located in the center in the axial direction, and the rotor core 40 that supports the rotor core 40 at each outer peripheral portion.
  • Disc-shaped first flange 31 and second flange 32 disposed on both ends in the axial direction.
  • a first outer rotor shaft 33 is connected to the central portion of the first flange 31 in the radial direction, and the first outer rotor shaft 33 is rotatably supported by the lid portion 3 of the casing 1 via a ball bearing 35.
  • a second outer rotor shaft 34 is connected to the radial center portion of the second flange 32, and the second outer rotor shaft 34 is rotatable to the main body portion 2 of the casing 1 via a ball bearing 36. It is supported.
  • the 1st outer rotor shaft 33 used as the output shaft of the outer rotor 30 penetrates the cover part 3 of the casing 1, and is extended outside.
  • the first flange 31 and the second flange 32 are made of a nonmagnetic material (for example, stainless steel), and the first and second outer rotor shafts 33 and 34 are made of a magnetic material (carbon steel) that is less expensive than the nonmagnetic material. ).
  • the reason why the first flange 31 and the second flange 32 are made of a non-magnetic material is to suppress leakage magnetic flux from the rotor core 40.
  • the rotor core 40 of the outer rotor 30 has an induction magnetic pole array in which a plurality of induction magnetic poles made of soft magnetic material are arranged at a predetermined pitch in the circumferential direction.
  • the induction magnetic pole array includes a magnetic pole array of the inner rotor 20 described later, It is located between the armature rows of the stator 10 described above.
  • a soft magnetic material is a kind of magnetic material that generates a magnetic pole when a magnetic force is applied and disappears when the magnetic force is removed.
  • the rotor core 40 of the outer rotor 30 is constituted by a laminated body in which electromagnetic steel plates (for example, silicon steel plates) that are soft magnetic bodies having an annular shape are laminated in the axial direction.
  • the rotor core 40 is adjacent to a plurality of magnetic portions 41 that respectively constitute induction magnetic poles that extend in the axial direction with a constant pitch in the circumferential direction.
  • a plurality of connecting portions 43 each composed of an inner peripheral side connecting portion 43a and an outer peripheral side connecting portion 43b for connecting the magnetic portions 41 to each other on the inner peripheral side and the outer peripheral side, respectively.
  • the peripheral side connecting part 43a and the outer peripheral side connecting part 43b define a substantially trapezoidal space part 42 constituting a nonmagnetic part.
  • the inner peripheral side connecting portion 43 a and the outer peripheral side connecting portion 43 b of the present embodiment are formed in a substantially arc shape along the inner peripheral surface and the outer peripheral surface of the magnetic portion 41.
  • the number of the induction magnetic poles comprised by the magnetic part 41 is set to 20, Therefore, the number of the induction magnetic pole pairs is set to 10.
  • the through-hole 41a is each provided in the four magnetic parts 41 arrange
  • torque transmission for transmitting torque generated in the rotor core 40 to the first flange 31 and the second flange 32 is provided between the first flange 31 and the second flange 32 of the outer rotor 30.
  • a pin 60 is disposed.
  • (Connecting member) 50 is arranged.
  • four torque transmission pins 60 are provided at a 90 ° pitch in the circumferential direction.
  • three sets of four shoulder bolts 50 arranged at a 90 ° pitch in the circumferential direction are provided, and a total of 12 shoulder bolts 50 are provided.
  • the shoulder bolt 50 is a rod-shaped body having a shoulder portion (step portion) 51 with an enlarged outer diameter in the vicinity of both ends, and has male screw portions 52 and 53 on the outer side in the axial direction of the shoulder portion 51. ing.
  • the shoulder bolt 50 penetrates the substantial center of the space portion 42 of the rotor core 40 in a non-contact state (in FIG. 6C, the alternate long and short dash line indicates a substantially intermediate portion in the radial direction of the rotor core 40) and is provided at one end.
  • One end is coupled to the second flange 32 by screwing the formed male screw portion 52 into the screw hole 32 a of the second flange 32, and the male screw portion 53 provided at the other end is inserted into the screw passage hole 31 a of the first flange 31.
  • the other end is coupled to the first flange 31 by passing it through and screwing the nut 54 from the outside of the first flange 31.
  • the shoulder bolt 50 is coupled to the first flange 31 and the second flange 32 in this manner, so that the inner surfaces of the first flange 31 and the second flange 32 abut on the shoulder portion 51 of the shoulder bolt 50.
  • the position is restricted.
  • the first flange 31 and the second flange 32 are firmly connected and integrated with each other in a state where a space slightly larger than the axial dimension of the rotor core 40 is secured between the inner surfaces of the flanges 31 and 32.
  • the shoulder bolt 50 is also made of a non-magnetic material in order to reduce eddy current loss.
  • a wave washer 80 is interposed between the shoulder portion 51 on the second flange 32 side and the side surface of the rotor core 40.
  • the wave washer 80 positions the rotor core 40 so that it does not rattle in the axial direction. Yes.
  • washers 55 are sandwiched between the contact surface of the shoulder portion 51 on the first flange 31 side and the contact surface of the first flange 31 and between the contact surface of the nut 54 and the first flange 31, respectively.
  • the torque transmission pin 60 is press-fitted into a through hole 41 a formed in the magnetic part 41 of the rotor core 40, and both ends protrude from both end surfaces of the rotor core 40.
  • the rotor core 40 is composed of a laminate of a large number of electromagnetic steel sheets
  • the torque transmission pin 60 is press-fitted into the magnetic part 41, so that the rotor core 40 is positioned mutually in the circumferential direction and the radial direction, and the whole They are joined together. Therefore, the rigidity with respect to the centrifugal force of the outer rotor 30 can be improved.
  • the electromagnetic steel plates constituting the laminate may be bonded by caulking or bonding, and even if the bonding by caulking or bonding is omitted, the electromagnetic steel plates can be prevented from being scattered.
  • each torque transmission pin 60 Both ends of each torque transmission pin 60 are fitted to a rectangular piece-like slider 65 when viewed from the front, and each slider 65 is radially formed on the inner surface of the outer peripheral portion of the first flange 31 and the second flange 32. It is possible to slide in the radial direction (in the direction of arrow A in FIG. 8B) by being engaged with the engaging grooves 39 formed along the guide grooves and guided to opposite side surfaces of the engaging grooves 39 which are parallel to each other. ing.
  • the center line in the width direction of the engagement groove 39 is a radial line passing through the axial center of the outer rotor 30, and the opposite side surface of the engagement groove 39 is parallel to the center line in the width direction of the engagement groove 39. Is formed.
  • the opposing side surface that slides on the opposing side surface of the engagement groove 39 of the rectangular piece-shaped slider 65 is formed to be parallel to the center line in the width direction of the engagement groove 39.
  • a vibration absorbing mechanism that absorbs (vibration) is configured.
  • radial force such as centrifugal force accompanying rotation and magnetic force acting between the stator 10 and the inner rotor 20 acts on the rotor core 40. Due to the action of the radial force, a relative displacement in the radial direction is generated between the flanges 31 and 32 and the rotor core 40 due to factors such as a difference in material and a difference in shape. When this relative displacement is suppressed by rigidly connecting the flanges 31 and 32 and the rotor core 40, a large stress is generated in the rotor core 40 and the magnetic characteristics are impaired.
  • a vibration absorbing mechanism including the slider 65 and the engagement groove 39 is provided between the flanges 31 and 32 and the rotor core 40. It has been.
  • the combination of the slider 65 and the engagement groove 39 serves to transmit the circumferential torque transmitted from the rotor core 40 to the torque transmission pin 60 to the flanges 31 and 32.
  • Torque transmitted to the torque transmission pin 60 is transmitted to the slider 65, and is transmitted from the slider 65 to the flanges 31 and 32 through the opposing side surfaces of the engagement groove 39.
  • the surface that contributes to the transmission of force is a contact surface between the opposed side surface of the slider 65 and the opposed side surface of the engagement groove 39.
  • the rotor core 40 can be positioned in the X direction and the Y direction orthogonal to each other.
  • the inner rotor 20 includes a rotor body 21 that is formed in a cylindrical shape, an inner rotor shaft 25 that is fixed through the hub 21 a of the rotor body 21, and a laminated steel plate. 21 and an annular rotor core 22 disposed on the outer peripheral portion.
  • the inner rotor shaft 25 is rotatably supported by the ball bearing 38 inside the first outer rotor shaft 33 on the axial line on one end side (right side in the drawing) with respect to the hub 21a, and on the other end side with respect to the hub 21a.
  • the second outer rotor shaft 34 (on the left side in the figure), it is rotatably supported by a ball bearing 37.
  • the other end portion of the inner rotor shaft 25 extends through the main body 2 of the casing 1 and extends outside the casing 1 as an output shaft of the inner rotor 20.
  • the rotor core 22 press-fitted into the outer periphery of the rotor body 21 is provided with a plurality of permanent magnet support holes 22a along the outer peripheral surface, and the permanent magnet 23 is press-fitted (or inserted and fixed by adhesion) there. Yes.
  • the polarities of the adjacent permanent magnets 23 of the rotor core 22 are alternately reversed, whereby the inner rotor 20 has a plurality of permanent magnets 23 arranged so as to have magnetic poles having different polarities alternately at a predetermined pitch in the circumferential direction.
  • a magnetic pole array configured as described above.
  • the inner peripheral surface (armature) of the teeth 13 of the stator core 11 is opposed to the outer peripheral surface of the induction magnetic pole exposed on the outer peripheral surface of the outer rotor 30 through a slight air gap, and the inner peripheral surface of the outer rotor 30
  • the outer peripheral surface of the rotor core 22 of the inner rotor 20 is opposed to the inner peripheral surface of the induction magnetic pole exposed at a through a slight air gap.
  • the number of magnetic poles by the permanent magnets 23 of the inner rotor 20 is 24, and the number of magnetic pole pairs is set to 12. Therefore, in this electric motor, the ratio between the number of armature magnetic poles of the stator 10, the number of magnetic poles of the inner rotor 20, and the number of induction magnetic poles of the outer rotor 30 is 1: m: (1 + m) / 2 (m ⁇ 1.0) The relationship is set.
  • the rotor core 40 of the outer rotor 30 is configured by a laminated body of integral annular electromagnetic steel plates, the structure of the rotor core 40 is simplified and assembly is easy. In addition, the rigidity of the outer rotor 30 with respect to the centrifugal force can be improved. In addition, the torque generated in the rotor core 40 can be reliably transmitted to both the flanges 31 and 32 by the torque transmission pin 60 disposed between the first and second flanges 31 and 32.
  • the shoulder bolt 50 penetrates the space portion 42 of the rotor core 40 formed in an integral annular shape. Therefore, the first flange 31 and the second flange 32 are firmly coupled to have a unity while effectively utilizing the empty space 42 without adversely affecting the magnetic portion 41 as the induction magnetic pole of the rotor core 40. be able to.
  • FIG. 10 is a view showing a rotor core of an outer rotor used in an electric motor as a rotating electric machine according to the second embodiment.
  • This electric motor is different from the first embodiment in the structure of the rotor core 40.
  • the description is abbreviate
  • the inner peripheral side connecting portion 43a is formed along the inner peripheral surface of the magnetic portion 41 so as to form a uniform inner peripheral surface together with the magnetic portion 41, while the outer peripheral side connecting portion 43b is Adjacent magnetic portions 41 are connected to each other on the inner peripheral side with respect to the outer peripheral end. That is, the radial distance between the inner peripheral surface of the tooth 13 of the stator 10 and the outer peripheral surface of the outer peripheral side connecting portion 43b is larger than the radial distance between the inner peripheral surface of the tooth 13 of the stator 10 and the outer peripheral surface of the magnetic portion 41. It is formed to be large.
  • connecting portion 43 By forming the connecting portion 43 in this way, the magnetic flux that is short-circuited from the teeth 13 of the stator 10 to the outer peripheral side connecting portion 43b is reduced, and the effective magnetic flux penetrating the magnetic portion 41 is increased, so that the motor torque can be increased. It becomes possible.
  • the shoulder bolt 50 has its center located on the inner peripheral side of the radially intermediate portion of the rotor core 40 (the one-dot chain line in FIG. 10C). It penetrates non-contact. As a result, the radial distance between the outer peripheral side connecting portion 43b of the rotor core 40 and the shoulder bolt 50 can be prevented from being shortened, and the air gap existing between the outer peripheral side connecting portion 43b and the shoulder bolt 50 can be prevented. Since the magnetic resistance can be maintained high, a short circuit of magnetic flux from the tooth 13 of the stator 10 to the shoulder bolt 50 via the outer peripheral side connecting portion 43b is suppressed, and the motor efficiency can be improved.
  • connection part 43b of the connection part 43 is not necessarily limited to a substantially circular arc shape as long as the adjacent magnetic parts 41 are connected to each other.
  • the outer peripheral side connecting portion 43b may have a substantially linear shape when viewed from the axial direction.
  • the centrifugal rigidity of the rotor core 40 can be further improved. .
  • the outer peripheral side connecting portion 43b may be formed so that the radial width increases from the circumferential center to the circumferential end.
  • the connection part of the outer peripheral side connection part 43b and the magnetic part 41 is formed thickly, the rigidity of the rotor core 40 can be improved.
  • the central portion in the circumferential direction of the outer peripheral side connecting portion 43b is formed thinner than the peripheral end portion, the radial distance between the inner peripheral surface of the outer peripheral side connecting portion 43b and the outer peripheral side end portion of the shoulder bolt 50 is small. The short circuit of the magnetic flux from the teeth 13 of the stator 10 to the shoulder bolt 50 via the outer peripheral side connecting portion 43b can be suppressed without being shortened.
  • connection part 43 connects the circumferential side surface of each adjacent magnetic part 41, and the inner surface of the outer peripheral side connection part 43b, respectively, and is substantially linear shape seeing from an axial direction.
  • a so-called ramen structure having a pair of reinforcing portions 43c may be used, and in this case, the rigidity of the rotor core 40 can be increased.
  • FIG. 14 is a cross-sectional view of the main part of the rotor core of the outer rotor used in the electric motor as the rotating electrical machine of the third embodiment.
  • This electric motor is different from the above embodiment in the structure of the rotor core 40.
  • subjected to the structure is attached
  • the connecting portion 43 does not have the inner peripheral side connecting portion 43 a, and the space portion 42 is an outer peripheral side where the adjacent magnetic portions 41 are connected to each other on the outer peripheral side.
  • the connecting portion 43b is defined so that the inner peripheral side is opened.
  • the shoulder bolt 50 has an outer peripheral side end located on the inner peripheral side with respect to a substantially intermediate portion in the radial direction of the rotor core 40 (a chain line in FIG. 14), and penetrates the space portion 42 in a non-contact manner.
  • the space portion 42 is formed so as to open toward the inner peripheral side, so that the shoulder bolt 50 can be disposed closer to the opening of the space portion 42. Accordingly, the radial distance between the outer peripheral side connecting portion 43b of the rotor core 40 and the shoulder bolt 50 is increased, and the magnetic resistance due to the air gap is increased, so that the stator 10 is connected via the outer peripheral side connecting portion 43b from the teeth 13. A magnetic flux short circuit to the shoulder bolt 50 is suppressed, and the motor efficiency can be improved.
  • the outer peripheral side connecting portion 43b is formed so as to connect adjacent magnetic portions 41 to each other on the inner peripheral side with respect to the outer peripheral side end portion, as in the second embodiment. May be.
  • the space portion 42 is formed so as to open to the inner peripheral side, and the shoulder bolt 50 is near the inner peripheral side end portion of the space portion 42. It is good also as a structure arrange
  • this invention is not limited to embodiment mentioned above, A deformation
  • the material, shape, dimensions, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
  • the tightening of the rotor core 40, the first flange 31 and the second flange 32 using the shoulder bolt 50 prevents the axial force for tightening from acting on the rotor core 40.
  • the connecting member of the present invention may be configured to fasten these components using a normal fastening bolt in a state where a fastening force is applied in the axial direction.
  • one magnetic pole is composed of a single permanent magnet magnetic pole, but may be composed of a plurality of permanent magnet magnetic poles. For example, by arranging these two permanent magnets in an inverted V shape so that the magnetic poles of the two permanent magnets approach each other on the stator side, one magnetic pole is formed, thereby increasing the directivity of the magnetic field lines. May be.
  • an electromagnet or an armature capable of generating a moving magnetic field may be used.
  • the U-phase to W-phase coils are wound around the slots by distributed winding.
  • the present invention is not limited to this, and concentrated winding may be used.
  • the coil is configured by a U-phase to W-phase three-phase coil.
  • the number of phases of the coil is not limited to this, and may be arbitrary as long as a rotating magnetic field can be generated.
  • the inner rotor 20 as the first rotor and the outer rotor 30 as the second rotor are arranged inside the stator 10.
  • the present invention is not limited to this, and the first rotor and the second rotor are connected to the stator 10. You may arrange
  • Stator 12 Armature 20 Inner Rotor (First Rotor) 23 Permanent magnet 30 Outer rotor (second rotor) 31 First flange 32 Second flange 40 Rotor core 41 Magnetic part (induction magnetic pole) 42 space part 43 connection part 43a inner periphery side connection part 43b outer periphery side connection part 43c reinforcement part 50 shoulder bolt (connection member)

Abstract

An outer rotor (30) configures an inductive magnetic pole row arranged between a stator and an inner rotor and is provided with a cylindrical rotor core (40) and with first flanges (31) and second flanges (32) on both sides of said cylindrical rotor core. The rotor core (40) is configured from a laminate body comprising integral annular electromagnetic steel sheets laminated in the axial direction. The rotor core (40) is provided with multiple magnetic parts (41) which, spaced at a constant pitch in the circumferential direction, extend in the axial direction and each of which configures an inductive magnetic pole; the rotor core (40) is also provided with multiple connection parts (43) which connect adjacent magnetic parts (41). The adjacent magnetic parts (41) and the connection parts (43) define substantially trapezoidal spaces (42) configuring non-magnetic parts.

Description

回転電機Rotating electric machine
 本発明は、電動機や発電機として使用可能な回転電機に係り、特に、独立して回転可能な2つのロータを備えた多重ロータ式の回転電機に関するものである。 The present invention relates to a rotating electrical machine that can be used as an electric motor or a generator, and more particularly to a multi-rotor rotating electrical machine that includes two rotors that can rotate independently.
 従来、多重ロータ式の回転電機は、環状のステータと、ステータの内側で回転可能なインナーロータ(第1ロータ)と、ステータおよびインナーロータ間に配置されて、前記インナーロータと同芯に回転可能なアウターロータ(第2ロータ)とを備える。そして、ステータは、複数の電機子で構成されて円周方向に沿って回転する回転磁界を発生させる電機子列を備え、インナーロータは、複数の永久磁石で構成された磁極列を備え、アウターロータは、軟磁性体製の複数の誘導磁極で構成された誘導磁極列を備える。また、アウターロータの誘導磁極列の径方向の両側では、ステータの電機子列およびインナーロータの磁極列が対向している(例えば、特許文献1参照。)。 2. Description of the Related Art Conventionally, a multi-rotor rotating electrical machine is disposed between an annular stator, an inner rotor (first rotor) that can rotate inside the stator, and the stator and the inner rotor, and can rotate concentrically with the inner rotor. An outer rotor (second rotor). The stator includes an armature array that includes a plurality of armatures and generates a rotating magnetic field that rotates along the circumferential direction. The inner rotor includes a magnetic pole array that includes a plurality of permanent magnets. The rotor includes an induction magnetic pole row composed of a plurality of induction magnetic poles made of a soft magnetic material. Further, the armature row of the stator and the magnetic pole row of the inner rotor face each other on both sides in the radial direction of the induction magnetic pole row of the outer rotor (see, for example, Patent Document 1).
 この特許文献1に記載の電動機の第2ロータでは、その軸線まわりに回転可能に配置された第1フランジおよび第2フランジの外周部に、弱磁性体で構成されて周方向に所定間隔で配置された複数の連結部材の両端部をそれぞれ固定し、周方向に隣接する前記連結部材間に軟磁性体よりなる誘導磁極を支持した構成が採用されている。 In the second rotor of the electric motor described in Patent Document 1, the outer periphery of the first flange and the second flange disposed so as to be rotatable around the axis is made of a weak magnetic material and disposed at predetermined intervals in the circumferential direction. A configuration is adopted in which both ends of the plurality of connecting members are fixed and an induction magnetic pole made of a soft magnetic material is supported between the connecting members adjacent in the circumferential direction.
日本国特開2008-271725号公報Japanese Unexamined Patent Publication No. 2008-271725
 しかし、特許文献1に記載の回転電機では、組み立ての際に、周方向に隣接する連結部材の間にそれぞれ誘導磁極を支持させる必要があるので、構造が複雑になり組み立てが非常に煩雑であった。特に各誘導磁極は電磁鋼板の積層体で構成されているため、組立性の改善が望まれていた。 However, in the rotating electric machine described in Patent Document 1, since it is necessary to support the induction magnetic poles between the connecting members adjacent in the circumferential direction during assembly, the structure is complicated and the assembly is very complicated. It was. In particular, since each induction magnetic pole is composed of a laminated body of electromagnetic steel sheets, improvement in assemblability has been desired.
 本発明は、上述した事情に鑑みてなされたものであり、その目的は、誘導磁極列を備える第2ロータの構成を簡略化して組立性の向上を図り、且つ第2ロータの遠心力に対する剛性を向上することができる回転電機を提供することにある。 The present invention has been made in view of the above-described circumstances, and an object thereof is to simplify the configuration of the second rotor having the induction magnetic pole row to improve the assemblability, and to improve the rigidity of the second rotor against the centrifugal force. It is in providing the rotary electric machine which can improve.
 上記目的を達成するために、請求項1に係る発明は、
 環状のステータ(例えば、後述の実施形態におけるステータ10)と、前記ステータの内側又は外側で回転可能に支持された第1ロータ(例えば、後述の実施形態におけるインナーロータ20)と、前記ステータと前記第1ロータとの間に配置されて、前記第1ロータと同芯に回転可能に支持された第2ロータ(例えば、後述の実施形態におけるアウターロータ30)とを備え、前記第1ロータが、周方向に所定ピッチで交互に異なる極性の磁極を有するように複数の永久磁石(例えば、後述の実施形態における永久磁石23)を配列して構成された磁極列を備え、前記ステータが、周方向に配列された複数の電機子(例えば、後述の実施形態における複数の電機子12)で構成され、前記磁極列に対向するように配置されると共に、前記複数の電機子に発生させる所定の複数の電機子磁極により周方向の回転磁界を生成する電機子列を備え、前記第2ロータが、周方向に所定ピッチで配列された軟磁性体製の複数の誘導磁極(例えば、後述の実施形態における磁性部41)で構成され、且つ前記第1ロータの磁極列と前記ステータの電機子列の間に配置された誘導磁極列を備える回転電機において、前記第2ロータは、該第2ロータの軸線方向中央部に位置する円筒状のロータコア(例えば、後述の実施形態におけるロータコア40)と、該ロータコアを支持するように該ロータコアの軸線方向両端側に位置した円板状の第1フランジ(例えば、後述の実施形態における第1フランジ31)および第2フランジ(例えば、後述の実施形態における第2フランジ32)とを備え、前記ロータコアは、一体円環状の軟磁性体を軸線方向に積層した積層体により構成され、前記ロータコアは、隣接する前記誘導磁極同士をそれぞれ連結する複数の連結部(例えば、後述の実施形態における連結部43)を有し、前記隣接する誘導磁極と前記連結部とは、非磁性部を構成する空間部(例えば、後述の実施形態における空間部42)を画成することを特徴とする。
In order to achieve the above object, the invention according to claim 1
An annular stator (for example, a stator 10 in an embodiment described later), a first rotor (for example, an inner rotor 20 in an embodiment described later) rotatably supported inside or outside the stator, the stator and the A second rotor (for example, an outer rotor 30 in an embodiment described later) disposed between the first rotor and rotatably supported concentrically with the first rotor, and the first rotor, A magnetic pole array configured by arranging a plurality of permanent magnets (for example, permanent magnets 23 in embodiments described later) so as to have magnetic poles of different polarities alternately at a predetermined pitch in the circumferential direction; Are arranged in a plurality of armatures (for example, a plurality of armatures 12 in an embodiment described later), and are arranged so as to face the magnetic pole row. A plurality of armature rows that generate a rotating magnetic field in the circumferential direction by a plurality of predetermined armature magnetic poles generated in the armature, and wherein the second rotor is a plurality of soft magnetic bodies arranged at a predetermined pitch in the circumferential direction. In a rotating electrical machine including an induction magnetic pole array (for example, a magnetic portion 41 in an embodiment described later) and including an induction magnetic pole array disposed between the magnetic pole array of the first rotor and the armature array of the stator, The two rotors are positioned at both ends in the axial direction of the rotor core so as to support a cylindrical rotor core (for example, a rotor core 40 in an embodiment described later) positioned at the center in the axial direction of the second rotor. A disk-shaped first flange (for example, a first flange 31 in an embodiment described later) and a second flange (for example, a second flange 32 in an embodiment described later), The rotor core is configured by a laminated body in which integral annular soft magnetic bodies are laminated in the axial direction, and the rotor core includes a plurality of connecting portions that respectively connect the adjacent induction magnetic poles (for example, connecting portions in embodiments described later). 43), and the adjacent induction magnetic pole and the connecting portion define a space portion (for example, a space portion 42 in an embodiment described later) constituting a nonmagnetic portion.
 請求項2に係る発明は、請求項1に記載の回転電機において、前記連結部は、隣接する前記誘導磁極同士を内周側及び外周側でそれぞれ連結する内周側連結部(例えば、後述の実施形態における内周側連結部43a)及び外周側連結部(例えば、後述の実施形態における外周側連結部43b)から構成され、該外周側連結部と前記ステータとの径方向距離は、前記誘導磁極と前記ステータとの径方向距離よりも大きいことを特徴とする。 According to a second aspect of the present invention, in the rotating electrical machine according to the first aspect, the connecting portion connects an inner peripheral side connecting portion (for example, described later) that connects the adjacent induction magnetic poles on the inner peripheral side and the outer peripheral side, respectively. It is comprised from the inner peripheral side connection part 43a) and outer peripheral side connection part (For example, the outer peripheral side connection part 43b in embodiment mentioned later), and the radial direction distance of this outer peripheral side connection part and the said stator is said induction | guidance | derivation. It is larger than the radial distance between the magnetic pole and the stator.
 請求項3に係る発明は、請求項2に記載の回転電機において、前記外周側連結部は、軸方向から見て略直線形状であることを特徴とする。 According to a third aspect of the present invention, in the rotating electrical machine according to the second aspect, the outer peripheral side connecting portion has a substantially linear shape when viewed from the axial direction.
 請求項4に係る発明は、請求項2に記載の回転電機において、前記外周側連結部は、その周方向中心から周方向端部に向かって、径方向幅が大きくなるように形成されることを特徴とする。 According to a fourth aspect of the present invention, in the rotating electrical machine according to the second aspect, the outer peripheral side connecting portion is formed such that a radial width increases from a circumferential center to a circumferential end. It is characterized by.
 請求項5に係る発明は、請求項2~4の何れか1項に記載の回転電機において、前記連結部は、前記各誘導磁極の周方向側面と前記外周側連結部の内面とをそれぞれ接続する一対の補強部(例えば、後述の実施形態における補強部43c)を有することを特徴とする。 The invention according to claim 5 is the rotating electrical machine according to any one of claims 2 to 4, wherein the connecting portion connects a circumferential side surface of each induction magnetic pole and an inner surface of the outer peripheral side connecting portion. And a pair of reinforcing portions (for example, a reinforcing portion 43c in an embodiment described later).
 請求項6に係る発明は、請求項1~5の何れか1項に記載の回転電機において、前記第1フランジ及び前記第2フランジを相互連結する連結部材(例えば、後述の実施形態におけるショルダーボルト50)を備えており、該連結部材は、前記ロータコアの径方向中間部よりも内周側に位置するように、前記ロータコアの前記空間部を貫通することを特徴とする。 According to a sixth aspect of the present invention, in the rotating electrical machine according to any one of the first to fifth aspects, the connecting member that interconnects the first flange and the second flange (for example, a shoulder bolt in an embodiment described later) 50), and the connecting member penetrates the space portion of the rotor core so as to be located on the inner peripheral side with respect to the radially intermediate portion of the rotor core.
 請求項1の発明によれば、ロータコアの構造が簡略化され、組み立てが簡単になるとともに、第2ロータの遠心力に対する剛性を向上させることができる。 According to the first aspect of the invention, the structure of the rotor core is simplified, the assembly is simplified, and the rigidity of the second rotor against the centrifugal force can be improved.
 請求項2の発明によれば、ステータから外周側連結部に短絡する磁束が減少し、誘導磁極を貫く有効磁束を増加させることができるので、モータトルクを増加させることが可能となる。 According to the invention of claim 2, since the magnetic flux that is short-circuited from the stator to the outer peripheral side connection portion is reduced and the effective magnetic flux penetrating the induction magnetic pole can be increased, the motor torque can be increased.
 請求項3の発明によれば、ロータコアの遠心剛性を向上させることが可能となる。 According to the invention of claim 3, it is possible to improve the centrifugal rigidity of the rotor core.
 請求項4の発明によれば、ロータコアの剛性を向上させることができると共に、外周側連結部の周方向中心部は周方向端部に比べて細く形成されるので、空間部に連結部材を配置した際、外周側連結部と連結部材との径方向距離が短くならず、ステータから外周側連結部を介して連結部材に磁束が短絡することを抑制できる。 According to the invention of claim 4, the rigidity of the rotor core can be improved, and the central portion in the circumferential direction of the outer peripheral side connecting portion is formed thinner than the peripheral end portion, so that the connecting member is disposed in the space portion. When it does, the radial direction distance of an outer peripheral side connection part and a connection member does not become short, but it can suppress that a magnetic flux short-circuits to a connection member via an outer peripheral side connection part from a stator.
 請求項5の発明によれば、ロータコアの剛性を高めることが可能となる。 According to the invention of claim 5, it is possible to increase the rigidity of the rotor core.
 請求項6の発明によれば、外周側連結部と連結部材との間の径方向距離が大きくなり、その間のエアギャップによる磁気抵抗が上昇するため、ステータからの外周側連結部を介した連結部材への磁束短絡が抑制され、モータ効率を向上することが可能となる。さらに、ロータコアの誘導磁極に悪影響を与えることなく、空間部という空きスペースを有効利用しながら、連結部材によって第1フランジと第2フランジを強固に結合することができる。 According to the invention of claim 6, since the radial distance between the outer peripheral side connecting portion and the connecting member is increased and the magnetic resistance due to the air gap therebetween increases, the connection from the stator via the outer peripheral side connecting portion. The short circuit of magnetic flux to the member is suppressed, and the motor efficiency can be improved. Furthermore, the first flange and the second flange can be firmly coupled by the connecting member while effectively using the empty space, without adversely affecting the induction magnetic pole of the rotor core.
本発明の第1実施形態の回転電機としての電動機を軸線方向から見た正面図である。It is the front view which looked at the electric motor as a rotary electric machine of 1st Embodiment of this invention from the axial direction. 同回転電機の外殻体であるケーシングを省略し、アウターロータからインナーロータを取り出して示す電動機の分解斜視図である。It is a disassembled perspective view of the electric motor which abbreviate | omits the casing which is the outer shell body of the rotary electric machine, and takes out and shows an inner rotor from an outer rotor. 図1のIII-III線に沿った断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 図3のIV-IV線に沿った半断面図である。FIG. 4 is a half sectional view taken along line IV-IV in FIG. 3. 同電動機のアウターロータの分解斜視図である。It is a disassembled perspective view of the outer rotor of the same electric motor. (a)は同アウターロータのロータコアの斜視図であり、(b)は(a)を軸方向から見た正面図であり、(c)は(a)のロータコアの空間部をショルダーボルトが貫通している状態を説明する要部断面図である。(A) is a perspective view of the rotor core of the outer rotor, (b) is a front view of (a) seen from the axial direction, and (c) is a shoulder bolt passing through the space of the rotor core of (a). It is principal part sectional drawing explaining the state which is carrying out. 同アウターロータのショルダーボルトによる結合部の構成を示す、図3の一部拡大断面図である。It is a partially expanded sectional view of FIG. 3 which shows the structure of the coupling | bond part by the shoulder bolt of the same outer rotor. (a)は同アウターロータのトルク伝達ピンを配置した部分の構成を示す、図3の一部拡大断面図、(b)は(a)のVII-VII矢視断面図で、スライダの配置部分の詳細を示す図である。3A is a partially enlarged cross-sectional view of FIG. 3 showing a configuration of a portion where the torque transmission pin of the outer rotor is arranged, and FIG. 3B is a cross-sectional view taken along the line VII-VII of FIG. FIG. 同アウターロータの周方向におけるスライダの配置位置を説明するための図で、フランジを軸線方向の内側から見て示す図である。It is a figure for demonstrating the arrangement position of the slider in the circumferential direction of the outer rotor, and is a figure which shows a flange seeing from the inner side of an axial direction. (a)は第2実施形態の回転電機としての電動機のアウターロータのロータコアの斜視図であり、(b)は(a)を軸方向から見た正面図であり、(c)は(a)のロータコアの空間部をショルダーボルトが貫通している状態を説明する要部断面図である。(A) is the perspective view of the rotor core of the outer rotor of the electric motor as a rotary electric machine of 2nd Embodiment, (b) is the front view which looked at (a) from the axial direction, (c) is (a). It is principal part sectional drawing explaining the state which the shoulder bolt has penetrated the space part of this rotor core. 前記ロータコアの第1変形例を示す図であり、同ロータコアの空間部をショルダーボルトが貫通している状態を説明する要部断面図である。It is a figure which shows the 1st modification of the said rotor core, and is principal part sectional drawing explaining the state which the shoulder bolt has penetrated the space part of the same rotor core. 前記ロータコアの第2変形例を示す図であり、同ロータコアの空間部をショルダーボルトが貫通している状態を説明する要部断面図である。It is a figure which shows the 2nd modification of the said rotor core, and is principal part sectional drawing explaining the state which the shoulder bolt has penetrated the space part of the same rotor core. (a)は前記ロータコアの第3変形例の斜視図であり、(b)は(a)を軸方向から見た正面図であり、(c)は(a)のロータコアの空間部をショルダーボルトが貫通している状態を説明する要部断面図である。(A) is the perspective view of the 3rd modification of the said rotor core, (b) is the front view which looked at (a) from the axial direction, (c) is a shoulder bolt for the space part of the rotor core of (a) It is principal part sectional drawing explaining the state which has penetrated. 第3実施形態の回転電機としての電動機のアウターロータのロータコアの空間部をショルダーボルトが貫通している状態を説明する要部断面図である。It is principal part sectional drawing explaining the state which the shoulder bolt has penetrated the space part of the rotor core of the outer rotor of the electric motor as a rotary electric machine of 3rd Embodiment. 前記ロータコアの第1変形例を示す図であり、同ロータコアの空間部をショルダーボルトが貫通している状態を説明する要部断面図である。It is a figure which shows the 1st modification of the said rotor core, and is principal part sectional drawing explaining the state which the shoulder bolt has penetrated the space part of the same rotor core.
 以下、本発明の各実施形態に係る回転電機について図面を参照して詳細に説明する。 Hereinafter, a rotating electrical machine according to each embodiment of the present invention will be described in detail with reference to the drawings.
《第1実施形態》
 図1~図9は第1実施形態の回転電機としての電動機を示す図である。図1~図4に示すように、この電動機は、ケーシング1と、ケーシング1の内周に固定された円環状のステータ10と、ステータ10の内周側に収納されてステータ10と共通な軸線xまわりに回転する円筒状のアウターロータ(第2ロータ)30と、アウターロータ30の内部に同芯に収納されて軸線xまわりに回転する円筒状のインナーロータ(第1ロータ)20とで構成されている。
<< First Embodiment >>
1 to 9 are views showing an electric motor as a rotating electric machine according to the first embodiment. As shown in FIGS. 1 to 4, the electric motor includes a casing 1, an annular stator 10 fixed to the inner periphery of the casing 1, and an axis line that is housed on the inner periphery side of the stator 10 and is common to the stator 10. A cylindrical outer rotor (second rotor) 30 that rotates around x, and a cylindrical inner rotor (first rotor) 20 that is housed concentrically inside the outer rotor 30 and rotates about the axis x. Has been.
 アウターロータ30およびインナーロータ20は、ケーシング1に固定されたステータ10に対して相対回転可能であり、且つ、アウターロータ30およびインナーロータ20は相互に相対回転可能となっている。図3に示すように、ケーシング1は、有底筒状の本体部2と、この本体部2の開口に固定された蓋部3とで構成されている。 The outer rotor 30 and the inner rotor 20 can be rotated relative to the stator 10 fixed to the casing 1, and the outer rotor 30 and the inner rotor 20 can be rotated relative to each other. As shown in FIG. 3, the casing 1 includes a bottomed cylindrical main body 2 and a lid 3 fixed to the opening of the main body 2.
《ステータ》
 ステータ10は、電磁鋼板を積層した円環状のステータコア11を備えており、ステータコア11の内周面には、複数(本実施形態では48個)のティース13および複数(本実施形態では48個)のスロット14が円周方向に交互に形成されている。ステータコア11のスロット14には、U相、V相、W相のコイルが分布巻きされており、各ティース13と各コイルで複数の電機子12が構成され、各電機子12が周方向に一定ピッチで並んでいることで電機子列が構成されている。ステータ10の電機子列は、後述するインナーロータ2の磁極列に対向している。そして、ケーシング1に設けた3個の端子(図示略)からU相、V相、W相のコイルに3相交流電流を供給することで、複数の電機子12に発生させる所定の複数の仮想的な電機子磁極により、周方向の回転磁界を生成する。本実施形態の場合、ステータ10に発生する電機子磁極の数は16個に設定されており、従って、電機子磁極の磁極対数は8個に設定されている。
《Stator》
The stator 10 includes an annular stator core 11 in which electromagnetic steel plates are laminated. A plurality (48 in this embodiment) of teeth 13 and a plurality (48 in this embodiment) are provided on the inner peripheral surface of the stator core 11. The slots 14 are alternately formed in the circumferential direction. A U-phase, V-phase, and W-phase coil is distributedly wound in the slot 14 of the stator core 11, and each tooth 13 and each coil constitute a plurality of armatures 12, and each armature 12 is constant in the circumferential direction. An armature row is configured by being arranged at a pitch. The armature row of the stator 10 faces a magnetic pole row of the inner rotor 2 described later. Then, by supplying a three-phase alternating current from three terminals (not shown) provided in the casing 1 to the U-phase, V-phase, and W-phase coils, a plurality of predetermined virtual elements generated in the plurality of armatures 12 are provided. A circumferential rotating magnetic field is generated by a typical armature magnetic pole. In the present embodiment, the number of armature magnetic poles generated in the stator 10 is set to 16, and therefore the number of magnetic pole pairs of the armature magnetic poles is set to 8.
《アウターロータ》
 図3および図5に示すように、インナーロータ20を内部に収容するアウターロータ30は、軸線方向中央部に位置する円筒状のロータコア40と、ロータコア40を各外周部で支持するようにロータコア40の軸線方向両端側に配置された円板状の第1フランジ31および第2フランジ32と、を備えている。
《Outer rotor》
As shown in FIG. 3 and FIG. 5, the outer rotor 30 that houses the inner rotor 20 includes a cylindrical rotor core 40 that is located in the center in the axial direction, and the rotor core 40 that supports the rotor core 40 at each outer peripheral portion. Disc-shaped first flange 31 and second flange 32 disposed on both ends in the axial direction.
 第1フランジ31の径方向の中心部には第1アウターロータシャフト33が連結されており、この第1アウターロータシャフト33は、ボールベアリング35を介してケーシング1の蓋部3に回転自在に支持されている。また、第2フランジ32の径方向の中心部には第2アウターロータシャフト34が連結されており、第2アウターロータシャフト34は、ボールベアリング36を介してケーシング1の本体部2に回転自在に支持されている。そして、アウターロータ30の出力軸となる第1アウターロータシャフト33が、ケーシング1の蓋部3を貫通して外部に延出している。 A first outer rotor shaft 33 is connected to the central portion of the first flange 31 in the radial direction, and the first outer rotor shaft 33 is rotatably supported by the lid portion 3 of the casing 1 via a ball bearing 35. Has been. In addition, a second outer rotor shaft 34 is connected to the radial center portion of the second flange 32, and the second outer rotor shaft 34 is rotatable to the main body portion 2 of the casing 1 via a ball bearing 36. It is supported. And the 1st outer rotor shaft 33 used as the output shaft of the outer rotor 30 penetrates the cover part 3 of the casing 1, and is extended outside.
 本実施形態では、第1フランジ31および第2フランジ32は非磁性体(例えばステンレス)で構成され、第1、第2アウターロータシャフト33、34は、非磁性体より安価な磁性体(炭素鋼)で構成されている。第1フランジ31および第2フランジ32を非磁性体で構成するのは、ロータコア40からの漏れ磁束を抑制するためである。 In the present embodiment, the first flange 31 and the second flange 32 are made of a nonmagnetic material (for example, stainless steel), and the first and second outer rotor shafts 33 and 34 are made of a magnetic material (carbon steel) that is less expensive than the nonmagnetic material. ). The reason why the first flange 31 and the second flange 32 are made of a non-magnetic material is to suppress leakage magnetic flux from the rotor core 40.
 アウターロータ30のロータコア40は、周方向に所定ピッチで軟磁性体製の複数の誘導磁極を配列した誘導磁極列を有しており、誘導磁極列は、後述するインナーロータ20の磁極列と、前述したステータ10の電機子列との間に位置している。軟磁性体とは磁性体の一種で、磁力を加えると磁極が発生し、磁力を取り去ると磁極が消滅するものをいう。 The rotor core 40 of the outer rotor 30 has an induction magnetic pole array in which a plurality of induction magnetic poles made of soft magnetic material are arranged at a predetermined pitch in the circumferential direction. The induction magnetic pole array includes a magnetic pole array of the inner rotor 20 described later, It is located between the armature rows of the stator 10 described above. A soft magnetic material is a kind of magnetic material that generates a magnetic pole when a magnetic force is applied and disappears when the magnetic force is removed.
 具体的に、このアウターロータ30のロータコア40は、一体円環状の軟磁性体である電磁鋼板(例えば珪素鋼板)を軸線方向に積層した積層体により構成されている。このロータコア40は、図6(a),(b)に示すように、周方向に一定ピッチで間隔をおいて軸線方向に延出する、誘導磁極をそれぞれ構成する複数の磁性部41と、隣接する磁性部41同士を内周側及び外周側でそれぞれ連結する内周側連結部43a及び外周側連結部43bから構成される複数の連結部43と、を有し、隣接する磁性部41と内周側連結部43aと外周側連結部43bとは、非磁性部を構成する略台形形状の空間部42を画成する。本実施形態の内周側連結部43a及び外周側連結部43bは、磁性部41の内周面及び外周面に沿って略円弧形状に形成されている。これにより、本実施形態では、磁性部41によって構成される誘導磁極の数は20個に設定されており、従って、誘導磁極対の数は10個に設定されている。また、円周方向に90°ピッチで配置された4箇所の磁性部41には、貫通孔41aがそれぞれ設けられている。 Specifically, the rotor core 40 of the outer rotor 30 is constituted by a laminated body in which electromagnetic steel plates (for example, silicon steel plates) that are soft magnetic bodies having an annular shape are laminated in the axial direction. As shown in FIGS. 6A and 6B, the rotor core 40 is adjacent to a plurality of magnetic portions 41 that respectively constitute induction magnetic poles that extend in the axial direction with a constant pitch in the circumferential direction. A plurality of connecting portions 43 each composed of an inner peripheral side connecting portion 43a and an outer peripheral side connecting portion 43b for connecting the magnetic portions 41 to each other on the inner peripheral side and the outer peripheral side, respectively. The peripheral side connecting part 43a and the outer peripheral side connecting part 43b define a substantially trapezoidal space part 42 constituting a nonmagnetic part. The inner peripheral side connecting portion 43 a and the outer peripheral side connecting portion 43 b of the present embodiment are formed in a substantially arc shape along the inner peripheral surface and the outer peripheral surface of the magnetic portion 41. Thereby, in this embodiment, the number of the induction magnetic poles comprised by the magnetic part 41 is set to 20, Therefore, the number of the induction magnetic pole pairs is set to 10. Moreover, the through-hole 41a is each provided in the four magnetic parts 41 arrange | positioned at a 90 degree pitch in the circumferential direction.
 図3~図5に示すように、アウターロータ30の第1フランジ31および第2フランジ32間には、ロータコア40に発生するトルクを第1フランジ31および第2フランジ32に伝達するためのトルク伝達ピン60が配置される。また、第1フランジ31および第2フランジ32間の間隔を、ロータコア40の軸方向長さよりも僅かに大きな一定値に保持した状態で、第1フランジ31および第2フランジ32を相互連結するショルダーボルト(連結部材)50が配置されている。本実施形態において、トルク伝達ピン60は、円周方向に90°ピッチで4本設けられている。また、ショルダーボルト50は、円周方向に90°ピッチで配置された4本の組が3組設けられており、合計で12本設けられている。 As shown in FIGS. 3 to 5, torque transmission for transmitting torque generated in the rotor core 40 to the first flange 31 and the second flange 32 is provided between the first flange 31 and the second flange 32 of the outer rotor 30. A pin 60 is disposed. The shoulder bolt that interconnects the first flange 31 and the second flange 32 in a state where the distance between the first flange 31 and the second flange 32 is maintained at a constant value that is slightly larger than the axial length of the rotor core 40. (Connecting member) 50 is arranged. In the present embodiment, four torque transmission pins 60 are provided at a 90 ° pitch in the circumferential direction. Further, three sets of four shoulder bolts 50 arranged at a 90 ° pitch in the circumferential direction are provided, and a total of 12 shoulder bolts 50 are provided.
 図7に示すように、ショルダーボルト50は、両端近傍に、外径が拡大したショルダー部(段部)51を有する棒状体で、ショルダー部51の軸方向外側に雄ねじ部52、53を有している。このショルダーボルト50は、ロータコア40の空間部42の略中心を非接触な状態で貫通し(図6(C)中、一点鎖線はロータコア40の径方向略中間部を示す。)、一端に設けられた雄ねじ部52を第2フランジ32のネジ孔32aに螺合することで一端を第2フランジ32に結合し、他端に設けられた雄ねじ部53を第1フランジ31のネジ通し孔31aに通過させ第1フランジ31の外側からナット54を螺合することで他端を第1フランジ31に結合している。 As shown in FIG. 7, the shoulder bolt 50 is a rod-shaped body having a shoulder portion (step portion) 51 with an enlarged outer diameter in the vicinity of both ends, and has male screw portions 52 and 53 on the outer side in the axial direction of the shoulder portion 51. ing. The shoulder bolt 50 penetrates the substantial center of the space portion 42 of the rotor core 40 in a non-contact state (in FIG. 6C, the alternate long and short dash line indicates a substantially intermediate portion in the radial direction of the rotor core 40) and is provided at one end. One end is coupled to the second flange 32 by screwing the formed male screw portion 52 into the screw hole 32 a of the second flange 32, and the male screw portion 53 provided at the other end is inserted into the screw passage hole 31 a of the first flange 31. The other end is coupled to the first flange 31 by passing it through and screwing the nut 54 from the outside of the first flange 31.
 そして、このようにショルダーボルト50が第1フランジ31および第2フランジ32に結合されることで、ショルダーボルト50のショルダー部51に、第1フランジ31および第2フランジ32の各内側面が当接して位置規制される。それにより、第1フランジ31と第2フランジ32が、両フランジ31、32の内側面間にロータコア40の軸方向寸法よりも若干大きめの間隔を確保した状態で、相互に強固に連結され一体化されている。これにより、ロータコア40にはショルダーボルト50を締め付ける際に発生する軸力(圧縮応力)が掛からない。なお、このショルダーボルト50も、渦電流損失を低減するために非磁性体で構成されている。 The shoulder bolt 50 is coupled to the first flange 31 and the second flange 32 in this manner, so that the inner surfaces of the first flange 31 and the second flange 32 abut on the shoulder portion 51 of the shoulder bolt 50. The position is restricted. Thereby, the first flange 31 and the second flange 32 are firmly connected and integrated with each other in a state where a space slightly larger than the axial dimension of the rotor core 40 is secured between the inner surfaces of the flanges 31 and 32. Has been. Thereby, the rotor core 40 is not subjected to the axial force (compressive stress) generated when the shoulder bolt 50 is tightened. The shoulder bolt 50 is also made of a non-magnetic material in order to reduce eddy current loss.
 第2フランジ32側のショルダー部51とロータコア40の側面との間には、ウェーブワッシャ80が介在されており、このウェーブワッシャ80によって、ロータコア40が軸方向にがたつかないように位置決めされている。また、第1フランジ31側のショルダー部51と第1フランジ31の当接面間、および、ナット54と第1フランジ31の当接面間にはそれぞれワッシャ55が挟まれている。 A wave washer 80 is interposed between the shoulder portion 51 on the second flange 32 side and the side surface of the rotor core 40. The wave washer 80 positions the rotor core 40 so that it does not rattle in the axial direction. Yes. Further, washers 55 are sandwiched between the contact surface of the shoulder portion 51 on the first flange 31 side and the contact surface of the first flange 31 and between the contact surface of the nut 54 and the first flange 31, respectively.
 図8に示すように、トルク伝達ピン60は、ロータコア40の磁性部41に形成した貫通孔41aに圧入されており、両端がロータコア40の両端面から突出している。ロータコア40は、多数枚の電磁鋼板の積層体で構成されているものの、磁性部41にトルク伝達ピン60が圧入されていることにより、周方向および径方向に相互に位置決めされ、且つ、全体が一体に結合されている。したがって、アウターロータ30の遠心力に対する剛性を向上させることができる。また、積層体を構成する電磁鋼板は加締めや接着によって結合してもよいし、加締めや接着による結合を省略しても電磁鋼板のばらけを防止することができる。 As shown in FIG. 8, the torque transmission pin 60 is press-fitted into a through hole 41 a formed in the magnetic part 41 of the rotor core 40, and both ends protrude from both end surfaces of the rotor core 40. Although the rotor core 40 is composed of a laminate of a large number of electromagnetic steel sheets, the torque transmission pin 60 is press-fitted into the magnetic part 41, so that the rotor core 40 is positioned mutually in the circumferential direction and the radial direction, and the whole They are joined together. Therefore, the rigidity with respect to the centrifugal force of the outer rotor 30 can be improved. Moreover, the electromagnetic steel plates constituting the laminate may be bonded by caulking or bonding, and even if the bonding by caulking or bonding is omitted, the electromagnetic steel plates can be prevented from being scattered.
 各トルク伝達ピン60の両端は、正面から見て四角形ピース状のスライダ65に嵌合されており、各スライダ65は、第1フランジ31および第2フランジ32の外周部の内側面に径方向に沿って形成された係合溝39に係合され、係合溝39の互いに平行な対向側面に案内されることで、径方向(図8(b)中矢印A方向)にスライドできるようになっている。 Both ends of each torque transmission pin 60 are fitted to a rectangular piece-like slider 65 when viewed from the front, and each slider 65 is radially formed on the inner surface of the outer peripheral portion of the first flange 31 and the second flange 32. It is possible to slide in the radial direction (in the direction of arrow A in FIG. 8B) by being engaged with the engaging grooves 39 formed along the guide grooves and guided to opposite side surfaces of the engaging grooves 39 which are parallel to each other. ing.
 この場合、係合溝39の幅方向中心線がアウターロータ30の軸中心を通る径方向線であり、係合溝39の対向側面は、その係合溝39の幅方向中心線に対し平行に形成されている。同様に、四角形ピース状のスライダ65の係合溝39の対向側面に摺動する対向側面は、係合溝39の幅方向中心線に対し平行となるように形成されている。 In this case, the center line in the width direction of the engagement groove 39 is a radial line passing through the axial center of the outer rotor 30, and the opposite side surface of the engagement groove 39 is parallel to the center line in the width direction of the engagement groove 39. Is formed. Similarly, the opposing side surface that slides on the opposing side surface of the engagement groove 39 of the rectangular piece-shaped slider 65 is formed to be parallel to the center line in the width direction of the engagement groove 39.
 このスライダ65と係合溝39によって、ロータコア40と第1、第2フランジ31、32との間に、ロータコア40と第1、第2フランジ31、32との径方向の相対変位(径方向の振動)を吸収する振動吸収機構が構成されている。 Due to the slider 65 and the engagement groove 39, the relative displacement in the radial direction between the rotor core 40 and the first and second flanges 31, 32 (the radial direction between the rotor core 40 and the first and second flanges 31, 32). A vibration absorbing mechanism that absorbs (vibration) is configured.
 即ち、ロータコア40には、回転に伴う遠心力や、ステータ10およびインナーロータ20との間に働く磁気力などの径方向の力が作用する。この径方向の力が作用することによって、フランジ31、32とロータコア40との間には、材質の違いや形状の違いなどの要因により、径方向の相対変位が発生することになる。この相対変位を、フランジ31、32とロータコア40を剛結合することによって押さえ込むと、ロータコア40に大きな応力が発生し、磁気特性を損なうことになる。そこで、フランジ31、32とロータコア40との間の径方向の相対変位を吸収するために、フランジ31、32とロータコア40との間に、スライダ65と係合溝39からなる振動吸収機構が設けられている。 That is, radial force such as centrifugal force accompanying rotation and magnetic force acting between the stator 10 and the inner rotor 20 acts on the rotor core 40. Due to the action of the radial force, a relative displacement in the radial direction is generated between the flanges 31 and 32 and the rotor core 40 due to factors such as a difference in material and a difference in shape. When this relative displacement is suppressed by rigidly connecting the flanges 31 and 32 and the rotor core 40, a large stress is generated in the rotor core 40 and the magnetic characteristics are impaired. Therefore, in order to absorb the relative displacement in the radial direction between the flanges 31 and 32 and the rotor core 40, a vibration absorbing mechanism including the slider 65 and the engagement groove 39 is provided between the flanges 31 and 32 and the rotor core 40. It has been.
 また、このスライダ65と係合溝39の組み合わせは、ロータコア40からトルク伝達ピン60に伝達された周方向のトルクをフランジ31、32に伝達するという役割をなす。トルク伝達ピン60に伝達されたトルクはスライダ65に伝えられ、スライダ65から係合溝39の対向側面を介してフランジ31、32に伝えられる。その際、力の伝達に寄与する面は、スライダ65の対向側面と係合溝39の対向側面の接触面である。この振動吸収機構では、四角形のスライダ65の対向側面が全面、係合溝39の対向側面に対する接触面になるので、接触面圧の上昇を抑えることができる。 The combination of the slider 65 and the engagement groove 39 serves to transmit the circumferential torque transmitted from the rotor core 40 to the torque transmission pin 60 to the flanges 31 and 32. Torque transmitted to the torque transmission pin 60 is transmitted to the slider 65, and is transmitted from the slider 65 to the flanges 31 and 32 through the opposing side surfaces of the engagement groove 39. At this time, the surface that contributes to the transmission of force is a contact surface between the opposed side surface of the slider 65 and the opposed side surface of the engagement groove 39. In this vibration absorbing mechanism, since the opposing side surface of the rectangular slider 65 is the entire contact surface with respect to the opposing side surface of the engaging groove 39, an increase in contact surface pressure can be suppressed.
 また、この実施形態では、図9に示すように、スライダ65を円周方向に90°ピッチで配置しているので、互いに直交するX方向とY方向にロータコア40を位置決めすることができる。 Further, in this embodiment, as shown in FIG. 9, since the sliders 65 are arranged at a pitch of 90 ° in the circumferential direction, the rotor core 40 can be positioned in the X direction and the Y direction orthogonal to each other.
《インナーロータ》
 図3に示すように、インナーロータ20は、円筒状に形成されたロータボディ21と、ロータボディ21のハブ21aを貫通して固定されたインナーロータシャフト25と、積層鋼板で構成されてロータボディ21の外周部に配置された円環状のロータコア22とを備えている。インナーロータシャフト25は、ハブ21aに対して一端側(図中右側)において、軸線上で第1アウターロータシャフト33の内部にボールベアリング38で回転自在に支持され、ハブ21aに対して他端側(図中左側)において、第2アウターロータシャフト34の内部にボールベアリング37で回転自在に支持されている。そして、インナーロータシャフト25の他端側部分は、ケーシング1の本体部2を貫通して、インナーロータ20の出力軸としてケーシング1の外部に延出している。
《Inner rotor》
As shown in FIG. 3, the inner rotor 20 includes a rotor body 21 that is formed in a cylindrical shape, an inner rotor shaft 25 that is fixed through the hub 21 a of the rotor body 21, and a laminated steel plate. 21 and an annular rotor core 22 disposed on the outer peripheral portion. The inner rotor shaft 25 is rotatably supported by the ball bearing 38 inside the first outer rotor shaft 33 on the axial line on one end side (right side in the drawing) with respect to the hub 21a, and on the other end side with respect to the hub 21a. In the second outer rotor shaft 34 (on the left side in the figure), it is rotatably supported by a ball bearing 37. The other end portion of the inner rotor shaft 25 extends through the main body 2 of the casing 1 and extends outside the casing 1 as an output shaft of the inner rotor 20.
 ロータボディ21の外周に圧入されたロータコア22は、その外周面に沿って複数個の永久磁石支持孔22aを備えており、そこに永久磁石23が圧入(あるいは挿入されて接着により固定)されている。ロータコア22の隣接する永久磁石23の極性は交互に反転しており、これにより、インナーロータ20は、周方向に所定ピッチで交互に異なる極性の磁極を有するように複数の永久磁石23を配列して構成された磁極列を備えている。 The rotor core 22 press-fitted into the outer periphery of the rotor body 21 is provided with a plurality of permanent magnet support holes 22a along the outer peripheral surface, and the permanent magnet 23 is press-fitted (or inserted and fixed by adhesion) there. Yes. The polarities of the adjacent permanent magnets 23 of the rotor core 22 are alternately reversed, whereby the inner rotor 20 has a plurality of permanent magnets 23 arranged so as to have magnetic poles having different polarities alternately at a predetermined pitch in the circumferential direction. A magnetic pole array configured as described above.
 そして、アウターロータ30の外周面に露出する誘導磁極の外周面に、僅かなエアギャップを介して、ステータコア11のティース13の内周面(電機子)が対向し、アウターロータ30の内周面に露出する誘導磁極の内周面に、僅かなエアギャップを介して、インナーロータ20のロータコア22の外周面が対向している。 The inner peripheral surface (armature) of the teeth 13 of the stator core 11 is opposed to the outer peripheral surface of the induction magnetic pole exposed on the outer peripheral surface of the outer rotor 30 through a slight air gap, and the inner peripheral surface of the outer rotor 30 The outer peripheral surface of the rotor core 22 of the inner rotor 20 is opposed to the inner peripheral surface of the induction magnetic pole exposed at a through a slight air gap.
 この場合のインナーロータ20の永久磁石23による磁極の数は24個であり、磁極対の数は12個に設定されている。
 従って、この電動機においては、ステータ10の電機子磁極の数と、インナーロータ20の磁極の数と、アウターロータ30の誘導磁極の数との比が、
  1:m:(1+m)/2 (m≠1.0)
の関係に設定されている。
In this case, the number of magnetic poles by the permanent magnets 23 of the inner rotor 20 is 24, and the number of magnetic pole pairs is set to 12.
Therefore, in this electric motor, the ratio between the number of armature magnetic poles of the stator 10, the number of magnetic poles of the inner rotor 20, and the number of induction magnetic poles of the outer rotor 30 is
1: m: (1 + m) / 2 (m ≠ 1.0)
The relationship is set.
 以上のように構成された本実施形態の電動機によれば、アウターロータ30のロータコア40を一体円環状の電磁鋼板の積層体で構成したので、ロータコア40の構造が簡略化され、組み立てが簡単になるとともに、アウターロータ30の遠心力に対する剛性を向上させることができる。また、第1、第2フランジ31、32間に配置されたトルク伝達ピン60によってロータコア40に発生するトルクを確実に両フランジ31、32に伝達することができる。 According to the electric motor of the present embodiment configured as described above, since the rotor core 40 of the outer rotor 30 is configured by a laminated body of integral annular electromagnetic steel plates, the structure of the rotor core 40 is simplified and assembly is easy. In addition, the rigidity of the outer rotor 30 with respect to the centrifugal force can be improved. In addition, the torque generated in the rotor core 40 can be reliably transmitted to both the flanges 31 and 32 by the torque transmission pin 60 disposed between the first and second flanges 31 and 32.
 また、ロータコア40の両側に位置する第1フランジ31と第2フランジ32とを、ショルダーボルト50で相互連結する際、ショルダーボルト50は一体円環状に形成したロータコア40の空間部42を貫通する。したがって、ロータコア40の誘導磁極としての磁性部41に悪影響を与えることなく、空間部42という空きスペースを有効利用しながら、第1フランジ31と第2フランジ32を強固に結合し一体性を持たせることができる。 Further, when the first flange 31 and the second flange 32 located on both sides of the rotor core 40 are interconnected by the shoulder bolt 50, the shoulder bolt 50 penetrates the space portion 42 of the rotor core 40 formed in an integral annular shape. Therefore, the first flange 31 and the second flange 32 are firmly coupled to have a unity while effectively utilizing the empty space 42 without adversely affecting the magnetic portion 41 as the induction magnetic pole of the rotor core 40. be able to.
《第2実施形態》
 図10は第2実施形態の回転電機としての電動機に用いられるアウターロータのロータコアを示す図である。この電動機は、ロータコア40の構造において第1実施形態と異なる。第1実施形態と同一の構成については、その構成に付された参照符号と同一の符号を本実施形態に用いた図面上に付すことで、その説明を省略する。
<< Second Embodiment >>
FIG. 10 is a view showing a rotor core of an outer rotor used in an electric motor as a rotating electric machine according to the second embodiment. This electric motor is different from the first embodiment in the structure of the rotor core 40. About the structure same as 1st Embodiment, the description is abbreviate | omitted by attaching | subjecting the code | symbol same as the referential mark attached | subjected to the structure on the drawing used for this embodiment.
 このロータコア40においては、内周側連結部43aは磁性部41とともに一様な内周面を形成するように、磁性部41の内周面に沿って形成され、一方、外周側連結部43bは、隣接する磁性部41同士をその外周端よりも内周側でそれぞれ連結する。すなわち、ステータ10のティース13の内周面と外周側連結部43bの外周面との径方向距離が、ステータ10のティース13の内周面と磁性部41の外周面との径方向距離よりも大きくなるように形成されている。このように連結部43を形成することで、ステータ10のティース13から外周側連結部43bに短絡する磁束が減少し、磁性部41を貫く有効磁束が増加するため、モータトルクを増加させることが可能となる。 In the rotor core 40, the inner peripheral side connecting portion 43a is formed along the inner peripheral surface of the magnetic portion 41 so as to form a uniform inner peripheral surface together with the magnetic portion 41, while the outer peripheral side connecting portion 43b is Adjacent magnetic portions 41 are connected to each other on the inner peripheral side with respect to the outer peripheral end. That is, the radial distance between the inner peripheral surface of the tooth 13 of the stator 10 and the outer peripheral surface of the outer peripheral side connecting portion 43b is larger than the radial distance between the inner peripheral surface of the tooth 13 of the stator 10 and the outer peripheral surface of the magnetic portion 41. It is formed to be large. By forming the connecting portion 43 in this way, the magnetic flux that is short-circuited from the teeth 13 of the stator 10 to the outer peripheral side connecting portion 43b is reduced, and the effective magnetic flux penetrating the magnetic portion 41 is increased, so that the motor torque can be increased. It becomes possible.
 また、図10(c)に示すようにショルダーボルト50は、その中心がロータコア40の径方向中間部(図10(c)中の一点鎖線)よりも内周側に位置し、空間部42を非接触に貫通している。この結果、ロータコア40の外周側連結部43bとショルダーボルト50との間の径方向距離が短くなることを防ぐことができ、外周側連結部43bとショルダーボルト50との間に存在するエアギャップによる磁気抵抗を高く維持することができるため、ステータ10のティース13からの外周側連結部43bを介したショルダーボルト50への磁束短絡が抑制され、モータ効率を向上させることできる。 Further, as shown in FIG. 10C, the shoulder bolt 50 has its center located on the inner peripheral side of the radially intermediate portion of the rotor core 40 (the one-dot chain line in FIG. 10C). It penetrates non-contact. As a result, the radial distance between the outer peripheral side connecting portion 43b of the rotor core 40 and the shoulder bolt 50 can be prevented from being shortened, and the air gap existing between the outer peripheral side connecting portion 43b and the shoulder bolt 50 can be prevented. Since the magnetic resistance can be maintained high, a short circuit of magnetic flux from the tooth 13 of the stator 10 to the shoulder bolt 50 via the outer peripheral side connecting portion 43b is suppressed, and the motor efficiency can be improved.
 なお、連結部43の外周側連結部43bは、隣接する磁性部41同士を連結するものであれば、必ずしも略円弧形状に限定されない。 In addition, the outer peripheral side connection part 43b of the connection part 43 is not necessarily limited to a substantially circular arc shape as long as the adjacent magnetic parts 41 are connected to each other.
 例えば、図11の変形例に示すように、外周側連結部43bは、軸方向から見て略直線形状であってもよく、この場合、ロータコア40の遠心剛性をさらに向上させることが可能となる。 For example, as shown in the modified example of FIG. 11, the outer peripheral side connecting portion 43b may have a substantially linear shape when viewed from the axial direction. In this case, the centrifugal rigidity of the rotor core 40 can be further improved. .
 また、図12の変形例に示すように、外周側連結部43bは、その周方向中心から周方向端部に向かって、径方向幅が大きくなるように形成してもよい。これにより、外周側連結部43bと磁性部41との接続部が太く形成されているので、ロータコア40の剛性を向上させることができる。さらに、外周側連結部43bの周方向中心部は周方向端部に比べて細く形成されるので、外周側連結部43bの内周面とショルダーボルト50の外周側端部との径方向距離が短くならず、ステータ10のティース13からの外周側連結部43bを介したショルダーボルト50への磁束の短絡を抑制することができる。 Further, as shown in the modification of FIG. 12, the outer peripheral side connecting portion 43b may be formed so that the radial width increases from the circumferential center to the circumferential end. Thereby, since the connection part of the outer peripheral side connection part 43b and the magnetic part 41 is formed thickly, the rigidity of the rotor core 40 can be improved. Further, since the central portion in the circumferential direction of the outer peripheral side connecting portion 43b is formed thinner than the peripheral end portion, the radial distance between the inner peripheral surface of the outer peripheral side connecting portion 43b and the outer peripheral side end portion of the shoulder bolt 50 is small. The short circuit of the magnetic flux from the teeth 13 of the stator 10 to the shoulder bolt 50 via the outer peripheral side connecting portion 43b can be suppressed without being shortened.
 また、図13の変形例に示すように、連結部43は、隣り合う各磁性部41の周方向側面と外周側連結部43bの内面とをそれぞれ接続し、軸方向から見て略直線形状の一対の補強部43cを有する所謂ラーメン構造としてもよく、この場合、ロータコア40の剛性を高めることが可能となる。 Moreover, as shown in the modification of FIG. 13, the connection part 43 connects the circumferential side surface of each adjacent magnetic part 41, and the inner surface of the outer peripheral side connection part 43b, respectively, and is substantially linear shape seeing from an axial direction. A so-called ramen structure having a pair of reinforcing portions 43c may be used, and in this case, the rigidity of the rotor core 40 can be increased.
《第3実施形態》
 図14は第3実施形態の回転電機としての電動機に用いられるアウターロータのロータコアの要部断面図である。この電動機は、ロータコア40の構造において上記実施形態と異なる。上記実施形態と同一の構成については、その構成に付された参照符号と同一の符号を本実施形態に用いた図面上に付すことで、その説明を省略する。
<< Third Embodiment >>
FIG. 14 is a cross-sectional view of the main part of the rotor core of the outer rotor used in the electric motor as the rotating electrical machine of the third embodiment. This electric motor is different from the above embodiment in the structure of the rotor core 40. About the structure same as the said embodiment, the code | symbol same as the referential mark attached | subjected to the structure is attached | subjected on drawing used for this embodiment, and the description is abbreviate | omitted.
 このロータコア40においては、連結部43が内周側連結部43aを有しておらず、空間部42が、隣接する磁性部41と、これら隣接する磁性部41同士を外周側で連結した外周側連結部43bと、により内周側が開口するように画成されている。また、ショルダーボルト50は、その外周側端部がロータコア40の径方向略中間部(図14中の一点鎖線)よりも内周側に位置し、空間部42を非接触に貫通している。 In this rotor core 40, the connecting portion 43 does not have the inner peripheral side connecting portion 43 a, and the space portion 42 is an outer peripheral side where the adjacent magnetic portions 41 are connected to each other on the outer peripheral side. The connecting portion 43b is defined so that the inner peripheral side is opened. Further, the shoulder bolt 50 has an outer peripheral side end located on the inner peripheral side with respect to a substantially intermediate portion in the radial direction of the rotor core 40 (a chain line in FIG. 14), and penetrates the space portion 42 in a non-contact manner.
 このように本実施形態のロータコア40においては、空間部42が内周側に開口するように形成したため、ショルダーボルト50を空間部42の開口寄りに配置することが可能となる。したがって、ロータコア40の外周側連結部43bとショルダーボルト50との間の径方向距離が大きくなり、エアギャップによる磁気抵抗が上昇するため、ステータ10のティース13からの外周側連結部43bを介したショルダーボルト50への磁束短絡が抑制され、モータ効率を向上することが可能となる。 As described above, in the rotor core 40 of the present embodiment, the space portion 42 is formed so as to open toward the inner peripheral side, so that the shoulder bolt 50 can be disposed closer to the opening of the space portion 42. Accordingly, the radial distance between the outer peripheral side connecting portion 43b of the rotor core 40 and the shoulder bolt 50 is increased, and the magnetic resistance due to the air gap is increased, so that the stator 10 is connected via the outer peripheral side connecting portion 43b from the teeth 13. A magnetic flux short circuit to the shoulder bolt 50 is suppressed, and the motor efficiency can be improved.
 なお、図15の変形例に示すように、外周側連結部43bは、第2実施形態と同様に、隣接する磁性部41同士を外周側端部よりも内周側で連結するように形成してもよい。 As shown in the modification of FIG. 15, the outer peripheral side connecting portion 43b is formed so as to connect adjacent magnetic portions 41 to each other on the inner peripheral side with respect to the outer peripheral side end portion, as in the second embodiment. May be.
 また、他の変形例として、図11,12,13に示したロータコア40において、空間部42を内周側に開口するように形成し、ショルダーボルト50を空間部42の内周側端部近傍に配置する構成としてもよい。 As another modification, in the rotor core 40 shown in FIGS. 11, 12, and 13, the space portion 42 is formed so as to open to the inner peripheral side, and the shoulder bolt 50 is near the inner peripheral side end portion of the space portion 42. It is good also as a structure arrange | positioned.
 尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が可能である。
 その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所等は本発明を達成できるものであれば任意であり、限定されない。
 例えば、上記実施形態では、ショルダーボルト50を用いてロータコア40と第1フランジ31及び第2フランジ32を締結することで、ロータコア40に締め付け用の軸力が作用するのを抑制しているが、本発明の連結部材は、通常の締結ボルトを用いて、軸方向に締め付け力が付与された状態で、これら各構成部品を締結するようにしてもよい。
 また、上述した実施形態では、1つの磁極を、単一の永久磁石の磁極で構成しているが、複数の永久磁石の磁極で構成してもよい。例えば、2つの永久磁石の磁極がステータ側で近づき合うように、これらの2つの永久磁石を逆V字状に並べることにより、1つの磁極を構成することによって、磁力線の指向性を高めるようにしてもよい。さらに、永久磁石に代えて、電磁石や移動磁界を発生可能な電機子を用いてもよい。
 また、上述した実施形態では、U相~W相のコイルをスロットに分布巻きで巻回しているが、これに限らず、集中巻きであってもよい。さらに、上述した実施形態では、コイルをU相~W相の3相コイルで構成しているが、回転磁界を発生できれば、このコイルの相数はこれに限らず、任意である。
 また、上述した実施形態では、第1ロータとしてのインナーロータ20と第2ロータとしてのアウターロータ30をステータ10の内側に配置したが、これに限らず、第1ロータと第2ロータをステータ10の外側に配置してもよい。
In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
In addition, the material, shape, dimensions, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
For example, in the above-described embodiment, the tightening of the rotor core 40, the first flange 31 and the second flange 32 using the shoulder bolt 50 prevents the axial force for tightening from acting on the rotor core 40. The connecting member of the present invention may be configured to fasten these components using a normal fastening bolt in a state where a fastening force is applied in the axial direction.
In the above-described embodiment, one magnetic pole is composed of a single permanent magnet magnetic pole, but may be composed of a plurality of permanent magnet magnetic poles. For example, by arranging these two permanent magnets in an inverted V shape so that the magnetic poles of the two permanent magnets approach each other on the stator side, one magnetic pole is formed, thereby increasing the directivity of the magnetic field lines. May be. Furthermore, instead of the permanent magnet, an electromagnet or an armature capable of generating a moving magnetic field may be used.
In the above-described embodiment, the U-phase to W-phase coils are wound around the slots by distributed winding. However, the present invention is not limited to this, and concentrated winding may be used. Furthermore, in the above-described embodiment, the coil is configured by a U-phase to W-phase three-phase coil. However, the number of phases of the coil is not limited to this, and may be arbitrary as long as a rotating magnetic field can be generated.
In the above-described embodiment, the inner rotor 20 as the first rotor and the outer rotor 30 as the second rotor are arranged inside the stator 10. However, the present invention is not limited to this, and the first rotor and the second rotor are connected to the stator 10. You may arrange | position outside.
 本出願は、2010年12月24日出願の日本特許出願2010-287537に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application 2010-287537 filed on December 24, 2010, the contents of which are incorporated herein by reference.
 10 ステータ
 12 電機子
 20 インナーロータ(第1ロータ)
 23 永久磁石
 30 アウターロータ(第2ロータ)
 31 第1フランジ
 32 第2フランジ
 40 ロータコア
 41 磁性部(誘導磁極)
 42 空間部
 43 連結部
 43a 内周側連結部
 43b 外周側連結部
 43c 補強部
 50 ショルダーボルト(連結部材)
10 Stator 12 Armature 20 Inner Rotor (First Rotor)
23 Permanent magnet 30 Outer rotor (second rotor)
31 First flange 32 Second flange 40 Rotor core 41 Magnetic part (induction magnetic pole)
42 space part 43 connection part 43a inner periphery side connection part 43b outer periphery side connection part 43c reinforcement part 50 shoulder bolt (connection member)

Claims (6)

  1.  環状のステータと、前記ステータの内側又は外側で回転可能に支持された第1ロータと、前記ステータと前記第1ロータとの間に配置されて、前記第1ロータと同芯に回転可能に支持された第2ロータとを備え、
     前記第1ロータが、周方向に所定ピッチで交互に異なる極性の磁極を有するように複数の永久磁石を配列して構成された磁極列を備え、
     前記ステータが、周方向に配列された複数の電機子で構成され、前記磁極列に対向するように配置されると共に、前記複数の電機子に発生させる所定の複数の電機子磁極により周方向の回転磁界を生成する電機子列を備え、
     前記第2ロータが、周方向に所定ピッチで配列された軟磁性体製の複数の誘導磁極で構成され、且つ前記第1ロータの磁極列と前記ステータの電機子列の間に配置された誘導磁極列を備える回転電機において、
     前記第2ロータは、該第2ロータの軸線方向中央部に位置する円筒状のロータコアと、該ロータコアを支持するように該ロータコアの軸線方向両端側に位置した円板状の第1フランジおよび第2フランジと、を備え、
     前記ロータコアは、一体円環状の軟磁性体を軸線方向に積層した積層体により構成され、
     前記ロータコアは、隣接する前記誘導磁極同士をそれぞれ連結する複数の連結部を有し、前記隣接する誘導磁極と前記連結部とは、非磁性部を構成する空間部を画成することを特徴とする回転電機。
    An annular stator, a first rotor supported rotatably inside or outside the stator, and disposed between the stator and the first rotor and rotatably supported concentrically with the first rotor. A second rotor,
    The first rotor includes a magnetic pole array configured by arranging a plurality of permanent magnets so as to have magnetic poles having different polarities alternately at a predetermined pitch in the circumferential direction,
    The stator is composed of a plurality of armatures arranged in the circumferential direction, and is arranged so as to face the magnetic pole row, and in the circumferential direction by a predetermined plurality of armature magnetic poles generated by the plurality of armatures. Comprising an armature train to generate a rotating magnetic field,
    The second rotor is composed of a plurality of induction magnetic poles made of a soft magnetic material arranged at a predetermined pitch in the circumferential direction, and the induction is arranged between the magnetic pole row of the first rotor and the armature row of the stator. In a rotating electrical machine having a magnetic pole row,
    The second rotor includes a cylindrical rotor core positioned at an axially central portion of the second rotor, a disk-shaped first flange positioned at both axial ends of the rotor core so as to support the rotor core, and a first rotor 2 flanges,
    The rotor core is composed of a laminate in which an integral annular soft magnetic material is laminated in the axial direction,
    The rotor core has a plurality of connecting portions that connect the adjacent induction magnetic poles to each other, and the adjacent induction magnetic pole and the connection portion define a space portion that constitutes a non-magnetic portion. Rotating electric machine.
  2.  前記連結部は、隣接する前記誘導磁極同士を内周側及び外周側でそれぞれ連結する内周側連結部及び外周側連結部から構成され、
     該外周側連結部と前記ステータとの径方向距離は、前記誘導磁極と前記ステータとの径方向距離よりも大きいことを特徴とする請求項1に記載の回転電機。
    The connecting portion is composed of an inner peripheral side connecting portion and an outer peripheral side connecting portion that connect the adjacent induction magnetic poles on the inner peripheral side and the outer peripheral side, respectively.
    2. The rotating electrical machine according to claim 1, wherein a radial distance between the outer peripheral side connecting portion and the stator is larger than a radial distance between the induction magnetic pole and the stator.
  3.  前記外周側連結部は、軸方向から見て略直線形状であることを特徴とする請求項2に記載の回転電機。 The rotating electrical machine according to claim 2, wherein the outer peripheral side connecting portion has a substantially linear shape when viewed in the axial direction.
  4.  前記外周側連結部は、その周方向中心から周方向端部に向かって、径方向幅が大きくなるように形成されることを特徴とする請求項2に記載の回転電機。 3. The rotating electrical machine according to claim 2, wherein the outer peripheral side connecting portion is formed so that a radial width increases from a circumferential center thereof toward a circumferential end portion.
  5.  前記連結部は、前記各誘導磁極の周方向側面と前記外周側連結部の内面とをそれぞれ接続する一対の補強部を有することを特徴とする請求項2~4の何れか1項に記載の回転電機。 The connection part according to any one of claims 2 to 4, wherein the connection part includes a pair of reinforcement parts that connect a circumferential side surface of each induction magnetic pole and an inner surface of the outer periphery side connection part. Rotating electric machine.
  6.  前記第1フランジ及び前記第2フランジを相互連結する連結部材を備えており、
     該連結部材は、前記ロータコアの径方向中間部よりも内周側に位置するように、前記ロータコアの前記空間部を貫通することを特徴とする請求項1~5の何れか1項に記載の回転電機。
    A connecting member for interconnecting the first flange and the second flange;
    6. The connecting member according to claim 1, wherein the connecting member penetrates the space portion of the rotor core so as to be positioned on an inner peripheral side with respect to a radially intermediate portion of the rotor core. Rotating electric machine.
PCT/JP2011/079426 2010-12-24 2011-12-19 Rotating electrical machine WO2012086613A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010287537 2010-12-24
JP2010-287537 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012086613A1 true WO2012086613A1 (en) 2012-06-28

Family

ID=46313882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079426 WO2012086613A1 (en) 2010-12-24 2011-12-19 Rotating electrical machine

Country Status (1)

Country Link
WO (1) WO2012086613A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112671192A (en) * 2020-12-31 2021-04-16 山东理工大学 Magnetic gear permanent magnet motor for automobile
CN112970178A (en) * 2019-02-07 2021-06-15 松下知识产权经营株式会社 Magnetic gear motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111963A (en) * 1994-10-11 1996-04-30 Nippondenso Co Ltd Two-shaft output type motor
JPH09201022A (en) * 1996-01-23 1997-07-31 Brother Ind Ltd Variable reluctance motor
JP2010017032A (en) * 2008-07-04 2010-01-21 Honda Motor Co Ltd Stator for rotary electric machine and motor
JP2010273521A (en) * 2009-05-25 2010-12-02 Honda Motor Co Ltd Device for control of electric motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111963A (en) * 1994-10-11 1996-04-30 Nippondenso Co Ltd Two-shaft output type motor
JPH09201022A (en) * 1996-01-23 1997-07-31 Brother Ind Ltd Variable reluctance motor
JP2010017032A (en) * 2008-07-04 2010-01-21 Honda Motor Co Ltd Stator for rotary electric machine and motor
JP2010273521A (en) * 2009-05-25 2010-12-02 Honda Motor Co Ltd Device for control of electric motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112970178A (en) * 2019-02-07 2021-06-15 松下知识产权经营株式会社 Magnetic gear motor
CN112671192A (en) * 2020-12-31 2021-04-16 山东理工大学 Magnetic gear permanent magnet motor for automobile

Similar Documents

Publication Publication Date Title
JP4904736B2 (en) Rotating electric machine stator
JP5046051B2 (en) Axial gap type motor
JP4707696B2 (en) Axial gap type motor
US9041269B2 (en) Motor
US6838790B2 (en) Stator of two rotor single stator type electric motor
US7411330B2 (en) Rotating electric machine
JP6265569B2 (en) Annular magnetic pole member and magnetic wave gear device
JP2009189163A (en) Electric motor
JP2010017032A (en) Stator for rotary electric machine and motor
JP6569396B2 (en) Rotating electric machine
JP2005269778A (en) Axial-gap rotating electric machine
WO2015045517A1 (en) Magnetic induction motor
JP2019126102A (en) Rotor and rotary electric machine
JP2006254561A (en) Rotary electric machine
JP4605480B2 (en) Axial gap type motor
JP5083826B2 (en) Axial gap type motor
WO2012086614A1 (en) Rotating electrical machine
WO2012086613A1 (en) Rotating electrical machine
JP5471653B2 (en) Permanent magnet type electric motor
WO2017212575A1 (en) Permanent magnet motor
JP2013099036A (en) Rotary electric machine
JP6857514B2 (en) Rotating machine stator
JP5639876B2 (en) Rotating electric machine
JP2014073011A (en) Stator for rotary electric machine and rotary electric machine
JP6094432B2 (en) Rotor and electric motor using this rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP