WO2012086315A1 - Method for producing engine valve containing metallic sodium, and metallic sodium supply apparatus - Google Patents

Method for producing engine valve containing metallic sodium, and metallic sodium supply apparatus Download PDF

Info

Publication number
WO2012086315A1
WO2012086315A1 PCT/JP2011/075409 JP2011075409W WO2012086315A1 WO 2012086315 A1 WO2012086315 A1 WO 2012086315A1 JP 2011075409 W JP2011075409 W JP 2011075409W WO 2012086315 A1 WO2012086315 A1 WO 2012086315A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
engine valve
sodium
valve
metallic
Prior art date
Application number
PCT/JP2011/075409
Other languages
French (fr)
Japanese (ja)
Inventor
西 敏郎
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2012086315A1 publication Critical patent/WO2012086315A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • F01L3/14Cooling of valves by means of a liquid or solid coolant, e.g. sodium, in a closed chamber in a valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/001Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings
    • B23P15/002Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings poppet valves

Definitions

  • the present invention relates to a method for manufacturing a metal sodium (metal Na) -containing engine valve applied to an engine for vehicles and the like, and a metal sodium supply device.
  • FIG. 12 shows an example of an engine valve in which metal Na that is conventionally used is enclosed.
  • the engine valve 101 in the conventional metal Na-containing engine valve 100, the engine valve 101 has a valve cap portion 102, a valve shaft portion 103, and a valve shaft tip portion 104, and a metal Na 105 inside the engine valve 101. Is enclosed.
  • the engine valve 101 can be made light weight by being hollowed out, so that fuel consumption can be reduced by reducing kinetic energy loss and noise can be reduced by reducing seating noise.
  • the metal Na105 to be encapsulated has a low specific gravity and a low melting point and a large thermal conductivity, the heat transfer rate is increased and the valve temperature is lowered to improve the heat transfer rate and increase the combustion gas temperature. It can correspond to. Therefore, in an engine valve in which metal Na is enclosed, metal Na liquefies at a high temperature, which causes convection in the engine valve and promotes heat flow in the engine valve, so that the temperature of each part of the engine valve is averaged.
  • problems caused by using the engine valve such as engine valve seizure, are solved, engine valve cooling efficiency and performance are improved, and engine performance is improved (for example, see Patent Documents 1 and 2). .
  • the engine valve containing metal Na is manufactured by inserting rod-shaped metal Na into the hollow of the engine valve in the atmosphere, and then thermally melting and filling it.
  • Engine valves containing such metal Na are becoming widespread for high-end cars, intermediate cars and aircraft.
  • automobile engines have been subject to legal regulations (for example, CAFE regulations), and have been accelerated to achieve higher efficiency, lower fuel consumption, lighter weight, and lower noise.
  • legal regulations for example, CAFE regulations
  • This invention is made in view of the said problem, Comprising: It aims at providing the manufacturing method of a metallic sodium containing engine valve which can be filled with metallic Na efficiently in an engine valve, and a metallic sodium supply apparatus.
  • a first aspect of the present invention for solving the above-described problem is an engine having a valve bulkhead, a valve shaft, and a valve shaft tip, and at least the valve bulkhead and the valve shaft are hollow.
  • a metal sodium-containing engine valve manufacturing method comprising: a first metal sodium filling step for filling; and a second metal sodium filling step for supplying the rod-shaped metal sodium into the valve shaft portion. It is.
  • the engine valve is heated by heating and melting means between the first metal sodium filling step and the second metal sodium filling step, and It is a manufacturing method of a metallic sodium-containing engine valve characterized by having a heating and dissolving step of dissolving metallic sodium supplied to the inside.
  • titanium is attached in advance to the surface of the metal sodium, or the metal sodium is previously added to kerosene. It is a manufacturing method of a metallic sodium-containing engine valve characterized by being immersed.
  • a metallic sodium containing metallic sodium having an inner portion of an engine valve having a valve bulkhead portion, a valve shaft portion, and a valve shaft tip portion, wherein at least the valve bulkhead portion and the valve shaft portion are hollow.
  • a metal sodium supply device for manufacturing an engine valve wherein the first metal sodium supply unit supplies either or both of particulate metal sodium and rod-shaped metal sodium into the engine valve; and the rod-shaped metal sodium And a second metal sodium supply part for supplying particulate metal sodium in the engine valve.
  • the um supply part has a second metal sodium storage part for storing the rod-shaped metal sodium inside the valve shaft part, and a second engine valve storage part for storing a part of the engine valve. This is a metallic sodium supply device.
  • the metallic sodium supply device according to the fourth aspect, further comprising an inert gas supply unit that is provided in the engine valve housing portion and supplies an inert gas into the engine valve housing portion. is there.
  • a sixth invention is the metallic sodium supply device according to the fourth or fifth invention, wherein the inert gas supply means further supplies an inert gas into the engine valve.
  • 7th invention is provided in any one or both of a 1st metal sodium storage part and a 2nd metal sodium storage part in any one invention of 4th to 6th, 1st metal sodium storage Detecting means for detecting the length of metallic sodium discharged from either or both of the first and second metallic sodium reservoirs, a first metallic sodium reservoir, and a second metallic sodium reservoir And a cutting means for cutting the metal sodium discharged from any one or both of the metal sodium supply device.
  • An eighth invention is the metal according to any one of the fourth to seventh inventions, wherein titanium is attached to the surface of the metal sodium in advance, or the metal sodium is previously immersed in kerosene. Sodium feeder.
  • FIG. 1 is a diagram showing a method for manufacturing a metallic sodium-containing engine valve according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the configuration of the engine valve.
  • FIG. 3 is a diagram showing a method for manufacturing a metallic sodium-containing engine valve according to Example 2 of the present invention.
  • FIG. 4 is a diagram showing a method for manufacturing a metal Na-containing engine valve according to Example 3 of the present invention.
  • FIG. 5 is a diagram illustrating a configuration of the metal Na supply device.
  • FIG. 6 is a diagram showing a method for manufacturing a metal Na-containing engine valve according to Example 4 of the present invention.
  • FIG. 7 is a diagram illustrating a configuration of the metal Na supply device.
  • FIG. 1 is a diagram showing a method for manufacturing a metallic sodium-containing engine valve according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the configuration of the engine valve.
  • FIG. 3 is a diagram showing a method for
  • FIG. 8 is a diagram showing a method for manufacturing a metal Na-containing engine valve according to Embodiment 5 of the present invention.
  • FIG. 9 is a diagram illustrating a configuration of the metal Na supply device.
  • FIG. 10 is a diagram showing a method for manufacturing a metal Na-containing engine valve according to Example 6 of the present invention.
  • FIG. 11 is a diagram illustrating a configuration of the metal Na supply device.
  • FIG. 12 is a diagram showing an example of an engine valve in which metal Na that has been generally used is enclosed.
  • FIG. 1 is a diagram showing a method for manufacturing a metallic sodium-containing engine valve according to Example 1 of the present invention
  • FIG. 2 is a diagram showing a configuration of the engine valve.
  • the method for manufacturing a metallic sodium-containing engine valve according to the present embodiment is a first metal in which particulate metallic sodium (metal Na) 12 a is filled in the engine valve 11 in the engine valve 11.
  • the engine valve 11 has a valve bulkhead portion 13, a valve shaft portion 14, and a valve shaft tip portion 15, and the valve bulkhead portion 13 and the valve shaft portion 14 are made hollow.
  • the engine valve 11 has the hollow valve portion 13 and the valve shaft portion 14 hollow, but the present invention is not limited to this, and the valve shaft tip portion 15 may also be hollow.
  • the metal Na 12a and the metal Na 12b are solid metal Na, and the metal Na 12a is filled in the valve bulkhead portion 13 of the engine valve 11.
  • the metal Na12b is filled in the valve shaft portion 14.
  • the particulate metal Na12a is supplied into the engine valve 11, and the particulate metal Na12a is filled into the valve umbrella 13 (step S11). Since the metal Na12a is solid particulate metal Na, it can be filled while suppressing the formation of gaps between the metal Na12a in the internal space of the valve bulkhead portion 13. For this reason, the inside of the valve bulkhead portion 13 of the engine valve 11 can be filled with the metal Na12a.
  • the metal Na12b is supplied into the engine valve 11 and the valve bulkhead portion 13 and the valve shaft portion 14 are filled with metal Na12b (step S12). Thereby, the inside of the valve
  • the metal Na 12a is supplied to the valve bulkhead portion 13 of the engine valve 11, and then the metal Na12b is fed to the valve bulkhead portion 13 of the engine valve 11 and By supplying the valve shaft 14, the metal Na 12 a and 12 b can be efficiently filled into the valve bulkhead 13 and the valve shaft 14 of the engine valve 11.
  • the metal Na12a and 12b are directly supplied to the valve cap portion 13 and the valve shaft portion 14 of the engine valve 11, but the present embodiment is not limited to this.
  • titanium is previously applied to the surfaces of the metal Na 12a, 12b. (Ti) may be attached, or metal Na12a, 12b may be immersed in kerosene in advance.
  • the surface of the metal Na12a and 12b is prevented from being oxidized by reacting with air in the atmosphere. Can do.
  • kerosene is contained as a main component in kerosene, and since the surface of metal Na12a, 12b is covered with kerosene, Ti is coated with the surfaces of metal Na12a, 12b, similarly to the case where Ti coats the surface of metal Na12a, 12b. Oxidation of the surface can be suppressed.
  • metal Na is supplied twice into the engine valve 11, but the present embodiment is not limited to this, and the size of the engine valve 11, the shape of the valve umbrella portion 13, In consideration of the size of the inner diameter of the valve shaft 14 and the like, the metal Na may be supplied into the engine valve 11 in three or more times.
  • FIG. 3 is a diagram showing a method for manufacturing a metallic sodium-containing engine valve according to Example 2 of the present invention.
  • the engine valve used in the present embodiment is the same as the configuration of the engine valve according to the first embodiment of the present invention shown in FIG. 1, and therefore the same reference numerals are given to the same members as in the first embodiment. Thus, duplicate explanations are omitted. As shown in FIG. 1,
  • the manufacturing method of the metallic sodium-containing engine valve according to the present embodiment includes the first metallic Na filling step S ⁇ b> 21 for supplying the rod-shaped metallic Na ⁇ b> 12 c, the heating of the engine valve 11, It includes a heating and melting step S22 for melting the metal Na filled therein and a second metal Na filling step S23 for supplying the rod-shaped metal Na12b.
  • the rod-shaped metal Na12c is supplied into the engine valve 11, and the rod-shaped metal Na12c is filled into the valve bulkhead portion 13 and the valve shaft portion 14 (step S21). Thereafter, a heating means 22 for heating the engine valve 11 is provided outside the engine valve 11 to heat the engine valve 11. Thereby, the metal Na12c supplied to the inside of the valve bulkhead portion 13 is dissolved, and the inside of the valve bulkhead portion 13 can be filled with the metal Na12c (step S22).
  • the heating means 22 is not particularly limited, and any heating means that can heat the engine valve 11 such as a heater or an electric furnace can be used.
  • the rod-shaped metal Na12b is supplied into the engine valve 11 and filled with the rod-shaped metal Na12b (step S23). Thereby, the inside of the valve shaft portion 14 can be filled with the metal Na12b (step S23).
  • the metal Na12c first supplied to the valve bulkhead portion 13 of the engine valve 11 is heated and melted to fill the inside of the valve bulkhead portion 13 with metal Na. After that, by supplying the metal Na12b to the valve shaft portion 14 of the engine valve 11, the solid metal Na12b and 12c can be efficiently filled into the valve bulkhead portion 13 and the valve shaft portion 14 of the engine valve 11.
  • FIG. 4 is a diagram illustrating a method for manufacturing a metal Na-containing engine valve according to Example 3 of the present invention
  • FIG. 5 is a diagram illustrating a configuration of a metal Na supply device.
  • the engine valve used in the present embodiment is the same as the configuration of the engine valve according to the first embodiment of the present invention, the same members as those in the first embodiment are denoted by the same reference numerals and duplicated description. Is omitted.
  • the manufacturing method of the metallic Na-containing engine valve according to the present embodiment is the same as the manufacturing method of the metallic Na-containing engine valve according to the first embodiment of the present invention shown in FIG. That is, in the manufacturing method of the metal Na-containing engine valve according to the present embodiment, the first metal Na filling step (step) in which the particulate metal Na 12a is filled in the engine valve 11 into the valve bulkhead portion 13 of the engine valve 11 (step). S11) and a second metal Na filling step (step S12) for filling the inside of the valve shaft portion 14 using the rod-shaped metal Na12b.
  • Metal Na12a, 12b supplies metal Na12a, 12b to the engine valve 11 using the metal Na supply apparatus 31A.
  • the metal Na supply device 31A includes a first metal Na supply unit 32-1A and a second metal Na supply unit 32-2A.
  • the first metal Na supply unit 32-1A includes a first metal Na storage unit 33-1 and a first engine valve housing unit 34-1.
  • the second metal Na supply unit 32-2A includes a second metal Na storage unit 33-2 and a second engine valve housing unit 34-2.
  • the first metal Na supply unit 32-1A supplies particulate metal Na12a into the engine valve 11.
  • the second metal Na supply unit 32-2A supplies rod-shaped metal Na12b into the engine valve 11.
  • the first engine valve accommodating portion 34-1 and the second engine valve accommodating portion 34-2 accommodate at least a part of the engine valve 11.
  • a supply hole 33a is provided in the end surfaces of the first metal Na reservoir 33-1 and the second metal Na reservoir 33-2.
  • the supply hole 33a is formed in such a size that the metal Na12a, 12b can be currencyd.
  • the shape of the supply hole 33a is not particularly limited, and examples thereof include a circular shape, an elliptical shape, and a rectangular shape.
  • the metal Na12a and 12b are supplied from the first metal Na reservoir 33-1 and the second metal Na reservoir 33-2 to the first engine valve reservoir 34-1 and the second engine valve reservoir 34-2.
  • the method of performing is not particularly limited, and for example, ultrasonic waves are applied to the first metal Na reservoir 33-1 and the second metal Na reservoir 33-2 to provide the first metal Na reservoir 33-
  • a control plate capable of dropping the metal Na12a, 12b in the first and second metal Na reservoirs 33-2 or opening and closing the supply hole 33a is provided, and the control means controls the open / close state of the control plate to supply holes.
  • the metal Na 12a and 12b in the first metal Na reservoir 33-1 and the second metal Na reservoir 33-2 may be dropped from 33a.
  • the metal Na supply device 31A has an inert gas supply means 36 for supplying an inert gas 35 into the first engine valve housing 34-1.
  • the inert gas supply means 36 has inert gas supply lines L11 and L12.
  • the inert gas supply line L11 is a line for supplying the inert gas 35 from the inert gas storage tank 37 into the first engine valve housing 34-1.
  • the inert gas supply line L12 is a line for supplying the inert gas 35 from the inert gas storage tank 37 into the second engine valve housing 34-2.
  • the inert gas supply means 36 supplies the inert gas 35 from the inert gas storage tank 37 via the inert gas supply line L11 into the first engine valve accommodating portion 34-1 and the inert gas supply line L12.
  • the inert gas 35 is supplied into the second engine valve housing 34-2.
  • the first engine valve accommodating portion 34-1 and the second engine valve accommodating portion 34-2 via the inert gas supply lines L11, L12, the first engine valve accommodating portion
  • the air in the section 34-1 and the second engine valve housing section 34-2 can be expelled to form an inert gas atmosphere.
  • the supply amount of the inert gas 35 in the inert gas supply lines L11 and L12 is adjusted by the control valves V11 and V12.
  • the inert gas supply means 36 branches from the inert gas supply line L11, and supplies an inert gas 35 into the first engine valve housing 34-1 and an inert gas supply line.
  • An inert gas supply line L14 that branches from L12 and supplies the inert gas 35 into the second engine valve housing 34-2 is provided.
  • step S11 The engine valve 11 is inserted into the first engine valve housing 34-1. Thereafter, the metal Na 12a is supplied into the engine valve 11 from the supply hole 33a of the first metal Na reservoir 33-1 and filled into the valve bulkhead portion 13 of the engine valve 11. During this time, the inert gas 35 is supplied into the first engine valve housing 34-1 through the inert gas supply line L11. Further, the inert gas 35 is supplied into the engine valve 11 through the inert gas supply line L13. Thereby, it can suppress that metal Na12a supplied in the engine valve 11 is oxidized. After the engine valve 11 is filled with the metal Na12a, the engine valve 11 is extracted from the first engine valve housing 34-1.
  • the metal Na 12a and 12b are supplied to the engine valve 11 using the metal Na supply device 31A.
  • the metal Na12a and 12b can be efficiently filled into the engine valve 11 at the same time in a short time.
  • FIG. 6 is a diagram illustrating a method for manufacturing a metal Na-containing engine valve according to Example 4 of the present invention
  • FIG. 7 is a diagram illustrating a configuration of a metal Na supply device.
  • the metal sodium supply device used in this example is the same as the configuration of the metal sodium supply device used in the method for manufacturing a metal sodium-containing engine valve according to Example 3 of the present invention shown in FIG.
  • symbol is attached
  • the manufacturing method of the metallic Na-containing engine valve according to the present embodiment is the same as the manufacturing method of the metallic Na-containing engine valve according to the second embodiment of the present invention shown in FIG. That is, the manufacturing method of the metal Na-containing engine valve according to the present embodiment includes the first metal Na filling step S21 for supplying the rod-shaped metal Na12c, and the metal that heats the engine valve 11 and fills the inside of the valve bulkhead 13 It includes a heating and dissolving step S22 for dissolving Na12c and a second metal Na filling step S23 for supplying a rod-like metal Na12b.
  • Metal Na12b, 12c supplies metal Na12b, 12c to the engine valve 11 using the metal Na supply apparatus 31B.
  • the metal Na supply device 31B includes a first metal Na supply unit 32-1B and a second metal Na supply unit 32-2A.
  • the first metal Na storage section 33-1 of the first metal Na supply section 32-1B supplies rod-shaped metal Na12c into the engine valve 11.
  • step S21 The engine valve 11 is inserted into the first engine valve housing 34-1. Thereafter, the metal Na12c is supplied into the engine valve 11 from the supply hole 33a of the first metal Na reservoir 33-1. As a result, the metal Na 12 c is filled into the valve bulkhead 13 of the engine valve 11. During this time, the inert gas 35 is supplied into the first engine valve housing 34-1 through the inert gas supply line L11. Further, the inert gas 35 is supplied into the engine valve 11 through the inert gas supply line L13. Thereby, it can suppress that metal Na12c supplied in the engine valve 11 is oxidized. After the engine valve 11 is filled with the metal Na12c, the engine valve 11 is extracted from the first engine valve housing 34-1.
  • Heating and dissolving step: S22 The extracted engine valve 11 is provided with heating means 22 for heating the engine valve 11 outside the engine valve 11 to heat the engine valve 11.
  • heating means 22 for heating the engine valve 11 outside the engine valve 11 to heat the engine valve 11.
  • the heating means 22 is not particularly limited as long as it can heat the engine valve 11 as described above, and examples thereof include a heater and an electric furnace.
  • the inert gas 35 is supplied into the engine valve 11 via the inert gas supply line L14. Thereby, it can suppress that metal Na12b supplied in the engine valve 11 is oxidized. After the engine valve 11 is filled with the metal Na12b, the engine valve 11 is extracted from the second engine valve housing 34-2.
  • the metal Na 12b and 12c are supplied to the engine valve 11 using the metal Na supply device 31B. At the same time, the metal Na12b and 12c can be efficiently filled into the engine valve 11 in a short time.
  • FIG. 8 is a diagram illustrating a method for manufacturing a metal Na-containing engine valve according to a fifth embodiment of the present invention
  • FIG. 9 is a diagram illustrating a configuration of a metal Na supply device.
  • the metal sodium supply device used in this example is the same as the configuration of the metal sodium supply device used in the method for manufacturing a metal sodium-containing engine valve according to Example 3 of the present invention shown in FIG.
  • symbol is attached
  • the manufacturing method of the metallic Na-containing engine valve according to the present embodiment is the same as the manufacturing method of the metallic Na-containing engine valve according to the first embodiment of the present invention shown in FIG. That is, in the manufacturing method of the metal Na-containing engine valve according to the present embodiment, the first metal Na filling step (step) in which the particulate metal Na 12a is filled in the engine valve 11 into the valve bulkhead portion 13 of the engine valve 11 (step). S11) and a second metal Na filling step (step S12) for filling the inside of the valve shaft portion 14 with the rod-shaped metal Na12b.
  • Metal Na12a, 12b supplies metal Na12a, 12b to the engine valve 11 using the metal Na supply apparatus 31C.
  • the metal Na supply device 31C includes a first metal Na supply unit 32-1A and a second metal Na supply unit 32-2C.
  • the second metal Na storage section 33-2 of the second metal Na supply section 32-2C pushes the metal Na12 in the second metal Na storage section 33-2 against the second metal Na storage section 33-2.
  • An extrusion member 41 is provided, and a metal Na extrusion tube 42 that extends the metal Na12 by a predetermined length from the supply hole 33a.
  • a detection device (detection means) 43 for detecting the metal Na12 extending from the metal Na extrusion tube 42 and the metal Na12 extending from the metal Na extrusion tube 42 are cut.
  • Cutting means 44 for the purpose. Examples of the cutting means 44 include a cutter.
  • the second metal Na supply unit 32-2C pressurizes the metal Na12 in the second metal Na storage unit 33-2 by the pushing member 41 and extends the metal Na12 through the metal Na extruding tube 42 by a predetermined length. Further, the metal Na12 extended from the metal Na extruded tube 42 is detected by the detection device 43 that the metal Na12 is extended by a predetermined length. A portion of the metal Na 12 extending from the metal Na extrusion tube 42 is cut by the cutting means 44. The metal Na12 cut by the cutting means 44 is supplied to the engine valve tray 11 as metal Na12b.
  • Step S11 1st metal Na filling process S11 is performed similarly to the manufacturing method of the metal sodium containing engine valve which concerns on Example 3 of this invention.
  • the metal Na1b cut by the cutting means 44 is supplied into the engine valve 11 as metal Na12b, and the valve bulkhead portion 13 of the engine valve 11 is filled with the metal Na12b.
  • the inert gas 35 is supplied via the inert gas supply line L12 to the second state in the same manner as when the inert gas 35 is supplied into the first engine valve housing portion 34-1 via the inert gas supply line L11. 2 is supplied into the engine valve housing 34-2. Further, the inert gas 35 is supplied into the engine valve 11 via the inert gas supply line L14. Thereby, it can suppress that metal Na12b supplied in the engine valve 11 is oxidized. After the engine valve 11 is filled with the metal Na12b, the engine valve 11 is extracted from the second engine valve housing 34-2.
  • the metal Na12 in the second metal Na reservoir 33-2 is accurately and precisely engineed using the metal Na supply device 31C. Since the gas can be supplied into the valve 11, the metal Na 12 a and 12 b can be efficiently filled into the engine valve 11 simultaneously in a short time with respect to a large number of engine valves 11.
  • FIG. 10 is a diagram illustrating a method for manufacturing a metal Na-containing engine valve according to Example 6 of the present invention
  • FIG. 11 is a diagram illustrating a configuration of a metal Na supply device.
  • the metal sodium supply device used in this example is the same as the configuration of the metal sodium supply device used in the method for manufacturing a metal sodium-containing engine valve according to Example 4 of the present invention shown in FIG.
  • symbol is attached
  • the manufacturing method of the metallic Na-containing engine valve according to the present embodiment is the same as the manufacturing method of the metallic Na-containing engine valve according to the second embodiment of the present invention shown in FIG. That is, the manufacturing method of the metal Na-containing engine valve according to the present embodiment includes the first metal Na filling step S21 for supplying the rod-shaped metal Na12c, and the metal that heats the engine valve 11 and fills the inside of the valve bulkhead 13 It includes a heat dissolution step S22 for dissolving Na and a second metal Na filling step S23 for supplying rod-shaped metal Na12b.
  • Metal Na12b, 12c supplies metal Na12b, 12c to engine valve 11 using metal Na supply device 31D.
  • the metal Na supply device 31D includes a first metal Na supply unit 32-1C and a second metal Na supply unit 32-2C.
  • the first metal Na storage unit 33-1 of the first metal Na supply unit 32-1C pushes the metal Na12 in the second metal Na storage unit 33-1 to the second metal Na storage unit 33-2.
  • An extrusion member 41-1 to be taken out and a metal Na extrusion tube 42-1 for extending the metal Na12 by a predetermined length from the supply hole 33a are provided.
  • On the wall surface of the first engine valve housing 34-1 are a first detection device (detection means) 43-1 for detecting the metal Na12 from the metal Na extrusion tube 42 at a predetermined length, and a metal Na extrusion tube 42.
  • First cutting means 44-1 for cutting the extruded metal Na12 is provided.
  • the first metal Na supply part 32-1C pressurizes the metal Na12 in the first metal Na storage part 33-1 by the pushing member 41-1, and passes through the metal Na extrusion pipe 42-1 from the supply hole 33a. Na12 is extruded for a predetermined length. Further, when the metal Na12 is extruded from the metal Na extruding tube 42-1 by a predetermined length, the first detector 43-1 detects that the metal Na12 has been extruded by a predetermined length. The metal Na12 extruded from the metal Na extrusion tube 42-1 is cut by the first cutting means 44-1. Thereby, metal Na12c is obtained.
  • Step S21 First metal Na filling step: step S21
  • the metal Na12 in the first metal Na reservoir 33-1 is pressurized by the pushing member 41-1 to push out the metal Na from the supply hole 33a.
  • Metal Na12 is extruded through the tube 42-1 for a predetermined length.
  • the first detector 43-1 detects that the metal Na12 has been extruded by a predetermined length. Thereafter, the metal Na12 extruded from the metal Na extrusion tube 42-1 is cut by the first cutting means 44-1.
  • the metal Na12 cut by the first cutting means 44-1 is supplied into the engine valve 11 as the metal Na12c, and the valve bulkhead portion 13 of the engine valve 11 is filled with the metal Na12c.
  • the inert gas 35 is supplied into the first engine valve accommodating portion 34-1 via the inert gas supply line L11, and the inside of the engine valve accommodating portion 34-1 is changed to the inert gas atmosphere. To do. Further, the inert gas 35 is supplied into the engine valve 11 through the inert gas supply line L13. Thereby, it can suppress that metal Na12c supplied in the engine valve 11 is oxidized. After the engine valve 11 is filled with the metal Na12c, the engine valve 11 is extracted from the first engine valve housing 34-1.
  • Heat dissolution process S22 is performed similarly to the manufacturing method of the metallic sodium containing engine valve concerning Example 4 of the present invention.
  • the metal Na12 extruded from the metal Na extrusion tube 42-2 is cut by the second cutting means 44-2.
  • the metal Na12 cut by the second cutting means 44-2 is supplied into the engine valve 11 as metal Na12b, and the valve shaft portion 14 of the engine valve 11 is filled with the metal Na12b.
  • the inert gas 35 is supplied into the second engine valve housing part 34-2 via the inert gas supply line L12, and the second engine valve housing part 34-2 is inerted. Use a gas atmosphere. Further, the inert gas 35 is supplied into the engine valve 11 via the inert gas supply line L14. Thereby, it can suppress that metal Na12b supplied in the engine valve 11 is oxidized. After the engine valve 11 is filled with the metal Na12b, the engine valve 11 is extracted from the second engine valve housing 34-2.
  • the metal Na supply unit 31D is used to store the first metal Na storage unit 33-1 and the second metal Na storage unit 33-2. Since the metal Na12 can be accurately supplied into the engine valve 11 with a predetermined length, the metal valves 12b and 12c can be efficiently filled into the engine valve 11 simultaneously in a short time with respect to a large number of engine valves 11. Can do.
  • the present invention is not limited to this, and may be used for aircraft, etc. The same applies to the engine valve used in the engine for the mailing equipment.

Abstract

This method for producing an engine valve containing metallic Na is a method for producing an engine valve that: has a flared valve section (13), a valve shaft section (14), and a valve shaft end section (15), of which at least the flared valve section (13) and the valve shaft section (14) are made to be hollow; and has metallic Na in the interior of the engine valve (11). The method for producing the engine valve containing metallic Na has a first metallic Na filling step (S11) for filling the interior of the flared valve section (13) in the engine valve (11) with metallic Na (12a) particles, and a second metallic Na filling step (S12) for supplying the interior of the valve shaft section (14) in the engine valve (11) with rod-shaped metallic Na.

Description

金属ナトリウム含有エンジンバルブの製造方法、金属ナトリウム供給装置Manufacturing method of metallic sodium-containing engine valve, metallic sodium supply device
 本発明は、車両用などのエンジンに適用される金属ナトリウム(金属Na)含有エンジンバルブの製造方法、金属ナトリウム供給装置に関する。 The present invention relates to a method for manufacturing a metal sodium (metal Na) -containing engine valve applied to an engine for vehicles and the like, and a metal sodium supply device.
 自動車用エンジンの高出力化と高性能化を図るためには、エンジンを高圧過給し多くの燃料を燃焼させる必要がある。エンジンの高出力化を図った場合、エンジンバルブのうち吸気弁は吸入行程時にバルブ周りを流れる吸入ガスで冷却されるので問題はないが、排気弁は排ガスによって連続的に加熱されるため、エンジンバルブの焼付が問題となる。 In order to increase the output and performance of automobile engines, it is necessary to supercharge the engine with high pressure and burn a lot of fuel. When engine output is increased, there is no problem because the intake valve of the engine valve is cooled by the intake gas flowing around the valve during the intake stroke, but the exhaust valve is continuously heated by the exhaust gas. The seizure of the valve becomes a problem.
 従来では、内部を中空とし、その内部に金属Naを封入したエンジンバルブが用いられている。従来より一般に用いられている金属Naを封入したエンジンバルブの一例を図12に示す。図12に示すように、従来の金属Na含有エンジンバルブ100では、エンジンバルブ101はバルブかさ部102とバルブ軸部103とバルブ軸先端部104とを有し、そのエンジンバルブ101の内部に金属Na105を封入している。 Conventionally, an engine valve is used in which the interior is hollow and metal Na is enclosed in the interior. FIG. 12 shows an example of an engine valve in which metal Na that is conventionally used is enclosed. As shown in FIG. 12, in the conventional metal Na-containing engine valve 100, the engine valve 101 has a valve cap portion 102, a valve shaft portion 103, and a valve shaft tip portion 104, and a metal Na 105 inside the engine valve 101. Is enclosed.
 エンジンバルブ101は、中空化することで、軽量化を図り、運動エネルギーロス低減による低燃費化及び着座音低減による低騒音化を図ることができる。また、封入される金属Na105は、比重および融点は低く、熱伝導率は大きいため、熱輸送量を大きくし、バルブ温度を低くすることで、熱伝達率の向上を図り、燃焼ガスの高温化に対応できる。よって、金属Naを封入したエンジンバルブでは、金属Naが高温で液化し、それがエンジンバルブ内で対流を起こし、エンジンバルブ内の熱流を促進するため、エンジンバルブの各部温度を平均化する。これにより、エンジンバルブの焼付などエンジンバルブを使用することで生じる問題を解決し、エンジンバルブの冷却の効率化、高性能化を図り、エンジン性能を向上させる(例えば、特許文献1、2参照)。 The engine valve 101 can be made light weight by being hollowed out, so that fuel consumption can be reduced by reducing kinetic energy loss and noise can be reduced by reducing seating noise. In addition, since the metal Na105 to be encapsulated has a low specific gravity and a low melting point and a large thermal conductivity, the heat transfer rate is increased and the valve temperature is lowered to improve the heat transfer rate and increase the combustion gas temperature. It can correspond to. Therefore, in an engine valve in which metal Na is enclosed, metal Na liquefies at a high temperature, which causes convection in the engine valve and promotes heat flow in the engine valve, so that the temperature of each part of the engine valve is averaged. As a result, problems caused by using the engine valve, such as engine valve seizure, are solved, engine valve cooling efficiency and performance are improved, and engine performance is improved (for example, see Patent Documents 1 and 2). .
 金属Naを含有するエンジンバルブは、大気中で棒状の金属Naをエンジンバルブの中空内に挿入した後、熱溶融し、充填して製造されている。こうした金属Naを含有するエンジンバルブは、高級車をはじめ中級車や航空機用などに普及しつつある。特に、近年、自動車用エンジンは、法的規制(例えばCAFE規制など)を受けて、更に高効率化、低燃費化、軽量化、低騒音化が加速されており、エンジンバルブに対しても高温化、軽量化の要求が高まり、金属Naを含有するエンジンバルブの使用が増加している傾向にある。 The engine valve containing metal Na is manufactured by inserting rod-shaped metal Na into the hollow of the engine valve in the atmosphere, and then thermally melting and filling it. Engine valves containing such metal Na are becoming widespread for high-end cars, intermediate cars and aircraft. In particular, in recent years, automobile engines have been subject to legal regulations (for example, CAFE regulations), and have been accelerated to achieve higher efficiency, lower fuel consumption, lighter weight, and lower noise. There is a growing demand for reduction in weight and weight, and the use of engine valves containing metal Na tends to increase.
 今後、金属Naを含有するエンジンバルブの更なる要求に対して、更に安定してエンジンバルブの冷却の効率化、高性能化を図るため、エンジンバルブのかさ部の中空体積を広げたエンジンバルブが提案されている。 In the future, in response to the further demand for engine valves containing metal Na, an engine valve with a larger hollow volume in the bulk of the engine valve is being developed in order to achieve more stable and efficient cooling of the engine valve. Proposed.
特開平05-141214号公報JP 05-141214 A 特開平06-49549号公報JP 06-49549 A
 しかしながら、エンジンバルブのかさ部の中空体積を広げた場合、従来の金属Naを含有するエンジンバルブの製造方法では、エンジンバルブのかさ部の中空部に金属Naを十分充填することができない、という問題がある。 However, when the hollow volume of the bulk portion of the engine valve is expanded, the conventional method for manufacturing an engine valve containing metal Na cannot sufficiently fill the hollow portion of the bulk portion of the engine valve with metal Na. There is.
 本発明は、上記問題に鑑みてなされたものであって、エンジンバルブ内に金属Naを効率良く充填可能な金属ナトリウム含有エンジンバルブの製造方法、金属ナトリウム供給装置を提供することを課題とする。 This invention is made in view of the said problem, Comprising: It aims at providing the manufacturing method of a metallic sodium containing engine valve which can be filled with metallic Na efficiently in an engine valve, and a metallic sodium supply apparatus.
 上述した課題を解決するための本発明の第1の発明は、バルブかさ部とバルブ軸部とバルブ軸先端部とを有し、少なくとも前記バルブかさ部と前記バルブ軸部とを中空とするエンジンバルブの内部に金属ナトリウムを有する金属ナトリウム含有エンジンバルブの製造方法であって、前記エンジンバルブ内に粒子状の金属ナトリウム、棒状の金属ナトリウムのいずれか一方または両方を少なくとも前記バルブかさ部の内部に充填する第1の金属ナトリウム充填工程と、前記棒状の金属ナトリウムを前記バルブ軸部の内部に供給する第2の金属ナトリウム充填工程と、を有することを特徴とする金属ナトリウム含有エンジンバルブの製造方法である。 A first aspect of the present invention for solving the above-described problem is an engine having a valve bulkhead, a valve shaft, and a valve shaft tip, and at least the valve bulkhead and the valve shaft are hollow. A method for producing a metallic sodium-containing engine valve having metallic sodium inside a valve, wherein at least one of or both of particulate metallic sodium and rod-shaped metallic sodium is placed inside the valve bulk portion in the engine valve. A metal sodium-containing engine valve manufacturing method comprising: a first metal sodium filling step for filling; and a second metal sodium filling step for supplying the rod-shaped metal sodium into the valve shaft portion. It is.
 第2の発明は、第1の発明において、前記第1の金属ナトリウム充填工程と前記第2の金属ナトリウム充填工程との間に、前記エンジンバルブを加熱融解手段により加熱し、前記バルブかさ部の内部に供給した金属ナトリウムを溶解する加熱溶解工程を有することを特徴とする金属ナトリウム含有エンジンバルブの製造方法である。 According to a second invention, in the first invention, the engine valve is heated by heating and melting means between the first metal sodium filling step and the second metal sodium filling step, and It is a manufacturing method of a metallic sodium-containing engine valve characterized by having a heating and dissolving step of dissolving metallic sodium supplied to the inside.
 第3の発明は、第1または2の発明において、前記第1の金属ナトリウム充填工程の前に、前記金属ナトリウムの表面に予めチタンを付着させておくか、前記金属ナトリウムを灯油の中に予め浸漬させておくことを特徴とする金属ナトリウム含有エンジンバルブの製造方法である。 According to a third invention, in the first or second invention, before the first metal sodium filling step, titanium is attached in advance to the surface of the metal sodium, or the metal sodium is previously added to kerosene. It is a manufacturing method of a metallic sodium-containing engine valve characterized by being immersed.
 第4の発明は、バルブかさ部とバルブ軸部とバルブ軸先端部とを有し、少なくとも前記バルブかさ部と前記バルブ軸部とを中空とするエンジンバルブの内部に金属ナトリウムを有する金属ナトリウム含有エンジンバルブを製造する金属ナトリウム供給装置であり、前記エンジンバルブ内に粒子状の金属ナトリウム、棒状の金属ナトリウムのいずれか一方または両方を供給する第1の金属ナトリウム供給部と、前記棒状の金属ナトリウムを前記バルブ軸部の内部に供給する第2の金属ナトリウム供給部とを有し、前記第1の金属ナトリウム供給部は、前記エンジンバルブ内に粒子状の金属ナトリウムを貯蔵する第1の金属ナトリウム貯留部と、前記エンジンバルブの一部を収容する第1のエンジンバルブ収容部とを有し、前記第2の金属ナトリウム供給部は、前記棒状の金属ナトリウムを前記バルブ軸部の内部に貯蔵する第2の金属ナトリウム貯留部と、前記エンジンバルブの一部を収容する第2のエンジンバルブ収容部と、を有することを特徴とする金属ナトリウム供給装置である。 According to a fourth aspect of the invention, there is provided a metallic sodium containing metallic sodium having an inner portion of an engine valve having a valve bulkhead portion, a valve shaft portion, and a valve shaft tip portion, wherein at least the valve bulkhead portion and the valve shaft portion are hollow. A metal sodium supply device for manufacturing an engine valve, wherein the first metal sodium supply unit supplies either or both of particulate metal sodium and rod-shaped metal sodium into the engine valve; and the rod-shaped metal sodium And a second metal sodium supply part for supplying particulate metal sodium in the engine valve. A storage portion and a first engine valve housing portion that houses a part of the engine valve; The um supply part has a second metal sodium storage part for storing the rod-shaped metal sodium inside the valve shaft part, and a second engine valve storage part for storing a part of the engine valve. This is a metallic sodium supply device.
 第5の発明は、第4の発明において、前記エンジンバルブ収容部に設けられ、前記エンジンバルブ収容部内に不活性ガスを供給する不活性ガス供給手段を有することを特徴とする金属ナトリウム供給装置である。 According to a fifth aspect of the present invention, in the fourth aspect of the invention, there is provided the metallic sodium supply device according to the fourth aspect, further comprising an inert gas supply unit that is provided in the engine valve housing portion and supplies an inert gas into the engine valve housing portion. is there.
 第6の発明は、第4または5の発明において、前記不活性ガス供給手段は、更に前記エンジンバルブ内に不活性ガスを供給することを特徴とする金属ナトリウム供給装置である。 A sixth invention is the metallic sodium supply device according to the fourth or fifth invention, wherein the inert gas supply means further supplies an inert gas into the engine valve.
 第7の発明は、第4から6のいずれか1つの発明において、第1の金属ナトリウム貯留部と第2の金属ナトリウム貯留部との何れか一方または両方に設けられ、第1の金属ナトリウム貯留部と第2の金属ナトリウム貯留部との何れか一方または両方から排出される金属ナトリウムの長さを検知するための検知手段と、第1の金属ナトリウム貯留部と第2の金属ナトリウム貯留部との何れか一方または両方から排出される金属ナトリウムを切断する切断手段と、を有することを特徴とする金属ナトリウム供給装置である。 7th invention is provided in any one or both of a 1st metal sodium storage part and a 2nd metal sodium storage part in any one invention of 4th to 6th, 1st metal sodium storage Detecting means for detecting the length of metallic sodium discharged from either or both of the first and second metallic sodium reservoirs, a first metallic sodium reservoir, and a second metallic sodium reservoir And a cutting means for cutting the metal sodium discharged from any one or both of the metal sodium supply device.
 第8の発明は、第4から7のいずれか1つの発明において、前記金属ナトリウムの表面に予めチタンを付着させるか、前記金属ナトリウムを灯油の中に予め浸漬させておくことを特徴とする金属ナトリウム供給装置である。 An eighth invention is the metal according to any one of the fourth to seventh inventions, wherein titanium is attached to the surface of the metal sodium in advance, or the metal sodium is previously immersed in kerosene. Sodium feeder.
 本発明によれば、エンジンバルブ内に金属Naを効率良く充填することができる、という効果を奏する。 According to the present invention, it is possible to efficiently fill metal Na into the engine valve.
図1は、本発明の実施例1に係る金属ナトリウム含有エンジンバルブの製造方法を示す図である。FIG. 1 is a diagram showing a method for manufacturing a metallic sodium-containing engine valve according to Embodiment 1 of the present invention. 図2は、エンジンバルブの構成を示す図である。FIG. 2 is a diagram showing the configuration of the engine valve. 図3は、本発明の実施例2に係る金属ナトリウム含有エンジンバルブの製造方法を示す図である。FIG. 3 is a diagram showing a method for manufacturing a metallic sodium-containing engine valve according to Example 2 of the present invention. 図4は、本発明の実施例3に係る金属Na含有エンジンバルブの製造方法を示す図である。FIG. 4 is a diagram showing a method for manufacturing a metal Na-containing engine valve according to Example 3 of the present invention. 図5は、金属Na供給装置の構成を示す図である。FIG. 5 is a diagram illustrating a configuration of the metal Na supply device. 図6は、本発明の実施例4に係る金属Na含有エンジンバルブの製造方法を示す図である。FIG. 6 is a diagram showing a method for manufacturing a metal Na-containing engine valve according to Example 4 of the present invention. 図7は、金属Na供給装置の構成を示す図である。FIG. 7 is a diagram illustrating a configuration of the metal Na supply device. 図8は、本発明の実施例5に係る金属Na含有エンジンバルブの製造方法を示す図である。FIG. 8 is a diagram showing a method for manufacturing a metal Na-containing engine valve according to Embodiment 5 of the present invention. 図9は、金属Na供給装置の構成を示す図である。FIG. 9 is a diagram illustrating a configuration of the metal Na supply device. 図10は、本発明の実施例6に係る金属Na含有エンジンバルブの製造方法を示す図である。FIG. 10 is a diagram showing a method for manufacturing a metal Na-containing engine valve according to Example 6 of the present invention. 図11は、金属Na供給装置の構成を示す図である。FIG. 11 is a diagram illustrating a configuration of the metal Na supply device. 図12は、従来より一般に用いられている金属Naを封入したエンジンバルブの一例を示す図である。FIG. 12 is a diagram showing an example of an engine valve in which metal Na that has been generally used is enclosed.
 以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の実施例により本発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施例で開示した構成要素は適宜組み合わせることが可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the following Example. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the constituent elements disclosed in the following embodiments can be appropriately combined.
 本発明の実施例1に係る金属ナトリウム含有エンジンバルブの製造方法について、図面を参照して説明する。図1は、本発明の実施例1に係る金属ナトリウム含有エンジンバルブの製造方法を示す図であり、図2は、エンジンバルブの構成を示す図である。図1に示すように、本実施例に係る金属ナトリウム含有エンジンバルブの製造方法は、エンジンバルブ11内に粒子状の金属ナトリウム(金属Na)12aをエンジンバルブ11の内部に充填する第1の金属ナトリウム(金属Na)充填工程(ステップS11)と、棒状の金属Na12bをエンジンバルブ11の内部を充填する第2の金属Na充填工程(ステップS12)と、を有する。 A method for manufacturing a metallic sodium-containing engine valve according to Example 1 of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a method for manufacturing a metallic sodium-containing engine valve according to Example 1 of the present invention, and FIG. 2 is a diagram showing a configuration of the engine valve. As shown in FIG. 1, the method for manufacturing a metallic sodium-containing engine valve according to the present embodiment is a first metal in which particulate metallic sodium (metal Na) 12 a is filled in the engine valve 11 in the engine valve 11. A sodium (metal Na) filling step (step S11) and a second metal Na filling step (step S12) for filling the inside of the engine valve 11 with a rod-shaped metal Na12b.
 エンジンバルブ11は、図2に示すように、バルブかさ部13とバルブ軸部14とバルブ軸先端部15とを有しバルブかさ部13とバルブ軸部14とを中空とするものである。本実施例では、エンジンバルブ11はバルブかさ部13とバルブ軸部14とを中空としているが、本発明はこれに限定されるものではなく、バルブ軸先端部15も中空としてもよい。 As shown in FIG. 2, the engine valve 11 has a valve bulkhead portion 13, a valve shaft portion 14, and a valve shaft tip portion 15, and the valve bulkhead portion 13 and the valve shaft portion 14 are made hollow. In the present embodiment, the engine valve 11 has the hollow valve portion 13 and the valve shaft portion 14 hollow, but the present invention is not limited to this, and the valve shaft tip portion 15 may also be hollow.
 金属Na12aおよび金属Na12bは固体の金属Naであり、金属Na12aはエンジンバルブ11のバルブかさ部13の内部に充填される。金属Na12bはバルブ軸部14の内部に充填される。 The metal Na 12a and the metal Na 12b are solid metal Na, and the metal Na 12a is filled in the valve bulkhead portion 13 of the engine valve 11. The metal Na12b is filled in the valve shaft portion 14.
 エンジンバルブ11内に粒子状の金属Na12aを供給し、粒子状の金属Na12aをバルブかさ部13内に充填する(ステップS11)。金属Na12aは、固体の粒子状の金属Naであるためバルブかさ部13の内部空間に金属Na12a同士の隙間が形成されるのを抑制しつつ充填することができる。このため、エンジンバルブ11のバルブかさ部13の内部を金属Na12aで満たすことができる。 The particulate metal Na12a is supplied into the engine valve 11, and the particulate metal Na12a is filled into the valve umbrella 13 (step S11). Since the metal Na12a is solid particulate metal Na, it can be filled while suppressing the formation of gaps between the metal Na12a in the internal space of the valve bulkhead portion 13. For this reason, the inside of the valve bulkhead portion 13 of the engine valve 11 can be filled with the metal Na12a.
 エンジンバルブ11のバルブかさ部13の内部を金属Na12aで満たした後、エンジンバルブ11内に金属Na12bを供給しバルブかさ部13およびバルブ軸部14内に金属Na12bを充填する(ステップS12)。これによりバルブかさ部13およびバルブ軸部14の内部を金属Na12bで満たすことができる。 After filling the inside of the valve bulkhead portion 13 of the engine valve 11 with metal Na12a, the metal Na12b is supplied into the engine valve 11 and the valve bulkhead portion 13 and the valve shaft portion 14 are filled with metal Na12b (step S12). Thereby, the inside of the valve | bulb umbrella part 13 and the valve-shaft part 14 can be satisfy | filled with metal Na12b.
 よって、本実施例に係る金属Na含有エンジンバルブの製造方法によれば、最初に金属Na12aをエンジンバルブ11のバルブかさ部13に供給し、その後、金属Na12bをエンジンバルブ11のバルブかさ部13およびバルブ軸部14に供給することで、エンジンバルブ11のバルブかさ部13およびバルブ軸部14の内部に金属Na12a、12bを効率良く充填することができる。 Therefore, according to the manufacturing method of the metal Na-containing engine valve according to the present embodiment, first, the metal Na 12a is supplied to the valve bulkhead portion 13 of the engine valve 11, and then the metal Na12b is fed to the valve bulkhead portion 13 of the engine valve 11 and By supplying the valve shaft 14, the metal Na 12 a and 12 b can be efficiently filled into the valve bulkhead 13 and the valve shaft 14 of the engine valve 11.
 本実施例においては、金属Na12a、12bを、直接、エンジンバルブ11のバルブかさ部13およびバルブ軸部14に供給するようにしているが、本実施例は、これに限定されるものではなく、第1の金属Na充填工程および第2の金属Na充填工程において、金属Na12a、12bをエンジンバルブ11のバルブかさ部13およびバルブ軸部14に供給する前に、金属Na12a、12bの表面に予めチタン(Ti)を付着させておくか、灯油の中に金属Na12a、12bを予め浸漬させておくようにしてもよい。金属Na12a、12bの表面に予めTiを付着させ、金属Na12a、12bの表面をTiで被覆することで、金属Na12a、12bの表面が大気中の空気と反応して酸化されるのを抑制することができる。また、灯油には、ケロシンが主成分として含まれており、金属Na12a、12bの表面をケロシンが被覆するため、Tiが金属Na12a、12bの表面を被覆した場合と同様に、金属Na12a、12bの表面が酸化されるのを抑制することができる。 In the present embodiment, the metal Na12a and 12b are directly supplied to the valve cap portion 13 and the valve shaft portion 14 of the engine valve 11, but the present embodiment is not limited to this. In the first metal Na filling step and the second metal Na filling step, before the metal Na 12a, 12b is supplied to the valve cap portion 13 and the valve shaft portion 14 of the engine valve 11, titanium is previously applied to the surfaces of the metal Na 12a, 12b. (Ti) may be attached, or metal Na12a, 12b may be immersed in kerosene in advance. By attaching Ti to the surfaces of the metal Na12a and 12b in advance and coating the surfaces of the metal Na12a and 12b with Ti, the surface of the metal Na12a and 12b is prevented from being oxidized by reacting with air in the atmosphere. Can do. In addition, kerosene is contained as a main component in kerosene, and since the surface of metal Na12a, 12b is covered with kerosene, Ti is coated with the surfaces of metal Na12a, 12b, similarly to the case where Ti coats the surface of metal Na12a, 12b. Oxidation of the surface can be suppressed.
 本実施例においてはエンジンバルブ11内に金属Naを2回供給するようにしているが、本実施例はこれに限定されるものではなく、エンジンバルブ11の大きさ、バルブかさ部13の形状、バルブ軸部14の内径の大きさ等を考慮してエンジンバルブ11内に金属Naを3回以上に分けて供給するようにしてもよい。 In the present embodiment, metal Na is supplied twice into the engine valve 11, but the present embodiment is not limited to this, and the size of the engine valve 11, the shape of the valve umbrella portion 13, In consideration of the size of the inner diameter of the valve shaft 14 and the like, the metal Na may be supplied into the engine valve 11 in three or more times.
 本発明の実施例2に係る金属ナトリウム含有エンジンバルブの製造方法について、図面を参照して説明する。図3は、本発明の実施例2に係る金属ナトリウム含有エンジンバルブの製造方法を示す図である。なお、本実施例で用いられるエンジンバルブは、図1に示す本発明の実施例1に係るエンジンバルブの構成と同様であるため、実施例1と同様の部材については、同一の符号を付して重複した説明は省略する。図3に示すように、本実施例に係る金属ナトリウム含有エンジンバルブの製造方法は、棒状の金属Na12cを供給する第1の金属Na充填工程S21と、エンジンバルブ11を加熱しバルブかさ部13の内部に充填した金属Naを溶解する加熱溶解工程S22と、棒状の金属Na12bを供給する第2の金属Na充填工程S23とを有するものである。 A method for manufacturing a metallic sodium-containing engine valve according to Example 2 of the present invention will be described with reference to the drawings. FIG. 3 is a diagram showing a method for manufacturing a metallic sodium-containing engine valve according to Example 2 of the present invention. The engine valve used in the present embodiment is the same as the configuration of the engine valve according to the first embodiment of the present invention shown in FIG. 1, and therefore the same reference numerals are given to the same members as in the first embodiment. Thus, duplicate explanations are omitted. As shown in FIG. 3, the manufacturing method of the metallic sodium-containing engine valve according to the present embodiment includes the first metallic Na filling step S <b> 21 for supplying the rod-shaped metallic Na <b> 12 c, the heating of the engine valve 11, It includes a heating and melting step S22 for melting the metal Na filled therein and a second metal Na filling step S23 for supplying the rod-shaped metal Na12b.
 エンジンバルブ11内に棒状の金属Na12cを供給し、棒状の金属Na12cをバルブかさ部13及びバルブ軸部14の内部に充填する(ステップS21)。その後、エンジンバルブ11の外部にエンジンバルブ11を加熱するための加熱手段22を設け、エンジンバルブ11を加熱する。これによりバルブかさ部13の内部に供給した金属Na12cは溶解されバルブかさ部13の内部を金属Na12cで満たすことができる(ステップS22)。 The rod-shaped metal Na12c is supplied into the engine valve 11, and the rod-shaped metal Na12c is filled into the valve bulkhead portion 13 and the valve shaft portion 14 (step S21). Thereafter, a heating means 22 for heating the engine valve 11 is provided outside the engine valve 11 to heat the engine valve 11. Thereby, the metal Na12c supplied to the inside of the valve bulkhead portion 13 is dissolved, and the inside of the valve bulkhead portion 13 can be filled with the metal Na12c (step S22).
 加熱手段22としては、特に限定されるものではなく、例えば、ヒータ、電気炉などエンジンバルブ11を加熱することができるものであれば用いることができる。 The heating means 22 is not particularly limited, and any heating means that can heat the engine valve 11 such as a heater or an electric furnace can be used.
 エンジンバルブ11を加熱しバルブかさ部13の内部を金属Na12cで満たした後、エンジンバルブ11内に棒状の金属Na12bを供給しバルブかさ部13内に棒状の金属Na12bを充填する(ステップS23)。これにより、バルブ軸部14の内部を金属Na12bで満たすことができる(ステップS23)。 After heating the engine valve 11 and filling the inside of the valve bulkhead portion 13 with metal Na12c, the rod-shaped metal Na12b is supplied into the engine valve 11 and filled with the rod-shaped metal Na12b (step S23). Thereby, the inside of the valve shaft portion 14 can be filled with the metal Na12b (step S23).
 よって、本実施例に係る金属Na含有エンジンバルブの製造方法によれば、最初にエンジンバルブ11のバルブかさ部13に供給した金属Na12cを加熱溶解しバルブかさ部13の内部を金属Naで満たした後、金属Na12bをエンジンバルブ11のバルブ軸部14に供給することで、エンジンバルブ11のバルブかさ部13およびバルブ軸部14の内部に固体の金属Na12b、12cを効率良く充填することができる。 Therefore, according to the manufacturing method of the metal Na-containing engine valve according to the present embodiment, the metal Na12c first supplied to the valve bulkhead portion 13 of the engine valve 11 is heated and melted to fill the inside of the valve bulkhead portion 13 with metal Na. After that, by supplying the metal Na12b to the valve shaft portion 14 of the engine valve 11, the solid metal Na12b and 12c can be efficiently filled into the valve bulkhead portion 13 and the valve shaft portion 14 of the engine valve 11.
 本発明の実施例3に係る金属Na含有エンジンバルブの製造方法について、図面を参照して説明する。本実施例に係る金属Na含有エンジンバルブの製造方法は、金属Na供給装置を用いてエンジンバルブに金属Naを充填するものである。図4は、本発明の実施例3に係る金属Na含有エンジンバルブの製造方法を示す図であり、図5は、金属Na供給装置の構成を示す図である。なお、本実施例で用いられるエンジンバルブは、本発明の実施例1に係るエンジンバルブの構成と同様であるため、実施例1と同様の部材については、同一の符号を付して重複した説明は省略する。 A method for manufacturing a metal Na-containing engine valve according to Example 3 of the present invention will be described with reference to the drawings. The method for manufacturing a metal Na-containing engine valve according to the present embodiment is to fill the engine valve with metal Na using a metal Na supply device. FIG. 4 is a diagram illustrating a method for manufacturing a metal Na-containing engine valve according to Example 3 of the present invention, and FIG. 5 is a diagram illustrating a configuration of a metal Na supply device. In addition, since the engine valve used in the present embodiment is the same as the configuration of the engine valve according to the first embodiment of the present invention, the same members as those in the first embodiment are denoted by the same reference numerals and duplicated description. Is omitted.
 図4に示すように、本実施例に係る金属Na含有エンジンバルブの製造方法は、図1に示す本発明の実施例1に係る金属Na含有エンジンバルブの製造方法と同様のものである。すなわち、本実施例に係る金属Na含有エンジンバルブの製造方法は、エンジンバルブ11内に粒子状の金属Na12aをエンジンバルブ11のバルブかさ部13の内部に充填する第1の金属Na充填工程(ステップS11)と、棒状の金属Na12bを用いてバルブ軸部14の内部を充填する第2の金属Na充填工程(ステップS12)と、を有するものである。 As shown in FIG. 4, the manufacturing method of the metallic Na-containing engine valve according to the present embodiment is the same as the manufacturing method of the metallic Na-containing engine valve according to the first embodiment of the present invention shown in FIG. That is, in the manufacturing method of the metal Na-containing engine valve according to the present embodiment, the first metal Na filling step (step) in which the particulate metal Na 12a is filled in the engine valve 11 into the valve bulkhead portion 13 of the engine valve 11 (step). S11) and a second metal Na filling step (step S12) for filling the inside of the valve shaft portion 14 using the rod-shaped metal Na12b.
(金属Na供給装置)
 金属Na12a、12bは、金属Na供給装置31Aを用いてエンジンバルブ11に金属Na12a、12bを供給する。図5に示すように、金属Na供給装置31Aは、第1の金属Na供給部32-1Aと、第2の金属Na供給部32-2Aとを有するものである。第1の金属Na供給部32-1Aは、第1の金属Na貯留部33-1と、第1のエンジンバルブ収容部34-1とを有するものである。第2の金属Na供給部32-2Aは、第2金属Na貯留部33-2と、第2のエンジンバルブ収容部34-2とを有するものである。
(Metal Na supply device)
Metal Na12a, 12b supplies metal Na12a, 12b to the engine valve 11 using the metal Na supply apparatus 31A. As shown in FIG. 5, the metal Na supply device 31A includes a first metal Na supply unit 32-1A and a second metal Na supply unit 32-2A. The first metal Na supply unit 32-1A includes a first metal Na storage unit 33-1 and a first engine valve housing unit 34-1. The second metal Na supply unit 32-2A includes a second metal Na storage unit 33-2 and a second engine valve housing unit 34-2.
 第1の金属Na供給部32-1Aは、エンジンバルブ11内に粒子状の金属Na12aを供給するものである。第2の金属Na供給部32-2Aは、エンジンバルブ11内に棒状の金属Na12bを供給するものである。第1のエンジンバルブ収容部34-1及び第2のエンジンバルブ収容部34-2は、エンジンバルブ11の少なくとも一部を収容するものである。 The first metal Na supply unit 32-1A supplies particulate metal Na12a into the engine valve 11. The second metal Na supply unit 32-2A supplies rod-shaped metal Na12b into the engine valve 11. The first engine valve accommodating portion 34-1 and the second engine valve accommodating portion 34-2 accommodate at least a part of the engine valve 11.
 第1の金属Na貯留部33-1及び第2の金属Na貯留部33-2の端面には供給孔33aが設けられている。供給孔33aは、金属Na12a、12bが通貨可能な大きさに形成されている。供給孔33aの形状は、特に限定されるものではなく、円形状、楕円形状、四角形状などが挙げられる。 A supply hole 33a is provided in the end surfaces of the first metal Na reservoir 33-1 and the second metal Na reservoir 33-2. The supply hole 33a is formed in such a size that the metal Na12a, 12b can be currencyd. The shape of the supply hole 33a is not particularly limited, and examples thereof include a circular shape, an elliptical shape, and a rectangular shape.
 第1の金属Na貯留部33-1及び第2の金属Na貯留部33-2から金属Na12a、12bを第1のエンジンバルブ収容部34-1及び第2のエンジンバルブ収容部34-2に供給する方法は特に限定されるものではなく、例えば、第1の金属Na貯留部33-1及び第2の金属Na貯留部33-2に超音波などを与えて第1の金属Na貯留部33-1及び第2の金属Na貯留部33-2内の金属Na12a、12bを落下させたり、供給孔33aに開閉可能な制御板を設け、制御手段により前記制御板の開閉具合を制御して供給孔33aから第1の金属Na貯留部33-1及び第2の金属Na貯留部33-2内の金属Na12a、12bを落下させるようにしてもよい。 The metal Na12a and 12b are supplied from the first metal Na reservoir 33-1 and the second metal Na reservoir 33-2 to the first engine valve reservoir 34-1 and the second engine valve reservoir 34-2. The method of performing is not particularly limited, and for example, ultrasonic waves are applied to the first metal Na reservoir 33-1 and the second metal Na reservoir 33-2 to provide the first metal Na reservoir 33- A control plate capable of dropping the metal Na12a, 12b in the first and second metal Na reservoirs 33-2 or opening and closing the supply hole 33a is provided, and the control means controls the open / close state of the control plate to supply holes. The metal Na 12a and 12b in the first metal Na reservoir 33-1 and the second metal Na reservoir 33-2 may be dropped from 33a.
 金属Na供給装置31Aは、第1のエンジンバルブ収容部34-1内に不活性ガス35を供給する不活性ガス供給手段36を有する。不活性ガス供給手段36は、不活性ガス供給ラインL11、L12を有する。不活性ガス供給ラインL11は、不活性ガス貯蔵タンク37から第1のエンジンバルブ収容部34-1内に不活性ガス35を供給するラインである。不活性ガス供給ラインL12は、不活性ガス貯蔵タンク37から第2のエンジンバルブ収容部34-2内に不活性ガス35を供給するラインである。不活性ガス供給手段36は、不活性ガス貯蔵タンク37から不活性ガス供給ラインL11を介して第1のエンジンバルブ収容部34-1内に不活性ガス35を供給し、不活性ガス供給ラインL12を介して第2のエンジンバルブ収容部34-2内に不活性ガス35を供給する。不活性ガス供給ラインL11、L12を介して不活性ガス35を第1のエンジンバルブ収容部34-1、第2のエンジンバルブ収容部34-2内に供給することで、第1のエンジンバルブ収容部34-1、第2のエンジンバルブ収容部34-2内の空気を追い出し、不活性ガス雰囲気を形成することができる。これにより、金属Na12a、12bが空気と接触することを抑制することができるため、金属Na12a、12bの表面が酸化されるのを抑制することができる。なお、不活性ガス供給ラインL11、L12における不活性ガス35の供給量は、調節弁V11、V12により調整される。 The metal Na supply device 31A has an inert gas supply means 36 for supplying an inert gas 35 into the first engine valve housing 34-1. The inert gas supply means 36 has inert gas supply lines L11 and L12. The inert gas supply line L11 is a line for supplying the inert gas 35 from the inert gas storage tank 37 into the first engine valve housing 34-1. The inert gas supply line L12 is a line for supplying the inert gas 35 from the inert gas storage tank 37 into the second engine valve housing 34-2. The inert gas supply means 36 supplies the inert gas 35 from the inert gas storage tank 37 via the inert gas supply line L11 into the first engine valve accommodating portion 34-1 and the inert gas supply line L12. Then, the inert gas 35 is supplied into the second engine valve housing 34-2. By supplying the inert gas 35 into the first engine valve accommodating portion 34-1 and the second engine valve accommodating portion 34-2 via the inert gas supply lines L11, L12, the first engine valve accommodating portion The air in the section 34-1 and the second engine valve housing section 34-2 can be expelled to form an inert gas atmosphere. Thereby, since it can suppress that metal Na12a, 12b contacts with air, it can suppress that the surface of metal Na12a, 12b is oxidized. Note that the supply amount of the inert gas 35 in the inert gas supply lines L11 and L12 is adjusted by the control valves V11 and V12.
 不活性ガス供給手段36は、不活性ガス供給ラインL11から分岐して第1のエンジンバルブ収容部34-1内に不活性ガス35を供給する不活性ガス供給ラインL13と、不活性ガス供給ラインL12から分岐して第2のエンジンバルブ収容部34-2内に不活性ガス35を供給する不活性ガス供給ラインL14とを有する。これにより、後述するように、第1のエンジンバルブ収容部34-1及び第2のエンジンバルブ収容部34-2内にエンジンバルブ11が収容された際、エンジンバルブ11内に不活性ガス35を供給することができるため、エンジンバルブ11内の金属Na12a、12bの表面が酸化されるのを抑制することができる。なお、不活性ガス供給ラインL11~L14におけるエンジンバルブ11内への不活性ガス35の供給量は、調節弁V21、V22、V31、V32により調整される。 The inert gas supply means 36 branches from the inert gas supply line L11, and supplies an inert gas 35 into the first engine valve housing 34-1 and an inert gas supply line. An inert gas supply line L14 that branches from L12 and supplies the inert gas 35 into the second engine valve housing 34-2 is provided. As a result, as described later, when the engine valve 11 is accommodated in the first engine valve accommodating portion 34-1 and the second engine valve accommodating portion 34-2, the inert gas 35 is introduced into the engine valve 11. Since it can supply, it can suppress that the surface of metal Na12a, 12b in the engine valve 11 is oxidized. The supply amount of the inert gas 35 into the engine valve 11 in the inert gas supply lines L11 to L14 is adjusted by the control valves V21, V22, V31, and V32.
(第1の金属Na充填工程:ステップS11)
 エンジンバルブ11は、第1のエンジンバルブ収容部34-1に挿入される。その後、第1の金属Na貯留部33-1の供給孔33aからエンジンバルブ11内に金属Na12aが供給され、エンジンバルブ11のバルブかさ部13の内部に充填される。この間、不活性ガス供給ラインL11を介して不活性ガス35を第1のエンジンバルブ収容部34-1内に供給する。また、不活性ガス供給ラインL13を介して不活性ガス35をエンジンバルブ11内に供給する。これにより、エンジンバルブ11内に供給された金属Na12aが酸化されるのを抑制することができる。エンジンバルブ11内に金属Na12aが充填された後、エンジンバルブ11を第1のエンジンバルブ収容部34-1から抜き出す。
(First metal Na filling step: step S11)
The engine valve 11 is inserted into the first engine valve housing 34-1. Thereafter, the metal Na 12a is supplied into the engine valve 11 from the supply hole 33a of the first metal Na reservoir 33-1 and filled into the valve bulkhead portion 13 of the engine valve 11. During this time, the inert gas 35 is supplied into the first engine valve housing 34-1 through the inert gas supply line L11. Further, the inert gas 35 is supplied into the engine valve 11 through the inert gas supply line L13. Thereby, it can suppress that metal Na12a supplied in the engine valve 11 is oxidized. After the engine valve 11 is filled with the metal Na12a, the engine valve 11 is extracted from the first engine valve housing 34-1.
(第2の金属ナトリウム充填工程:S12)
 抜き出したエンジンバルブ11は、第2のエンジンバルブ収容部34-2に挿入される。その後、第2の金属Na貯留部33-2からエンジンバルブ11内に金属Na12bが供給され、エンジンバルブ11のバルブかさ部13内に金属Na12bが充填される。この間、不活性ガス供給ラインL11を介して不活性ガス35を第1のエンジンバルブ収容部34-1内に供給する場合と同様に、不活性ガス供給ラインL12を介して不活性ガス35を第2のエンジンバルブ収容部34-2内に供給する。また、不活性ガス供給ラインL14を介して不活性ガス35をエンジンバルブ11内に供給する。これにより、エンジンバルブ11内に供給された金属Na12bが酸化されるのを抑制することができる。エンジンバルブ11内に金属Na12bが充填された後、エンジンバルブ11を第2のエンジンバルブ収容部34-2から抜き出す。
(Second metal sodium filling step: S12)
The extracted engine valve 11 is inserted into the second engine valve housing 34-2. Thereafter, the metal Na 12b is supplied from the second metal Na reservoir 33-2 into the engine valve 11 and the valve bulk 13 of the engine valve 11 is filled with the metal Na 12b. During this time, the inert gas 35 is supplied via the inert gas supply line L12 to the second state in the same manner as when the inert gas 35 is supplied into the first engine valve housing portion 34-1 via the inert gas supply line L11. 2 is supplied into the engine valve housing 34-2. Further, the inert gas 35 is supplied into the engine valve 11 via the inert gas supply line L14. Thereby, it can suppress that metal Na12b supplied in the engine valve 11 is oxidized. After the engine valve 11 is filled with the metal Na12b, the engine valve 11 is extracted from the second engine valve housing 34-2.
 よって、本実施例に係る金属Na含有エンジンバルブの製造方法によれば、金属Na供給装置31Aを用いてエンジンバルブ11に金属Na12a、12bを供給するようにしているため、多数のエンジンバルブ11に対して同時に短時間でエンジンバルブ11の内部に金属Na12a、12bを効率良く充填することができる。 Therefore, according to the manufacturing method of the metal Na-containing engine valve according to the present embodiment, the metal Na 12a and 12b are supplied to the engine valve 11 using the metal Na supply device 31A. In contrast, the metal Na12a and 12b can be efficiently filled into the engine valve 11 at the same time in a short time.
 本発明の実施例4に係る金属Na含有エンジンバルブの製造方法について、図面を参照して説明する。本実施例に係る金属Na含有エンジンバルブの製造方法は、金属Na供給装置を用いてエンジンバルブに金属Naを充填するものである。図6は、本発明の実施例4に係る金属Na含有エンジンバルブの製造方法を示す図であり、図7は、金属Na供給装置の構成を示す図である。なお、本実施例で用いられる金属ナトリウム供給装置は、図5に示す本発明の実施例3に係る金属ナトリウム含有エンジンバルブの製造方法に用いられる金属ナトリウム供給装置の構成と同様であるため、実施例3と同様の部材については、同一の符号を付して重複した説明は省略する。 A method for manufacturing a metal Na-containing engine valve according to Example 4 of the present invention will be described with reference to the drawings. The method for manufacturing a metal Na-containing engine valve according to the present embodiment is to fill the engine valve with metal Na using a metal Na supply device. FIG. 6 is a diagram illustrating a method for manufacturing a metal Na-containing engine valve according to Example 4 of the present invention, and FIG. 7 is a diagram illustrating a configuration of a metal Na supply device. The metal sodium supply device used in this example is the same as the configuration of the metal sodium supply device used in the method for manufacturing a metal sodium-containing engine valve according to Example 3 of the present invention shown in FIG. About the member similar to Example 3, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
 図6に示すように、本実施例に係る金属Na含有エンジンバルブの製造方法は、図3に示す本発明の実施例2に係る金属Na含有エンジンバルブの製造方法と同様のものである。すなわち、本実施例に係る金属Na含有エンジンバルブの製造方法は、棒状の金属Na12cを供給する第1の金属Na充填工程S21と、エンジンバルブ11を加熱しバルブかさ部13の内部に充填した金属Na12cを溶解する加熱溶解工程S22と、棒状の金属Na12bを供給する第2の金属Na充填工程S23とを有するものである。 As shown in FIG. 6, the manufacturing method of the metallic Na-containing engine valve according to the present embodiment is the same as the manufacturing method of the metallic Na-containing engine valve according to the second embodiment of the present invention shown in FIG. That is, the manufacturing method of the metal Na-containing engine valve according to the present embodiment includes the first metal Na filling step S21 for supplying the rod-shaped metal Na12c, and the metal that heats the engine valve 11 and fills the inside of the valve bulkhead 13 It includes a heating and dissolving step S22 for dissolving Na12c and a second metal Na filling step S23 for supplying a rod-like metal Na12b.
 金属Na12b、12cは、金属Na供給装置31Bを用いてエンジンバルブ11に金属Na12b、12cを供給する。図7に示すように、金属Na供給装置31Bは、第1の金属Na供給部32-1Bと、第2の金属Na供給部32-2Aとを有するものである。第1の金属Na供給部32-1Bの第1の金属Na貯留部33-1は、エンジンバルブ11内に棒状の金属Na12cを供給するものである。 Metal Na12b, 12c supplies metal Na12b, 12c to the engine valve 11 using the metal Na supply apparatus 31B. As shown in FIG. 7, the metal Na supply device 31B includes a first metal Na supply unit 32-1B and a second metal Na supply unit 32-2A. The first metal Na storage section 33-1 of the first metal Na supply section 32-1B supplies rod-shaped metal Na12c into the engine valve 11.
(第1の金属Na充填工程:ステップS21)
 エンジンバルブ11は、第1のエンジンバルブ収容部34-1に挿入される。その後、第1の金属Na貯留部33-1の供給孔33aからエンジンバルブ11内に金属Na12cを供給する。これにより、金属Na12cをエンジンバルブ11のバルブかさ部13の内部に充填する。この間、不活性ガス供給ラインL11を介して不活性ガス35を第1のエンジンバルブ収容部34-1内に供給する。また、不活性ガス供給ラインL13を介して不活性ガス35をエンジンバルブ11内に供給する。これにより、エンジンバルブ11内に供給された金属Na12cが酸化されるのを抑制することができる。エンジンバルブ11内に金属Na12cが充填された後、エンジンバルブ11を第1のエンジンバルブ収容部34-1から抜き出す。
(First metal Na filling step: step S21)
The engine valve 11 is inserted into the first engine valve housing 34-1. Thereafter, the metal Na12c is supplied into the engine valve 11 from the supply hole 33a of the first metal Na reservoir 33-1. As a result, the metal Na 12 c is filled into the valve bulkhead 13 of the engine valve 11. During this time, the inert gas 35 is supplied into the first engine valve housing 34-1 through the inert gas supply line L11. Further, the inert gas 35 is supplied into the engine valve 11 through the inert gas supply line L13. Thereby, it can suppress that metal Na12c supplied in the engine valve 11 is oxidized. After the engine valve 11 is filled with the metal Na12c, the engine valve 11 is extracted from the first engine valve housing 34-1.
(加熱溶解工程:S22)
 抜き出したエンジンバルブ11は、エンジンバルブ11の外部にエンジンバルブ11を加熱するための加熱手段22を設け、エンジンバルブ11を加熱する。これによりバルブかさ部13の内部に供給した金属Na12cは溶解されバルブかさ部13の内部を金属Na12cで満たすことができる。
(Heating and dissolving step: S22)
The extracted engine valve 11 is provided with heating means 22 for heating the engine valve 11 outside the engine valve 11 to heat the engine valve 11. As a result, the metal Na12c supplied to the inside of the valve umbrella 13 is dissolved, and the inside of the valve umbrella 13 can be filled with the metal Na12c.
 加熱手段22については、上述の通り、エンジンバルブ11を加熱することができるものであれば特に限定されるものではなく、例えば、ヒータ、電気炉などが挙げられる。 The heating means 22 is not particularly limited as long as it can heat the engine valve 11 as described above, and examples thereof include a heater and an electric furnace.
(第2の金属Na充填工程:S23)
 バルブかさ部13の内部を金属Na12cで満たした後、エンジンバルブ11は、第2のエンジンバルブ収容部34-2に挿入される。その後、上述と同様に、第2の金属Na貯留部33-2からエンジンバルブ11内に金属Na12bが供給され、エンジンバルブ11のバルブかさ部13内に金属Na12bが充填される。この間、不活性ガス供給ラインL11を介して不活性ガス35を第1のエンジンバルブ収容部34-1内に供給する場合と同様に、不活性ガス供給ラインL12を介して不活性ガス35を第2のエンジンバルブ収容部34-2内に供給する。また、不活性ガス供給ラインL14を介して不活性ガス35をエンジンバルブ11内に供給する。これにより、エンジンバルブ11内に供給された金属Na12bが酸化されるのを抑制することができる。エンジンバルブ11内に金属Na12bが充填された後、エンジンバルブ11を第2のエンジンバルブ収容部34-2から抜き出す。
(Second metal Na filling step: S23)
After filling the inside of the valve umbrella 13 with the metal Na12c, the engine valve 11 is inserted into the second engine valve housing 34-2. Thereafter, in the same manner as described above, the metal Na12b is supplied from the second metal Na reservoir 33-2 into the engine valve 11, and the valve bulkhead 13 of the engine valve 11 is filled with metal Na12b. During this time, the inert gas 35 is supplied via the inert gas supply line L12 to the second state in the same manner as when the inert gas 35 is supplied into the first engine valve housing portion 34-1 via the inert gas supply line L11. 2 is supplied into the engine valve housing 34-2. Further, the inert gas 35 is supplied into the engine valve 11 via the inert gas supply line L14. Thereby, it can suppress that metal Na12b supplied in the engine valve 11 is oxidized. After the engine valve 11 is filled with the metal Na12b, the engine valve 11 is extracted from the second engine valve housing 34-2.
 よって、本実施例に係る金属Na含有エンジンバルブの製造方法によれば、金属Na供給装置31Bを用いてエンジンバルブ11に金属Na12b、12cを供給するようにしているため、多数のエンジンバルブ11に対して同時に短時間でエンジンバルブ11の内部に金属Na12b、12cを効率良く充填することができる。 Therefore, according to the manufacturing method of the metal Na-containing engine valve according to the present embodiment, the metal Na 12b and 12c are supplied to the engine valve 11 using the metal Na supply device 31B. At the same time, the metal Na12b and 12c can be efficiently filled into the engine valve 11 in a short time.
 本発明の実施例5に係る金属Na含有エンジンバルブの製造方法について、図面を参照して説明する。本実施例に係る金属Na含有エンジンバルブの製造方法は、金属Na供給装置を用いてエンジンバルブに金属Naを充填するものである。図8は、本発明の実施例5に係る金属Na含有エンジンバルブの製造方法を示す図であり、図9は、金属Na供給装置の構成を示す図である。なお、本実施例で用いられる金属ナトリウム供給装置は、図5に示す本発明の実施例3に係る金属ナトリウム含有エンジンバルブの製造方法に用いられる金属ナトリウム供給装置の構成と同様であるため、実施例3と同様の部材については、同一の符号を付して重複した説明は省略する。 A method for manufacturing a metal Na-containing engine valve according to Example 5 of the present invention will be described with reference to the drawings. The method for manufacturing a metal Na-containing engine valve according to the present embodiment is to fill the engine valve with metal Na using a metal Na supply device. FIG. 8 is a diagram illustrating a method for manufacturing a metal Na-containing engine valve according to a fifth embodiment of the present invention, and FIG. 9 is a diagram illustrating a configuration of a metal Na supply device. The metal sodium supply device used in this example is the same as the configuration of the metal sodium supply device used in the method for manufacturing a metal sodium-containing engine valve according to Example 3 of the present invention shown in FIG. About the member similar to Example 3, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
 図8に示すように、本実施例に係る金属Na含有エンジンバルブの製造方法は、図1に示す本発明の実施例1に係る金属Na含有エンジンバルブの製造方法と同様のものである。すなわち、本実施例に係る金属Na含有エンジンバルブの製造方法は、エンジンバルブ11内に粒子状の金属Na12aをエンジンバルブ11のバルブかさ部13の内部に充填する第1の金属Na充填工程(ステップS11)と、棒状の金属Na12bを用いてバルブ軸部14の内部を充填する第2の金属Na充填工程(ステップS12)と、を有する。 As shown in FIG. 8, the manufacturing method of the metallic Na-containing engine valve according to the present embodiment is the same as the manufacturing method of the metallic Na-containing engine valve according to the first embodiment of the present invention shown in FIG. That is, in the manufacturing method of the metal Na-containing engine valve according to the present embodiment, the first metal Na filling step (step) in which the particulate metal Na 12a is filled in the engine valve 11 into the valve bulkhead portion 13 of the engine valve 11 (step). S11) and a second metal Na filling step (step S12) for filling the inside of the valve shaft portion 14 with the rod-shaped metal Na12b.
 金属Na12a、12bは、金属Na供給装置31Cを用いてエンジンバルブ11に金属Na12a、12bを供給する。図9に示すように、金属Na供給装置31Cは、第1の金属Na供給部32-1Aと、第2の金属Na供給部32-2Cとを有するものである。 Metal Na12a, 12b supplies metal Na12a, 12b to the engine valve 11 using the metal Na supply apparatus 31C. As shown in FIG. 9, the metal Na supply device 31C includes a first metal Na supply unit 32-1A and a second metal Na supply unit 32-2C.
 第2の金属Na供給部32-2Cの第2の金属Na貯留部33-2は、第2の金属Na貯留部33-2に第2の金属Na貯留部33-2内の金属Na12を押出す押出し部材41と、供給孔33aから金属Na12を所定長さ伸ばす金属Na押出し管42とを有する。第2のエンジンバルブ収容部34-2の壁面には、金属Na押出し管42から伸びた金属Na12を検知する検知装置(検知手段)43と、金属Na押出し管42から延びた金属Na12を切断するための切断手段44とが設けられている。切断手段44としては、例えば、カッターなどが挙げられる。 The second metal Na storage section 33-2 of the second metal Na supply section 32-2C pushes the metal Na12 in the second metal Na storage section 33-2 against the second metal Na storage section 33-2. An extrusion member 41 is provided, and a metal Na extrusion tube 42 that extends the metal Na12 by a predetermined length from the supply hole 33a. On the wall surface of the second engine valve housing 34-2, a detection device (detection means) 43 for detecting the metal Na12 extending from the metal Na extrusion tube 42 and the metal Na12 extending from the metal Na extrusion tube 42 are cut. Cutting means 44 for the purpose. Examples of the cutting means 44 include a cutter.
 第2の金属Na供給部32-2Cは、押出し部材41により第2の金属Na貯留部33-2内の金属Na12を加圧して金属Na押出し管42内を通して金属Na12を所定長さ伸ばす。更に、金属Na押出し管42から伸びた金属Na12は検知装置43により金属Na12が所定の長さ伸びていることが検知される。金属Na押出し管42から延びた分の金属Na12は切断手段44により切断される。切断手段44により切断された金属Na12は、金属Na12bとしてエンジンバルブ収11に供給される。 The second metal Na supply unit 32-2C pressurizes the metal Na12 in the second metal Na storage unit 33-2 by the pushing member 41 and extends the metal Na12 through the metal Na extruding tube 42 by a predetermined length. Further, the metal Na12 extended from the metal Na extruded tube 42 is detected by the detection device 43 that the metal Na12 is extended by a predetermined length. A portion of the metal Na 12 extending from the metal Na extrusion tube 42 is cut by the cutting means 44. The metal Na12 cut by the cutting means 44 is supplied to the engine valve tray 11 as metal Na12b.
(第1の金属Na充填工程:ステップS11)
 第1の金属Na充填工程S11は、本発明の実施例3に係る金属ナトリウム含有エンジンバルブの製造方法と同様に行う。
(First metal Na filling step: step S11)
1st metal Na filling process S11 is performed similarly to the manufacturing method of the metal sodium containing engine valve which concerns on Example 3 of this invention.
(第2の金属ナトリウム充填工程:S12)
 第1の金属Na充填工程S11により、エンジンバルブ11内に金属Na12aが充填した後、第1のエンジンバルブ収容部34-1から抜き出したエンジンバルブ11は、第2のエンジンバルブ収容部34-2に挿入される。その後、押出し部材41により第2の金属Na貯留部33-2内の金属Na12を加圧して金属Na押出し管42内を通して金属Na12を所定長さ押出す。更に、金属Na押出し管42から金属Na12を所定長さ押出した時点で検知装置43により金属Na12が所定長さ押出されていることを検知する。その後、金属Na押出し管42から延びている金属Na12を切断手段44により切断する。
(Second metal sodium filling step: S12)
After the metal Na 12a is filled into the engine valve 11 in the first metal Na filling step S11, the engine valve 11 extracted from the first engine valve housing 34-1 is the second engine valve housing 34-2. Inserted into. Thereafter, the metal Na12 in the second metal Na reservoir 33-2 is pressurized by the extruding member 41, and the metal Na12 is extruded through the metal Na extruding tube 42 by a predetermined length. Further, when the metal Na12 is extruded from the metal Na extruding tube 42 by a predetermined length, the detection device 43 detects that the metal Na12 has been extruded by a predetermined length. Thereafter, the metal Na 12 extending from the metal Na extrusion tube 42 is cut by the cutting means 44.
 切断手段44により切断された金属Na1bは、金属Na12bとしてエンジンバルブ11内に供給され、エンジンバルブ11のバルブかさ部13内に金属Na12bが充填される。この間、不活性ガス供給ラインL11を介して不活性ガス35を第1のエンジンバルブ収容部34-1内に供給する場合と同様に、不活性ガス供給ラインL12を介して不活性ガス35を第2のエンジンバルブ収容部34-2内に供給する。また、不活性ガス供給ラインL14を介して不活性ガス35をエンジンバルブ11内に供給する。これにより、エンジンバルブ11内に供給された金属Na12bが酸化されるのを抑制することができる。エンジンバルブ11内に金属Na12bが充填された後、エンジンバルブ11を第2のエンジンバルブ収容部34-2から抜き出す。 The metal Na1b cut by the cutting means 44 is supplied into the engine valve 11 as metal Na12b, and the valve bulkhead portion 13 of the engine valve 11 is filled with the metal Na12b. During this time, the inert gas 35 is supplied via the inert gas supply line L12 to the second state in the same manner as when the inert gas 35 is supplied into the first engine valve housing portion 34-1 via the inert gas supply line L11. 2 is supplied into the engine valve housing 34-2. Further, the inert gas 35 is supplied into the engine valve 11 via the inert gas supply line L14. Thereby, it can suppress that metal Na12b supplied in the engine valve 11 is oxidized. After the engine valve 11 is filled with the metal Na12b, the engine valve 11 is extracted from the second engine valve housing 34-2.
 よって、本実施例に係る金属Na含有エンジンバルブの製造方法によれば、金属Na供給装置31Cを用いて第2の金属Na貯留部33-2内の金属Na12を所定の長さで的確にエンジンバルブ11内に供給することができるため、多数のエンジンバルブ11に対して同時に短時間でエンジンバルブ11の内部に金属Na12a、12bを効率良く充填することができる。 Therefore, according to the method for manufacturing a metal Na-containing engine valve according to the present embodiment, the metal Na12 in the second metal Na reservoir 33-2 is accurately and precisely engineed using the metal Na supply device 31C. Since the gas can be supplied into the valve 11, the metal Na 12 a and 12 b can be efficiently filled into the engine valve 11 simultaneously in a short time with respect to a large number of engine valves 11.
 本発明の実施例6に係る金属Na含有エンジンバルブの製造方法について、図面を参照して説明する。本実施例に係る金属Na含有エンジンバルブの製造方法は、金属Na供給装置を用いてエンジンバルブに金属Naを充填するものである。図10は、本発明の実施例6に係る金属Na含有エンジンバルブの製造方法を示す図であり、図11は、金属Na供給装置の構成を示す図である。なお、本実施例で用いられる金属ナトリウム供給装置は、図7に示す本発明の実施例4に係る金属ナトリウム含有エンジンバルブの製造方法に用いられる金属ナトリウム供給装置の構成と同様であるため、実施例4と同様の部材については、同一の符号を付して重複した説明は省略する。 A method for manufacturing a metal Na-containing engine valve according to Example 6 of the present invention will be described with reference to the drawings. The method for manufacturing a metal Na-containing engine valve according to the present embodiment is to fill the engine valve with metal Na using a metal Na supply device. FIG. 10 is a diagram illustrating a method for manufacturing a metal Na-containing engine valve according to Example 6 of the present invention, and FIG. 11 is a diagram illustrating a configuration of a metal Na supply device. The metal sodium supply device used in this example is the same as the configuration of the metal sodium supply device used in the method for manufacturing a metal sodium-containing engine valve according to Example 4 of the present invention shown in FIG. About the member similar to Example 4, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
 図10に示すように、本実施例に係る金属Na含有エンジンバルブの製造方法は、図3に示す本発明の実施例2に係る金属Na含有エンジンバルブの製造方法と同様のものである。すなわち、本実施例に係る金属Na含有エンジンバルブの製造方法は、棒状の金属Na12cを供給する第1の金属Na充填工程S21と、エンジンバルブ11を加熱しバルブかさ部13の内部に充填した金属Naを溶解する加熱溶解工程S22と、棒状の金属Na12bを供給する第2の金属Na充填工程S23とを有するものである。 As shown in FIG. 10, the manufacturing method of the metallic Na-containing engine valve according to the present embodiment is the same as the manufacturing method of the metallic Na-containing engine valve according to the second embodiment of the present invention shown in FIG. That is, the manufacturing method of the metal Na-containing engine valve according to the present embodiment includes the first metal Na filling step S21 for supplying the rod-shaped metal Na12c, and the metal that heats the engine valve 11 and fills the inside of the valve bulkhead 13 It includes a heat dissolution step S22 for dissolving Na and a second metal Na filling step S23 for supplying rod-shaped metal Na12b.
 金属Na12b、12cは、金属Na供給装置31Dを用いてエンジンバルブ11に金属Na12b、12cを供給する。図11に示すように、金属Na供給装置31Dは、第1の金属Na供給部32-1Cと、第2の金属Na供給部32-2Cとを有するものである。 Metal Na12b, 12c supplies metal Na12b, 12c to engine valve 11 using metal Na supply device 31D. As shown in FIG. 11, the metal Na supply device 31D includes a first metal Na supply unit 32-1C and a second metal Na supply unit 32-2C.
 第1の金属Na供給部32-1Cの第1の金属Na貯留部33-1は、第2の金属Na貯留部33-2に第2の金属Na貯留部33-1内の金属Na12を押出す押出し部材41-1と、供給孔33aから金属Na12を所定長さ伸ばす金属Na押出し管42-1とを有する。第1のエンジンバルブ収容部34-1の壁面には、金属Na押出し管42から金属Na12を所定長さで検知する第1の検知装置(検知手段)43-1と、金属Na押出し管42から押出された金属Na12を切断するための第1の切断手段44-1とが設けられている。 The first metal Na storage unit 33-1 of the first metal Na supply unit 32-1C pushes the metal Na12 in the second metal Na storage unit 33-1 to the second metal Na storage unit 33-2. An extrusion member 41-1 to be taken out and a metal Na extrusion tube 42-1 for extending the metal Na12 by a predetermined length from the supply hole 33a are provided. On the wall surface of the first engine valve housing 34-1 are a first detection device (detection means) 43-1 for detecting the metal Na12 from the metal Na extrusion tube 42 at a predetermined length, and a metal Na extrusion tube 42. First cutting means 44-1 for cutting the extruded metal Na12 is provided.
 第1の金属Na供給部32-1Cは、押出し部材41-1により第1の金属Na貯留部33-1内の金属Na12を加圧して供給孔33aから金属Na押出し管42-1内を通して金属Na12を所定長さ押出す。更に、金属Na押出し管42-1から金属Na12が所定長さ押出された時点で第1の検知装置43-1により金属Na12が所定長さ押出されていることが検知される。金属Na押出し管42-1から押出された金属Na12は第1の切断手段44-1により切断される。これにより、金属Na12cが得られる。 The first metal Na supply part 32-1C pressurizes the metal Na12 in the first metal Na storage part 33-1 by the pushing member 41-1, and passes through the metal Na extrusion pipe 42-1 from the supply hole 33a. Na12 is extruded for a predetermined length. Further, when the metal Na12 is extruded from the metal Na extruding tube 42-1 by a predetermined length, the first detector 43-1 detects that the metal Na12 has been extruded by a predetermined length. The metal Na12 extruded from the metal Na extrusion tube 42-1 is cut by the first cutting means 44-1. Thereby, metal Na12c is obtained.
(第1の金属Na充填工程:ステップS21)
 エンジンバルブ11を第1のエンジンバルブ収容部34-1に挿入した後、押出し部材41-1により第1の金属Na貯留部33-1内の金属Na12を加圧して供給孔33aから金属Na押出し管42-1内を通して金属Na12を所定長さ押出す。更に、金属Na押出し管42-1から金属Na12を所定長さ押出した時点で第1の検知装置43-1により金属Na12が所定長さ押出されていることを検知する。その後、金属Na押出し管42-1から押出された金属Na12は第1の切断手段44-1により切断される。第1の切断手段44-1により切断された金属Na12は、金属Na12cとしてエンジンバルブ11内に供給され、エンジンバルブ11のバルブかさ部13内に金属Na12cが充填される。この間、上述と同様に、不活性ガス供給ラインL11を介して不活性ガス35を第1のエンジンバルブ収容部34-1内に供給し、エンジンバルブ収容部34-1内を不活性ガス雰囲気とする。また、不活性ガス供給ラインL13を介して不活性ガス35をエンジンバルブ11内に供給する。これにより、エンジンバルブ11内に供給された金属Na12cが酸化されるのを抑制することができる。エンジンバルブ11内に金属Na12cが充填された後、エンジンバルブ11を第1のエンジンバルブ収容部34-1から抜き出す。
(First metal Na filling step: step S21)
After the engine valve 11 is inserted into the first engine valve housing 34-1, the metal Na12 in the first metal Na reservoir 33-1 is pressurized by the pushing member 41-1 to push out the metal Na from the supply hole 33a. Metal Na12 is extruded through the tube 42-1 for a predetermined length. Further, when the metal Na12 is extruded from the metal Na extruding tube 42-1 by a predetermined length, the first detector 43-1 detects that the metal Na12 has been extruded by a predetermined length. Thereafter, the metal Na12 extruded from the metal Na extrusion tube 42-1 is cut by the first cutting means 44-1. The metal Na12 cut by the first cutting means 44-1 is supplied into the engine valve 11 as the metal Na12c, and the valve bulkhead portion 13 of the engine valve 11 is filled with the metal Na12c. During this time, in the same manner as described above, the inert gas 35 is supplied into the first engine valve accommodating portion 34-1 via the inert gas supply line L11, and the inside of the engine valve accommodating portion 34-1 is changed to the inert gas atmosphere. To do. Further, the inert gas 35 is supplied into the engine valve 11 through the inert gas supply line L13. Thereby, it can suppress that metal Na12c supplied in the engine valve 11 is oxidized. After the engine valve 11 is filled with the metal Na12c, the engine valve 11 is extracted from the first engine valve housing 34-1.
(加熱溶解工程:S22)
 加熱溶解工程S22は、本発明の実施例4に係る金属ナトリウム含有エンジンバルブの製造方法と同様に行う。
(Heating and dissolving step: S22)
Heat dissolution process S22 is performed similarly to the manufacturing method of the metallic sodium containing engine valve concerning Example 4 of the present invention.
(第2の金属Na充填工程:S23)
 第2の金属Na充填工程S23は、本発明の実施例4に係る金属ナトリウム含有エンジンバルブの製造方法と同様に行う。すなわち、エンジンバルブ11を第2のエンジンバルブ収容部34-2に挿入した後、押出し部材41-2により第2の金属Na貯留部33-2内の金属Na12を加圧して金属Na押出し管42-2内を通して金属Na12を所定長さ押出す。更に、金属Na押出し管42-2から金属Na12を所定長さ押出した時点で第2の検知装置43-2により金属Na12が所定長さ押出されていることを検知する。その後、金属Na押出し管42-2から押出された金属Na12は第2の切断手段44-2により切断される。第2の切断手段44-2により切断された金属Na12は、金属Na12bとしてエンジンバルブ11内に供給され、エンジンバルブ11のバルブ軸部14内に金属Na12bが充填される。この間、上述と同様に、不活性ガス供給ラインL12を介して不活性ガス35を第2のエンジンバルブ収容部34-2内に供給し、第2のエンジンバルブ収容部34-2内を不活性ガス雰囲気とする。また、不活性ガス供給ラインL14を介して不活性ガス35をエンジンバルブ11内に供給する。これにより、エンジンバルブ11内に供給された金属Na12bが酸化されるのを抑制することができる。エンジンバルブ11内に金属Na12bが充填された後、エンジンバルブ11を第2のエンジンバルブ収容部34-2から抜き出す。
(Second metal Na filling step: S23)
2nd metal Na filling process S23 is performed similarly to the manufacturing method of the metal sodium containing engine valve which concerns on Example 4 of this invention. That is, after the engine valve 11 is inserted into the second engine valve housing 34-2, the metal Na12 in the second metal Na reservoir 33-2 is pressurized by the pushing member 41-2 to press the metal Na extruded tube 42. -Extrude metal Na12 through the inside for a predetermined length. Further, when the metal Na12 is extruded from the metal Na extruding tube 42-2 by a predetermined length, the second detector 43-2 detects that the metal Na12 has been extruded by a predetermined length. Thereafter, the metal Na12 extruded from the metal Na extrusion tube 42-2 is cut by the second cutting means 44-2. The metal Na12 cut by the second cutting means 44-2 is supplied into the engine valve 11 as metal Na12b, and the valve shaft portion 14 of the engine valve 11 is filled with the metal Na12b. During this time, as described above, the inert gas 35 is supplied into the second engine valve housing part 34-2 via the inert gas supply line L12, and the second engine valve housing part 34-2 is inerted. Use a gas atmosphere. Further, the inert gas 35 is supplied into the engine valve 11 via the inert gas supply line L14. Thereby, it can suppress that metal Na12b supplied in the engine valve 11 is oxidized. After the engine valve 11 is filled with the metal Na12b, the engine valve 11 is extracted from the second engine valve housing 34-2.
 よって、本実施例に係る金属Na含有エンジンバルブの製造方法によれば、金属Na供給装置31Dを用いて第1の金属Na貯留部33-1及び第2の金属Na貯留部33-2内の金属Na12を所定の長さで的確にエンジンバルブ11内に供給することができるため、多数のエンジンバルブ11に対して同時に短時間でエンジンバルブ11の内部に金属Na12b、12cを効率良く充填することができる。 Therefore, according to the method for manufacturing the metal Na-containing engine valve according to the present embodiment, the metal Na supply unit 31D is used to store the first metal Na storage unit 33-1 and the second metal Na storage unit 33-2. Since the metal Na12 can be accurately supplied into the engine valve 11 with a predetermined length, the metal valves 12b and 12c can be efficiently filled into the engine valve 11 simultaneously in a short time with respect to a large number of engine valves 11. Can do.
 以上のように、上記各実施例においては、車両用のエンジンに用いられるエンジンバルブに金属Naを充填する場合について説明したが、本発明は、これに限定されるものではなく、航空機用など他の郵送機器用のエンジンに用いられるエンジンバルブについても同様に適用することができる。 As described above, in each of the above embodiments, the case where the engine valve used in the vehicle engine is filled with the metal Na has been described. However, the present invention is not limited to this, and may be used for aircraft, etc. The same applies to the engine valve used in the engine for the mailing equipment.
 11 エンジンバルブ
 12、12a、12b、12c 金属ナトリウム(金属Na)
 13 バルブかさ部
 14 バルブ軸部
 15 バルブ軸先端部
 22 加熱手段
 31A~31D 金属Na供給装置
 32-1A~32-1C 第1の金属Na供給部
 32-2A~32-2C 第2の金属Na供給部
 33-1 第1の金属Na貯留部
 33-2 第2の金属Na貯留部
 33a 供給孔
 34-1 第1のエンジンバルブ収容部
 34-2 第2のエンジンバルブ収容部
 35 不活性ガス
 36 不活性ガス供給手段
 37 不活性ガス貯蔵タンク
 41 押出し部材
 42 金属Na押出し管
 43 検知装置(検知手段)
 43-1 第1の検知装置(検知手段)
 43-2 第2の検知装置(検知手段)
 44 切断手段
 44-1 第1の切断手段
 44-2 第2の切断手段
 L11~L14 不活性ガス供給ライン
11 Engine valve 12, 12a, 12b, 12c Metal sodium (metal Na)
13 Valve bulkhead portion 14 Valve shaft portion 15 Valve shaft tip portion 22 Heating means 31A to 31D Metal Na supply device 32-1A to 32-1C First metal Na supply portion 32-2A to 32-2C Second metal Na supply Part 33-1 First metal Na storage part 33-2 Second metal Na storage part 33a Supply hole 34-1 First engine valve storage part 34-2 Second engine valve storage part 35 Inert gas 36 Active gas supply means 37 Inert gas storage tank 41 Extrusion member 42 Metal Na extrusion pipe 43 Detection device (detection means)
43-1 First detection device (detection means)
43-2 Second detection device (detection means)
44 cutting means 44-1 first cutting means 44-2 second cutting means L11 to L14 inert gas supply line

Claims (8)

  1.  バルブかさ部とバルブ軸部とバルブ軸先端部とを有し、少なくとも前記バルブかさ部と前記バルブ軸部とを中空とするエンジンバルブの内部に金属ナトリウムを有する金属ナトリウム含有エンジンバルブの製造方法であって、
     前記エンジンバルブ内に粒子状の金属ナトリウム、棒状の金属ナトリウムのいずれか一方または両方を少なくとも前記バルブかさ部の内部に充填する第1の金属ナトリウム充填工程と、
     前記棒状の金属ナトリウムを前記バルブ軸部の内部に供給する第2の金属ナトリウム充填工程と、
    を有することを特徴とする金属ナトリウム含有エンジンバルブの製造方法。
    A method of manufacturing a metallic sodium-containing engine valve having metallic bulk sodium inside an engine valve having a bulked valve portion, a valve shaft portion, and a valve shaft tip portion, wherein at least the valve bulk portion and the valve shaft portion are hollow. There,
    A first metallic sodium filling step of filling at least one of or both of particulate metallic sodium and rod-shaped metallic sodium into the engine valve;
    A second metal sodium filling step of supplying the rod-shaped metal sodium into the valve shaft portion;
    A method for producing a metallic sodium-containing engine valve, comprising:
  2.  請求項1において、
     前記第1の金属ナトリウム充填工程と前記第2の金属ナトリウム充填工程との間に、前記エンジンバルブを加熱融解手段により加熱し、前記バルブかさ部の内部に供給した金属ナトリウムを溶解する加熱溶解工程を有することを特徴とする金属ナトリウム含有エンジンバルブの製造方法。
    In claim 1,
    Between the first metallic sodium filling step and the second metallic sodium filling step, the engine valve is heated by heating and melting means, and the heating and melting step for dissolving the metallic sodium supplied to the inside of the valve bulkhead A method for producing a metallic sodium-containing engine valve, comprising:
  3.  請求項1または2において、
     前記第1の金属ナトリウム充填工程の前に、前記金属ナトリウムの表面に予めチタンを付着させておくか、前記金属ナトリウムを灯油の中に予め浸漬させておくことを特徴とする金属ナトリウム含有エンジンバルブの製造方法。
    In claim 1 or 2,
    Before the first metallic sodium filling step, titanium is attached in advance to the surface of the metallic sodium, or the metallic sodium is pre-immersed in kerosene. Manufacturing method.
  4.  バルブかさ部とバルブ軸部とバルブ軸先端部とを有し、少なくとも前記バルブかさ部と前記バルブ軸部とを中空とするエンジンバルブの内部に金属ナトリウムを有する金属ナトリウム含有エンジンバルブを製造する金属ナトリウム供給装置であり、
     前記エンジンバルブ内に粒子状の金属ナトリウム、棒状の金属ナトリウムのいずれか一方または両方を供給する第1の金属ナトリウム供給部と、
     前記棒状の金属ナトリウムを前記バルブ軸部の内部に供給する第2の金属ナトリウム供給部とを有し、
     前記第1の金属ナトリウム供給部は、前記エンジンバルブ内に粒子状の金属ナトリウムを貯蔵する第1の金属ナトリウム貯留部と、前記エンジンバルブの一部を収容する第1のエンジンバルブ収容部とを有し、
     前記第2の金属ナトリウム供給部は、前記棒状の金属ナトリウムを前記バルブ軸部の内部に貯蔵する第2の金属ナトリウム貯留部と、前記エンジンバルブの一部を収容する第2のエンジンバルブ収容部と、
    を有することを特徴とする金属ナトリウム供給装置。
    Metal for producing a metal sodium-containing engine valve having metallic sodium inside an engine valve having a valve bulkhead, a valve shaft and a valve shaft tip, and at least the valve bulkhead and the valve shaft are hollow. A sodium feeder,
    A first metal sodium supply section for supplying one or both of particulate metal sodium and rod-shaped metal sodium into the engine valve;
    A second metal sodium supply part for supplying the rod-shaped metal sodium into the valve shaft part;
    The first metallic sodium supply unit includes: a first metallic sodium storage unit that stores particulate metallic sodium in the engine valve; and a first engine valve housing unit that houses a part of the engine valve. Have
    The second metal sodium supply unit includes a second metal sodium storage unit that stores the rod-shaped metal sodium in the valve shaft, and a second engine valve storage unit that stores a part of the engine valve. When,
    Metal sodium supply apparatus characterized by having.
  5.  請求項4において、
     前記エンジンバルブ収容部に設けられ、前記エンジンバルブ収容部内に不活性ガスを供給する不活性ガス供給手段を有することを特徴とする金属ナトリウム供給装置。
    In claim 4,
    A metallic sodium supply device comprising an inert gas supply means provided in the engine valve housing portion and configured to supply an inert gas into the engine valve housing portion.
  6.  請求項4または5において、
     前記不活性ガス供給手段は、更に前記エンジンバルブ内に不活性ガスを供給することを特徴とする金属ナトリウム供給装置。
    In claim 4 or 5,
    The metallic sodium supply apparatus, wherein the inert gas supply means further supplies an inert gas into the engine valve.
  7.  請求項4から6のいずれか1つにおいて、
     第1の金属ナトリウム貯留部と第2の金属ナトリウム貯留部との何れか一方または両方に設けられ、第1の金属ナトリウム貯留部と第2の金属ナトリウム貯留部との何れか一方または両方から排出される金属ナトリウムの長さを検知するための検知手段と、
     第1の金属ナトリウム貯留部と第2の金属ナトリウム貯留部との何れか一方または両方から排出される金属ナトリウムを切断する切断手段と、
    を有することを特徴とする金属ナトリウム供給装置。
    In any one of Claims 4-6,
    It is provided in either one or both of the first metal sodium reservoir and the second metal sodium reservoir, and is discharged from either or both of the first metal sodium reservoir and the second metal sodium reservoir. Detection means for detecting the length of metallic sodium
    Cutting means for cutting metal sodium discharged from either or both of the first metal sodium reservoir and the second metal sodium reservoir;
    Metal sodium supply apparatus characterized by having.
  8.  請求項4から7のいずれか1つにおいて、
     前記金属ナトリウムの表面に予めチタンを付着させるか、前記金属ナトリウムを灯油の中に予め浸漬させておくことを特徴とする金属ナトリウム供給装置。
    In any one of Claims 4-7,
    A metallic sodium supply device, wherein titanium is attached to the surface of the metallic sodium in advance, or the metallic sodium is previously immersed in kerosene.
PCT/JP2011/075409 2010-12-24 2011-11-04 Method for producing engine valve containing metallic sodium, and metallic sodium supply apparatus WO2012086315A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010288738A JP2012136979A (en) 2010-12-24 2010-12-24 Method of manufacturing engine valve containing metallic sodium, and metallic sodium supply system
JP2010-288738 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012086315A1 true WO2012086315A1 (en) 2012-06-28

Family

ID=46313598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075409 WO2012086315A1 (en) 2010-12-24 2011-11-04 Method for producing engine valve containing metallic sodium, and metallic sodium supply apparatus

Country Status (2)

Country Link
JP (1) JP2012136979A (en)
WO (1) WO2012086315A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075795A1 (en) * 2013-11-21 2015-05-28 日鍛バルブ株式会社 Method for manufacturing hollow poppet valve
US10677110B2 (en) 2015-04-28 2020-06-09 Fuji Hollow Valve Inc. Method and device for manufacturing metallic-sodium-filled engine valve
US11300018B2 (en) 2018-03-20 2022-04-12 Nittan Valve Co., Ltd. Hollow exhaust poppet valve
US11536167B2 (en) 2018-11-12 2022-12-27 Nittan Valve Co., Ltd. Method for manufacturing engine poppet valve
US11850690B2 (en) 2020-03-30 2023-12-26 Nittan Corporation Method for manufacturing engine poppet valve

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014202021A1 (en) 2014-02-05 2015-08-06 Mahle International Gmbh Method for measuring a wall thickness of hollow valves
US9757826B2 (en) 2014-09-02 2017-09-12 Fuji Hollow Valve Inc. Method of charging a hollow valve with metallic sodium
CN107107139B (en) * 2015-05-15 2018-11-02 日锻汽门株式会社 The removing method of high-viscosity material and the withdrawing device of high-viscosity material
WO2022013951A1 (en) * 2020-07-14 2022-01-20 フジオーゼックス株式会社 Coolant filling device for hollow-head engine valve, and coolant filling method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232317A (en) * 1990-12-28 1992-08-20 Fuji Oozx Kk Method for inserting metal sodium into hollow valve and its device
JPH04232318A (en) * 1990-12-28 1992-08-20 Fuji Oozx Kk Device for inserting metal sodium into hollow valve
JPH04272413A (en) * 1991-02-27 1992-09-29 Mitsubishi Heavy Ind Ltd Filling method for metallic sodium
JPH07102917A (en) * 1993-09-30 1995-04-18 Mitsubishi Heavy Ind Ltd Sodium-enclosed hollow engine valve manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232317A (en) * 1990-12-28 1992-08-20 Fuji Oozx Kk Method for inserting metal sodium into hollow valve and its device
JPH04232318A (en) * 1990-12-28 1992-08-20 Fuji Oozx Kk Device for inserting metal sodium into hollow valve
JPH04272413A (en) * 1991-02-27 1992-09-29 Mitsubishi Heavy Ind Ltd Filling method for metallic sodium
JPH07102917A (en) * 1993-09-30 1995-04-18 Mitsubishi Heavy Ind Ltd Sodium-enclosed hollow engine valve manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075795A1 (en) * 2013-11-21 2015-05-28 日鍛バルブ株式会社 Method for manufacturing hollow poppet valve
JPWO2015075795A1 (en) * 2013-11-21 2017-03-16 日鍛バルブ株式会社 Manufacturing method of hollow poppet valve
EP3073067A4 (en) * 2013-11-21 2017-06-28 Nittan Valve Co., Ltd. Method for manufacturing hollow poppet valve
US9751164B2 (en) 2013-11-21 2017-09-05 Nittan Valve Co., Ltd. Method of manufacturing a hollow poppet valve
US10677110B2 (en) 2015-04-28 2020-06-09 Fuji Hollow Valve Inc. Method and device for manufacturing metallic-sodium-filled engine valve
US11300018B2 (en) 2018-03-20 2022-04-12 Nittan Valve Co., Ltd. Hollow exhaust poppet valve
US11536167B2 (en) 2018-11-12 2022-12-27 Nittan Valve Co., Ltd. Method for manufacturing engine poppet valve
US11850690B2 (en) 2020-03-30 2023-12-26 Nittan Corporation Method for manufacturing engine poppet valve

Also Published As

Publication number Publication date
JP2012136979A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
WO2012086315A1 (en) Method for producing engine valve containing metallic sodium, and metallic sodium supply apparatus
RU2641870C1 (en) Hollow poppet valve
WO2012086316A1 (en) Metallic sodium supply apparatus
EP3081755B1 (en) Gas turbine engine component with integrated heat pipe
JP2013532253A (en) Device for making available a reducing agent with a system heating element
US10619947B2 (en) Heat exchanger
US9181838B2 (en) Temperature maintenance and regulation of vehicle exhaust catalyst systems with phase change materials
JP2013506109A (en) Heat transfer system using thermal energy storage material
EP3663016B1 (en) Method of forming casting with flow passage, and casting formed by the same
WO2014110376A1 (en) Thermal transfer system
US10335853B2 (en) Method and assembly for forming components using a jacketed core
EP3377749B1 (en) Piston providing for reduced heat loss using cooling media
CN104227338A (en) Preparation method for aluminum-stainless steel composite pipe for thermal control on spacecraft
US8863381B2 (en) Method of making a piston oil gallery using a hollow metallic core
CN103672397A (en) Ammonia storage device and exhaust line equipped with such a device
CN105090033B (en) The manufacture method of compressor
JP6063558B2 (en) Hollow poppet valve
US20110016847A1 (en) Latent Heat Storage Device and Associated Manufacturing Method
JP2008069766A (en) Method of manufacturing silencer
US10150158B2 (en) Method and assembly for forming components having internal passages using a jacketed core
JP6131318B2 (en) Hollow poppet valve
SG185468A1 (en) Pipe coupling method, pipe expansion jig, and pipe expansion method using pipe expansion jig
JP6705365B2 (en) Method for manufacturing latent heat storage body
CN105829247A (en) Modular system for ammonia storagemodular system for ammonia storage
EP3187277A1 (en) Mold assembly including a deoxygenated core and method of making same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851349

Country of ref document: EP

Kind code of ref document: A1