WO2012085395A2 - Molybdenum-based conductive substrate - Google Patents

Molybdenum-based conductive substrate Download PDF

Info

Publication number
WO2012085395A2
WO2012085395A2 PCT/FR2011/052980 FR2011052980W WO2012085395A2 WO 2012085395 A2 WO2012085395 A2 WO 2012085395A2 FR 2011052980 W FR2011052980 W FR 2011052980W WO 2012085395 A2 WO2012085395 A2 WO 2012085395A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
molybdenum
substrate
conductive substrate
electrode coating
Prior art date
Application number
PCT/FR2011/052980
Other languages
French (fr)
Other versions
WO2012085395A3 (en
Inventor
Charles Leyder
Mathieu Urien
Nicolas BARREAU
Pascale BOMMERSBACH
Original Assignee
Saint-Gobain Glass France
Centre National De La Recherche Scientifique
Universite De Nantes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France, Centre National De La Recherche Scientifique, Universite De Nantes filed Critical Saint-Gobain Glass France
Publication of WO2012085395A2 publication Critical patent/WO2012085395A2/en
Publication of WO2012085395A3 publication Critical patent/WO2012085395A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of photovoltaic cells based on Cu (ln, Ga) Se2 (CIS or CIGS) deposited by coevaporation bitherme.
  • US-B-5,436,204 discloses a photovoltaic cell of this type.
  • Cu (ln, Ga) Se2 layers of photovoltaic cells are usually produced by isothermal coevaporation.
  • the invention is more particularly concerned with providing a high-performance conductive substrate on which to form the layer of Cu (ln, Ga) Se2 produced by bitherme coevaporation.
  • US-B-5,626,688, WO-A-02/065554 and WO-A-09/080931 disclose conductive substrates (dielectric substrates on which electrode coatings are deposited) suitable for Cu (ln, Ga) Se2 and more generally to chalcopyrite-based layers.
  • An object of the invention is to provide a conductive substrate improving the performance of a photovoltaic cell based on Cu (ln, Ga) Se2 deposited by coevaporation bitherme.
  • the subject of the invention is a conductive substrate comprising:
  • the electrode coating formed on the dielectric substrate, the electrode coating comprising a layer of molybdenum
  • the molybdenum layer has an average surface porosity of less than or equal to 10%, preferably less than or equal to 8%.
  • the porosity of conductive substrates is described by its apparent average surface porosity ("average” refers to "porosity”), which will be chosen as the reference parameter.
  • the conductive substrate and the semiconductor device according to the invention make it possible to obtain very good performances for these chalcopyrite-type layers formed by bitherme coevaporation.
  • the conductive substrate is adapted to the deposition conditions of such layers, in particular because of its good heat resistance and its good resistance to selenization.
  • the conductive substrate also has a very good electrical conductivity and has the particularity of forming, in the presence of selenium, a layer of molybdenum diselenide (MoSe 2 ) which promotes the ohmic contact between the molybdenum electrode and the Cu (In) layer. Ga) Se2.
  • MoSe 2 molybdenum diselenide
  • the conductive substrate also allows the migration of alkaline ions from the dielectric substrate to the Cu (In, Ga) Se 2 layer as it is formed.
  • alkaline ions especially Na + , improves the performance of the photovoltaic cells.
  • a low surface porosity of the molybdenum layer makes it possible to increase the performance of the cell, as shown by the results below.
  • the conductive substrate according to the invention further comprises one or more of the following technical characteristics, taken separately or according to all the possible technical combinations:
  • the electrode coating comprises only one electroconductive layer
  • the molybdenum layer is in contact with the dielectric substrate
  • the dielectric substrate contains at least 5% by weight of alkali, the dielectric substrate being, for example, made of soda-lime-silica glass.
  • the invention also relates to a semiconductor device comprising a conductive substrate and a Cu (In, Ga) Se 2 (CIS, CGS or CIGS) layer formed on the conductive substrate, wherein said conductive substrate is as described above.
  • a semiconductor device comprising a conductive substrate and a Cu (In, Ga) Se 2 (CIS, CGS or CIGS) layer formed on the conductive substrate, wherein said conductive substrate is as described above.
  • the device according to the invention further comprises one or more of the following technical characteristics, taken separately or according to all the possible technical combinations:
  • the Cu (In, Ga) Se 2 layer is in contact with the molybdenum layer;
  • the device further comprises an additional electrode coating formed on the layer of Cu (In, Ga) Se2; the layer of Cu (In, Ga) Se2 is a layer of CIGS.
  • the invention also relates to a photovoltaic cell comprising a semiconductor device as described above and a photovoltaic module comprising a plurality of photovoltaic cells of the kind formed on the same substrate.
  • the invention also relates to a method of manufacturing a semiconductor device, comprising the steps of:
  • the molybdenum layer has an average surface porosity of less than or equal to 10%, preferably less than or equal to 8%, and in that the Cu (In, Ga) Se2 layer is formed by a bithermal coevaporation method .
  • the manufacturing method according to the invention also has one or more of the following technical characteristics, taken (s) separately or according to all the possible technical combinations:
  • the molybdenum layer is deposited directly on the dielectric substrate
  • the layer of Cu (In, Ga) Se2 is formed directly on the molybdenum layer;
  • the electrode coating comprises only one electroconductive layer
  • the dielectric substrate contains at least 5% by weight of alkali, the dielectric substrate being, for example, made of soda-lime-silica glass.
  • the device further comprises an additional electrode coating formed on the layer of Cu (In, Ga) Se2;
  • the layer of Cu (In, Ga) Se2 is a layer of CIGS.
  • the invention also relates to a method of manufacturing a photovoltaic cell including a semiconductor device manufactured according to the above method, the method preferably comprising an additional step of laminating the substrate with a counter-substrate protecting the layers. of semiconductor device, via a thermosetting plastic film.
  • FIGS. 1 and 1a are respectively a scanning electron microscopy image in section of a photovoltaic cell according to the invention and a schematic view corresponding thereto;
  • FIG. 2 is a graph illustrating the relationship between the apparent average surface porosity of a moltenbdenum layer deposited by DC magnetron sputtering and the deposition pressure, for a power of 3 kW;
  • FIG. 2bis is a graph illustrating the sodium density of the Cu (In, Ga) Se 2 layer formed on various conductive substrates, the molybdenum layers of which have different average apparent surface porosities, obtained by SIMS;
  • FIGS. 3 to 6 are graphs illustrating, on the basis of five samples, the relationship between the apparent average surface porosity of the molybdenum layer, at a power of 3 kW, and the performance of the Cu-based cell. (ln, Ga) Se2 deposited by coevaporation bitherme.
  • the illustrated cell 1 comprises:
  • a n-type layer 8 called said buffer for example composed of CdS, formed on the Cu (ln, Ga) Se2 layer;
  • a transparent electrode coating 10 with optional interposition between the transparent electrode coating and the buffer layer of a passivating layer 12, for example ZnO.
  • the cell 1 does not comprise a buffer layer, the Cu (ln, Ga) Se2 layer itself being able to form a pn homojunction.
  • the notation (In, Ga) indicates that it is a combination of lni -x Ga x with 0 ⁇ x ⁇ 1.
  • a layer A formed (or deposited) on a layer B a layer A formed either directly on the layer B and therefore in contact with the layer B, or formed on the layer B with interposition of one or more layers between layer A and layer B.
  • electrode coating means a coating comprising at least one electronically conductive layer, that is to say the electrical conductivity of which is ensured by the mobility of the electrons.
  • the conductive substrate 2, 4 on which the Cu (ln, Ga) Se 2 layer is formed is particularly efficient in the case of a Cu (ln, Ga) Se2-based photovoltaic cell formed by bitherme coevaporation and will be described more in detail below.
  • the first electrode coating 4, or "back contact” comprises a molybdenum layer whose average surface porosity is less than or equal to 10%, preferably less than or equal to 8%.
  • the first electrode coating 4 as illustrated comprises only a single electroconductive layer, namely the molybdenum layer.
  • the molybdenum layer has a thickness for example of between 200 nm and 500 nm, for example between 250 nm and 450 nm.
  • the molybdenum layer is reflective.
  • a single layer means a layer of the same material. This single layer can nevertheless be obtained by the superposition of several layers of the same material, between which there is an interface that can be characterized, as described in WO-A-2009/080931.
  • the electrode coating is formed of several electroconductive layers. It is in this case formed of a layer of molybdenum (Mo) and one or more sub-layers between the dielectric substrate 2 and the molybdenum layer. It is for example a layer of a metal other than Mo such as Cu (copper), with possible interposition of a nitride layer of a metal other than Mo such as TiN (titanium nitride) . In this case, the molybdenum layer has for example a thickness between 10 nm and 50 nm.
  • Mo molybdenum
  • the electrode coating 4 comprises a molybdenum layer whose average surface porosity is less than or equal to 10%, preferably less than or equal to 8%.
  • the electrode coating 4 is in contact with the dielectric substrate 2.
  • the alkaline ions can thus migrate easily from the dielectric substrate 2 and through the electrode coating 4, to the upper layers, that is to say up to the layer 6 of Cu (In, Ga) Se2.
  • the molybdenum layer is then in contact with the dielectric substrate 2.
  • the layer 6 of Cu (In, Ga) Se2 is formed directly on the molybdenum layer and therefore in contact therewith.
  • the dielectric substrate 2 is for example a sheet with a glass function, for example transparent. This is for example a glass sheet, for example made in a silico-soda-lime glass.
  • the sheet may have any type of size, especially at least one dimension greater than 1 meter.
  • Silica-soda-lime glass is understood to mean a glass whose composition comprises silica (SiO 2) as forming oxide and oxides of sodium (sodium Na 2 O) and of calcium (lime CaO). This composition preferably comprises the following constituents in a content varying within the weight limits defined below:
  • BaO 0 - 5% preferably 0.
  • the glass has for example the following mass composition:
  • the substrate is a dielectric sheet containing alkalis, especially a substrate having a mass composition with at least 5% alkali.
  • the substrate has for example a content less than or equal to 30% by weight of alkali, for example less than or equal to 20% by weight of alkali.
  • the substrate is intended to be at the rear of the photoactive layer with respect to the light source, that is to say to receive the incident light after the photoactive layer. It is thus a conductive substrate called "back”.
  • the p-type layer 6 of Cu (In, Ga) Se2 will now be described.
  • the layer 6 of Cu (In, Ga) Se2 is formed by bitherme coevaporation. This process is for example described in US-B-5,436,204.
  • a bithermal coevaporation method comprises steps of:
  • an isothermal coevaporation process for which the molybdenum-based conducting substrates 2, 4 are intended in the prior art, comprises successive steps consisting of:
  • the conductive substrate 2, 4 is therefore maintained at a single constant temperature, unlike the bitherme coevaporation method in which the conductive substrate 2, 4 is maintained at two different constant temperatures (intermediate temperature and recrystallization temperature ).
  • the invention thus also relates to a method of manufacturing a semiconductor device, comprising the steps of: depositing a layer of molybdenum on a dielectric substrate 2 containing alkalis to form an electrode coating 4;
  • the electroconductive molybdenum layer has an average surface porosity of less than or equal to 10%, preferably less than or equal to 8%, and the CIGS layer is formed by the bithermal coevaporation method described above.
  • the above-mentioned CdS buffer layer is obtained, for example, by immersion of the conductive substrate 2, 4 covered with Cu (In, Ga) Se 2 in a solution at 60 ° C. formed of an ammonia solution containing sodium salts. cadmium and thiocarbamide (or thiourea) ((NH 2 ) 2 CS)
  • the cadmium salts first react with the ammonia to form a cadmium hydroxide CdOH 2 , and then the sulfur brought by the thiocarbamide is substituted for the oxygen of CdOH 2 leading to the formation of CdS.
  • the optional passivation layer is for example formed by the magnetron sputtering deposition of a ZnO layer, for example of the order of 100 nm, on the CdS layer.
  • the transparent electrode coating 10 is for example a ZnO: Al layer (for example an atomic percentage of 3% Al), deposited on the passivation layer.
  • a ZnO: Al layer for example an atomic percentage of 3% Al
  • it is deposited by reactive DC magnetron sputtering under a 2 bar atmosphere in the presence of an argon-oxygen mixture (20% oxygen, 80% argon).
  • a metal grid is then optionally deposited on the transparent electrode coating 4, for example through a mask, for example by electron beam. It is for example a grid of Al (aluminum) for example of about 2 ⁇ thick on which is deposited a grid of Ni (nickel) for example of about 50nm thick to protect the Al layer. .
  • Cell 1 is then protected. It comprises for example for this purpose a counter-substrate covering the front electrode coating 10 and laminated to the substrate 2 via a lamination interlayer of thermosetting plastic material. This is for example a lamination interlayer EVA, PU or PVB.
  • DC magnetron sputtering power and pressure influence the apparent surface porosity of the deposited molybdenum layer.
  • the spraying rate is directly proportional to the power
  • the mobility of the atoms on the substrate increases because of the increase in the flow of the atoms and the flow of gas coming to be reflected on the substrate.
  • the pressure determines the average free path of Mo atoms from the target to the substrate.
  • the mean free path corresponds to the length between two successive collisions of Mo atoms with the gas atoms. It is proportional to the inverse of the pressure p (generally between 1 and 20 Bar). Thus, the average number N of Mo atom collisions with the gas atoms between the target and the substrate is proportional to d.p where d is the substrate - target distance.
  • the kinetic energy of the atoms arriving on the substrate decreases exponentially with the product d.p.
  • the product d.p is therefore a relevant criterion for comparing the deposition conditions and predicting the apparent surface porosity of the molybdenum layer.
  • the apparent surface porosity of the deposited layer therefore depends on the deposition pressure.
  • an increase in the deposition power is equivalent to a rise in substrate temperature during deposition.
  • FIG. 2 illustrates the apparent surface porosity results obtained for various thin layers of molybdenum (Mo) deposited on respective 3 mm thick silico-soda-lime glass substrates (SGG PLANILUX) in a magnetron sputtering deposition machine.
  • DC at a power of 3 kW at five different deposition pressures (0.75 mTorr, 1.5 mTorr, 4.5 mTorr, 7.5 mTorr and 1 l, 25 mTorr).
  • SGG PLANILUX glass The mass composition of SGG PLANILUX glass is as follows:
  • Each layer of molybdenum has a thickness of 335 nm.
  • the apparent surface porosity of the films was evaluated by the treatment of surface SEM images.
  • the images were previously binarized to produce two classes of pixels, white pixels and black pixels. Black pixels are considered as pores.
  • the reference parameter for surface apparent porosity is the density of black pixels in binarized SEM images. This is a JEOL type 7600 SEM, the apparent surface porosity is the ratio of the number of black pixels to the total number of pixels.
  • the images used have a magnification of 60,000, they have a format of 1280 x 1024 pixels, and represent a length of 1997 nm, or 1, 56 nm / pixel.
  • the images were processed by Quantinet Q550 Leica software.
  • the evolution of the apparent average surface porosity is represented in ordinates in percent, as a function of the deposition pressure in mTorr.
  • the target-substrate distance was 5cm.
  • CIGS layers were then deposited by bitherme coevaporation on different conductive substrates 2, 4 of FIG. 2 with apparent surface porosities of 6%, 15% and 17%, respectively.
  • the CIGSe layer was synthesized according to a three-step process:
  • the elements In, Ga and Se are coevaporated on a substrate whose temperature is measured at 400 ° C. (heating face). This step lasts until the thin layer of (ln, Ga) 2Se3 thus obtained has a thickness of 1 ⁇ .
  • the substrate is heated to 620 ° C.
  • the elements Cu and Se are provided on the substrate until the composition of the thin film in growth corresponds to [Cu] / [ln + Ga]> 1.
  • the elements In, Ga and Se are provided on the substrate until the composition of the thin film in growth corresponds to [Cu] / [ln + Ga] ⁇ 1.
  • the CIGSe layer has a standard elemental composition Cu (22%), Ga (8%), In (20%) and Se (50%).
  • the grain size is on average of the order of 1 ⁇ .
  • a thin layer of CdS (thickness 50 nm) is then deposited on the glass / Mo / Cl GSe structure by chemical bath, in order to make the pn junction.
  • a bilayer ZnO (50 nm) / ZnO: Al (200 nm) is then deposited on the CdS layer at room temperature.
  • FIG. 2bis shows the sodium content of the ZnO layer and the CIGSe layer for conductive substrates whose molybdenum layers have respective surface porosities of 6%, 15% and 17% respectively. %.
  • CIGS increases with apparent surface porosity of the molybdenum layer.
  • the CIGSe layers were obtained under the same conditions as described above for FIG.
  • FIGS. 3 to 6 which respectively represent, on the ordinate, the following values, as a function of the deposition pressure of the Mo layer (on the abscissa):
  • the values reported are an average of twelve cells.
  • the energy conversion efficiency Eff has a maximum for an apparent surface porosity of the molybdenum layer of 6% and then decreases continuously for apparent surface porosities.
  • Voc open circuit voltage does not appear to be influenced by porosity apparent surface of the molybdenum layer.
  • the shape factor FF and the short-circuit current Jsc follow the same evolution as the efficiency Eff and have a maximum for an apparent surface porosity of 6% and then decrease continuously for apparent surface porosities.
  • the modeling of the intensity-voltage curve of the photovoltaic cells produced shows that the drop in performance for high apparent surface porosities is mainly due to a decrease in the parallel resistance of the equivalent circuit.
  • the conductive substrate and the semiconductor device according to the invention therefore make it possible to obtain very good performances for these chalcopyrite-type layers formed by bitherme coevaporation.
  • the molybdenum layer has been found to have sufficient mechanical stability, including the "Scotch test” (ISO2409).

Abstract

The invention relates to a conductive substrate (2, 4) for a photovoltaic cell comprising a dielectric substrate (2) containing alkali metals and an electrode coating (4) formed on the dielectric substrate (2). The electrode coating (4) comprising a molybdenum layer. The molybdenum layer has an average apparent surface porosity of 10% or less, preferably of 8% or less.

Description

SUBSTRAT CONDUCTEUR A BASE DE MOLYBDENE  CONDUCTIVE SUBSTRATE BASED ON MOLYBDENE
La présente invention concerne le domaine des cellules photovoltaïques à base de Cu(ln,Ga)Se2 (CIS ou CIGS) déposé par coévaporation bitherme. The present invention relates to the field of photovoltaic cells based on Cu (ln, Ga) Se2 (CIS or CIGS) deposited by coevaporation bitherme.
US-B-5 436 204 décrit une cellule photovoltaïque de ce type.  US-B-5,436,204 discloses a photovoltaic cell of this type.
Les couches de Cu(ln,Ga)Se2 des cellules photovoltaïques sont généralement produites par coévaporation isotherme.  Cu (ln, Ga) Se2 layers of photovoltaic cells are usually produced by isothermal coevaporation.
Les travaux effectués ces dernières années ont néanmoins montré que les couches de Cu(ln,Ga)Se2 produites par coévaporation bitherme permettent d'améliorer le rendement de la cellule.  The work done in recent years, however, has shown that the Cu (ln, Ga) Se2 layers produced by bitherme coevaporation improve the efficiency of the cell.
L'invention s'intéresse plus particulièrement à fournir un substrat conducteur performant sur lequel former la couche de Cu(ln,Ga)Se2 produite par coévaporation bitherme.  The invention is more particularly concerned with providing a high-performance conductive substrate on which to form the layer of Cu (ln, Ga) Se2 produced by bitherme coevaporation.
US-B-5 626 688, WO-A-02/065554 et WO-A-09/080931 décrivent des substrats conducteurs (substrats diélectriques sur lesquels sont déposés des revêtements électrodes) adaptés aux couches Cu(ln,Ga)Se2 et plus généralement aux couches à base de chalcopyrite.  US-B-5,626,688, WO-A-02/065554 and WO-A-09/080931 disclose conductive substrates (dielectric substrates on which electrode coatings are deposited) suitable for Cu (ln, Ga) Se2 and more generally to chalcopyrite-based layers.
Un but de l'invention est de fournir un substrat conducteur améliorant les performances d'une cellule photovoltaïque à base de Cu(ln,Ga)Se2 déposé par coévaporation bitherme.  An object of the invention is to provide a conductive substrate improving the performance of a photovoltaic cell based on Cu (ln, Ga) Se2 deposited by coevaporation bitherme.
A cet effet, l'invention a pour objet un substrat conducteur comprenant :  For this purpose, the subject of the invention is a conductive substrate comprising:
- un substrat diélectrique contenant des alcalins ;  a dielectric substrate containing alkalis;
- un revêtement électrode formé sur le substrat diélectrique, le revêtement électrode comprenant une couche de molybdène,  an electrode coating formed on the dielectric substrate, the electrode coating comprising a layer of molybdenum,
dans lequel la couche de molybdène a une porosité apparente de surface moyenne inférieure ou égale à 10%, de préférence inférieure ou égale à 8%. wherein the molybdenum layer has an average surface porosity of less than or equal to 10%, preferably less than or equal to 8%.
Dans la présente invention, la porosité des substrats conducteurs est décrite par sa porosité apparente de surface moyenne (« moyenne » se rapporte à « porosité »), qui sera choisie comme le paramètre de référence.  In the present invention, the porosity of conductive substrates is described by its apparent average surface porosity ("average" refers to "porosity"), which will be chosen as the reference parameter.
Le substrat conducteur et le dispositif semi-conducteur selon l'invention permettent d'obtenir de très bonnes performances pour ces couches de type chalcopyrite formées par coévaporation bitherme. Le substrat conducteur est adapté aux conditions de dépôt de telles couches, notamment grâce à sa bonne résistance thermique et à sa bonne résistance à la sélénisation. The conductive substrate and the semiconductor device according to the invention make it possible to obtain very good performances for these chalcopyrite-type layers formed by bitherme coevaporation. The conductive substrate is adapted to the deposition conditions of such layers, in particular because of its good heat resistance and its good resistance to selenization.
Le substrat conducteur présente en outre une très bonne conductivité électrique et a la particularité de former en présence de sélénium une couche de diséléniure de molybdène (MoSe2) qui favorise le contact ohmique entre l'électrode de molybdène et la couche de Cu(ln,Ga)Se2. The conductive substrate also has a very good electrical conductivity and has the particularity of forming, in the presence of selenium, a layer of molybdenum diselenide (MoSe 2 ) which promotes the ohmic contact between the molybdenum electrode and the Cu (In) layer. Ga) Se2.
Le substrat conducteur permet également la migration des ions alcalins depuis le substrat diélectrique vers la couche de Cu(ln,Ga)Se2 lors de sa formation. La présence de ces ions alcalins, notamment de Na+, améliore les performances des cellules photovoltaïques. The conductive substrate also allows the migration of alkaline ions from the dielectric substrate to the Cu (In, Ga) Se 2 layer as it is formed. The presence of these alkaline ions, especially Na + , improves the performance of the photovoltaic cells.
Une faible porosité apparente de surface de la couche de molybdène permet d'augmenter les performances de la cellule, comme le montrent les résultats ci-dessous.  A low surface porosity of the molybdenum layer makes it possible to increase the performance of the cell, as shown by the results below.
Suivant des modes particuliers de réalisation, le substrat conducteur selon l'invention comporte en outre l'une ou plusieurs des caractéristiques techniques ci-dessous, prise(s) isolément ou suivant toutes les combinaisons techniques possibles :  According to particular embodiments, the conductive substrate according to the invention further comprises one or more of the following technical characteristics, taken separately or according to all the possible technical combinations:
- le revêtement électrode ne comprend qu'une seule couche électroconductrice ;  the electrode coating comprises only one electroconductive layer;
- la couche de molybdène est au contact du substrat diélectrique ;  the molybdenum layer is in contact with the dielectric substrate;
- le substrat diélectrique contient au moins 5% en poids d'alcalins, le substrat diélectrique étant par exemple en verre silico-sodo-calcique.  the dielectric substrate contains at least 5% by weight of alkali, the dielectric substrate being, for example, made of soda-lime-silica glass.
L'invention a également pour objet un dispositif semi-conducteur comprenant un substrat conducteur et une couche de Cu(ln,Ga)Se2 (CIS, CGS ou CIGS) formée sur le substrat conducteur, dans lequel ledit substrat conducteur est tel que décrit ci-dessus. The invention also relates to a semiconductor device comprising a conductive substrate and a Cu (In, Ga) Se 2 (CIS, CGS or CIGS) layer formed on the conductive substrate, wherein said conductive substrate is as described above.
Suivant des modes particuliers de réalisation, le dispositif selon l'invention comporte en outre l'une ou plusieurs des caractéristiques techniques ci- dessous, prise(s) isolément ou suivant toutes les combinaisons techniques possibles :  According to particular embodiments, the device according to the invention further comprises one or more of the following technical characteristics, taken separately or according to all the possible technical combinations:
- la couche de Cu(ln,Ga)Se2 est au contact de la couche de molybdène ;the Cu (In, Ga) Se 2 layer is in contact with the molybdenum layer;
- le dispositif comprend en outre un revêtement électrode supplémentaire formé sur la couche de Cu(ln,Ga)Se2 ; - la couche de Cu(ln,Ga)Se2 est une couche de CIGS. the device further comprises an additional electrode coating formed on the layer of Cu (In, Ga) Se2; the layer of Cu (In, Ga) Se2 is a layer of CIGS.
L'invention a encore pour objet une cellule photovoltaïque comprenant un dispositif semiconducteur tel que décrit ci-dessus et un module photovoltaïque comprenant une pluralité de cellules photovoltaïques de la sorte formées sur un même substrat.  The invention also relates to a photovoltaic cell comprising a semiconductor device as described above and a photovoltaic module comprising a plurality of photovoltaic cells of the kind formed on the same substrate.
L'invention a également pour objet un procédé de fabrication d'un dispositif semi-conducteur, comprenant des étapes consistant à :  The invention also relates to a method of manufacturing a semiconductor device, comprising the steps of:
- déposer une couche de molybdène sur un substrat diélectrique contenant des alcalins pour former un revêtement électrode ; depositing a layer of molybdenum on a dielectric substrate containing alkali to form an electrode coating;
- former une couche de Cu(ln,Ga)Se2 sur la couche de molybdène, forming a layer of Cu (In, Ga) Se2 on the molybdenum layer,
dans lequel la couche de molybdène a une porosité apparente de surface moyenne inférieure ou égale à 10%, de préférence inférieure ou égale à 8% et en ce que la couche de Cu(ln,Ga)Se2 est formée par un procédé de coévaporation bitherme. wherein the molybdenum layer has an average surface porosity of less than or equal to 10%, preferably less than or equal to 8%, and in that the Cu (In, Ga) Se2 layer is formed by a bithermal coevaporation method .
Suivant des modes particuliers de réalisation, le procédé de fabrication selon l'invention présente en outre l'une ou plusieurs des caractéristiques techniques ci-dessous, prise(s) isolément ou suivant toutes les combinaisons techniques possibles :  According to particular embodiments, the manufacturing method according to the invention also has one or more of the following technical characteristics, taken (s) separately or according to all the possible technical combinations:
- la couche de molybdène est déposée directement sur le substrat diélectrique ;  the molybdenum layer is deposited directly on the dielectric substrate;
- la couche de Cu(ln,Ga)Se2 est formée directement sur la couche de molybdène ;  the layer of Cu (In, Ga) Se2 is formed directly on the molybdenum layer;
- le revêtement électrode ne comprend qu'une seule couche électroconductrice ;  the electrode coating comprises only one electroconductive layer;
- le substrat diélectrique contient au moins 5% en poids d'alcalins, le substrat diélectrique étant par exemple en verre silico-sodo-calcique.  the dielectric substrate contains at least 5% by weight of alkali, the dielectric substrate being, for example, made of soda-lime-silica glass.
- le dispositif comprend en outre un revêtement électrode supplémentaire formé sur la couche de Cu(ln,Ga)Se2 ;  the device further comprises an additional electrode coating formed on the layer of Cu (In, Ga) Se2;
- la couche de Cu(ln,Ga)Se2 est une couche de CIGS.  the layer of Cu (In, Ga) Se2 is a layer of CIGS.
L'invention a également pour objet un procédé de fabrication d'une cellule photovoltaïque incluant un dispositif semi-conducteur fabriqué selon le procédé ci-dessus, le procédé comprenant de préférence une étape supplémentaire de feuilletage du substrat avec un contre-substrat protégeant les couches du dispositif semi-conducteur, par l'intermédiaire d'un film en matière plastique thermodurcissable. The invention also relates to a method of manufacturing a photovoltaic cell including a semiconductor device manufactured according to the above method, the method preferably comprising an additional step of laminating the substrate with a counter-substrate protecting the layers. of semiconductor device, via a thermosetting plastic film.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en référence aux dessins annexés, sur lesquels :  The invention will be better understood on reading the description which follows, given solely by way of example, and with reference to the appended drawings, in which:
- les figures 1 et 1 bis sont respectivement une image de microscopie électronique à balayage en coupe d'une cellule photovoltaïque selon l'invention et une vue schématique correspondant à celle-ci ;  FIGS. 1 and 1a are respectively a scanning electron microscopy image in section of a photovoltaic cell according to the invention and a schematic view corresponding thereto;
- la figure 2 est un graphe illustrant la relation entre la porosité apparente de surface moyenne d'une couche de molybdène déposée par pulvérisation magnétron DC et la pression de dépôt, pour une puissance de 3 kW;  FIG. 2 is a graph illustrating the relationship between the apparent average surface porosity of a moltenbdenum layer deposited by DC magnetron sputtering and the deposition pressure, for a power of 3 kW;
- la figure 2bis est un graphe illustrant la densité en sodium de la couche de Cu(ln,Ga)Se2 formée sur différents substrats conducteurs dont les couches de molybdène ont des porosités apparentes de surface moyennes différentes, obtenues par SIMS ;  FIG. 2bis is a graph illustrating the sodium density of the Cu (In, Ga) Se 2 layer formed on various conductive substrates, the molybdenum layers of which have different average apparent surface porosities, obtained by SIMS;
- les figures 3 à 6 sont des graphes illustrant, sur la base de cinq échantillons, la relation entre la porosité apparente de surface moyenne de la couche de molybdène, à une puissance de 3 kW, et les performances de la cellule à base de Cu(ln,Ga)Se2 déposé par coévaporation bitherme.  FIGS. 3 to 6 are graphs illustrating, on the basis of five samples, the relationship between the apparent average surface porosity of the molybdenum layer, at a power of 3 kW, and the performance of the Cu-based cell. (ln, Ga) Se2 deposited by coevaporation bitherme.
La cellule 1 illustrée comprend :  The illustrated cell 1 comprises:
- un substrat 2 en verre silico-sodo-calcique ;  a substrate 2 made of silico-soda-lime glass;
- un premier revêtement électrode 4 formé sur le substrat 2, dit revêtement de contact arrière ;  a first electrode coating 4 formed on the substrate 2, called the rear contact coating;
- une couche 6 de type p de Cu(ln,Ga)Se2 formée sur le premier revêtement électrode;  a p-type layer 6 of Cu (In, Ga) Se2 formed on the first electrode coating;
- une couche 8 de type n dite tampon, par exemple composée de CdS, formée sur la couche de Cu(ln,Ga)Se2 ;  a n-type layer 8 called said buffer, for example composed of CdS, formed on the Cu (ln, Ga) Se2 layer;
- un revêtement électrode transparent 10, avec interposition éventuelle entre le revêtement électrode transparent et la couche tampon d'une couche passivante 12, par exemple de ZnO.  - A transparent electrode coating 10, with optional interposition between the transparent electrode coating and the buffer layer of a passivating layer 12, for example ZnO.
A noter cependant qu'en variante, la cellule 1 ne comprend pas de couche tampon, la couche de Cu(ln,Ga)Se2 pouvant elle-même former une homojonction p-n. De manière conventionnelle, la notation (In, Ga) indique qu'il s'agit d'une combinaison de lni-xGax avec 0 < x≤ 1 . Note however that, alternatively, the cell 1 does not comprise a buffer layer, the Cu (ln, Ga) Se2 layer itself being able to form a pn homojunction. In a conventional way, the notation (In, Ga) indicates that it is a combination of lni -x Ga x with 0 <x≤ 1.
On entend, dans tout le texte, par « une couche A formée (ou déposée) sur une couche B », une couche A formée soit directement sur la couche B et donc en contact avec la couche B, soit formée sur la couche B avec interposition d'une ou plusieurs couches entre la couche A et la couche B.  Throughout the text is meant by "a layer A formed (or deposited) on a layer B", a layer A formed either directly on the layer B and therefore in contact with the layer B, or formed on the layer B with interposition of one or more layers between layer A and layer B.
A noter qu'on entend dans tout le texte par « revêtement électrode », un revêtement comprenant au moins une couche électroniquement conductrice, c'est-à-dire dont la conductivité électrique est assurée par la mobilité des électrons.  Note that throughout the text "electrode coating" means a coating comprising at least one electronically conductive layer, that is to say the electrical conductivity of which is ensured by the mobility of the electrons.
Le substrat conducteur 2, 4 sur lequel est formée la couche de Cu(ln,Ga)Se2 est particulièrement performant dans le cas d'une cellule photovoltaïque à base de Cu(ln,Ga)Se2 formé par coévaporation bitherme et va être décrit plus en détail ci-dessous.  The conductive substrate 2, 4 on which the Cu (ln, Ga) Se 2 layer is formed is particularly efficient in the case of a Cu (ln, Ga) Se2-based photovoltaic cell formed by bitherme coevaporation and will be described more in detail below.
Le premier revêtement électrode 4, ou « de contact arrière », comprend une couche de molybdène dont la porosité apparente de surface moyenne est inférieure ou égale à 10%, de préférence inférieure ou égale à 8%.  The first electrode coating 4, or "back contact", comprises a molybdenum layer whose average surface porosity is less than or equal to 10%, preferably less than or equal to 8%.
Il a été constaté, comme nous le verrons ci-dessous en rapport aux figures 3 à 6, que prévoir une couche de molybdène dense, permet d'améliorer les performances des cellules photovoltaïques à base de Cu(ln,Ga)Se2 formé par coévaporation bitherme.  It has been found, as will be seen below with respect to FIGS. 3 to 6, that providing a dense molybdenum layer makes it possible to improve the performance of photovoltaic cells based on Cu (ln, Ga) Se2 formed by coevaporation bitherme.
Le premier revêtement électrode 4 tel qu'illustré ne comprend qu'une seule couche électroconductrice, à savoir la couche de molybdène.  The first electrode coating 4 as illustrated comprises only a single electroconductive layer, namely the molybdenum layer.
Dans ce cas, la couche de molybdène a une épaisseur par exemple comprise entre 200nm et 500nm, par exemple comprise entre 250nm et 450nm.  In this case, the molybdenum layer has a thickness for example of between 200 nm and 500 nm, for example between 250 nm and 450 nm.
A cette épaisseur, la couche de molybdène est réfléchissante.  At this thickness, the molybdenum layer is reflective.
Il est à noter qu'on entend, dans tout le texte, par « une seule couche », une couche d'un même matériau. Cette unique couche peut néanmoins être obtenue par la superposition de plusieurs couches d'un même matériau, entre lesquelles existe une interface qu'il est possible de caractériser, comme décrit dans WO-A-2009/080931 .  It should be noted that throughout the text, "a single layer" means a layer of the same material. This single layer can nevertheless be obtained by the superposition of several layers of the same material, between which there is an interface that can be characterized, as described in WO-A-2009/080931.
Typiquement, dans une enceinte de dépôt magnétron, plusieurs couches d'un même matériau seront formées successivement sur le substrat diélectrique par plusieurs cibles pour former au final une seule couche du même matériau, à savoir le molybdène. Typically, in a magnetron deposition chamber, several layers of the same material will be formed successively on the dielectric substrate by several targets to ultimately form a single layer of the same material, namely molybdenum.
En variante, le revêtement électrode est formé de plusieurs couches électroconductrices. Il est dans ce cas formé d'une couche de molybdène (Mo) et d'une ou plusieurs sous-couches entre le substrat diélectrique 2 et la couche de molybdène. Il s'agit par exemple d'une couche d'un autre métal que Mo tel que Cu (cuivre), avec interposition éventuelle d'une couche d'un nitrure d'un autre métal que Mo tel que TiN (nitrure de titane). Dans ce cas, la couche de molybdène a par exemple une épaisseur entre 10nm et 50nm.  Alternatively, the electrode coating is formed of several electroconductive layers. It is in this case formed of a layer of molybdenum (Mo) and one or more sub-layers between the dielectric substrate 2 and the molybdenum layer. It is for example a layer of a metal other than Mo such as Cu (copper), with possible interposition of a nitride layer of a metal other than Mo such as TiN (titanium nitride) . In this case, the molybdenum layer has for example a thickness between 10 nm and 50 nm.
Ainsi, d'une manière générale, le revêtement électrode 4 comprend une couche de molybdène dont la porosité apparente de surface moyenne est inférieure ou égale à 10%, de préférence inférieure ou égale à 8%.  Thus, in general, the electrode coating 4 comprises a molybdenum layer whose average surface porosity is less than or equal to 10%, preferably less than or equal to 8%.
Le revêtement électrode 4 est au contact du substrat diélectrique 2. Les ions alcalins peuvent ainsi migrer facilement depuis le substrat diélectrique 2 et à travers le revêtement électrode 4, jusqu'aux couches supérieures, c'est-à-dire jusqu'à la couche 6 de Cu(ln,Ga)Se2.  The electrode coating 4 is in contact with the dielectric substrate 2. The alkaline ions can thus migrate easily from the dielectric substrate 2 and through the electrode coating 4, to the upper layers, that is to say up to the layer 6 of Cu (In, Ga) Se2.
Dans le cas où le revêtement électrode 4 ne comprend qu'une couche électroconductrice, la couche de molybdène est alors au contact du substrat diélectrique 2.  In the case where the electrode coating 4 comprises only an electroconductive layer, the molybdenum layer is then in contact with the dielectric substrate 2.
De manière avantageuse également, la couche 6 de Cu(ln,Ga)Se2 est formée directement sur la couche de molybdène et donc au contact de celle-ci.  Also advantageously, the layer 6 of Cu (In, Ga) Se2 is formed directly on the molybdenum layer and therefore in contact therewith.
Le substrat diélectrique 2 est par exemple une feuille à fonction verrière, par exemple transparente. Il s'agit par exemple d'une feuille de verre, par exemple réalisée dans un verre silico-sodo-calcique.  The dielectric substrate 2 is for example a sheet with a glass function, for example transparent. This is for example a glass sheet, for example made in a silico-soda-lime glass.
La feuille peut présenter tout type de dimensions, notamment au moins une dimension supérieure à 1 mètre.  The sheet may have any type of size, especially at least one dimension greater than 1 meter.
On entend par verre de type silico-sodo-calcique un verre dont la composition comprend de la silice (S1O2) comme oxyde formateur et des oxydes de sodium (soude Na2Û) et de calcium (chaux CaO). Cette composition comprend de préférence les constituants suivants en une teneur variant dans les limites pondérales ci-après définies :  Silica-soda-lime glass is understood to mean a glass whose composition comprises silica (SiO 2) as forming oxide and oxides of sodium (sodium Na 2 O) and of calcium (lime CaO). This composition preferably comprises the following constituents in a content varying within the weight limits defined below:
SiO2 60 - 75 %SiO 2 60 - 75%
Figure imgf000007_0001
Figure imgf000007_0001
B2O3 0 - 5 %, de préférence 0 CaO 5 - 15 % B2O3 0 - 5%, preferably 0 CaO 5 - 15%
MgO 0 - 10 %  MgO 0 - 10%
Na2O 5 - 20 % Na 2 O 5 - 20%
K2O 0 - 10 % K 2 O 0 - 10%
BaO 0 - 5 %, de préférence 0.  BaO 0 - 5%, preferably 0.
Le verre a par exemple la composition massique suivante:  The glass has for example the following mass composition:
SiO2 72 % SiO 2 72%
AI2O3 1 %AI 2 O 3 1%
Figure imgf000008_0001
Figure imgf000008_0001
CaO 9 %  CaO 9%
MgO 3 %  MgO 3%
Na2O 14% Na 2 O 14%
K2O 0,5 % K 2 O 0.5%
BaO 0 %  BaO 0%
Impuretés: 0,5%  Impurities: 0.5%
D'une manière générale, le substrat est une feuille diélectrique contenant des alcalins, notamment un substrat ayant une composition massique avec au moins 5% d'alcalins.  In general, the substrate is a dielectric sheet containing alkalis, especially a substrate having a mass composition with at least 5% alkali.
Le substrat a par exemple une teneur inférieure ou égale à 30% en poids d'alcalins, par exemple inférieure ou égale à 20% en poids d'alcalins.  The substrate has for example a content less than or equal to 30% by weight of alkali, for example less than or equal to 20% by weight of alkali.
Le substrat est destiné à être à l'arrière de la couche photoactive par rapport à la source de lumière, c'est-à-dire à recevoir la lumière incidente après la couche photoactive. Il s'agit ainsi d'un substrat conducteur dit « arrière ».  The substrate is intended to be at the rear of the photoactive layer with respect to the light source, that is to say to receive the incident light after the photoactive layer. It is thus a conductive substrate called "back".
La couche 6 de type p de Cu(ln,Ga)Se2 va maintenant être décrite.  The p-type layer 6 of Cu (In, Ga) Se2 will now be described.
La couche 6 de Cu(ln,Ga)Se2 est formée par coévaporation bitherme. Ce procédé est par exemple décrit dans US-B-5 436 204.  The layer 6 of Cu (In, Ga) Se2 is formed by bitherme coevaporation. This process is for example described in US-B-5,436,204.
Un procédé de coévaporation bitherme comprend des étapes consistant à :  A bithermal coevaporation method comprises steps of:
- déposer des précurseurs de Cu et (ln,Ga) sur le substrat conducteur 2, 4 ;  depositing precursors of Cu and (In, Ga) on the conductive substrate 2, 4;
- chauffer le substrat conducteur 2, 4 en présence de vapeur de Se ou H2Se à une température intermédiaire entre 350°C et 500°C, par exemple 450°C, et le maintenir à cette température intermédiaire ; - alimenter la chambre en vapeur de (In, Ga) en présence de Se ou H2Se tout en chauffant le substrat conducteur 2, 4 jusqu'à une température supérieure de recristallisation entre 500°C et 650°C, par exemple 620°C ; heating the conductive substrate 2, 4 in the presence of Se or H 2 Se vapor at an intermediate temperature between 350 ° C. and 500 ° C., for example 450 ° C., and keeping it at this intermediate temperature; feeding the vapor chamber of (In, Ga) in the presence of Se or H 2 Se while heating the conductive substrate 2, 4 to a higher recrystallization temperature between 500 ° C. and 650 ° C., for example 620 ° C. VS ;
- maintenir le substrat conducteur 2, 4 à la température supérieure de recristallisation en présence de vapeur de (In, Ga) et de Se ou H2Se ; maintaining the conductive substrate 2, 4 at the higher recrystallization temperature in the presence of (In, Ga) vapor and Se or H 2 Se;
- arrêter l'alimentation en (In, Ga) et refroidir le substrat conducteur 2, 4 en présence de vapeur de Se ou H2Se jusqu'à une température basse entre 250°C et 350°C, par exemple 300°C. - Stop the supply of (In, Ga) and cool the conductive substrate 2, 4 in the presence of Se or H 2 Se vapor to a low temperature between 250 ° C and 350 ° C, for example 300 ° C.
A titre de comparaison, un procédé de coévaporation isotherme, pour lequel les substrats conducteurs 2, 4 à base de molybdène sont destinés dans l'art antérieur, comprend des étapes successives consistant à :  By way of comparison, an isothermal coevaporation process, for which the molybdenum-based conducting substrates 2, 4 are intended in the prior art, comprises successive steps consisting of:
- amener le substrat conducteur 2, 4 dans une chambre de sélénisation contenant le H2Se ou une vapeur de Se ; bringing the conductive substrate 2, 4 into a selenization chamber containing H 2 Se or a Se vapor;
- chauffer le substrat conducteur 2, 4 à une température constante, par exemple de l'ordre de 575°C, par exemple au moyen de lampes halogènes ;  - Heating the conductive substrate 2, 4 at a constant temperature, for example of the order of 575 ° C, for example by means of halogen lamps;
- alimenter la chambre en vapeur de In et/ou de Ga, c'est-à-dire (ln,Ga), par exemple durant 20 minutes ;  supply the steam chamber with In and / or Ga, ie (In, Ga), for example for 20 minutes;
- fermer l'alimentation en In et/ou Ga et alimenter la chambre en vapeur de Cu jusqu'à une variation de puissance nécessaire au chauffage du substrat conducteur 2, 4 indiquant une transition de phase entre une phase pauvre en Cu et une phase riche en Cu ;  closing the supply of In and / or Ga and supplying the Cu vapor chamber with a power variation necessary for heating the conductive substrate 2, 4 indicating a phase transition between a phase poor in Cu and a rich phase in Cu;
- fermer l'alimentation en Cu, alimenter à nouveau la chambre en vapeur de In et/ou Ga et arrêter le chauffage du substrat conducteur 2, 4 ;  closing the Cu feed, supplying the In and / or Ga vapor chamber again and stopping the heating of the conductive substrate 2, 4;
- arrêter l'alimentation en vapeur de In et/ou Ga, H2Se ou Se lorsque la température du substrat conducteur 2, 4 devient inférieure à une température prédéterminée, par exemple de l'ordre de 350°C. - Stop the supply of In and / or Ga vapor, H 2 Se or Se when the temperature of the conductive substrate 2, 4 becomes lower than a predetermined temperature, for example of the order of 350 ° C.
Dans un procédé de coévaporation isotherme, le substrat conducteur 2, 4 est donc maintenu à une seule température constante, contrairement au procédé de coévaporation bitherme dans lequel le substrat conducteur 2, 4 est maintenu à deux températures constantes différentes (température intermédiaire et température de recristallisation).  In an isothermal coevaporation process, the conductive substrate 2, 4 is therefore maintained at a single constant temperature, unlike the bitherme coevaporation method in which the conductive substrate 2, 4 is maintained at two different constant temperatures (intermediate temperature and recrystallization temperature ).
L'invention a ainsi également pour objet un procédé de fabrication d'un dispositif semi-conducteur, comprenant des étapes consistant à : - déposer une couche de molybdène sur un substrat diélectrique 2 contenant des alcalins pour former un revêtement électrode 4 ; The invention thus also relates to a method of manufacturing a semiconductor device, comprising the steps of: depositing a layer of molybdenum on a dielectric substrate 2 containing alkalis to form an electrode coating 4;
- former une couche 6 de Cu(ln,Ga)Se2 (CIS, CGS ou CIGS) sur la couche de molybdène. - To form a layer 6 of Cu (In, Ga) Se 2 (CIS, CGS or CIGS) on the molybdenum layer.
La couche électroconductrice de molybdène a une porosité apparente de surface moyenne inférieure ou égale à 10%, de préférence inférieure ou égale à 8%, et la couche de CIGS est formée par le procédé de coévaporation bitherme décrit ci-dessus.  The electroconductive molybdenum layer has an average surface porosity of less than or equal to 10%, preferably less than or equal to 8%, and the CIGS layer is formed by the bithermal coevaporation method described above.
La couche tampon de CdS mentionnée ci-dessus est par exemple obtenue par immersion du substrat conducteur 2, 4 couvert de Cu(ln,Ga)Se2 dans une solution à 60°C formée d'une solution d'ammoniaque contenant des sels de cadmium et de la thiocarbamide (ou thiourée) ((NH2)2CS) The above-mentioned CdS buffer layer is obtained, for example, by immersion of the conductive substrate 2, 4 covered with Cu (In, Ga) Se 2 in a solution at 60 ° C. formed of an ammonia solution containing sodium salts. cadmium and thiocarbamide (or thiourea) ((NH 2 ) 2 CS)
Les sels de cadmium réagissent d'abord avec l'ammoniac en formant un hydroxide de cadmium CdOH2, puis le soufre amené par le thiocarbamide se substitue à l'oxygène de CdOH2 amenant à la formation de CdS. The cadmium salts first react with the ammonia to form a cadmium hydroxide CdOH 2 , and then the sulfur brought by the thiocarbamide is substituted for the oxygen of CdOH 2 leading to the formation of CdS.
La couche optionnelle de passivation est par exemple formée par le dépôt par pulvérisation magnétron d'une couche de ZnO, par exemple de l'ordre de 100nm, sur la couche de CdS.  The optional passivation layer is for example formed by the magnetron sputtering deposition of a ZnO layer, for example of the order of 100 nm, on the CdS layer.
Le revêtement électrode transparent 10 est par exemple une couche de ZnO :AI (par exemple pourcentage atomique de 3% de Al), déposée sur la couche de passivation. Elle est par exemple déposée par pulvérisation magnétron DC réactive sous une atmosphère à 2 Bar en présence d'un mélange argon-oxygène (20% d'oxygène, 80% d'argon).  The transparent electrode coating 10 is for example a ZnO: Al layer (for example an atomic percentage of 3% Al), deposited on the passivation layer. For example, it is deposited by reactive DC magnetron sputtering under a 2 bar atmosphere in the presence of an argon-oxygen mixture (20% oxygen, 80% argon).
Pour une bonne connexion électrique et une bonne conductance, une grille métallique, est ensuite optionnellement déposée sur le revêtement électrode transparent 4, par exemple à travers un masque, par exemple par faisceau d'électrons. Il s'agit par exemple d'une grille de Al (aluminium) par exemple d'environ 2μηη d'épaisseur sur laquelle est déposée une grille de Ni (nickel) par exemple d'environ 50nm d'épaisseur pour protéger la couche de Al.  For good electrical connection and good conductance, a metal grid is then optionally deposited on the transparent electrode coating 4, for example through a mask, for example by electron beam. It is for example a grid of Al (aluminum) for example of about 2μηη thick on which is deposited a grid of Ni (nickel) for example of about 50nm thick to protect the Al layer. .
La cellule 1 est ensuite protégée. Elle comprend par exemple à cet effet un contre-substrat couvrant le revêtement électrode avant 10 et feuilleté au substrat 2 par l'intermédiaire d'un intercalaire de feuilletage en matière plastique thermodurcissable. Il s'agit par exemple d'un intercalaire de feuilletage en EVA, PU ou PVB. EXEMPLES et RESULTATS : Cell 1 is then protected. It comprises for example for this purpose a counter-substrate covering the front electrode coating 10 and laminated to the substrate 2 via a lamination interlayer of thermosetting plastic material. This is for example a lamination interlayer EVA, PU or PVB. EXAMPLES and RESULTS:
La puissance et la pression de dépôt par pulvérisation magnétron DC influencent la porosité apparente de surface de la couche de molybdène déposée.  DC magnetron sputtering power and pressure influence the apparent surface porosity of the deposited molybdenum layer.
En effet, la puissance (W /cm2) appliquée à la cible influence les paramètres suivants : Indeed, the power (W / cm 2 ) applied to the target influences the following parameters:
- le taux de pulvérisation est directement proportionnel à la puissance ; the spraying rate is directly proportional to the power;
- la mobilité des atomes sur le substrat augmente du fait de l'augmentation du flux des atomes et du flux de gaz venant se réfléchir sur le substrat. the mobility of the atoms on the substrate increases because of the increase in the flow of the atoms and the flow of gas coming to be reflected on the substrate.
La pression, quant à elle, détermine le libre parcours moyen des atomes de Mo depuis la cible jusqu'au substrat.  The pressure, meanwhile, determines the average free path of Mo atoms from the target to the substrate.
Le libre parcours moyen correspond à la longueur entre deux collisions successives d'atomes de Mo avec les atomes de gaz. Il est proportionnel à l'inverse de la pression p (généralement entre 1 et 20 Bar). Ainsi, le nombre moyen N de collisions d'atomes de Mo avec les atomes de gaz entre la cible et le substrat est proportionnel à d.p où d est la distance substrat - cible.  The mean free path corresponds to the length between two successive collisions of Mo atoms with the gas atoms. It is proportional to the inverse of the pressure p (generally between 1 and 20 Bar). Thus, the average number N of Mo atom collisions with the gas atoms between the target and the substrate is proportional to d.p where d is the substrate - target distance.
L'énergie cinétique des atomes arrivant sur le substrat décroît exponentiellement avec le produit d.p. Le produit d.p est donc un critère pertinent pour comparer les conditions de dépôt et prévoir la porosité apparente de surface de la couche de molybdène.  The kinetic energy of the atoms arriving on the substrate decreases exponentially with the product d.p. The product d.p is therefore a relevant criterion for comparing the deposition conditions and predicting the apparent surface porosity of the molybdenum layer.
A puissance constante et distance substrat-cible constante, la porosité apparente de surface de la couche déposée dépend donc de la pression de dépôt.  At constant power and constant substrate-target distance, the apparent surface porosity of the deposited layer therefore depends on the deposition pressure.
A pression constante et distance substrat-cible constante, une augmentation de la puissance de dépôt est équivalent à une élévation de température de substrat pendant le dépôt.  At constant pressure and constant substrate-target distance, an increase in the deposition power is equivalent to a rise in substrate temperature during deposition.
Les expériences menées ont eu pour but de caractériser la porosité apparente de surface de la couche de molybdène pour une puissance et une distance substratcible données, en faisant varier la pression de dépôt, puis de déterminer l'impact de cette porosité apparente de surface de la couche de molybdène sur les performances de cellules photovoltaïques à base d'une couche de CIGS déposée par co-évaporation bitherme. La figure 2 illustre les résultats de porosité apparente de surface obtenus pour différentes couches minces de molybdène (Mo) déposées sur des substrats de verre silico-sodo-calcique respectifs d'épaisseur 3 mm (SGG PLANILUX) dans une machine de dépôt par pulvérisation magnétron DC à une puissance de 3 kW à cinq pressions différentes de dépôt (0,75 mTorr, 1 ,5 mTorr, 4,5 mTorr, 7,5 mTorr et 1 1 ,25 mTorr). The purpose of the experiments was to characterize the apparent surface porosity of the molybdenum layer for a given power and substrate distance, by varying the deposition pressure, and then to determine the impact of this apparent surface porosity of the layer of molybdenum on the performance of photovoltaic cells based on a layer of CIGS deposited by co-evaporation bitherme. FIG. 2 illustrates the apparent surface porosity results obtained for various thin layers of molybdenum (Mo) deposited on respective 3 mm thick silico-soda-lime glass substrates (SGG PLANILUX) in a magnetron sputtering deposition machine. DC at a power of 3 kW at five different deposition pressures (0.75 mTorr, 1.5 mTorr, 4.5 mTorr, 7.5 mTorr and 1 l, 25 mTorr).
La composition massique du verre SGG PLANILUX est la suivante :  The mass composition of SGG PLANILUX glass is as follows:
SiO2 72 % SiO 2 72%
AI2O3 1 %AI 2 O 3 1%
Figure imgf000012_0001
Figure imgf000012_0001
CaO 9 %  CaO 9%
MgO 3 %  MgO 3%
Na2O 14% Na 2 O 14%
K2O 0,5 % K 2 O 0.5%
BaO 0 %  BaO 0%
Impuretés: 0,5%  Impurities: 0.5%
Chaque couche de molybdène a une épaisseur de 335 nm.  Each layer of molybdenum has a thickness of 335 nm.
La porosité apparente de surface des films a été évaluée par le traitement d'images MEB de surface. Les images ont été préalablement binarisées afin de produire deux classes de pixels, des pixels blancs et des pixels noirs. Les pixels noirs sont considérés comme des pores. Dans le présent document, le paramètre de référence pour la porosité apparente de surface est la densité de pixels noirs dans les images MEB binarisées. Il s'agit d'un MEB de type JEOL 7600, la porosité apparente de surface est le rapport du nombre pixels noirs sur le nombre de pixels total. Les images utilisées ont un grossissement de 60 000, elles ont un format de 1280 x 1024 pixels, et représentent une longueur de 1997 nm, soit 1 ,56 nm/pixel. Dans l'exemple, les images ont été traitées par le logiciel Quantinet Q550 Leica.  The apparent surface porosity of the films was evaluated by the treatment of surface SEM images. The images were previously binarized to produce two classes of pixels, white pixels and black pixels. Black pixels are considered as pores. In this document, the reference parameter for surface apparent porosity is the density of black pixels in binarized SEM images. This is a JEOL type 7600 SEM, the apparent surface porosity is the ratio of the number of black pixels to the total number of pixels. The images used have a magnification of 60,000, they have a format of 1280 x 1024 pixels, and represent a length of 1997 nm, or 1, 56 nm / pixel. In the example, the images were processed by Quantinet Q550 Leica software.
L'évolution de la porosité apparente de surface moyenne est représentée en ordonnées en pourcents, en fonction de la pression de dépôt en mTorr. La distance cible-substrat était de 5cm.  The evolution of the apparent average surface porosity is represented in ordinates in percent, as a function of the deposition pressure in mTorr. The target-substrate distance was 5cm.
Les valeurs respectives de porosités apparentes de surface sont Porosité apparente de The respective values of apparent surface porosities are Apparent porosity of
Pression (mTorr) +/- surface (%)  Pressure (mTorr) +/- area (%)
0.75 4.92 1.023  0.75 4.92 1.023
1.5 6.02 1.613  1.5 6.02 1.613
4.5 10.7 1.918  4.5 10.7 1.918
7.5 15 2.69  7.5 15 2.69
11 16.9 1.285  11 16.9 1.285
Tableau 1  Table 1
A puissance constante, la porosité apparente de surface de la couche de Mo croit avec l'augmentation de la pression. At constant power, the apparent surface porosity of the Mo layer increases with increasing pressure.
Mais surtout, ces expériences ont permis de caractériser la porosité apparente de surface de la couche pour des pressions de dépôt connues.  Above all, these experiments made it possible to characterize the apparent surface porosity of the layer for known deposition pressures.
Des couches de CIGS ont ensuite été déposées par co-évaporation bitherme sur différents substrats conducteurs 2, 4 de la figure 2 de porosités apparentes de surface respectives de 6%, 15% et 17%.  CIGS layers were then deposited by bitherme coevaporation on different conductive substrates 2, 4 of FIG. 2 with apparent surface porosities of 6%, 15% and 17%, respectively.
A titre d'exemple, le procédé d'obtention de la couche de CIGSe est décrit ci-dessous.  By way of example, the process for obtaining the CIGSe layer is described below.
La couche de CIGSe a été synthétisée selon un procédé en trois étapes : The CIGSe layer was synthesized according to a three-step process:
- Etape 1 : - Step 1 :
Les éléments In, Ga et Se sont co-évaporés sur un substrat dont la température est mesurée à 400°C (face chauffage). Cette étape dure jusqu'à ce que la couche mince de (ln,Ga)2Se3 ainsi obtenue ait une épaisseur de 1 μιτι.  The elements In, Ga and Se are coevaporated on a substrate whose temperature is measured at 400 ° C. (heating face). This step lasts until the thin layer of (ln, Ga) 2Se3 thus obtained has a thickness of 1 μιτι.
- Etape 2 :  - 2nd step :
Le substrat est chauffé à 620 °C.  The substrate is heated to 620 ° C.
Les éléments Cu et Se sont apportés sur le substrat jusqu'à ce que la composition de la couche mince en croissance corresponde à [Cu]/[ln+Ga]>1 .  The elements Cu and Se are provided on the substrate until the composition of the thin film in growth corresponds to [Cu] / [ln + Ga]> 1.
- Etape 3 :  - Step 3:
Les éléments In, Ga et Se sont apportés sur le substrat jusqu'à ce que la composition de la couche mince en croissance corresponde à [Cu]/[ln+Ga]<1 .  The elements In, Ga and Se are provided on the substrate until the composition of the thin film in growth corresponds to [Cu] / [ln + Ga] <1.
La couche de CIGSe a une composition élémentaire standard Cu (22%), Ga (8%), In (20%) et Se (50%). La taille de grain est en moyenne de l'ordre de 1 μιτι. Une couche mince de CdS (épaisseur 50 nm) est ensuite déposée sur la structure verre/Mo/Cl GSe par bain chimique, afin de réaliser la jonction pn. The CIGSe layer has a standard elemental composition Cu (22%), Ga (8%), In (20%) and Se (50%). The grain size is on average of the order of 1 μιτι. A thin layer of CdS (thickness 50 nm) is then deposited on the glass / Mo / Cl GSe structure by chemical bath, in order to make the pn junction.
Une bicouche ZnO(50 nm)/ZnO :AI(200 nm) est ensuite déposée sur la couche de CdS à température ambiante.  A bilayer ZnO (50 nm) / ZnO: Al (200 nm) is then deposited on the CdS layer at room temperature.
Ces structures ont été analysées par SIMS (Secondary Ion Mass These structures were analyzed by SIMS (Secondary Ion Mass
Spectroscopy), comme le montre la figure 2bis qui présente la teneur en sodium de la couche de ZnO et de la couche de CIGSe pour les substrats conducteurs dont les couches de molybdène ont des porosités apparentes de surface respectives de 6%, 15% et 17%. Spectroscopy), as shown in FIG. 2bis, which shows the sodium content of the ZnO layer and the CIGSe layer for conductive substrates whose molybdenum layers have respective surface porosities of 6%, 15% and 17% respectively. %.
Ces expériences montrent que la teneur en sodium dans la couche de These experiments show that the sodium content in the
CIGS augmente avec la porosité apparente de surface de la couche de molybdène. CIGS increases with apparent surface porosity of the molybdenum layer.
Des expériences ont ensuite été réalisées pour caractériser les performances de cellules CIGSe obtenues par coévaporation bitherme en fonction de la porosité apparente de surface de la couche de molybdène.  Experiments were then carried out to characterize the performances of CIGSe cells obtained by bitherme coevaporation as a function of the apparent surface porosity of the molybdenum layer.
Les couches de CIGSe ont été obtenues dans les mêmes conditions que décrites ci-dessus pour la figure 2.  The CIGSe layers were obtained under the same conditions as described above for FIG.
Cinq couches de Mo ont été déposées à 3kW sur des substrats de verre silico-sodo-calcique respectifs dans les mêmes conditions que ci-dessus, à savoir dans la même machine et à des pressions respectives de 0,75 mTorr, 1 ,5 mTorr, 4,5 mTorr, 7,5 mTorr et 1 1 ,25 mTorr.  Five layers of Mo were deposited at 3kW on respective soda-lime glass substrates under the same conditions as above, ie in the same machine and at respective pressures of 0.75 mTorr, 1.5 mTorr 4.5 mTorr, 7.5 mTorr and 1 l, 25 mTorr.
Comme le montrent les figures 3 à 6, qui représentent respectivement en ordonnée les valeurs suivantes, en fonction de la pression de dépôt de la couche de Mo (en abscisse) :  As shown in FIGS. 3 to 6, which respectively represent, on the ordinate, the following values, as a function of the deposition pressure of the Mo layer (on the abscissa):
- Voc, la tension de circuit ouvert en mV en fonction de la pression de dépôt due la couche de Mo ;  - Voc, the open circuit voltage in mV as a function of the deposition pressure due to the Mo layer;
- FF, le facteur de forme (en %) ;  - FF, the form factor (in%);
- Jsc, le courant de court-ciruit (en mA/cm2) ; et - J sc , the short-circuit current (in mA / cm 2 ); and
- Eff, le rendement de conversion énergétique (en %).  - Eff, the energy conversion efficiency (in%).
Les valeurs reportées sont une moyenne faite sur douze cellules. Le rendement de conversion énergétique Eff présente un maximum pour une porosité apparente de surface de la couche de molybdène de 6% puis diminue continuellement pour des porosités apparentes de surface supérieures. La tension de circuit ouvert Voc ne semble pas influencée par la porosité apparente de surface de la couche de molybdène. En revanche, le facteur de forme FF et le courant de court-circuit Jsc suivent la même évolution que le rendement Eff et présentent un maximum pour une porosité apparente de surface de 6% puis diminuent continuellement pour des porosités apparentes de surface supérieures. The values reported are an average of twelve cells. The energy conversion efficiency Eff has a maximum for an apparent surface porosity of the molybdenum layer of 6% and then decreases continuously for apparent surface porosities. Voc open circuit voltage does not appear to be influenced by porosity apparent surface of the molybdenum layer. On the other hand, the shape factor FF and the short-circuit current Jsc follow the same evolution as the efficiency Eff and have a maximum for an apparent surface porosity of 6% and then decrease continuously for apparent surface porosities.
Ces résultats s'expliquent en tenant compte de la teneur des couches en sodium qui est directement liée à la porosité apparente de surface de la couche de molybdène.  These results are explained by taking into account the content of the sodium layers which is directly related to the apparent surface porosity of the molybdenum layer.
Dans les couches de CIGS, le sodium est présent à la fois à l'intérieur des grains, mais également aux joints de grain. La solubilité du sodium dans le CIGS est faible, donc quand la quantité de sodium dépasse la limite de solubilité, l'excès de sodium ségrége aux joints de grains. En conséquence, le signal de sodium que l'on peut observer sur la figure 2bis est principalement dû au sodium aux joints de grains. Ceci est confirmé par le fait que la tension de circuit ouvert reste inchangée avec la porosité apparente de surface et donc la quantité de sodium. En effet, la teneur en sodium à l'intérieur des grains influence la densité d'accepteur dans le CIGS et donc la Voc.  In the CIGS layers, sodium is present both inside the grains and also at the grain boundaries. The solubility of sodium in CIGS is low, so when the amount of sodium exceeds the solubility limit, excess sodium segregates at the grain boundaries. As a result, the sodium signal that can be observed in Figure 2a is mainly due to sodium at the grain boundaries. This is confirmed by the fact that the open circuit voltage remains unchanged with the apparent surface porosity and thus the amount of sodium. In fact, the sodium content inside the grains influences the acceptor density in the CIGS and therefore the Voc.
D'autre part, la modélisation de la courbe intensité-tension des cellules photovoltaïques réalisées montrent que la baisse de performance pour des porosités apparentes de surface élevées est principalement due à une diminution de la résistance parallèle du circuit équivalent. Les joints de grains contenant une quantité trop importante de sodium, due à une porosité apparente de surface de la couche de molybdène trop élevée, favorisent les courts-circuits et donc la diminution des performances.  On the other hand, the modeling of the intensity-voltage curve of the photovoltaic cells produced shows that the drop in performance for high apparent surface porosities is mainly due to a decrease in the parallel resistance of the equivalent circuit. The grain boundaries containing too much sodium, due to an apparent surface porosity of the molybdenum layer which is too high, favor short-circuits and therefore reduced performance.
Le substrat conducteur et le dispositif semi-conducteur selon l'invention permettent donc d'obtenir de très bonnes performances pour ces couches de type chalcopyrite formées par coévaporation bitherme.  The conductive substrate and the semiconductor device according to the invention therefore make it possible to obtain very good performances for these chalcopyrite-type layers formed by bitherme coevaporation.
En outre, malgré une densité élevée, la couche de molybdène s'est avérée présenter une stabilité mécanique suffisante, notamment au « test du scotch » (ISO2409).  In addition, despite a high density, the molybdenum layer has been found to have sufficient mechanical stability, including the "Scotch test" (ISO2409).

Claims

REVENDICATIONS
1. Substrat conducteur (2, 4) pour cellule photovoltaïque comprenant : A conductive substrate (2, 4) for a photovoltaic cell comprising:
- un substrat diélectrique (2) contenant des alcalins ; a dielectric substrate (2) containing alkalis;
- un revêtement électrode (4) formé sur le substrat diélectrique (2), le revêtement électrode (4) comprenant une couche de molybdène,  an electrode coating (4) formed on the dielectric substrate (2), the electrode coating (4) comprising a layer of molybdenum,
dans lequel la couche de molybdène a une porosité apparente de surface moyenne inférieure ou égale à 10%, de préférence inférieure ou égale à 8%. wherein the molybdenum layer has an average surface porosity of less than or equal to 10%, preferably less than or equal to 8%.
2. Substrat conducteur (2, 4) selon la revendication 1 , dans lequel le revêtement électrode (4) ne comprend qu'une seule couche électroconductrice.The conductive substrate (2, 4) according to claim 1, wherein the electrode coating (4) comprises only a single electroconductive layer.
3. Substrat conducteur (2, 4) selon la revendication 1 ou 2, dans lequel la couche de molybdène est au contact du substrat diélectrique (2). 3. conductive substrate (2, 4) according to claim 1 or 2, wherein the molybdenum layer is in contact with the dielectric substrate (2).
4. Substrat conducteur (2, 4) selon l'une quelconque des revendications précédentes, dans lequel le substrat diélectrique (2) contient au moins 5% en poids d'alcalins, le substrat diélectrique (2) étant par exemple en verre silico- sodo-calcique.  4. conductive substrate (2, 4) according to any one of the preceding claims, wherein the dielectric substrate (2) contains at least 5% by weight of alkali, the dielectric substrate (2) being for example silica-glass soda lime.
5. Dispositif semi-conducteur (2, 4, 6, 8, 10, 12) comprenant un substrat conducteur (2, 4) et une couche (6) de Cu(ln,Ga)Se2 (CIS, CGS ou CIGS) formée sur le substrat conducteur (2, 4), dans lequel ledit substrat conducteur (2, 4) est selon l'une quelconque des revendications précédentes. A semiconductor device (2, 4, 6, 8, 10, 12) comprising a conductive substrate (2, 4) and a layer (6) of Cu (In, Ga) Se 2 (CIS, CGS or CIGS) formed on the conductive substrate (2, 4), wherein said conductive substrate (2, 4) is according to any one of the preceding claims.
6. Dispositif (2, 4, 6, 8, 10, 12) selon la revendication 5, dans lequel la couche (6) de Cu(ln,Ga)Se2 est au contact de la couche de molybdène.  6. Device (2, 4, 6, 8, 10, 12) according to claim 5, wherein the layer (6) of Cu (In, Ga) Se2 is in contact with the molybdenum layer.
7. Dispositif (2, 4, 6, 8, 10, 12) selon la revendication 5 ou 6, comprenant en outre un revêtement électrode supplémentaire (10) formé sur la couche de The device (2, 4, 6, 8, 10, 12) according to claim 5 or 6, further comprising an additional electrode coating (10) formed on the
Cu(ln,Ga)Se2. Cu (In, Ga) Se 2 .
8. Dispositif (2, 4, 6, 8, 10, 12) selon l'une quelconque des revendications 5 à 7, dans lequel la couche de Cu(ln,Ga)Se2 est une couche de CIGS.  8. Device (2, 4, 6, 8, 10, 12) according to any one of claims 5 to 7, wherein the layer of Cu (ln, Ga) Se2 is a layer of CIGS.
9. Cellule photovoltaïque (1 ), comprenant un dispositif semiconducteur (2, 4, 6, 8, 10, 12), dans lequel le dispositif semi-conducteur est selon l'une quelconque des revendications 5 à 8.  Photovoltaic cell (1), comprising a semiconductor device (2, 4, 6, 8, 10, 12), wherein the semiconductor device is according to any one of claims 5 to 8.
10. Module photovoltaïque comprenant une pluralité de cellules photovoltaïques (1 ) formées sur un même substrat (2) et reliée entre elles en série, dans lequel les cellules photovoltaïques (1 ) sont selon la revendication 9. Photovoltaic module comprising a plurality of photovoltaic cells (1) formed on a same substrate (2) and connected together in series, wherein the photovoltaic cells (1) are according to claim 9.
11. Procédé de fabrication d'un dispositif semi-conducteur (2, 4, 6, 8, 10, 12), comprenant des étapes consistant à : A method of manufacturing a semiconductor device (2, 4, 6, 8, 10, 12), comprising steps of:
- déposer une couche de molybdène sur un substrat diélectrique (2) contenant des alcalins pour former un revêtement électrode (4) ;  depositing a layer of molybdenum on a dielectric substrate (2) containing alkali to form an electrode coating (4);
- former une couche (6) de Cu(ln,Ga)Se2 sur la couche de molybdène, dans lequel la couche de molybdène a une porosité apparente de surface moyenne inférieure ou égale à 10%, de préférence inférieure ou égale à 8% et en ce que la couche de Cu(ln,Ga)Se2 est formée par un procédé de coévaporation bitherme. forming a layer (6) of Cu (In, Ga) Se2 on the molybdenum layer, in which the molybdenum layer has an average surface porosity of less than or equal to 10%, preferably less than or equal to 8%, and in that the Cu (ln, Ga) Se2 layer is formed by a bitherme coevaporation method.
12. Procédé selon la revendication 1 1 , dans lequel la couche de molybdène est déposée directement sur le substrat diélectrique (2). 12. The method of claim 1 1, wherein the molybdenum layer is deposited directly on the dielectric substrate (2).
13. Procédé selon la revendication 1 1 ou 12, dans lequel dans lequel la couche de Cu(ln,Ga)Se2 est formée directement sur la couche de molybdène. The process of claim 11 or 12, wherein the Cu (In, Ga) Se 2 layer is formed directly on the molybdenum layer.
PCT/FR2011/052980 2010-12-21 2011-12-14 Molybdenum-based conductive substrate WO2012085395A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1060934 2010-12-21
FR1060934A FR2969389A1 (en) 2010-12-21 2010-12-21 CONDUCTIVE SUBSTRATE BASED ON MOLYBDENUM

Publications (2)

Publication Number Publication Date
WO2012085395A2 true WO2012085395A2 (en) 2012-06-28
WO2012085395A3 WO2012085395A3 (en) 2012-08-16

Family

ID=44453886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/052980 WO2012085395A2 (en) 2010-12-21 2011-12-14 Molybdenum-based conductive substrate

Country Status (2)

Country Link
FR (1) FR2969389A1 (en)
WO (1) WO2012085395A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436204A (en) 1993-04-12 1995-07-25 Midwest Research Institute Recrystallization method to selenization of thin-film Cu(In,Ga)Se2 for semiconductor device applications
US5626688A (en) 1994-12-01 1997-05-06 Siemens Aktiengesellschaft Solar cell with chalcopyrite absorber layer
WO2002065554A1 (en) 2001-01-31 2002-08-22 Saint-Gobain Glass France Transparent substrate equipped with an electrode
WO2009080931A1 (en) 2007-12-07 2009-07-02 Saint-Gobain Glass France Improvements to elements capable of collecting light

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096395A1 (en) * 2004-03-30 2005-10-13 Hille & Müller GMBH Mo substrate for a photovoltaic solar cell
AT10578U1 (en) * 2007-12-18 2009-06-15 Plansee Metall Gmbh DUNGOUS SOLAR CELL WITH MOLYBDAN-CONTAINING ELECTRODE LAYER
US20090260678A1 (en) * 2008-04-16 2009-10-22 Agc Flat Glass Europe S.A. Glass substrate bearing an electrode
US8134069B2 (en) * 2009-04-13 2012-03-13 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436204A (en) 1993-04-12 1995-07-25 Midwest Research Institute Recrystallization method to selenization of thin-film Cu(In,Ga)Se2 for semiconductor device applications
US5626688A (en) 1994-12-01 1997-05-06 Siemens Aktiengesellschaft Solar cell with chalcopyrite absorber layer
WO2002065554A1 (en) 2001-01-31 2002-08-22 Saint-Gobain Glass France Transparent substrate equipped with an electrode
WO2009080931A1 (en) 2007-12-07 2009-07-02 Saint-Gobain Glass France Improvements to elements capable of collecting light

Also Published As

Publication number Publication date
FR2969389A1 (en) 2012-06-22
WO2012085395A3 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
EP2777075B1 (en) Conducting substrate for photovoltaic cell
US8344243B2 (en) Method and structure for thin film photovoltaic cell using similar material junction
US20090260678A1 (en) Glass substrate bearing an electrode
US8809674B2 (en) Back electrode configuration for electroplated CIGS photovoltaic devices and methods of making same
WO2003069684A1 (en) Light absorbing layer forming method
JP2016518720A (en) Back contact substrate for photovoltaic cell or photovoltaic cell module
JP2005228975A (en) Solar battery
KR20090123645A (en) High-efficiency cigs solar cells and manufacturing method thereof
JP2011129631A (en) Method of manufacturing cis thin film solar cell
KR101406734B1 (en) Flexible cigs solar cells with improved sodium incorporation method and manufacturing method thereof
JP2016517183A (en) Back contact substrate for photovoltaic cell or photovoltaic cell module
WO2012118771A2 (en) Improved thin-film photovoltaic devices and methods of manufacture
JP2004140307A (en) Manufacturing method for thin-film solar cell
EP2702615B1 (en) Method of preparing a solar cell
KR102227799B1 (en) Method for manufacturing CIGS thin film solar cell
JP2000012883A (en) Manufacture of solar cell
WO2012085395A2 (en) Molybdenum-based conductive substrate
FR3031240A3 (en) CONDUCTIVE SUBSTRATE FOR PHOTOVOLTAIC CELL
WO2013001222A1 (en) Conductive substrate for a photovoltaic cell
EP3069386B1 (en) Rear contact substrate for photovoltaic cell
JP5620334B2 (en) CIGS solar cells
CN113540287A (en) Copper-rich copper-based thin film solar cell device and preparation method thereof
JP2012119350A (en) Photoelectric conversion element, method of manufacturing the same, and photoelectric conversion device
EP3028311A1 (en) Process for producing a p-n junction in a czts-based photovoltaic cell and czts-based superstrate photovoltaic cell
KR20130053747A (en) Solar cell apparatus and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817331

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11817331

Country of ref document: EP

Kind code of ref document: A2