WO2012083816A1 - 一种无线数据接入方法及设备 - Google Patents

一种无线数据接入方法及设备 Download PDF

Info

Publication number
WO2012083816A1
WO2012083816A1 PCT/CN2011/084080 CN2011084080W WO2012083816A1 WO 2012083816 A1 WO2012083816 A1 WO 2012083816A1 CN 2011084080 W CN2011084080 W CN 2011084080W WO 2012083816 A1 WO2012083816 A1 WO 2012083816A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
protocol
3gpp
data packet
network device
Prior art date
Application number
PCT/CN2011/084080
Other languages
English (en)
French (fr)
Inventor
赵瑾波
王映民
赵建
秦飞
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2012083816A1 publication Critical patent/WO2012083816A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets

Definitions

  • the invention relates to a Chinese patent application filed on December 20, 2010, filed on the Chinese Patent Office, the application number is “201010597575.8", and the invention name is "a wireless data access method and device” Priority is hereby incorporated by reference in its entirety.
  • the present invention relates to wireless communication technologies, and in particular, to a wireless data access method and device. Background technique
  • Figure 1 is a schematic diagram of global data traffic prediction results.
  • Cisco (Cisco) predicted the mobile data traffic in 2009-2014 and found that as shown in Figure 1, from 2009 to 14 years, traffic growth reached 40 times, basically every year. Increased by one time.
  • Figure 2 is a schematic diagram of data service growth and operator revenue growth trend.
  • the proportion of data services in the carrier network is gradually increasing, which has affected the traditional carrier-class services.
  • the data services are charged according to the flow rate, Its profit growth rate is not proportional to the traffic load.
  • the characteristics of indoor and hotspot data services are that the users usually move at a fixed or very low speed, and the mobility is not high.
  • the data services are mainly Internet services based on IP (Internet Protocol), and QoS (Quality of Service)
  • IP Internet Protocol
  • QoS Quality of Service
  • the requirements for service shields are relatively simple and far below the QoS requirements for carrier-class services.
  • the traditional cellular mobile communication system is mainly designed for high-speed mobile, seamless switching carrier-class service design. When it carries large-flow and low-speed IP data packet services, the efficiency is low and the cost is too high.
  • FIG. 3 is a schematic diagram of the WLAN+3G solution.
  • the main scheme is a loosely coupled scheme between the WLAN system and the 3G system, which implements the core network authentication and charging in the 3G system, and the implementation frequency band and the self-use WiFi are in the same frequency band.
  • WiFi Using WiFi to distribute data in hotspot areas can play a certain role in data traffic distribution.
  • the disadvantages are: The user experience is poor. Generally, users need to manually select the access network. It is difficult to achieve smooth handover of services between the two access networks.
  • the amount of link shield cannot be guaranteed.
  • the WiFi uses the unlicensed ISM (Industrial Scientific, Medical, Medical) band, and there are interferences between various devices such as self-use WiFi and microwave ovens.
  • Multi-operator networking is difficult at the same time. Because its working frequency band is an unlicensed frequency band, if multiple operators are networking in the same area, if there is no good coordination and unified planning, it will cause mutual interference.
  • the home base station (Femto, femtocell base station) is another solution to solve the data traffic demand in indoor and hotspot areas. According to the characteristics of shorter indoor coverage and fewer users, the capacity requirement of single station is reduced. And the power emissivity, usually the number of users is 8-20, the power is equivalent to the mobile phone terminal, generally below 23dBm.
  • Figure 4 is a schematic diagram of the LTE (Long Term Evolution) Femto network architecture. The architecture of the Femto solution can be seen in Figure 4.
  • LTE Long Term Evolution
  • the home base station Compared with the indoor coverage system and the micro base station, the home base station has lower cost and more flexible deployment, and plays a certain role in indoor data for the service experience.
  • the home base station Femto is not optimized for indoor data service characteristics.
  • the LTE Femto system basically adopts the complete protocol architecture and interface design of LTE, so the implementation is complicated, but the base station capacity and power are reduced. , so the cost has remained high;
  • Femto is a device in the IMT (International Mobile Telecommunications) system, and its working frequency is still the carrier licensed frequency band in the IMT.
  • the bandwidth available to the WiFi is less, and the carrier data service cannot be fully satisfied. Diversion demand.
  • the technical problem to be solved by the present invention is to provide a wireless data access method and device, and in particular, to provide a radio access network device, a wireless data access method, a gateway device, and a data forwarding method.
  • An embodiment of the present invention provides a radio access network device, including:
  • the radio frequency module is configured to receive data sent by the UE through the air interface according to the 3GPP LTE protocol after receiving the data service request initiated by the UE;
  • the IP layer processing module is configured to encapsulate the received data into an IP protocol data packet and then send the data to the Internet and/or the core network through the data transmission interface.
  • a wireless data access method is provided in the embodiment of the present invention, including the following steps: Accepting data service requests initiated by the UE;
  • the received data is encapsulated into IP protocol packets and sent to the Internet and/or the core network.
  • a gateway device is provided in the embodiment of the present invention, including:
  • a DA base station interface configured to send and receive data with a radio access network device
  • a data transmission interface for transmitting and receiving data with the Internet and/or the core network
  • a routing module configured to determine whether the received data is an IP protocol data packet; when the received data is an IP protocol data packet, determine whether the device that sends the data packet is a 3GPP radio access network device, or determines to receive the data packet. Whether the device is a 3GPP radio access network device; when it is determined to be a 3GPP radio access network device, the IP protocol data packet is forwarded after the received IP protocol data packet is routed.
  • a data forwarding method is provided in the embodiment of the present invention, including the following steps:
  • the received data is an IP protocol data packet, determining whether the device that sends the data packet is a 3GPP radio access network device, or determining whether the device receiving the data packet is a 3GPP radio access network device;
  • the received IP protocol data packet is routed and then forwarded.
  • a mobile terminal is provided in the embodiment of the present invention, including:
  • the radio frequency module is configured to send and receive data with the radio access network device.
  • An IP layer processing module configured to send, after the data is sent by the radio frequency module according to the 3GPP protocol, the data is segmented by the IP data packet, where the data is data in the data service; and/or, in accordance with the 3GPP protocol After receiving the data, the radio frequency module performs cascading and recombination of the MAC data packet, where the data is data in the data service.
  • An embodiment of the present invention provides a method for transmitting and receiving wireless data, including the following steps:
  • the data Before the data is sent through the air interface according to the 3GPP LTE protocol, the data is segmented by the IP data packet, and the data is data in the data service;
  • the data After receiving data through the air interface according to the 3GPP LTE protocol, the data is cascaded and reassembled, and the data is data in the data service.
  • a wireless communication system is provided in the embodiment of the present invention, including:
  • the mobile terminal is configured to send and receive data with the radio access network device, and send the data to the IP data packet segmentation process after the data is sent by the radio frequency module according to the 3GPP protocol, where the data is data in the data service; a radio access network device, configured to receive, after receiving a data service request initiated by the mobile terminal, the receiving mobile terminal according to
  • the 3GPP LTE protocol transmits data through air interfaces, and encapsulates the received data into IP protocol data packets and then sends them to the Internet and/or the core network through the data transmission interface.
  • a wireless data access method is provided in the embodiment of the present invention, including the following steps:
  • the data is segmented and processed by the IP data packet, where the data is data in the data service;
  • the radio access network device After receiving the data service request initiated by the UE, the radio access network device receives the data sent by the mobile terminal through the air interface according to the 3GPP LTE protocol, and encapsulates the received data into an IP protocol data packet, and then sends the data to the Internet and/or the core network.
  • the reason why the profit growth rate of data service services is not proportional to the traffic load is:
  • Traditional cellular mobile communication systems are mainly designed for high-speed mobile, seamlessly switched carrier-class service design, when it carries large-flow low-speed IP. In the case of packet services, the efficiency is inevitably low and the cost is too high.
  • the inventor provides a technical solution in which, after accepting a data service request initiated by the mobile terminal, receiving data transmitted by the mobile terminal through the air interface according to the 3GPP LTE protocol, and then encapsulating the received data into an IP address.
  • the protocol packets are then sent to the Internet and/or the core network via the data transmission interface.
  • Low-power wireless access devices and gateway devices, and corresponding network architectures to meet the broadband wireless data needs of indoor and hotspots, and to effectively reduce the cost of data services, providing a low cost for telecom operators
  • the data service is offloaded.
  • the user's IP service data is directly connected to the Internet network, which reduces the carrier's bit cost.
  • the LTE design can greatly reduce system complexity and reduce costs. Compared with the existing WiFi technology, it can be better integrated with the cellular network; thus the industry has been eager to solve It provides a truly viable technical solution that enables operators to provide data services to growing users at low cost.
  • the technical solution is based on the key technologies of the LTE physical layer and the MAC layer, the physical layer and the MAC layer based on the same standard system of the network such as LTE can be used, the network convergence degree is higher, the system efficiency and the user experience are better.
  • FIG. 2 is a schematic diagram of data service growth and operator revenue growth trend in the background art
  • FIG. 3 is a schematic diagram of a WLAN+3G solution in the background art
  • FIG. 5 is a schematic structural diagram of a DA network according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for implementing a wireless data access method according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a radio access network device according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a method for implementing a wireless data access method according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a gateway device according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of an implementation process of a data forwarding method according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a mobile terminal according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a function module of an LTE+DA terminal according to an embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of an implementation process of a method for transmitting and receiving wireless data according to an embodiment of the present invention. detailed description
  • the traditional cellular mobile communication system is mainly designed for high-speed mobile, seamless handover and high-QoS requirements for carrier-class service design.
  • the efficiency is low and the cost is too high.
  • Cellular mobile operators need to find low-cost, high-capacity solutions for indoor wireless data access.
  • the nomadic data access is proposed in the embodiment of the present invention (Nomadic Data) Access, the cartridge in this application is called NDA) solution.
  • NDA Nomadic Data
  • the solution is a data transmission system and method based on 3GPP LTE physical layer technology, which can realize efficient and low-cost data service transmission in indoor and hotspot areas.
  • the concept of the present invention is: based on the key technologies of the LTE physical layer and some key technologies of the MAC layer, with the necessary signaling control process, and IP layer grouping, addressing, routing and other functions, supporting nomadic high-speed IP data access, sacrificing Certain mobility, QoS and security reduce the cost of wireless access devices (base stations) and data terminal equipment, thereby achieving the goal of improving data access capabilities.
  • the implementation of the mobile terminal, the radio access network device, and the gateway device will be described separately, and the cooperation implementation of the three devices and other devices in the communication system involved will be explained; but this does not mean These devices must be implemented together. In fact, when these devices are implemented separately, they also solve the problems on the device, but they will get better technical effects when they are used together.
  • FIG. 5 is a schematic diagram of a DA network architecture.
  • the system mainly includes the following devices and interfaces:
  • a mobile terminal (labeled as DAUE in the figure) is used for transmitting and receiving data with a radio access network device, and is adopted according to the 3GPP protocol.
  • the RF module sends the data, the data is sent by the IP data packet segmentation process, where the data is data in the data service;
  • the radio access network device (labeled as DAP in the figure) is configured to receive, after receiving the data service request initiated by the mobile terminal, the data that the mobile terminal sends through the air interface according to the 3GPP LTE protocol, and encapsulate the received data into an IP protocol data packet. It is then sent to the Internet and/or the core network through a data transmission interface.
  • the method further includes: a gateway device (labeled as DA GW in the figure), configured to send and receive data with the radio access network device, and send and receive data with the Internet and/or the core network; and the received data is an IP protocol data packet.
  • a gateway device labeled as DA GW in the figure
  • the received data is an IP protocol data packet.
  • the 3GPP radio access network device when it is determined to be a 3GPP radio access network device, forwards the IP protocol data packet to the received IP protocol data packet and forwards the IP protocol data packet.
  • NDAP Nomadic Data Access Point
  • the device provides data radio access function and IP group.
  • the packet function can provide routing and authentication encryption functions as needed.
  • NDA UE The nomadic data access user equipment, which provides the object of the wireless data access service.
  • the NDAUE is used in this application to initiate a data service request to the NDAP through the I interface.
  • the NDAP in a scenario where the NDA is a user's personal device, the NDAP is directly provided to the user data of the wireless access as an IP packet, and then directly accesses the Internet.
  • the process Based on the key technologies of the LTE physical layer and some key technologies of the MAC layer, and with the necessary signaling control procedures, and IP
  • NDAP is only responsible for connecting the service data generated by the device in the user's home to the Internet or the home network, and providing the necessary communication security guarantee according to requirements;
  • the NDAP does not need to implement the routing function. Instead, it can access the NDA GW in a unified manner.
  • the NDA GW implements the routing control function.
  • NDA gateway in order to distinguish it from the existing gateway device, is called a DA gateway in this application.
  • the wired interface II is connected to the NDAP, and the connected multiple NDAPs can be organized into one intranet network, and the internal addressing and routing functions of the network can be provided.
  • the DAP can also be connected to the traditional telecommunication network core network, such as the 3GPP core network.
  • 3GPP core network Provides routing and addressing functions to 3GPP core network related devices (such as ePDG, AAA Server, etc.), and assists the 3GPP core network to implement charging and security control functions for the NDA AP. If it needs to provide security service functions, it can cooperate with the security gateway.
  • the interface II can be an ADSL (Asymmetric Digital Subscriber Line), an Ethernet port, or an optical port.
  • NDA OMS (Operation & Maintenance Support): DA operation and maintenance system.
  • DA OMS DA operation and maintenance system.
  • the system can be used for DA system equipment (including NDAP and NDA).
  • GW provides device management and network management functions such as performance statistics and monitoring, alarms, and parameter configuration.
  • the NDA OMS can be used as an optional device. It can be ignored in the self-use network.
  • the telecom operator can optimize and control the DA network to provide better communication services.
  • Interface III is the network management interface. Supports protocols such as SNMP (Simple Network Management Protocol) and CORBA (Common Object Request Broker Architecture).
  • 3 GPP AAA Server (AAA: Authentication, Authorization and Accounting, Authentication, Authorization, and Account), ePDG (Evolution Packet Data Gateway), PDN GW (PDN Gateway; PDN: Packet Data Network) , and the PCRF (Policy and Charging Rules Function) is a network device and a functional entity that have been defined by the existing 3GPP protocol. For detailed definition, refer to 3GPP TS23.402. The main functions are as follows: :
  • the 3GPP AAA Server provides authentication functions for users and devices
  • ePDG Evolved packet data gateway, the main functions are: IP address allocation of UE (User Equipment); user data encapsulation/decapsulation, routing; IPSec (Internet Protocol security) tunnel authentication and authorization; untrusted non-3 Anchor function of GPP (untrusted non-3GPP) access; QoS policy enforcement;
  • PDN GW Packet Network Gateway
  • main functions IP address allocation of UE; user data encapsulation/decapsulation, routing; QoS and charging policy enforcement; anchor between 3GPP access and non-3GPP (non-3GPP) access Features, etc.
  • PCRF Policy Control and Accounting Rules Entity
  • Main Functions Provides related policies such as service data flow detection, gating, QoS, and traffic flow-based charging rules to achieve more sophisticated QoS control and charging control.
  • the Swm/SWn/SWa/SWu interface is the interface required for 3GPP defined access to the Untrusted Non-3GPP IP Access network. For a detailed definition, see 3GPP TS 23.402.
  • the signaling part mainly considers the management process of the interface (including interface establishment/reconstruction, signaling load management management, etc., related to the entire interface), UE context management and Transport address allocation process (including maintenance of UE context in DAP, data transmission tunnel identity assignment, etc.), tracking and positioning process (including tracking data transmission details, locating UE location, etc.), NAS (Non Access Stratum, non-access stratum)
  • the message transmission process (for transmitting high-level signaling of the non-access stratum, the data part considers the transfer of service data between the access network and the core network.
  • One end of the SWa interface is connected to the DA GW, which mainly involves the transparent transmission process of the authentication data.
  • a wireless data access method is also provided in the embodiment of the present invention.
  • the principle of solving the problem is similar to the DA network architecture. Therefore, the implementation of the method can be referred to the implementation of the DA network architecture. No longer.
  • Step 601 Before transmitting data through an air interface according to the 3GPP LTE protocol, the mobile terminal performs IP data packet segmentation processing and then sends the data.
  • the data is data in a data service;
  • Step 602 After receiving the data service request initiated by the UE, the radio access network device receives the mobile terminal according to 3GPP.
  • the data transmitted by the LTE protocol through the air interface is encapsulated into IP protocol data packets and sent to the Internet and/or the core network.
  • it may further include:
  • the received data is an IP protocol data packet, determining whether the device that sends the data packet is a 3GPP radio access network device, or determining whether the device receiving the data packet is a 3GPP radio access network device;
  • the IP protocol data packet is forwarded for the received IP protocol data packet, and then the IP protocol data packet is forwarded.
  • the DA base station Second, the DA base station.
  • the NDA base station provides data wireless connection based on the key technologies of the LTE physical layer and some key technologies of the MAC layer, and the necessary signaling control processes such as channel management, transmission control, and IP routing.
  • Incoming function, IP group packet and routing function which can provide authentication and encryption function as needed, is a simple, efficient and low-cost small base station.
  • the DA base station can also work independently of the 3GPP core network, directly through the built-in routing function and Internet network data transmission. The details will be described below.
  • FIG. 7 is a schematic structural diagram of a radio access network device.
  • a radio access network device that is, a DA base station, may include:
  • the radio frequency module 701 is configured to: after receiving the data service request initiated by the UE, receive data sent by the UE according to the 3GPP LTE protocol by using an air interface;
  • the IP layer processing module 702 is configured to encapsulate the received data into an IP protocol data packet and then send the data to the Internet and/or the core network through a data transmission interface.
  • the IP layer processing module may be further configured to encapsulate the received data into an IP protocol data packet and send the data to the Internet and/or the core network through the data transmission interface through the gateway; or send the data directly to the Internet and/or through the data transmission interface. Or core network.
  • the IP layer processing module may be further configured to: when the data is transmitted through the air interface with the UE, compared with the requirement of the LTE RLC (Radio Link Control) layer standard, in one of the following manners or a combination thereof :
  • Reduce retransmission mode reduce header compression of PDCP (Packet Data Convergence Protocol) layer; reduce packet encryption.
  • PDCP Packet Data Convergence Protocol
  • the IP layer processing module implements IP packet segmentation in the downlink, and an acknowledgement retransmission mode of the data packet, and implements cascading and reassembly of the MAC (Media Access Control) packet, and confirms the retransmission mode. And other functions. Since only the QoS data transmission is supported, compared with LTE, the RLC layer of the DA system reduces the retransmission mode and reduces the functions of PDCP layer header compression, packet encryption, and the like.
  • the routing function needs to be implemented to implement the function of transmitting IP data packets directly through the wired data transmission network or ADSL and other devices.
  • the radio frequency module may be further configured to send data to the UE by using a lower transmit power when the UE transmits data through the air interface, for example, the transmit power lower than the set value is considered to be a lower transmit power, and the use is higher.
  • the low sensitivity receives data transmitted by the UE, such as lower sensitivity than the 3GPP specified sensitivity.
  • the function of the radio frequency module is to implement the function of transmitting the downlink data signal of the base station device and receiving the uplink data signal.
  • DA equipment mainly covers indoor and hotspots, it has lower downlink power requirements, lower uplink sensitivity requirements, and appropriate relaxation of RF filters and out-of-band radiation requirements to reduce equipment costs.
  • the lower transmit power may be 20 dBm or 23 dBm, that is, low power similar to the transmit power of existing mobile terminals, which is lower relative to conventional base stations.
  • the radio access network device may further include:
  • the physical layer processing module 703 is configured to process one of the following methods or a combination thereof when the data is transmitted through the air interface with the UE, compared with the requirements of the LTE physical layer standard:
  • Reduce multi-antenna transmission mode configure larger measurement periods; configure larger feedback periods; configure fewer control channels; configure fewer reference symbols.
  • the physical layer processing module can implement coding and decoding of data signals, modulation and demodulation, multi-antenna transmission, and link adaptation by using physical layer technologies such as OFDM OFDM (Orthogonal Frequency Division Multiplexing). And retransmission and other functions.
  • the downlink layer transmits the MAC layer data packet to a radio frequency after a series of signal processing, and the uplink radio frequency signal is received to form a MAC layer data packet. In order to reduce equipment cost and improve transmission efficiency, it is suitable for indoor data transmission. Compared with the LTE physical layer, it can reduce multi-antenna transmission mode, configure more period of measurement and feedback, and configure fewer control channels and reference symbols.
  • the measurement smoothing period is several tens to several hundreds of milliseconds;
  • the measurement smoothing period may be a period of several seconds or even longer.
  • the number of control channels is sensitive to the number of users supported by the system. Therefore, in the implementation, the number of users in the system can be reduced by at least one order of magnitude compared with the conventional LTE system, so the control channel can use the lowest or near minimum configuration.
  • the radio access network device may further include:
  • the MAC layer processing module 704 is configured to process, according to the requirements of the LTE MAC layer standard, when the data is transmitted through the air interface with the UE, in one of the following manners or a combination thereof:
  • Control and scheduling of QoS reduce the number of users required for system scheduling support; protect and operate during packetized packet transmission.
  • the MAC layer processing module implements scheduling, transmission, and retransmission of RLC layer data packets in the downlink, and implements user scheduling, MAC data packet decoding, and retransmission in the uplink.
  • the MAC layer controls the QoS control and scheduling, reduces the number of users supported by the system scheduling, and reduces the related protection and operation during the data packet transmission process, thereby improving the transmission efficiency and reducing the equipment cost requirement.
  • the number of users supporting system scheduling support is reduced.
  • the designed capacity of an LTE base station supports hundreds or even thousands of users at the same time.
  • the coverage area is small, the number of users is small, and 4 to 20 users may be In a typical scenario, even if an enterprise-level scenario supports up to dozens of users online at the same time, the number of users supported by the system scheduling can be reduced.
  • TTI Boundling can be removed, for example, during the control and scheduling of QoS.
  • the radio access network device may further include:
  • the signaling control module 705 is configured to perform one of the following manners or a combination thereof when performing radio link control and radio resource management control when transmitting data with the UE through the air interface:
  • the signaling control module implements functions such as control of the radio link and management and control of the radio resources, and specifically includes a random access procedure and access control for implementing the reduction step, and system information broadcast (including the DAP radio access network).
  • Parameters such as identification, pilot and main channel configuration), configuration of the transmission mode of the terminal, single Neighbor and terminal signal measurement and upper configuration. Since the existing broadcast information has some parameters related to the cell scene and mobility, and the channel configuration parameters brought about by the system; considering the characteristics of the indoor hotspot scene and low mobility, the system information can be unified. , remove some application scenarios and mobile related parameters.
  • the original RRC (Radio Resource Control) related signaling plane control can be implemented in the signaling control module, and the processes, such as measurement, mobility, and connection establishment, which are mainly solved by the RRC, can be implemented, that is,
  • the existing RRC management of mobility, connection establishment and measurement such as reducing the requirements for real-time measurement (including cycle, threshold, etc.), reducing measurement trigger events, and streamlined mobility management (trigger switching in low-speed mobile scenarios) Small, it is also possible to consciously use distributed antennas to reduce the number of handover triggers and replace them with channel reconfiguration in each cell.
  • the radio access network device may further include: a data transmission interface 706, configured to provide physical link transmission for the NDA base station device and the Internet or the DA gateway, and the LTE core network, for various logical interfaces and data channels. The final entrance.
  • a data transmission interface 706, configured to provide physical link transmission for the NDA base station device and the Internet or the DA gateway, and the LTE core network, for various logical interfaces and data channels. The final entrance.
  • the radio frequency module may be further configured to send broadcast information, to indicate that the data service is to be sent to the Internet and/or the core network after being encapsulated into an IP protocol data packet.
  • the radio frequency module can broadcast the broadcast information indicated by the signaling control module.
  • a wireless data access method is also provided in the embodiment of the present invention.
  • the principle of the method is similar to that of the radio access network device. Therefore, the implementation of the method can be implemented in the implementation of the radio access network device. , the repetition will not be repeated.
  • FIG. 8 is a schematic flowchart of a method for implementing a wireless data access method. As shown in the figure, the method may include the following steps: Step 801: Accept a data service request initiated by a UE.
  • Step 802 Receive data that is sent by the UE through the air interface according to the 3GPP LTE protocol.
  • Step 803 Encapsulate the received data into an IP protocol data packet and send the data to the Internet and/or the core network.
  • the received data is encapsulated into an IP protocol data packet and then sent to the Internet, which may include:
  • the IP protocol data packet is sent to the Internet and/or the core network via a gateway; Or, the IP protocol data packet is sent directly to the Internet and/or the core network.
  • the radio frequency module when transmitting data with the UE through the air interface, can send data to the UE using the lower transmit power, and receive the data sent by the UE with lower sensitivity.
  • the processing when the data is transmitted through the air interface with the UE, compared with the requirements of the LTE physical layer standard, the processing may be performed in one of the following manners or a combination thereof: reducing the multi-antenna transmission mode; configuring a larger measurement period; Feedback cycle
  • the data when the data is transmitted through the air interface with the UE, compared with the requirements of the LTE MAC layer standard, it may be processed in one of the following manners or a combination thereof:
  • Control and scheduling of QoS reduce the number of users required for system scheduling support; protect and operate during packetized packet transmission.
  • radio link control and radio resource management control when performing data transmission with the UE through the air interface, when performing radio link control and radio resource management control, it may be processed in one of the following ways or a combination thereof:
  • the data when the data is transmitted through the air interface with the UE, compared with the requirements of the LTE RLC layer standard, it may be processed in one of the following ways or a combination thereof:
  • Reduce retransmission mode reduce header compression at the PDCP layer; reduce packet encryption.
  • the method further includes: sending broadcast information, to indicate that the data service is to be sent to the Internet and/or the core network after being encapsulated into an IP protocol data packet.
  • the DA gateway may be used to aggregate data and interfaces of multiple DA base stations.
  • the role of the post-connection to the core network can serve as an authentication management function for the DA base station equipment in the same area. The details will be described below.
  • FIG. 9 is a schematic structural diagram of a gateway device.
  • the gateway device that is, the DA gateway, may include: a DA base station interface 901, configured to send and receive data with the radio access network device;
  • a data transmission interface 902 configured to send and receive data with the Internet and/or the core network
  • the routing module 903 is configured to determine whether the received data is an IP protocol data packet. When the received data is an IP protocol data packet, determine whether the device that sends the data packet is a 3GPP radio access network device, or determine to receive the data packet. Whether the device is a 3GPP radio access network device; when it is determined to be a 3GPP radio access network device, the IP protocol data packet is forwarded after the received IP protocol data packet is routed.
  • the DA base station interface module implements interconnection and various management interfaces with the DA base station.
  • the data transmission interface provides physical link transmission for the DA gateway device to communicate with the Internet or the LTE core network, and is the final gateway for various logical interfaces and data channels.
  • the routing module may be further configured to forward IP protocol data packets sent by the 3GPP radio access network device to the Internet and/or the core network.
  • the routing module implements the routing and addressing function; the connected multiple NDAPs can be organized into one intranet network to provide internal addressing and routing functions; or the DAP can be connected to the traditional telecommunication network core network, such as
  • the 3GPP core network provides routing addressing functions to 3GPP core network related devices (such as ePDG, AAA Server, etc.).
  • the gateway device may further include:
  • the DA base station management module 904 is configured to process the 3GPP radio access network device that receives the IP protocol data packet and/or sends the IP protocol data packet in one of the following manners or a combination thereof:
  • the NDA base station management module implements functions such as authentication and access management of the NDA base station, and parameter configuration.
  • the gateway device may further include:
  • the DA user management module 905 is configured to perform access management and/or authentication and charging for users who are to receive IP protocol data packets and/or 3GPP radio access network devices that send IP protocol data packets.
  • the NDA user management module implements functions such as management of NDA user access, authentication and accounting, and the like. This feature is mainly enabled in the enterprise scenario intranet, and it can be determined according to the actual needs of the module.
  • the gateway device may further include: a SWn/SWa interface 906, configured to: when the IP protocol data packet sent by the 3GPP radio access network device is forwarded to the core network, support the SWn specified by the 3GPP protocol TS23.402 The /SWa interface is forwarded to the core network.
  • a SWn/SWa interface 906 configured to: when the IP protocol data packet sent by the 3GPP radio access network device is forwarded to the core network, support the SWn specified by the 3GPP protocol TS23.402 The /SWa interface is forwarded to the core network.
  • the SWn/SWa interface is enabled when the DP system needs to access the 3GPP core network, and needs to support the SWn/SWa interface function specified in the 3GPP protocol TS23.402: You can determine whether the interface needs to be selected according to the actual situation.
  • a data forwarding method is also provided in the embodiment of the present invention.
  • the principle of the solution is similar to that of the gateway device. Therefore, the implementation of the method can be referred to the implementation of the gateway device, and the repeated description is not repeated.
  • FIG. 10 is a schematic flowchart of a data forwarding method implementation process. As shown in the figure, the following steps may be included: Step 1001: Determine whether the received data is an IP protocol data packet.
  • Step 1002 When the received data is an IP protocol data packet, determine whether the device that sends the data packet is a 3GPP radio access network device, or determine whether the device that receives the data packet is a 3GPP radio access network device;
  • Step 1003 When it is determined that the device is a 3GPP radio access network device, forward the IP protocol data packet to the received IP protocol data packet and forward the IP protocol data packet.
  • the IP protocol data packets sent by the 3GPP radio access network device can be forwarded to the Internet and/or the core network.
  • the 3GPP radio access network device that receives the IP protocol data packet and/or transmits the IP protocol data packet may be processed in one of the following ways or a combination thereof:
  • access management and/or authentication and charging may be performed on a user that receives an IP protocol data packet and/or a 3GPP radio access network device that transmits an IP protocol data packet.
  • the SWn/SWa interface specified in the 3GPP protocol TS23.402 can be forwarded to the core network.
  • the implementation of the mobile terminal is independently implemented and combined with the existing LTE system.
  • the terminal implements two methods.
  • terminals that implement NDA independently can support most of the LTE physical layer and MAC layer key technologies, and are suitable for terminals that transmit high-speed IP data services.
  • the mobile terminal that is implemented independently is described below, and then the mobile terminal that is implemented in combination is described as being different from the existing mobile terminal. In the embodiment, it is called an NDA terminal.
  • the mobile terminal that is, the NDA terminal, may include: a radio frequency module 1101, configured to send and receive data with the radio access network device.
  • a radio frequency module 1101 configured to send and receive data with the radio access network device.
  • the IP layer processing module 1102 is configured to send, after the data is sent by the radio frequency module according to the 3GPP protocol, the data is segmented by the IP data packet, where the data is data in the data service; and/or, according to the 3GPP protocol. After receiving the data through the radio frequency module, the data is cascaded and recombined with the MAC data packet, where the data is data in the data service.
  • the IP layer processing module may be further configured to support the QoS data transmission function as needed when the data is segmented by the IP data packet. Specifically, the IP layer processing module implements IP packet segmentation in the uplink, and an acknowledgement retransmission mode of the data packet, downlink cascading and recombining of the MAC data packet, and confirming the retransmission mode and the like.
  • the QoS data transfer function can be supported as needed.
  • the radio frequency module can further be used to transmit data using a lower transmit power when transmitting data through the air interface, and receive data using a lower sensitivity.
  • the function of the radio frequency module is to implement the function of transmitting the uplink data signal of the terminal device and receiving the downlink data signal. Since DA terminals are mainly used for indoor and hotspot communication, the requirements for lower transmission power, lower sensitivity requirements, and appropriate relaxation of RF filters and out-of-band radiation are required to reduce equipment costs.
  • the mobile terminal may further include:
  • the physical layer processing module 1103 is configured to process the data through the air interface, according to the requirements of the LTE physical layer standard, in one of the following ways or a combination thereof:
  • Reduce multi-antenna transmission mode configure larger measurement periods; configure larger feedback periods; configure fewer control channels; configure fewer reference symbols.
  • the physical layer processing module uses the key technologies of the physical layer such as LTE OFDM to implement data encoding and decoding, modulation and demodulation, multi-antenna transmission, link adaptation, and retransmission.
  • the uplink layer transmits the MAC layer data packet to the radio frequency through a series of signal processing, and the downlink radio frequency signal is received to form a MAC layer data packet.
  • the LTE physical layer it can reduce multi-antenna transmission mode, configure more period of measurement and feedback, and configure fewer control channels and reference symbols.
  • the mobile terminal may further include:
  • the MAC layer processing module 1104 is configured to process data through the air interface, in comparison with the requirements of the LTE MAC layer standard, in one of the following ways or a combination thereof:
  • Control and scheduling of QoS reduce downlink feedback; protect and operate during packetized packet transmission.
  • the MAC layer processing module uplinks to implement scheduling request, transmission, and retransmission of RLC layer data packets, and performs MAC data packet decoding and retransmission in the downlink.
  • the MAC layer controls the QoS control and scheduling, reduces the downlink feedback, and reduces the related protection and operation during the data packet transmission process, thereby improving the transmission efficiency and reducing the equipment cost requirement.
  • the mobile terminal may further include:
  • the signaling processing module 1105 is configured to: when transmitting data through the air interface, when performing radio link control and radio resource management control, may be processed in one of the following manners or a combination thereof:
  • the signaling processing module implements functions such as control of a radio link and management of radio resources, and implements a random access procedure and an access request for reducing steps, and receiving system information broadcast information (such as a cell flag and a pilot). , main channel configuration parameters, etc.), the transmission mode configuration of the single unit, necessary signal measurement and reporting functions.
  • functions such as control of a radio link and management of radio resources, and implements a random access procedure and an access request for reducing steps, and receiving system information broadcast information (such as a cell flag and a pilot). , main channel configuration parameters, etc.), the transmission mode configuration of the single unit, necessary signal measurement and reporting functions.
  • the mobile terminal may further include:
  • the application layer module 1106 is configured to process various types of information and data of the terminal service application layer, including type identification, bearer control, and QoS mapping of the data service.
  • LTE+ DA terminal which is a terminal that can support both LTE full protocol flow and standard system mode and NDA mode.
  • FIG 12 is a schematic diagram of the LTE+ DA terminal function module.
  • the function module of the LTE+ DA dual-mode terminal can be divided into the LTE terminal complete mode (the LTE Full mode is shown in the figure) and the DA trunking mode (in the figure).
  • the DA mode is shown.
  • the detailed protocol and procedure of the function module of the LTE terminal full mode can refer to the 3 GPP protocol.
  • the function and module of the DA cylinder mode are the same as those of the above D A terminal.
  • the LTE+NDA dual-mode terminal can share the application layer and the radio frequency module, and the physical layer, the user plane upper layer, and the control plane upper layer are embodied in two different protocol flows and working modes, and the terminal can be based on the covered network. Feature, choose one of the working modes, and be able to switch between the two modes.
  • the embodiment of the present invention further provides a method for transmitting and receiving wireless data.
  • the principle of solving the problem is similar to that of the mobile terminal. Therefore, the implementation of the method can be referred to the implementation of the mobile terminal. .
  • FIG. 13 is a schematic flowchart of the implementation of the method for transmitting and receiving wireless data. As shown in the figure, the method may include the following steps: Step 1301: After transmitting data through an air interface according to the 3GPP LTE protocol, the data is segmented by IP data, and then sent. Data is data in data services;
  • Step 1302 Send data through an air interface according to the 3GPP LTE protocol
  • Step 1303 Receive data through an air interface according to the 3GPP LTE protocol.
  • Step 1304 After receiving data through the air interface according to the 3GPP LTE protocol, perform cascading and recombination of the MAC data packet, where the data is data in the data service.
  • Steps 1301 and 1302 are processes for transmitting wireless data
  • steps 1303 and 1304 are processes for receiving wireless data. There is no necessary timing relationship between the two parts, but independent processing and processing of wireless data is transmitted and received.
  • the radio module when transmitting data through the air interface, transmits data using a lower transmit power, and the use is lower. Sensitivity to receive data.
  • Reduce multi-antenna transmission mode configure larger measurement periods; configure larger feedback periods; configure fewer control channels; configure fewer reference symbols.
  • Control and scheduling of QoS reduce downlink feedback; protect and operate during packetized packet transmission.
  • the QoS data transmission function can be supported as needed.
  • when performing data transmission through the air interface when performing radio link control and radio resource management control, it may be processed in one of the following manners or a combination thereof: reducing steps in the random access procedure; reducing the access control process The process of broadcasting the system information; the configuration of the terminal transmission mode; the management of the existing RRC to mobility; the management of the existing RRC connection establishment; the management of the existing RRC measurement.
  • This embodiment is used to explain an implementation manner of an access and communication process of an NDA terminal.
  • the process of DA terminal access and communication can be as follows:
  • the DA base station device is powered on, completes the connection and communication process with the DA gateway and the LTE core network, and completes parameter configuration.
  • the NDA base station in order to avoid interference with the cellular network formed by the LTE base station, can be configured to operate in different frequency bands. Of course, it can also work in the same frequency band.
  • the D A base station transmits a synchronization signal according to the protocol, and configures various control channels.
  • the base station capability attribute may be indicated as an NDA mode in the system broadcast configuration information.
  • the DA terminal is powered on, synchronizes with the NDA base station by searching for the synchronization signal, then reads the broadcast information, obtains the system access parameters, and then camps in the DA cell.
  • the DA terminal application layer triggers the Internet data service communication, and the terminal initiates random access through the connection establishment function of the signaling control module, and completes authentication and registration through the corresponding signaling process, and completes the data connection establishment through the core network.
  • the terminal is scheduled by the DA base station, and the service data packet is sent and received according to the protocol flow.
  • the core network performs traffic statistics and billing.
  • Example 2 This embodiment is used to describe an implementation manner of an access and communication process of an LTE+NDA terminal.
  • the access and communication process of the LTE+ DA terminal can be as follows:
  • the DA base station device is powered on, completes the connection and communication process with the DA gateway and the LTE core network, and completes parameter configuration.
  • the LTE base station device is powered on, completes the corresponding connection configuration and communication process, and completes parameter configuration.
  • the DA base station in order to avoid interference with the cellular network formed by the LTE base station as much as possible, is configured to operate in different frequency bands. Of course, it can work in the same frequency band on the premise of satisfying certain RF indicators.
  • the DA base station transmits a synchronization signal or the like according to the protocol, configures various control channels, and indicates that the base station capability attribute is the DA mode in the system broadcast configuration information.
  • the LTE base station transmits a synchronization signal according to the protocol, configures a complete LTE control channel, and performs system broadcasting according to the protocol.
  • the LTE+NDA terminal is powered on, and the synchronization establishment with the base station is completed by searching for the synchronization signal. Then, the broadcast information is read. If the broadcast information indicates that the coverage cell is an NDA cell, the configuration terminal works in the NDA mode. Otherwise, the configuration terminal works in LTE complete. mode.
  • the broadcast is completed and the resident, communication process is completed as described in Embodiment 1.
  • the camping and communication processes are completed in the LTE system according to the relevant procedures and protocols of the LTE.
  • This embodiment is used to describe an implementation manner in which an LTE+NDA terminal switches between two modes.
  • the LTE+NDA terminal works in the LTE base station device according to the LTE mode
  • the terminal performs neighbor cell measurement and reports, and reads the neighbor cell broadcast, or detects that the target cell of the handover is an NDA cell;
  • the LTE base station determines that the handover target cell of the terminal is an NDA cell by handover;
  • the terminal and the network side maintain a high-level data connection, and suspend data transmission and reception;
  • the terminal disconnects from the wireless connection of the LTE base station, and switches it to the NDA mode;
  • the terminal completes synchronization and access with the new NDA cell to establish a wireless connection
  • the terminal and the network continue to send and receive data.
  • the data transmission system is provided in the embodiment of the present invention, and the communication system is based on the key technologies of the LTE physical layer and some key technologies of the MAC layer, and cooperates with the necessary signaling control process, and IP layer grouping and searching.
  • Address, routing and other functions including single, efficient low-power, low-cost small base stations and gateway devices, can be directly connected
  • the Internet/Intranet network can also access the 3GPP core network.
  • the DA base station can access the LTE core network, or directly access the data Internet, or access the data Internet through the DA gateway.
  • a high-efficiency data transmission scheme based on the LTE physical layer and the MAC layer key technology is adopted, and a low-power wireless access device and a gateway device with high efficiency are designed.
  • the corresponding network architecture which satisfies the broadband wireless data requirements in indoor and hotspot areas, and can effectively reduce the cost overhead of data services.
  • the DA network and the LTE network are based on the physical layer and part of the MAC layer design of the same standard system, and the network convergence degree is more High, system efficiency and user experience are better.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer-usable storage interfaces including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种无线数据接入方法及设备 本申请要求在 2010年 12月 20日提交中国专利局、 申请号为 "201010597575.8"、 发明名 称为 "一种无线数据接入方法及设备" 的中国专利申请的优先权, 其全部内容通过引用结合在 本申请中。 技术领域
本发明涉及无线通信技术, 特别涉及一种无线数据接入方法及设备。 背景技术
近年来, 随着移动互联网 (Mobile Internet )和智能手机的普及, 移动数据流量需求飞 速增长。 图 1为全球数据流量预测结果示意图, 思科( Cisco )公司对 2009-2014年移动数 据业务流量预测后发现, 如图 1所示, 从 09年到 14年, 流量增长达到 40倍, 基本上每 年增长 1倍。
图 2为数据业务增长和运营商收入增长趋势示意图, 目前, 运营商网络中数据业务比 例逐渐增加, 已经影响了传统电信级业务, 但是, 如图 2所示, 由于数据业务按照流量计 费, 其盈利增长速度和流量负载不成正比。
室内和热点数据业务特征为用户通常为固定或者非常低速移动, 对移动性要求不高; 另一方面, 数据业务主要为基于 IP ( Internet Protocol, 因特网协议) 的 Internet业务, 对 QoS ( Quality of Service, 服务盾量) 的要求比较单一, 而且远远低于电信级业务对 QoS 的要求。 传统的蜂窝移动通信系统主要面向的是高速移动, 无缝切换的电信级业务设计, 当其承载大流量低速 IP数据包业务时, 效率偏低, 成本过高。
综上,蜂窝移动运营商需要找出低成本, 高容量, 适合室内无线数据接入的解决方案。 目前主要的 2种解决方案为:
1、近年来,越来越多的运营釆用了基于非授权频段的无线局域网(WLAN,也称 WiFi; WiFi: Wireless Fidelity, 无线保真技术) 系统进行热点分流数据业务的方法。 图 3 为 WLAN+3G解决方案示意图, 如图所示, 其主要方案为 WLAN系统和 3G系统松耦合的方 案, 实现在 3G系统核心网认证和计费, 其实施频段和自用 WiFi在同一频段。
釆用 WiFi进行热点地区覆盖, 能够起到较好的数据业务分流作用。
釆用 WiFi进行热点地区数据分流, 能够起到一定的数据业务分流作用, 但是由于是 两套不同的标准体系和系统, 其不足在于: 用户体验差, 通常情况下需要用户手动的选择接入的网络, 很难实现业务在两个接入 网间的平滑切换。
链路盾量不能得到保证, WiFi釆用的是非授权 ISM ( Industrial Scientific Medical, 工 业、 科学、 医疗)频段, 存在如自用 WiFi, 微波炉等各种设备之间的千扰。
多运营商同时组网困难, 由于其工作频段为非授权频段, 多个运营商在同一区域组网 时, 如果没有很好的协调统一规划, 将造成相互的千扰。
2、 家庭基站(Femto, 毫微微蜂窝式基站)作为解决室内和热点地区数据业务流量需 求的另外一种解决方案, 根据覆盖室内距离更短, 用户数目较少的特点, 降低单站的容量 要求和功发射率, 通常用户数目在 8-20, 功率和手机终端相当, 一般在 23dBm以下。 图 4 为 LTE ( Long Term Evolution, 长期演进) Femto网络架构示意图, 釆用 Femto方案的架 构可以参见图 4所示。
家庭基站相对室内覆盖系统和微基站, 成本更低, 部署更灵活, 起到了一定的室内数 据了业务体验的作用。
但是其不足在与: 家庭基站 Femto并没有针对室内数据业务特点进行优化,以 LTE为 例, LTE Femto系统基本釆用了 LTE完整的协议架构和接口设计, 所以实现复杂, 只是基 站容量和功率降低, 所以成本一直居高不下;
另夕卜, Femto为 IMT ( International Mobile Telecommunications, 国际移动电信) 系统 内设备, 其能够工作的频率仍然为 IMT内的运营商授权频段,相对 WiFi可用的带宽较少, 无法完全满足运营商数据业务分流需求。
发明内容
本发明所解决的技术问题在于提供一种无线数据接入方法及设备 , 具体的, 提供了一 种无线接入网设备、 一种无线数据接入方法、 一种网关设备、 一种数据转发方法、 一种移 动终端、 一种无线数据收发方法、 一种无线通信系统、 一种无线数据接入方法, 用以处理 移动性要求不高的用户的数据业务的接入。
本发明实施例中提供了一种无线接入网设备, 包括:
射频模块,用于在接受 UE发起的数据业务请求后,接收 UE按照 3GPP LTE协议通过 空口发送的数据;
IP层处理模块, 用于将接收的数据封装成 IP协议数据包后通过数据传输接口发送至 因特网和 /或核心网。
本发明实施例中提供了一种无线数据接入方法, 包括如下步骤: 接受 UE发起的数据业务请求;
接收 UE按照 3GPP LTE协议通过空口发送的数据;
将接收的数据封装成 IP协议数据包后发送至因特网和 /或核心网。
本发明实施例中提供了一种网关设备, 包括:
DA基站接口, 用于与无线接入网设备收发数据;
数据传输接口, 用于与因特网和 /或核心网收发数据;
路由模块, 用于确定接收的数据是否是 IP协议数据包; 在接收到的数据是 IP协议数 据包时, 确定发送数据包的设备是否是 3GPP无线接入网设备, 或, 确定接收数据包的设 备是否是 3GPP无线接入网设备; 当确定是 3GPP无线接入网设备时, 为接收到的 IP协议 数据包进行路由寻址后转发该 IP协议数据包。
本发明实施例中提供了一种数据转发方法, 包括如下步骤:
确定接收的数据是否是 IP协议数据包;
在接收到的数据是 IP协议数据包时,确定发送数据包的设备是否是 3GPP无线接入网 设备, 或, 确定接收数据包的设备是否是 3GPP无线接入网设备;
当确定是 3GPP无线接入网设备时,为接收到的 IP协议数据包进行路由寻址后转发该
IP协议数据包。
本发明实施例中提供了一种移动终端, 包括:
射频模块, 用于与无线接入网设备收发数据。
IP层处理模块, 用于在按照 3GPP协议通过射频模块发送数据前,对该数据进行 IP数 据包分段处理后发送, 所述数据是数据业务中的数据; 和 /或, 在按照 3GPP协议通过射频 模块接收到数据后, 对该数据进行 MAC数据包的级联和重组, 所述数据是数据业务中的 数据。
本发明实施例中提供了一种无线数据收发方法, 包括如下步骤:
在按照 3GPP LTE协议通过空口发送数据前,对该数据进行 IP数据包分段处理后发送, 所述数据是数据业务中的数据;
和 /或,
在按照 3GPP LTE协议通过空口接收到数据后, 对该数据进行 MAC数据包的级联和 重组, 所述数据是数据业务中的数据。
本发明实施例中提供了一种无线通信系统, 包括:
移动终端, 用于与无线接入网设备收发数据, 在按照 3GPP协议通过射频模块发送数 据前, 对该数据进行 IP数据包分段处理后发送, 所述数据是数据业务中的数据; 无线接入网设备, 用于在接受移动终端发起的数据业务请求后, 接收移动终端按照
3GPP LTE协议通过空口发送的数据 , 并将接收的数据封装成 IP协议数据包后通过数据传 输接口发送至因特网和 /或核心网。
本发明实施例中提供了一种无线数据接入方法, 包括如下步骤:
移动终端在按照 3GPP LTE协议通过空口发送数据前,对该数据进行 IP数据包分段处 理后发送, 所述数据是数据业务中的数据;
无线接入网设备在接受 UE发起的数据业务请求后, 接收移动终端按照 3GPP LTE协 议通过空口发送的数据 , 并将接收的数据封装成 IP协议数据包后发送至因特网和 /或核心 网。
本发明有益效果如下:
首先, 由思科(Cisco )公司的研究可见, 数据业务增长是惊人的, 每一个运营商都毫 无疑问的渴望能够提供这一业务的服务, 然而, 由图 2可知, 虽然数据业务在惊人的增长, 然而在实际为用户提供数据业务服务的过程中, 运营商不得不面对其盈利增长速度和流量 负载不成正比的现实, 因此, 业界长期以来都渴望获得一种技术方案能够使得运营商能够 在低成本下为增长的用户提供数据业务。
面对业界一直渴望解决的这一技术难题, 发明人在发明过程中注意到, 室内和热点数 据业务特征为用户通常为固定或者非常低速移动, 对移动性要求不高; 而数据业务主要为 基于 IP的 Internet业务, 对 QoS的要求比较单一, 而且远远低于电信级业务对 QoS的要 求。 同时还注意到, 造成数据业务服务盈利增长速度和流量负载不成正比的原因在于: 传 统的蜂窝移动通信系统主要面向的是高速移动, 无缝切换的电信级业务设计, 当其承载大 流量低速 IP数据包业务时, 则必然效率偏低, 成本过高。 因此, 发明人提供了一种技术方 案,在该方案中,当在接受移动终端发起的数据业务请求后,就接收移动终端按照 3GPP LTE 协议通过空口发送的数据 ,然后将接收的数据封装成 IP协议数据包后通过数据传输接口发 送至因特网和 /或核心网。
由于在该过程中, 仅仅只需要釆用一些基本的基于 LTE物理层、 MAC层的关键技术 即可, 从而能够实现筒单高效的数据传输, 进一步的, 还可以根据实际需要来设计筒单高 效的低功率无线接入设备和网关设备, 以及对应的网络架构, 使其满足室内和热点地区宽 带无线数据需求, 并能够有效的降低数据业务的成本开销, 为电信运营商提供了一种低成 本的数据业务分流(offload ) 方式, 在有些场景下将用户的 IP业务数据直接接入 Internet 网络, 降低运营商的比特成本; 同时, 筒化 LTE设计后可以大幅度降低系统复杂度, 降低 成本, 与现有 WiFi技术相比, 可以更好的与蜂窝网络相融合; 从而为业界一直渴望解决 的、 能够使运营商在低成本下为增长的用户提供数据业务的需求提供了确实可行的技术方 案。
同时, 还由于在该技术方案基于 LTE物理层、 MAC层的关键技术, 因此可以和 LTE 等网络基于同一标准体系的物理层和 MAC层, 网络融合度更高, 系统效率和用户体验更 好。 附图说明
图 1为背景技术中全球数据流量预测结果示意图;
图 2为背景技术中数据业务增长和运营商收入增长趋势示意图;
图 3为背景技术中 WLAN+3G解决方案示意图;
图 4为背景技术中 LTE Femto网络架构示意图;
图 5为本发明实施例中 DA网络架构示意图;
图 6为本发明实施例中无线数据接入方法实施流程示意图;
图 7为本发明实施例中无线接入网设备结构示意图;
图 8为本发明实施例中无线数据接入方法实施流程示意图;
图 9为本发明实施例中网关设备结构示意图;
图 10为本发明实施例中数据转发方法实施流程示意图;
图 11为本发明实施例中移动终端结构示意图;
图 12为本发明实施例中 LTE+ DA终端功能模块示意图;
图 13为本发明实施例中无线数据收发方法实施流程示意图。 具体实施方式
近年来, 随着移动互联网 (Mobile Internet )和智能手机的普及, 移动数据流量需求飞 速增长。传统的蜂窝移动通信系统主要面向的是高速移动, 无缝切换和高 QoS要求的电信 级业务设计, 当其承载热点地区大流量低速 IP数据包业务时, 效率偏低, 成本过高。 蜂窝 移动运营商需要找出低成本, 高容量, 适合室内无线数据接入的解决方案。
针对室内业务低速移动, 带宽需求大, 流量需求更大, 用户数目少, 业务以纯 IP数据 互联网业务为主, QoS 要求单一等特点, 本发明实施例中将提出一种游牧数据接入 ( Nomadic Data Access, 本申请中筒称为 NDA )解决方案。 该方案是基于 3GPP LTE物理 层技术设计的数据传输系统和方法, 可以实现室内和热点地区高效率低成本的数据业务传 输。 下面结合附图对本发明的具体实施方式进行说明。 本发明的构思在于: 基于 LTE物理层关键技术和部分 MAC层关键技术, 配合必要的 信令控制过程, 和 IP层组包、 寻址、 路由等功能, 支持游牧的高速 IP数据接入, 牺牲一 定的移动性, QoS和安全性, 降低无线接入设备(基站)和数据终端设备的成本, 从而实 现提高数据接入能力的目的。
在说明过程中, 将分别从移动终端、 无线接入网设备、 网关设备的实施进行说明, 也 会对三者以及涉及到的通信系统中的其他设备的配合实施进行说明; 但这并不意味着这些 设备必须配合实施, 实际上, 当这些设备分开实施时, 其也各自解决了在该设备上存在的 问题, 只是它们配合使用时, 会获得更好的技术效果。
一、 为了更好的从整体上把握本发明实施例提供的技术方案, 首先对涉及本发明的通 信系统的架构进行说明。
图 5为 DA网络架构示意图, 如图所示, 在该系统中主要包括以下设备和接口: 移动终端(图中标示为 DAUE ), 用于与无线接入网设备收发数据, 在按照 3GPP协 议通过射频模块发送数据前,对该数据进行 IP数据包分段处理后发送, 所述数据是数据业 务中的数据;
无线接入网设备 (图中标示为 DAP ), 用于在接受移动终端发起的数据业务请求后, 接收移动终端按照 3GPP LTE协议通过空口发送的数据, 并将接收的数据封装成 IP协议数 据包后通过数据传输接口发送至因特网和 /或核心网。
实施中, 还可以进一步包括: 网关设备(图中标示为 DA GW ), 用于与无线接入网 设备收发数据, 与因特网和 /或核心网收发数据; 在接收到的数据是 IP协议数据包时, 确 定发送数据包的设备是否是 3GPP 无线接入网设备, 或, 确定接收数据包的设备是否是
3GPP无线接入网设备; 当确定是 3GPP无线接入网设备时, 为接收到的 IP协议数据包进 行路由寻址后转发该 IP协议数据包。
具体实施中:
NDAP ( Nomadic Data Access Point , 游牧数据接入点): 可以视为 D A基站, 为与现 有的无线接入网设备区别, 本申请中称为 NDAP, 该设备提供数据无线接入功能、 IP组包 功能, 可根据需要提供路由、 鉴权加密功能。
NDA UE: 游牧数据接入用户设备, 该设备提供无线数据接入服务的对象, 为便于理 解以及区别, 本申请中称为 NDAUE, NDAUE通过 I接口向 NDAP发起数据业务请求。
在本发明实施例提供的技术方案中, 在 NDA为用户个人自用设备的场景下, 将提供 NDAP直接将无线接入的用户数据打成 IP包, 而后直接接入 Internet, 在该过程中, 将基 于 LTE物理层关键技术和部分 MAC层关键技术, 并配合必要的信令控制过程, 以及 IP 层组包、 寻址、 路由等功能, 比如, 在家庭应用场景下, NDAP只负责将用户家中的设备 产生的业务数据接入 Internet或家庭内部网络, 并根据需求提供必要的通信安全保证; 对 于企业应用场景, NDAP不需要实现路由功能, 而是可以统一接入 NDA GW, 由 NDA GW 实现路由控制功能。
NDA GW: NDA网关, 为了与现有的网关设备区别, 本申请中称为 DA网关, 该设 备作为数据汇聚的节点, 可以避免大量 DAP 直接接入核心网对网络带来的冲击; DA 网关通过有线接口 II与 NDAP相连, 可以将连接的多个 NDAP组织为一个 Intranet网络, 并提供该网络内部的寻址、 路由功能; 也可以将 DAP接入到传统的电信网络核心网, 如 3GPP核心网,提供到 3GPP核心网相关设备 (如 ePDG、 AAA Server等)的路由寻址功能, 辅助 3GPP核心网对 NDA AP实施计费和安全等控制功能, 如果需要提供安全业务功能, 可以与安全网关合设。接口 II从物理构造上说可以是 ADSL ( Asymmetric Digital Subscriber Line, 非对称数字用户线)、 以太网口或光口。
NDA OMS ( Operation & Maintenance Support , 运行维护支持): DA操作维护系统, 为了与现有的操作维护系统区别,本申请中称为 DA OMS ,该系统可根据需要对 DA系 统设备 (包括 NDAP和 NDA GW )提供筒捷的设备管理和网络管理功能, 比如性能统计 与监测、 告警、 参数配置等。 NDA OMS可以作为可选设备, 在自用网络可忽略不设, 在 公用网络场景下可辅助电信运营商对 DA网络进行优化和控制,提供更优良的通信服务; 接口 III为网管接口, 可以根据需要支持 SNMP ( Simple Network Management Protocol, 筒 单网络管理协议)、 CORBA ( Common Object Request Broker Architecture, 公共对象请求代 理结构)等协议。
3 GPP AAA Server ( AAA月艮务器 , AAA: Authentication, Authorization and Accounting , 验证、授权和帐户)、 ePDG ( Evolution Packet Data Gateway,演进分组数据网关)、 PDN GW ( PDN网关; PDN: Packet Data Network,分组数据网)和 PCRF ( Policy and Charging Rules Function, 策略和计费规则功能实体)都是现有 3GPP协议已经定义好的网络设备和功能实 体, 详细定义可以参见 3GPP TS23.402 , 主要功能如下:
3GPP AAA Server为用户和设备提供鉴权功能;
ePDG: 演进分组数据网关, 主要功能为: UE ( User Equipment, 用户设备) 的 IP地 址分配; 用户数据封装 /解封装、 路由; IPSec ( Internet协议安全性) 隧道的认证与授权; untrusted non-3 GPP (不可信非 3GPP )接入的锚点功能; QoS策略执行等;
PDN GW: 分组网络网关, 主要功能: UE的 IP地址分配; 用户数据封装 /解封装、 路 由; QoS与计费策略执行; 3GPP接入与 non-3GPP (非 3GPP )接入之间的锚点功能等。 PCRF: 策略控制和计费规则实体, 主要功能: 提供业务数据流检测、 门控、 QoS和基 于业务流的计费规则等相关策略, 实现更加精细的 QoS控制和计费控制。
Swm/SWn/SWa/SWu接口为 3GPP已定义的接入 Untrusted Non-3GPP IP Access网络所 需接口, 详细定义可以参见 3GPP TS23.402。
SWn接口一端与 DA 系统相连, 负责信令和数据的传输, 其中信令部分主要考虑接 口的管理流程(包括接口建立 /重建, 信令负荷管理管理等, 与整个接口相关), UE上下文 管理和传输地址分配流程 (包括 DAP中 UE上下文的维护, 数据传输隧道标识分配等), 跟踪和定位流程(包括跟踪数据传输详细信息,定位 UE位置等), NAS( Non Access Stratum, 非接入层) 消息传输流程(用于透传非接入层的高层信令, 数据部分考虑业务数据在接入 网与核心网之间的传递。
SWa接口一端与 DA GW相连, 主要涉及鉴权数据的透传过程。
基于同一发明构思, 本发明实施例中还提供了一种无线数据接入方法, 由于该方法解 决问题的原理与 DA网络架构相似, 因此该方法的实施可以参见 DA网络架构的实施, 重复之处不再赘述。
图 6为无线数据接入方法实施流程示意图, 如图所示, 可以包括如下步骤: 步骤 601、 移动终端在按照 3GPP LTE协议通过空口发送数据前, 对该数据进行 IP数 据包分段处理后发送, 所述数据是数据业务中的数据;
步骤 602、无线接入网设备在接受 UE发起的数据业务请求后,接收移动终端按照 3GPP
LTE协议通过空口发送的数据 , 并将接收的数据封装成 IP协议数据包后发送至因特网和 / 或核心网。
实施中, 还可以进一步包括:
确定接收的数据是否是 IP协议数据包;
在接收到的数据是 IP协议数据包时,确定发送数据包的设备是否是 3GPP无线接入网 设备, 或, 确定接收数据包的设备是否是 3GPP无线接入网设备;
当确定是 3GPP无线接入网设备时,为接收到的 IP协议数据包进行路由寻址后转发该 IP协议数据包。
在从整体上了解了网络系统架构后, 下面对本发明实施例中涉及的设备以及数据处理 方法进行说明。
二、 DA基站。
在本发明实施例提供的技术方案中, NDA基站基于 LTE物理层关键技术和部分 MAC 层关键技术, 配合信道管理、 传输控制、 IP路由等必须的信令控制过程, 提供数据无线接 入功能、 IP组包和路由功能, 可根据需要提供鉴权加密功能, 是一种筒单, 高效的低成本 小型基站。 同时, DA基站也可以独立于 3GPP核心网工作, 直接通过内置的路由功能和 Internet网络数据传输。 下面进行具体说明。
图 7为无线接入网设备结构示意图, 如图所示, 无线接入网设备, 也即 DA基站中 可以包括:
射频模块 701 , 用于在接受 UE发起的数据业务请求后, 接收 UE按照 3GPP LTE协议 通过空口发送的数据;
IP层处理模块 702,用于将接收的数据封装成 IP协议数据包后通过数据传输接口发送 至因特网和 /或核心网。
实施中, IP层处理模块还可以进一步用于将接收的数据封装成 IP协议数据包后通过 数据传输接口经网关发送至因特网和 /或核心网; 或, 通过数据传输接口直接发送至因特网 和 /或核心网。
实施中, IP层处理模块还可以进一步用于在与 UE通过空口传输数据时, 与 LTE RLC ( Radio Link Control, 无线链路控制)层标准的要求相比, 按以下方式之一或者其组合处 理:
减少重传模式; 减少 PDCP ( Packet Data Convergence Protocol, 分组数据聚合协议) 层的头压缩; 减少数据包加密。
具体的, IP层处理模块下行实现 IP数据包分段, 以及数据包的确认重传模式, 上行 实现 MAC ( Media Access Control, 媒体接入控制)数据包的级联和重组, 以及确认重传模 式等功能。 由于只支持筒化的 QoS数据传输, 相对 LTE, DA系统的 RLC层减少了重传 模式, 并减少了 PDCP层头压缩, 数据包加密等方面的功能。
对于家庭场景下的 IP层处理模块还需要实现路由功能, 实现 IP数据包直接通过有线 数据传输网或者 ADSL等设备和 Internet互联传输的功能。
实施中, 射频模块还可以进一步用于在与 UE通过空口传输数据时, 使用较低的发射 功率向 UE发送数据, 比如: 低于设定值的发射功率认为是较低的发射功率, 使用较低的 灵敏度接收 UE发送的数据, 比如低于 3GPP规定的灵敏度为较低的灵敏度。
具体的, 射频模块的功能为实现基站设备下行数据信号的发射和上行数据信号的接收 功能。 由于 DA设备主要覆盖室内和热点地区, 所以具备下行功率要求更低, 上行灵敏 度要求更低,射频滤波器和带外辐射要求适当放松等特点, 以利于降低设备成本。 实施中, 较低的发射功率可以是 20dBm或 23dBm、 即与现有手机终端的发射功率相近的低功率, 这个较低是相对于传统基站而言的。 实施中, 无线接入网设备中还可以进一步包括:
物理层处理模块 703 , 用于在与 UE通过空口传输数据时, 与 LTE物理层标准的要求 相比, 按以下方式之一或者其组合处理:
减少多天线传输模式; 配置更大的测量周期; 配置更大的反馈周期; 配置更少的控制 信道; 配置更少的参考符号。
具体的, 物理层处理模块可以釆用 LTE OFDM ( Orthogonal Frquency Division Multiplexing, 正交频分复用)等物理层关键技术实现数据信号的编码译码, 调制解调, 多 天线传输, 链路自适应和重传等功能。 下行将 MAC层数据包经过一系列信号处理后传输 到射频, 上行将射频信号接收后形成 MAC层数据包。 为了降低设备成本, 提高传输效率, 适合室内数据传输, 相对 LTE物理层, 可以减少多天线传输模式, 配置更大周期的测量和 反馈, 配置更少的控制信道和参考符号。
由于传统移动通信系统是针对 3公里 /'』、时以上, 250公里 /'』、时以下的移动速度设计的, 其信道衰落较快, 因此测量平滑周期为几十〜几百毫秒; 实施中, 针对室内热点场景下低 速移动的终端设计, 测量平滑周期可以是几秒甚至更长的周期。
控制信道个数对系统支持的用户数比较敏感, 因此实施中, 系统中的用户数可以比传 统 LTE系统降低至少一个数量级, 所以控制信道可以釆用最低限或者接近最低限的配置。
实施中, 无线接入网设备中还可以进一步包括:
MAC层处理模块 704, 用于在与 UE通过空口传输数据时, 与 LTE MAC层标准的要 求相比, 按以下方式之一或者其组合处理:
筒化 QoS的控制和调度; 降低系统调度支持的用户数目要求; 筒化数据包传输过程中 的保护和操作。
具体的, MAC层处理模块下行实现 RLC层数据包的调度和传输和重传等, 上行实现 用户调度, MAC数据包解码以及重传等。 相对传统 LTE系统, MAC层筒化了 QoS的控 制和调度, 降低了系统调度支持的用户数目要求, 筒化了数据包传输过程中的相关保护和 操作, 从而提高传输的效率, 降低设备成本要求。
降低系统调度支持的用户数目要求,通常 LTE基站的设计的容量都是同时支持几百甚 至上千用户, 考虑到室内热点分布场景, 覆盖面积小, 用户数较少, 4~20个用户可能是典 型场景, 即使企业级场景最多也就支持几十个用户同时在线, 因此可以降低系统调度支持 的用户数目要求。
实施中, 在筒化 QoS的控制和调度时, 例如可以去掉 TTI Boundling。
实施中, 无线接入网设备中还可以进一步包括: 信令控制模块 705 , 用于在与 UE通过空口传输数据时, 在进行无线链路控制和无线 资源管理控制时, 按以下方式之一或者其组合处理:
减少随机接入过程中的步骤; 减少接入控制过程中的步骤; 广播筒化的系统信息; 筒 单的配置终端传输模式; 筒化现有 RRC对移动性的管理; 筒化现有 RRC对连接建立的管 理; 筒化现有 RRC对测量的管理。
具体的, 信令控制模块实现无线链路的控制和无线资源的管理控制等功能, 具体包括 实现减少步骤的随机接入过程和接入控制, 筒化的系统信息广播(包括 DAP无线接入网 络标识、 导频和主要信道配置等参数), 对终端筒单的传输模式配置, 必要的邻区及终端 信号测量和上 4艮配置等功能。 由于现有的广播信息中有一些关于小区场景和移动性相关的 参数, 以及由此带来的信道配置参数; 考虑到针对室内热点场景和低移动性的特点, 因此 可以对系统信息进行筒化, 去掉部分应用场景和移动相关的参数。 另外, 原有 RRC ( Radio Resource Control, 无线资源控制)相关的信令面控制可以在信令控制模块实现, RRC主要 解决的测量、 移动性、 连接建立等过程都可以进行筒化, 也即, 筒化现有 RRC对移动性、 连接建立和测量的管理等, 比如降低对实时测量的要求 (包括周期、 门限等)、 减少测量 触发事件、 筒化移动性管理(低速移动场景下触发切换较小, 也可以有意识地釆用分布式 天线减少切换触发次数, 代之以统一性各小区内的信道重配置)。
实施中, 无线接入网设备中还可以进一步包括: 数据传输接口 706, 用于为 NDA基站 设备和 Internet或者 D A网关, LTE核心网通信时提供物理链路传输, 为各种逻辑接口和 数据通道的最终出入口。
实施中, 射频模块还可以进一步用于发送广播信息, 用以指示数据业务将在封装成 IP 协议数据包后发送至因特网和 /或核心网。
具体的, 射频模块可以广播由信令控制模块指示的广播信息。
基于同一发明构思, 本发明实施例中还提供了一种无线数据接入方法, 由于该方法解 决问题的原理与无线接入网设备相似, 因此该方法的实施可以参见无线接入网设备的实 施, 重复之处不再赘述。
图 8为无线数据接入方法实施流程示意图, 如图所示, 可以包括如下步骤: 步骤 801、 接受 UE发起的数据业务请求;
步骤 802、 接收 UE按照 3GPP LTE协议通过空口发送的数据;
步骤 803、 将接收的数据封装成 IP协议数据包后发送至因特网和 /或核心网。
实施中, 将接收的数据封装成 IP协议数据包后发送至因特网, 可以包括:
所述 IP协议数据包是经网关发送至因特网和 /或核心网的; 或, 所述 IP协议数据包是直接发送至因特网和 /或核心网的。
实施中, 在与 UE通过空口传输数据时, 射频模块可以使用较低的发射功率向 UE发 送数据, 使用较低的灵敏度接收 UE发送的数据。
实施中, 在与 UE通过空口传输数据时, 与 LTE物理层标准的要求相比, 可以按以下 方式之一或者其组合处理: 减少多天线传输模式; 配置更大的测量周期; 配置更大的反馈 周期;
配置更少的控制信道; 配置更少的参考符号。
实施中, 在与 UE通过空口传输数据时, 与 LTE MAC层标准的要求相比, 可以按以 下方式之一或者其组合处理:
筒化 QoS的控制和调度; 降低系统调度支持的用户数目要求; 筒化数据包传输过程中 的保护和操作。
实施中,在与 UE通过空口传输数据时,在进行无线链路控制和无线资源管理控制时, 可以按以下方式之一或者其组合处理:
减少随机接入过程中的步骤; 减少接入控制过程中的步骤; 广播筒化的系统信息; 筒单的配置终端传输模式; 筒化现有 RRC对移动性的管理; 筒化现有 RRC对连接建立的 管理; 筒化现有 RRC对测量的管理。
实施中, 在与 UE通过空口传输数据时, 与 LTE RLC层标准的要求相比, 可以按以下 方式之一或者其组合处理:
减少重传模式; 减少 PDCP层的头压缩; 减少数据包加密。
实施中, 还可以进一步包括: 发送广播信息, 用以指示数据业务将在封装成 IP协议数 据包后发送至因特网和 /或核心网。
三、 NDA网关。
在本发明实施例提供的技术方案中, 因为 DA基站的数目可能很多, 直接接入核心 网会造成核心网设备的负担,所以 DA网关一方面可以起到将多个 DA基站的数据和接 口汇聚后和核心网连接的作用, 另一方面, 可以起到对同一区域 DA基站设备的认证管 理功能。 下面进行具体说明。
图 9为网关设备结构示意图, 如图所示, 网关设备, 也即 DA网关中可以包括: DA基站接口 901 , 用于与无线接入网设备收发数据;
数据传输接口 902 , 用于与因特网和 /或核心网收发数据;
路由模块 903 , 用于确定接收的数据是否是 IP协议数据包; 在接收到的数据是 IP协 议数据包时, 确定发送数据包的设备是否是 3GPP无线接入网设备, 或, 确定接收数据包 的设备是否是 3GPP无线接入网设备; 当确定是 3GPP无线接入网设备时, 为接收到的 IP 协议数据包进行路由寻址后转发该 IP协议数据包。
具体的, DA基站接口模块实现和 DA基站之间的互联互通和各种管理接口。
数据传输接口为 DA网关设备和 Internet或者 LTE核心网通信时提供物理链路传输, 为各种逻辑接口和数据通道的最终出入口。
实施中,路由模块还可以进一步用于将 3GPP无线接入网设备发送的 IP协议数据包转 发至因特网和 /或核心网。
具体的, 路由模块实现路由寻址功能; 可以将连接的多个 NDAP组织为一个 Intranet 网络,提供该网络内部的寻址、路由功能;也可以将 DAP接入到传统的电信网络核心网, 如 3GPP核心网, 提供到 3GPP核心网相关设备 (如 ePDG、 AAA Server等) 的路由寻址 功能。
实施中, 在网关设备中还可以进一步包括:
DA基站管理模块 904, 用于对接收 IP协议数据包和 /或发送 IP协议数据包的 3GPP 无线接入网设备按以下方式之一或者其组合处理:
进行鉴权; 接入管理; 配置参数。
具体的, NDA基站管理模块实现对 NDA基站的鉴权和接入管理, 以及参数配置等功 能。
实施中, 在网关设备中还可以进一步包括:
DA用户管理模块 905 , 用于对接收 IP协议数据包和 /或发送 IP协议数据包的 3GPP 无线接入网设备归属的用户进行接入管理和 /或鉴权计费。
具体的, NDA用户管理模块实现 NDA用户接入的管理, 鉴权计费等功能。 该功能主 要在企业场景 Intranet下启用, 可以根据实际确定是否需要选用该模块。
实施中, 在网关设备中还可以进一步包括: SWn/SWa接口 906, 用于将 3GPP无线接 入网设备发送的 IP协议数据包转发至核心网时, 从支持 3GPP协议 TS23.402 已规定的 SWn/SWa接口转发至核心网。
具体的, SWn/SWa接口在 DP系统需要接入 3GPP核心网时启用, 需要支持 3GPP 协议 TS23.402已规定的 SWn/SWa接口功能: 可以根据实际确定是否需要选用该接口。
基于同一发明构思, 本发明实施例中还提供了一种数据转发方法, 由于该方法解决问 题的原理与网关设备相似, 因此该方法的实施可以参见网关设备的实施, 重复之处不再赘 述。
图 10为数据转发方法实施流程示意图, 如图所示, 可以包括如下步骤: 步骤 1001、 确定接收的数据是否是 IP协议数据包;
步骤 1002、 在接收到的数据是 IP协议数据包时, 确定发送数据包的设备是否是 3GPP 无线接入网设备, 或, 确定接收数据包的设备是否是 3GPP无线接入网设备;
步骤 1003、 当确定是 3GPP无线接入网设备时,为接收到的 IP协议数据包进行路由寻 址后转发该 IP协议数据包。
实施中, 可以将 3GPP无线接入网设备发送的 IP协议数据包转发至因特网和 /或核心 网。
实施中, 对接收 IP协议数据包和 /或发送 IP协议数据包的 3GPP无线接入网设备可以 按以下方式之一或者其组合处理:
进行鉴权; 接入管理; 配置参数。
实施中, 可以对接收 IP协议数据包和 /或发送 IP协议数据包的 3GPP无线接入网设备 归属的用户进行接入管理和 /或鉴权计费。
实施中, 将 3GPP无线接入网设备发送的 IP协议数据包转发至核心网时, 可以从支持 3GPP协议 TS23.402已规定的 SWn/SWa接口转发至核心网。
四、 NDA终端。
在本发明实施例提供的技术方案中, 考虑到 DA系统大量应用了 LTE系统的物理层 和 MAC层关键技术,结合产业发展的考虑,在移动终端的实施上,有独立实现和结合 LTE 现有终端实现两种方式。
对于独立实现 NDA的终端, 可以支持绝大多数的 LTE物理层和 MAC层关键技术, 适合高速 IP数据业务传输的终端。
下面先对独立实现的移动终端进行说明, 然后再对结合实现的移动终端进行说明, 为 与现有移动终端区别, 实施例中称为 NDA终端。
1、 独立实现的 D A终端的功能模块和协议架构。
图 11为移动终端结构示意图, 如图所示, 移动终端, 也即 NDA终端中可以包括: 射频模块 1101 , 用于与无线接入网设备收发数据。
IP层处理模块 1102, 用于在按照 3GPP协议通过射频模块发送数据前, 对该数据进行 IP数据包分段处理后发送, 所述数据是数据业务中的数据; 和 /或, 在按照 3GPP协议通过 射频模块接收到数据后, 对该数据进行 MAC数据包的级联和重组, 所述数据是数据业务 中的数据。
实施中, IP层处理模块还可以进一步用于在对数据进行 IP数据包分段处理后发送时, 根据需要支持筒化的 QoS数据传输功能。 具体的, IP层处理模块上行实现 IP数据包分段, 以及数据包的确认重传模式, 下行 实现 MAC数据包的级联和重组, 以及确认重传模式等功能。 可根据需要支持筒化的 QoS 数据传输功能。
实施中, 射频模块还可以进一步用于在通过空口传输数据时, 使用较低的发射功率发 送数据, 使用较低的灵敏度接收数据。
具体的, 射频模块的功能为实现终端设备上行数据信号的发射和下行数据信号的接收 功能。 由于 DA终端主要用于室内和热点地区通信, 所以发射功率要求更低, 灵敏度要 求更低, 射频滤波器和带外辐射要求适当放松等特点, 以利于降低设备成本。
实施中, 在移动终端中还可以进一步包括:
物理层处理模块 1103 , 用于在通过空口传输数据时, 与 LTE物理层标准的要求相比, 可以按以下方式之一或者其组合处理:
减少多天线传输模式; 配置更大的测量周期; 配置更大的反馈周期; 配置更少的控制 信道; 配置更少的参考符号。
具体的,物理层处理模块, 釆用 LTE OFDM等物理层关键技术实现数据信号的编码译 码, 调制解调, 多天线传输, 链路自适应和重传等功能。 上行将 MAC层数据包经过一系 列信号处理后传输到射频, 下行将射频信号接收后形成 MAC层数据包。 为了降低设备成 本, 提高传输效率, 适合室内数据传输, 相对 LTE物理层, 可以减少多天线传输模式, 配 置更大周期的测量和反馈, 配置更少的控制信道和参考符号。
实施中, 在移动终端中还可以进一步包括:
MAC层处理模块 1104, 用于在通过空口传输数据时, 与 LTE MAC层标准的要求相 比, 可以按以下方式之一或者其组合处理:
筒化 QoS的控制和调度; 减少下行反馈; 筒化数据包传输过程中的保护和操作。 具体的, MAC层处理模块上行实现 RLC层数据包的调度请求和传输和重传等, 下行 实现 MAC数据包解码以及重传等。 相对传统 LTE系统, MAC层筒化了 QoS的控制和调 度, 减少了下行反馈, 筒化了数据包传输过程中的相关保护和操作,从而提高传输的效率, 降低设备成本要求。
实施中, 在移动终端中还可以进一步包括:
信令处理模块 1105 , 用于在通过空口传输数据时, 在进行无线链路控制和无线资源管 理控制时, 可以按以下方式之一或者其组合处理:
减少随机接入过程中的步骤; 减少接入控制过程中的步骤; 广播筒化的系统信息; 筒 单的配置终端传输模式; 筒化现有 RRC对移动性的管理; 筒化现有 RRC对连接建立的管 理; 筒化现有 RRC对测量的管理。
具体的, 信令处理模块实现无线链路的控制和无线资源的管理控制等功能, 实现减少 步骤的随机接入过程和接入请求, 筒化的系统信息广播信息接收(如小区标志、 导频、 主 要信道配置参数等), 筒单的传输模式配置, 必要的信号测量和上报等功能。
实施中, 在移动终端中还可以进一步包括:
应用层模块 1106, 用于处理终端业务应用层的各类信息和数据, 包括数据业务的类型 识别、 承载控制和 QoS映射等。
2、 DA终端与 LTE移动终端的功能模块和协议架构。
LTE+ DA终端, 这是一种能够同时支持 LTE完整协议流程和标准体系模式和 NDA 模式终端。
图 12为 LTE+ DA终端功能模块示意图, 如图所示, LTE+ DA双模终端的功能模块 中, 可以分为 LTE终端完整模式(图中所示为 LTE Full模式) 与 DA筒化模式(图中所 示为 D A模式), LTE终端完整模式的功能模块详细的协议和流程可以参考 3 GPP协议。 DA筒化模式的功能和模块同上述 D A终端。
具体实施中, LTE+NDA双模终端可以共享应用层和射频模块, 在物理层, 用户面高 层, 控制面高层上面, 体现为 2种不同的协议流程和工作模式, 终端可以根据所覆盖网络 的特性, 选择其中一种工作模式, 并且能够在 2种模式之间切换。
基于同一发明构思, 本发明实施例中还提供了一种无线数据收发方法, 由于该方法解 决问题的原理与移动终端相似, 因此该方法的实施可以参见移动终端的实施, 重复之处不 再赘述。
图 13为无线数据收发方法实施流程示意图, 如图所示, 可以包括如下步骤: 步骤 1301、在按照 3GPP LTE协议通过空口发送数据前,对该数据进行 IP数据包分段 处理后发送, 所述数据是数据业务中的数据;
步骤 1302、 按照 3 GPP LTE协议通过空口发送数据;
和 /或 ,
步骤 1303、 按照 3GPP LTE协议通过空口接收数据;
步骤 1304、 在按照 3GPP LTE协议通过空口接收到数据后, 对该数据进行 MAC数据 包的级联和重组, 所述数据是数据业务中的数据。
其中, 步骤 1301、 1302是无线数据的发送过程, 步骤 1303、 1304是无线数据的接收 过程, 两部分之间并无必然的时序关系, 而是独立的解决处理无线数据收发。
实施中, 在通过空口传输数据时, 射频模块使用较低的发射功率发送数据, 使用较低 的灵敏度接收数据。
实施中, 在通过空口传输数据时, 与 LTE物理层标准的要求相比, 可以按以下方式之 一或者其组合处理:
减少多天线传输模式; 配置更大的测量周期; 配置更大的反馈周期; 配置更少的控制 信道; 配置更少的参考符号。
实施中, 在通过空口传输数据时, 与 LTE MAC层标准的要求相比, 可以按以下方式 之一或者其组合处理:
筒化 QoS的控制和调度; 减少下行反馈; 筒化数据包传输过程中的保护和操作。 实施中, 在对数据进行 IP数据包分段处理后发送时, 可以根据需要支持筒化的 QoS 数据传输功能。
实施中, 在通过空口传输数据时, 在进行无线链路控制和无线资源管理控制时, 可以 按以下方式之一或者其组合处理: 减少随机接入过程中的步骤; 减少接入控制过程中的步 骤广播筒化的系统信息; 筒单的配置终端传输模式; 筒化现有 RRC对移动性的管理; 筒 化现有 RRC对连接建立的管理; 筒化现有 RRC对测量的管理。
为了更好的理解本发明的实施方式, 下面再以实例进行说明。
实施例 1 :
本实施例用以说明 NDA终端的接入和通信过程的实施方式。
DA终端接入和通信的过程可以如下:
DA基站设备开机, 完成和 DA网关以及 LTE核心网之间的连接和通信过程, 完成 参数配置。
具体实施中, 为了尽量避免和 LTE基站构成的蜂窝网络之间的千扰, 可以配置 NDA 基站工作的不同的频段上。 当然也可以工作在同一频段。
D A基站按照协议发射同步信号, 配置各种控制信道, 具体实施中, 还可以在系统广 播配置信息中, 标示基站能力属性为 NDA模式。
DA终端开机, 通过搜索同步信号, 完成和 NDA基站的同步, 然后读取广播信息, 获得系统接入参数, 然后驻留在 DA小区中。
DA终端应用层触发 Internet数据业务通信, 终端通过信令控制模块连接建立功能发 起随机接入, 并通过相应信令流程, 完成鉴权和注册, 并通过核心网完成数据连接建立。
终端通过 DA基站调度, 按照协议流程, 进行业务数据包的收发。
核心网进行流量统计和计费等工作。
实施例 2: 本实施例用以说明 LTE+NDA终端的接入和通信过程的实施方式。
LTE+ DA终端的接入和通信过程可以如下:
DA基站设备开机, 完成和 DA网关以及 LTE核心网之间的连接和通信过程, 完成 参数配置。
LTE基站设备开机, 完成相应的连接配置和通信过程, 完成参数配置。
具体实施中, 为了尽量避免和 LTE基站构成的蜂窝网络之间的千扰, 配置 DA基站 工作的不同的频段上。 当然在满足一定的射频指标前提下也可以工作在同一频段。
DA基站按照协议发射同步信号等, 配置各种控制信道, 并在系统广播配置信息中, 标示基站能力属性为 DA模式。
LTE基站按照协议发射同步信号等, 配置完整的 LTE控制信道, 按照协议进行系统广 播。
LTE+NDA终端开机, 通过搜索同步信号, 完成和基站的同步建立; 然后读取广播信 息, 如果广播信息指示覆盖小区为 NDA小区, 则配置终端工作在 NDA模式, 否则, 配置 终端工作在 LTE完整模式。
对于工作在 DA模式的终端, 按照实施例 1所述步骤读取广播并完成驻留, 通信过 程。
对于工作在 LTE模式的终端, 按照 LTE的相关流程和协议在 LTE系统中完成驻留和 通信过程。
实施例 3:
本实施例用以说明 LTE+NDA终端在两种模式间切换过程的实施方式。
LTE+NDA终端按照 LTE模式工作在 LTE基站设备中;
终端进行邻区测量并上报, 通过读取邻区广播, 或者邻区属性中检测到某个切换的目 标小区为 NDA小区;
LTE基站通过切换判断终端的切换目标小区为 NDA小区;
终端和网络侧保持高层数据连接, 暂停数据的收发;
终端断开和 LTE基站的无线连接, 将其切换到 NDA模式;
终端完成和新的 NDA小区的同步和接入, 建立无线连接;
终端和网络继续数据的收发。
由上述实施例可见, 本发明实施例中提供了一种数据传输系统, 该通信系统基于 LTE 物理层关键技术和部分 MAC层关键技术,配合必要的信令控制过程,和 IP层组包、寻址、 路由等功能, 包括筒单、 高效的低功耗、 低成本小型基站和网关设备, 可以直接接入 Internet/Intranet网络, 也可以接入 3 GPP核心网。 DA基站可以接入到 LTE核心网, 也可 以直接接入到数据互联网, 或者通过 DA网关接入到数据互联网。
由于在本发明实施例提供的技术方案中釆用了基于 LTE物理层、 MAC层关键技术的 筒单高效的数据传输方案, 设计了一种筒单高效的低功率无线接入设备和网关设备, 以及 对应的网络架构, 满足了室内和热点地区宽带无线数据需求, 并能够有效的降低数据业务 的成本开销, DA网络和 LTE网络基于同一标准体系的物理层和部分 MAC层设计, 网络 融合度更高, 系统效率和用户体验更好。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。
显然, 本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实 施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变型属于本发明权利要求及其 等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种无线接入网设备, 其特征在于, 包括:
射频模块, 用于在接受用户设备 UE发起的数据业务请求后, 接收 UE按照 3GPP长 期演进 LTE协议通过空口发送的数据;
IP层处理模块, 用于将接收的数据封装成 IP协议数据包后通过数据传输接口发送至 因特网和 /或核心网。
2、 如权利要求 1所述的无线接入网设备, 其特征在于, IP层处理模块进一步用于将 接收的数据封装成 IP协议数据包后通过数据传输接口经网关发送至因特网和 /或核心网; 或, 通过数据传输接口直接发送至因特网和 /或核心网。
3、 如权利要求 1所述的无线接入网设备, 其特征在于, 射频模块进一步用于在与 UE 通过空口传输数据时, 使用低于设定值的发射功率向 UE发送数据, 使用低于 3GPP规定 的灵敏度接收 UE发送的数据。
4、 如权利要求 1所述的无线接入网设备, 其特征在于, 进一步包括:
物理层处理模块,用于在与 UE通过空口传输数据时,与 LTE物理层标准的要求相比, 按以下方式之一或者其组合处理:
减少多天线传输模式;
配置更大的测量周期;
配置更大的反馈周期;
配置更少的控制信道;
配置更少的参考符号。
5、 如权利要求 1所述的无线接入网设备, 其特征在于, 进一步包括:
媒体接入控制 MAC层处理模块, 用于在与 UE通过空口传输数据时, 与 LTE MAC层 标准的要求相比, 按以下方式之一或者其组合处理:
筒化服务盾量 QoS的控制和调度;
降低系统调度支持的用户数目要求;
筒化数据包传输过程中的保护和操作。
6、 如权利要求 1所述的无线接入网设备, 其特征在于, 进一步包括:
信令控制模块, 用于在与 UE通过空口传输数据时, 在进行无线链路控制和无线资源 管理控制时, 按以下方式之一或者其组合处理:
减少随机接入过程中的步骤; 减少接入控制过程中的步骤;
广播筒化的系统信息;
筒单的配置终端传输模式;
筒化现有无线资源控制 RRC对移动性的管理;
筒化现有 RRC对连接建立的管理;
筒化现有 RRC对测量的管理。
7、 如权利要求 1所述的无线接入网设备, 其特征在于, IP层处理模块进一步用于在 与 UE通过空口传输数据时, 与 LTE无线链路控制 RLC层标准的要求相比, 按以下方式 之一或者其组合处理:
减少重传模式;
减少分组数据聚合协议 PDCP层的头压缩;
减少数据包加密。
8、 如权利要求 1至 7任一所述的无线接入网设备, 其特征在于, 射频模块进一步用 于发送广播信息, 用以指示数据业务将在封装成 IP协议数据包后发送至因特网和 /或核心 网。
9、 一种无线数据接入方法, 其特征在于, 包括如下步骤:
接受 UE发起的数据业务请求;
接收 UE按照 3GPP LTE协议通过空口发送的数据;
将接收的数据封装成 IP协议数据包后发送至因特网和 /或核心网。
10、 如权利要求 9所述的方法, 其特征在于, 将接收的数据封装成 IP协议数据包后发 送至因特网, 包括:
所述 IP协议数据包是经网关发送至因特网和 /或核心网的;
或, 所述 IP协议数据包是直接发送至因特网和 /或核心网的。
11、 如权利要求 9所述的方法, 其特征在于, 在与 UE通过空口传输数据时, 射频模 块使用低于设定值的发射功率向 UE发送数据, 使用低于 3GPP规定的灵敏度接收 UE发 送的数据。
12、 如权利要求 9所述的方法, 其特征在于, 在与 UE通过空口传输数据时, 与 LTE 物理层标准的要求相比, 按以下方式之一或者其组合处理:
减少多天线传输模式;
配置更大的测量周期;
配置更大的反馈周期; 配置更少的控制信道;
配置更少的参考符号。
13、如权利要求 9所述的方法,其特征在于,在与 UE通过空口传输数据时,与 LTE MAC 层标准的要求相比, 按以下方式之一或者其组合处理:
筒化 QoS的控制和调度;
降低系统调度支持的用户数目要求;
筒化数据包传输过程中的保护和操作。
14、 如权利要求 9所述的方法, 其特征在于, 在与 UE通过空口传输数据时, 在进行 无线链路控制和无线资源管理控制时, 按以下方式之一或者其组合处理:
减少随机接入过程中的步骤;
减少接入控制过程中的步骤;
广播筒化的系统信息;
筒单的配置终端传输模式;
筒化现有 RRC对移动性的管理;
筒化现有 RRC对连接建立的管理;
筒化现有 RRC对测量的管理。
15、如权利要求 9所述的方法,其特征在于,在与 UE通过空口传输数据时,与 LTE RLC 层标准的要求相比, 按以下方式之一或者其组合处理:
减少重传模式;
减少 PDCP层的头压缩;
减少数据包加密。
16、 如权利要求 9至 15任一所述的方法, 其特征在于, 进一步包括:
发送广播信息, 用以指示数据业务将在封装成 IP协议数据包后发送至因特网和 /或核 心网。
17、 一种网关设备, 其特征在于, 包括:
游牧数据接入 D A基站接口, 用于与无线接入网设备收发数据;
数据传输接口, 用于与因特网和 /或核心网收发数据;
路由模块, 用于确定接收的数据是否是 IP协议数据包; 在接收到的数据是 IP协议数 据包时, 确定发送数据包的设备是否是 3GPP无线接入网设备, 或, 确定接收数据包的设 备是否是 3GPP无线接入网设备; 当确定是 3GPP无线接入网设备时, 为接收到的 IP协议 数据包进行路由寻址后转发该 IP协议数据包。
18、 如权利要求 17所述的网关设备, 其特征在于, 路由模块进一步用于将 3GPP无线 接入网设备发送的 IP协议数据包转发至因特网和 /或核心网。
19、 如权利要求 17所述的网关设备, 其特征在于, 进一步包括:
DA基站管理模块,用于对接收 IP协议数据包和 /或发送 IP协议数据包的 3GPP无线 接入网设备按以下方式之一或者其组合处理:
进行鉴权、 接入管理、 配置参数。
20、 如权利要求 17所述的网关设备, 其特征在于, 进一步包括:
DA用户管理模块,用于对接收 IP协议数据包和 /或发送 IP协议数据包的 3GPP无线 接入网设备归属的用户进行接入管理和 /或鉴权计费。
21、 如权利要求 17所述的网关设备, 其特征在于, 进一步包括:
SWn/SWa接口, 用于将 3GPP无线接入网设备发送的 IP协议数据包转发至核心网时, 从支持 3GPP协议 TS23.402已规定的 SWn/SWa接口转发至核心网。
22、 一种数据转发方法, 其特征在于, 包括如下步骤:
确定接收的数据是否是 IP协议数据包;
在接收到的数据是 IP协议数据包时,确定发送数据包的设备是否是 3GPP无线接入网 设备, 或, 确定接收数据包的设备是否是 3GPP无线接入网设备;
当确定是 3GPP无线接入网设备时,为接收到的 IP协议数据包进行路由寻址后转发该 IP协议数据包。
23、 如权利要求 22所述的方法, 其特征在于, 将 3 GPP无线接入网设备发送的 IP协 议数据包转发至因特网和 /或核心网。
24、 如权利要求 22所述的方法, 其特征在于, 对接收 IP协议数据包和 /或发送 IP协 议数据包的 3GPP无线接入网设备按以下方式之一或者其组合处理:
进行鉴权、 接入管理、 配置参数。
25、 如权利要求 22所述的方法, 其特征在于, 对接收 IP协议数据包和 /或发送 IP协 议数据包的 3 GPP无线接入网设备归属的用户进行接入管理和 /或鉴权计费。
26、 如权利要求 22所述的方法, 其特征在于, 将 3 GPP无线接入网设备发送的 IP协 议数据包转发至核心网时, 从支持 3GPP协议 TS23.402已规定的 SWn/SWa接口转发至核 心网。
27、 一种移动终端, 其特征在于, 包括:
射频模块, 用于与无线接入网设备收发数据;
IP层处理模块, 用于在按照 3GPP协议通过射频模块发送数据前,对该数据进行 IP数 据包分段处理后发送, 所述数据是数据业务中的数据; 和 /或, 在按照 3GPP协议通过射频 模块接收到数据后, 对该数据进行 MAC数据包的级联和重组, 所述数据是数据业务中的 数据。
28、 如权利要求 27 所述的移动终端, 其特征在于, 射频模块进一步用于在通过空口 传输数据时, 使用低于设定值的发射功率发送数据, 使用低于 3GPP规定的灵敏度接收数 据。
29、 如权利要求 27所述的移动终端, 其特征在于, 进一步包括:
物理层处理模块, 用于在通过空口传输数据时, 与 LTE物理层标准的要求相比, 按以 下方式之一或者其组合处理:
减少多天线传输模式;
配置更大的测量周期;
配置更大的反馈周期;
配置更少的控制信道;
配置更少的参考符号。
30、 如权利要求 27所述的移动终端, 其特征在于, 进一步包括:
MAC层处理模块, 用于在通过空口传输数据时, 与 LTE MAC层标准的要求相比, 按 以下方式之一或者其组合处理:
筒化 QoS的控制和调度;
减少下行反馈;
筒化数据包传输过程中的保护和操作。
31、 如权利要求 27所述的移动终端, 其特征在于, IP层处理模块进一步用于在对数 据进行 IP数据包分段处理后发送时, 根据需要支持筒化的 QoS数据传输功能。
32、 如权利要求 27所述的移动终端, 其特征在于, 进一步包括:
信令处理模块, 用于在通过空口传输数据时, 在进行无线链路控制和无线资源管理控 制时, 按以下方式之一或者其组合处理:
减少随机接入过程中的步骤;
减少接入控制过程中的步骤;
广播筒化的系统信息;
筒单的配置终端传输模式;
筒化现有 RRC对移动性的管理;
筒化现有 RRC对连接建立的管理; 筒化现有 RRC对测量的管理。
33、 一种无线数据收发方法, 其特征在于, 包括如下步骤:
在按照 3GPP LTE协议通过空口发送数据前,对该数据进行 IP数据包分段处理后发送, 所述数据是数据业务中的数据;
和 /或 ,
在按照 3GPP LTE协议通过空口接收到数据后, 对该数据进行 MAC数据包的级联和 重组, 所述数据是数据业务中的数据。
34、 如权利要求 33 所述的方法, 其特征在于, 在通过空口传输数据时, 射频模块使 用低于设定值的发射功率发送数据, 使用低于 3GPP规定的灵敏度接收数据。
35、 如权利要求 33所述的方法, 其特征在于, 在通过空口传输数据时, 与 LTE物理 层标准的要求相比, 按以下方式之一或者其组合处理:
减少多天线传输模式;
配置更大的测量周期;
配置更大的反馈周期;
配置更少的控制信道;
配置更少的参考符号。
36、 如权利要求 33所述的方法, 其特征在于, 在通过空口传输数据时, 与 LTE MAC 层标准的要求相比, 按以下方式之一或者其组合处理:
筒化 QoS的控制和调度;
减少下行反馈;
筒化数据包传输过程中的保护和操作。
37、 如权利要求 33所述的方法, 其特征在于, 在对数据进行 IP数据包分段处理后发 送时, 根据需要支持筒化的 QoS数据传输功能。
38、 如权利要求 33 所述的方法, 其特征在于, 在通过空口传输数据时, 在进行无线 链路控制和无线资源管理控制时, 按以下方式之一或者其组合处理:
减少随机接入过程中的步骤;
减少接入控制过程中的步骤;
广播筒化的系统信息;
筒单的配置终端传输模式;
筒化现有 RRC对移动性的管理;
筒化现有 RRC对连接建立的管理; 筒化现有 RRC对测量的管理。
39、 一种无线通信系统, 其特征在于, 包括:
移动终端, 用于与无线接入网设备收发数据, 在按照 3GPP协议通过射频模块发送数 据前, 对该数据进行 IP数据包分段处理后发送, 所述数据是数据业务中的数据;
无线接入网设备, 用于在接受移动终端发起的数据业务请求后, 接收移动终端按照
3GPP LTE协议通过空口发送的数据 , 并将接收的数据封装成 IP协议数据包后通过数据传 输接口发送至因特网和 /或核心网。
40、 如权利要求 39所述的系统, 其特征在于, 进一步包括:
网关设备, 用于与无线接入网设备收发数据, 与因特网和 /或核心网收发数据; 在接收 到的数据是 IP协议数据包时, 确定发送数据包的设备是否是 3GPP无线接入网设备, 或, 确定接收数据包的设备是否是 3GPP无线接入网设备; 当确定是 3GPP无线接入网设备时, 为接收到的 IP协议数据包进行路由寻址后转发该 IP协议数据包。
41、 一种无线数据接入方法, 其特征在于, 包括如下步骤:
移动终端在按照 3GPP LTE协议通过空口发送数据前,对该数据进行 IP数据包分段处 理后发送, 所述数据是数据业务中的数据;
无线接入网设备在接受 UE发起的数据业务请求后, 接收移动终端按照 3GPP LTE协 议通过空口发送的数据 , 并将接收的数据封装成 IP协议数据包后发送至因特网和 /或核心 网。
42、 如权利要求 41所述的方法, 其特征在于, 进一步包括:
确定接收的数据是否是 IP协议数据包;
在接收到的数据是 IP协议数据包时,确定发送数据包的设备是否是 3GPP无线接入网 设备, 或, 确定接收数据包的设备是否是 3GPP无线接入网设备;
当确定是 3GPP无线接入网设备时,为接收到的 IP协议数据包进行路由寻址后转发该 IP协议数据包。
PCT/CN2011/084080 2010-12-20 2011-12-15 一种无线数据接入方法及设备 WO2012083816A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010597575.8A CN102573104B (zh) 2010-12-20 2010-12-20 一种无线数据接入方法及设备
CN201010597575.8 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012083816A1 true WO2012083816A1 (zh) 2012-06-28

Family

ID=46313153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084080 WO2012083816A1 (zh) 2010-12-20 2011-12-15 一种无线数据接入方法及设备

Country Status (2)

Country Link
CN (1) CN102573104B (zh)
WO (1) WO2012083816A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017008555A1 (zh) * 2015-07-14 2017-01-19 广东欧珀移动通信有限公司 数据传输的方法、发送设备及接收设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686929B (zh) 2012-09-13 2016-12-21 华为技术有限公司 一种告知无线接入点服务虚拟提供方的方法及设备
CN103796246A (zh) * 2012-10-31 2014-05-14 中兴通讯股份有限公司 数据的分流方法、装置及系统
CN104080156B (zh) * 2013-03-29 2018-05-22 电信科学技术研究院 一种开启终端3gpp功能的方法及装置
CN105357172A (zh) * 2014-08-21 2016-02-24 中兴通讯股份有限公司 数据报文的传输处理方法及装置
CN114760643A (zh) * 2020-12-29 2022-07-15 比亚迪股份有限公司 数据传输方法及通信系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100077102A1 (en) * 2008-08-04 2010-03-25 Stoke, Inc. Method and system for bypassing 3gpp packet switched core network when accessing internet from 3gpp ues using ip-bts, femto cell, or lte access network
CN101896586A (zh) * 2007-12-12 2010-11-24 英菲诺姆国际有限公司 具有n-取代的苯二胺的迈克尔加合物的添加剂组合物
CN101895929A (zh) * 2009-05-22 2010-11-24 美国博通公司 集成的毫微微蜂窝和wlan接入点

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227708A (zh) * 2007-01-19 2008-07-23 华为技术有限公司 统一无线接入的方法、装置及无线网络系统
US8116264B2 (en) * 2007-10-12 2012-02-14 Ruckus Wireless, Inc. Femtocell architecture in support of voice and data communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896586A (zh) * 2007-12-12 2010-11-24 英菲诺姆国际有限公司 具有n-取代的苯二胺的迈克尔加合物的添加剂组合物
US20100077102A1 (en) * 2008-08-04 2010-03-25 Stoke, Inc. Method and system for bypassing 3gpp packet switched core network when accessing internet from 3gpp ues using ip-bts, femto cell, or lte access network
CN101895929A (zh) * 2009-05-22 2010-11-24 美国博通公司 集成的毫微微蜂窝和wlan接入点

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017008555A1 (zh) * 2015-07-14 2017-01-19 广东欧珀移动通信有限公司 数据传输的方法、发送设备及接收设备
US10405230B2 (en) 2015-07-14 2019-09-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, sending device and receiving device
US11240708B2 (en) 2015-07-14 2022-02-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, sending device and receiving device

Also Published As

Publication number Publication date
CN102573104A (zh) 2012-07-11
CN102573104B (zh) 2015-04-15

Similar Documents

Publication Publication Date Title
US12022334B2 (en) Method and device for accelerating data processing of double connection in next generation mobile communication system
US20230224380A1 (en) Wireless Device Capability Information
US10542440B2 (en) Integrated wireless local area network for spectrum sharing
EP3213580B1 (en) Method and apparatus of lwa pdu routing
KR101465417B1 (ko) 기회적 네트워크 관련 메시지 전송 방법
US8958404B2 (en) Apparatus and method for providing access to a local area network
US20150156774A1 (en) Interworking base station between a wireless network and a cellular network
US20150139184A1 (en) System, User Equipment and Method for Implementing Multi-network Joint Transmission
US20150215809A1 (en) Multi-network joint transmission-based offload method and system, and access network element
JP6635973B2 (ja) データ分流のための方法およびデバイス
CN106162685B (zh) 一种获取接入技术网络间传输时延的方法及系统
WO2012083816A1 (zh) 一种无线数据接入方法及设备
CN106211352A (zh) 数据无线承载的建立方法和装置
CN109905884B (zh) 室内覆盖系统
WO2012100702A1 (zh) 一种无线接入系统、装置及数据传输方法
WO2015143770A1 (zh) 一种跨系统网络信息交互的方法、终端系统网络网元
WO2012083815A1 (zh) 无线数据业务接入方法、系统及装置
US20130337819A1 (en) Nomadic data access system and device
TW201836428A (zh) 用於增強law的上行鏈路路由方法和用戶設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850986

Country of ref document: EP

Kind code of ref document: A1