WO2012083854A1 - 一种回程链路中的数据通信方法、装置和系统 - Google Patents

一种回程链路中的数据通信方法、装置和系统 Download PDF

Info

Publication number
WO2012083854A1
WO2012083854A1 PCT/CN2011/084374 CN2011084374W WO2012083854A1 WO 2012083854 A1 WO2012083854 A1 WO 2012083854A1 CN 2011084374 W CN2011084374 W CN 2011084374W WO 2012083854 A1 WO2012083854 A1 WO 2012083854A1
Authority
WO
WIPO (PCT)
Prior art keywords
backhaul
data
terminals
base station
terminal
Prior art date
Application number
PCT/CN2011/084374
Other languages
English (en)
French (fr)
Inventor
高秀娟
何勇
陈卫民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2012083854A1 publication Critical patent/WO2012083854A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/088Load balancing or load distribution among core entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a data communication method, apparatus, and system in a backhaul link.
  • BACKGROUND OF THE INVENTION As an emerging technology, relay technology has attracted more and more attention and is regarded as a key technology of B3G (Beyond 3G) / 4G. Through the relay technology, the traditional single-hop link can be divided into multiple multi-hop links. This will greatly reduce the path loss due to the shortened distance, which will improve the transmission quality and expand the communication range, thus providing faster UEs. Better service.
  • FIG. 1 is a schematic diagram of a scenario structure of a relay network in the prior art.
  • the uplink data is sent by the UE (User Equipment) to the relay station (also called the relay node or the small base station), and then the relay station forwards it to the base station (NodeB or eNodeB) through the backhaul terminal connected thereto.
  • the data is sent by the base station to the backhaul terminal, and then forwarded to the UE by the backhaul terminal through the relay station connected thereto.
  • the link between the UE and the relay station is the access link, and the link between the base station and the backhaul terminal is called a backhaul link.
  • the throughput of the backhaul link is always greater than or equal to the sum of the throughput of all access links. It can be seen that for the data communication of the relay network, improving the throughput of the backhaul link is a technical problem that needs to be solved urgently.
  • base stations and backhaul terminals of upgrade specifications are usually adopted, that is, base stations and backhaul terminals of a higher version than the current commercial version are adopted.
  • the more mature version is LTE R8, and the higher version is R10.
  • R10 uses higher-order MIMO (Multiple Input Multiple Output) technology than R8 in uplink and downlink data communication, it also adopts Carrier aggregation, therefore, devices that support R10 have higher throughput than devices that support R8.
  • the R8 version of the relay station and the user terminal are used in the access link, and the R10 version of the base station and the backhaul can be used in the backhaul link. Terminal.
  • embodiments of the present invention provide a data communication method, apparatus, and system in a backhaul link to reduce the use cost while improving the throughput of the backhaul link.
  • An uplink data communication method comprising: receiving uplink data sent by a relay station, and dividing the uplink data; and dividing the divided data to at least two backhaul terminals that are connected to the relay station and reuse the same time-frequency resource, so that The respective data is transmitted by the at least two backhaul terminals through respective backhaul links to the base station for combining.
  • a downlink data communication method comprising: combining split data on at least two backhaul terminals that are connected to the same relay station and reuses the same time-frequency resource, wherein the split data is that the at least two backhaul terminals pass respective backhaul Receiving by the link; transmitting the combined downlink data to a relay station connected to the at least two backhaul terminals.
  • An uplink data communication device comprising: a data dividing unit, configured to receive uplink data sent by a relay station, and divide the uplink data; and a data distribution unit, configured to allocate the divided data to a reuse connection with the relay station At least two backhaul terminals of the same time-frequency resource, so that the respective data is transmitted to the base station by the at least two backhaul terminals through respective backhaul links for combination.
  • a downlink data communication device comprising: a data combining unit, configured to combine split data on at least two backhaul terminals that reuse the same time-frequency resource connected to the same relay station, and the split data is the at least two backhaul
  • the data receiving unit is configured to send the combined downlink data to the relay station connected to the at least two backhaul terminals.
  • a communication system comprising an uplink data communication device or a downlink data communication device, further comprising a base station, a backhaul terminal, and a relay station, wherein the base station performs data communication with at least two of the backhaul terminals that reuse the same time-frequency resource, At least two backhaul terminals are passed through the device The same relay station performs data communication; the base station is configured to combine the uplink data when receiving the uplink data sent by the at least two backhaul terminals, and when the downlink data is sent to the at least two backhaul terminals, The downlink data is sent to the at least two backhaul terminals.
  • the time-frequency multiplexing method is used to reuse the same time-frequency resources of multiple existing backhaul terminals in a backhaul link, thereby saving not only on the basis of the existing backhaul terminal.
  • the cost of use also increases the throughput of the backhaul link.
  • FIG. 1 is a schematic structural diagram of a scenario of a relay network in the prior art
  • FIG. 2 is a flow chart of an embodiment of an uplink data communication method according to the present application
  • FIG. 3 is a structural diagram of an embodiment of an uplink data communication device according to the present application
  • FIG. 5 is a flow chart of an embodiment of a downlink data communication method according to the present application
  • FIG. 6 is a structural diagram of an embodiment of a downlink data communication device according to the present application
  • Figure 8 is a schematic diagram of a scene of an embodiment of a communication system of the present application.
  • multiple backhaul terminals reuse the same time-frequency resources on the basis of the existing equipment without device replacement, thereby expanding the throughput of the backhaul link.
  • Step 201 The processing unit receives uplink data sent by the relay station, and divides the uplink data.
  • one processing unit is shared by at least two backhaul terminals that reuse the same time-frequency resource.
  • the processing unit receives the uplink data sent by the relay station, at least two backhaul terminals of the relay station and the reused time-frequency resource Data communication is performed, and therefore, the processing unit divides the received uplink data.
  • the uplink data segmentation can be determined and executed as follows. One way is: the base station determines how many backhaul terminals are needed when the backhaul terminal throughput requirement is met, and how much data quantity each backhaul terminal needs to allocate, receives the number of backhaul terminals indicated by the base station, and the amount of data, and then according to the determined number and The amount of data divides the uplink data.
  • the processing unit receives the uplink data sent by the relay station, and the segmentation of the uplink data includes: the processing unit receives the number of backhaul terminals sent by the base station that meet the backhaul link throughput requirement and each backhaul terminal is allocated. The amount of data is divided into data according to the number of backhaul terminals indicated by the base station and the amount of data allocated by each backhaul terminal.
  • a base station performs data communication with four backhaul terminals that reuse time-frequency resources through a backhaul link, and the four backhaul terminals perform data communication with the same relay station.
  • the relay station needs to divide the uplink data by sending the uplink data, the number of backhaul terminals that meet the throughput requirement of the backhaul link and the amount of data allocated by each backhaul terminal are received first, for example, when starting the above four backhaul terminals.
  • the uplink data communication can meet the throughput of the backhaul link, and if the two backhaul terminals allocate the data amount evenly, the number of the backhaul terminals of the current uplink data communication can be determined to be 2,
  • the 10M uplink data is divided into 2 parts on average and allocated to 2 backhaul terminals.
  • the base station determines, in the data communication system, the number of all backhaul terminals that perform data communication with the uplink number of relay stations, and how much data amount each backhaul terminal needs to allocate, and the processing unit receives the number of backhaul terminals indicated by the base station. And the amount of data, and then divide the number of uplinks according to the determined number and amount of data.
  • the processing unit receives the uplink data sent by the relay station, and the segmentation of the uplink data includes: the processing unit receives, by the base station, the number of all backhaul terminals that are reused by the same time-frequency resource and the amount of data allocated by each backhaul terminal;
  • the uplink data is divided into data according to the number of backhaul terminals indicated by the base station and the amount of data allocated by each backhaul terminal. The above situation is still taken as an example. At this time, since the number of backhaul terminals that reuse the same time-frequency resource is 4, the uplink data is divided into four parts.
  • the segmentation method used for data segmentation is not limited, and the uplink data may be segmented by any one of the prior art methods.
  • the TCP/IP protocol can be used.
  • Step 202 Allocating the divided data to at least two backhaul terminals that are connected to the relay station and reuse the same time-frequency resource, so that the at least two backhaul terminals send respective data to the base station through respective backhaul links. Make a combination.
  • the upstream data is divided into two parts: data A and data B.
  • Data A and data B are respectively allocated to two backhaul terminals that reuse the same time-frequency resource. After receiving the data, the two backhaul terminals send their respective data to the uplink base station through their respective backhaul links, and the uplink base station will receive the data again.
  • the data A and the data B are combined to obtain complete uplink data.
  • multiple backhaul terminals that reuse the same time-frequency resource is not limited in the embodiment of the present application, that is, multiple backhaul terminals that reuse the same time-frequency resource may be packaged together to form one accommodation.
  • New backhaul terminals with multiple backhaul terminals can also be distributed independently in the system network.
  • the processing unit is shared by these at least two backhaul terminals that reuse the same time-frequency resource.
  • the time-frequency multiplexing method is used to reuse the same time-frequency resources of multiple existing backhaul terminals in a backhaul link, thereby saving not only on the basis of the existing backhaul terminal.
  • the cost of use also increases the throughput of the backhaul link.
  • the embodiment of the present application further provides an uplink data communication device corresponding to the uplink data communication method in the first embodiment.
  • FIG. 3 is a structural diagram of an embodiment of an apparatus for uplink data communication according to the present application.
  • the apparatus includes a data splitting unit 301 and a data distribution unit 302. The internal structure and connection relationship will be further described below in conjunction with the working principle of the device.
  • the data dividing unit 301 is configured to receive uplink data sent by the relay station, and divide the uplink data.
  • a data distribution unit 302 configured to allocate the divided data to the connection with the relay station At least two backhaul terminals of the same time-frequency resource are used to transmit respective data to the base station for combining by the at least two backhaul terminals through respective backhaul links.
  • FIG. 4 is a schematic structural diagram of a data dividing unit according to the present application.
  • the data dividing unit 301 includes a first receiving subunit 3011 and a first dividing subunit 3012.
  • a first receiving subunit 3011 configured to receive, by the base station, a number of backhaul terminals that meet a backhaul link throughput requirement and an amount of data allocated by each backhaul terminal;
  • the first dividing subunit 3012 is configured to divide the uplink data according to the number of backhaul terminals received by the first receiving subunit 3011 and the amount of data allocated by each backhaul terminal.
  • the first receiving subunit 3011 may be further replaced with a second receiving subunit, configured to receive the number of all backhaul terminals that are transmitted by the base station to reuse the same time-frequency resource and the amount of data that each backhaul terminal is allocated.
  • the first segmentation subunit 3012 may be replaced by a second segmentation subunit, configured to perform the uplink data according to the number of backhaul terminals received by the second receiving subunit and the amount of data allocated by each backhaul terminal. segmentation.
  • the segmentation method used for data segmentation is not limited, and the uplink data may be segmented by any one of the prior art methods.
  • the TCP/IP protocol can be used.
  • the combination method used in the data combination is not limited in the embodiment of the present application, and the data may be combined by any one of the grouping methods in the prior art.
  • the time-frequency multiplexing method is used to reuse the same time-frequency resources of multiple existing backhaul terminals in a backhaul link, thereby saving not only on the basis of the existing backhaul terminal.
  • the cost of use also increases the throughput of the backhaul link.
  • FIG. 5 is a flowchart of an embodiment of a method for downlink data communication, including the following steps:
  • Step 501 The processing unit combines the split data on the at least two backhaul terminals that are connected to the same relay station and reuses the same time-frequency resource, where the split data is received by the at least two backhaul terminals through respective backhaul links. ;
  • the combining the split data on the at least two backhaul terminals of the same time-frequency resource that is connected to the same relay station includes: acquiring the split data from the backhaul terminal indicated by the base station, where the split data is the base station according to the base station Backhaul terminal meeting backhaul link throughput requirements The number and the amount of data allocated to each backhaul terminal are divided into downlink data and allocated to the backhaul terminal through the backhaul link; and the split data acquired on the backhaul terminal implemented by the base station is combined.
  • the backhaul terminals there are 5 backhaul terminals that are connected to the same relay station and reuse the same time-frequency resources.
  • the backhaul link throughput requirement can be met, and the base station selects three backhaul terminals from the five backhaul terminals.
  • the base station selects three backhaul terminals from the five backhaul terminals.
  • determining the amount of data that each of the three backhaul terminals should allocate dividing the downlink data according to the number of selected backhaul terminals and the amount of data allocated by each backhaul terminal, and dividing the downlink data through the backhaul link
  • the data is sequentially assigned to the selected 3 backhaul terminals.
  • the processing unit acquires the split data from the three backhaul terminals selected by the base station, and combines the obtained split data.
  • the base station side is configured with terminal identifiers of at least two backhaul terminals that reuse the same time-frequency resources that are connected through the backhaul link, so that it can be known which backhaul terminals can be used to deliver downlink data. Further, after the data is divided, the divided data is allocated to the corresponding backhaul terminal according to the configured terminal identifier.
  • combining, combining the split data on the at least two backhaul terminals that are connected to the same relay station and reusing the same time-frequency resource acquiring the split data from all backhaul terminals that reuse the same time-frequency resource, where the split data And dividing, by the base station, the downlink data according to the number of all backhaul terminals that reuse the same time-frequency resource and the amount of data allocated by each backhaul terminal, and distributing the downlink data to the backhaul terminal through the backhaul link; and returning the backhaul terminal indicated by the slave base station
  • the segmentation data obtained on the combination is combined.
  • the base station determines the amount of data that each of the five backhaul terminals should allocate, according to the number of five backhaul terminals and each backhaul terminal.
  • the amount of data allocated divides the downlink data, and the divided data is sequentially allocated to the five backhaul terminals through the backhaul link.
  • the processing unit acquires the segmentation data from the five backhaul terminals, and combines the obtained segmentation data.
  • Step 502 The processing unit sends the combined downlink data to the relay station connected to the at least two backhaul terminals.
  • the segmentation method used for data segmentation is not limited, and the uplink data may be segmented by using any one of the prior art packetization methods.
  • Adopt TCP/IP protocol Such as Adopt TCP/IP protocol.
  • the combination method used in the data combination is not limited in the embodiment of the present application, and the data may be combined by any one of the grouping methods in the prior art.
  • the time-frequency multiplexing method is used to reuse the same time-frequency resources of multiple existing backhaul terminals in a backhaul link, thereby saving not only on the basis of the existing backhaul terminal.
  • the cost of use also increases the throughput of the backhaul link.
  • the embodiment of the present application further provides a downlink data communication device corresponding to the downlink data communication method in the third embodiment.
  • FIG. 6 is a structural diagram of an embodiment of a downlink data communication apparatus according to the present application.
  • the apparatus includes: a data combining unit 601 and a data transmitting unit 602.
  • the internal structure and connection relationship will be further described below in conjunction with the working principle of the device.
  • a data combining unit 601 configured to combine split data on at least two backhaul terminals that are used by the same relay station to reuse the same time-frequency resource, where the split data is received by the at least two backhaul terminals through respective backhaul links of;
  • the data sending unit 602 is configured to send the combined downlink data to the relay station connected to the at least two backhaul terminals.
  • the data combining unit 601 includes: a first acquiring subunit 6011 and a first combining subunit 6012, where the first obtaining subunit 6011 is configured to acquire split data from a backhaul terminal indicated by the base station, where the split data is a base station
  • the downlink data is divided according to the number of backhaul terminals satisfying the backhaul link throughput requirement and the amount of data allocated by each backhaul terminal, and is allocated to the backhaul terminal through the backhaul link;
  • the first combination sub-unit 6012 is configured to combine the segmentation data acquired by the first acquisition sub-unit 6011.
  • first obtaining sub-unit 6011 may be further replaced with a second acquiring sub-unit, configured to acquire the split data from all the backhaul terminals that reuse the same time-frequency resource, where the split data is the base station according to the reuse of the same time-frequency resource.
  • the number of all backhaul terminals and the amount of data allocated to each backhaul terminal divides the downlink data and distributes it to the backhaul terminal through the backhaul link.
  • the first combination sub-unit 6012 can be replaced with a second combination sub-unit for combining the segmentation data acquired by the second acquisition sub-unit.
  • the segmentation method adopted by the data segmentation in the embodiment of the present application is not performed.
  • the uplink data may be segmented by any one of the prior art subcontracting methods.
  • the TCP/IP protocol can be used.
  • the combination method used in the data combination is not limited in the embodiment of the present application, and the data may be combined by any one of the grouping methods in the prior art.
  • the time-frequency multiplexing method is used to reuse the same time-frequency resources of multiple existing backhaul terminals in a backhaul link, thereby saving not only on the basis of the existing backhaul terminal.
  • the cost of use also increases the throughput of the backhaul link.
  • FIG. 8 is a schematic diagram of a scenario of an embodiment of a communication system according to the present application.
  • the system includes: a base station 801, a backhaul terminal 802, a relay station 803, and a processing unit 804.
  • the processing unit 804 is the uplink data communication device in the second embodiment or the downlink data communication device in the fourth embodiment.
  • 801 performs data communication with at least two backhaul terminals 802 that reuse the same time-frequency resource, and at least two backhaul terminals 802 perform data communication with the same relay station 803 through the processing unit 804;
  • the base station 801 is configured to combine the uplink data when receiving the uplink data sent by the at least two backhaul terminals, and when the downlink data is sent to the at least two backhaul terminals, the downlink data is divided, and the downlink data is divided. The data is sent to the at least two backhaul terminals.
  • multiple (at least two) backhaul terminals reuse the same time-frequency resource
  • the base station performs data communication with multiple backhaul terminals that reuse the same time-frequency resource through multiple backhaul links.
  • multiple backhaul terminals that reuse the same time-frequency resource perform data communication with the same relay station through one processing unit.
  • the devices mentioned herein including the base station, the backhaul terminal, the relay station, and the user terminal, are devices that already exist in the system network, that is, devices that support R8.
  • the embodiments of the present application do not limit the physical locations of multiple backhaul terminals that reuse the same time-frequency resource, that is, multiple backhaul terminals that reuse the same time-frequency resource may be packaged together to form one. New backhaul terminals that accommodate multiple backhaul terminals can also be distributed independently in the system network.
  • the embodiment of the present application does not limit the specific number of terminals of the backhaul terminal that reuses the same time-frequency resource, that is, for a fixed system, the maximum throughput of the backhaul link may be determined according to historical conditions.
  • the maximum throughput of the backhaul link determines the number of backhaul terminals required, and then comprehensively determines the number of backhaul terminals, actual usage, and system operation.
  • a combination of factors such as cost and other factors that determine the number of backhaul terminals that reuse the same time-frequency resources.
  • the composition style of the antenna used in the backhaul terminal is not limited in the embodiment of the present application.
  • At least two backhaul terminals 202 and the same relay station 203 perform data communication by a wired or wireless connection method.
  • the reuse technology used when at least two backhaul terminals reuse the same time-frequency resource is not limited, and any time-frequency reuse method in the prior art may be used.
  • the at least two backhaul terminals are used.
  • VMIMO technology reuses the same time-frequency resources.
  • the time-frequency multiplexing method is used to reuse the same time-frequency resources of multiple existing backhaul terminals in a backhaul link, thereby saving not only on the basis of the existing backhaul terminal.
  • the cost of use also increases the throughput of the backhaul link.
  • the solution of the present application can be applied to various communication systems, such as an LTE system, a WIMAX system, etc., and other scenarios where the throughput of the backhaul link is high.
  • all or part of the processes in the foregoing embodiments can be implemented by a computer program to instruct related hardware, and the program can be stored in a computer readable storage.
  • the program when executed, may include the flow of an embodiment of the methods as described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random storage memory (Random).
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种回程链路中的数据通信方法、 装置和系统 本申请要求了 2010年 12月 23日提交的、 申请号为 201010605125.9、 发明名称为"一种回程链路中的数据通信方法、装置和系统"的中国申请的优 先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 特别是涉及一种回程链路中的数据通信方 法、 装置和系统。 背景技术 中继技术作为一种新兴的技术,引起了越来越广泛的注意,被视为 B3G ( Beyond 3G ) /4G的关键技术。 通过中继技术, 可以将传统的单跳链路分 成多个多跳链路, 由于距离缩短, 这将极大地减少路径损耗, 有助于提高 传输质量, 扩大通信范围, 从而为 UE提供更快速更优质的服务。
请参阅图 1 , 其为现有技术中一种中继网络的场景结构示意图。 如图 1 所示, 上行数据由 UE ( User Equipment, 用户终端)发给中继站(也称中 继节点或者小基站), 再由中继站通过与其连接的回程终端转发给基站 ( NodeB或者 eNodeB ), 下行数据由基站发给回程终端, 再由回程终端通 过与其连接的中继站转发给 UE。 其中, UE与中继站之间的链路被成为接 入链路, 基站与回程终端之间的链路被称为回程链路(Backhual Link )。 为 了数据的正常通信, 回程链路的吞吐量总要大于或者等于所有接入链路的 吞吐量之和。 由此可见, 对于中继网络的数据通信来说, 提高回程链路的 吞吐量是急需解决的一个技术问题。
目前, 为了提高回程链路的吞吐量, 通常采用升级规格的基站和回程 终端, 即, 采用比当前商用版本更高版本的基站和回程终端。 当前比较成 熟的版本是 LTE R8, 更高的版本是 R10 , 由于 R10在上下行数据通信时采 用了比 R8更高阶的 MIMO ( Multiple Input Multiple Output, 多输入多输出) 技术, 同时还采用了载波聚合, 因此, 支持 R10的设备比支持 R8的设备具 有更高的吞吐量。 如, 对于图 1所示的中继网络, 在接入链路中采用 R8版 本的中继站和用户终端, 在回程链路中则可以采用 R10版本的基站和回程 终端。
但是, 设备规格的提升不仅提高了成本, 并且, 当将支持 R8的设备替 换为支持 R10的设备时, 替换设备的过程本身也需要投入一定的时间和人 力。 发明内容 为了解决上述技术问题, 本发明实施例提供了一种回程链路中的数据 通信方法、 装置和系统, 以在提高回程链路的吞吐量的同时, 降低使用成 本。
本发明实施例公开了如下技术方案:
一种上行数据通信方法, 包括: 接收中继站发送的上行数据, 将所述 上行数据进行分割; 将分割后的数据分配给与所述中继站连接的重用相同 时频资源的至少两个回程终端, 以便由所述至少两个回程终端通过各自的 回程链路将各自的数据发送给基站进行组合。
一种下行数据通信方法, 包括: 对与同一个中继站连接的重用相同时 频资源的至少两个回程终端上的分割数据进行组合, 所述分割数据为所述 至少两个回程终端通过各自的回程链路接收的; 将组合后的下行数据发送 给与所述至少两个回程终端连接的中继站。
一种上行数据通信装置, 包括: 数据分割单元, 用于接收中继站发送 的上行数据, 将所述上行数据进行分割; 数据分配单元, 用于将分割后的 数据分配给与所述中继站连接的重用相同时频资源的至少两个回程终端, 以便由所述至少两个回程终端通过各自的回程链路将各自的数据发送给基 站进行组合。
一种下行数据通信装置, 包括: 数据组合单元, 用于对与同一个中继 站连接的重用相同时频资源的至少两个回程终端上的分割数据进行组合 所述分割数据为所述至少两个回程终端通过各自的回程链路接收的; 数据 发送单元, 用于将组合后的下行数据发送给与所述至少两个回程终端连接 的中继站。
一种通信系统, 包括上行数据通信装置或者下行数据通信装置, 还包 括基站、 回程终端和中继站, 其中, 所述基站与重用相同时频资源的至少 两个所述回程终端进行数据通信, 所述至少两个回程终端通过所述装置与 同一个中继站进行数据通信; 所述基站, 用于当接收到所述至少两个回程 终端发送的上行数据时, 组合所述上行数据, 当发送下行数据给所述至少 两个回程终端时, 分割所述下行数据, 将分割后的数据发送给所述至少两 个回程终端。
由上述实施例可以看出, 采用时频复用的方式使一个回程链路下的多 个现有的回程终端重用相同的时频资源, 从而在利用现有的回程终端的基 础下, 不仅节省了使用成本, 也同时扩大了回程链路的吞吐量。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作筒单地介绍。, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为现有技术中一种中继网络的场景结构示意图;
图 2为本申请一种上行数据通信方法的一个实施例的流程图; 图 3为本申请一种上行数据通信装置的一个实施例的结构图; 图 4为本申请一种数据分割单元的结构示意图;
图 5为本申请一种下行数据通信方法的一个实施例的流程图; 图 6为本申请一种下行数据通信装置的一个实施例的结构图; 图 7为本申请一种数据组合单元的结构示意图;
图 8为本申请一种通信系统的一个实施例的场景示意图.
具体实施方式 本申请实施例在利用现有设备, 不进行设备替换的基础上, 使多个回 程终端重用相同的时频资源, 进而扩展了回程链路的吞吐量。
为使本发明的上述目的、 特征和优点能够更加明显易懂, 下面结合附 图对本发明实施例进行详细描述。 实施例一
本申请实施例提供了一种上行数据通信的方法。请参阅图 2, 其为本申 请一种上行数据通信方法的一个实施例的流程图, 包括以下步骤: 步骤 201 : 处理单元接收中继站发送的上行数据, 将所述上行数据进行 分割;
例如, 在上行数据通信中, 一个处理单元被重用相同时频资源的至少 两个回程终端共用, 当处理单元接收到中继站发送的上行数据时, 由于中 继站与重用时频资源的至少两个回程终端进行数据通信, 因此, 处理单元 将所接收的上行数据进行分割。
进一步的, 上行数据分割可以按照如下方式确定和执行。 一种方式是: 由基站确定当满足回程终端吞吐量需求时需要多少个回程终端, 以及每个 回程终端需要分配多少数据量, 接收基站指示的回程终端数目和数据量, 然后按照确定的数目和数据量分割上行数据。
贝' J , 所述处理单元接收中继站发送的上行数据, 将所述上行数据进行 分割包括: 该处理单元接收基站发送的满足回程链路吞吐量需求的回程终 端数目和每个回程终端被分配的数据量; 按照基站指示的回程终端数目和 每个回程终端被分配的数据量, 将所述上行数据进行数据分割。
例如, 在数据通信系统中, 基站通过回程链路与重用时频资源的 4个 回程终端进行数据通信, 该 4个回程终端与同一个中继站进行数据通信。 当中继站发送上行数据而需要分割上行数据时, 先接收基站发送的满足回 程链路的吞吐量需求的回程终端数目和每个回程终端被分配的数据量, 如, 当启动上述 4个回程终端中的 2个回程终端时, 即可满足上行数据通信对 回程链路的吞吐量的需求, 且, 2个回程终端平均分配数据量, 则可以确定 本次上行数据通信的回程终端数目为 2, 将 10M的上行数据平均分割成 2 个部分, 并分配给 2个回程终端。
或者, 另一种方式是, 基站确定数据通信系统中, 与发送上行数目的 中继站进行数据通信的所有回程终端数目, 以及每个回程终端需要分配多 少数据量, 处理单元接收基站指示的回程终端数目和数据量, 然后按照确 定的数目和数据量分割上行数目。
贝' J , 该处理单元接收中继站发送的上行数据, 将所述上行数据进行分 割包括: 处理单元接收基站发送的重用相同时频资源的所有回程终端数目 和每个回程终端被分配的数据量; 按照基站指示的回程终端数目和每个回 程终端被分配的数据量, 将所述上行数据进行数据分割。 仍旧以上述情况为例, 此时, 由于重用相同时频资源的回程终端的数 目为 4, 因此, 将上行数据分割成 4个部分。
需要说明的是, 本申请实施例对数据分割所采用的分割方法并不进行 限定, 可以采用现有技术中任何一种分包法对上行数据进行分割。 如, 可 采用 TCP/IP协议。
步骤 202:将分割后的数据分配给与所述中继站连接的重用相同时频资 源的至少两个回程终端, 以便由所述至少两个回程终端通过各自的回程链 路将各自的数据发送给基站进行组合。
例如, 如果将上行数据分割成 2个部分: 数据 A和数据 B。 将数据 A 和数据 B分别分配给重用相同时频资源的 2个回程终端, 2个回程终端收 到数据后, 通过各自的回程链路将各自的数据发送给上行基站, 上行基站 再将接收到的数据 A和数据 B进行组合, 获得完整的上行数据。
需要说明的是, 本申请实施例对重用相同的时频资源的多个回程终端 的物理位置不进行限定, 即, 这些重用相同时频资源的多个回程终端可以 被封装在一起, 形成一个容纳有多个回程终端的新回程终端, 也可以独立 地分布于系统网络中。 而处理单元被这些重用相同时频资源的至少两个回 程终端共用。
还需要说明的是, 本申请实施例对数据组合所采用的组合方法并不进 行限定, 可以采用现有技术中任何一种组包法对数据进行组合。
由上述实施例可以看出, 采用时频复用的方式使一个回程链路下的多 个现有的回程终端重用相同的时频资源, 从而在利用现有的回程终端的基 础下, 不仅节省了使用成本, 也同时扩大了回程链路的吞吐量。 实施例二
本申请实施例还提供了一种与实施例一中的上行数据通信方法相对应 的上行数据通信装置。请参阅图 3 , 其为本申请一种上行数据通信的装置的 一个实施例的结构图。该装置包括:数据分割单元 301和数据分配单元 302。 下面结合该装置的工作原理进一步介绍其内部结构以及连接关系。
数据分割单元 301 , 用于接收中继站发送的上行数据, 将所述上行数据 进行分割;
数据分配单元 302,用于将分割后的数据分配给与所述中继站连接的重 用相同时频资源的至少两个回程终端, 以便由所述至少两个回程终端通过 各自的回程链路将各自的数据发送给基站进行组合。
其中, 可选的, 请参阅图 4, 其为本申请一种数据分割单元的结构示意 图。数据分割单元 301包括:第一接收子单元 3011和第一分割子单元 3012。
第一接收子单元 3011 , 用于接收基站发送的满足回程链路吞吐量需求 的回程终端数目和每个回程终端被分配的数据量;
第一分割子单元 3012,用于根据第一接收子单元 3011所接收的回程终 端数目和每个回程终端被分配的数据量, 将所述上行数据进行分割。
另外, 上述第一接收子单元 3011还可以替换为第二接收子单元, 用于 接收基站发送的重用相同时频资源的所有回程终端数目和每个回程终端被 分配的数据量。
相应的, 上述第一分割子单元 3012可以替换为第二分割子单元, 用于 根据第二接收子单元所接收的回程终端数目和每个回程终端被分配的数据 量, 将所述上行数据进行分割。
需要说明的是, 本申请实施例对数据分割所采用的分割方法并不进行 限定, 可以采用现有技术中任何一种分包法对上行数据进行分割。 如, 可 采用 TCP/IP协议。 本申请实施例对数据组合所采用的组合方法也并不进行 限定, 可以采用现有技术中任何一种组包法对数据进行组合。
由上述实施例可以看出, 采用时频复用的方式使一个回程链路下的多 个现有的回程终端重用相同的时频资源, 从而在利用现有的回程终端的基 础下, 不仅节省了使用成本, 也同时扩大了回程链路的吞吐量。 实施例三
本申请实施例还提供了一种下行数据通信方法。请参阅图 5 , 其为本申 请一种下行数据通信方法的一个实施例的流程图, 包括以下步骤:
步骤 501 :处理单元对与同一个中继站连接的重用相同时频资源的至少 两个回程终端上的分割数据进行组合, 所述分割数据为所述至少两个回程 终端通过各自的回程链路接收的;
其中, 所述对与同一个中继站连接的重用相同时频资源的至少两个回 程终端上的分割数据进行组合包括: 从基站指示的回程终端上获取分割数 据, 其中, 所述分割数据为基站按照满足回程链路吞吐量需求的回程终端 数目和每个回程终端被分配的数据量, 将下行数据进行分割, 并通过回程 链路分配给回程终端的; 将所述从基站实施的回程终端上获取的分割数据 进行组合。
例如, 与同一个中继站连接的重用相同时频资源的回程终端共有 5个, 当使用其中的 3个回程终端即可满足回程链路吞吐量需求, 基站从 5个回 程终端中选择 3个回程终端, 并确定这 3个回程终端中每个回程终端应该 分配的数据量, 按照选择的回程终端数目和每个回程终端被分配的数据量 将下行数据进行分割,并通过回程链路将分割后的数据依次分配给选择的 3 个回程终端。 处理单元分别从基站选择的 3个回程终端上获取分割数据, 并将得到的分割数据进行组合。
另外, 在数据通信系统中, 基站侧配置有与自身通过回程链路连接的 重用相同时频资源的至少两个回程终端的终端标识, 从而可以获知有哪些 回程终端可以用于下发下行数据。 进而当将数据进行分割后, 根据配置的 终端标识将分割后的数据分配给对应的回程终端。
或者, 所述对与同一个中继站连接的重用相同时频资源的至少两个回 程终端上的分割数据进行组合: 从重用相同时频资源的所有回程终端上获 取分割数据, 其中, 所述分割数据为基站按照重用相同时频资源的所有回 程终端数目和每个回程终端被分配的数据量, 将下行数据进行分割, 并通 过回程链路分配给回程终端的; 将所述从基站指示的回程终端上获取的分 割数据进行组合。
例如, 与同一个中继站连接的重用相同时频资源的回程终端共有 5个, 基站确定这 5个回程终端中每个回程终端应该分配的数据量, 按照 5个回 程终端数目和每个回程终端被分配的数据量将下行数据进行分割, 并通过 回程链路将分割后的数据依次分配给 5个回程终端。 处理单元分别从 5个 回程终端上获取分割数据, 并将得到的分割数据进行组合。
由于在实施例一中已经对如何实现数据分割和组合的相关内容进行了 详细地描述, 故此处不再赘述。
步骤 502:处理单元将组合后的下行数据发送给与所述至少两个回程终 端连接的中继站。
需要说明的是, 本申请实施例对数据分割所采用的分割方法并不进行 限定, 可以采用现有技术中任何一种分包法对上行数据进行分割。 如, 可 采用 TCP/IP协议。 本申请实施例对数据组合所采用的组合方法也并不进行 限定, 可以采用现有技术中任何一种组包法对数据进行组合。
由上述实施例可以看出, 采用时频复用的方式使一个回程链路下的多 个现有的回程终端重用相同的时频资源, 从而在利用现有的回程终端的基 础下, 不仅节省了使用成本, 也同时扩大了回程链路的吞吐量。 实施例四
本申请实施例还提供了一种与实施例三中的下行数据通信方法相对应 的下行数据通信装置。请参阅图 6, 其为本申请一种下行数据通信装置的一 个实施例的结构图。 该装置包括: 数据组合单元 601和数据发送单元 602。 下面结合该装置的工作原理进一步介绍其内部结构以及连接关系。
数据组合单元 601 ,用于对与同一个中继站连接的重用相同时频资源的 至少两个回程终端上的分割数据进行组合 所述分割数据为所述至少两个 回程终端通过各自的回程链路接收的;
数据发送单元 602,用于将组合后的下行数据发送给与所述至少两个回 程终端连接的中继站。
优选的, 请参阅图 7 , 其为本申请一种数据组合单元的结构示意图。 数 据组合单元 601包括:第一获取子单元 6011和第一组合子单元 6012,其中, 第一获取子单元 6011 , 用于从基站指示的回程终端上获取分割数据, 其中, 所述分割数据为基站按照满足回程链路吞吐量需求的回程终端数目 和每个回程终端被分配的数据量, 将下行数据进行分割, 并通过回程链路 分配给回程终端的;
第一组合子单元 6012,用于将第一获取子单元 6011获取的分割数据进 行组合。
另外, 上述第一获取子单元 6011还可以替换为第二获取子单元, 用于 从重用相同时频资源的所有回程终端上获取分割数据, 其中, 所述分割数 据为基站按照重用相同时频资源的所有回程终端数目和每个回程终端被分 配的数据量, 将下行数据进行分割, 并通过回程链路分配给回程终端的。
相应的, 第一组合子单元 6012可以替换为第二组合子单元, 用于将所 述第二获取子单元获取的分割数据进行组合。
需要说明的是, 本申请实施例对数据分割所采用的分割方法并不进行 限定, 可以采用现有技术中任何一种分包法对上行数据进行分割。 如, 可 采用 TCP/IP协议。 本申请实施例对数据组合所采用的组合方法也并不进行 限定, 可以采用现有技术中任何一种组包法对数据进行组合。
由上述实施例可以看出, 采用时频复用的方式使一个回程链路下的多 个现有的回程终端重用相同的时频资源, 从而在利用现有的回程终端的基 础下, 不仅节省了使用成本, 也同时扩大了回程链路的吞吐量。 实施例五
请参阅图 8, 其为本申请一种通信系统的一个实施例的场景示意图。如 图 8所示, 该系统包括: 基站 801、 回程终端 802、 中继站 803和处理单元 804 , 其中, 处理单元 804为实施例二中上行数据通信装置或实施例四中的 下行数据通信装置,基站 801与重用相同时频资源的至少两个回程终端 802 进行数据通信, 至少两个回程终端 802通过处理单元 804与同一个中继站 803进行数据通信;
基站 801 , 用于当接收到所述至少两个回程终端发送的上行数据时, 组 合所述上行数据, 当发送下行数据给所述至少两个回程终端时, 分割所述 下行数据, 将分割后的数据发送给所述至少两个回程终端。
在本申请中, 多个(至少两个) 回程终端重用相同的时频资源, 基站 通过多个回程链路与重用相同的时频资源的多个回程终端进行数据通信。 同时, 重用相同的时频资源的多个回程终端再通过一个处理单元与同一个 中继站进行数据通信。
需要说明的是, 这里所提到的设备, 包括基站、 回程终端、 中继站和 用户终端,都为已经存在于系统网络中的设备, 即,可以为支持 R8的设备。
还需要说明的是, 本申请实施例对重用相同的时频资源的多个回程终 端的物理位置不进行限定, 即, 这些重用相同时频资源的多个回程终端可 以被封装在一起, 形成一个容纳有多个回程终端的新回程终端, 也可以独 立地分布于系统网络中。
还需要进一步说明的是, 本申请实施例对重用相同时频资源的回程终 端的具体终端数不进行限定, 即, 对于一个固定的系统, 可以根据历史情 况确定回程链路的最大吞吐量, 由回程链路的最大吞吐量确定所需要的回 程终端数目, 然后综合确定的回程终端数目、 实际的使用情况和系统运行 成本等多方面的综合因素, 决定重用相同时频资源的回程终端的数目。 另外, 还需要还说明的是, 本申请实施例对回程终端所采用的天线的 组成样式不进行限定。
可选的, 在本申请实施例中, 至少两个回程终端 202与同一个中继站 203通过有线或者无线的连接方法进行数据通信。
最后, 需要说明的是, 本申请实施例对至少两个回程终端重用相同的 时频资源时所采用的重用技术不进行限定, 可以采用现有技术中任何一种 时频重用方法。 优选的, 在本申请实施例中, 所述至少两个回程终端采用
VMIMO技术重用相同时频资源。
由上述实施例可以看出, 采用时频复用的方式使一个回程链路下的多 个现有的回程终端重用相同的时频资源, 从而在利用现有的回程终端的基 础下, 不仅节省了使用成本, 也同时扩大了回程链路的吞吐量。 本申请的方案可以应用在各种通信系统中, 如 LTE系统、 WIMAX系 统等, 以及其他对回程链路吞吐量要求较高的场景。 需要说明的是, 本领域普通技术人员可以理解实现上述实施例方法中 的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 所 述的程序可存储于一计算机可读取存储介质中, 该程序在执行时, 可包括 如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random
Access Memory, RAM )等。
以上对本发明所提供的一种回程链路中的数据通信方法、 装置和系统
行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思 想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施 方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为 对本发明的限制。

Claims

权利要求
1、 一种上行数据通信方法, 其特征在于, 包括:
接收中继站发送的上行数据, 将所述上行数据进行分割;
将分割后的数据分配给与所述中继站连接的重用相同时频资源的至少 两个回程终端, 以便由所述至少两个回程终端通过各自的回程链路将各自 的数据发送给基站进行组合。
2、 根据权利要求 1所述的方法, 其特征在于, 所述接收中继站发送的 上行数据, 将所述上行数据进行分割, 包括:
接收基站发送的满足回程链路吞吐量需求的回程终端数目和每个回程 终被分配的数据量;
按照基站指示的回程终端数目和每个回程终端被分配的数据量, 将所 述上行数据进行数据分割。
3、 根据权利要求 1所述的方法, 其特征在于, 所述接收中继站发送的 上行数据, 将所述上行数据进行分割包括:
接收基站发送的重用相同时频资源的所有回程终端数目和每个回程终 端被分配的数据量;
按照基站指示的回程终端数目和每个回程终端被分配的数据量, 将所 述上行数据进行数据分割。
4、 一种下行数据通信方法, 其特征在于, 包括:
对与同一个中继站连接的重用相同时频资源的至少两个回程终端上的 分割数据进行组合, 所述分割数据为所述至少两个回程终端通过各自的回 程链路接收的;
将组合后的下行数据发送给与所述至少两个回程终端连接的中继站。
5、 根据权利要求 4所述的方法, 其特征在于, 所述对与同一个中继站 连接的重用相同时频资源的至少两个回程终端上的分割数据进行组合, 包 括:
从基站指示的回程终端上获取分割数据, 其中, 所述分割数据为基站 按照满足回程链路吞吐量需求的回程终端数目和每个回程终端被分配的数 据量, 将下行数据进行分割, 并通过回程链路分配给回程终端的;
将所述从基站指示的回程终端上获取的分割数据进行组合。
6、 根据权利要求 4所述的方法, 其特征在于, 所述对与同一个中继站 连接的重用相同时频资源的至少两个回程终端上的分割数据进行组合, 包 括:
从重用相同时频资源的所有回程终端上获取分割数据, 其中, 所述分 割数据为基站按照重用相同时频资源的所有回程终端数目和每个回程终端 被分配的数据量, 将下行数据进行分割, 并通过回程链路分配给回程终端 的;
将所述从基站指示的回程终端上获取的分割数据进行组合。
7、 一种上行数据通信装置, 其特征在于, 包括:
数据分割单元, 用于接收中继站发送的上行数据, 将所述上行数据进 行分割;
数据分配单元, 用于将分割后的数据分配给与所述中继站连接的重用 相同时频资源的至少两个回程终端, 以便由所述至少两个回程终端通过各 自的回程链路将各自的数据发送给基站进行组合。
8、根据权利要求 7所述的装置, 其特征在于, 所述数据分割单元包括: 第一接收子单元, 用于接收基站发送的满足回程链路吞吐量需求的回 程终端数目和每个回程终被分配的数据量;
第一分割子单元, 用于根据所述第一接收子单元所接收的回程终端数 目和每个回程终端被分配的数据量, 将所述上行数据进行分割。
9、根据权利要求 7所述的装置, 其特征在于, 所述数据分割单元包括: 第二接收子单元, 用于接收基站发送的重用相同时频资源的所有回程 终端数目和每个回程终端被分配的数据量;
第二分割子单元, 用于根据所述第二接收子单元所接收的回程终端数 目和每个回程终端被分配的数据量, 将所述上行数据进行分割。
10、 一种下行数据通信装置, 其特征在于, 包括:
数据组合单元, 用于对与同一个中继站连接的重用相同时频资源的至 少两个回程终端上的分割数据进行组合 所述分割数据为所述至少两个回 程终端通过各自的回程链路接收的;
数据发送单元, 用于将组合后的下行数据发送给与所述至少两个回程 终端连接的中继站。
11、 根据权利要求 10所述的装置, 其特征在于, 所述数据组合单元包 括:
第一获取子单元, 用于从基站指示的回程终端上获取分割数据, 其中, 所述分割数据为所述基站按照满足回程链路吞吐量需求的回程终端数目和 每个回程终端被分配的数据量, 将下行数据进行分割, 并通过回程链路分 配给回程终端的;
第一组合子单元, 用于将所述第一获取子单元获取的分割数据进行组 合。
12、 根据权利要求 10所述的装置, 其特征在于, 所述数据组合单元包 括:
第二获取子单元, 用于从重用相同时频资源的所有回程终端上获取分 割数据, 其中, 所述分割数据为基站按照重用相同时频资源的所有回程终 端数目和每个回程终端被分配的数据量, 将下行数据进行分割, 并通过回 程链路分配给回程终端的;
第二组合子单元, 用于将所述第二获取子单元获取的分割数据进行组 合。
13、 一种通信系统, 其特征在于, 包括如权利 7-12中任一项所述的装 置, 还包括基站、 回程终端和中继站, 其中, 所述基站与重用相同时频资 源的至少两个所述回程终端进行数据通信, 所述至少两个回程终端通过所 述装置与同一个中继站进行数据通信;
所述基站, 用于当接收到所述至少两个回程终端发送的上行数据时, 组合所述上行数据, 当发送下行数据给所述至少两个回程终端时, 分割所 述下行数据, 将分割后的数据发送给所述至少两个回程终端。
14、 根据权利要求 13所述的系统, 其特征在于, 所述至少两个回程终 端与同一个中继站通过有线连接或者无线连接的方式进行通信。
15、 根据权利要求 13所述的系统, 其特征在于, 所述至少两个回程终 端采用虚拟多输入多输出 VMIMO技术重用相同时频资源
PCT/CN2011/084374 2010-12-23 2011-12-21 一种回程链路中的数据通信方法、装置和系统 WO2012083854A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010106051259A CN102026295A (zh) 2010-12-23 2010-12-23 一种回程链路中的数据通信方法、装置和系统
CN201010605125.9 2010-12-23

Publications (1)

Publication Number Publication Date
WO2012083854A1 true WO2012083854A1 (zh) 2012-06-28

Family

ID=43866997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084374 WO2012083854A1 (zh) 2010-12-23 2011-12-21 一种回程链路中的数据通信方法、装置和系统

Country Status (2)

Country Link
CN (1) CN102026295A (zh)
WO (1) WO2012083854A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102026295A (zh) * 2010-12-23 2011-04-20 上海华为技术有限公司 一种回程链路中的数据通信方法、装置和系统
WO2016065645A1 (zh) * 2014-10-31 2016-05-06 华为技术有限公司 一种回程链路的分配方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007106651A2 (en) * 2006-03-15 2007-09-20 Motorola, Inc. Dynamic wireless backhaul configuration
CN101401482A (zh) * 2006-03-15 2009-04-01 摩托罗拉公司 回程业务的动态波束导引
CN101449605A (zh) * 2006-05-15 2009-06-03 摩托罗拉公司 用于提供带内无线回程的方法和装置
CN101496444A (zh) * 2005-12-19 2009-07-29 摩托罗拉公司 分配回程方法的方法和装置
CN102026295A (zh) * 2010-12-23 2011-04-20 上海华为技术有限公司 一种回程链路中的数据通信方法、装置和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101496444A (zh) * 2005-12-19 2009-07-29 摩托罗拉公司 分配回程方法的方法和装置
WO2007106651A2 (en) * 2006-03-15 2007-09-20 Motorola, Inc. Dynamic wireless backhaul configuration
CN101401482A (zh) * 2006-03-15 2009-04-01 摩托罗拉公司 回程业务的动态波束导引
CN101449605A (zh) * 2006-05-15 2009-06-03 摩托罗拉公司 用于提供带内无线回程的方法和装置
CN102026295A (zh) * 2010-12-23 2011-04-20 上海华为技术有限公司 一种回程链路中的数据通信方法、装置和系统

Also Published As

Publication number Publication date
CN102026295A (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
US10925106B2 (en) Mobile communication system, control apparatus, base station, and user terminal supporting dual connectivity
US11252742B2 (en) Techniques for wireless access and wireline network integration
EP3506718B1 (en) Radio access network slice selection methods and apparatus
KR101870851B1 (ko) 버퍼 상태 보고(bsr)의 트리거 방법 및 장치
US9392481B2 (en) System and method for buffer status reporting for multi-stream aggregation
US10958581B2 (en) Data transmission method and communications apparatus
JP6148635B2 (ja) ユーザ装置及びアップリンクデータ送信方法
WO2017148446A1 (zh) 一种网络资源调度方法、设备、系统以及网络节点
CN107079524B (zh) 一种数据转发的方法和控制器
US11973589B2 (en) Mode switching method, data flow splitting method, and apparatus
US20190394766A1 (en) Resource scheduling method, apparatus, and system
CN109391419A (zh) 一种无线通信方法及装置
US10652858B2 (en) User equipment, network device, and data transmission method
WO2012083854A1 (zh) 一种回程链路中的数据通信方法、装置和系统
KR20210046499A (ko) 통신 시스템의 스펙트럼 쉐어링을 위한 방법 및 장치
CN113766516B (zh) 上行配置方法、系统、基站和存储介质
KR20200084029A (ko) 메시 네트워크에서의 네트워크 노드 및 방법들
JP2017163599A (ja) ユーザ装置及びアップリンクデータ送信方法
CN109417831B (zh) 用于增强lwa的上行链路路由方法和用户设备
CN112367669A (zh) 一种飞行器链式组网信道接入方法及系统
CN114424621A (zh) 一种缓冲区状态报告传输方法及装置
CN111836367A (zh) 一种带内中继方法、中继设备和网络设备
US20240205666A1 (en) Method and apparatus for configuring shared cell in communication system
CN110505646B (zh) 一种数据传输方法及发送端
KR20220046508A (ko) 무선 통신 시스템에서의 단말 간 통신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851339

Country of ref document: EP

Kind code of ref document: A1