WO2012083767A1 - 一种隧道故障检测方法和流量工程节点 - Google Patents

一种隧道故障检测方法和流量工程节点 Download PDF

Info

Publication number
WO2012083767A1
WO2012083767A1 PCT/CN2011/082065 CN2011082065W WO2012083767A1 WO 2012083767 A1 WO2012083767 A1 WO 2012083767A1 CN 2011082065 W CN2011082065 W CN 2011082065W WO 2012083767 A1 WO2012083767 A1 WO 2012083767A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
link
tunnel
faulty
fault
Prior art date
Application number
PCT/CN2011/082065
Other languages
English (en)
French (fr)
Inventor
陈飞
白涛
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11852174.9A priority Critical patent/EP2658177B1/en
Publication of WO2012083767A1 publication Critical patent/WO2012083767A1/zh
Priority to US13/925,097 priority patent/US9313090B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery

Definitions

  • Tunnel fault detection method and traffic engineering node The present application claims to be Chinese patent application filed on December 24, 2010, the Chinese Patent Office, application number CN 201010606158.5, and the invention name is "a tunnel fault detection method and a traffic engineering node" Priority is hereby incorporated by reference in its entirety.
  • the present invention relates to the field of communications technologies, and in particular, to a tunnel fault detection method and a traffic engineering (TE) node.
  • TE traffic engineering
  • Traffic Engineering TE The task of mapping traffic flows to the physical topology of the network is called Traffic Engineering TE.
  • TE is a powerful tool that balances the traffic between different links, routers, and switches in the network, so that all of these devices are neither over-utilized nor underutilized. Resources for the entire network.
  • the first node that deploys the traffic engineering TE needs to quickly find faults in order to ensure the timely processing of TE.
  • there are two main methods for fault detection of a TE tunnel One is to rely directly on the Soft Reservation Refresh mechanism of the Resource Reservation Protocol (RSVP).
  • RSVP Resource Reservation Protocol
  • the fault is then sent to the head node of the TE tunnel to send a fault notification.
  • One is to configure other detection technologies in the network, for example, by means of Bidirectional Forwarding Detection (BFD) technology to detect whether the tunnel is faulty.
  • BFD Bidirectional Forwarding Detection
  • the current prior art is based on the failure notification of each tunnel.
  • a large number of fault notifications will be generated, which will cause the fault notification to be blocked, increase the risk of loss or delay of the fault notification, and thus delay the faulty tunnel. deal with.
  • the embodiment of the invention provides a tunnel fault detection method and a TE node.
  • the faulty tunnel can be detected in time.
  • a tunnel fault detection method includes:
  • a traffic engineering TE node receives a link fault report message
  • a TE node including:
  • a receiving unit configured to receive a link fault report message
  • a determining unit configured to determine, according to the link fault report message received by the receiving unit, a faulty link that is faulty
  • a detecting unit configured to detect whether there is one or more tunnels that are in the node and transit through the faulty link
  • an identifier unit configured to determine that the tunnel is a faulty tunnel after determining that there is a tunnel that is the node with the node and passes the faulty link.
  • the node deploying the TE detects the tunnel that is the first node and identifies all the tunnels that are the faulty link as the fault tunnel.
  • a plurality of faulty tunnels can be detected at one time, and it is not necessary to wait for the fault notification based on each tunnel to be received, and then the faulty tunnel is determined one by one. Therefore, compared with the prior art, in a network in which a TE tunnel is configured with a large number of tunnels, it can be timely A faulty tunnel was detected.
  • FIG. 1 is a schematic flowchart of a tunnel fault detection method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a TE network in an example of the present invention
  • FIG. 3 is a schematic diagram of a link failure of the TE network shown in FIG. 2;
  • FIG. 4 is a schematic structural diagram of a functional unit of an embodiment of a TE node according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a functional unit of another embodiment of a TE node according to an embodiment of the present invention.
  • an embodiment of the present invention provides a tunnel fault detection method, including:
  • a node with a traffic engineering (TE) function receives a link failure report message, and the node having the traffic engineering (TE) function is referred to as a TE node in the present application;
  • the node determines, according to the link fault report message, a faulty link that fails.
  • the node detects whether one or more tunnels with the node as the first node and passing the faulty link exist.
  • the tunnel is determined to be a faulty tunnel.
  • the node detects whether one or more tunnels with the node as the head node and passing the faulty link include:
  • the node detects, according to the link information of the link that the plurality of tunnels that are the node is the node, and the link information of the faulty link, whether one or more of the nodes are the node and the Tunnel of the failed link.
  • the node pre-maintains link information of a link through which multiple tunnels with the node as the first node respectively pass.
  • multiple tunnels with the node as the first node include tunnel A, tunnel B, and tunnel.
  • the path information of the link through which tunnel A passes is: path 1, path 2, and path 3.
  • the path information of the link through which tunnel B passes is: path 1, path 2, and path 4.
  • the path information of the link through which tunnel C passes is : path 1, path 5, path 6.
  • the link of the link through which the plurality of tunnels of the node with the node as the first node respectively pass The information is matched with the link information of the faulty link to determine whether one or more tunnels with the node as the head node and passing the faulty link exist. For example, when the node determines that the path 2 is a faulty path, it may be determined by the matching that the tunnel A and the tunnel B pass the path 2.
  • the method further includes: the node performing fault processing on the tunnel identified as the fault.
  • the method further includes: configuring a TE database on the TE node, where the TE database includes a chain between the TE node in the network and the TE node in the network Road information.
  • the node deletes the link information of the faulty link from the TE database, and updates the TE database. And, the node establishes a new tunnel according to the updated TE database.
  • IGP Interior Gateway Protocol
  • IGP-TE extension protocol can be seen in RFC3784, RFC3630
  • the TE database is configured on the node, and the TE database includes link information between the TE node in the network and the TE node in the network.
  • the first node of the tunnel first calculates the path that the tunnel needs to pass according to the data in the TE database, and then uses the Resource Reservation Protocol (RSVP) to establish a tunnel according to the calculated path.
  • RSVP Resource Reservation Protocol
  • the TE database is configured on at least one or all TE nodes, where the TE database includes link information between TE nodes in the network and TE nodes in the network.
  • the TE node R1 is configured with the TE database
  • the TE database includes TE nodes in the network: R1, R2, ..., R6, and R7, and further includes a chain between TE nodes in the network.
  • the first node of the tunnel can calculate the path that the tunnel needs to pass according to the data in the current TE database of the first node, and the first node establishes a tunnel according to the calculated path according to the RSVP protocol.
  • the nodes at both ends of the faulty link detect the fault according to the IGP-TE extended protocol, and then send a link fault to the R1 node. Reporting a message that the link 4 is faulty; optionally, the nodes at both ends of the faulty link If the TE database is configured with the TE database, the link 4 is deleted from the link, and the TE database in the respective node is updated.
  • the updated TE database includes the TE node: R1, R2, ..., R6, R7 , TE link: 1, 2, 3, 5, 6.
  • the IGP-TE extension protocol When a node failure occurs in the TE network, for example, when node R5 in Figure 2 fails, the IGP-TE extension protocol will detect that links 4, 5, and 6 passing through node R5 are faulty, and then to R1 or to the network. All the nodes in the node send a link fault report message, advertise the link 4, 5, and 6 faults, and receive the fault report message, and the node configured with the TE database separately updates its own TE database.
  • the TE database includes TE nodes: Rl, R2, ... R6, R7, TE links: 1, 2, 3.
  • this database is only used for the path calculation of the subsequent TE tunnel.
  • the deleted link will not be selected. There will be no faulty links in the established TE tunnel.
  • the update of the TE database does not affect the TE tunnel that has been created.
  • all the TE nodes in the network after receiving the link fault report message of the IGP-TE extended protocol, all the TE nodes in the network determine the faulty fault link according to the link fault report message, and detect whether the faulty link exists.
  • the tunnel that is the first node and passes through the faulty link if there is a tunnel that is the node with the node and passes the faulty link, the node is considered to be the node and passes through the faulty link. All the tunnels have failed, and they no longer wait to receive the fault notification based on each tunnel and then determine the faulty tunnel one by one. For example, in R1, R2, R6, and R7 in Figure 3, all the tunnels established to link 4 that are established locally are fault-detected. In this way, in the case where a large number of tunnels exist in a certain node, the fault detection of the tunnel can be accelerated.
  • the TE node searches for the tunnel with the local node as the first node according to the link fault report message, and performs the troubleshooting steps for all the tunnels that use the fault link in the link fault report message, and the TE.
  • the step of updating the TE database according to the link failure report message may be performed at the same time, or the TE database may be updated after the TE database is processed, or the TE tunnel may be processed and the TE database may be updated. This embodiment of the present invention does not limit this.
  • the data change of the node and the link is used as the state change of the node and the link in the TE network, and the tunnel is processed in association, thereby increasing the nodes and links in the network.
  • the fault handling of the TE tunnel can be speeded up.
  • it is not necessary to deploy another detection technology to detect the TE tunnel fault which can save network resources.
  • an embodiment of the present invention further provides a TE node, including:
  • a receiving unit 41 configured to receive a link fault report message
  • the determining unit 42 is configured to determine, according to the link fault report message received by the receiving unit, a faulty link that fails;
  • the detecting unit 43 is configured to detect whether there is one or more tunnels that are the node as the first node and pass the faulty link;
  • the identifying unit 44 is configured to determine that the tunnel is a faulty tunnel after determining that there is a tunnel with the node as the head node and passing the faulty link.
  • the determining unit 42 determines the faulty link that has failed, and then the detecting unit 43 detects whether one or more of the nodes are present. After the node passes through the tunnel of the faulty link, the identifying unit 44 determines that the tunnel is a faulty tunnel after determining that there is a tunnel with the node as the head node and passing the faulty link.
  • the node can detect all the faulty tunnels at one time, and do not need to wait for receiving the fault notification based on each tunnel, and then determine the faults one by one. Tunnels, so in a network where a large number of tunnels are configured on a TE node, faulty tunnels can be detected in time.
  • the detecting unit comprises:
  • a tunnel link information obtaining sub-unit configured to acquire link information of a link that multiple tunnels with the node as the first node pass through
  • a fault link information acquisition subunit configured to acquire information of a faulty faulty link
  • a fault tunnel detection subunit configured to use, according to the link information of the link that the plurality of tunnels with the node as the first node pass
  • link information of the faulty link detects whether one or more tunnels with the node as the head node and passing the faulty link exist.
  • the tunnel link information obtaining sub-unit acquires multiple pieces of tunnels with the node as the first node and path information of the links that the multiple tunnels pass.
  • the plurality of tunnels are tunnel A, tunnel B, and tunnel C.
  • the path information of the link through which tunnel A passes is: path 1, path 2, and path 3.
  • the path information of the link through which tunnel B passes is: path 1, path 2, and path 4.
  • the path information of the link through which tunnel C passes is : Path 1, Path 5, Path 6.
  • the faulty link information obtaining subunit acquires path information of the faulty path, for example, obtaining the path 2 as a faulty path.
  • the faulty tunnel detection subunit matches the link information of the link through which the plurality of tunnels with the node as the first node pass, and the link information of the faulty link, to determine whether one or more links exist.
  • a tunnel that is terminated by the node and that passes through the faulty link For example, when the node determines that path 2 is a faulty path, tunnel A and tunnel B may be determined to pass through the path 2 by the matching.
  • the TE node in the embodiment of the present invention may further include:
  • the fault processing unit 45 is configured to perform fault processing on the tunnel identified by the identifier unit 44 as a fault.
  • the configuration unit 50 is configured to configure a TE database, where the TE database includes link information between a TE node in the network and a TE node in the network.
  • the updating unit 51 is configured to delete link information of the faulty link from the TE database, and update the TE database.
  • a tunnel establishing unit 52 configured to establish a new tunnel according to the updated TE database of the update unit.
  • the TE node of the embodiment of the present invention updates the traffic engineering database by the update unit 51, and then the tunnel establishment unit 52 performs the path calculation of the subsequent TE tunnel according to the updated TE database, thereby There will be no faulty links in the newly established TE tunnel, which ensures the security of the TE tunnel.

Description

一种隧道故障检测方法和流量工程节点 本申请要求于 2010 年 12 月 24 日提交中国专利局、 申请号为 CN 201010606158.5、 发明名称为 "一种隧道故障检测方法和流量工程节点" 的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 尤其涉及一种隧道故障检测方法和流量工程 ( Traffic Engineering , TE )节点。
背景技术
将业务流映射到网络的物理拓朴上的任务被称作流量工程 TE。 TE是一 个强有力的工具, 通过它可以平衡网络中不同的链路、 路由器和交换机之间 业务负荷, 使所有这些设备既不会过度使用, 也不会未被充分使用, 这样就 可以有效利用整个网络的资源。
在网络中为了保证隧道的安全,部署有流量工程 TE的首节点需要快速发 现故障, 以便及时作出保证 TE的处理。 在目前的现有技术中, 对于 TE隧道 的故障检测主要有两种方式, 一种是直接依靠资源预留协议 (Resource Reservation Protocol, RSVP ) 自身的软状态刷新机制, 一旦发现消息超时, 则认为故障, 然后向 TE隧道的首节点发送故障通告; 一种是在网络中配置其 他检测技术, 例如借助于双向转发检测 (Bidirectional Forwarding Detection, BFD )技术, 来检测隧道是否有故障。
在发现故障之后的故障通告中, 目前的现有技术都是基于每一个隧道进 行故障通告。 当在同一个故障点存在大量的隧道时, 就会产生大量的故障通 告 ·^艮文, 这样会造成故障通告的阻塞, 增加故障通告 4艮文丟失或延迟的风险, 从而延误对故障隧道的处理。
发明内容 本发明实施例提供了一种隧道故障检测方法和 TE节点,在配置大量隧道 的网络中, 能够及时检测出故障隧道。
本发明实施例采用如下技术方案:
一种隧道故障检测方法, 包括:
一个流量工程 TE节点接收链路故障报告报文;
所述节点根据所述链路故障报告报文确定发生故障的故障链路; 所述节点检测是否存在一条或多条以所述节点为首节点且经过所述故障 链路的隧道;
若存在一条或多条以所述节点为首节点且经过所述故障链路的隧道, 则 确定所述为故障隧道。
一种 TE节点, 包括:
接收单元, 用于接收链路故障报告报文;
确定单元, 用于根据所述接收单元接收的链路故障报告报文确定发生故 障的故障链路;
检测单元, 用于检测是否存在一个或多个以所述节点为首节点且经过所 述故障链路的隧道;
标识单元, 用于在确定存在以所述节点为首节点且经过所述故障链路的 隧道后, 确定所述隧道为故障隧道。
由本发明实施例的技术方案可知, 部署了 TE的节点在收到链路故障报告 报文时, 通过对自身为首节点的隧道进行检测, 并将所有经过故障链路的隧 道标识为故障隧道, 从而可以一次性检测出多个故障隧道, 无需等待收到基 于每一个隧道的故障通告后再逐个判断出故障隧道, 因此与现有技术相比, 在 TE节点配置有大量隧道的网络中, 能够及时检测出故障隧道。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所 需要使用的附图作筒单地介绍。 图 1为本发明实施例提供的隧道故障检测方法的流程示意图; 图 2为本发明实施例示例中的 TE网络示意图;
图 3为图 2所示 TE网络出现链路故障时的示意图;
图 4为本发明实施例提供的 TE节点一实施方式的功能单元组成示意图; 图 5为本发明实施例提供的 TE节点另一实施方式的功能单元组成示意图。 具体实施方式
下面对本发明实施例中的技术方案进行清楚、 完整地描述。
参见图 1 , 本发明实施例提供一种隧道故障检测方法, 包括:
511 , —个具有流量工程(TE )功能的节点接收链路故障报告报文, 所述 具有流量工程(TE )功能的节点在本申请文件中被筒称为 TE节点;
512, 所述节点根据所述链路故障报告报文确定发生故障的故障链路;
513 , 所述节点检测是否存在一条或多条以所述节点为首节点且经过所述 故障链路的隧道;
514 , 若存在一条或多条以所述节点为首节点且经过所述故障链路的隧 道, 则确定所述隧道为故障隧道。
所述节点检测是否存在一条或多条以所述节点为首节点且经过所述故障 链路的隧道包括:
所述节点根据以所述节点为首节点的多条隧道分别经过的链路的链路信 息和所述故障链路的链路信息检测是否存在一条或多条以所述节点为首节点 且经过所述故障链路的隧道。
所述节点预先维护有以所述节点为首节点的多条隧道分别经过的链路的 链路信息。 例如, 以所述节点为首节点的多条隧道包括隧道 A、 隧道 B和隧 道 。 隧道 A经过的链路的路径信息为: 路径 1、 路径 2、 路径 3; 隧道 B经 过的链路的路径信息为: 路径 1、 路径 2、 路径 4; 隧道 C经过的链路的路径 信息为: 路径 1、 路径 5、 路径 6.
所述节点将所述以所述节点为首节点的多条隧道分别经过的链路的链路 信息与所述故障链路的链路信息进行匹配, 从而确定是否存在一条或多条以 所述节点为首节点且经过所述故障链路的隧道。 例如, 当所述节点确定路径 2 为故障路径时, 则可以通过所述匹配确定隧道 A和隧道 B经过所述路径 2。
进一步地, 在所述节点将所有经过所述故障链路的隧道标识为故障隧道 之后, 所述方法还包括: 所述节点对标识为故障的隧道进行故障处理。
在 TE节点接收链路故障报告报文之前, 所述方法还包括: 在所述 TE节 点上配置 TE数据库, 所述 TE数据库中包括网络中的 TE节点和所述网络中 的 TE节点间的链路信息。
进一步地, 所述节点从所述 TE数据库中删除所述故障链路的链路信息, 并对所述 TE数据库进行更新。 以及, 所述节点根据所述更新后的 TE数据库 建立新的隧道。
在部署 TE隧道之前,通过内部网关协议( Interior Gateway Protocol, IGP ) 对 TE进行功能扩展 ( IGP-TE的扩展协议可见 RFC3784 , RFC3630 ), 建立一 个 TE数据库, 并在网络中的至少一个或全部 TE节点上配置该 TE数据库, 该 TE数据库包括网络中的 TE节点和所述网络中的 TE节点间的链路信息。 建立 TE隧道时, 隧道的首节点首先根据 TE数据库中的数据, 计算出隧道需 要经过的路径, 然后由资源预留协议 ( Resource Reservation Protocol, RSVP ) 按照计算出来的路径去建立隧道。
在一个 TE网络中, 在至少一个或全部 TE节点上配置所述 TE数据库, 所述 TE数据库包括网络中的 TE节点和所述网络中的 TE节点间的链路信息。 如图 2所示, TE节点 R1配置了所述 TE数据库, 所述 TE数据库包括网络中 的 TE节点: Rl、 R2、 ...R6、 R7, 还包括所述网络中的 TE节点间的链路: 1、 2、 3、 4、 5、 6。 隧道的首节点可以根据所述首节点当前的 TE数据库中的数 据, 计算出隧道需要经过的路径, 并由所述首节点根据 RSVP协议按照计算 出来的路径去建立隧道。
如图 3所示, 当图 2中节点 R4-R5之间的链路 4发生故障的时候, 故障 链路两端的节点根据 IGP-TE扩展协议检测到此故障, 然后向 R1节点发送链 路故障报告报文, 通告链路 4发生故障; 可选地, 所述故障链路两端的节点 报文的节点如果配置有所述 TE数据库, 则从链路中删除链路 4, 并更新各自 节点中的 TE数据库, 更新后的 TE数据库包括 TE节点: Rl、 R2、 ...R6、 R7, TE链路: 1、 2、 3、 5、 6。 在 TE网络发生节点故障时, 例如图 2中的节点 R5发生故障时, 此时 IGP-TE扩展协议将检测到经过节点 R5的链路 4、 5、 6 都出现故障, 然后向 R1或向网络中的所有节点发送链路故障报告报文, 通告 链路 4、 5、 6故障, 收到所述故障报告报文且配置有所述 TE数据库的节点分 别更新自身的 TE数据库,此时更新后的 TE数据库包括 TE节点: Rl、 R2、 ... R6、 R7, TE链路: 1、 2、 3。
在正常情况下, 各个节点中的 TE数据库更新之后, 此数据库只用于后续 的 TE隧道的路径计算, 隧道的首节点在计算路径的时候, 不会再选中已经删 除的链路,从而在后续建立的 TE隧道中将不会有故障链路。在目前的实现中, TE数据库的更新是不会作用于已经创建好的 TE隧道的。
在本发明实施例中, 网络中所有 TE节点在收到 IGP-TE扩展协议的链路 故障报告报文后, 根据链路故障报告报文确定发生故障的故障链路, 并检测 是否存在以所述节点为首节点且经过所述故障链路的隧道, 如果存在以所述 节点为首节点且经过所述故障链路的隧道, 则认为所述以所述节点为首节点 且经过所述故障链路的隧道全部发生了故障, 而不再等待收到基于每一个隧 道的故障通告后再逐个判断出故障隧道。 例如在图 3 中的 Rl、 R2、 —R6、 R7都会分别对本地建立的所有使用到链路 4的隧道进行故障检测。 这样在某 个节点存在大量隧道的情况下, 将能够加快隧道的故障检测。
需要说明的是, TE节点根据链路故障报告报文查找以本地为首节点的隧 道, 并对所有使用到所述链路故障报告报文中的故障链路的隧道进行故障处 理的步骤, 与 TE节点根据所述链路故障报告报文更新 TE数据库的步骤, 可 以同时进行, 也可以先更新 TE数据库后再进行 TE隧道的故障处理, 或也可 以先进行 TE隧道的故障处理再更新 TE数据库,本发明实施例对此不做限定。
采用本发明实施例方法后,将节点和链路的数据变化作为 TE网络中节点 和链路的状态变化, 对隧道进行关联处理, 增加了对网络中节点和链路的故 障感知; 一方面在 TE节点配置大量隧道的网络中, 可以加快对 TE隧道的故 障处理, 另一方面无需再另外部署其他检测技术检测 TE隧道故障, 可以节约 网络资源。
参见图 4, 本发明实施例还提供了一种 TE节点, 包括:
接收单元 41 , 用于接收链路故障报告报文;
确定单元 42, 用于根据所述接收单元接收的链路故障报告报文确定发生 故障的故障链路;
检测单元 43 , 用于检测是否存在一个或多个以所述节点为首节点且经过 所述故障链路的隧道;
标识单元 44, 用于在确定存在以所述节点为首节点且经过所述故障链路 的隧道后, 确定所述隧道为故障隧道。
本发明实施例的节点, 在接收单元 41接收到链路故障报告报文后, 由确 定单元 42确定发生故障的故障链路, 然后由检测单元 43检测是否存在一个 或多个以所述节点为首节点且经过所述故障链路的隧道, 标识单元 44在确定 存在以所述节点为首节点且经过所述故障链路的隧道后, 确定所述隧道为故 障隧道。
当存在多条以所述节点为首节点且经过所述故障链路的隧道时, 所述节 点可以一次性检测出所有故障隧道, 无需等待收到基于每一个隧道的故障通 告后再逐个判断出故障隧道, 因此在 TE节点配置大量隧道的网络中, 能够及 时检测出故障隧道。
优选地, 所述检测单元包括:
隧道链路信息获取子单元, 用于获取以所述节点为首节点的多条隧道分 别经过的链路的链路信息;
故障链路信息获取子单元, 用于获取发生故障的故障链路的信息; 故障隧道检测子单元, 用于根据所述以所述节点为首节点的多条隧道分 别经过的链路的链路信息和所述故障链路的链路信息检测是否存在一条或多 条以所述节点为首节点且经过所述故障链路的隧道。 具体地, 所述隧道链路信息获取子单元获取到以所述节点为首节点的多 条隧道以及所述多条隧道经过的链路的路径信息。 例如, 所述多条隧道为隧 道 A、 隧道 B和隧道 C。 隧道 A经过的链路的路径信息为: 路径 1、 路径 2、 路径 3; 隧道 B经过的链路的路径信息为: 路径 1、 路径 2、 路径 4; 隧道 C 经过的链路的路径信息为: 路径 1、 路径 5、 路径 6。
所述故障链路信息获取子单元获取到故障路径的路径信息, 例如, 获取 到路径 2为故障路径。
所述故障隧道检测子单元将所述以所述节点为首节点的多条隧道分别经 过的链路的链路信息与所述故障链路的链路信息进行匹配, 从而确定是否存 在一条或多条以所述节点为首节点且经过所述故障链路的隧道。 例如, 当所 述节点确定路径 2为故障路径时, 则可以通过所述匹配确定隧道 A和隧道 B 经过所述路径 2。
进一步地, 参见图 5 , 本发明实施例的 TE节点还可以包括:
故障处理单元 45 ,用于对所述标识单元 44标识为故障的隧道进行故障处 理。
配置单元 50, 用于配置 TE数据库, 所述 TE数据库中包括网络中的 TE 节点和所述网络中的 TE节点间的链路信息。
更新单元 51 , 用于从所述 TE数据库中删除所述故障链路的链路信息, 并对所述 TE数据库进行更新。
以及, 隧道建立单元 52, 用于根据所述更新单元更新后的 TE数据库建 立新的隧道。
上述各功能单元的具体说明请参见本发明的方法实施例, 在此不再赘述。 本发明实施例的 TE节点, 在接收到链路故障报告报文后, 通过更新单元 51更新流量工程数据库, 然后由隧道建立单元 52根据更新后的 TE数据库进 行后续的 TE隧道的路径计算,从而在新建立的 TE隧道中将不会有故障链路, 保证了 TE隧道的安全。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应该以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种隧道故障检测方法, 其特征在于, 包括:
一个流量工程 TE节点接收链路故障报告报文;
所述节点根据所述链路故障报告报文确定发生故障的故障链路; 所述节点检测是否存在一条或多条以所述节点为首节点且经过所述故障 链路的隧道;
若存在一条或多条以所述节点为首节点且经过所述故障链路的隧道, 则 确定所述为故障隧道。
2、 根据权利要求 1所述的方法, 其特征在于, 所述节点检测是否存在一 条或多条以所述节点为首节点且经过所述故障链路的隧道包括:
所述节点根据以所述节点为首节点的多条隧道分别经过的链路的链路信 息和所述故障链路的链路信息, 检测是否存在一条或多条以所述节点为首节 点且经过所述故障链路的隧道。
3、 根据权利要求 1所述的方法, 其特征在于, 在将所述隧道标识为故障 隧道之后, 所述方法包括:
所述节点对所述故障隧道进行故障处理。
4、 根据权利要求 1所述的方法, 其特征在于, 在部署了流量工程 TE的 节点接收链路故障报告报文之前, 所述方法包括:
在所述节点上配置 TE数据库, 所述 TE数据库中包括网络中的 TE节点 和所述网络中的 TE节点间的链路信息。
5、 根据权利要求 4所述的方法, 其特征在于, 所述方法还包括: 所述节点从所述 TE数据库中删除所述故障链路的链路信息, 并对所述 TE数据库进行更新。
6、 根据权利要求 5所述的方法, 其特征在于, 所述方法还包括: 所述节点根据所述更新后的 TE数据库建立新的隧道。
7、 一种流量工程节点, 其特征在于, 包括: 接收单元, 用于接收链路故障报告报文;
确定单元, 用于根据所述接收单元接收的链路故障报告报文确定发生故 障的故障链路;
检测单元, 用于检测是否存在一个或多个以所述节点为首节点且经过所 述故障链路的隧道;
标识单元, 用于在确定存在以所述节点为首节点且经过所述故障链路的 隧道后, 确定所述隧道为故障隧道。
8、 根据权利要求 7所述的流量工程节点, 其特征在于, 所述检测单元包 括:
隧道链路信息获取子单元, 用于获取以所述节点为首节点的多条隧道分 别经过的链路的链路信息;
故障链路信息获取子单元, 用于获取发生故障的故障链路的信息; 故障隧道检测子单元, 用于根据所述以所述节点为首节点的多条隧道分 别经过的链路的链路信息和所述故障链路的链路信息检测是否存在一条或多 条以所述节点为首节点且经过所述故障链路的隧道。
9、 根据权利要求 7所述的流量工程节点, 其特征在于, 还包括: 故障处理单元, 用于对所述标识单元标识为故障的隧道进行故障处理。
10、 根据权利要求 7所述的流量工程节点, 其特征在于, 还包括: 配置单元, 用于配置 TE数据库, 所述 TE数据库中包括网络中的 TE节 点和所述网络中的 TE节点间的链路信息。
11、 根据权利要求 10所述的流量工程节点, 其特征在于, 还包括: 更新单元, 用于从所述 TE数据库中删除所述故障链路的链路信息, 并对 所述 TE数据库进行更新。
12、 根据权利要求 11所述的流量工程节点, 其特征在于, 还包括: 隧道建立单元, 用于根据所述更新单元更新后的 TE数据库建立新的隧 道。
PCT/CN2011/082065 2010-12-24 2011-11-11 一种隧道故障检测方法和流量工程节点 WO2012083767A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11852174.9A EP2658177B1 (en) 2010-12-24 2011-11-11 Method for detecting tunnel faults and traffic engineering node
US13/925,097 US9313090B2 (en) 2010-12-24 2013-06-24 Tunnel fault detection method and traffic engineering node

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010106061585A CN102136965B (zh) 2010-12-24 2010-12-24 一种隧道故障检测方法和流量工程节点
CN201010606158.5 2010-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/925,097 Continuation US9313090B2 (en) 2010-12-24 2013-06-24 Tunnel fault detection method and traffic engineering node

Publications (1)

Publication Number Publication Date
WO2012083767A1 true WO2012083767A1 (zh) 2012-06-28

Family

ID=44296626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082065 WO2012083767A1 (zh) 2010-12-24 2011-11-11 一种隧道故障检测方法和流量工程节点

Country Status (4)

Country Link
US (1) US9313090B2 (zh)
EP (1) EP2658177B1 (zh)
CN (1) CN102136965B (zh)
WO (1) WO2012083767A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136965B (zh) * 2010-12-24 2013-12-04 华为技术有限公司 一种隧道故障检测方法和流量工程节点
CN102833108B (zh) * 2012-08-30 2016-03-30 华为技术有限公司 故障点位置信息处理方法及设备
CN104219068B (zh) * 2013-05-29 2017-12-22 北京华为数字技术有限公司 隧道故障通知的方法和网络设备
CN104283793B (zh) * 2014-10-20 2017-10-17 新华三技术有限公司 一种te隧道信息发布方法以及装置
TW201834437A (zh) * 2017-03-08 2018-09-16 捷音特科技股份有限公司 聲控無線系統及其穿戴式語音收發裝置
CN109218175A (zh) * 2017-06-30 2019-01-15 华为技术有限公司 一种路径数据的删除方法、一种消息转发方法和装置
CN116489077B (zh) * 2023-06-21 2023-10-03 中国电信股份有限公司 路径保护切换方法、装置和系统、路由器设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060497A (zh) * 2007-06-11 2007-10-24 杭州华三通信技术有限公司 一种流量工程隧道的建立方法和装置
CN101431466A (zh) * 2007-11-09 2009-05-13 华为技术有限公司 快速重路由方法及标签交换路由器
CN101471821A (zh) * 2007-12-29 2009-07-01 华为技术有限公司 运营商骨干网传输网络的故障检测方法和装置
CN101877665A (zh) * 2009-04-29 2010-11-03 华为技术有限公司 环网保护方法、网络节点及环网络
WO2010133065A1 (zh) * 2009-05-21 2010-11-25 中兴通讯股份有限公司 基于无源光网络的保护系统和方法
CN102136965A (zh) * 2010-12-24 2011-07-27 华为技术有限公司 一种隧道故障检测方法和流量工程节点

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3762749B2 (ja) * 2001-04-19 2006-04-05 富士通株式会社 リストレーション・プロテクション方法及び装置
JP4491397B2 (ja) * 2005-10-07 2010-06-30 アラクサラネットワークス株式会社 トラフィック迂回機能を備えるパケット転送装置。
US7660254B2 (en) * 2006-12-22 2010-02-09 Cisco Technology, Inc. Optimization of distributed tunnel rerouting in a computer network with coordinated head-end node path computation
EP1942616B1 (en) * 2007-01-03 2014-06-25 Alcatel Lucent Method of establishing a path in a data network, network elements and data network
US8767530B2 (en) * 2007-02-07 2014-07-01 Futurewei Technologies, Inc. Hierarchical processing and propagation of partial faults in a packet network
CN100512154C (zh) * 2007-03-29 2009-07-08 华为技术有限公司 一种提高多层网络业务恢复性能的方法及装置
CN101420335B (zh) * 2007-10-26 2011-09-14 华为技术有限公司 对等网络节点故障检测/处理方法及装置
CN101483560A (zh) * 2009-02-20 2009-07-15 华为技术有限公司 一种实现隧道检测的方法、装置和系统
CN102263807A (zh) * 2010-05-31 2011-11-30 国际商业机器公司 在存储区域网络保持通信路径畅通的方法和存储区域网络
CN102316016B (zh) * 2010-07-05 2014-12-31 华为技术有限公司 组播流量的转发方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060497A (zh) * 2007-06-11 2007-10-24 杭州华三通信技术有限公司 一种流量工程隧道的建立方法和装置
CN101431466A (zh) * 2007-11-09 2009-05-13 华为技术有限公司 快速重路由方法及标签交换路由器
CN101471821A (zh) * 2007-12-29 2009-07-01 华为技术有限公司 运营商骨干网传输网络的故障检测方法和装置
CN101877665A (zh) * 2009-04-29 2010-11-03 华为技术有限公司 环网保护方法、网络节点及环网络
WO2010133065A1 (zh) * 2009-05-21 2010-11-25 中兴通讯股份有限公司 基于无源光网络的保护系统和方法
CN102136965A (zh) * 2010-12-24 2011-07-27 华为技术有限公司 一种隧道故障检测方法和流量工程节点

Also Published As

Publication number Publication date
EP2658177A4 (en) 2013-11-20
CN102136965A (zh) 2011-07-27
CN102136965B (zh) 2013-12-04
EP2658177B1 (en) 2018-10-31
US9313090B2 (en) 2016-04-12
EP2658177A1 (en) 2013-10-30
US20130279324A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
WO2012083767A1 (zh) 一种隧道故障检测方法和流量工程节点
CN108141376B (zh) 网络节点、通信网络及通信网络中的方法
JP5975037B2 (ja) 通信システム、通信装置、障害通知方法、及びプログラム
JP4128974B2 (ja) レイヤ2ループ検知システム
US9722917B2 (en) Traffic recovery in openflow networks
US8289839B2 (en) Scaling BFD sessions for neighbors using physical / sub-interface relationships
WO2010045832A1 (zh) 用于以太环网的链路聚合组的保护方法及装置
JP4682887B2 (ja) 故障復旧方法およびノードならびにネットワーク
WO2015032027A1 (zh) 一种业务路径的保护方法、控制器、设备及系统
WO2009018728A1 (fr) Réseau en anneau ip, dispositif de routage de réseau en anneau et procédé pour transmettre un message
KR20150051107A (ko) 신속한 경로 설정 및 장애 복구 방법
JP6027688B2 (ja) リングネットワークプロテクションにおけるラベル自動割当てのための方法及び装置
WO2016062165A1 (zh) 一种实现操作管理维护功能的方法及装置
JPWO2015045466A1 (ja) 通信制御装置、通信制御システム、通信制御方法及び通信制御プログラム
WO2014029282A1 (zh) 跨域保护互通方法及系统
WO2013040940A1 (zh) 环网的保护方法及装置
JP4532253B2 (ja) フレーム転送装置及びフレームのループ抑止方法
EP2858302B1 (en) Connectivity check method of service stream link, related apparatus and system
WO2014029287A1 (zh) 隧道负荷分担方法及装置
WO2015035598A1 (zh) 调整链路开销的方法和装置
CN108259325B (zh) 路由维护方法和路由设备
JP2009117899A (ja) レイヤ2ネットワークおよびネットワーク接続装置
Vaghani et al. A comparison of data forwarding schemes for network resiliency in software defined networking
WO2015042840A1 (zh) 一种故障恢复的方法、节点和路径计算单元
WO2017162172A1 (zh) 重启恢复时间的调整方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE