WO2012086557A1 - Lithium rechargeable battery - Google Patents

Lithium rechargeable battery Download PDF

Info

Publication number
WO2012086557A1
WO2012086557A1 PCT/JP2011/079259 JP2011079259W WO2012086557A1 WO 2012086557 A1 WO2012086557 A1 WO 2012086557A1 JP 2011079259 W JP2011079259 W JP 2011079259W WO 2012086557 A1 WO2012086557 A1 WO 2012086557A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
lithium titanate
lithium
negative electrode
positive electrode
Prior art date
Application number
PCT/JP2011/079259
Other languages
French (fr)
Japanese (ja)
Inventor
孝明 福島
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to KR1020137003826A priority Critical patent/KR101497990B1/en
Priority to US13/819,302 priority patent/US9209451B2/en
Priority to CN201180039702.5A priority patent/CN103069621B/en
Priority to JP2012521410A priority patent/JP5174283B2/en
Priority to EP11851658.2A priority patent/EP2658012B1/en
Publication of WO2012086557A1 publication Critical patent/WO2012086557A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a high capacity, high output lithium secondary battery.
  • the active material utilization is 80% or less when the active material filling rate is 80% or more, and the effect is small in terms of improving the energy density and battery capacity of the battery. It is insufficient.
  • the present invention has been proposed in view of such circumstances, and an object thereof is to provide a lithium secondary battery having higher energy density and battery capacity.
  • the lithium secondary battery of the present invention includes a positive electrode, a negative electrode, and a nonaqueous electrolyte sandwiched between the positive electrode and the negative electrode, and the positive electrode or the negative electrode is made of a lithium titanate sintered body,
  • the lithium titanate sintered body has an average pore diameter of 0.10 to 0.20 ⁇ m, a specific surface area of 1.0 to 3.0 m 2 / g, and a relative density of 80 to 90%.
  • the lithium secondary battery according to the present invention is a lithium titanate sintered body having an average pore diameter of 0.10 to 0.20 ⁇ m, a specific surface area of 1.0 to 3.0 m 2 / g, and a relative density of 80 to 90%.
  • a lithium secondary battery having high energy density and excellent charge / discharge characteristics can be obtained.
  • FIG. 1 is a cross-sectional view showing a lithium secondary battery according to an embodiment of the present invention, in which a separator 4 containing a nonaqueous electrolyte is sandwiched between a pair of electrodes composed of a positive electrode 3 and a negative electrode 7. .
  • the positive electrode can 1 is bonded to the positive electrode 3 by the positive electrode current collector 2 and is caulked through the insulating packing 8 with the negative electrode can 5 bonded to the negative electrode 7 by the negative electrode current collector 6.
  • the positive electrode current collector 2 or the negative electrode current collector 6 is arranged for collecting the current of the positive electrode 3 or the negative electrode 7, and for example, carbon black, graphite, gold, silver, nickel, zinc oxide, tin oxide, indium oxide, oxidation
  • a conductive filler composed of at least one of titanium and titanium potassium oxide, and at least one type of acrylic resin, epoxy resin, silicon resin, polyamide resin, phenol resin, polyester resin, and polyimide resin.
  • the positive electrode 3 or the negative electrode 7 is made of a lithium titanate sintered body, and has an average pore diameter of 0.10 to 0.20 ⁇ m, a specific surface area of 1.0 to 3.0 m 2 / g, and a relative density of 80 to 90%. is there.
  • the positive electrode 3 or the negative electrode 7 is made of a lithium titanate sintered body having a relative density of 80 to 90%, so that the active material is densely packed, and has high energy density and excellent charge / discharge characteristics. It will be.
  • the lithium titanate sintered body constituting the positive electrode 3 or the negative electrode 7 has an average pore diameter of 0.10 to 0.20 ⁇ m and a specific surface area of 1.0 to 3.0 m 2 / g.
  • the electrolyte solution is sufficiently immersed in the sintered body to ensure a contact area between the electrolyte solution and the electrode active material, and at the same time, the relative density of the lithium titanate sintered body can be increased to 80% or more.
  • the packing density can be increased.
  • the average pore diameter is less than 0.10 ⁇ m or the specific surface area is larger than 3.0 m 2 / g, it is difficult to increase the relative density of the lithium titanate sintered body to 80% or more, and the energy density cannot be increased. .
  • the average pore diameter is larger than 0.20 ⁇ m or the specific surface area is smaller than 1.0 m 2 / g, the relative density is larger than 90% and the energy density is increased, but the electrolyte is made of lithium titanate.
  • the contact area between the electrolytic solution and the electrode active material is reduced, and a large voltage drop occurs during charging and discharging.
  • the average particle diameter of the particles constituting the lithium titanate sintered body is preferably 0.5 ⁇ m or less.
  • the average particle diameter 0.5 ⁇ m or less By making the average particle diameter 0.5 ⁇ m or less, the diffusion distance of Li ions in the particles can be shortened, the ion conduction resistance can be reduced, and the average pore diameter, specific surface area and relative density are in the above ranges. It becomes easy. Further, when the average particle diameter is larger than 0.5 ⁇ m, the discharge potential may be lowered.
  • the average pore diameter of a lithium titanate sintered compact using a mercury intrusion method can be computed from the amount of adsorption gas of the sintered compact measured by the gas adsorption method.
  • the relative density may be calculated from the sintered body density measured by the Archimedes method and the theoretical density of Li 4 Ti 5 O 12 of 3.48 g / cm 3 .
  • the average particle diameter of the particles constituting the lithium titanate sintered body may be obtained, for example, by heat-treating the fracture surface of the sintered body and analyzing the cross-sectional photograph taken with a scanning electron microscope (SEM).
  • the thickness of the positive electrode 3 or the negative electrode 7 composed of the lithium titanate sintered body is preferably 20 ⁇ m to 200 ⁇ m. As a result, the absolute amount of the active material necessary for improving the energy density and battery capacity of the battery can be ensured, the electrode has good charge / discharge characteristics, good handling properties and easy handling.
  • the bending strength is preferably 50 MPa or more from the viewpoint of handling properties.
  • the bending strength can be measured by a four-point bending method or a three-point bending method based on JIS R 1601, and a converted strength based on the sample dimensions can also be used.
  • the lithium titanate sintered body contains at least one of rutile type titanium oxide crystal particles and anatase type titanium oxide crystal particles, and Li 4 Ti 5 O 12 by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the X-ray diffraction peak intensity ratio is determined by measuring the peak intensity of the sintered body by an X-ray diffraction method using Cu—K ⁇ rays, and Li 4 Ti 5 O 12 (111) having a diffraction angle 2 ⁇ of around 18.3 °.
  • the diffraction angle 2 ⁇ of around 18.3 ° means that it is within an error range of ⁇ 0.3 °.
  • an error range of ⁇ 0.3 ° is indicated.
  • Lithium titanate (Li 4 Ti 5 O 12 ) is synthesized, for example, by mixing and calcining lithium hydroxide and titanium dioxide.
  • rutile titanium oxide and anatase oxidation are used as the impurity phase. Titanium, Li 2 TiO 3 and the like are likely to be contained, and these crystalline phases are inactive or have a small battery capacity, so that the effective capacity of a lithium secondary battery using a lithium titanate sintered body as a negative electrode is reduced. .
  • the Li 4 Ti 5 O 12 sintered body used as the positive electrode 3 or the negative electrode 7 is composed of Li 4 Ti 5 O 12 crystal, rutile titanium oxide, and anatase titanium oxide. It is desirable that the XRD peak intensity ratio is in the above range.
  • examples of the active material used for the positive electrode 3 include lithium cobalt composite oxide, lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, and lithium nickel cobalt composite. Examples thereof include oxides, lithium vanadium composite oxides, and vanadium oxide.
  • the positive electrode 3 is also a sintered body having an average pore diameter of 0.10 to 0.20 ⁇ m, a specific surface area of 1.0 to 3.0 m 2 / g, and a relative density of 80 to 90%. Preferably there is.
  • examples of the active material used for the negative electrode 7 include carbon materials such as graphite, hard carbon, and soft carbon, alloys that can insert and desorb Li and Li, and the like. Is mentioned.
  • any of the following (1) to (3) may be used for the production of an electrode comprising such a lithium titanate sintered body.
  • a raw material powder of lithium titanate was mixed with a molding aid, water or a solvent with a dispersant and a plasticizer added as necessary to prepare a slurry, and this slurry was applied to a substrate film and dried. Then, it peels from a base film and it sinters.
  • the raw material powder of lithium titanate is directly or granulated, put into a mold, pressed with a press machine, and then sintered.
  • the granulated raw material powder of lithium titanate is pressure-formed with a roll press machine, processed on a sheet, and sintered.
  • the granulation of (2) and (3) may be either wet granulation or dry granulation from the slurry described in the method (1).
  • molding aid examples include one or a mixture of two or more of polyacrylic acid, carboxymethyl cellulose, polyvinylidene fluoride, polyvinyl alcohol, diacetyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, polyvinyl pyrrolidone, butyral, and the like. .
  • the base film for example, a resin film of polyethylene terephthalate, polypropylene, polyethylene, tetrafluoroethylene, or the like can be used.
  • the firing temperature may be appropriately selected in the range of 700 to 900 ° C. according to the sinterability of the raw material powder.
  • the fine lithium titanate raw material contains about 1% by mass of titanium oxide as an unavoidable impurity.
  • a low temperature 900 ° C. or lower, preferably 800 ° C. or lower
  • lithium titanate at the time of firing is used. Can be prevented, and the amount of impurities can be prevented from increasing.
  • the temperature is higher than 900 ° C., titanium oxide is generated as a different phase due to decomposition of lithium titanate, and the electrode characteristics are deteriorated.
  • a fine powder (Li 4 Ti 5 O 12 ) having a specific surface area of 20 m 2 / g or more and a primary particle size of 0.1 ⁇ m or less is used. It is preferable to use one of 50 m 2 / g, 0.05 to 0.1 ⁇ m. By using such fine powder, the pore diameter after sintering can be reduced, the specific surface area can be increased, and densification at low temperature can be achieved, so that a dense sintered body having no heterogeneous phase can be obtained.
  • the binder is preferably a butyral binder. Since the butyral binder has high strength, the amount added can be reduced, and a high-density sintered body can be obtained.
  • the amount of the binder is preferably 10% by volume or less with respect to the active material.
  • organic solvent used in the organic electrolyte examples include ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, and carbonic acid.
  • the solvent which mixed 1 type, or 2 or more types chosen from dimethyl, diethyl carbonate, and methyl ethyl carbonate is mentioned.
  • electrolyte salt examples include lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 .
  • separator 4 for example, a nonwoven fabric made of polyolefin fibers or a microporous membrane made of polyolefin fibers can be used.
  • the polyolefin fiber include polyethylene fiber and polypropylene fiber.
  • the positive electrode can 1 to which the positive electrode 3 is bonded by the positive electrode current collector 2 and the negative electrode can 5 to which the negative electrode 7 is bonded by the negative electrode current collector 6 are caulked through an insulating packing 8 and sealed.
  • the shape of the lithium secondary battery of the present invention is not limited to a square shape, a cylindrical shape, a button shape, a coin shape, a flat shape, or the like.
  • the positive electrode 3 or the negative electrode 7 is made into a sintered body having a relative density of 80 to 90%, so that the active material is densely packed, and has high energy density and excellent charge / discharge characteristics. .
  • an electron conduction aid In the case of an oxide-based active material, an electron conduction aid must be added in order to provide conductivity in a normal usage method.
  • the positive electrode 3 or the negative electrode 7 of the lithium secondary battery of the present invention Then, by making the active material a dense sintered body, the contact area between the active material particles increases, and sufficient electron conductivity can be obtained without using an electron conduction aid.
  • the electrode which is the positive electrode 3 or the negative electrode 7 is made dense, the penetration of the electrolytic solution into the electrode and the interface between the electrolytic solution and the active material decrease, and the charge / discharge characteristics deteriorate, but the average pore diameter of the electrode Of 0.10 to 0.20 ⁇ m and a specific surface area of 1.0 to 3.0 m 2 / g, the penetration of the electrolyte into the electrode and the contact area between the electrolyte and the active material are secured,
  • the electrode can achieve both high energy density and excellent charge / discharge characteristics.
  • a slurry is prepared by adding a molding aid, a plasticizer, a dispersant and a solvent to a Li 4 Ti 5 O 12 raw material having a specific surface area of 35 m 2 / g, an average particle size of 0.1 ⁇ m and an impurity content of 0.8%. did.
  • the impurity content mentioned here means I T / I LT in the X-ray diffraction of the raw material powder.
  • This slurry was applied on a polyethylene terephthalate (PET) film by a doctor blade method and then dried to prepare a green sheet having a thickness of 55 to 65 ⁇ m. This green sheet was punched out so as to have a circular shape with a diameter of 15 mm after firing, and fired at a temperature shown in Table 1 in the air.
  • PET polyethylene terephthalate
  • the thicknesses of the obtained lithium titanate sintered bodies were all 50 ⁇ m, and the average pore diameter, BET specific surface area, relative density, bending strength, and average particle diameter were measured for each, and the results are shown in Table 1. Further, the XRD peak intensity ratio I T / I LT between the Li 4 Ti 5 O 12 crystal and the titanium oxide crystal is determined from the peak intensity of the lithium titanate sintered body measured by the X-ray diffraction method using Cu—K ⁇ ray. rutile titanium oxide crystal (110) plane and anatase type titanium oxide crystal (101) of the surface, a higher strength to calculate the I T / I LT as I T, as described in Table 1.
  • the average pore diameter was measured using a mercury intrusion method.
  • the amount of adsorbed gas of the sintered body was measured by a gas adsorption method, and the BET surface area was calculated.
  • the relative density was calculated from the sintered body density measured by Archimedes method and the theoretical density of Li 4 Ti 5 O 12 of 3.48 g / cm 3 .
  • the bending strength was measured by a four-point bending method based on JIS R 1601.
  • the average particle size of the particles constituting the sintered body is obtained by heat-treating the fracture surface of the sintered body, then taking a cross-sectional photograph with a scanning electron microscope (SEM), and with an area of 20,000 times and 10 ⁇ 10 ⁇ m. Calculation was performed by image analysis.
  • SEM scanning electron microscope
  • a battery cell was assembled with a working electrode obtained by attaching these sintered bodies to a current collecting metal plate with a conductive adhesive and a counter electrode obtained by pressure bonding a Li metal foil to the current collecting metal plate with a separator interposed therebetween.
  • a separator a polyethylene non-woven fabric impregnated with an organic electrolyte solution is used, and hexafluorophosphorus is added to a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed at a volume ratio of 3: 7 as the organic electrolyte solution.
  • lithium acid (LiPF 6) was used by dissolving in 1 mol / L.
  • the battery cell produced as described above was subjected to a charge / discharge test at a current value corresponding to a 10 hour rate.
  • the charge end voltage was 2.5V
  • the discharge end voltage was 0.4V.
  • the active material utilization rate was 100% for all battery cells.
  • the battery capacity per unit volume of the sintered body used for the working electrode was calculated using the measured capacity and listed in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

[Problem] To provide a lithium rechargeable battery with a higher active material packing ratio in the cathode or anode, and a high energy density and battery capacity in a lithium rechargeable battery having a nonaqueous electrolyte held between the cathode and anode. [Solution] The present invention has a cathode, an anode, and a nonaqueous electrolyte held between the cathode and anode, the cathode or anode is composed of a lithium titanate sintered compact, the lithium titanate sintered body has an average pore diameter of 0.10-0.20 μm, a specific surface area of 1.0-3.0 m2/g, and a relative density of 80% to 90%.

Description

リチウム二次電池Lithium secondary battery
 本発明は、高容量、高出力のリチウム二次電池に関するものである。 The present invention relates to a high capacity, high output lithium secondary battery.
 近年、二次電池は携帯電話やノートPCだけでなく、電気自動車用バッテリーとしてもその用途を広げている。これらの電池において、活物質のみで電極を構成し、これによって十分な電子伝導性を達成した技術が提案されており、たとえば特許文献1では、活物質である焼成粉末に成形助剤、可塑剤、分散剤、溶剤を加えてスラリー化し、ドクターブレード法によりポリエチレンテレフタレート(PET)フィルム上に塗布し、その後所定の寸法に打ち抜き熱処理することで、相対密度50~80%の十分な電子伝導性を有する電極が得られている。 In recent years, secondary batteries have been used not only for mobile phones and notebook PCs but also for electric vehicles. In these batteries, a technique has been proposed in which an electrode is constituted only by an active material, thereby achieving sufficient electronic conductivity. For example, in Patent Document 1, a molding aid and a plasticizer are added to a fired powder as an active material. Then, a dispersant and a solvent are added to form a slurry, which is then applied onto a polyethylene terephthalate (PET) film by the doctor blade method, and then punched to a predetermined size and heat-treated to provide sufficient electronic conductivity with a relative density of 50 to 80%. The electrode which has is obtained.
特開2002-042785号公報JP 2002-042785 A
 しかしながら、特許文献1に記載されている電極では、活物質充填率が80%以上の範囲では活物質利用率が80%以下となり、電池のエネルギー密度及び電池容量を向上させるという点では効果が小さく不十分である。 However, in the electrode described in Patent Document 1, the active material utilization is 80% or less when the active material filling rate is 80% or more, and the effect is small in terms of improving the energy density and battery capacity of the battery. It is insufficient.
 本発明はこのような実情に鑑みて提案されたものであり、その目的はよりエネルギー密度及び電池容量の高いリチウム二次電池を提供することである。 The present invention has been proposed in view of such circumstances, and an object thereof is to provide a lithium secondary battery having higher energy density and battery capacity.
 本発明のリチウム二次電池は、正極と、負極と、前記正極と前記負極の間に挟持された非水電解質とを有し、前記正極または前記負極がチタン酸リチウム焼結体からなり、該チタン酸リチウム焼結体が、0.10~0.20μmの平均細孔径、1.0~3.0m/gの比表面積、80~90%の相対密度を有することを特徴とする。 The lithium secondary battery of the present invention includes a positive electrode, a negative electrode, and a nonaqueous electrolyte sandwiched between the positive electrode and the negative electrode, and the positive electrode or the negative electrode is made of a lithium titanate sintered body, The lithium titanate sintered body has an average pore diameter of 0.10 to 0.20 μm, a specific surface area of 1.0 to 3.0 m 2 / g, and a relative density of 80 to 90%.
 本発明に係るリチウム二次電池は、0.10~0.20μmの平均細孔径、1.0~3.0m/gの比表面積、80~90%の相対密度を有するチタン酸リチウム焼結体を正極または負極として用いることで、エネルギー密度が高く、かつ充放電特性に優れたリチウム二次電池とすることができる。 The lithium secondary battery according to the present invention is a lithium titanate sintered body having an average pore diameter of 0.10 to 0.20 μm, a specific surface area of 1.0 to 3.0 m 2 / g, and a relative density of 80 to 90%. By using the body as a positive electrode or a negative electrode, a lithium secondary battery having high energy density and excellent charge / discharge characteristics can be obtained.
本発明の一実施形態であるリチウム二次電池の断面図である。It is sectional drawing of the lithium secondary battery which is one Embodiment of this invention.
 図1は本発明の一実施形態であるリチウム二次電池を示す断面図で、正極3と負極7とからなる1対の電極の間に、非水電解質を含んだセパレータ4が挟持されている。正極缶1は正極集電体2により正極3に接着され、負極集電体6により負極7に接着された負極缶5と、絶縁パッキング8を介してかしめ合わされている。 FIG. 1 is a cross-sectional view showing a lithium secondary battery according to an embodiment of the present invention, in which a separator 4 containing a nonaqueous electrolyte is sandwiched between a pair of electrodes composed of a positive electrode 3 and a negative electrode 7. . The positive electrode can 1 is bonded to the positive electrode 3 by the positive electrode current collector 2 and is caulked through the insulating packing 8 with the negative electrode can 5 bonded to the negative electrode 7 by the negative electrode current collector 6.
 正極集電体2または負極集電体6は、正極3または負極7の集電のために配置され、たとえば、カーボンブラック、グラファイト、金、銀、ニッケル、酸化亜鉛、酸化錫、酸化インジウム、酸化チタン、チタン酸化カリウムのうちの少なくとも一種類からなる導電性フィラーと、アクリル系樹脂、エポキシ樹脂、シリコン系樹脂、ポリアミド系樹脂、フェノール樹脂、ポリエステル樹脂、ポリイミド系樹脂のうちの少なくとも一種類の高分子粘着材とからなる混合物をあげることができる。 The positive electrode current collector 2 or the negative electrode current collector 6 is arranged for collecting the current of the positive electrode 3 or the negative electrode 7, and for example, carbon black, graphite, gold, silver, nickel, zinc oxide, tin oxide, indium oxide, oxidation A conductive filler composed of at least one of titanium and titanium potassium oxide, and at least one type of acrylic resin, epoxy resin, silicon resin, polyamide resin, phenol resin, polyester resin, and polyimide resin. The mixture which consists of a molecular adhesive material can be mention | raise | lifted.
 正極3または負極7はチタン酸リチウム焼結体からなり、その平均細孔径は0.10~0.20μm、比表面積は1.0~3.0m/g、相対密度は80~90%である。 The positive electrode 3 or the negative electrode 7 is made of a lithium titanate sintered body, and has an average pore diameter of 0.10 to 0.20 μm, a specific surface area of 1.0 to 3.0 m 2 / g, and a relative density of 80 to 90%. is there.
 本発明のリチウム二次電池では、正極3または負極7を相対密度80~90%のチタン酸リチウム焼結体とすることで、活物質が密に充填され、高エネルギー密度で充放電特性に優れたものとなる。 In the lithium secondary battery of the present invention, the positive electrode 3 or the negative electrode 7 is made of a lithium titanate sintered body having a relative density of 80 to 90%, so that the active material is densely packed, and has high energy density and excellent charge / discharge characteristics. It will be.
 また、正極3または負極7を構成するチタン酸リチウム焼結体の平均細孔径を0.10~0.20μm、比表面積を1.0~3.0m/gとすることで、チタン酸リチウム焼結体内に電解液が十分浸み込み、電解液と電極活物質の接触面積が確保できると同時に、チタン酸リチウム焼結体の相対密度を80%以上に向上することが可能となり、活物質の充填密度を高めることができる。 In addition, the lithium titanate sintered body constituting the positive electrode 3 or the negative electrode 7 has an average pore diameter of 0.10 to 0.20 μm and a specific surface area of 1.0 to 3.0 m 2 / g. The electrolyte solution is sufficiently immersed in the sintered body to ensure a contact area between the electrolyte solution and the electrode active material, and at the same time, the relative density of the lithium titanate sintered body can be increased to 80% or more. The packing density can be increased.
 平均細孔径が0.10μm未満、あるいは比表面積が3.0m/gより大きい場合、チタン酸リチウム焼結体の相対密度を80%以上にすることが困難となり、エネルギー密度を高めることができない。 When the average pore diameter is less than 0.10 μm or the specific surface area is larger than 3.0 m 2 / g, it is difficult to increase the relative density of the lithium titanate sintered body to 80% or more, and the energy density cannot be increased. .
 また、平均細孔径が0.20μmより大きい、あるいは比表面積が1.0m/g未満の場合には、相対密度が90%より大きくなりエネルギー密度は高くなるが、電解液がチタン酸リチウム焼結体内へ浸み込みにくくなるとともに、電解液と電極活物質の接触面積が小さくなり、充放電時に大きな電圧の降下が発生してしまう。 In addition, when the average pore diameter is larger than 0.20 μm or the specific surface area is smaller than 1.0 m 2 / g, the relative density is larger than 90% and the energy density is increased, but the electrolyte is made of lithium titanate. In addition to being difficult to penetrate into the body, the contact area between the electrolytic solution and the electrode active material is reduced, and a large voltage drop occurs during charging and discharging.
 チタン酸リチウム焼結体を構成する粒子の平均粒子径は、0.5μm以下であることが望ましい。平均粒子径を0.5μm以下とすることで、粒子内のLiイオンの拡散距離を短くし、イオン伝導抵抗を小さくすることができるとともに、平均細孔径、比表面積および相対密度を上記範囲とすることが容易になる。また、平均粒子径が0.5μmよりも大きくなると、放電電位が低下する場合がある。 The average particle diameter of the particles constituting the lithium titanate sintered body is preferably 0.5 μm or less. By making the average particle diameter 0.5 μm or less, the diffusion distance of Li ions in the particles can be shortened, the ion conduction resistance can be reduced, and the average pore diameter, specific surface area and relative density are in the above ranges. It becomes easy. Further, when the average particle diameter is larger than 0.5 μm, the discharge potential may be lowered.
 なお、チタン酸リチウム焼結体の平均細孔径は、水銀圧入法を用いて測定すればよく、比表面積は、ガス吸着法により測定した焼結体の吸着ガス量から算出できる。相対密度は、アルキメデス法により測定した焼結体密度とLiTi12の理論密度3.48g/cmとから算出すればよい。チタン酸リチウム焼結体を構成する粒子の平均粒子径は、たとえば焼結体の破断面を熱処理し、走査型電子顕微鏡(SEM)で撮影した断面写真を画像解析して求めればよい。 In addition, what is necessary is just to measure the average pore diameter of a lithium titanate sintered compact using a mercury intrusion method, and a specific surface area can be computed from the amount of adsorption gas of the sintered compact measured by the gas adsorption method. The relative density may be calculated from the sintered body density measured by the Archimedes method and the theoretical density of Li 4 Ti 5 O 12 of 3.48 g / cm 3 . The average particle diameter of the particles constituting the lithium titanate sintered body may be obtained, for example, by heat-treating the fracture surface of the sintered body and analyzing the cross-sectional photograph taken with a scanning electron microscope (SEM).
 チタン酸リチウム焼結体により構成される正極3または負極7の厚さは20μm~200μmが好ましい。これにより、電池のエネルギー密度、電池容量を向上させるために必要な活物質の絶対量が確保できるとともに、充放電特性が良好で、ハンドリング性もよく取り扱いが容易な電極となる。 The thickness of the positive electrode 3 or the negative electrode 7 composed of the lithium titanate sintered body is preferably 20 μm to 200 μm. As a result, the absolute amount of the active material necessary for improving the energy density and battery capacity of the battery can be ensured, the electrode has good charge / discharge characteristics, good handling properties and easy handling.
 また、ハンドリング性の点から抗折強度は50MPa以上が好ましい。抗折強度はJIS R 1601に準拠した4点曲げ法や3点曲げ法により測定でき、試料寸法に基いた換算強度を用いることもできる。 Moreover, the bending strength is preferably 50 MPa or more from the viewpoint of handling properties. The bending strength can be measured by a four-point bending method or a three-point bending method based on JIS R 1601, and a converted strength based on the sample dimensions can also be used.
 さらに、チタン酸リチウム焼結体には、ルチル型酸化チタン結晶粒子およびアナターゼ型酸化チタン結晶粒子のうち少なくとも1種が含有されるが、X線解回折法(XRD)によるLiTi12結晶(111)面のピーク強度に対して、ルチル型酸化チタン結晶(110)面のピーク強度およびアナターゼ型酸化チタン結晶(101)面のピーク強度のうち、強度の高いほうのX線回折ピーク強度が1.5%以下であることが望ましい。 Further, the lithium titanate sintered body contains at least one of rutile type titanium oxide crystal particles and anatase type titanium oxide crystal particles, and Li 4 Ti 5 O 12 by X-ray diffraction (XRD). Of the peak intensity of the rutile titanium oxide crystal (110) plane and the peak intensity of the anatase titanium oxide crystal (101) plane, the higher X-ray diffraction peak intensity of the crystal (111) plane Is preferably 1.5% or less.
 X線回折ピーク強度比は、Cu-Kα線を用いたX線回折法により焼結体のピーク強度を測定して、回折角2θが18.3°付近のLiTi12(111)面のピーク強度(ILT)と、回折角2θが27.4°付近のルチル形酸化チタン結晶(110)面および回折角2θが25.3°付近のアナターゼ型酸化チタン結晶(101)面のいずれかのピーク強度(I)とから、ピーク強度比I/ILTを算出できる。ここで、回折角2θが18.3°付近というのは、±0.3°の誤差範囲内にあることをいう。以降、回折角2θに関して付近という表現を用いた場合は、±0.3°の誤差範囲を示す。 The X-ray diffraction peak intensity ratio is determined by measuring the peak intensity of the sintered body by an X-ray diffraction method using Cu—Kα rays, and Li 4 Ti 5 O 12 (111) having a diffraction angle 2θ of around 18.3 °. The peak intensity (I LT ) of the surface, the rutile-type titanium oxide crystal (110) plane having a diffraction angle 2θ of about 27.4 °, and the anatase-type titanium oxide crystal (101) plane having a diffraction angle 2θ of about 25.3 ° From any peak intensity (I T ), the peak intensity ratio I T / I LT can be calculated. Here, the diffraction angle 2θ of around 18.3 ° means that it is within an error range of ± 0.3 °. Hereinafter, when the expression “near” is used for the diffraction angle 2θ, an error range of ± 0.3 ° is indicated.
 チタン酸リチウム(LiTi12)は、例えば水酸化リチウムと二酸化チタンとを混合し焼成することにより合成されるが、結晶粒径が小さくなると不純物相としてルチル形酸化チタン、アナターゼ型酸化チタン、LiTiO等を含んだものとなり易く、これらの結晶相は不活性あるいは電池容量が小さいため、チタン酸リチウム焼結体を負極としたリチウム二次電池の実効容量を小さくしてしまう。リチウム二次電池の実効容量低下を防ぐため、正極3または負極7となるLiTi12焼結体では、LiTi12結晶と、ルチル形酸化チタンおよびアナターゼ型酸化チタンとのXRDピーク強度比が上記範囲であることが望ましい。 Lithium titanate (Li 4 Ti 5 O 12 ) is synthesized, for example, by mixing and calcining lithium hydroxide and titanium dioxide. However, when the crystal grain size is reduced, rutile titanium oxide and anatase oxidation are used as the impurity phase. Titanium, Li 2 TiO 3 and the like are likely to be contained, and these crystalline phases are inactive or have a small battery capacity, so that the effective capacity of a lithium secondary battery using a lithium titanate sintered body as a negative electrode is reduced. . In order to prevent a reduction in the effective capacity of the lithium secondary battery, the Li 4 Ti 5 O 12 sintered body used as the positive electrode 3 or the negative electrode 7 is composed of Li 4 Ti 5 O 12 crystal, rutile titanium oxide, and anatase titanium oxide. It is desirable that the XRD peak intensity ratio is in the above range.
 負極7にチタン酸リチウム焼結体を用いた場合、正極3に用いる活物質としては、例えば、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、二酸化マンガン、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムバナジウム複合酸化物、酸化バナジウムなどが挙げられる。 When the lithium titanate sintered body is used for the negative electrode 7, examples of the active material used for the positive electrode 3 include lithium cobalt composite oxide, lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, and lithium nickel cobalt composite. Examples thereof include oxides, lithium vanadium composite oxides, and vanadium oxide.
 この場合、正極3も負極7と同様に平均細孔径が0.10~0.20μmかつ比表面積が1.0~3.0m/gで、相対密度が80~90%の焼結体であることが好ましい。 In this case, like the negative electrode 7, the positive electrode 3 is also a sintered body having an average pore diameter of 0.10 to 0.20 μm, a specific surface area of 1.0 to 3.0 m 2 / g, and a relative density of 80 to 90%. Preferably there is.
 また、正極3にチタン酸リチウム焼結体を用いた場合、負極7に用いる活物質としては、例えば、黒鉛、ハードカーボン、ソフトカーボン等の炭素材料、LiおよびLiを挿入脱離可能な合金等が挙げられる。 When a lithium titanate sintered body is used for the positive electrode 3, examples of the active material used for the negative electrode 7 include carbon materials such as graphite, hard carbon, and soft carbon, alloys that can insert and desorb Li and Li, and the like. Is mentioned.
 かかるチタン酸リチウム焼結体からなる電極の製造には、下記の(1)から(3)のいずれを用いても良い。
(1)チタン酸リチウムの原料粉末を、成形助剤、必要に応じて分散剤、可塑剤を加えた水もしくは溶剤と混合してスラリーを調整し、このスラリーを基材フィルムに塗布、乾燥した後、基材フィルムから剥離させ、焼結させる。
(2)チタン酸リチウムの原料粉末を直接もしくは造粒したものを金型に投入し、プレス機で加圧成形した後、焼結させる。
(3)造粒したチタン酸リチウムの原料粉末をロールプレス機で加圧成形してシート上に加工し、焼結させる。
(2)及び(3)の造粒については、(1)の方法で述べたスラリーから造粒する湿式造粒であっても乾式造粒であってもよい。
Any of the following (1) to (3) may be used for the production of an electrode comprising such a lithium titanate sintered body.
(1) A raw material powder of lithium titanate was mixed with a molding aid, water or a solvent with a dispersant and a plasticizer added as necessary to prepare a slurry, and this slurry was applied to a substrate film and dried. Then, it peels from a base film and it sinters.
(2) The raw material powder of lithium titanate is directly or granulated, put into a mold, pressed with a press machine, and then sintered.
(3) The granulated raw material powder of lithium titanate is pressure-formed with a roll press machine, processed on a sheet, and sintered.
The granulation of (2) and (3) may be either wet granulation or dry granulation from the slurry described in the method (1).
 上記の成形助剤としては、例えばポリアクリル酸、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリビニルアルコール、ジアセチルセルロース、ヒドロキシプロピルセルロース、ポリビニルクロライド、ポリビニルピロリドン、ブチラールなどの1種もしくは2種以上の混合物が挙げられる。 Examples of the molding aid include one or a mixture of two or more of polyacrylic acid, carboxymethyl cellulose, polyvinylidene fluoride, polyvinyl alcohol, diacetyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, polyvinyl pyrrolidone, butyral, and the like. .
 基材フィルムとしては、たとえばポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、テトラフルオロエチレン等の樹脂フィルムを用いることができる。 As the base film, for example, a resin film of polyethylene terephthalate, polypropylene, polyethylene, tetrafluoroethylene, or the like can be used.
 焼成温度は原料粉末の焼結性に応じて、700~900℃の範囲で適宜選択すればよい。微細なチタン酸リチウム原料は不可避的不純物として1質量%程度の酸化チタンを含有しているが、焼成温度を900℃以下の低温、望ましくは800℃以下にすることにより、焼成時のチタン酸リチウムの分解を抑制し、不純物量の増加を防止できる。また、900℃より高温にすると、チタン酸リチウムの分解により酸化チタンが異相として生成し、電極特性が悪化する。 The firing temperature may be appropriately selected in the range of 700 to 900 ° C. according to the sinterability of the raw material powder. The fine lithium titanate raw material contains about 1% by mass of titanium oxide as an unavoidable impurity. However, by setting the firing temperature to a low temperature of 900 ° C. or lower, preferably 800 ° C. or lower, lithium titanate at the time of firing is used. Can be prevented, and the amount of impurities can be prevented from increasing. On the other hand, when the temperature is higher than 900 ° C., titanium oxide is generated as a different phase due to decomposition of lithium titanate, and the electrode characteristics are deteriorated.
 チタン酸リチウムの原料粉末としては、比表面積20m/g以上、一次粒径0.1μm以下の微粉(LiTi12)を用い、さらに工程上スラリー化を行う場合には、20~50m/g、0.05~0.1μmのものを用いるのが好ましい。このような微粉を用いることで、焼結後の細孔径を小さく、比表面積を大きくできるとともに、低温での緻密化が可能となり、異相のない緻密な焼結体が得られる。 As the raw material powder of lithium titanate, a fine powder (Li 4 Ti 5 O 12 ) having a specific surface area of 20 m 2 / g or more and a primary particle size of 0.1 μm or less is used. It is preferable to use one of 50 m 2 / g, 0.05 to 0.1 μm. By using such fine powder, the pore diameter after sintering can be reduced, the specific surface area can be increased, and densification at low temperature can be achieved, so that a dense sintered body having no heterogeneous phase can be obtained.
 バインダーはブチラール系バインダーが好ましい。ブチラール系バインダーは強度が高いため添加量を削減でき、高密度の焼結体が得られる。バインダー量は活物質に対し10体積%以下とすることが好ましい。 The binder is preferably a butyral binder. Since the butyral binder has high strength, the amount added can be reduced, and a high-density sintered body can be obtained. The amount of the binder is preferably 10% by volume or less with respect to the active material.
 有機電解液に用いる有機溶媒には、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、スルホラン、1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、炭酸ジメチル、炭酸ジエチル、メチルエチルカーボネートから選ばれる1種もしくは2種以上を混合した溶媒が挙げられる。電解質塩としては、例えばLiClO、LiBF、LiPF、LiCFSO、LiN(CFSO)、LiN(CSO)などのリチウム塩があげられる。 Examples of the organic solvent used in the organic electrolyte include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, and carbonic acid. The solvent which mixed 1 type, or 2 or more types chosen from dimethyl, diethyl carbonate, and methyl ethyl carbonate is mentioned. Examples of the electrolyte salt include lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 .
 セパレータ4としては、例えばポリオレフィン繊維製の不織布やポリオレフィン繊維製の微多孔膜を用いることができる。ここで、ポリオレフィン繊維としてはポリエチレン繊維、ポリプロピレン繊維を挙げることができる。 As the separator 4, for example, a nonwoven fabric made of polyolefin fibers or a microporous membrane made of polyolefin fibers can be used. Here, examples of the polyolefin fiber include polyethylene fiber and polypropylene fiber.
 正極集電体2により正極3が接着された正極缶1と、負極集電体6により負極7が接着された負極缶5とは、絶縁パッキング8を介してかしめ合わせて封口される。 The positive electrode can 1 to which the positive electrode 3 is bonded by the positive electrode current collector 2 and the negative electrode can 5 to which the negative electrode 7 is bonded by the negative electrode current collector 6 are caulked through an insulating packing 8 and sealed.
 本発明のリチウム二次電池の形状は角型、円筒型、ボタン型、コイン型、扁平型などに限定されるものではない。 The shape of the lithium secondary battery of the present invention is not limited to a square shape, a cylindrical shape, a button shape, a coin shape, a flat shape, or the like.
 本発明のリチウム二次電池は、正極3または負極7を相対密度80~90%の焼結体とすることで活物質が密に充填され、高エネルギー密度で充放電特性に優れたものとなる。 In the lithium secondary battery of the present invention, the positive electrode 3 or the negative electrode 7 is made into a sintered body having a relative density of 80 to 90%, so that the active material is densely packed, and has high energy density and excellent charge / discharge characteristics. .
 また、酸化物系活物質の場合、通常の使用方法では導電性を持たせるために電子伝導助剤を添加しなければならないが、これに対し本発明のリチウム二次電池の正極3または負極7では、活物質を緻密な焼結体とすることで活物質粒子同士の接触面積が増加し、電子伝導助剤を使用しなくても十分な電子伝導性が得られる。 In the case of an oxide-based active material, an electron conduction aid must be added in order to provide conductivity in a normal usage method. On the other hand, the positive electrode 3 or the negative electrode 7 of the lithium secondary battery of the present invention. Then, by making the active material a dense sintered body, the contact area between the active material particles increases, and sufficient electron conductivity can be obtained without using an electron conduction aid.
 また、正極3または負極7である電極を緻密にした場合、電極内への電解液の染み込みや電解液と活物質との界面が減少し、充放電特性が悪化するが、電極の平均細孔径を0.10~0.20μmかつ比表面積を1.0~3.0m/gとすることで、電極内への電解液の染み込みと、電解液と活物質との接触面積が確保され、高エネルギー密度と優れた充放電特性を両立可能な電極となる。 Moreover, when the electrode which is the positive electrode 3 or the negative electrode 7 is made dense, the penetration of the electrolytic solution into the electrode and the interface between the electrolytic solution and the active material decrease, and the charge / discharge characteristics deteriorate, but the average pore diameter of the electrode Of 0.10 to 0.20 μm and a specific surface area of 1.0 to 3.0 m 2 / g, the penetration of the electrolyte into the electrode and the contact area between the electrolyte and the active material are secured, The electrode can achieve both high energy density and excellent charge / discharge characteristics.
 また、焼結体電極を用いた場合、充放電に伴う電極の膨張収縮が大きな問題になるが、活物質にLiTi12を用いることで、充放電に伴う膨張収縮を抑制できる。 In addition, when a sintered body electrode is used, expansion and contraction of the electrode accompanying charging / discharging becomes a big problem, but by using Li 4 Ti 5 O 12 as the active material, expansion / contraction accompanying charging / discharging can be suppressed.
 比表面積35m/g、平均粒径0.1μm、不純物含有量0.8%のLiTi12原料に成形助剤、可塑剤、分散剤、溶剤を加えて混合してスラリーを調整した。なお、ここで言う不純物含有量とは、原料粉末のX線回折におけるI/ILTを意味する。このスラリーをポリエチレンテレフタレート(PET)フィルム上にドクターブレード法にて塗布した後乾燥させて、厚さ55~65μmのグリーンシートを作製した。このグリーンシートを、焼成後の寸法が直径15mmの円形になるように打ち抜き、大気中にて表1に示した温度で焼成した。 A slurry is prepared by adding a molding aid, a plasticizer, a dispersant and a solvent to a Li 4 Ti 5 O 12 raw material having a specific surface area of 35 m 2 / g, an average particle size of 0.1 μm and an impurity content of 0.8%. did. The impurity content mentioned here means I T / I LT in the X-ray diffraction of the raw material powder. This slurry was applied on a polyethylene terephthalate (PET) film by a doctor blade method and then dried to prepare a green sheet having a thickness of 55 to 65 μm. This green sheet was punched out so as to have a circular shape with a diameter of 15 mm after firing, and fired at a temperature shown in Table 1 in the air.
 得られたチタン酸リチウム焼結体の厚さはいずれも50μmで、それぞれについて平均細孔径、BET比表面積、相対密度、抗折強度、平均粒子径を測定し、結果を表1に示した。また、LiTi12結晶と酸化チタン結晶のXRDピーク強度比I/ILTは、Cu-Kα線を用いたX線回折法により測定したチタン酸リチウム焼結体のピーク強度から、ルチル形酸化チタン結晶(110)面およびアナターゼ型酸化チタン結晶(101)面のうち、強度の高い方をIとしてI/ILTを算出し、表1に記載した。 The thicknesses of the obtained lithium titanate sintered bodies were all 50 μm, and the average pore diameter, BET specific surface area, relative density, bending strength, and average particle diameter were measured for each, and the results are shown in Table 1. Further, the XRD peak intensity ratio I T / I LT between the Li 4 Ti 5 O 12 crystal and the titanium oxide crystal is determined from the peak intensity of the lithium titanate sintered body measured by the X-ray diffraction method using Cu—Kα ray. rutile titanium oxide crystal (110) plane and anatase type titanium oxide crystal (101) of the surface, a higher strength to calculate the I T / I LT as I T, as described in Table 1.
 平均細孔径は、水銀圧入法を用いて測定した。比表面積は、ガス吸着法により焼結体の吸着ガス量を測定し、BET表面積を算出した。相対密度は、アルキメデス法により測定した焼結体密度とLiTi12の理論密度3.48g/cmとから算出した。抗折強度は、JIS R 1601に準拠した4点曲げ法により測定した。 The average pore diameter was measured using a mercury intrusion method. For the specific surface area, the amount of adsorbed gas of the sintered body was measured by a gas adsorption method, and the BET surface area was calculated. The relative density was calculated from the sintered body density measured by Archimedes method and the theoretical density of Li 4 Ti 5 O 12 of 3.48 g / cm 3 . The bending strength was measured by a four-point bending method based on JIS R 1601.
 焼結体を構成する粒子の平均粒子径は、焼結体の破断面を熱処理した後、走査型電子顕微鏡(SEM)にて断面写真を撮影し、倍率2万倍、10×10μmの面積で画像解析を行って算出した。 The average particle size of the particles constituting the sintered body is obtained by heat-treating the fracture surface of the sintered body, then taking a cross-sectional photograph with a scanning electron microscope (SEM), and with an area of 20,000 times and 10 × 10 μm. Calculation was performed by image analysis.
 さらに、これらの焼結体を導電性接着剤により集電金属板に張り付けた作用極と、Li金属箔を集電金属板に圧着した対極とを、セパレータを介して対向させ電池セルを組み立てた。セパレータには、有機電解液を含浸させたポリエチレン製の不織布を用い、有機電解液としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)を体積比3:7の比で混合した溶媒に、ヘキサフルオロリン酸リチウム(LiPF)を1mol/Lで溶解させたものを用いた。 Further, a battery cell was assembled with a working electrode obtained by attaching these sintered bodies to a current collecting metal plate with a conductive adhesive and a counter electrode obtained by pressure bonding a Li metal foil to the current collecting metal plate with a separator interposed therebetween. . For the separator, a polyethylene non-woven fabric impregnated with an organic electrolyte solution is used, and hexafluorophosphorus is added to a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed at a volume ratio of 3: 7 as the organic electrolyte solution. lithium acid (LiPF 6) was used by dissolving in 1 mol / L.
 以上のようにして作製した電池セルについて、10時間率に相当する電流値にて充放電試験を行った。充電終止電圧は2.5V、放電終止電圧は0.4Vとした。 The battery cell produced as described above was subjected to a charge / discharge test at a current value corresponding to a 10 hour rate. The charge end voltage was 2.5V, and the discharge end voltage was 0.4V.
 活物質利用率は、いずれの電池セルも100%であった。また、作用極に使用した焼結体の単位体積あたりの電池容量を、実測容量を用いて算出して表1に記載した。 The active material utilization rate was 100% for all battery cells. In addition, the battery capacity per unit volume of the sintered body used for the working electrode was calculated using the measured capacity and listed in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、試料No.3~7は、活物質利用率に優れ、体積あたりの電池容量が470mAh/cm以上と大きいことがわかる。ただし、試料No.7については放電末(放電量約90%~100%の範囲)において、放電電位が0.6Vに降下し、やや特性の劣るものであった。一方、試料No.1および2は、活物質充填率が低いため、体積あたりの電池容量が450mAh/cm以下と小さく、低強度でハンドリング性に劣るものであった。試料No.8では、電極内に有機電解液が十分に染み込まず、放電時の電位が0.6V程度となり、電池特性に劣るものとなった。 From Table 1, Sample No. It can be seen that 3 to 7 are excellent in active material utilization and have a large battery capacity per volume of 470 mAh / cm 3 or more. However, Sample No. For No. 7, the discharge potential dropped to 0.6 V at the end of discharge (discharge amount in the range of about 90% to 100%), and the characteristics were slightly inferior. On the other hand, sample No. Since 1 and 2 had a low active material filling rate, the battery capacity per volume was as small as 450 mAh / cm 3 or less, and the strength was low and the handling property was inferior. Sample No. In No. 8, the organic electrolyte was not sufficiently infiltrated into the electrode, and the electric potential at the time of discharge was about 0.6 V, which was inferior in battery characteristics.
 1:正極缶、2:正極集電体、3:正極、4:セパレータ、5:負極缶、6:負極集電体、7:負極、8:絶縁パッキング 1: positive electrode can, 2: positive electrode current collector, 3: positive electrode, 4: separator, 5: negative electrode can, 6: negative electrode current collector, 7: negative electrode, 8: insulating packing

Claims (4)

  1.  正極と、負極と、前記正極と前記負極の間に挟持された非水電解質とを有し、前記正極または前記負極がチタン酸リチウム焼結体からなり、該チタン酸リチウム焼結体が、0.10~0.20μmの平均細孔径、1.0~3.0m/gの比表面積、80~90%の相対密度を有することを特徴とするリチウム二次電池。 A positive electrode, a negative electrode, and a non-aqueous electrolyte sandwiched between the positive electrode and the negative electrode, wherein the positive electrode or the negative electrode is made of a lithium titanate sintered body, and the lithium titanate sintered body is 0 A lithium secondary battery having an average pore diameter of 10 to 0.20 μm, a specific surface area of 1.0 to 3.0 m 2 / g, and a relative density of 80 to 90%.
  2.  前記チタン酸リチウム焼結体を構成する粒子の平均粒子径が0.5μm以下であることを特徴とする請求項1に記載のリチウム二次電池。 2. The lithium secondary battery according to claim 1, wherein an average particle diameter of particles constituting the lithium titanate sintered body is 0.5 μm or less.
  3.  前記チタン酸リチウム焼結体の抗折強度が50MPa以上であることを特徴とする請求項1または2記載のリチウム二次電池。 The lithium secondary battery according to claim 1 or 2, wherein the bending strength of the lithium titanate sintered body is 50 MPa or more.
  4.  前記チタン酸リチウム焼結体が、ルチル型の結晶構造を有する酸化チタン結晶粒子およびアナターゼ型の結晶構造を有する酸化チタン結晶粒子のうち少なくとも1種を含有し、前記チタン酸リチウム焼結体のX線回折パターンにおいて、酸化チタン結晶の前記ルチル型の結晶構造の(110)面を示すX線回折ピークおよびアナターゼ型の結晶構造の(101)面を示すX線回折ピークのうち、強度の高い方のX線回折ピークの強度がLiTi12結晶の(111)面を示すX線回折ピークの強度に対して、1.5%以下であることを特徴とする請求項1乃至3のいずれかに記載のリチウム二次電池。 The lithium titanate sintered body contains at least one of titanium oxide crystal particles having a rutile-type crystal structure and titanium oxide crystal particles having an anatase-type crystal structure, and X of the lithium titanate sintered body In the line diffraction pattern, the higher one of the X-ray diffraction peak showing the (110) plane of the rutile crystal structure of the titanium oxide crystal and the X-ray diffraction peak showing the (101) plane of the anatase crystal structure The intensity of the X-ray diffraction peak of is 1.5% or less with respect to the intensity of the X-ray diffraction peak showing the (111) plane of the Li 4 Ti 5 O 12 crystal. The lithium secondary battery in any one.
PCT/JP2011/079259 2010-12-24 2011-12-17 Lithium rechargeable battery WO2012086557A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137003826A KR101497990B1 (en) 2010-12-24 2011-12-17 Lithium rechargeable battery
US13/819,302 US9209451B2 (en) 2010-12-24 2011-12-17 Lithium rechargeable battery comprising a lithium titanate sintered body
CN201180039702.5A CN103069621B (en) 2010-12-24 2011-12-17 Lithium rechargeable battery
JP2012521410A JP5174283B2 (en) 2010-12-24 2011-12-17 Lithium secondary battery
EP11851658.2A EP2658012B1 (en) 2010-12-24 2011-12-17 Lithium rechargeable battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010288124 2010-12-24
JP2010-288124 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012086557A1 true WO2012086557A1 (en) 2012-06-28

Family

ID=46313829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079259 WO2012086557A1 (en) 2010-12-24 2011-12-17 Lithium rechargeable battery

Country Status (6)

Country Link
US (1) US9209451B2 (en)
EP (1) EP2658012B1 (en)
JP (1) JP5174283B2 (en)
KR (1) KR101497990B1 (en)
CN (1) CN103069621B (en)
WO (1) WO2012086557A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140265915A1 (en) * 2013-03-15 2014-09-18 Apple Inc. Thin Film Encapsulation Battery Systems
JP2014231639A (en) * 2013-04-30 2014-12-11 株式会社コベルコ科研 Li-CONTAINING OXIDE TARGET JOINED BODY
JP2014238925A (en) * 2013-06-06 2014-12-18 日本碍子株式会社 All-solid battery
US20150159996A1 (en) * 2013-12-09 2015-06-11 Seiko Epson Corporation Measuring method of utilization depth of active material, manufacturing method of lithium secondary battery, and the lithium secondary battery
US9570775B2 (en) 2013-03-15 2017-02-14 Apple Inc. Thin film transfer battery systems
US9601751B2 (en) 2013-03-15 2017-03-21 Apple Inc. Annealing method for thin film electrodes
US9711770B2 (en) 2012-11-27 2017-07-18 Apple Inc. Laminar battery system
US9899661B2 (en) 2013-03-13 2018-02-20 Apple Inc. Method to improve LiCoO2 morphology in thin film batteries
US10033029B2 (en) 2012-11-27 2018-07-24 Apple Inc. Battery with increased energy density and method of manufacturing the same
JP6392493B1 (en) * 2017-05-15 2018-09-19 日本碍子株式会社 Lithium titanate sintered plate
WO2018212038A1 (en) * 2017-05-15 2018-11-22 日本碍子株式会社 Lithium titanate sintered plate
US10141600B2 (en) 2013-03-15 2018-11-27 Apple Inc. Thin film pattern layer battery systems
US10211433B2 (en) 2012-11-27 2019-02-19 Apple Inc. Battery packaging
WO2019221141A1 (en) * 2018-05-17 2019-11-21 日本碍子株式会社 COIN TYPE LITHIUM SECONDARY BATTERY AND IoT DEVICE
WO2020217579A1 (en) * 2019-04-26 2020-10-29 日本碍子株式会社 Lithium secondary battery
US10930915B2 (en) 2014-09-02 2021-02-23 Apple Inc. Coupling tolerance accommodating contacts or leads for batteries
WO2021100282A1 (en) * 2019-11-20 2021-05-27 日本碍子株式会社 Lithium titanate sintered body plate
US11824220B2 (en) 2020-09-03 2023-11-21 Apple Inc. Electronic device having a vented battery barrier

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975668B1 (en) * 2013-03-14 2017-12-20 Kabushiki Kaisha Toshiba Battery system
JP6220365B2 (en) * 2015-06-30 2017-10-25 宇部興産株式会社 Lithium titanate powder and active material for electrode of power storage device, and electrode sheet and power storage device using the same
WO2019065190A1 (en) 2017-09-26 2019-04-04 日本碍子株式会社 Lithium-ion assembled battery
CN111902991B (en) * 2018-03-28 2024-04-26 日本碍子株式会社 Lithium secondary battery and card with built-in battery
CN112088459B (en) * 2018-05-17 2024-01-26 日本碍子株式会社 Lithium secondary battery
TWI785239B (en) * 2018-05-17 2022-12-01 日商日本碍子股份有限公司 lithium secondary battery
TWI818019B (en) * 2018-05-17 2023-10-11 日商日本碍子股份有限公司 Coin-type lithium secondary batteries and IoT devices
WO2020129411A1 (en) * 2018-12-18 2020-06-25 日本碍子株式会社 Lithium secondary battery
JP7227894B2 (en) * 2019-12-23 2023-02-22 住友化学株式会社 Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192208A (en) * 1999-06-03 2001-07-17 Titan Kogyo Kk Lithium-titanium multiple oxide, its manufacturing method and its use
JP2002042785A (en) 2000-07-21 2002-02-08 Kyocera Corp Lithium battery
JP2002289194A (en) * 2001-03-27 2002-10-04 Toho Titanium Co Ltd Titanium dioxide powder as material for manufacturing lithium ion secondary battery electrode active material, lithium titanate as lithium ion secondary battery electrode active material, and manufacturing method thereof
WO2012002122A1 (en) * 2010-07-02 2012-01-05 大塚化学株式会社 Method for producing porous lithium titanate, porous lithium titanate and lithium battery using same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4413888B2 (en) * 2006-06-13 2010-02-10 株式会社東芝 Storage battery system, in-vehicle power supply system, vehicle, and method for charging storage battery system
WO2008088050A1 (en) * 2007-01-19 2008-07-24 Stella Chemifa Corporation Electrical storage device
JP5430849B2 (en) * 2007-12-27 2014-03-05 株式会社東芝 Non-aqueous electrolyte battery
DE102008026580A1 (en) 2008-06-03 2009-12-10 Süd-Chemie AG Process for producing lithium titanium spinel and its use
CN101409341B (en) * 2008-11-20 2010-11-03 上海交通大学 Method for preparing lithium titanate cathode material of lithium ion battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192208A (en) * 1999-06-03 2001-07-17 Titan Kogyo Kk Lithium-titanium multiple oxide, its manufacturing method and its use
JP2002042785A (en) 2000-07-21 2002-02-08 Kyocera Corp Lithium battery
JP2002289194A (en) * 2001-03-27 2002-10-04 Toho Titanium Co Ltd Titanium dioxide powder as material for manufacturing lithium ion secondary battery electrode active material, lithium titanate as lithium ion secondary battery electrode active material, and manufacturing method thereof
WO2012002122A1 (en) * 2010-07-02 2012-01-05 大塚化学株式会社 Method for producing porous lithium titanate, porous lithium titanate and lithium battery using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2658012A4

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439187B2 (en) 2012-11-27 2019-10-08 Apple Inc. Laminar battery system
US10211433B2 (en) 2012-11-27 2019-02-19 Apple Inc. Battery packaging
US9711770B2 (en) 2012-11-27 2017-07-18 Apple Inc. Laminar battery system
US10033029B2 (en) 2012-11-27 2018-07-24 Apple Inc. Battery with increased energy density and method of manufacturing the same
US9899661B2 (en) 2013-03-13 2018-02-20 Apple Inc. Method to improve LiCoO2 morphology in thin film batteries
US10141600B2 (en) 2013-03-15 2018-11-27 Apple Inc. Thin film pattern layer battery systems
US11508984B2 (en) 2013-03-15 2022-11-22 Apple Inc. Thin film pattern layer battery systems
US9570775B2 (en) 2013-03-15 2017-02-14 Apple Inc. Thin film transfer battery systems
US9601751B2 (en) 2013-03-15 2017-03-21 Apple Inc. Annealing method for thin film electrodes
US20140265915A1 (en) * 2013-03-15 2014-09-18 Apple Inc. Thin Film Encapsulation Battery Systems
US9887403B2 (en) * 2013-03-15 2018-02-06 Apple Inc. Thin film encapsulation battery systems
US9870902B2 (en) 2013-04-30 2018-01-16 Kobelco Research Institute, Inc. Li-containing oxide target assembly
JP2014231639A (en) * 2013-04-30 2014-12-11 株式会社コベルコ科研 Li-CONTAINING OXIDE TARGET JOINED BODY
JP2014238925A (en) * 2013-06-06 2014-12-18 日本碍子株式会社 All-solid battery
US20150159996A1 (en) * 2013-12-09 2015-06-11 Seiko Epson Corporation Measuring method of utilization depth of active material, manufacturing method of lithium secondary battery, and the lithium secondary battery
US10930915B2 (en) 2014-09-02 2021-02-23 Apple Inc. Coupling tolerance accommodating contacts or leads for batteries
US11211600B2 (en) 2017-05-15 2021-12-28 Ngk Insulators, Ltd. Lithium titanate sintered plate
JP6392493B1 (en) * 2017-05-15 2018-09-19 日本碍子株式会社 Lithium titanate sintered plate
JP2019096599A (en) * 2017-05-15 2019-06-20 日本碍子株式会社 Lithium titanate sintered body plate
CN110612623A (en) * 2017-05-15 2019-12-24 日本碍子株式会社 Lithium titanate sintered body plate
CN110612623B (en) * 2017-05-15 2022-05-03 日本碍子株式会社 Lithium titanate sintered body plate
WO2018212038A1 (en) * 2017-05-15 2018-11-22 日本碍子株式会社 Lithium titanate sintered plate
JPWO2019221141A1 (en) * 2018-05-17 2020-12-10 日本碍子株式会社 Coin-type lithium secondary battery and IoT device
WO2019221141A1 (en) * 2018-05-17 2019-11-21 日本碍子株式会社 COIN TYPE LITHIUM SECONDARY BATTERY AND IoT DEVICE
JPWO2020217579A1 (en) * 2019-04-26 2021-12-23 日本碍子株式会社 Lithium secondary battery
WO2020217579A1 (en) * 2019-04-26 2020-10-29 日本碍子株式会社 Lithium secondary battery
JP7268142B2 (en) 2019-04-26 2023-05-02 日本碍子株式会社 lithium secondary battery
JPWO2021100282A1 (en) * 2019-11-20 2021-05-27
WO2021100282A1 (en) * 2019-11-20 2021-05-27 日本碍子株式会社 Lithium titanate sintered body plate
US11824220B2 (en) 2020-09-03 2023-11-21 Apple Inc. Electronic device having a vented battery barrier

Also Published As

Publication number Publication date
CN103069621B (en) 2015-07-22
JP5174283B2 (en) 2013-04-03
EP2658012A1 (en) 2013-10-30
US20130157137A1 (en) 2013-06-20
EP2658012B1 (en) 2017-07-26
EP2658012A4 (en) 2016-11-23
JPWO2012086557A1 (en) 2014-05-22
KR20130055644A (en) 2013-05-28
CN103069621A (en) 2013-04-24
US9209451B2 (en) 2015-12-08
KR101497990B1 (en) 2015-03-03

Similar Documents

Publication Publication Date Title
JP5174283B2 (en) Lithium secondary battery
CN110199419B (en) Positive electrode active material and battery
JP4061648B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
WO2021145420A1 (en) Positive electrode active material for all-solid-state lithium ion battery, electrode, and all-solid-state lithium ion battery
CN109565046B (en) Positive electrode active material and battery using same
JP6451672B2 (en) Perovskite type ion conductive oxide, composite and lithium secondary battery
CN108075113B (en) Positive electrode active material for battery and battery using same
US20130273437A1 (en) All solid state battery
JP5865672B2 (en) Secondary battery
CN107867721B (en) Positive electrode active material for battery and battery
WO2018163518A1 (en) Positive electrode active material, and cell
WO2013151209A1 (en) Cathode active material for lithium ion capacitor and method for manufacturing same
WO2012169331A1 (en) Lithium titanate primary particles, lithium titanate aggregate, lithium ion secondary battery using lithium titanate primary particles or lithium titanate aggregate, and lithium ion capacitor using lithium titanate primary particles or lithium titanate aggregate
CN110235288B (en) Positive electrode active material and battery
JP2008060033A (en) Positive-electrode active material, positive electrode using the same, nonaqueous electrolyte secondary battery, and positive-electrode active material manufacturing method
JP5958256B2 (en) Nonaqueous electrolyte secondary battery
EP3846261A1 (en) Positive electrode active material and battery provided with same
KR20220129544A (en) Positive electrode active material for all-solid-state lithium-ion battery, electrode and all-solid-state lithium-ion battery
JP2018008843A (en) Solid electrolyte, all-solid battery and manufacturing method thereof
CN113519077A (en) Nonaqueous electrolyte secondary battery
JP2013247022A (en) Electrode material, method for producing the same, and secondary battery
JP2015187929A (en) Nonaqueous electrolyte secondary battery
JPWO2020090470A1 (en) Lithium secondary battery
EP4053081B1 (en) Positive electrode active material for secondary battery, and secondary battery
CN110880585B (en) Positive electrode active material and battery provided with same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039702.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012521410

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137003826

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011851658

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13819302

Country of ref document: US

Ref document number: 2011851658

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE