WO2012086283A1 - Modulator, transmitter and communication system - Google Patents

Modulator, transmitter and communication system Download PDF

Info

Publication number
WO2012086283A1
WO2012086283A1 PCT/JP2011/072196 JP2011072196W WO2012086283A1 WO 2012086283 A1 WO2012086283 A1 WO 2012086283A1 JP 2011072196 W JP2011072196 W JP 2011072196W WO 2012086283 A1 WO2012086283 A1 WO 2012086283A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
modulation means
moth
signal
eye structure
Prior art date
Application number
PCT/JP2011/072196
Other languages
French (fr)
Japanese (ja)
Inventor
顕次 柴田
功 今岡
上山 智
Original Assignee
株式会社豊田自動織機
学校法人 名城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 学校法人 名城大学 filed Critical 株式会社豊田自動織機
Publication of WO2012086283A1 publication Critical patent/WO2012086283A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0232Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using shutters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1895Generating the spectrum; Monochromators using diffraction elements, e.g. grating using fiber Bragg gratings or gratings integrated in a waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/315Digital deflection, i.e. optical switching based on the use of controlled internal reflection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/15Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 periodic
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/62Switchable arrangements whereby the element being usually not switchable

Definitions

  • the present invention relates to a modulator, a transmitter, and a communication system.
  • white LEDs using a combination of a short wavelength LED element made of a nitride semiconductor and a phosphor have been put into practical use, and the white LED is expected as a light source for future illumination. Unlike incandescent bulbs and fluorescent lamps, which are conventional illumination light sources, white LEDs can modulate light at a relatively high speed, and are expected to be applied to visible light communication utilizing this feature. Research projects aiming to build information communication networks in offices and homes such as the Internet through visible light communication of 1 to 10 Mbps from lighting devices are being actively promoted in Japan and overseas.
  • this type of visible light communication device a device that drives a blue light excitation type white LED based on a drive current signal generated based on transmission data and outputs a visible light signal to a receiver is proposed. ing.
  • this visible light communication device generates a multi-tone drive current signal by adding a rising pulse at the rising edge of transmission data and adding a falling pulse at the falling edge of transmission data. It is described that a multi-tone drive means is provided.
  • the current broadband communication using optical fibers and the like has reached 1000 Mbps, and compared with this, the transfer speed in the configuration using the light of the conventional LED or incandescent bulb is not sufficient.
  • total transfer rate refers to the overall data transfer rate considering both the transfer rate by a single transmitter and the capacity to operate multiple transmitters in parallel. means.
  • a modulator includes a spectroscopic unit that splits light including a plurality of wavelengths into a plurality of lights having different wavelengths, and a plurality of modulation units.
  • Each includes a structure including a material having concave or convex portions formed periodically on the surface, and an electric field adjusting unit that generates an electric field that changes in the material and changes the refractive index of the material, and includes a modulation unit.
  • Each modulates one of the plurality of light by a change in refractive index.
  • the electric field adjusting unit changes the refractive index to change the light amount at the same speed as the change in the refractive index.
  • the electric field adjustment unit of each modulation unit modulates different spectra in parallel.
  • the period in which the concave portion or the convex portion is formed may be different.
  • the period in which the concave portion or the convex portion is formed may be longer than the optical wavelength of the light modulated by the modulation means and smaller than the coherent length of the light modulated by the modulation means. .
  • a transmitter according to the present invention includes a light source that emits light including a plurality of wavelengths, and the modulator described above.
  • a communication system according to the present invention includes the above-described transmitter and a receiver having light detection means for detecting a plurality of lights.
  • the modulator, transmitter, and communication system of the present invention can improve the total data transfer rate by improving the data transfer rate and transfer capacity.
  • FIG. 10 is a diagram showing changes in signal contents in the second embodiment. It is a schematic diagram which shows the modification of the modulation
  • FIG. 1 is a schematic diagram showing an outline of a configuration of a communication system according to the present invention.
  • the communication system according to the present invention includes a transmitter 10 and a receiver 20.
  • a DC power supply 30 is connected to the transmitter 10, and the DC power supply 30 supplies power to the transmitter 10.
  • the transmitter 10 includes a white LED 11 as a light source.
  • the white LED 11 emits, for example, white light L as light including a plurality of wavelengths.
  • the transmitter 10 also includes a modulator 12.
  • the modulator 12 modulates the light emitted from the white LED 11 based on an input signal (described later with reference to FIGS. 2 to 4).
  • the modulator 12 includes an AWG (arrayed waveguide grating) 13 as spectroscopic means.
  • the AWG 13 splits the white light L emitted from the white LED 11 into a plurality of lights having different wavelengths. In the example of FIG. 1, the light is split into four light beams, La to Ld.
  • the spectral wavelength is the shortest in the spectral La, and becomes longer in the order of the spectral Lb, Lc, and Ld.
  • the number of spectra is four for convenience of explanation, but it is theoretically possible to split up to 400.
  • the modulator 12 includes a plurality of modulation means 14. Each of the modulation means 14 modulates this corresponding to any one of the spectra La to Ld. In FIG. 1, the modulators 14a to 14d are in order from those corresponding to the short wavelength spectrum.
  • the light beams La to Ld modulated by the modulation means 14a to 14d are referred to as signal lights La 'to Ld', respectively.
  • FIG. 2 is a schematic diagram showing an outline of the configuration of the modulation means 14a.
  • the modulation means 14a includes a first electrode layer 141, a moth-eye structure layer 142 as a structure, and a second electrode layer 143. These layers are laminated in order of the second electrode layer 143, the moth-eye structure layer 142, and the first electrode layer 141 from the side on which the spectral La is incident toward the side on which the signal light La 'is emitted.
  • a signal input power source 145 is connected to the modulation means 14a.
  • One pole of the signal input power source 145 is connected to the first electrode layer 141, and the other pole is connected to the second electrode layer 143.
  • the signal input power source 145 controls the voltage applied between the first electrode layer 141 and the second electrode layer 143 based on a signal to be transmitted.
  • the first electrode layer 141 is an n + -AlGaN layer having an AlN molar fraction of 0.2 or less.
  • the first electrode layer 141 may be made of other materials as long as the sheet resistance is smaller than that of the moth-eye structure layer 142.
  • the moth-eye structure layer 142 is formed on the first electrode layer 141, and convex portions 144 protruding to the second electrode layer 143 side are periodically formed.
  • each convex portion 144 is formed in alignment with the intersection of the virtual triangular lattice at a predetermined cycle so that the center is the position of the apex of the regular triangle in plan view.
  • the period of each convex part 144 is larger than the optical wavelength of the spectral La and smaller than the coherent length of the spectral La.
  • the period refers to the distance between the peak positions of the depths of the adjacent convex portions 144.
  • the optical wavelength means a value obtained by dividing the actual wavelength by the refractive index.
  • the coherent length corresponds to a distance until the periodic vibrations of the waves cancel each other and the coherence disappears due to the difference in the individual wavelengths of the photon group having a predetermined spectral width.
  • the period of each convex part 144 is preferably larger than twice the optical wavelength of the spectrum La. Moreover, it is preferable that the period of each convex part 144 is below half of the coherent length of spectroscopy La.
  • the period of each convex portion 144 is 500 nm. If the wavelength of the spectral La is 450 nm, for example, the refractive index of the group III nitride semiconductor layer is 2.4, so the optical wavelength is 187.5 nm. If the half width of the spectrum La is 63 nm, the coherent length is 3214 nm. That is, the period of each convex part 144 is larger than twice the optical wavelength of the spectrum La and is equal to or less than half of the coherent length.
  • each convex portion 144 is formed in a conical shape whose diameter is reduced toward the tip. Specifically, each convex portion 144 has a base end portion with a diameter of 200 nm and a depth of 250 nm. The tip of each convex portion 144 may have a sharp shape (for example, FIG. 3) or may have a non-pointed shape (for example, a flat shape as in FIG. 4). Further, the surface of the moth-eye structure layer 142 is flat except for the convex portions 144.
  • the moth-eye structure layer 142 as the structure is preferably made of a material having a large Pockels effect. Specifically, it is preferable to have piezoelectricity, and more preferably an isotropic crystal.
  • the moth-eye structure layer 142 can be formed of, for example, SiO 2 , AlN, LiNbO 3 , ZnO, ITO, or the like, and is formed of AlN in this embodiment.
  • the shape of each convex portion 144 can be a cone, a polygonal pyramid, or the like. In the present embodiment, a light diffraction effect can be obtained by the convex portions 144 arranged periodically.
  • the second electrode layer 143 is formed along the surface of the moth-eye structure layer 142.
  • the second electrode layer 143 is composed of an n + -AIGaN layer having an AlN molar fraction of 0.2 or less.
  • the second electrode layer 143 may be made of other materials as long as the sheet resistance is smaller than that of the moth-eye structure layer 142.
  • n1 is the refractive index of the medium on the incident side
  • is the wavelength of the incident light
  • m is an integer.
  • n1 is the refractive index of air.
  • n2 is the refractive index of the medium on the exit side
  • m ′ is an integer.
  • n2 is the refractive index of the moth-eye structure layer 142. That is, when the refractive index of the moth-eye structure layer 142 changes, the light transmission condition changes.
  • the period of each convex portion 144 is the optical wavelength inside the element ( ⁇ / n 1 ) Or ( ⁇ / n2).
  • the generally known moth-eye structure has a period set smaller than ( ⁇ / n1) or ( ⁇ / n2), and there is no diffracted light.
  • the period of each convex part 144 must be smaller than the coherent length which light can maintain the property as a wave, and it is preferable to set it as the half or less of coherent length. By setting it to half or less of the coherent length, the intensity of reflected light and transmitted light by diffraction can be secured.
  • the refractive index of the material of the moth-eye structure layer 142 changes.
  • the refractive index of the moth-eye structure layer 142 changes, n2 in the above equation (2) changes and the diffraction transmission condition changes.
  • the light quantity of the signal light La ′ can be changed by changing the potential of the first electrode layer 141. That is, the first electrode layer 141 functions as a refractive index modulation electrode.
  • the first electrode layer 141 and the second electrode layer 143 function as an electric field adjustment unit that changes the refractive index of the material of the moth-eye structure layer 142.
  • the light can be modulated in accordance with the electric field generated in the moth-eye structure layer 142, and the modulation speed can be greatly improved as compared with the conventional method in which the on / off of light emission by the white LED 11 is controlled and modulated. it can.
  • the moth-eye structure layer 142 is sandwiched between a pair of layers having a smaller sheet resistance than the moth-eye structure layer 142, an electric field can be reliably generated in the moth-eye structure layer 142.
  • the configuration of the modulation means 14b to 14b is the same.
  • the modulation means 14a to 14d modulate the spectra La to Ld having different wavelengths, the dimensions depending on the wavelength in the configuration are different.
  • a person skilled in the art can design other modulation means 14b to 14d by making necessary changes in accordance with the wavelength of light to be modulated based on the description of the configuration of the modulation means 14a.
  • the period at which the convex portion of the moth-eye structure layer is formed in the modulating unit 14b is not 500 nm as in the modulating unit 14a, but is determined to be an optimal value based on the optical wavelength, coherent length, etc.
  • the modulation means 14a is the smallest, and thereafter increases in the order of the modulation means 14b, 14c, 14d.
  • the modulation means 14a to 14d modulate one of the plurality of spectral lines La to Lb by changing the refractive index of the material of the moth-eye structure layer included therein.
  • the modulation means 14a to 14d modulate the corresponding spectrum based on different signals. That is, different information can be given to each wavelength of light. Since the modulation means 14a to 14d can operate simultaneously, the spectrums La to Ld can be modulated and transmitted in parallel based on the four types of signals, and the signal transfer capacity can be increased.
  • FIG. 5 is a schematic diagram showing an outline of the configuration of the receiver 20.
  • the receiver 20 includes a plurality of optical filters 21 and a plurality of light detection means 22.
  • the optical filter 21 and the light detection means 22 are provided corresponding to the signal lights La ′ to Ld ′.
  • the optical filter 21a transmits light having a wavelength corresponding to the signal light La '
  • the light detection unit 22a detects light having a wavelength corresponding to the signal light La'.
  • the light detection means 22a to 22d can be configured by a phototransistor, a photodiode, a photo IC, or the like having an operation speed that can correspond to the modulation speed of the modulation means 14.
  • an optical filter corresponding to a different wavelength may be provided for each light receiving element (or each group of light receiving elements).
  • the optical filters 21a to 21d may be arranged in the same chip as the light detection means 22a to 22d, or may be arranged outside the chip.
  • the receiver 20 separates and detects the signal lights La ′ to Ld ′ having different wavelengths based on the wavelengths, so that even if the signal lights La ′ to Ld ′ are spatially overlapped, they are detected. Can be received separately. That is, even when the distance between the transmitter 10 and the receiver 20 is large and the modulation means 14 cannot be individually recognized with the resolution (spatial resolution) of the receiver 20, the signal lights La ′ to Ld ′ are spectrally reflected. Can be received separately.
  • high-speed modulation can be performed using the electric field generated in the moth-eye structure layer 142, so that the data transfer rate is improved. Can do.
  • the data transfer capacity can be improved. Therefore, the total transfer rate in visible light communication can be improved by improving the transfer rate and transfer capacity.
  • the white LED 11 is used as a light source, the light source for indoor illumination can be diverted or shared for information transfer.
  • Embodiment 2 a part of the signal light La ′ to Ld ′ is a dummy in the first embodiment, and the signal light corresponding to the actual signal is changed with time.
  • Such an embodiment is useful, for example, in cryptographic communications.
  • FIG. 6 shows changes in signal contents in the communication system according to the second embodiment.
  • modulation means 14a and 14b perform modulation based on an actual signal to be transmitted
  • modulation means 14c and 14d perform modulation based on a dummy signal not related to the actual signal. That is, the signal lights La ′ and Lb ′ represent actual signals, and the signal lights Lc ′ and Ld ′ represent dummy signals.
  • real signals are represented by solid lines, and dummy signals are represented by broken lines.
  • period 2 a part or all of the modulation means using the real signal and the modulation means using the dummy signal are switched.
  • the signal lights La ′ and Ld ′ represent actual signals
  • the signal lights Lb ′ and Lc ′ represent dummy signals.
  • the signal lights Lb ′ and Lc ′ represent actual signals
  • the signal lights La ′ and Ld ′ represent dummy signals.
  • information indicating which of the wavelengths represents a real signal and which of the wavelengths represents a dummy signal is obtained from the receiving device (for example, a receiver or a demodulator) by any method. Communicated or stored in advance. Therefore, on the receiving side, only those representing the actual signal among the wavelengths can be selected, and the original signal can be restored using these.
  • the frequency of the signal light representing the actual signal varies with time. For this reason, even if the signal lights La ′ to Ld ′ are intercepted or eavesdropped, it is difficult to restore the original signal if any of them is concealed as to whether it is a real signal or which is a dummy signal. . Therefore, the confidentiality of communication can be improved.
  • the number of modulation means is four, but 400 modulation means can actually be provided as described above, and a highly confidential communication method can be realized.
  • the switching method between the real signal and the dummy signal can be appropriately designed using a well-known encryption communication protocol.
  • there are two modulation means corresponding to the actual signal in each period but this may be a different number, or there may be a period in which all the modulation means transmit the actual signal. There may be a period in which all modulation means transmit dummy signals.
  • the moth-eye structure layer 142 is formed of AlN.
  • n-type GaN layers 142b and AlN layers 142a are alternately stacked. May be formed.
  • the refractive index change of the moth-eye structure layer 142 can be increased.
  • the amount of change in the refractive index is smaller than that of the Pockels effect, the refractive index is changed using the Kerr effect. You can also.
  • the convex portion 144 of the moth-eye structure layer 142 is convex toward the incident side, but this may be formed in the opposite direction.
  • An example of such a configuration is shown in FIG.
  • the modulation means 24 in FIG. 8 includes a first electrode layer 241, a moth-eye structure layer 242 as a structure, and a second electrode layer 243. These layers are laminated in the order of the first electrode layer 241, the moth-eye structure layer 242, and the second electrode layer 243 from the side on which the spectrum L2 is incident to the side on which the signal light L2 'is emitted.
  • the convex portion 244 of the moth-eye structure layer 242 is formed in a direction that is convex toward the side from which the signal light L2 'is emitted. Further, a signal input power source 245 is connected to the modulation means 24.
  • the moth-eye structure layer 142 is periodically formed with the convex portions 144, but the concave portions may be periodically formed.
  • the convex portion or the concave portion may be formed in a prismatic shape and aligned with intersections of a virtual square lattice at a predetermined period.
  • the convex portion or the concave portion may be a polygonal pyramid shape that is reduced in diameter toward the tip, such as a triangular pyramid shape or a quadrangular pyramid shape, and it is needless to say that a specific detailed structure and the like can be appropriately changed. .
  • the modulation means 14a to 14d perform modulation based on different information, but a plurality of modulation means may perform modulation based on the same information. In this case, the redundancy of transmitted information can be improved and transmission errors can be suppressed.
  • the white LED 11 is used as the light source, but other configurations may be used as long as the light source emits light including a plurality of wavelengths.
  • a monochromatic LED having a spectral width that can be dispersed may be used.
  • An incandescent bulb or a fluorescent lamp may be used. These may be diverted or used as a light source for indoor lighting.
  • the medium that meshes with the convex portion 144 of the moth-eye structure layer 142 is air, but this may not be air, and a layer of another medium may be provided.
  • the refractive index n1 of the incident side medium in FIG. 3 is the refractive index of the epoxy resin.

Abstract

Disclosed are a modulator, a transmitter and a communication system which improve the total data transfer rate. An AWG (13) disperses white light (L) emitted from a white LED (11) into multiple spectral components (La-Ld) each having different wavelengths. The modulator (12) is provided with multiple modulation means (14a-14d). A modulation means (14a) generates a changing electric field in the material of a moth eye structure layer (142) by means of applying a voltage to a first electrode layer (141) and a second electrode layer (143), and changes the refractive index of said material to modulate the spectral component (La). The other modulation means (14b-14d) modulate the spectral components (Lb-Ld) in the same way. The modulation means (14a-14d) modulate the spectral components (La-Ld) on the basis of different signals.

Description

変調器、発信機および通信システムModulator, transmitter and communication system
 本発明は、変調器、発信機および通信システムに関する。 The present invention relates to a modulator, a transmitter, and a communication system.
 近年、窒化物半導体による短波長のLED素子と蛍光体の組み合わせによる白色LEDが実用化され、白色LEDは今後の照明用光源として期待されている。白色LEDは、従来の照明光源である白熱電球や蛍光灯とは異なり、比較的高速での光の変調が可能であり、この特徴を生かした可視光通信への応用が見込まれている。照明装置からの1~10Mbpsの可視光通信によって、インターネットをはじめとするオフィス、家庭内の情報通信網を構築することを目指した研究プロジェクトが国内外で活発に推進されている。 In recent years, white LEDs using a combination of a short wavelength LED element made of a nitride semiconductor and a phosphor have been put into practical use, and the white LED is expected as a light source for future illumination. Unlike incandescent bulbs and fluorescent lamps, which are conventional illumination light sources, white LEDs can modulate light at a relatively high speed, and are expected to be applied to visible light communication utilizing this feature. Research projects aiming to build information communication networks in offices and homes such as the Internet through visible light communication of 1 to 10 Mbps from lighting devices are being actively promoted in Japan and overseas.
 また、この種の可視光通信用装置として、送信データに基づいて生成された駆動電流信号に基づいて青色光励起型白色LEDを駆動し、可視光信号を受信機に対して出力するものが提案されている。特許文献1には、この可視光通信用装置は、送信データの立ち上がり時に立ち上がりパルスを付加するとともに、送信データの立ち下がり時に立ち下がりパルスを付加して、多階調の駆動電流信号を生成する多階調駆動手段を備えると記載されている。 Also, as this type of visible light communication device, a device that drives a blue light excitation type white LED based on a drive current signal generated based on transmission data and outputs a visible light signal to a receiver is proposed. ing. In Patent Document 1, this visible light communication device generates a multi-tone drive current signal by adding a rising pulse at the rising edge of transmission data and adding a falling pulse at the falling edge of transmission data. It is described that a multi-tone drive means is provided.
特開2010-103979号公報JP 2010-103979 A
 しかしながら、現在の光ファイバーなどによるブロードバンド通信は、1000Mbpsにも達しており、これと比較すると、従来のLEDや白熱電球の光を用いた構成での転送速度は十分とは言い難い。 However, the current broadband communication using optical fibers and the like has reached 1000 Mbps, and compared with this, the transfer speed in the configuration using the light of the conventional LED or incandescent bulb is not sufficient.
 本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、データの全転送速度を向上させられる変調器、発信機および通信システムを提供することにある。なお、本明細書において「全転送速度」とは、単一の発信機による転送速度と、複数の発信機を並列的に動作させる容量との双方を考慮した、全体的なデータの転送速度を意味する。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a modulator, a transmitter, and a communication system capable of improving the total data transfer rate. In this specification, “total transfer rate” refers to the overall data transfer rate considering both the transfer rate by a single transmitter and the capacity to operate multiple transmitters in parallel. means.
 上述の問題点を解決するため、この発明に係る変調器は、複数の波長を含む光を、異なる波長を有する複数の光に分光する分光手段と、複数の変調手段とを備え、変調手段のそれぞれは、表面に凹部または凸部が周期的に形成された材料を含む構造体と、材料に変化する電界を生じさせ、当該材料の屈折率を変化させる電界調整部とを有し、変調手段のそれぞれは、屈折率の変化によって複数の光のうち1つを変調する。 In order to solve the above-described problems, a modulator according to the present invention includes a spectroscopic unit that splits light including a plurality of wavelengths into a plurality of lights having different wavelengths, and a plurality of modulation units. Each includes a structure including a material having concave or convex portions formed periodically on the surface, and an electric field adjusting unit that generates an electric field that changes in the material and changes the refractive index of the material, and includes a modulation unit. Each modulates one of the plurality of light by a change in refractive index.
 このような構成によれば、電界調整部は屈折率を変化させることにより、屈折率の変化と同じ速度で光量を変化させる。また、各変調手段の電界調整部は、それぞれ異なる分光を並列的に変調する。 According to such a configuration, the electric field adjusting unit changes the refractive index to change the light amount at the same speed as the change in the refractive index. In addition, the electric field adjustment unit of each modulation unit modulates different spectra in parallel.
 複数の変調手段において、凹部または凸部が形成される周期はそれぞれ異なってもよい。
 複数の変調手段のそれぞれにおいて、凹部または凸部が形成される周期は、その変調手段が変調する光の光学波長より大きく、その変調手段が変調する光のコヒーレント長より小さいものであってもよい。
In the plurality of modulation units, the period in which the concave portion or the convex portion is formed may be different.
In each of the plurality of modulation means, the period in which the concave portion or the convex portion is formed may be longer than the optical wavelength of the light modulated by the modulation means and smaller than the coherent length of the light modulated by the modulation means. .
 また、この発明に係る発信機は、複数の波長を含む光を放射する光源と、上述の変調器とを備える。
 また、この発明に係る通信システムは、上述の発信機と、複数の光を検出する光検出手段を有する受信機とを備える。
In addition, a transmitter according to the present invention includes a light source that emits light including a plurality of wavelengths, and the modulator described above.
In addition, a communication system according to the present invention includes the above-described transmitter and a receiver having light detection means for detecting a plurality of lights.
 本発明の変調器、発信機および通信システムは、データの転送速度および転送容量を向上させることにより、データの全転送速度を向上させることができる。 The modulator, transmitter, and communication system of the present invention can improve the total data transfer rate by improving the data transfer rate and transfer capacity.
本発明に係る通信システムの構成の概略を示す模式図である。It is a schematic diagram which shows the outline of a structure of the communication system which concerns on this invention. 図1の変調手段の構成の概略を示す模式図である。It is a schematic diagram which shows the outline of a structure of the modulation | alteration means of FIG. 異なる屈折率の界面における光の回折作用を示す説明図であり、(a)は界面にて反射する状態を示し、(b)は界面を通過する状態を示す。It is explanatory drawing which shows the diffraction effect of the light in the interface of a different refractive index, (a) shows the state reflected in an interface, (b) shows the state which passes an interface. 図2のモスアイ構造層に入射する光の回折作用を示す説明図である。It is explanatory drawing which shows the diffraction effect of the light which injects into the moth-eye structure layer of FIG. 図1の受信機の構成の概略を示す模式図である。It is a schematic diagram which shows the outline of a structure of the receiver of FIG. 実施の形態2における信号の内容の変化を示す図である。FIG. 10 is a diagram showing changes in signal contents in the second embodiment. 図1の変調手段の変形例を示す模式図である。It is a schematic diagram which shows the modification of the modulation | alteration means of FIG. 図1の変調手段の変形例を示す模式図である。It is a schematic diagram which shows the modification of the modulation | alteration means of FIG.
実施の形態1.
 図1は本発明に係る通信システムの構成の概略を示す模式図である。本発明に係る通信システムは、発信機10および受信機20を備える。発信機10には直流電源30が接続され、この直流電源30が発信機10に電源を供給する。
 発信機10は、光源としての白色LED11を備える。白色LED11は、複数の波長を含む光として、たとえば白色光Lを放射する。また、発信機10は変調器12を備える。変調器12は、白色LED11が放射する光を、入力される信号(図2~図4を参照して後述)に基づいて変調する。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram showing an outline of a configuration of a communication system according to the present invention. The communication system according to the present invention includes a transmitter 10 and a receiver 20. A DC power supply 30 is connected to the transmitter 10, and the DC power supply 30 supplies power to the transmitter 10.
The transmitter 10 includes a white LED 11 as a light source. The white LED 11 emits, for example, white light L as light including a plurality of wavelengths. The transmitter 10 also includes a modulator 12. The modulator 12 modulates the light emitted from the white LED 11 based on an input signal (described later with reference to FIGS. 2 to 4).
 変調器12は、分光手段としてのAWG(アレイ導波路格子)13を備える。AWG13は、白色LED11から放射される白色光Lを、それぞれ異なる波長を有する複数の光に分光する。図1の例では、分光La~Ldの4つに分光されている。この例では、分光の波長は分光Laが最も短く、以下、分光Lb、Lc、Ldの順に長くなるものとする。また、本実施形態では説明の便宜上分光の数を4個としているが、理論的に400個まで分光させることが可能である。 The modulator 12 includes an AWG (arrayed waveguide grating) 13 as spectroscopic means. The AWG 13 splits the white light L emitted from the white LED 11 into a plurality of lights having different wavelengths. In the example of FIG. 1, the light is split into four light beams, La to Ld. In this example, it is assumed that the spectral wavelength is the shortest in the spectral La, and becomes longer in the order of the spectral Lb, Lc, and Ld. In the present embodiment, the number of spectra is four for convenience of explanation, but it is theoretically possible to split up to 400.
 また、変調器12は、複数の変調手段14を備える。変調手段14のそれぞれは、分光La~Ldのいずれか1つに対応してこれを変調する。図1では、波長の短い分光に対応するものから順に変調手段14a~14dとする。また、分光La~Ldが変調手段14a~14dによって変調されたものを、それぞれ信号光La’~Ld’とする。 Further, the modulator 12 includes a plurality of modulation means 14. Each of the modulation means 14 modulates this corresponding to any one of the spectra La to Ld. In FIG. 1, the modulators 14a to 14d are in order from those corresponding to the short wavelength spectrum. The light beams La to Ld modulated by the modulation means 14a to 14d are referred to as signal lights La 'to Ld', respectively.
 図2は、変調手段14aの構成の概略を示す模式図である。変調手段14aは、第1電極層141と、構造体としてのモスアイ構造層142と、第2電極層143とを含む。これらの層は、分光Laが入射する側から信号光La’が出射する側に向けて、第2電極層143、モスアイ構造層142、第1電極層141の順に積層されている。 FIG. 2 is a schematic diagram showing an outline of the configuration of the modulation means 14a. The modulation means 14a includes a first electrode layer 141, a moth-eye structure layer 142 as a structure, and a second electrode layer 143. These layers are laminated in order of the second electrode layer 143, the moth-eye structure layer 142, and the first electrode layer 141 from the side on which the spectral La is incident toward the side on which the signal light La 'is emitted.
 また、変調手段14aには信号入力用電源145が接続されている。信号入力用電源145の一方の極は第1電極層141に接続され、他方の極は第2電極層143に接続される。信号入力用電源145は、送信すべき信号に基づいて、第1電極層141および第2電極層143の間に印加される電圧を制御する。 Also, a signal input power source 145 is connected to the modulation means 14a. One pole of the signal input power source 145 is connected to the first electrode layer 141, and the other pole is connected to the second electrode layer 143. The signal input power source 145 controls the voltage applied between the first electrode layer 141 and the second electrode layer 143 based on a signal to be transmitted.
 第1電極層141は、AlNモル分率が0.2以下のn+-AlGaN層からなる。尚、第1電極層141は、モスアイ構造層142よりもシート抵抗が小さい材料であれば、他の材料を用いてもよい。 The first electrode layer 141 is an n + -AlGaN layer having an AlN molar fraction of 0.2 or less. The first electrode layer 141 may be made of other materials as long as the sheet resistance is smaller than that of the moth-eye structure layer 142.
 モスアイ構造層142は、第1電極層141上に形成され、第2電極層143側へ突出する凸部144が周期的に形成される。本実施形態においては、各凸部144は、平面視にて、中心が正三角形の頂点の位置となるように、所定の周期で仮想の三角格子の交点に整列して形成される。各凸部144の周期は、分光Laの光学波長より大きく、分光Laのコヒーレント長より小さくなっている。尚、ここでいう周期とは、隣接する凸部144における深さのピーク位置の距離をいう。また、光学波長とは、実際の波長を屈折率で除した値を意味する。さらに、コヒーレント長とは、所定のスペクトル幅のフォトン群の個々の波長の違いによって、波の周期的振動が互いに打ち消され、可干渉性が消失するまでの距離に相当する。コヒーレント長lcは、光の波長をλ、当該光の半値幅をΔλとすると、おおよそlc=(λ2/Δλ)の関係にある。ここで、各凸部144の周期は、分光Laの光学波長の2倍より大きいことが好ましい。また、各凸部144の周期は、分光Laのコヒーレント長の半分以下であることが好ましい。 The moth-eye structure layer 142 is formed on the first electrode layer 141, and convex portions 144 protruding to the second electrode layer 143 side are periodically formed. In the present embodiment, each convex portion 144 is formed in alignment with the intersection of the virtual triangular lattice at a predetermined cycle so that the center is the position of the apex of the regular triangle in plan view. The period of each convex part 144 is larger than the optical wavelength of the spectral La and smaller than the coherent length of the spectral La. Here, the period refers to the distance between the peak positions of the depths of the adjacent convex portions 144. The optical wavelength means a value obtained by dividing the actual wavelength by the refractive index. Furthermore, the coherent length corresponds to a distance until the periodic vibrations of the waves cancel each other and the coherence disappears due to the difference in the individual wavelengths of the photon group having a predetermined spectral width. The coherent length lc is approximately lc = (λ 2 / Δλ), where λ is the wavelength of light and Δλ is the half width of the light. Here, the period of each convex part 144 is preferably larger than twice the optical wavelength of the spectrum La. Moreover, it is preferable that the period of each convex part 144 is below half of the coherent length of spectroscopy La.
 本実施形態においては、各凸部144の周期は、500nmである。分光Laの波長をたとえば450nmとすると、III族窒化物半導体層の屈折率が2.4であることから、その光学波長は187.5nmである。また、分光Laの半値幅が63nmであるとすると、そのコヒーレント長は3214nmである。すなわち、各凸部144の周期は、分光Laの光学波長の2倍より大きく、かつ、コヒーレント長の半分以下となっている。 In the present embodiment, the period of each convex portion 144 is 500 nm. If the wavelength of the spectral La is 450 nm, for example, the refractive index of the group III nitride semiconductor layer is 2.4, so the optical wavelength is 187.5 nm. If the half width of the spectrum La is 63 nm, the coherent length is 3214 nm. That is, the period of each convex part 144 is larger than twice the optical wavelength of the spectrum La and is equal to or less than half of the coherent length.
 また、本実施形態においては、各凸部144は、先端に向けて縮径する円錐状に形成される。具体的に、各凸部144は、基端部の直径が200nmであり、深さは250nmとなっている。なお、各凸部144の先端は、尖った形状(たとえば図3)としてもよく、尖っていない形状(たとえば図4のように平坦な形状)としてもよい。また、モスアイ構造層142の表面は、各凸部144の他は平坦となっている。 Further, in the present embodiment, each convex portion 144 is formed in a conical shape whose diameter is reduced toward the tip. Specifically, each convex portion 144 has a base end portion with a diameter of 200 nm and a depth of 250 nm. The tip of each convex portion 144 may have a sharp shape (for example, FIG. 3) or may have a non-pointed shape (for example, a flat shape as in FIG. 4). Further, the surface of the moth-eye structure layer 142 is flat except for the convex portions 144.
 構造体としてのモスアイ構造層142は、ポッケルス効果の大きい材料が好ましい。具体的には、圧電性を有することが好ましく、等方性結晶であることがより好ましい。モスアイ構造層142は、たとえばSiO2、AlN、LiNbO3、ZnO、ITO等から形成することができ、本実施形態においてはAlNから形成される。各凸部144の形状は、円錐、多角錐等の形状とすることができる。本実施形態においては、周期的に配置される各凸部144により、光の回折作用を得ることができる。 The moth-eye structure layer 142 as the structure is preferably made of a material having a large Pockels effect. Specifically, it is preferable to have piezoelectricity, and more preferably an isotropic crystal. The moth-eye structure layer 142 can be formed of, for example, SiO 2 , AlN, LiNbO 3 , ZnO, ITO, or the like, and is formed of AlN in this embodiment. The shape of each convex portion 144 can be a cone, a polygonal pyramid, or the like. In the present embodiment, a light diffraction effect can be obtained by the convex portions 144 arranged periodically.
 第2電極層143は、モスアイ構造層142の表面に沿って形成される。本実施形態においては、第2電極層143は、AlNモル分率が0.2以下のn+-AIGaN層からなる。尚、第2電極層143は、モスアイ構造層142よりもシート抵抗が小さい材料であれば、他の材料を用いてもよい。 The second electrode layer 143 is formed along the surface of the moth-eye structure layer 142. In the present embodiment, the second electrode layer 143 is composed of an n + -AIGaN layer having an AlN molar fraction of 0.2 or less. The second electrode layer 143 may be made of other materials as long as the sheet resistance is smaller than that of the moth-eye structure layer 142.
 ここで、図3(a)に示すように、ブラッグの回折条件から、モスアイ構造層142の界面にて光が反射する場合において、入射角θinに対して反射角θrefが満たすべき条件は、
 d・n1・(sinθin-sinθref)=m・λ・・・(1)
である。ここで、n1は入射側の媒質の屈折率、λは入射する光の波長、mは整数である。本実施形態では、n1は、空気の屈折率となる。
Here, as shown in FIG. 3A, when light is reflected at the interface of the moth-eye structure layer 142 from the Bragg diffraction condition, the condition that the reflection angle θ ref should satisfy with respect to the incident angle θ in is ,
d · n1 · (sin θ in −sin θ ref ) = m · λ (1)
It is. Here, n1 is the refractive index of the medium on the incident side, λ is the wavelength of the incident light, and m is an integer. In the present embodiment, n1 is the refractive index of air.
 一方、図3(b)に示すように、ブラッグの回折条件から、モスアイ構造層142の界面にて光が透過する場合において、入射角θinに対して透過角θoutが満たすべき条件は、
 d・(n1・sinθin-n2・sinθout)=m'・λ・・・(2)
である。ここで、n2は出射側の媒質の屈折率であり、m'は整数である。本実施形態では、n2は、モスアイ構造層142の屈折率となる。すなわち、モスアイ構造層142の屈折率が変化すると、光の透過条件が変化する。
On the other hand, as shown in FIG. 3B, from the Bragg diffraction condition, when light is transmitted at the interface of the moth-eye structure layer 142, the condition that the transmission angle θ out should satisfy with respect to the incident angle θ in is:
d · (n1 · sin θ in −n2 · sin θ out ) = m ′ · λ (2)
It is. Here, n2 is the refractive index of the medium on the exit side, and m ′ is an integer. In the present embodiment, n2 is the refractive index of the moth-eye structure layer 142. That is, when the refractive index of the moth-eye structure layer 142 changes, the light transmission condition changes.
 上記(1)式及び(2)式の回折条件を満たす反射角θref及び透過角θoutが存在するためには、各凸部144の周期は、素子内部の光学波長である(λ/n1)や(λ/n2)よりも大きくなければならない。一般的に知られているモスアイ構造は、周期が(λ/n1)や(λ/n2)よりも小さく設定されており、回折光は存在しない。そして、各凸部144の周期は、光が波としての性質を維持できるコヒーレント長より小さくなければならず、コヒーレント長の半分以下とすることが好ましい。コヒーレント長の半分以下とすることにより、回折による反射光及び透過光の強度を確保することができる。 In order for the reflection angle θ ref and the transmission angle θ out that satisfy the diffraction conditions of the above equations (1) and (2) to exist, the period of each convex portion 144 is the optical wavelength inside the element (λ / n 1 ) Or (λ / n2). The generally known moth-eye structure has a period set smaller than (λ / n1) or (λ / n2), and there is no diffracted light. And the period of each convex part 144 must be smaller than the coherent length which light can maintain the property as a wave, and it is preferable to set it as the half or less of coherent length. By setting it to half or less of the coherent length, the intensity of reflected light and transmitted light by diffraction can be secured.
 図4に示すように、モスアイ構造層142へ入射角θinで入射する光は、上記(1)式を満たす反射角θrefで反射するとともに、上記(2)式を満たす透過角θoutで透過する。ここで、全反射臨界角以上の入射角θinでは、強い反射光強度となる。
 なお図3および図4ではθout>θinとなっているが、これらの大小関係は上記(2)式から明らかなように屈折率n1およびn2に応じて変動する。
As shown in FIG. 4, light incident on the moth-eye structure layer 142 at an incident angle θ in is reflected at a reflection angle θ ref that satisfies the above equation (1), and at a transmission angle θ out that satisfies the above equation (2). To Penetrate. Here, when the incident angle θ in is greater than the total reflection critical angle, the intensity of the reflected light is high.
3 and 4, θ out > θ in , but the magnitude relationship varies depending on the refractive indexes n1 and n2, as is apparent from the above equation (2).
 そして、第1電極層141および第2電極層143に電圧を印可して、モスアイ構造層142に電界を生じさせると、モスアイ構造層142の材料の屈折率が変化する。本実施形態においては、モスアイ構造層142は、圧電性を有することから、ポッケルス効果を利用して効率よく屈折率を変化させることができる。モスアイ構造層142の屈折率が変化すると、上記(2)式のn2が変化して回折の透過条件が変化する。これにより、第1電極層141の電位を変化させて、信号光La’の光量を変化させることができる。
 すなわち、第1電極層141は屈折率変調用電極として機能する。また、第1電極層141および第2電極層143は、モスアイ構造層142の材料の屈折率を変化させる電界調整部として機能する。
When a voltage is applied to the first electrode layer 141 and the second electrode layer 143 to generate an electric field in the moth-eye structure layer 142, the refractive index of the material of the moth-eye structure layer 142 changes. In this embodiment, since the moth-eye structure layer 142 has piezoelectricity, the refractive index can be changed efficiently using the Pockels effect. When the refractive index of the moth-eye structure layer 142 changes, n2 in the above equation (2) changes and the diffraction transmission condition changes. Thereby, the light quantity of the signal light La ′ can be changed by changing the potential of the first electrode layer 141.
That is, the first electrode layer 141 functions as a refractive index modulation electrode. In addition, the first electrode layer 141 and the second electrode layer 143 function as an electric field adjustment unit that changes the refractive index of the material of the moth-eye structure layer 142.
 従って、モスアイ構造層142にて生じる電界に応じて光を変調させることができ、白色LED11による発光のオン/オフを制御して変調する従来の方式よりも、格段に変調速度を向上させることができる。 Therefore, the light can be modulated in accordance with the electric field generated in the moth-eye structure layer 142, and the modulation speed can be greatly improved as compared with the conventional method in which the on / off of light emission by the white LED 11 is controlled and modulated. it can.
 また、モスアイ構造層142を、モスアイ構造層142よりもシート抵抗の小さな一対の層で挟むようにしたので、モスアイ構造層142に確実に電界を生じさせることができる。 In addition, since the moth-eye structure layer 142 is sandwiched between a pair of layers having a smaller sheet resistance than the moth-eye structure layer 142, an electric field can be reliably generated in the moth-eye structure layer 142.
 図2~図4では変調手段14aの構成のみを示すが、変調手段14b~14bの構成も同様である。ただし、上述のように変調手段14a~14dはそれぞれ異なる波長を有する分光La~Ldを変調するので、構成のうち波長に依存する寸法はそれぞれ異なる。当業者は、上述の変調手段14aの構成に関する説明に基づき、変調すべき光の波長に応じて必要な変更を施して、他の変調手段14b~14dを設計することができる。たとえば、変調手段14bにおけるモスアイ構造層の凸部が形成される周期は、変調手段14aのように500nmではなく、分光Lbの光学波長やコヒーレント長等に基づいて最適な値に決定される。たとえば図1に概略的に示すように、モスアイ構造層の凸部が形成される周期は変調手段ごとに異なり、変調手段14aが最も小さく、以下、変調手段14b、14c、14dの順に大きくなる。
 このように、変調手段14a~14dは、それぞれに含まれるモスアイ構造層の材料の屈折率を変化させることにより、複数の分光La~Lbのうち対応する1つを変調する。
2 to 4 show only the configuration of the modulation means 14a, the configuration of the modulation means 14b to 14b is the same. However, as described above, since the modulation means 14a to 14d modulate the spectra La to Ld having different wavelengths, the dimensions depending on the wavelength in the configuration are different. A person skilled in the art can design other modulation means 14b to 14d by making necessary changes in accordance with the wavelength of light to be modulated based on the description of the configuration of the modulation means 14a. For example, the period at which the convex portion of the moth-eye structure layer is formed in the modulating unit 14b is not 500 nm as in the modulating unit 14a, but is determined to be an optimal value based on the optical wavelength, coherent length, etc. of the spectral Lb. For example, as schematically shown in FIG. 1, the period at which the convex portions of the moth-eye structure layer are formed differs from one modulation means to another, the modulation means 14a is the smallest, and thereafter increases in the order of the modulation means 14b, 14c, 14d.
In this way, the modulation means 14a to 14d modulate one of the plurality of spectral lines La to Lb by changing the refractive index of the material of the moth-eye structure layer included therein.
 変調手段14a~14dは、それぞれ異なる信号に基づいて、対応する分光を変調する。すなわち、光の各波長にそれぞれ異なる情報を持たせることができる。変調手段14a~14dは同時に動作することが可能なので、4種類の信号に基づいて分光La~Ldを並列的に変調し送信することができ、信号の転送容量を増加させることができる。 The modulation means 14a to 14d modulate the corresponding spectrum based on different signals. That is, different information can be given to each wavelength of light. Since the modulation means 14a to 14d can operate simultaneously, the spectrums La to Ld can be modulated and transmitted in parallel based on the four types of signals, and the signal transfer capacity can be increased.
 図5は、受信機20の構成の概略を示す模式図である。受信機20は、複数の光学フィルタ21および複数の光検出手段22を備える。光学フィルタ21および光検出手段22は信号光La’~Ld’に対応して設けられる。たとえば、光学フィルタ21aは、信号光La’に対応する波長の光を透過させ、光検出手段22aは、信号光La’に対応する波長の光を検出する。 FIG. 5 is a schematic diagram showing an outline of the configuration of the receiver 20. The receiver 20 includes a plurality of optical filters 21 and a plurality of light detection means 22. The optical filter 21 and the light detection means 22 are provided corresponding to the signal lights La ′ to Ld ′. For example, the optical filter 21a transmits light having a wavelength corresponding to the signal light La ', and the light detection unit 22a detects light having a wavelength corresponding to the signal light La'.
 光検出手段22a~22dは、変調手段14の変調速度に対応できる動作速度を持つフォトトランジスタ、フォトダイオード、フォトIC、等によって構成することができる。たとえば、CCDカメラにおいて、受光素子ごと(または受光素子のグループごと)に異なる波長に対応する光学フィルタを設ければよい。なお、光学フィルタ21a~21dはそれぞれ光検出手段22a~22dと同一のチップ内に配置されてもよく、またチップ外に配置されてもよい。 The light detection means 22a to 22d can be configured by a phototransistor, a photodiode, a photo IC, or the like having an operation speed that can correspond to the modulation speed of the modulation means 14. For example, in a CCD camera, an optical filter corresponding to a different wavelength may be provided for each light receiving element (or each group of light receiving elements). The optical filters 21a to 21d may be arranged in the same chip as the light detection means 22a to 22d, or may be arranged outside the chip.
 このように、受信機20は、それぞれ異なる波長を有する信号光La’~Ld’を波長に基づいて分光し検出するので、信号光La’~Ld’が空間的に重なる場合であってもこれらを区別して受信することができる。すなわち、発信機10と受信機20との距離が大きく、受信機20の解像度(空間分解能)では各変調手段14を個別に認識できない場合であっても、信号光La’~Ld’をスペクトル上で分解し、これらを区別して受信することができる。 In this way, the receiver 20 separates and detects the signal lights La ′ to Ld ′ having different wavelengths based on the wavelengths, so that even if the signal lights La ′ to Ld ′ are spatially overlapped, they are detected. Can be received separately. That is, even when the distance between the transmitter 10 and the receiver 20 is large and the modulation means 14 cannot be individually recognized with the resolution (spatial resolution) of the receiver 20, the signal lights La ′ to Ld ′ are spectrally reflected. Can be received separately.
 以上説明するように、本実施形態に係る発信機10および受信機20によれば、モスアイ構造層142に生じる電界を用いて高速な変調を行うことができるので、データの転送速度を向上させることができる。また、複数の波長を用いて並列的に信号を変調し送信するので、データの転送容量を向上させることができる。したがって、転送速度および転送容量の向上により、可視光通信における全転送速度を向上させることができる。 As described above, according to the transmitter 10 and the receiver 20 according to the present embodiment, high-speed modulation can be performed using the electric field generated in the moth-eye structure layer 142, so that the data transfer rate is improved. Can do. In addition, since a signal is modulated and transmitted in parallel using a plurality of wavelengths, the data transfer capacity can be improved. Therefore, the total transfer rate in visible light communication can be improved by improving the transfer rate and transfer capacity.
 また、白色LED11を光源として用いるので、室内照明用の光源を情報転送用にも転用または兼用することができる。 Moreover, since the white LED 11 is used as a light source, the light source for indoor illumination can be diverted or shared for information transfer.
実施の形態2.
 実施の形態2は、実施の形態1において、信号光La’~Ld’のうち一部をダミーとするとともに、実信号に対応する信号光を時間とともに変更するものである。このような実施形態は、たとえば暗号通信において有用である。
Embodiment 2. FIG.
In the second embodiment, a part of the signal light La ′ to Ld ′ is a dummy in the first embodiment, and the signal light corresponding to the actual signal is changed with time. Such an embodiment is useful, for example, in cryptographic communications.
 図6は、実施の形態2に係る通信システムにおける信号の内容の変化を示す。
 期間1において、変調手段14aおよび14bは送信すべき実信号に基づいて変調を行い、変調手段14cおよび14dは実信号と関連のないダミー信号に基づいて変調を行う。すなわち、信号光La’およびLb’が実信号を表し、信号光Lc’およびLd’がダミー信号を表すことになる。図6では実信号を実線で表し、ダミー信号を破線で表している。
FIG. 6 shows changes in signal contents in the communication system according to the second embodiment.
In period 1, modulation means 14a and 14b perform modulation based on an actual signal to be transmitted, and modulation means 14c and 14d perform modulation based on a dummy signal not related to the actual signal. That is, the signal lights La ′ and Lb ′ represent actual signals, and the signal lights Lc ′ and Ld ′ represent dummy signals. In FIG. 6, real signals are represented by solid lines, and dummy signals are represented by broken lines.
 次に、時間が経過して期間1が終了したとする。期間が切り替わると(この例では期間2が開始されると)、実信号を用いる変調手段と、ダミー信号を用いる変調手段の一部または全部が入れ替わる。図6の期間2の例では、期間1とは異なり、信号光La’およびLd’が実信号を表し、信号光Lb’およびLc’がダミー信号を表すことになる。
 同様に、期間2が終了すると、続く期間3において、信号光Lb’およびLc’が実信号を表し、信号光La’およびLd’がダミー信号を表す。
Next, it is assumed that time 1 has elapsed and period 1 has ended. When the period is switched (in this example, period 2 is started), a part or all of the modulation means using the real signal and the modulation means using the dummy signal are switched. In the example of the period 2 in FIG. 6, unlike the period 1, the signal lights La ′ and Ld ′ represent actual signals, and the signal lights Lb ′ and Lc ′ represent dummy signals.
Similarly, when the period 2 ends, in the subsequent period 3, the signal lights Lb ′ and Lc ′ represent actual signals, and the signal lights La ′ and Ld ′ represent dummy signals.
 なお、図示しないが、実施の形態2においては、各波長のうちいずれが実信号を表し、いずれがダミー信号を表すかという情報は、受信側の機器(たとえば受信機または復調器)になんらかの方法で伝達され、またはあらかじめ記憶されている。したがって、受信側では各波長のうち実信号を表すもののみを選択し、これらを用いて元の信号を復元することができる。 Although not shown, in the second embodiment, information indicating which of the wavelengths represents a real signal and which of the wavelengths represents a dummy signal is obtained from the receiving device (for example, a receiver or a demodulator) by any method. Communicated or stored in advance. Therefore, on the receiving side, only those representing the actual signal among the wavelengths can be selected, and the original signal can be restored using these.
 このように、実施の形態2に係る通信システムによれば、実信号を表す信号光の周波数が時間とともに変動する。このため、信号光La’~Ld’が傍受または盗聴されたとしても、これらのうちいずれが実信号でいずれがダミー信号かについて秘匿されていれば、元の信号を復元するのは困難である。したがって、通信の秘匿性を高めることができる。なお、図6では変調手段は4個であるが、実際には上述のように400個の変調手段を設けることが可能であり、秘匿性の高い通信方式を実現することができる。 Thus, according to the communication system according to the second embodiment, the frequency of the signal light representing the actual signal varies with time. For this reason, even if the signal lights La ′ to Ld ′ are intercepted or eavesdropped, it is difficult to restore the original signal if any of them is concealed as to whether it is a real signal or which is a dummy signal. . Therefore, the confidentiality of communication can be improved. In FIG. 6, the number of modulation means is four, but 400 modulation means can actually be provided as described above, and a highly confidential communication method can be realized.
 上述の実施の形態2において、実信号とダミー信号との切り替え方式は、周知の暗号通信用プロトコルを用いて適宜設計することができる。実施の形態2では各期間において実信号に対応する変調手段は2個であるが、これは異なる数であってもよく、また、すべての変調手段が実信号を送信する期間があってもよく、すべての変調手段がダミー信号を送信する期間があってもよい。 In the second embodiment described above, the switching method between the real signal and the dummy signal can be appropriately designed using a well-known encryption communication protocol. In Embodiment 2, there are two modulation means corresponding to the actual signal in each period, but this may be a different number, or there may be a period in which all the modulation means transmit the actual signal. There may be a period in which all modulation means transmit dummy signals.
 また、上述の実施の形態1および2においては、モスアイ構造層142をAlNから形成したものを示したが、たとえば図7に示すように、n型GaN層142bとAlN層142aを交互に積層して形成してもよい。この場合、各AlN層142aに生じる電界が強くなるため、モスアイ構造層142の屈折率変化を大きくすることができる。尚、光の変調には、ポッケルス効果を利用してモスアイ構造層142の屈折率を変えることが好ましいが、ポッケルス効果より屈折率の変化量は小さいものの、カー効果を利用して屈折率を変えることもできる。 In the first and second embodiments, the moth-eye structure layer 142 is formed of AlN. For example, as shown in FIG. 7, n-type GaN layers 142b and AlN layers 142a are alternately stacked. May be formed. In this case, since the electric field generated in each AlN layer 142a becomes strong, the refractive index change of the moth-eye structure layer 142 can be increased. For the modulation of light, it is preferable to change the refractive index of the moth-eye structure layer 142 using the Pockels effect. However, although the amount of change in the refractive index is smaller than that of the Pockels effect, the refractive index is changed using the Kerr effect. You can also.
 また、実施の形態1および2では、図2に示すようにモスアイ構造層142の凸部144は入射側に凸となる向きであるが、これは逆向きに形成されてもよい。このような構成の例を図8に示す。図8の変調手段24は、第1電極層241と、構造体としてのモスアイ構造層242と、第2電極層243とを含む。これらの層は、分光L2が入射する側から信号光L2’が出射する側に向けて、第1電極層241、モスアイ構造層242、第2電極層243の順に積層されている。ここで、モスアイ構造層242の凸部244は、信号光L2’が出射する側に凸となる向きに形成される。また、変調手段24には信号入力用電源245が接続されている。 In Embodiments 1 and 2, as shown in FIG. 2, the convex portion 144 of the moth-eye structure layer 142 is convex toward the incident side, but this may be formed in the opposite direction. An example of such a configuration is shown in FIG. The modulation means 24 in FIG. 8 includes a first electrode layer 241, a moth-eye structure layer 242 as a structure, and a second electrode layer 243. These layers are laminated in the order of the first electrode layer 241, the moth-eye structure layer 242, and the second electrode layer 243 from the side on which the spectrum L2 is incident to the side on which the signal light L2 'is emitted. Here, the convex portion 244 of the moth-eye structure layer 242 is formed in a direction that is convex toward the side from which the signal light L2 'is emitted. Further, a signal input power source 245 is connected to the modulation means 24.
 また、実施の形態1および2では、モスアイ構造層142に周期的に凸部144が形成されたものを示したが、周期的に凹部を形成してもよい。また、たとえば、凸部又は凹部を角柱状とし、所定の周期で仮想の正方格子の交点に整列して形成してもよい。さらに、凸部又は凹部を三角錐状、四角錐状のような先端に向けて縮径する多角錐状としてもよく、具体的な細部構造等についても適宜に変更可能であることは勿論である。 In the first and second embodiments, the moth-eye structure layer 142 is periodically formed with the convex portions 144, but the concave portions may be periodically formed. Further, for example, the convex portion or the concave portion may be formed in a prismatic shape and aligned with intersections of a virtual square lattice at a predetermined period. Furthermore, the convex portion or the concave portion may be a polygonal pyramid shape that is reduced in diameter toward the tip, such as a triangular pyramid shape or a quadrangular pyramid shape, and it is needless to say that a specific detailed structure and the like can be appropriately changed. .
 また、実施の形態1および2では変調手段14a~14dがそれぞれ異なる情報に基づいて変調を行うが、複数の変調手段が同じ情報に基づいて変調を行ってもよい。この場合は送信される情報の冗長度を向上させ、伝送エラーを抑制することができる。 In Embodiments 1 and 2, the modulation means 14a to 14d perform modulation based on different information, but a plurality of modulation means may perform modulation based on the same information. In this case, the redundancy of transmitted information can be improved and transmission errors can be suppressed.
 また、実施の形態1および2では光源として白色LED11を用いたが、光源は複数の波長を含む光を放射するものであれば他の構成を用いてもよい。たとえば、分光可能な程度のスペクトル幅を持つ単色のLEDを用いてもよい。また、白熱電球や蛍光灯を用いてもよい。これらは室内照明用のものを光源として転用または兼用してもよい。 In the first and second embodiments, the white LED 11 is used as the light source, but other configurations may be used as long as the light source emits light including a plurality of wavelengths. For example, a monochromatic LED having a spectral width that can be dispersed may be used. An incandescent bulb or a fluorescent lamp may be used. These may be diverted or used as a light source for indoor lighting.
 また、実施の形態1および2では、モスアイ構造層142の凸部144に噛み合う媒質は空気であるが、これは空気でなくとも良く、他の媒質の層が設けられても良い。たとえば白色LEDを構成するLEDチップをエポキシ樹脂でドーム状に封止してもよい。この場合には、図3における入射側の媒質の屈折率n1はエポキシ樹脂の屈折率となる。 In the first and second embodiments, the medium that meshes with the convex portion 144 of the moth-eye structure layer 142 is air, but this may not be air, and a layer of another medium may be provided. For example, you may seal the LED chip which comprises white LED in a dome shape with an epoxy resin. In this case, the refractive index n1 of the incident side medium in FIG. 3 is the refractive index of the epoxy resin.

Claims (5)

  1.  複数の波長を含む光を、異なる波長を有する複数の光に分光する分光手段と、
     複数の変調手段と
    を備え、
     前記変調手段のそれぞれは、
      表面に凹部または凸部が周期的に形成された材料を含む構造体と、
      前記材料に変化する電界を生じさせ、当該材料の屈折率を変化させる電界調整部と
     を有し、
     前記変調手段のそれぞれは、前記屈折率の変化によって前記複数の光のうち1つを変調する
    変調器。
    A spectroscopic means for splitting light including a plurality of wavelengths into a plurality of lights having different wavelengths;
    A plurality of modulation means,
    Each of the modulation means includes
    A structure including a material in which concave portions or convex portions are periodically formed on the surface;
    An electric field adjusting unit that generates an electric field that changes in the material and changes a refractive index of the material, and
    Each of the modulation means modulates one of the plurality of lights by changing the refractive index.
  2.  前記複数の変調手段において、前記凹部または凸部が形成される周期はそれぞれ異なる、請求項1に記載の変調器。 The modulator according to claim 1, wherein in the plurality of modulation means, the period in which the concave portion or the convex portion is formed is different.
  3.  前記複数の変調手段のそれぞれにおいて、前記凹部または凸部が形成される周期は、その変調手段が変調する光の光学波長より大きく、その変調手段が変調する光のコヒーレント長より小さい、請求項1に記載の変調器。 The period in which the concave portion or the convex portion is formed in each of the plurality of modulation means is larger than an optical wavelength of light modulated by the modulation means and smaller than a coherent length of light modulated by the modulation means. Modulator.
  4.  複数の波長を含む前記光を放射する光源と、
     請求項1~3のいずれか一項に記載の変調器と
    を備える、発信機。
    A light source that emits the light comprising a plurality of wavelengths;
    A transmitter comprising the modulator according to any one of claims 1 to 3.
  5.  請求項4に記載の発信機と、
     前記複数の光を検出する光検出手段を有する受信機と
    を備える通信システム。
    A transmitter according to claim 4;
    A communication system comprising: a receiver having light detecting means for detecting the plurality of lights.
PCT/JP2011/072196 2010-12-24 2011-09-28 Modulator, transmitter and communication system WO2012086283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-288391 2010-12-24
JP2010288391A JP2012137541A (en) 2010-12-24 2010-12-24 Modulator, transmitter, and communication system

Publications (1)

Publication Number Publication Date
WO2012086283A1 true WO2012086283A1 (en) 2012-06-28

Family

ID=46313567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072196 WO2012086283A1 (en) 2010-12-24 2011-09-28 Modulator, transmitter and communication system

Country Status (2)

Country Link
JP (1) JP2012137541A (en)
WO (1) WO2012086283A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110334089A (en) * 2019-04-10 2019-10-15 中山大学 Logical shine of class spectrum of sunlight shares LED module matching process

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5809617B2 (en) * 2012-12-26 2015-11-11 富士通テレコムネットワークス株式会社 Transmission system and transmission apparatus
KR101876949B1 (en) * 2015-07-10 2018-07-11 한양대학교 에리카산학협력단 Optical module, optical transceiver and communication system including the same
WO2017010743A1 (en) * 2015-07-10 2017-01-19 한양대학교 에리카산학협력단 Optical transmission module, optical transceiver, and optical communication system including same
KR101848804B1 (en) * 2015-07-10 2018-04-16 한양대학교 에리카산학협력단 Optical module, optical transceiver and communication system including the same
JP6674207B2 (en) * 2015-08-06 2020-04-01 ダイトロン株式会社 Spatial optical transmission equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429432A (en) * 1990-05-23 1992-01-31 Matsushita Electric Ind Co Ltd Optical wavelength multiplex transmission system
JP2003273835A (en) * 2002-03-15 2003-09-26 Matsushita Electric Ind Co Ltd Wavelength multiplex optical transmitter
JP2007156254A (en) * 2005-12-07 2007-06-21 Ricoh Co Ltd Optical switching element, optical switching device, multiple-wavelength optical switching element, multiple-wavelength optical switching device, color light optical switching element, color light optical switching device, optical switching element array, multiple-wavelength optical switching element array, color light optical switching element array, image display device, multiple-color image display device and color image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429432A (en) * 1990-05-23 1992-01-31 Matsushita Electric Ind Co Ltd Optical wavelength multiplex transmission system
JP2003273835A (en) * 2002-03-15 2003-09-26 Matsushita Electric Ind Co Ltd Wavelength multiplex optical transmitter
JP2007156254A (en) * 2005-12-07 2007-06-21 Ricoh Co Ltd Optical switching element, optical switching device, multiple-wavelength optical switching element, multiple-wavelength optical switching device, color light optical switching element, color light optical switching device, optical switching element array, multiple-wavelength optical switching element array, color light optical switching element array, image display device, multiple-color image display device and color image display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KENSO UMEKI ET AL.: "A Study on Color Division Multiplexing System Using a White LED Comprised of the Three Primary Color Chips", PROCEEDINGS OF THE IEICE CONFERENCE, 2008, pages 331 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110334089A (en) * 2019-04-10 2019-10-15 中山大学 Logical shine of class spectrum of sunlight shares LED module matching process

Also Published As

Publication number Publication date
JP2012137541A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
WO2012086283A1 (en) Modulator, transmitter and communication system
EP3291003B1 (en) Multicolor illumination device using moving plate with wavelength conversion materials
CN104360425B (en) Optical film layer, light emitting device and display device
JP5730526B2 (en) Light switch
JP5710499B2 (en) Optical engine for point-to-point communication
RU2015155296A (en) LAMP AND LIGHTING INSTRUMENT WITH REDUCABLE COLOR TRANSFER INDEX
WO2008059787A1 (en) Liquid crystal optical modulation element, liquid crystal optical modulation device and method for driving liquid crystal optical modulation element
KR20080041371A (en) Portable wireless terminal for visible light communication
ATE328546T1 (en) LIGHT CURING DEVICE WITH SELECTED SPECTRUM
JP2009105106A5 (en)
KR20120130937A (en) Light modulator with photonic crystal and 3D image acquisition apparatus employing the same
CN102854731A (en) Lighting device and projection system thereof
WO2017113094A1 (en) Radar system based on array waveguide grating router
JP2006330523A (en) Frequency comb light generator and multiwavelength light source for high density wavelength multiplex transmission
CN113994244A (en) Multi-level Bragg grating in multiplexing applications
JP2008004633A (en) Optical module and packaging method
TWI514793B (en) Optical transmitter with multi-channel and method of transmitting light
CN105204278A (en) Light source system and projection device using light source system
JP5632655B2 (en) Refractive index modulation structure and LED element
JP2009180836A (en) Optical signal processor and control method of the optical signal processor
JP5008209B2 (en) Light emitting device
TWI695197B (en) Bidirectional optical wireless transmission system
JP5428714B2 (en) Optical communication device and optical transmitter
JP2010287323A (en) Programmable light source device
KR20190040442A (en) Quantum dot light modulator and apparatus including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850427

Country of ref document: EP

Kind code of ref document: A1