WO2012083718A1 - 一种下行基带信号生成方法及相关设备、系统 - Google Patents

一种下行基带信号生成方法及相关设备、系统 Download PDF

Info

Publication number
WO2012083718A1
WO2012083718A1 PCT/CN2011/078894 CN2011078894W WO2012083718A1 WO 2012083718 A1 WO2012083718 A1 WO 2012083718A1 CN 2011078894 W CN2011078894 W CN 2011078894W WO 2012083718 A1 WO2012083718 A1 WO 2012083718A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
downlink
control channel
channel signal
cell
Prior art date
Application number
PCT/CN2011/078894
Other languages
English (en)
French (fr)
Inventor
刘晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to RU2012157077/08A priority Critical patent/RU2542940C2/ru
Priority to BR112012033705-0A priority patent/BR112012033705B1/pt
Priority to EP11851653.3A priority patent/EP2574138B1/en
Publication of WO2012083718A1 publication Critical patent/WO2012083718A1/zh
Priority to US13/711,541 priority patent/US8705483B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a downlink baseband signal generating method, related device, and system.
  • the base station In a distributed base station with a remote radio frequency, the base station is divided into two parts: a base-band unit (BBU) and a radio remote unit (RRU).
  • BBU base-band unit
  • RRU radio remote unit
  • the RRU is placed at an access point farther from the BBU, which is connected by fiber and transmits the baseband signal in analog or digital mode.
  • the Distributed Antenna System is similar to the distributed base station with remote radio, but the distance between the BBU and the RRU can be extended to several kilometers or even tens of kilometers, and the direct connection between the BBU and the RRU is directly
  • an optical optical network connection such as a Passive Optical Network (PON) or a Wavelength Division Multiplexing (WDM) may be used, and a multi-cell joint processing method is preferably used, for example, Network multiple input multiple output (Multi-Input
  • MIMO Multiple-Output
  • multi-cell joint scheduling etc. to reduce interference between cells and further increase system capacity.
  • Cloud Radio Access Network Cloud Radio Access Network
  • C-RAN is a larger-scale wireless access system based on the application of cloud computing technology based on DAS technology.
  • the C-RAN connects the BBUs of multiple base stations through optical fibers or optical transmission networks, and uses cloud computing technology to virtualize the processing resources of all BBUs into a unified resource pool, so that the system can implement signal processing resources.
  • Statistical multiplexing which greatly reduces system costs.
  • the C-RAN can also adopt a multi-cell joint processing method such as DAS to improve system capacity.
  • FIG. 1 is a schematic diagram of a conventional C-RAN system architecture.
  • the C-RAN system includes multiple C-RAN nodes, and multiple C-RAN nodes transmit between large-capacity optical fibers or optical fibers. Network connection.
  • Each C-RAN node and a RRU in a cluster adopt a star or ring type and are connected through a direct optical fiber or optical transmission network.
  • Each C-RAN node is mainly responsible for the processing of user (RS) radio access in its own cell group, including physical layer signal processing, media access control (MAC) processing, and radio resource management (RRM).
  • RS user
  • MAC media access control
  • RRM radio resource management
  • each C-RAN node can wirelessly access a part of users of other C-RAN node cell groups when its own processing load is light, that is, when the user traffic in its own cell group is not large. deal with.
  • some cells may be used.
  • the baseband wireless signal is routed to a C-RAN node with less user traffic and lighter load in the cell group through a large-capacity optical fiber or optical transmission network connecting each C-RAN node.
  • FIG. 2 is a schematic structural diagram of a conventional C-RAN node. Among them, Figure 2 only shows the main functional modules of the C-RAN node. The actual C-RAN node also includes other functional modules such as timing unit, control unit and interface unit. As shown in FIG. 2, a C-RAN node may include multiple BBUs, each BBU is responsible for physical layer signal processing of some users, and may also include processing such as MAC/RRM; and also includes an exchange unit, the exchange unit and each RRU.
  • BBUs each BBU is responsible for physical layer signal processing of some users, and may also include processing such as MAC/RRM; and also includes an exchange unit, the exchange unit and each RRU.
  • connection is also connected to other C-RAN nodes for exchanging the baseband signals of the RRUs connected to the C-RAN nodes and the baseband signals from other C-RAN nodes to the respective BBUs for processing; the RRU mainly completes the transceivers.
  • (TRX) module function that is, in the downlink direction, it is responsible for converting the downlink baseband signal into a radio frequency signal and performing power amplification, and then transmitting through the antenna; receiving the uplink radio frequency signal from the antenna in the uplink direction and converting it into a baseband signal after being amplified.
  • 3G third-generation
  • 4G fourth-generation
  • multi-antenna technology such as MIMO is widely applied, resulting in an increasingly large signal transmission bandwidth between the C-RAN node and the RRU. Therefore, how to reduce the signal transmission bandwidth requirement between the C-RAN node and the RRU is very important.
  • a downlink baseband signal generating method, related device, and system are provided. To reduce the signal transmission bandwidth between the C-RAN node and the RRU.
  • the embodiment of the invention provides a method for generating a downlink baseband signal, which includes:
  • An embodiment of the present invention provides another method for generating a downlink baseband signal, including:
  • the downlink user code modulation signal is that the radio access network node passes the user of the certain cell
  • the downlink data stream is obtained by channel coding and modulation processing; the downlink control channel signal is generated by the radio access network node according to physical layer control information; and the downlink user code modulated signal is multi-input and multi-output pre- Encoding process
  • the baseband signal is sent out.
  • an embodiment of the present invention provides a radio access network node, including:
  • At least one baseband processing unit and switching unit At least one baseband processing unit and switching unit;
  • the baseband processing unit includes:
  • a data channel coding and modulating module configured to perform channel coding and modulation processing on a downlink data stream of a cell user, obtain a downlink user code modulation signal of the cell, and output the signal to the switching unit;
  • a downlink control channel generating module configured to generate a downlink control channel signal according to the physical layer control information, and output the signal to the switching unit;
  • the switching unit is configured to exchange a reference signal, a synchronization signal, a broadcast channel signal, and the downlink user code modulated signal and the downlink control channel signal to a corresponding radio frequency unit, so that the radio frequency unit sends the downlink user
  • the coded modulated signal is subjected to multiple input multiple output precoding processing, and the multiple input multiple output pre-coded signal and the downlink control channel signal, the reference signal, the synchronization signal, and the broadcast channel signal are respectively mapped to corresponding subcarriers Up, and perform fast Fourier transform processing to obtain a downlink baseband signal and transmit it.
  • an embodiment of the present invention provides a radio frequency unit, including:
  • a precoding module configured to receive a downlink user code modulated signal and a downlink control channel signal of a cell exchanged by the radio access network node, and perform the multiple input multiple output precoding process on the downlink user code modulated signal;
  • the downlink user code modulation signal is obtained by the radio access network node performing channel coding and modulation processing on a downlink data stream of a user of the certain cell;
  • the downlink control channel signal is the radio access
  • the network node generates the reference signal, the synchronization signal, and the broadcast channel signal of the certain cell exchanged by the radio access network node according to the physical layer control information, and receives the multiple input multiple Outputting the pre-coded signal and the downlink control channel signal, the reference signal, the synchronization signal, and the broadcast channel signal respectively mapped to corresponding subcarriers;
  • a transform module configured to perform fast Fourier transform processing on the signal mapped to the subcarrier, to obtain a downlink baseband signal
  • a transceiver module configured to send the downlink baseband signal.
  • an embodiment of the present invention provides a downlink baseband signal generating system, including the foregoing radio access network node and the foregoing radio frequency unit; wherein, the foregoing radio access network node and the radio frequency unit pass the optical fiber or the light Transfer network connection.
  • the C-RAN node after receiving the downlink data stream sent by the cell user, performs channel coding and modulation on the downlink data stream of the cell user to obtain a downlink user code modulated signal of the cell; Synchronization signal, broadcast channel signal, and downlink coded modulated signal And downlink control channel signals are exchanged to the corresponding RRU, and the downlink R-coded modulated signal is subjected to MIMO pre-coding processing by the corresponding RRU, and the reference signal, the synchronization signal, the broadcast channel signal, and the MIMO pre-coded signal and the downlink control channel are used.
  • the signals are respectively mapped to corresponding subcarriers, and IFFT transform is performed to obtain a downlink baseband signal and transmitted.
  • the MIMO precoding, the signal mapping, and the IFFT transform processing are forwarded to the RRU for processing, so that there is no need to transmit signals on the corresponding subcarriers between the C-RAN node and the RRU, and the C-RAN node and the RRU are reduced. Signal transmission bandwidth between.
  • FIG. 1 is a schematic diagram of an existing C-RAN system architecture
  • FIG. 2 is a schematic structural diagram of a conventional C-RAN node
  • FIG. 3 is a schematic structural view of a conventional BBU
  • FIG. 4 is a schematic structural view of a further refinement of the BBU shown in FIG. 3;
  • FIG. 5 is a flowchart of a method for generating a downlink baseband signal according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a physical resource block (PRB) according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a process for generating an OFDM signal. ;
  • FIG. 8 is a schematic diagram of a scenario in which a plurality of cells adopt a network-MIMO-based CoMP process
  • FIG. 9 is a flowchart of another method for generating a downlink baseband signal according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of an RRU according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a downlink baseband signal generating system according to an embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of another downlink baseband signal generating system according to an embodiment of the present invention.
  • the embodiment of the invention provides a downlink baseband signal generation method and related equipment and system, which can be applied to Orthogonal Frequency Division Multiple Access (OFDMA) or similar technologies such as single carrier frequency division multiple access.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WiMAX Worldwide Interoperability for Microwave Access
  • the BBU may be divided into a transform module 301 having a Fast Fourier Transform (FFT) and an Inverse Fast Fourier Transformation (IFFT) capability.
  • a resource mapping module 302 having mapping and demapping capabilities and a user signal processing module 303 are shown in FIG.
  • the BBU function module of the user plane is mainly used.
  • the BBU may also include control channel processing, power control, hybrid automatic repeat reQuest (HARQ)/adaptive modulation.
  • Physical layer process control modules such as Adaptive Modulation and Coding (AMC) and random access, and may also include upper layer protocol processing function modules such as MAC/RRM.
  • FIG. 4 is a schematic structural view of the BBU shown in FIG.
  • the user signal processing module 303 can be refined into a data channel coding and modulation module 3031 (mainly including a channel coding unit 30311 and a modulation unit 30312), a downlink control channel generation module 3032, and a precoding module 3033 (mainly including a MIMO precoding unit 30331).
  • the signal processing is a period of a certain transmission time interval ( ⁇ ).
  • the LTE system it is a sub-frame, including 14 OFDM symbols, corresponding to a time of 1 ms.
  • the downlink data streams of the user 1 to the user k respectively generate a downlink user code modulated signal and a downlink user code modulated signal after the channel coding unit 30311, the modulation unit 30312, and the MIMO precoding unit 30331. And being mapped to the corresponding sub-carrier by the resource mapping module 302.
  • the physical layer control message generated by the BBU is generated by the downlink control channel generating module 3032, and the downlink control channel signal is also generated by the resource mapping module 302.
  • the downlink control channel generating module 3032 may also include a channel coding, a modulation, a MIMO precoding, and the like; in addition, the resource mapping module 302 also generates a reference signal and a synchronization signal generated internally by the BBU. And the broadcast channel signal is mapped onto a particular subcarrier at some fixed OFDM symbol location.
  • a downlink frequency domain signal can be formed, and the downlink frequency domain signal is processed by the IFFT transform of the transform module 301 to generate a downlink baseband signal in the time domain; the downlink baseband signal can pass
  • the switching unit included in the C-RAN node is switched to the corresponding RRU, and the corresponding RRU is responsible for converting the downlink baseband signal into a radio frequency signal and performing power amplification and transmitting through the antenna.
  • the signal on the corresponding subcarrier needs to be transmitted between the BBU and the RRU, so that the signal transmission bandwidth requirement between the C-RAN node including the multiple BBUs and the RRU is high.
  • FIG. 5 is a schematic flowchart diagram of a method for generating a downlink baseband signal according to an embodiment of the present invention. As shown in Figure 5, the method can include the following steps:
  • the C-RAN node includes multiple BBUs, and each BBU serves one cell; the C-RAN may receive the downlink data stream sent by the user of the cell served by the BBU through the BBU included therein, or C- The RAN node may also receive downlink data streams sent by users of other cells exchanged by other C-RAN nodes through the BBUs included therein, and perform channel coding and modulation processing on the downlink data streams to obtain downlink user code modulated signals of the corresponding cells. .
  • Quadrature Phase Shift Keying QPSK
  • 16 Quadrature Amplitude Modulation 16QAM
  • 64 Quadrature Amplitude Modulation 64QAM
  • the downlink data stream of the user is modulated to obtain a downlink user code modulated signal.
  • the BBU included in the C-RAN node may generate physical layer control information in each transmission time interval ( ⁇ ), and further, the BBU may generate a downlink control channel by using the downlink control channel generation module to generate physical layer control information. signal.
  • the downlink control channel signal is mainly used to control the bandwidth, signal to noise ratio, and the like of the downlink channel. 503.
  • the reference signal, the synchronization signal, the broadcast channel signal, and the downlink user code modulated signal and the downlink control channel are exchanged to the corresponding RRU, so that the corresponding RRU performs the MIMO precoding process on the downlink data modulated signal, and
  • the reference signal, the synchronization signal, the broadcast channel signal, the MIMO pre-coded signal, and the downlink control channel signal are respectively mapped to corresponding subcarriers, and subjected to IFFT conversion processing to obtain a downlink baseband signal and transmit it.
  • the above reference signal is mainly used to provide reference information for various signals, such as signal amplitude, frequency, etc.; and the synchronization signal is mainly used to provide synchronization time slots to realize synchronization of various signals; the broadcast channel signal is mainly used to provide each Broadcast channel information; this is common knowledge of those skilled in the art, and the embodiments of the present invention are not described herein.
  • the C-RAN node may exchange the reference signal, the synchronization signal, the broadcast channel signal, and the downlink user code modulated signal and the downlink control channel signal to the corresponding RRU according to the preset switch configuration list;
  • the exchange configuration list is used to record the correspondence between the user information and the corresponding RRU information.
  • the user information may be a parameter indicating the identity of the user, such as an International Mobile Equipment Identity (IMEI);
  • IMEI International Mobile Equipment Identity
  • the RRU information may be a representation of the RRU.
  • the MIMO precoding, the signal mapping, and the IFFT transform processing are processed before being forwarded to the switching unit. For example, in one embodiment, it may be forwarded to the RRU for processing, so that there is no need to transmit signals on the corresponding subcarriers between the C-RAN node and the RRU, and the signal transmission bandwidth between the C-RAN node and the RRU is reduced.
  • the air interface resources between the C-RAN node and the RRU are generally divided into resource blocks, and FIG. 6 shows a schematic diagram of a physical resource block (PRB).
  • the PRB includes M consecutive OFDM symbols in the time domain and N consecutive subcarriers in the frequency domain.
  • the time and frequency resources allocated to each user are usually logically a virtual resource block (VRB), and the system maps the VRB allocated by the user according to a predetermined algorithm.
  • VRB virtual resource block
  • the VRB and the PRB have the same size, that is, 7 OFDM symbols and 12 subcarriers, and the VRB can be mapped to the PRB in one subframe.
  • the system allocates resources for the user, it specifies the type, number, and size of the corresponding VRB resource, that is, the VRB indication information.
  • resource mapping is to allocate signals of respective users to corresponding subcarriers
  • resource demapping is from corresponding subcarriers. Separate the signals of individual users.
  • VRB is generally divided into two types: localized and discrete.
  • the centralized VRB corresponds to consecutive subcarriers, which is beneficial to frequency selective scheduling and MIMO precoding.
  • Discrete VRB will be a user.
  • the subcarriers are dispersed into the entire system bandwidth, and the frequency diversity gain can be obtained.
  • the discrete VRB is usually used to transmit small data traffic such as Voice over Internet Protocol (VoIP).
  • VoIP Voice over Internet Protocol
  • VRB is also the smallest physical layer wireless transmission parameter configuration unit, that is, whether it is a centralized VRB or a discrete VRB, a user's data stream is in a VRB.
  • the subcarriers always have the same coded modulation scheme and transmit power, and the user transmission has the same MIMO mode and MIMO precoding matrix within one VRB.
  • the foregoing describes a downlink baseband signal generation method provided in the embodiment of the present invention, which can reduce the signal transmission bandwidth between the C-RAN node and the RRU.
  • the downlink baseband signal generating method provided by the embodiment of the present invention is further described below in conjunction with a specific embodiment.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the C-RAN The precoding unit of each BBU included by the node mainly used for MIMO precoding
  • the resource mapping module mainly used for mapping and demapping
  • the transform module mainly used for FFT/IFFT transform processing
  • Downstream data modulation signals ie, modulation symbol sequences
  • each data stream one user may simultaneously transmit multiple data streams through multiple antennas
  • each VRB of an active user a user having a data stream to transmit
  • precoding codebook index index corresponding to each VRB in the current frame, and the transmit signal amplitude (or transmit power);
  • the VRB resource information allocated by each active user in the current port that is, the VRB indication information (type, number, size, and other information of the VRB resource);
  • the foregoing transmission resource indication information may be carried in a downlink control channel signal sent by a C-RAN node, and the RRU may perform the MIMO pre-programmed signal and the downlink control by using the foregoing transmission resource indication information.
  • the channel signals are respectively mapped to the corresponding subcarriers, wherein the foregoing transmission resource indication information is used to indicate the subcarriers corresponding to the MIMO pre-coded signal and the downlink control channel signal respectively.
  • the C-RAN node may also construct a new transmission message carrying the foregoing transmission resource indication information and send the information to the RRU, so that the RRU may perform the MIMO pre-coding according to the foregoing transmission resource indication information carried by the new transmission message.
  • the coded signal and the downlink control channel signal are respectively mapped to the corresponding subcarriers, which are not limited in the embodiment of the present invention.
  • the BBI after the BBU generates the downlink user code modulated signal, the BBI directly exchanges the precoding module in the corresponding RRU to perform MIMO precoding processing, and the MIMO precoding process is performed by the resource mapping module in the corresponding RRU.
  • the fixed, resource mapping module may map the reference signal, the synchronization signal, and the broadcast channel signal to corresponding subcarriers; and then perform the IFFT transform on the signals on all the subcarriers by the transform module in the corresponding RRU to obtain the downlink baseband.
  • the signal is sent out through the Transceiver (TRX) module
  • the reference signal occupies about 5 ⁇ 15% of the system resources (related to the number of transmitting antennas, the moving rate, etc.). Since the position of the reference signal in the time-frequency resource is fixed, the modulation mode is also fixed (usually QPSK).
  • the reference signal sequence is also pre-determined, and the broadcast channel information and the synchronization signal have similar characteristics. Therefore, the method provided by the embodiment of the present invention can prevent the C-RAN node from transmitting the reference signal between the RRU and the RRU.
  • the broadcast channel signal and the synchronization signal and the like correspond to the signals on the subcarriers, thereby further compressing the transmission rate, thereby reducing the signal transmission bandwidth.
  • the data stream transmitted between the C-RAN node and the RRU in the embodiment of the present invention is not the MIMO pre-coded user stream, instead of the MIMO pre-coded signal stream.
  • the function of MIMO precoding can be described as:
  • x represents the MIMO precoded signal vector
  • W is the M X precoding matrix
  • M is the number of transmit antennas
  • ⁇ ⁇ is the number of data streams simultaneously transmitted by the user
  • S is the data stream vector of a cell.
  • the system usually defines a precoding matrix codebook (a pre-designed set of precoding matrices) that indicates the precoding matrix used by the precoding matrix index (index).
  • a sub-carrier of a user's data stream in a VRB always has the same coding modulation mode and transmission power, and the user transmission has the same MIMO mode and MIMO precoding matrix in one VRB. Therefore, if the K data streams of each active user before MIMO precoding are transmitted separately, instead of transmitting the signal stream after MIMO precoding.
  • the transmission rate can be reduced and the signal transmission bandwidth requirement can be reduced.
  • the subcarriers in a VRB of a certain data stream of a user can always have the same coding modulation mode and transmission power characteristics. , further compress the transmission rate.
  • one data stream of one user includes I/Q channels
  • one VRB includes 12 subcarriers.
  • the signals have the same modulation mode, that is, one of QPSK, 16QAM, and 64QAM
  • the corresponding I or Q channels are 1 bit, 2 bits, and 3 bits, respectively, and 16 bits are usually used for each sample (corresponding to one subcarrier).
  • the information that needs to be transmitted between the C-RAN node and the RRU is exchanged to
  • the resource indication information is mapped to the corresponding subcarrier by the resource mapping module; the reference signal, the synchronization signal, and the broadcast channel signal are also mapped to the corresponding subcarriers according to a predetermined rule of the system, and then processed by the IFFT transform of the change module, and generated.
  • the downlink baseband signal of the domain is finally processed by the transceiver (TRX) module digital-to-analog conversion, up-conversion, signal amplification, etc. to form a radio frequency signal, which is transmitted through the antenna.
  • TRX transceiver
  • FIG. 7 further illustrates a downlink OFDM signal generation process in which the frequency domain baseband signal a Nc — x is mapped to N subcarriers by serial-to-parallel conversion, the remaining subcarriers are padded with zeros, and then N-point IFFT is performed to obtain a time domain baseband signal X. , ,..., ⁇ 1 ⁇ 2- ⁇ .
  • the resource mapping IFFT conversion process is processed from the BBU. Forwarding to the RRU is performed, so the signal transmission bandwidth between the C-RAN node and the RRU is greatly reduced compared to the direct transmission of the time domain baseband signal.
  • the resource mapping and the IFFT transform process are forwarded from the BBU to the RRU, the idle subroutine The signal corresponding to the carrier will not be transmitted, but only the signals of the users on the occupied subcarriers, thereby further reducing the signal transmission bandwidth requirement between the C-RAN node and the RRU.
  • the signal transmission bandwidth is reduced by about 40% due to the IFFT conversion process being forwarded from the BBU to the RRU (ignoring the compression factor of the idle subcarriers in the subcarriers), or 1.67 times. Compression, and then, since MIMO precoding is forwarded from the BBU to the RRU, it can be further compressed by about 80% (ignoring the influence of a small amount of information such as transmitting VRB resource information, while ignoring the signals on the corresponding subcarriers such as the reference signal and the synchronization channel. No compression factor required for transmission), or 5 times compression, the total compression ratio is: 100% - 60% X 20% « 88%, ie 8.4 times compression.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the switching unit needs to exchange the downlink user code modulated signals of the multiple cells to the corresponding RRU, so that the corresponding RRU performs MIMO joint precoding processing on the downlink user code modulated signals of the multiple cells, and performs MIMO.
  • the combined pre-coded signal and the downlink control channel signal, the reference signal, the synchronization signal, and the broadcast channel signal are respectively mapped onto corresponding subcarriers, and subjected to IFFT conversion processing to obtain a downlink baseband signal and transmitted.
  • the foregoing transmission resource indication information is further used to indicate a subcarrier corresponding to the MIMO joint pre-coded signal and the downlink control channel signal, respectively, so that the RRU according to the indication of the transmission resource indication information
  • the MIMO joint pre-coded signal and the downlink control channel signal are respectively mapped to corresponding subcarriers.
  • FIG. 8 is a schematic diagram showing a scenario in which CoMP processing based on Network-MIMO is performed on multiple cells.
  • UE1, UE2, and UE3 belong to cells A, B, and C, respectively, and the three cells are respectively responsible for transmitting data streams a, b, and c to the three UEs, but the downlink signals of the three UEs are respectively There is mutual interference between them, which usually occurs when the 3 cells are geographically adjacent and the 3 UEs are in their adjacent edge regions. In order to eliminate the interference between them (the dotted line in FIG.
  • the CoMP processing technology based on Network-MIMO can be adopted, and the transmitting antennas of the three cells are regarded as the antennas of the joint transmission, such that the system
  • Each cell has two transmit antennas, which is equivalent to a total of six antennas.
  • the data streams a, b, and c that belong to the respective cells respectively need to be shared by the three cells at the same time, so that three cells can be realized.
  • Joint precoding The above operation can be expressed by the following mathematical formula:
  • W is a MIMO joint precoding matrix of ⁇ , which consists of q MIMO precoding sub-matrices ⁇ , ⁇ , ⁇ , 1 ⁇ , which are the local precoding matrices of each cell That is, for the q joint precoded cells, the precoding operation locally of the kth cell can be expressed as:
  • the sub-carriers in one VRB always use the same code modulation mode and transmit power of the data stream of one cell user.
  • K data streams of each user jointly precoded by multiple cells before transmission of MIMO precoding between the C-RAN node and the RRU s ⁇ sy ⁇ instead of transmitting the signal stream after MIMO precoding.
  • the downlink user code modulated signal that implements joint precoding by using multiple cell shared user data manners, and the MIMO joint precoding is also forwarded from the BBU to the RRU.
  • the number q of cells participating in the joint precoding is 2 or 3, and the signal to noise ratio (SNR) of the users at the cell edge is usually not high. 16QAM or even 64QAM is adopted. The case of high-order modulation is very small. Therefore, even if the user data streams of all the jointly precoded cells are simultaneously transmitted to the RRU, the subcarriers within one VRB of a certain data stream of one user always have the same code modulation. The characteristics of the mode and the transmit power can still achieve better bandwidth compression.
  • LTE-A in the FDD mode 4 locating three adjacent cells for CoMP processing, that is, users at their edges (usually 10 to 20% of the total number of users), using users based on multiple cells
  • Network-MIMO technology of data that is, the downlink user code modulated signal of the user adopts multiple cell joint precoding in the downlink direction, assuming 2 transmit antennas per cell, and users in each CoMP set (ie, users participating in CoMP processing)
  • the corresponding CoMP user needs to transmit the I channel or the Q channel of the data stream of the RRU, and each subcarrier corresponds to 4 bits of information, of which two are used.
  • the data of QPSK modulation needs to be represented by 2 bits
  • the data modulated by 16QAM needs to be represented by 2 bits.
  • the embodiment of the present invention is described by taking the C-RAN system as an example, the C-RAN system and all other signals are processed centrally and the antenna/RF is extended by a broadband transmission line such as an optical fiber, such as a DAS system. There is no strict distinction between them, especially in terms of baseband signal transmission, internal structure of the base station, etc., having the same or similar structure. Therefore, the various embodiments proposed by the embodiments of the present invention are applicable to all other systems in which all signals are concentrated and the antenna/RF is extended by a broadband transmission line such as an optical fiber.
  • FIG. 9 is a schematic flowchart diagram of another downlink baseband signal generating method according to an embodiment of the present invention.
  • the downlink baseband signal generation method can be applied to OFDM-based frequency division multiple access or its similar technologies, such as a single carrier frequency division multiple access system, such as an LTE system, an LTE-A system, or a WiMAX system, to reduce C-RAN.
  • Signal transmission bandwidth between the node and the RRU may include the following steps:
  • the channel control and the modulation process are obtained.
  • the downlink control channel signal is generated by the C-RAN node according to the physical layer control information, where the downlink control channel signal carries the transmission resource indication information, where the transmission resource indication information is used to indicate a subcarrier corresponding to the MIMO pre-coded signal and the downlink control channel signal respectively;
  • the switching unit in the C-RAN node may exchange the downlink user code modulated signal and the downlink control channel signal of a certain cell to the corresponding RRU.
  • the switching unit may exchange the downlink user code modulated signal and the downlink control channel signal of the certain cell to the corresponding RRU according to the preset switch configuration list.
  • the foregoing switch configuration list is used to record the foregoing.
  • the user information may be a parameter indicating the identity of the user, such as IMEI; and the RRU information may be an indication of the RRU.
  • the switching unit in the C-RAN node may exchange the reference signal, the synchronization signal, and the broadcast channel signal of a certain cell to the corresponding RRU.
  • the switching unit may exchange the reference signal, the synchronization signal, and the broadcast channel signal of the certain cell to the corresponding RRU according to the preset switch configuration list; where the foregoing switch configuration list is used to record the foregoing The correspondence between the user information of the cell and the corresponding RRU information.
  • the RRU may map the MIMO pre-coded signal and the downlink control channel signal to corresponding subcarriers according to the transmission resource indication information carried in the downlink control channel signal sent by the C-RAN node.
  • the transmission resource indication information is used to indicate a subcarrier corresponding to the MIMO pre-coded signal and the downlink control channel signal respectively;
  • the RRU maps the reference signal, the synchronization signal, and the broadcast channel signal to corresponding subcarriers according to a preset mapping rule, where the mapping rule is used to indicate that the reference signal, the synchronization signal, and the broadcast channel signal respectively correspond to Subcarriers.
  • the RRU can also receive the wireless connection as an optional implementation manner.
  • a downlink user code modulated signal of another cell exchanged by the network access node; the foregoing transmission resource indication information is further used to indicate the subcarrier corresponding to the MIMO joint pre-coded signal and the downlink control channel signal respectively, so that The RRU maps the MIMO joint pre-coded signal and the downlink control channel signal to corresponding subcarriers according to the indication of the transmission resource indication information.
  • the RRU may perform a multiple input multiple output combined precoding process on the downlink user code modulated signal of the above certain cell and the downlink user code modulated signal of the other cell, and combine the multi-input multiple-output combined pre-coded signal and
  • the downlink control channel signal, the reference signal, the synchronization signal, and the broadcast channel signal are respectively mapped to corresponding subcarriers, and subjected to inverse fast Fourier transform processing to obtain a downlink baseband signal and transmit the downlink baseband signal.
  • the RRU may also map the multiple input multiple output combined precoding processed signal and the downlink control channel signal of the certain cell to corresponding according to the transmission resource indication information carried in the downlink control channel signal of the certain cell.
  • the embodiment of the present invention is not limited.
  • the switching unit included in the radio access network node corresponds to multiple BBUs, that is, the switching unit corresponds to multiple cells, and when multiple cells adopt coordinated multi-point processing based on network multiple input and multiple output on the physical layer,
  • the exchange list of multiple cells based on network multiple input multiple output coordinated multi-point processing may be preset on the exchange unit, and the exchange list is used for recording multi-input multi-point processing based on network multiple input multiple output on the physical layer.
  • Table 1 The relationship between cells and corresponding RRUs is shown in Table 1.
  • Table 1 shows that BBU1 and BBU2 use coordinated multi-point processing based on network multiple input and multiple output on the physical layer, where BBU1 and BBU2 correspond to RRU1.
  • the switching unit included in the radio access network node receives the downlink user code modulated signal, the downlink control channel signal, the reference signal, the synchronization signal, and the broadcast channel signal output by the BBU1, the downlink user code modulated signal output by the BBU1 according to Table 1
  • the downlink control channel signal, the reference signal, the synchronization signal, and the broadcast channel signal are exchanged to the RRU1; when the switching unit included in the radio access network node receives the downlink user code modulated signal, the downlink control channel signal, the reference signal, and the synchronization signal output by the BBU2
  • the downlink user code modulated signal outputted by the BBU2 can be switched to the RRU1; the RRU1 can perform the multiple input multiple output combined precoding process on the downlink user code modulated signal of the BBU1 and
  • BBU2 can be considered as the interference source of RRU1, and BBU1 and RRU1 are corresponding. BBU1 does not cause interference of RRU1. Therefore, after performing multiple input and multiple output joint precoding processing, The multiplexed multi-output combined pre-coded signal and the downlink control channel signal, the reference signal, the synchronization signal, and the broadcast channel signal of the BBU1 are respectively mapped to corresponding subcarriers, and subjected to inverse fast Fourier transform processing to obtain The downlink baseband signal is transmitted and sent out.
  • the RRU receives a downlink user code modulated signal exchanged by the C-RAN node for performing MIMO precoding processing, and extracts a reference signal, a synchronization signal, a broadcast channel signal, and a MIMO from the C-RAN node.
  • the pre-coded signal and the downlink control channel signal are respectively mapped onto corresponding subcarriers, and subjected to IFFT conversion processing to obtain a downlink baseband signal and transmitted.
  • the embodiment of the invention does not need to transmit signals on the corresponding subcarriers between the C-RAN node and the RRU, and reduces the signal transmission bandwidth between the C-RAN node and the RRU.
  • the embodiment of the present invention further provides a C-RAN node, which is used to implement the foregoing uplink baseband channel generation method in cooperation with the RRU.
  • the C-RAN node can be applied to OFDM-based OFDM based on orthogonal frequency division multiple access or its similar technologies, such as a single carrier frequency division multiple access system, such as an LTE system, an LTE-A system, or a WiMAX system. Signal transmission bandwidth between the RRU and the RRU.
  • FIG. 10 is a schematic structural diagram of a C-RAN node according to an embodiment of the present invention. As shown in FIG. 10, the C-RAN node may include:
  • the BBU 1001 can include:
  • the data channel coding and modulation module 10011 is configured to perform channel coding and modulation processing on the downlink data stream of the cell user, obtain a downlink user code modulation signal of the cell, and output the signal to the switching unit 1002;
  • the downlink control channel generating module 10012 is configured to generate a downlink control channel signal according to the physical layer control information and output the signal to the switching unit 1002.
  • the switching unit 1002 is configured to exchange the reference signal, the synchronization signal, the broadcast channel signal, and the downlink user code modulated signal and the downlink control channel signal of the foregoing cell to the corresponding RRU, so that the RRU performs the MIMO pre-processing on the downlink user code modulated signal. Encoding processing, and mapping the reference signal, the synchronization signal, the broadcast channel signal, the MIMO pre-coded signal, and the downlink control channel signal to corresponding subcarriers respectively, and performing IFFT conversion processing to obtain a downlink baseband signal and transmitting Go out.
  • the switching unit 1002 is specifically configured to exchange the reference signal, the synchronization signal, the broadcast channel signal, and the downlink user code modulated signal and the downlink control channel signal of the foregoing cell to the corresponding RRU according to the preset switch configuration list;
  • the exchange configuration list is used to record the correspondence between the user information and the corresponding RRU information.
  • the switching unit 1002 is further configured to exchange downlink user code modulation signals of other cells to the foregoing.
  • the corresponding RRU performs multi-input and multi-output joint pre-coding processing on the downlink user code modulated signal of the above cell and the downlink user code modulated signal of the other cell, and combines the multi-input and multi-output pre-programming
  • the signal and the downlink control channel signal, the reference signal, the synchronization signal, and the broadcast channel signal of the foregoing cell are respectively mapped to corresponding subcarriers, and subjected to an IFFT inverse transform process to obtain a downlink baseband signal and transmit the downlink baseband signal.
  • the data channel coding and modulation module 10011 after receiving the downlink data stream sent by the cell user, performs channel coding and modulation on the downlink data stream of the cell user to obtain a downlink user code modulated signal of the cell;
  • the reference signal, the synchronization signal, the broadcast channel signal, and the downlink user code modulated signal and the downlink control channel signal are exchanged to the corresponding RRU, and the downlink user code modulated signal is subjected to MIMO precoding processing by the corresponding RRU, and the reference signal is synchronized.
  • the signal, the broadcast channel signal, the MIMO pre-coded signal, and the downlink control channel signal are respectively mapped to corresponding subcarriers, and subjected to IFFT conversion processing to obtain a downlink baseband signal and transmitted.
  • the MIMO precoding, the signal mapping, and the IFFT transform are forwarded to the RRU for processing, so that there is no need to transmit signals on the corresponding subcarriers between the C-RAN node and the RRU, and the C-RAN node and the RRU are reduced. Inter-signal transmission bandwidth.
  • FIG. 11 is a schematic structural diagram of an RRU according to an embodiment of the present invention.
  • the RRU may include:
  • the precoding module 1101 is configured to receive a downlink user code modulated signal and a downlink control channel signal of a cell exchanged by the C-RAN node, and perform MIMO precoding processing on the downlink user code modulated signal;
  • the downlink user code modulated signal of the foregoing cell is a C-RAN node receiving a certain
  • the downlink data stream sent by the user of a cell is obtained by performing channel coding and modulation processing on the downlink data stream; and the downlink control channel signal is generated by the C-RAN node according to the physical layer control information.
  • the resource mapping module 1102 is configured to receive a reference signal, a synchronization signal, and a broadcast channel signal of a certain cell exchanged by the C-RAN node, and perform the foregoing reference signal, the synchronization signal, the broadcast channel signal, and the foregoing precoding module 1101.
  • the MIMO pre-coded signal and the downlink control channel signal are respectively mapped to corresponding subcarriers;
  • the transform module 1103 is configured to perform an IFFT transform process on the signal mapped to the subcarrier to obtain a downlink baseband signal.
  • the transceiver module 1104 is configured to send the downlink baseband signal.
  • the resource mapping module 1102 may be specifically configured to receive a reference signal, a synchronization signal, and a broadcast channel signal of a certain cell exchanged by the C-RAN node, and use a reference signal of a certain cell according to a preset mapping rule. And the synchronization signal and the broadcast channel signal are respectively mapped to the corresponding subcarriers, where the mapping rule is used to indicate the subcarriers corresponding to the reference signal, the synchronization signal, and the broadcast channel signal respectively; and the transmission according to the C-RAN node
  • the resource indication information maps the downlink user code modulated signal and the downlink control channel signal that are performed by the precoding module 1101 to the corresponding subcarriers, where the transmission resource indication information is carried in the downlink control channel signal. And a subcarrier corresponding to the MIMO precoding processed signal and the downlink control channel signal respectively.
  • the precoding module 1101 is further configured to receive wireless. a downlink user code modulated signal of another cell exchanged by the access network node, and performing a multiple input multiple output combined precoding process on the downlink user code modulated signal of the other cell and the downlink user code modulated signal of the certain cell;
  • the resource mapping module 1102 is further configured to map the multiplexed multi-output combined pre-coded signal and the downlink control channel signal, the reference signal, the synchronization signal, and the broadcast channel signal of the certain cell to corresponding sub-respectively On the carrier
  • the foregoing resource mapping module 1102 may also be based on the foregoing.
  • the transmission resource indication information carried in the downlink control channel signal of a cell, the multi-input and multi-output joint pre-processed signal and the downlink control channel signal of the certain cell are respectively mapped to corresponding subcarriers, Not limited.
  • the foregoing transform module 1103 is configured to perform an IFFT transform process on the signal mapped to the subcarrier to obtain a downlink baseband signal.
  • the transceiver module 1104 is configured to send the downlink baseband signal.
  • the precoding module 1101 performs MIMO precoding processing on the downlink user code modulated signal of a certain cell exchanged by the C-RAN node
  • the resource mapping module 1102 refers to a certain cell exchanged by the C-RAN node.
  • the signal, the synchronization signal, the broadcast channel signal, and the MIMO pre-coded signal, and the downlink control channel signal of a certain cell are respectively mapped to corresponding subcarriers
  • the transform module 1103 performs IFFT conversion processing to obtain a downlink baseband signal and transmits and receives the downlink baseband signal.
  • the machine module 1104 sends out.
  • the MIMO precoding, the signal mapping, and the IFFT transform processing are forwarded to the RRU for processing, so that there is no need to transmit signals on the corresponding subcarriers between the C-RAN node and the RRU, and the C-RAN node and the RRU are reduced. Signal transmission bandwidth between.
  • FIG. 12 is a schematic structural diagram of a downlink baseband signal generating system according to an embodiment of the present invention. As shown in Figure 12, the system can include:
  • the C-RAN node 1201 is configured to perform channel coding and modulation processing on a downlink data stream of a certain cell user, obtain a downlink user code modulation signal of a certain cell, and generate a downlink control channel signal of the cell according to the physical layer control information. And switching a reference signal, a synchronization signal, a broadcast channel signal, and a downlink user code modulated signal and a downlink control channel signal of a certain cell to the RRU 1202;
  • the RRU 1202 is configured to receive a downlink user code modulated signal and a downlink control channel signal of a cell exchanged by the C-RAN node 1201, perform MIMO precoding processing on a certain cell downlink user code modulated signal, and receive the C-RAN node. 1201 exchanges a certain cell reference signal, synchronization signal and broadcast channel signal, and maps a certain cell reference signal, synchronization signal, broadcast channel signal, MIMO pre-coded signal, and a certain cell downlink control channel signal The signal is transmitted to the corresponding subcarrier, and the IFFT conversion process is performed to obtain the downlink baseband signal and transmit it.
  • the RRU 1202 is further configured to receive a C-RAN node.
  • the downlink user code modulated signal of the other cells exchanged by the 1201, and the downlink user code modulated signal of the other cell and the downlink user code modulated signal of the certain cell are subjected to multiple input multiple output combined precoding processing, and the multiple input multiple output is performed.
  • the combined pre-coded signal and the downlink control channel signal, the reference signal, the synchronization signal, and the broadcast channel signal of the above-mentioned cell are respectively mapped to corresponding subcarriers, and subjected to IFFT inverse transform processing to obtain a downlink baseband signal and transmitted. .
  • the C-RAN node 1201 may be connected to multiple RRUs 1202 through an optical fiber or an optical transmission network, where the structure of the C-RAN node 1201 may be the same as that of FIG. 10, and each RRU The structure of the 1202 can be the same as that of FIG. 11, so that the downlink baseband signal generating system provided by the embodiment of the present invention can also be as shown in FIG.
  • the functions of the various functional modules in FIG. 13 have been described in detail in the foregoing embodiments, and are not described in this embodiment.
  • the C-RAN node 1201 after receiving the downlink data stream sent by the user, performs channel coding and modulation on the downlink data stream of the user to obtain a downlink user code modulated signal; and uses a reference signal, a synchronization signal, and a broadcast channel.
  • the signal and the downlink user code modulated signal and the downlink control channel signal are exchanged to the corresponding RRU 1202, and the downlink user code modulated signal is subjected to MIMO precoding processing by the RRU 1202, and the reference signal, the synchronization signal, the broadcast channel signal, and the MIMO precoding process are processed.
  • the downlink signal and the downlink control channel signal are respectively mapped to corresponding subcarriers, and subjected to IFFT conversion processing to obtain a downlink baseband signal and transmitted.
  • the MIMO precoding, the signal mapping, and the IFFT transform processing are forwarded to the RRU 1202, so that there is no need to transmit signals on the corresponding subcarriers between the C-RAN node 1201 and the RRU 1202, and the C-RAN node is lowered. Signal transmission bandwidth between the RRU and the RRU.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage device includes the following steps:
  • the foregoing storage medium includes: a USB flash drive, a read-only memory (ROM), and a random access device ( Random Access Memory, RAM), disk or disc, etc.
  • Various media that can store program code are described.
  • the description of the above embodiment is only for helping to understand the method and core idea of the present invention. Meanwhile, for those skilled in the art.
  • the present invention is not limited by the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种下行基带信号生成方法及相关设备、 系统
本申请要求于 2010 年 12 月 21 日提交中国专利局、 申请号为 201010598899.3、发明名称为 "一种下行基带信号生成方法及相关设备、 系统" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种下行基带信号生成方法及相关设 备、 系统。
背景技术
在射频拉远的分布式基站中, 基站被划分为相互独立的基带处理单元 ( Base-band Unit, BBU )与射频单元(Radio Remote Unit, RRU ) 两部分。 其中 RRU被放置在距离 BBU较远的接入点处, 它们之间通过光纤连接起来, 并采用模拟或数字方式传输基带信号。 分布式天线系统(Distributed Antenna System, DAS )与射频拉远的分布式基站类似, 但 BBU和 RRU之间的距离可 以扩展到数千米甚至数十千米,而且 BBU和 RRU之间除了采用直接的光纤连 接外, 也可以采用无源光网络 ( Passive Optical Network , PON )、 波分复用 ( Wavelength Division Multiplexing, WDM )等光传输网连接, 而且较优地采 用多小区联合处理的方式, 例如网络多输入多输出 ( Multiple-Input
Multiple-Output, MIMO ) 系统、 多小区联合调度等来减小小区之间的干扰, 进一步提高系统容量。
目前, 基于云计算技术的无线接入网络 ( Cloud Radio Access Network ,
C-RAN ) 系统逐渐受到工业界的普遍关注, C-RAN是在 DAS技术的基础上 应用云计算技术而形成的一种更大规模的无线接入系统。与 DAS相比, C-RAN 将多个基站的 BBU通过光纤或光传输网络连接起来, 并利用云计算技术将所 有 BBU的处理资源虚拟化为一个统一的资源池, 这样系统可以实现信号处理 资源的统计复用、 从而大大降低系统成本。 另外, C-RAN还可以如 DAS—样 采用采用多小区联合处理等方式来提升系统容量。
请参阅图 1 ,图 1为现有的一种 C-RAN系统架构示意图。其中,该 C-RAN 系统包含多个 C-RAN节点, 多个 C-RAN节点之间通过大容量光纤或光传输 网连接。 每个 C-RAN节点与一个小区群(Small-Cell Cluster ) 中的 RRU采用 星型或环型方式, 并通过直接光纤或光传输网连接。 每个 C-RAN节点主要负 责自己小区群内用户 (RS ) 无线接入的处理, 包括物理层信号处理、 媒体接 入控制 (Media Access Control, MAC )处理、 无线资源管理( Radio Resource Management , RRM )等, 而且每个 C-RAN节点在自己处理负荷较轻, 也就 是自己的小区群内的用户业务量不大时, 可以为其它 C-RAN节点的小区群的 一部分用户进行无线接入的处理。 当某个 C-RAN节点的小区群内的用户业务 量过大, 以至于对应的 C-RAN节点 4艮难及时有效地处理自己小区群内的所有 用户的无线接入时, 可以将部分小区的基带无线信号, 通过连接各个 C-RAN 节点的大容量光纤或光传输网,路由到小区群内用户业务量较少、 负荷较轻的 C-RAN节点进行处理。
请参阅图 2, 图 2为现有的一种 C-RAN节点的结构示意图。 其中, 图 2 仅仅是给出了 C-RAN节点的主要功能模块, 实际的 C-RAN节点还包括定时 单元、 控制单元、 接口单元等其它功能模块。 如图 2所示, 一个 C-RAN节点 中可以包含多个 BBU, 每个 BBU负责部分用户的物理层信号处理, 也可能包 括 MAC/RRM等处理; 还包括交换单元, 该交换单元与各个 RRU连接, 同时 也与其它 C-RAN节点连接, 用于将 C-RAN节点所连接的 RRU的基带信号, 以及来自其它 C-RAN节点的基带信号交换到各个 BBU进行处理; RRU主要 完成收发信机( TRX )模块功能, 即在下行方向上负责将下行基带信号转换为 射频信号并进行功率放大后通过天线发射出去;在上行方向上接收来自天线的 上行射频信号并经过放大后转换为基带信号。
发明人在实践中发现, 随着长期演进( Long Term Evolution, LTE )等第 三代 ( 3G )、 第四代 ( 4G ) 移动通讯技术的出现, 无线频谱越来越宽 ( 20MHz- 100MHz ) , 同时 MIMO等多天线技术大量应用, 导致 C-RAN节点 与 RRU之间的信号传输带宽越来越大。 因此, 如何降低 C-RAN节点和 RRU 之间的信号传输带宽需求显得非常重要。
发明内容
本发明实施例中提供了一种下行基带信号生成方法及相关设备、 系统, 用 于降低 C-RAN节点和 RRU之间的信号传输带宽。
本发明实施例提供一种下行基带信号生成方法, 包括:
对小区用户的下行数据流进行信道编码和调制处理,获得所述小区的下行 用户编码调制信号;
根据物理层控制信息生成下行控制信道信号;
将参考信号、 同步信号、广播信道信号以及所述下行用户编码调制信号和 所述下行控制信道信号交换至对应的射频单元,以使所述射频单元将所述下行 用户编码调制信号进行多输入多输出预编码处理,并将所述多输入多输出预编 处理后的信号以及所述下行控制信道信号、 参考信号、 同步信号、 广播信道信 号分别映射到相应的子载波上, 进行快速傅里叶逆变换处理, 获得下行基带信 号并发送出去。
本发明实施例提供另一种下行基带信号生成方法, 包括:
接收无线接入网节点交换过来的某一小区的下行用户编码调制信号和下 行控制信道信号; 其中, 所述下行用户编码调制信号是所述无线接入网节点通 过将所述某一小区的用户的下行数据流进行信道编码和调制处理后得到的;所 述下行控制信道信号是所述无线接入网节点根据物理层控制信息生成的; 将所述下行用户编码调制信号进行多输入多输出预编码处理;
接收所述无线接入网节点交换过来的参考信号、同步信号以及广播信道信 号;
将所述多输入多输出预编处理后的信号以及所述下行控制信道信号、参考 信号、 同步信号、 广播信道信号分别映射到相应的子载波上, 进行快速傅里叶 逆变换处理, 获得下行基带信号并发送出去。
相应地, 本发明实施例提供一种无线接入网络节点, 包括:
至少一个基带处理单元和交换单元;
其中, 所述基带处理单元包括:
数据信道编码调制模块,用于将小区用户的下行数据流进行信道编码和调 制处理, 获得所述小区的下行用户编码调制信号并输出至所述交换单元; 下行控制信道生成模块,用于根据物理层控制信息生成下行控制信道信号 并输出至所述交换单元;
所述交换单元, 用于将参考信号、 同步信号、 广播信道信号以及所述下行 用户编码调制信号和所述下行控制信道信号交换至对应的射频单元,以使所述 射频单元将所述下行用户编码调制信号进行多输入多输出预编码处理,并将所 述多输入多输出预编处理后的信号以及所述下行控制信道信号、参考信号、 同 步信号、广播信道信号分别映射到相应的子载波上, 并进行快速傅里叶逆变换 处理, 获得下行基带信号并发送出去。
相应地, 本发明实施例提供一种射频单元, 包括:
预编码模块,用于接收无线接入网节点交换过来的某一小区的下行用户编 码调制信号和下行控制信道信号,并将所述下行用户编码调制信号进行多输入 多输出预编码处理; 其中, 所述下行用户编码调制信号是所述无线接入网节点 通过将所述某一小区的用户的下行数据流进行信道编码和调制处理后得到的; 所述下行控制信道信号是所述无线接入网节点根据物理层控制信息生成的; 资源映射模块,用于接收所述无线接入网节点交换过来的所述某一小区的 参考信号、 同步信号以及广播信道信号, 并将所述多输入多输出预编处理后的 信号以及所述下行控制信道信号、 参考信号、 同步信号、 广播信道信号分别映 射到相应的子载波上;
变换模块, 用于对映射到所述子载波上的信号进行快速傅里叶逆变换处 理, 获得下行基带信号;
收发信机模块, 用于将所述下行基带信号发送出去。
相应地, 本发明实施例提供一种下行基带信号生成系统, 包括上述的无线 接入网络节点以及上述的射频单元; 其中, 上述的无线接入网络节点与上述的 射频单元之间通过光纤或光传输网络连接。
本发明实施例中, C-RAN 节点在接收到小区用户发送的下行数据流后, 将小区用户的下行数据流进行信道编码和调制,获得小区的下行用户编码调制 信号; 将小区的参考信号、 同步信号、 广播信道信号以及下行户编码调制信号 和下行控制信道信号交换至对应的 RRU, 由对应的 RRU将下行户编码调制信 号进行 MIMO预编码处理,并将参考信号、同步信号、广播信道信号以及 MIMO 预编码处理后的信号、 下行控制信道信号分别映射到相应的子载波上, 并进行 IFFT变换获得下行基带信号并发送出去。 本发明实施例中, MIMO预编码、 信号映射以及 IFFT变换处理前移至 RRU 中进行处理, 使得 C-RAN节点与 RRU之间无需传输对应子载波上的信号, 降低了 C-RAN节点与 RRU之间信 号传输带宽。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1 为现有的一种 C-RAN系统架构示意图;
图 2为现有的一种 C-RAN节点的结构示意图;
图 3为现有的一种 BBU的结构示意图;
图 4为图 3所示的 BBU的进一步细化的结构示意图;
图 5 为本发明实施例提供的一种下行基带信号生成方法的流程图; 图 6 为本发明实施例提供的一个物理资源块(PRB ) 的示意图; 图 7 为一种生成 OFDM信号的过程示意图;
图 8 为多个小区采用基于 Network-MIMO的 CoMP处理的场景示意图; 图 9 为本发明实施例提供的另一种下行基带信号生成方法的流程图; 图 10 为本发明实施例提供的一种 C-RAN节点的结构示意图;
图 11 为本发明实施例提供的一种 RRU的结构示意图;
图 12为本发明实施例提供的一种下行基带信号生成系统的结构示意图; 图 13为本发明实施例提供的另一种下行基带信号生成系统的结构示意。
具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例中提供了一种下行基带信号生成方法及相关设备、 系统, 可 应用于基于正交频分多址 ( Orthogonal Frequency Division Multiple Access , OFDMA )或其同类技术如单载波频分多址 ( Single Carrier Frequency Division Multiple Access , SC-FDMA ) 系统中, 例如 LTE 系统、 增强型长期演进 ( LTE- Advanced, LTE-A )系统或全球敫波互联接入( Worldwide Interoperability for Microwave Access, WiMAX ) 系统等, 能够降低 C-RAN节点和 RRU之间 的信号传输带宽。
其中, 在上述的 LTE、 LTE-A以及 WiMAX等系统中, BBU可以划分为 具有快速傅立叶变换(Fast Fourier Transform, FFT ) 以及快速傅立叶逆变换 ( Inverse Fast Fourier Transformation, IFFT ) 能力的变换模块 301、 具有映射 与去映射能力的资源映射模块 302以及用户信号处理模块 303 , 如图 3所示。 需要说明的是, 图 3所示的主要是用户面的 BBU功能模块, 实际应用中 BBU 还可以包括控制信道处理、 功率控制、 混合自动重传请求(Hybrid Automatic Repeat reQuest , HARQ ) /自适应调制编码( Adaptive Modulation and Coding, AMC )、随机接入等物理层过程控制模块, 另外还可能包括 MAC/RRM等上层 协议处理功能模块。
为了便于充分的理解本发明实施例的技术方案以及本发明实施例的有益 效果, 下面在图 3所示的 BBU的基础上, 首先介绍目前的下行基带信号的生 成方法。 请参阅图 4, 图 4为图 3所示的 BBU进一步细化后的结构示意图。 其中, 用户信号处理模块 303 可以细化为数据信道编码调制模块 3031 (主要 包括信道编码单元 30311和调制单元 30312 )、 下行控制信道生成模块 3032以 及预编码模块 3033 (主要包括 MIMO预编码单元 30331 )。 在下行方向上, 信 号处理是以一定的传输时间间隔(ΤΉ )为周期的, 在 LTE系统中即为一个子 帧 ( sub-frame ), 包括 14个 OFDM符号, 对应 1ms的时间。 如图 4所示, 在一个 ΤΉ内, 用户 1~用户 k的下行数据流各自经过信道 编码单元 30311、调制单元 30312以及 MIMO预编码单元 30331之后分别生成 下行用户编码调制信号, 下行用户编码调制信号又分别被资源映射模块 302 映射到相应的子载波上; 同时, BBU 内部产生的物理层控制消息通过下行控 制信道生成模块 3032之后, 生成下行控制信道信号, 下行控制信道信号也被 资源映射模块 302映射到相应的子载波上; 在实际应用中, 下行控制信道生成 模块 3032也可以包括信道编码、 调制、 MIMO预编码等单元; 另外, 资源映 射模块 302还将 BBU内部产生的参考信号、 同步信号以及广播信道信号映射 到某些固定 OFDM符号位置上的特定子载波上。
这样,所有的信号经过资源映射模块 302映射后,可以形成下行频域信号, 下行频域信号再经过变换模块 301的 IFFT变换处理, 即可生成时域的下行基 带信号; 该下行基带信号可以通过 C-RAN节点中包括的交换单元交换到相应 的 RRU中,由相应的 RRU负责将该下行基带信号转换为射频信号并进行功率 放大后通过天线发射出去。 在上述方法中, BBU与 RRU之间需要传输对应子 载波上的信号, 导致包括多个 BBU的 C-RAN节点与 RRU之间的信号传输带 宽要求较高。
针对上述方法存在的技术缺陷,本发明实施例中提供了一种下行基带信号 生成方法, 用于克服上述的技术缺陷。 请参阅图 5, 图 5为本发明实施例中提 供的一种下行基带信号生成方法的流程示意图。如图 5所示, 该方法可以包括 以下步骤:
501、 将小区用户的下行数据流进行信道编码和调制处理, 获得该小区的 下行用户编码调制信号;
本发明实施例中, C-RAN节点中包括多个 BBU, 每一个 BBU服务于一 个小区; C-RAN可以通过其包括的 BBU来接收 BBU服务的小区的用户发送 的下行数据流,或者 C-RAN节点也可以通过其包括的 BBU来接收其他 C-RAN 节点交换过来的其他小区的用户发送的下行数据流,并将下行数据流进行信道 编码和调制处理, 获得相应小区的下行用户编码调制信号。
举例来说, C-RAN 节点在将小区用户的下行数据流进行信道编码之后, 可以采用正交相移键控 ( Quadrature Phase Shift Keying , QPSK )、 16正交幅度 调制( 16 Quadrature Amplitude Modulation, 16QAM )以及 64正交幅度调制( 64 Quadrature Amplitude Modulation, 64QAM ) 中的任意一种方式来对用户的下 行数据流进行调制, 从而获得下行用户编码调制信号。
502、 根据物理层控制信息生成下行控制信道信号;
本发明实施例中, C-RAN 节点包括的 BBU可以在每一个传输时间间隔 ( ΤΉ )内产生物理层控制信息,进一步地 BBU可以通过其下行控制信道生成 模块将物理层控制信息生成下行控制信道信号。
其中, 下行控制信道信号主要用于控制下行信道的带宽、 信噪比等等。 503、 将参考信号、 同步信号、 广播信道信号以及上述的下行用户编码调 制信号和下行控制信道信号交换至对应的 RRU, 以使对应的 RRU将上述的下 行数据调制信号进行 MIMO预编码处理, 并将上述的参考信号、 同步信号、 广播信道信号以及 MIMO预编码处理后的信号、 下行控制信道信号分别映射 到相应的子载波上, 并进行 IFFT变换处理, 获得下行基带信号并发送出去。
其中,上述的参考信号主要用于为各种信号提供参考信息,例如信号幅度、 频率等; 而同步信号主要用于提供同步时隙, 实现各种信号的同步; 广播信道 信号主要用于提供各种的广播信道信息; 这是本领域技术人员公知常识, 本发 明实施例此处不作赘述。
一个实施例中, C-RAN 节点可以根据预先设置的交换配置列表将上述的 参考信号、 同步信号、广播信道信号以及下行用户编码调制信号和下行控制信 道信号交换至对应的 RRU; 其中, 上述的交换配置列表用于记录用户信息与 相应的 RRU信息之间的对应关系。 举例来说, 用户信息可以是表示用户身份 的参数, 例如用户国际移动设备身份码 ( International Mobile Equipment Identity, IMEI ); RRU信息可以是表示 RRU标识。
本发明实施例中, MIMO预编码、 信号映射以及 IFFT变换处理前移至交 换单元前进行处理。 例如, 在一个实施例中可以前移至 RRU中进行处理, 这 样, 使得 C-RAN 节点与 RRU之间无需传输对应子载波上的信号, 降低了 C-RAN节点与 RRU之间信号传输带宽。 另夕卜, 在基于 OFDMA技术的系统中, 通常将 C-RAN节点与 RRU之间 的空口资源以资源块的形式来划分, 图 6 表示一个物理资源块 (Physical Resource Block, PRB ) 的示意图, 该 PRB包括时域上 M个连续的 OFDM符 号, 以及频域上 N个连续的子载波, 以 LTE/LTE-A系统为例, 通常 M = 7, N = 12。 对用户的数据流传输而言, 分配给每个用户的时间和频率资源通常是逻 辑上的一个虚拟资源块(Virtual Resource Blocks, VRB ), 系统再根据预先规 定的算法将用户所分配的 VRB 映射为一定的时间和频率范围内的 PRB, 如 LTE/LTE-A系统中, VRB和 PRB具有相同的大小, 即 7个 OFDM符号和 12 个子载波, VRB可以映射到一个子帧内的 PRB。 系统在为用户分配资源时, 会指定相应的 VRB资源的类型、编号、大小等信息, 即 VRB指示信息,这样, 根据预先规定的算法, 就能够对应到该用户在每个 OFDM符号时间上实际所 占用的子载波。 因此, 上述的资源映射与去映射完成的就是用户复用与解复用 操作, 具体来说, 资源映射就是将各个用户的信号分配到相应的子载波上, 资 源去映射就是从相应的子载波上分离出各个用户的信号。
其中, VRB通常分为集中式(Localized )和离散式(Distributed ) 两种方 式, 集中式 VRB对应连续的子载波, 有利于频率选择性调度和 MIMO预编码 的实现, 而离散式 VRB将一个用户的子载波分散到整个系统带宽内, 可以获 得频率分集增益, 离散 VRB 通常用于传输宽带电话 (Voice over Internet Protocol, VoIP )等小数据量的业务。 VRB除了是用户占用资源的最小分配单 位之外, 也是最小的物理层无线传输参数配置单位, 也就是说, 无论是集中式 VRB还是离散式 VRB, —个用户的某个数据流在一个 VRB 内的子载波总是 具有相同的编码调制方式和发射功率, 而该用户传输在一个 VRB内具有相同 的 MIMO模式和 MIMO预编码矩阵。
上述对本发明实施例中提供的一种下行基带信号生成方法进行了介绍,该 方法能够降低 C-RAN节点和 RRU之间的信号传输带宽。 下面结合具体的实 施例来进一步介绍本发明实施例提供的下行基带信号生成方法。
实施例一:
本实施例中, 在下行方向(即从 C-RAN节点到 RRU的方向)上, C-RAN 节点包括的每一个 BBU的预编码单元(主要用于 MIMO预编码)、 资源映射 模块(主要用于映射与去映射)以及变换模块(主要用于 FFT/IFFT变换处理) 前移到交换单元之前的相应的 RRU中,而每一个 BBU中仅仅保留数据信道编 码调制模块和下行控制信道生成模块。 这样, 在下行方向上, C-RAN 节点和 RRU之间需要传输的信号包括:
1、 当前 ΤΉ内活跃用户(有数据流需要传输的用户 )的每个 VRB上的各 个数据流(一个用户可能通过多天线同时传输多个数据流 )的下行数据调制信 号 (即调制符号序列) ;
2、 当前 ΤΉ内每个 VRB对应的预编码码本索引 (index ) , 发射信号幅 度(或发射功率) ;
3、 当前 ΤΉ内每个活跃用户所分配的 VRB资源信息, 即 VRB指示信息 ( VRB资源的类型、 编号、 大小等信息) ;
4、 当前 ΤΉ内下行控制信道信号, 及其传输资源指示信息;
本发明实施例中, 上述的传输资源指示信息可以携带在 C-RAN节点发送 的下行控制信道信号中, 通过上述的传输资源指示信息, RRU可以将 MIMO 预编处理后的信号和上述的下行控制信道信号分别映射到相应的子载波上;其 中, 上述的传输资源指示信息用于指示经过 MIMO预编处理后的信号和上述 的下行控制信道信号分别对应的子载波。
当然, 本发明实施例中, C-RAN 节点也可以构建携带上述传输资源指示 信息的新的传输消息并发送至 RRU,使 RRU可以根据该新的传输消息携带的 上述传输资源指示信息将 MIMO预编处理后的信号和上述的下行控制信道信 号分别映射到相应的子载波上, 本发明实施例不作限定。
5、 当前 ΤΉ内参考信号、 同步信号以及广播信道信号的信号幅度(或发 射功率) ;
6、 当前 ΤΉ内广播信道信息。
本发明实施例中, BBU生成下行用户编码调制信号之后, 直接通过交换 单元交换到对应的 RRU中的预编码模块进行 MIMO预编码处理,并由对应的 RRU中的资源映射模块将 MIMO预编码处理后的信号以及下行控制信道信息 映射到相应的子载波上; 同时, BBU 内部产生的参考信号、 同步信号以及广 播信道信号也直接通过交换单元交换到相应的 RRU中的资源映射模块, 由于 参考信号、 同步信号以及广播信道信号位置固定, 资源映射模块可以将参考信 号、同步信号以及广播信道信号映射到相应的子载波上;然后再由相应的 RRU 中的变换模块对所有的子载波上的信号进行 IFFT变换处理, 获得下行基带信 号并通过收发信机(TRX )模块发送出去
其中, 参考信号占用系统资源的比例大约为 5~15% (与发射天线数、 移 动速率等有关), 由于参考信号在时频资源中的位置是固定的, 调制方式也是 固定的 (通常是 QPSK ), 所采用的参考信号序列也是预先确定的, 广播信道 信息、 同步信号也具有类似的特点, 因此, 采用本发明实施例提供的方法, 可 以使得 C-RAN节点与 RRU之间不用传输参考信号、 广播信道信号以及同步 信号等对应子载波上的信号,从而进一步压缩传输速率,从而降低信号传输带 宽。
对于传输用户数据流的数据信道而言,本发明实施例中 C-RAN节点与 RRU 之间传输的是未进行 MIMO预编码的用户的数据流, 而不是传输 MIMO预编 码后的信号流, 可以达到压缩传输速率, 降低信号传输带宽的目的。 本发明实 施例中, MIMO预编码的功能可以描述为:
Figure imgf000013_0001
其中, x表示 MIMO预编码后的信号向量; W为 M X 的预编码矩阵; M 为发射天线数; 为该用户同时传输的数据流数量, 且^≤ ; S为一个 小区的数据流向量。 系统通常会定义一个预编码矩阵码本(预先设计的预编码 矩阵集合), 通过预编码矩阵索引 (index )来指示所采用的预编码矩阵。
如前所述,一个用户的某个数据流在一个 VRB内的子载波总是具有相同的 编码调制方式和发射功率,而该用户传输在一个 VRB内具有相同的 MIMO模 式和 MIMO预编码矩阵, 因此, 如果分别传输 MIMO预编码之前的各活跃用 户的 K 个数据流 , 而不是传输 MIMO 预编码之后的信号流 一方面当 K M时,可以减少传输速率,降低信号传输带宽要求, 另一方面, 可以利用一个用户的某个数据流在一个 VRB内的子载波总是具有 相同的编码调制方式和发射功率的特点, 进一步压缩传输速率。
以频分双工( Frequency Division Duplexing, FDD )方式的 LTE系统为例, 经过信道编码和调制之后, 一个用户的一个数据流包括 I/Q通道, 一个 VRB 中包括 12子载波, 它们^载的信号具有相同的调制方式, 即 QPSK、 16QAM、 64QAM中的一种, 对应 I路或 Q路分别为 1比特、 2比特和 3比特, 以通常 每个样点(对应一个子载波)采用 16比特传输为例, 12个子载波需要 16x12 = 192比特。 由于 12个子载波的调制方式相同, 以 16QAM为例子, 12个子载 波每个只传输 2比特调制信息, 另外用 8比特传输一个功率偏置, 用 8比特传 输一个预编码矩阵 index, 则每个 VRB只需传输 2 xl2 + 8 + 8 = 40比特, 这样 信号传输带宽压缩率达到约 80%左右。相似地, 对 64QAM和 QPSK调制方式 的信号传输带宽压缩率约为 70%和 85%。由于实际系统中采用 64QAM调制方 式的比例 4艮低, 因此平均的信号传输带宽压缩率约为 80%。
通过上述分析可知, C-RAN节点和 RRU之间需要传输的信息被交换到
RRU, 对数据信道, 每个用户的数据流, 经由 RRU中的 MIMO预编码单元处 理后, 与来自 C-RAN节点的下行控制信道信号, 按照 C-RAN节点发送的下 行控制信道信号携带的传输资源指示信息,通过资源映射模块映射到相应的子 载波上; 参考信号、 同步信号以及广播信道信号也根据系统预定的规则映射到 相应的子载波上, 然后经过变化模块的 IFFT变换处理, 生成时域的下行基带 信号, 最后经过收发信机(TRX )模块数模转换、 上变频、 信号放大等处理形 成射频信号, 通过天线发射出去。
图 7 进一步示出了下行 OFDM 信号生成过程, 其中, 频域基带信号 aNc_x经串并变换映射到 N个子载波,其余子载波补零,然后进行 N点 IFFT得到时域基带信号 X。, ,…, ·½-ι。 通常 Ν远大于 Nc , 以 LTE系统为例, 对于 20MHz带宽, Ne = 1200 , N=2048, 子载波间隔为 15KHz, 则时域基带 信号的速率是 2048 15KHz = 30.72Mbps, 而频域基带信号的速率是 1200 15ΚΗζ = 18Mbps 在本发明实施例中, 由于资源映射 IFFT变换处理从 BBU 前移到 RRU中进行, 因此,相比直接传输时域基带信号, C-RAN节点和 RRU 之间的信号传输带宽大幅下降。 另外, 当一个小区空口负载未达到满负荷时, 每个 OFDM符号内的^个子载波中可能有部分空闲 (补零) , 由于资源映射 和 IFFT变换处理从 BBU前移到 RRU中进行, 空闲子载波对应的信号将不会 被传输,而只传输被占用子载波上的各用户的信号,从而进一步降低了 C-RAN 节点和 RRU之间的信号传输带宽要求。
这样, 与现有技术相比, 首先由于 IFFT变换处理从 BBU前移到 RRU中 进行, 信号传输带宽降低约 40% (忽略 ^个子载波中可能存在空闲子载波的 压缩因素),或者说 1.67倍压缩,然后,由于 MIMO预编码从 BBU前移到 RRU 中进行, 可进一步压缩 80%左右 (忽略由于传输 VRB资源信息等少量信息的 影响, 同时忽略参考信号、 同步信道等对应子载波上的信号无需传输带来的压 缩因素), 或者说 5倍压缩, 则总的压缩率为: 100% - 60% X 20% « 88%, 即 8.4倍压缩。
实施例二:
在上述的实施例一中,没有考虑多个小区在物理层上采用基于网络多输入 多输出 ( Network-MIMO ) 的协同多点 (Coordinated Multi-Point, CoMP )处 理的情况。在这种情况下, 交换单元需要将多个小区的下行用户编码调制信号 交换至对应的 RRU, 以使对应的 RRU对多个小区的下行用户编码调制信号进 行 MIMO联合预编码处理, 并将 MIMO联合预编处理后的信号以及下行控制 信道信号、 参考信号、 同步信号、 广播信道信号分别映射到相应的子载波上, 并进行 IFFT变换处理, 获得下行基带信号并发送出去。 在这种情况下, 上述 传输资源指示信息还用于指示上述 MIMO联合预编处理后的信号和上述下行 控制信道信号分别对应的子载波, 以使上述 RRU根据上述传输资源指示信息 的指示, 将上述 MIMO联合预编处理后的信号以及上述下行控制信道信号分 别映射到相应的子载波上。
图 8表示多个小区上采用基于 Network-MIMO的 CoMP处理的场景示意 图。 从图 8可以看到, UE1、 UE2、 UE3分别属于小区 A、 B、 C, 这 3个小 区分别负责传输数据流 a、 b、 c给这 3个 UE, 但是, 这 3个 UE的下行信号 之间存在相互的干扰,这通常发生这 3小区地理上相邻而这 3个 UE处于它们 相邻的边缘区域。 为了消除它们之间的干扰(图 8中虚线所示为来自其它小区 的干扰信号), 可以采用基于 Network-MIMO的 CoMP处理技术, 将 3个小区 的发射天线视为联合发射的天线, 这样系统每个小区就有两个发射天线, 等效 为总共 6个天线, 而本来分别属于各自小区的数据流 a、 b、 c, 则需要同时被 这 3个小区所共享,从而可以实现 3个小区联合预编码。上述操作可以用下面 的数学公式进行表述:
Figure imgf000016_0001
其中, q为联合预编码的小区数, s^sy^分别为小区 1,2,···, 的数据流向 量, 分别对应 个数据流(即下行用户编码调制信号), 则总的数据 流数为 W +Kq = K , 小区 1,2,.·., 的发射天线数分别为 Μ Μ2, ...,Λ^ , 则系统总的等效发射天线数为 + Μ2 +… + Μ = Μ , W为 Μ χ 的 MIMO 联合预编码矩阵, 它由 q个 MIMO预编码子矩阵 λ^,λΥ ,···,1^构成, 这些子 矩阵分别为各小区的本地预编码矩阵,也就是说,对这 q个联合预编码的小区, 第 k个小区本地的预编码操作可以表示为:
x, =W,s (2) 其中, 为^^ 1本地预编码输出, \^为^^ 本地预编码矩阵。 可以 看到, 与公式(1 )所示的通常的 MIMO预编码相比, 公式(2)所示的多个 小区联合预编码的情况中,各小区需要使用所有小区的下行用户编码调制信号 进行 MIMO联合预编码处理, 而不仅仅是使用其本小区的下行用户编码调制 信号进行 MIMO预编码处理。
本发明实施例中, 当多个小区在物理层上采用基于 Network-MIMO 的 CoMP处理时, 仍然利用一个小区用户的数据流在一个 VRB内的子载波总是 具有相同的编码调制方式和发射功率的特点, 在 C-RAN节点与 RRU之间传 输 MIMO 预编码之前的多个小区联合预编码的各用户的 K 个数据流 s^sy^ , 而不是传输 MIMO预编码之后的信号流 。 为此, 对采用多个小 区共享用户数据方式实现联合预编码的下行用户编码调制信号, 其 MIMO联 合预编码同样从 BBU前移到 RRU中进行。
实际系统中考虑到系统复杂性等因素, 通常参与联合预编码的小区数 q 为 2或 3, 而处于小区边缘用户的信号噪声比( Signal to Noise Ratio, SNR ) 通常不高, 采用 16QAM甚至 64QAM高阶调制的情况非常少, 因此, 即使将 所有联合预编码的各小区的用户数据流同时发送给 RRU, 利用一个用户的某 个数据流在一个 VRB内的子载波总是具有相同的编码调制方式和发射功率的 特点, 仍然可以获得较好的带宽压缩效果。
以 FDD方式的 LTE- A为例, 4艮定相邻的 3个小区进行 CoMP处理, 即对 他们边缘的用户 (通常占总的用户数的 10~20% ), 采用基于多个小区共享用 户数据的 Network-MIMO技术, 即用户的下行用户编码调制信号在下行方向 上采用多个小区联合预编码的方式, 假定每个小区 2个发射天线, 每个 CoMP 集中的用户(即参与 CoMP处理的用户)有 1个数据流, 其中两个小区的用户 数据采用 QPSK调制, 一个采用 16QAM调制。 则经过信道编码和调制后, 对 这 3个小区中的任何一个, 其对应的 CoMP用户需要传输到 RRU的数据流的 I路或 Q路, 每个子载波对应 4个比特信息, 其中两个采用 QPSK调制的数据 需要用 2个比特来表示, 采用 16QAM调制的数据需要用 2个比特来表示。 采 用上述压缩方案, 由于 12个子载波的调制方式相同, 则 12个子载波每个只传 输 4比特的调制信息, 另外用 8x3=24个比特分别传输各个小区数据的功率偏 置, 用 16比特传输本地预编码矩阵的 index (因多小区联合预编码, 本地预编 码矩阵的维度变大,故采用更大的码本 ),则每个 VRB只需传输 4 xl2 +24 +16 = 88比特。 相比之下, 如果在 MIMO预编码之后传输到 RRU, 由于每个小区 2个发射天线, 而每个样点 (对应一个子载波)需要采用 16比特传输, 则 12 个子载波需要 16x12x2 = 384个比特。 因此,在这个实际中典型情况的例子中, 带宽压缩率达到约 78%左右。考虑到实际系统中,位于小区边缘的用户数占总 的用户数的比例并不高, 因此, 对采用基于多个小区共享用户数据的 Network-MIMO技术, 即在下行方向采用多个小区联合预编码的方式的情况, 同样可以获得比较理想的 C-RAN节点与 RRU之间的信号传输带宽压缩率。 需要指出的是, 尽管本发明实施例是以 C-RAN系统为例进行描述的, 但 C-RAN系统与其它所有信号集中处理而天线 /射频通过光纤等宽带传输线路拉 远的系统如 DAS系统之间, 并不存在严格的区别, 特别是在基带信号传输、 基站内部结构等方面, 具有相同或相似的结构。 因此, 本发明实施例所提出的 各种实施方案, 均适用于其它所有信号集中处理而天线 /射频通过光纤等宽带 传输线路拉远的系统。
请参阅图 9, 图 9为本发明实施例中提供的另一种下行基带信号生成方法 的流程示意图。其中, 该下行基带信号生成方法可应用于基于正交频分多址或 其同类技术如单载波频分多址系统中,例如 LTE系统、 LTE-A系统或 WiMAX 系统等, 能够降低 C-RAN节点和 RRU之间的信号传输带宽。 如图 9所示, 该方法可以包括以下步骤:
901、接收 C-RAN节点交换过来的某一小区的下行用户编码调制信号和下 行控制信道信号; 其中, 该下行用户编码调制信号是 C-RAN节点通过将某一 小区的用户的下行数据流进行信道编码和调制处理后得到的;而下行控制信道 信号是 C-RAN节点根据物理层控制信息生成的, 其中, 该下行控制信道信号 中携带了传输资源指示信息, 该传输资源指示信息用于指示经过 MIMO预编 处理后的信号和上述的下行控制信道信号分别对应的子载波;
本发明实施例中, C-RAN 节点中的交换单元可以将某一小区的下行用户 编码调制信号和下行控制信道信号交换至对应的 RRU。 举例来说, 交换单元 可以根据预先设置的交换配置列表将上述的某一小区的下行用户编码调制信 号和下行控制信道信号交换至对应的 RRU; 其中, 上述的交换配置列表用于 记录上述的某一小区的用户信息与相应的 RRU信息之间的对应关系。 其中, 用户信息可以是表示用户身份的参数, 例如 IMEI; 而 RRU信息可以是表示 RRU标识。
902、 将上述某一小区的下行用户编码调制信号进行 MIMO预编码处理;
903、接收上述的 C-RAN节点交换过来的上述某一小区的参考信号、 同步 信号以及广播信道信号; 本发明实施例中, C-RAN节点中的交换单元可以将某一小区的参考信号、 同步信号以及广播信道信号交换至对应的 RRU。 举例来说, 交换单元可以根 据预先设置的交换配置列表将上述的某一小区的参考信号、同步信号以及广播 信道信号交换至对应的 RRU; 其中, 上述的交换配置列表用于记录上述的某 一小区的用户信息与相应的 RRU信息之间的对应关系。
904、将上述的 MIMO预编处理后的信号以及上述某一小区的下行控制信 道信号、 参考信号、 同步信号、 广播信道信号分别映射到相应的子载波上, 并 进行 IFFT变换处理, 获得下行基带信号并发送出去。
本发明实施例中, RRU可以根据上述的 C-RAN节点发送的下行控制信道 信号中携带的传输资源指示信息将 MIMO预编处理后的信号和上述的下行控 制信道信号分别映射到相应的子载波上, 其中, 该传输资源指示信息用于指示 MIMO预编处理后的信号和下行控制信道信号分别对应的子载波;
其中, RRU根据预先设定的映射规则将上述的参考信号、 同步信号、 广 播信道信号分别映射到相应的子载波上,其中,该映射规则用于指示参考信号、 同步信号、 广播信道信号分别对应的子载波。
本发明实施例中, 上述的步骤 901和步骤 903之间没有先后顺序的限定。 本发明实施例中,若上述步骤 901中的某一小区与其他小区在物理层上采 用基于网络多输入多输出的协同多点处理, 则作为一个可选的实施方式, RRU 还可以接收无线接入网节点交换过来的其他小区的下行用户编码调制信号;此 时, 上述传输资源指示信息还用于指示上述 MIMO联合预编处理后的信号和 上述下行控制信道信号分别对应的子载波, 以使上述 RRU根据上述传输资源 指示信息的指示, 将上述 MIMO联合预编处理后的信号以及上述下行控制信 道信号分别映射到相应的子载波上。
相应地, RRU可以对上述某一小区的下行用户编码调制信号以及上述其 他小区的下行用户编码调制信号进行多输入多输出联合预编码处理,并将多输 入多输出联合预编处理后的信号以及上述下行控制信道信号、参考信号、 同步 信号、广播信道信号分别映射到相应的子载波上, 并进行快速傅里叶逆变换处 理, 获得下行基带信号并发送出去。 同样地, RRU也可以根据上述某一小区的下行控制信道信号中携带的传 输资源指示信息,将多输入多输出联合预编码处理后的信号和上述某一小区的 下行控制信道信号分别映射到相应的子载波上, 本发明实施例不作限定。
本发明实施例中, 无线接入网节点包含的交换单元对应多个 BBU, 即交 换单元对应多个小区,当多个小区在物理层上采用基于网络多输入多输出的协 同多点处理时,可以在交换单元上预先设置多个小区基于网络多输入多输出的 协同多点处理时的交换列表,该交换列表用于记录在物理层上采用基于网络多 输入多输出的协同多点处理的多个小区与对应的 RRU的关系, 如表 1所示。
Figure imgf000020_0001
表 1 其中,表 1表示 BBU1和 BBU2在物理层上采用基于网络多输入多输出的 协同多点处理, 其中 BBU1、 BBU2与 RRU1对应。 当无线接入网节点包含的 交换单元接收到 BBU1输出的下行用户编码调制信号、下行控制信道信、参考 信号、 同步信号以及广播信道信号之后,根据表 1可以将 BBU1输出的下行用 户编码调制信号、 下行控制信道信、 参考信号、 同步信号以及广播信道信号交 换至 RRU1; 当无线接入网节点包含的交换单元接收到 BBU2输出的下行用户 编码调制信号、下行控制信道信、参考信号、同步信号以及广播信道信号之后, 根据表 1可以将 BBU2输出的下行用户编码调制信号交换至 RRU1; RRU1可 以对 BBU1的下行用户编码调制信号以及 BBU2的下行用户编码调制信号进行 多输入多输出联合预编码处理,并将多输入多输出联合预编处理后的信号以及 BBU1的下行控制信道信号、 参考信号、 同步信号、 广播信道信号分别映射到 相应的子载波上, 并进行快速傅里叶逆变换处理, 获得下行基带信号并发送出 去。
表 1中, BBU2可以认为是 RRU1的干扰源,而 BBU1与 RRU1是对应的, BBU1不会造成 RRU1的干扰,因此在进行多输入多输出联合预编码处理之后, 需要将多输入多输出联合预编处理后的信号以及 BBU1的下行控制信道信号、 参考信号、 同步信号、 广播信道信号分别映射到相应的子载波上, 并进行快速 傅里叶逆变换处理, 获得下行基带信号并发送出去。
本发明实施例中, RRU接收 C-RAN节点交换过来的某一个下行用户编码 调制信号进行 MIMO预编码处理,并将 C-RAN节点交换过来的某一个参考信 号、 同步信号、 广播信道信号以及 MIMO预编码处理后的信号、 下行控制信 道信号分别映射到相应的子载波上, 并进行 IFFT变换处理获得下行基带信号 并发送出去。 本发明实施例使得 C-RAN节点与 RRU之间无需传输对应子载 波上的信号, 降低了 C-RAN节点与 RRU之间信号传输带宽。
相应地, 本发明实施例中还提供一种 C-RAN节点, 用于与 RRU协作实 现上述的上行基带信道生成方法。 其中, 该 C-RAN节点可应用于基于正交频 分多址或其同类技术如单载波频分多址系统中, 例如 LTE系统、 LTE-A系统 或 WiMAX系统等, 能够降低 C-RAN节点和 RRU之间的信号传输带宽。 请 参阅图 10, 图 10为本发明实施例中提供的一种 C-RAN节点的结构示意图。 如图 10所示, 该 C-RAN节点可以包括:
至少一个 BBU 1001和交换单元 1002;
其中, 该 BBU 1001可以包括:
数据信道编码调制模块 10011 , 用于将小区用户的下行数据流进行信道编 码和调制处理, 获得上述小区的下行用户编码调制信号并输出至交换单元 1002;
下行控制信道生成模块 10012, 用于根据物理层控制信息生成下行控制信 道信号并输出至交换单元 1002;
交换单元 1002, 用于将上述小区的参考信号、 同步信号、 广播信道信号 以及下行用户编码调制信号和下行控制信道信号交换至对应的 RRU, 以使 RRU将上述的下行用户编码调制信号进行 MIMO预编码处理, 并将上述的参 考信号、 同步信号、 广播信道信号以及 MIMO预编码处理后的信号、 下行控 制信道信号分别映射到相应的子载波上, 并进行 IFFT变换处理, 获得下行基 带信号并发送出去。 一个实施例中, 交换单元 1002具体可以用于根据预先设置的交换配置列 表将上述小区的参考信号、 同步信号、 广播信道信号以及下行用户编码调制信 号和下行控制信道信号交换至对应的 RRU; 其中, 该交换配置列表用于记录 用户信息与对应的 RRU信息之间的对应关系。
作为一个可选的实施例,当上述小区与其他小区在物理层上采用基于网络 多输入多输出的协同多点处理时, 交换单元 1002还用于将其他小区的下行用 户编码调制信号交换至上述对应的 RRU, 以使对应的 RRU对上述小区的下行 用户编码调制信号以及上述其他小区的下行用户编码调制信号进行多输入多 输出联合预编码处理,并将多输入多输出联合预编处理后的信号以及上述小区 的下行控制信道信号、 参考信号、 同步信号、 广播信道信号分别映射到相应的 子载波上, 并进行 IFFT逆变换处理, 获得下行基带信号并发送出去。
本发明实施例中,数据信道编码调制模块 10011在接收到小区用户发送的 下行数据流后,将小区用户的下行数据流进行信道编码和调制, 获得小区下行 用户编码调制信号; 交换单元将该小区的参考信号、 同步信号、 广播信道信号 以及下行用户编码调制信号和下行控制信道信号交换至对应的 RRU, 由对应 的 RRU将上述下行用户编码调制信号进行 MIMO预编码处理,并将参考信号、 同步信号、 广播信道信号以及 MIMO预编码处理后的信号、 下行控制信道信 号分别映射到相应的子载波上, 并进行 IFFT变换处理获得下行基带信号并发 送出去。本发明实施例中, MIMO预编码、信号映射以及 IFFT变换前移至 RRU 中进行处理, 使得 C-RAN节点与 RRU之间无需传输对应子载波上的信号, 降低了 C-RAN节点与 RRU之间信号传输带宽。
相应地, 本发明实施例中还提供一种 RRU, 用于与 C-RAN节点协作, 实 现上述的上行基带信道生成方法。 请参阅图 11 , 图 11为本发明实施例中提供 的一种 RRU的结构示意图。 如图 11所示, 该 RRU可以包括:
预编码模块 1101 ,用于接收 C-RAN节点交换过来的某一小区的下行用户 编码调制信号和下行控制信道信号,并将该下行用户编码调制信号进行 MIMO 预编码处理;
其中, 上述某一小区的下行用户编码调制信号是 C-RAN节点通过接收某 一小区的用户发送的下行数据流,并将该下行数据流进行信道编码和调制处理 后得到的; 而上述的下行控制信道信号是 C-RAN节点根据物理层控制信息生 成的。
资源映射模块 1102,用于接收 C-RAN节点交换过来的某一小区的参考信 号、 同步信号以及广播信道信号, 并将上述的参考信号、 同步信号、 广播信道 信号以及上述的预编码模块 1101进行 MIMO预编码处理后的信号、 下行控制 信道信号分别映射到相应的子载波上;
变换模块 1103, 用于对映射到子载波上的信号进行 IFFT变换处理, 获得 下行基带信号;
收发信机模块 1104, 用于将上述的下行基带信号发送出去。
一个实施例中,资源映射模块 1102具体可以用于接收 C-RAN节点交换过 来的某一小区的参考信号、 同步信号以及广播信道信号, 并根据预先设定的映 射规则将某一小区的参考信号、 同步信号、广播信道信号分别映射到相应的子 载波上, 其中, 该映射规则用于指示上述的参考信号、 同步信号、 广播信道信 号分别对应的子载波; 以及根据 C-RAN节点发送的传输资源指示信息将预编 码模块 1101进行 MIMO预编码处理后的下行用户编码调制信号和下行控制信 道信号分别映射到相应的子载波上, 其中, 该传输资源指示信息携带在上述的 下行控制信道信号中, 用于指示 MIMO预编码处理后的信号和下行控制信道 信号分别对应的子载波。
本发明实施例中,当上述的某一小区与其他小区在物理层上采用基于网络 多输入多输出的协同多点处理时,作为一个可选的实施方式,预编码模块 1101 还用于接收无线接入网节点交换过来的其他小区的下行用户编码调制信号,并 将其他小区的下行用户编码调制信号以及上述某一小区的下行用户编码调制 信号进行多输入多输出联合预编码处理;
相应地, 上述的资源映射模块 1102还用于将多输入多输出联合预编处理 后的信号以及上述某一小区的下行控制信道信号、 参考信号、 同步信号、 广播 信道信号分别映射到相应的子载波上;
作为一个可选的实施方式, 上述的资源映射模块 1102也可以根据上述某 一小区的下行控制信道信号中携带的传输资源指示信息,将多输入多输出联合 预编处理后的信号以及上述某一小区的下行控制信道信号分别映射到相应的 子载波上, 本发明实施例不作限定。
相应地, 上述的变换模块 1103, 用于对映射到子载波上的信号进行 IFFT 变换处理, 获得下行基带信号;
相应地, 收发信机模块 1104, 用于将上述的下行基带信号发送出去。 本发明实施例中,预编码模块 1101将 C-RAN节点交换过来的某一小区的 下行用户编码调制信号进行 MIMO预编码处理,资源映射模块 1102将 C-RAN 节点交换过来的某一小区的参考信号、 同步信号、 广播信道信号以及 MIMO 预编码处理后的信号、某一小区的下行控制信道信号分别映射到相应的子载波 上,由变换模块 1103进行 IFFT变换处理获得下行基带信号并通过收发信机模 块 1104发送出去。 本发明实施例中, MIMO预编码、信号映射以及 IFFT变换 处理前移至 RRU中进行处理, 使得 C-RAN节点与 RRU之间无需传输对应子 载波上的信号, 降低了 C-RAN节点与 RRU之间信号传输带宽。
相应地, 本发明实施例中还提供一种下行基带信号生成系统, 用于实现上 述的上行基带信道生成方法。 请参阅图 12, 图 12为本发明实施例中提供的一 种下行基带信号生成系统的结构示意图。 如图 12所示, 该系统可以包括:
C-RAN节点 1201和 RRU1202;
其中,该 C-RAN节点 1201用于将某一小区用户的下行数据流进行信道编 码和调制处理, 获得某一小区的下行用户编码调制信号, 以及根据物理层控制 信息生成小区的下行控制信道信号, 并将某一小区的参考信号、 同步信号、 广 播信道信号以及下行用户编码调制信号和下行控制信道信号交换至 RRU 1202;
RRU1202, 用于接收 C-RAN节点 1201交换过来的某一小区的下行用户 编码调制信号和下行控制信道信号,并将某一小区下行用户编码调制信号进行 MIMO预编码处理, 以及接收 C-RAN节点 1201交换过来的某一小区参考信 号、 同步信号以及广播信道信号, 并将某一小区参考信号、 同步信号、 广播信 道信号以及 MIMO预编码处理后的信号、 某一小区下行控制信道信号分别映 射到相应的子载波上,并进行 IFFT变换处理,获得下行基带信号并发送出去。 本发明实施例中,当上述的某一小区与其他小区在物理层上采用基于网络 多输入多输出的协同多点处理时, 作为一个可选的实施方式, RRU1202还用 于接收 C-RAN节点 1201交换过来的其他小区的下行用户编码调制信号,并将 其他小区的下行用户编码调制信号以及上述某一小区的下行用户编码调制信 号进行多输入多输出联合预编码处理,并将多输入多输出联合预编处理后的信 号以及上述某一小区的下行控制信道信号、 参考信号、 同步信号、 广播信道信 号分别映射到相应的子载波上, 并进行 IFFT逆变换处理, 获得下行基带信号 并发送出去。
本发明实施例提供的下行基带信号生成系统中, C-RAN节点 1201可以通 过光纤或者光传输网与多个 RRU1202连接, 其中, C-RAN节点 1201的结构 可以和图 10相同, 而每一个 RRU 1202的结构可以和图 11相同, 所以本发明 实施例提供的下行基带信号生成系统还可以如图 13所示。其中, 图 13中的各 个功能模块的作用在上述实施例中已经详细介绍, 本实施例不作复述。
本发明实施例中, C-RAN节点 1201在接收到用户发送的下行数据流后, 将用户的下行数据流进行信道编码和调制, 获得下行用户编码调制信号; 将参 考信号、 同步信号、广播信道信号以及下行用户编码调制信号和下行控制信道 信号交换至对应的 RRU 1202, 由 RRU 1202将下行用户编码调制信号进行 MIMO预编码处理, 并将参考信号、 同步信号、 广播信道信号以及 MIMO预 编码处理后的信号、 下行控制信道信号分别映射到相应的子载波上, 并进行 IFFT变换处理获得下行基带信号并发送出去。 本发明实施例中, MIMO预编 码、信号映射以及 IFFT变换处理前移至 RRU 1202中进行,使得 C-RAN节点 1201与 RRU 1202之间无需传输对应子载波上的信号, 降低了 C-RAN节点与 RRU之间信号传输带宽。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: U盘、只读存储器( Read-Only Memory , ROM )、随机存取器( Random Access Memory, RAM ), 磁碟或者光盘等各种可以存储程序代码的介质。 以上对本发明实施例所提供的一种上行基带信号生成方法及相关设备、系 阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时, 对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围 上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种下行基带信号生成方法, 其特征在于, 包括:
对小区用户的下行数据流进行信道编码和调制处理,获得所述小区的下行 用户编码调制信号;
根据物理层控制信息生成下行控制信道信号;
将参考信号、 同步信号、广播信道信号以及所述下行用户编码调制信号和 所述下行控制信道信号交换至对应的射频单元,以使所述射频单元将所述下行 用户编码调制信号进行多输入多输出预编码处理,并将多输入多输出预编处理 后的信号以及所述下行控制信道信号、 参考信号、 同步信号、 广播信道信号分 别映射到相应的子载波上, 进行快速傅里叶逆变换处理, 获得下行基带信号并 发送出去。
2、 根据权利要求 1所述的下行基带信号生成方法, 其特征在于, 所述将 参考信号、 同步信号、广播信道信号以及所述下行用户编码调制信号和所述下 行控制信道信号交换至对应的射频单元具体为:
根据预先设置的交换配置列表将参考信号、 同步信号、广播信道信号以及 所述下行用户编码调制信号和所述下行控制信道信号交换至对应的射频单元; 其中,所述交换配置列表用于记录用户信息与射频单元信息之间的对应关 系。
3、 根据权利要求 1所述的下行基带信号生成方法, 其特征在于, 所述下 行控制信道信号携带有传输资源指示信息,所述传输资源指示信息用于指示所 述多输入多输出预编处理后的信号和所述下行控制信道信号分别对应的子载 波, 以使所述射频单元根据所述传输资源指示信息的指示,将所述多输入多输 出预编处理后的信号以及所述下行控制信道信号分别映射到相应的子载波上。
4、权利要求 1或 2或 3所述的下行基带信号生成方法, 其特征在于, 若 所述小区与其他小区在物理层上采用基于网络多输入多输出的协同多点处理 时, 所述方法还包括:
将所述其他小区的下行用户编码调制信号交换至所述对应的射频单元,以 使所述对应的射频单元对所述小区的下行用户编码调制信号以及所述其他小 区的下行用户编码调制信号进行多输入多输出联合预编码处理,并将多输入多 输出联合预编处理后的信号以及所述下行控制信道信号、参考信号、同步信号、 广播信道信号分别映射到相应的子载波上, 并进行快速傅里叶逆变换处理, 获 得下行基带信号并发送出去; 其中, 所述传输资源指示信息还用于指示所述多 输入多输出联合预编处理后的信号和所述下行控制信道信号分别对应的子载 波, 以使所述射频单元根据所述传输资源指示信息的指示,将所述多输入多输 出联合预编处理后的信号以及所述下行控制信道信号分别映射到相应的子载 波上。
5、 一种下行基带信号生成方法, 其特征在于, 包括:
接收无线接入网节点交换过来的某一小区的下行用户编码调制信号和下 行控制信道信号; 其中, 所述下行用户编码调制信号是所述无线接入网节点通 过将所述某一小区的用户的下行数据流进行信道编码和调制处理后得到的;所 述下行控制信道信号是所述无线接入网节点根据物理层控制信息生成的;
将所述下行用户编码调制信号进行多输入多输出预编码处理;
接收所述无线接入网节点交换过来的参考信号、同步信号以及广播信道信 号;
将所述多输入多输出预编处理后的信号以及所述下行控制信道信号、参考 信号、 同步信号、 广播信道信号分别映射到相应的子载波上, 进行快速傅里叶 逆变换处理, 获得下行基带信号并发送出去。
6、 根据权利要求 5所述的下行基带信号生成方法, 其特征在于, 所述将 所述多输入多输出预编处理后的信号以及所述下行控制信道信号、 参考信号、 同步信号、 广播信道信号分别映射到相应的子载波上具体为:
根据所述无线接入网节点发送的传输资源指示信息将所述多输入多输出 预编处理后的信号和所述下行控制信道信号分别映射到相应的子载波上,所述 传输资源指示信息用于指示所述多输入多输出预编处理后的信号和所述下行 控制信道信号分别对应的子载波; 其中, 所述传输资源指示信息携带在所述下 行控制信道信号中;
根据预先设定的映射规则将所述参考信号、 同步信号、广播信道信号分别 映射到相应的子载波上, 所述映射规则用于指示所述参考信号、 同步信号、 广 播信道信号分别对应的子载波。
7、 权利要求 5或 6所述的下行基带信号生成方法, 其特征在于, 接收无线接入网节点交换过来的其他小区的下行用户编码调制信号; 其 中,所述某一小区与所述其他小区在物理层上采用基于网络多输入多输出的协 同多点处理;
对所述某一小区的下行用户编码调制信号以及所述其他小区的下行用户 编码调制信号进行多输入多输出联合预编码处理,并将所述多输入多输出联合 预编处理后的信号以及所述下行控制信道信号、 参考信号、 同步信号、 广播信 道信号分别映射到相应的子载波上, 并进行快速傅里叶逆变换处理, 获得下行 基带信号并发送出去。
8、 一种无线接入网络节点, 其特征在于, 包括:
至少一个基带处理单元和交换单元;
其中, 所述基带处理单元包括:
数据信道编码调制模块,用于将小区用户的下行数据流进行信道编码和调 制处理, 获得所述小区的下行用户编码调制信号并输出至所述交换单元; 下行控制信道生成模块,用于根据物理层控制信息生成下行控制信道信号 并输出至所述交换单元;
所述交换单元, 用于将所述小区的参考信号、 同步信号、 广播信道信号以 及所述下行用户编码调制信号和所述下行控制信道信号交换至对应的射频单 元,以使所述射频单元将所述下行用户编码调制信号进行多输入多输出预编码 处理, 并将多输入多输出预编处理后的信号以及所述下行控制信道信号、参考 信号、 同步信号、 广播信道信号分别映射到相应的子载波上, 并进行快速傅里 叶逆变换处理, 获得下行基带信号并发送出去。
9、 根据权利要求 8所述的无线接入网络节点, 其特征在于,
所述交换单元, 具体用于根据预先设置的交换配置列表将参考信号、 同步 信号、广播信道信号以及所述下行用户编码调制信号和所述下行控制信道信号 交换至对应的射频单元; 其中, 所述交换配置列表用于记录用户信息与射频单 元信息之间的对应关系。
10、 权利要求 8或 9所述的无线接入网络节点, 其特征在于, 所述交换单元,还用于将其他小区的下行用户编码调制信号交换至所述对 应的射频单元,以使所述对应的射频单元对所述小区的下行用户编码调制信号 以及所述其他小区的下行用户编码调制信号进行多输入多输出联合预编码处 理, 并将所述多输入多输出联合预编处理后的信号以及所述下行控制信道信 号、 参考信号、 同步信号、 广播信道信号分别映射到相应的子载波上, 并进行 快速傅里叶逆变换处理, 获得下行基带信号并发送出去;
其中,所述小区与其他小区在物理层上采用基于网络多输入多输出的协同 多点处理。
11、 一种射频单元, 其特征在于, 包括:
预编码模块,用于接收无线接入网节点交换过来的某一小区的下行用户编 码调制信号和下行控制信道信号,并将所述下行用户编码调制信号进行多输入 多输出预编码处理; 其中, 所述下行用户编码调制信号是所述无线接入网节点 通过将所述某一小区的用户的下行数据流进行信道编码和调制处理后得到的; 所述下行控制信道信号是所述无线接入网节点根据物理层控制信息生成的; 资源映射模块,用于接收所述无线接入网节点交换过来的所述某一小区的 参考信号、 同步信号以及广播信道信号, 并将所述多输入多输出预编处理后的 信号以及所述下行控制信道信号、 参考信号、 同步信号、 广播信道信号分别映 射到相应的子载波上;
变换模块, 用于对映射到所述子载波上的信号进行快速傅里叶逆变换处 理, 获得下行基带信号;
收发信机模块, 用于将所述下行基带信号发送出去。
12、 根据权利要求 11所述的射频单元, 其特征在于,
所述资源映射模块,具体用于接收所述无线接入网节点交换过来的所述某 一小区的参考信号、 同步信号以及广播信道信号, 并根据预先设定的映射规则 将所述参考信号、同步信号、广播信道信号分别映射到相应的子载波上,其中, 所述映射规则用于指示所述参考信号、 同步信号、广播信道信号分别对应的子 载波;以及根据所述无线接入网节点发送的传输资源指示信息将所述预编码模 块进行多输入多输出预编码处理后的信号和所述下行控制信道信号分别映射 到相应的子载波上, 其中, 所述传输资源指示信息携带在所述下行控制信道信 号中,用于指示所述多输入多输出预编处理后的信号和所述下行控制信道信号 分别对应的子载波。
13、 根据权利要求 11所述的射频单元, 其特征在于,
所述预编码模块,还用于接收所述无线接入网节点交换过来的其他小区的 下行用户编码调制信号,并将所述其他小区的下行用户编码调制信号以及所述 某一小区的下行用户编码调制信号进行多输入多输出联合预编码处理; 其中, 若所述某一小区与所述其他小区在物理层上采用基于网络多输入多输出的协 同多点处理;
所述资源映射模块,还用于将所述多输入多输出联合预编处理后的信号以 及所述下行控制信道信号、 参考信号、 同步信号、 广播信道信号分别映射到相 应的子载波上。
14、 一种下行基带信号生成系统, 其特征在于, 包括如权利要求 8~9任意 一项所述的无线接入网络节点以及包括如权利要求 11~13 任意一项所述的射 频单元; 其中, 所述无线接入网络节点与所述射频单元之间通过光纤或光传输 网络连接。
15、 根据权利要求 14所述的下行基带信号生成系统, 其特征在于, 所述 系统还包括如权利要求 10所述的无线接入网络节点。
PCT/CN2011/078894 2010-12-21 2011-08-25 一种下行基带信号生成方法及相关设备、系统 WO2012083718A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2012157077/08A RU2542940C2 (ru) 2010-12-21 2011-08-25 Способ генерации модулирующего сигнала в нисходящей линии, соответствующие устройство и система
BR112012033705-0A BR112012033705B1 (pt) 2010-12-21 2011-08-25 Método de geração de sinal de banda base de enlace descendente, nó de rede de acesso por rádio de nuvem, unidade remota de rádio de rede de acesso por rádio de nuvem e sistema de geração de sinal de banda base de enlace descendente
EP11851653.3A EP2574138B1 (en) 2010-12-21 2011-08-25 Method for generating downlink baseband signal and related device
US13/711,541 US8705483B2 (en) 2010-12-21 2012-12-11 Downlink baseband signal generating method, relevant device and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010598899.3 2010-12-21
CN201010598899.3A CN102546080B (zh) 2010-12-21 2010-12-21 一种下行基带信号生成方法及相关设备、系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/711,541 Continuation US8705483B2 (en) 2010-12-21 2012-12-11 Downlink baseband signal generating method, relevant device and system

Publications (1)

Publication Number Publication Date
WO2012083718A1 true WO2012083718A1 (zh) 2012-06-28

Family

ID=46313110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078894 WO2012083718A1 (zh) 2010-12-21 2011-08-25 一种下行基带信号生成方法及相关设备、系统

Country Status (6)

Country Link
US (1) US8705483B2 (zh)
EP (1) EP2574138B1 (zh)
CN (1) CN102546080B (zh)
BR (1) BR112012033705B1 (zh)
RU (1) RU2542940C2 (zh)
WO (1) WO2012083718A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2863567A4 (en) * 2012-07-24 2015-06-03 Huawei Tech Co Ltd BASEBAND PROCESSING DEVICE FOR A WIRELESS COMMUNICATION SYSTEM AND WIRELESS COMMUNICATION SYSTEM

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10425135B2 (en) 2001-04-26 2019-09-24 Genghiscomm Holdings, LLC Coordinated multipoint systems
US10355720B2 (en) 2001-04-26 2019-07-16 Genghiscomm Holdings, LLC Distributed software-defined radio
US9893774B2 (en) * 2001-04-26 2018-02-13 Genghiscomm Holdings, LLC Cloud radio access network
WO2013123670A1 (en) * 2012-02-24 2013-08-29 Guangjie Li Cooperative radio access network with centralized base station baseband unit (bbu) processing pool
WO2013151280A1 (ko) * 2012-04-03 2013-10-10 엘지전자 주식회사 데이터 전송 방법 및 장치
CN103427971B (zh) * 2012-05-25 2016-09-07 华为技术有限公司 上行数据传输方法、装置及系统
CN103546412A (zh) * 2012-07-11 2014-01-29 华为技术有限公司 一种数据传输方法和系统
US9337973B2 (en) 2012-09-11 2016-05-10 Industrial Technology Research Institute Method of cooperative MIMO wireless communication and base station using the same
WO2014094276A1 (zh) * 2012-12-20 2014-06-26 华为技术有限公司 交互云化的无线接入网边缘区域用户的数据的方法及装置
EP2936698B1 (en) 2012-12-21 2018-11-28 Huawei Technologies Co., Ltd. Method and apparatus for providing generic hierarchical precoding codebooks
US9936470B2 (en) 2013-02-07 2018-04-03 Commscope Technologies Llc Radio access networks
US9380466B2 (en) 2013-02-07 2016-06-28 Commscope Technologies Llc Radio access networks
US9414399B2 (en) 2013-02-07 2016-08-09 Commscope Technologies Llc Radio access networks
FR3007617A1 (fr) * 2013-06-19 2014-12-26 France Telecom Dispositifs de fourniture d'informations de service pour une liaison par faisceau microondes
EP3050397B1 (en) 2013-09-24 2019-04-17 Andrew Wireless Systems GmbH Distributed processing in a centralized radio access network
JP6571072B2 (ja) * 2013-10-11 2019-09-04 エルジー エレクトロニクス インコーポレイティド クラウドran環境でrrhの電源を制御する方法
US9468000B2 (en) 2013-11-01 2016-10-11 Qualcomm Incorporated Method and apparatus for optimizing cloud based radio access network
US9806926B2 (en) * 2013-11-04 2017-10-31 Samsung Electronics Co., Ltd. Multistage beamforming of multiple-antenna communication system
CN104684099B (zh) * 2013-11-28 2018-05-22 中国科学院声学研究所 一种基于基带集中处理架构的动态资源分配方法及系统
JP6437555B2 (ja) * 2013-12-04 2018-12-12 エルジー エレクトロニクス インコーポレイティド クラウド無線通信システムにおけるシステム情報送受信方法及びそのための装置
US20170250927A1 (en) * 2013-12-23 2017-08-31 Dali Systems Co. Ltd. Virtual radio access network using software-defined network of remotes and digital multiplexing switches
KR20160110483A (ko) * 2014-01-22 2016-09-21 후아웨이 테크놀러지 컴퍼니 리미티드 정보 처리 장치, 네트워크 노드, 및 정보 처리 방법
JP6356819B2 (ja) * 2014-01-29 2018-07-11 華為技術有限公司Huawei Technologies Co.,Ltd. アップリンクアクセス方法、装置、およびシステム
WO2015126730A1 (en) * 2014-02-18 2015-08-27 Commscope Technologies Llc Distributed antenna system measurement receiver
CN104853437B (zh) * 2014-02-19 2019-02-05 中国移动通信集团公司 物理下行共享信道数据传送方法及基带处理单元
CN104852756B (zh) * 2014-02-19 2018-09-04 中国移动通信集团公司 一种天线映射方法、装置及数字前端
EP3143830A4 (en) * 2014-05-12 2018-01-03 Intel Corporation C-ran front-end preprocessing and signaling unit
EP3136669A4 (en) * 2014-05-12 2017-07-12 Huawei Technologies Co. Ltd. Method and device for transmitting data between base band unit (bbu) and remote radio unit (rru)
WO2015191530A2 (en) 2014-06-09 2015-12-17 Airvana Lp Radio access networks
EP3158823B1 (en) * 2014-06-23 2020-04-08 Telecom Italia S.p.A. Fronthaul load dynamic reduction in centralized radio access networks
US10039099B2 (en) 2014-06-30 2018-07-31 Nec Corporation Wireless communication system and wireless communication method
CN105900526B (zh) * 2014-12-12 2019-05-28 华为技术有限公司 装置、通信系统及基站协同管理方法
US10231232B2 (en) * 2014-12-19 2019-03-12 Intel IP Corporation Remote radio unit and baseband unit for asymetric radio area network channel processing
WO2016145371A2 (en) 2015-03-11 2016-09-15 Phluido, Inc. Distributed radio access network with adaptive fronthaul
EP3308572B1 (en) 2015-06-12 2020-08-05 Telefonaktiebolaget LM Ericsson (publ) A system and method for a radio access network
CN107710692B (zh) * 2015-06-24 2020-08-25 日本电信电话株式会社 无线电网络系统
US10044417B2 (en) * 2015-07-07 2018-08-07 Huawei Technologies Co., Ltd. Systems and methods for RRU control messaging architecture for massive MIMO systems
US9775045B2 (en) 2015-09-11 2017-09-26 Intel IP Corporation Slicing architecture for wireless communication
CN106612136A (zh) * 2015-10-20 2017-05-03 电信科学技术研究院 一种下行数据传输方法、设备及系统
US10608734B2 (en) 2015-10-22 2020-03-31 Phluido, Inc. Virtualization and orchestration of a radio access network
US10785791B1 (en) 2015-12-07 2020-09-22 Commscope Technologies Llc Controlling data transmission in radio access networks
CN107087306A (zh) * 2016-02-12 2017-08-22 台扬科技股份有限公司 用于无线信源调度的方法
CN108141479B (zh) * 2016-03-29 2020-09-22 海南乐事科技发展有限公司 一种云无线接入网系统、数据处理方法及装置
JP6483920B2 (ja) * 2016-04-06 2019-03-13 日本電信電話株式会社 無線通信システム及び通信方法
EP3442289A4 (en) * 2016-04-08 2019-11-13 NTT DoCoMo, Inc. WIRELESS BASE STATION AND COMMUNICATION CONTROL METHOD
EP3859987A1 (en) * 2016-04-11 2021-08-04 Nippon Telegraph And Telephone Corporation Wireless communication system, central unit equipment, distributed unit equipment, communication method of central unit equipment, and communication method of distributed unit equipment
WO2018017468A1 (en) 2016-07-18 2018-01-25 Phluido, Inc. Synchronization of radio units in radio access networks
US10355801B2 (en) * 2016-09-15 2019-07-16 Futurewei Technologies, Inc. Unified mobile and TDM-PON uplink MAC scheduling for mobile front-haul
WO2018065983A1 (en) * 2016-10-07 2018-04-12 Corning Optical Communications Wireless Ltd Digital wireless distributed communications system (wdcs) employing a centralized spectrum chunk construction of communications channels for distribution to remote units to reduce transmission data rates
CN109150448B (zh) * 2017-06-16 2023-04-18 华为技术有限公司 发送信号和接收信号的方法、网络设备和用户设备
CN116318589A (zh) 2017-10-03 2023-06-23 康普技术有限责任公司 C-ran中的动态下行链路重用
CN109672496B (zh) * 2017-10-16 2021-08-20 上海华为技术有限公司 一种数据处理的方法及装置
CN109714070B (zh) * 2017-10-26 2020-09-18 上海诺基亚贝尔股份有限公司 信号处理装置、方法、网络设备及计算机可读存储介质
KR102427661B1 (ko) 2017-12-18 2022-08-01 삼성전자주식회사 클라우드 랜 환경에서 상향링크 전송 및 하향링크 전송을 시분할 방식으로 처리하는 원격 무선 유닛 및 그 동작 방법
WO2019183020A1 (en) * 2018-03-19 2019-09-26 Mavenir Networks, Inc. System and method for reduction in fronthaul interface bandwidth for cloud ran
EP3791690A4 (en) * 2018-05-07 2022-01-19 Mavenir Networks, Inc. METHOD AND APPARATUS FOR FRONT LINK COMPRESSION IN A CLOUD RAN
US11304213B2 (en) 2018-05-16 2022-04-12 Commscope Technologies Llc Dynamic uplink reuse in a C-RAN
CN112005598B (zh) 2018-05-16 2023-06-09 康普技术有限责任公司 用于c-ran中的高效前传的下行链路多播
EP3804419A4 (en) 2018-06-08 2022-02-23 CommScope Technologies LLC AUTOMATIC TRANSMIT POWER CONTROL FOR RADIO POINTS IN A CENTRALIZED RADIO ACCESS NETWORK THAT PROVIDE PRIMARILY WIRELESS SERVICE TO USERS LOCATED IN AN EVENT ZONE OF A VENUE
WO2020051146A1 (en) 2018-09-04 2020-03-12 Commscope Technologies Llc Front-haul rate reduction for use in a centralized radio access network
US10965786B2 (en) * 2018-10-31 2021-03-30 At&T Intellectual Property I, L.P. Adaptive fixed point mapping for uplink and downlink fronthaul
US11502771B2 (en) * 2019-05-14 2022-11-15 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
EP4042607A1 (en) * 2019-10-10 2022-08-17 Infinera Corporation Network switches systems for optical communications networks
CN113055067B (zh) * 2019-12-27 2024-04-26 中兴通讯股份有限公司 下行信号处理方法、装置及基站
WO2022046980A2 (en) * 2020-08-28 2022-03-03 Qualcomm Incorporated Open radio access network message configurations
CN112866159B (zh) * 2021-01-06 2022-06-21 紫光展锐(重庆)科技有限公司 一种基带信号生成方法及相关装置
CN112996008B (zh) * 2021-04-30 2021-07-30 成都爱瑞无线科技有限公司 用于无线通信的系统、装置、方法及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136811A (zh) * 2007-09-28 2008-03-05 中兴通讯股份有限公司 Ofdm发射信号处理装置、方法及射频远端单元
CN101557597A (zh) * 2009-05-21 2009-10-14 华为技术有限公司 一种多模汇聚、合路的方法及装置
CN101730307A (zh) * 2008-10-24 2010-06-09 中兴通讯股份有限公司 一种射频拉远数据传输装置及传输方法
CN101868054A (zh) * 2010-05-07 2010-10-20 武汉邮电科学研究院 一种改进型分布式基站架构及实现方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7965842B2 (en) * 2002-06-28 2011-06-21 Wavelink Corporation System and method for detecting unauthorized wireless access points
KR100876757B1 (ko) * 2003-10-31 2009-01-07 삼성전자주식회사 통신 시스템에서 서브 채널 구성 시스템 및 방법
CN100426897C (zh) 2005-01-12 2008-10-15 华为技术有限公司 分体式基站系统及其组网方法和基带单元
EP1856827B1 (en) 2005-03-01 2009-04-29 Elektrobit System Test OY A method, device arrangement, transmitter unit and receiver unit for generating data characterising mimo environment
EP2030341B1 (en) * 2006-05-23 2017-03-29 LG Electronics Inc. Apparatus for processing received signal, method thereof, and method for selecting mapping rule
CN100576836C (zh) * 2006-09-15 2009-12-30 上海贝尔阿尔卡特股份有限公司 多入多出无线网络中对信号进行子载波映射的方法及装置
KR101489773B1 (ko) * 2007-02-28 2015-02-04 가부시키가이샤 엔티티 도코모 이동통신 시스템, 기지국 장치 및 방법
BRPI0808176A2 (pt) * 2007-03-01 2014-08-05 Ntt Docomo Inc Aparelho da estação de base e método de controle de comunicação
US8155233B1 (en) * 2007-09-11 2012-04-10 Marvell International Ltd. MIMO decoding in the presence of various interfering sources
CN101527936B (zh) * 2008-03-04 2012-06-06 中兴通讯股份有限公司 分层异构无线接入网系统及分层异构无线接入网实现方法
WO2009151355A1 (en) * 2008-06-10 2009-12-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for performing handover in a wireless communication system
US8406171B2 (en) * 2008-08-01 2013-03-26 Texas Instruments Incorporated Network MIMO reporting, control signaling and transmission
CN101753181B (zh) * 2008-12-12 2015-04-29 电信科学技术研究院 一种数据传输方法、系统及装置
KR101343306B1 (ko) * 2009-03-12 2014-01-14 알까뗄 루슨트 협력 mimo에서 다운링크 서비스 데이터에 대한 콘텐츠 동기화를 수행하는 방법 및 그 장치
US9253651B2 (en) * 2009-05-01 2016-02-02 Qualcom Incorporated Transmission and detection of overhead channels and signals in a wireless network
EP2490345B1 (en) * 2009-10-14 2019-04-17 LG Electronics Inc. Method and apparatus for mode switching between a multi-cell coordinated communication mode and a single-cell mimo communication mode
CN101695192A (zh) * 2009-10-22 2010-04-14 中兴通讯股份有限公司 实现基带处理单元与射频单元之间资源分配的方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136811A (zh) * 2007-09-28 2008-03-05 中兴通讯股份有限公司 Ofdm发射信号处理装置、方法及射频远端单元
CN101730307A (zh) * 2008-10-24 2010-06-09 中兴通讯股份有限公司 一种射频拉远数据传输装置及传输方法
CN101557597A (zh) * 2009-05-21 2009-10-14 华为技术有限公司 一种多模汇聚、合路的方法及装置
CN101868054A (zh) * 2010-05-07 2010-10-20 武汉邮电科学研究院 一种改进型分布式基站架构及实现方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2574138A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2863567A4 (en) * 2012-07-24 2015-06-03 Huawei Tech Co Ltd BASEBAND PROCESSING DEVICE FOR A WIRELESS COMMUNICATION SYSTEM AND WIRELESS COMMUNICATION SYSTEM
US9602182B2 (en) 2012-07-24 2017-03-21 Huawei Technologies Co., Ltd. Baseband processing apparatus in radio communication system and radio communication

Also Published As

Publication number Publication date
RU2012157077A (ru) 2014-06-27
CN102546080B (zh) 2014-06-25
BR112012033705B1 (pt) 2021-12-07
EP2574138A4 (en) 2013-09-04
US8705483B2 (en) 2014-04-22
EP2574138B1 (en) 2018-08-08
EP2574138A1 (en) 2013-03-27
RU2542940C2 (ru) 2015-02-27
US20130100907A1 (en) 2013-04-25
BR112012033705A2 (pt) 2016-12-06
CN102546080A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2012083718A1 (zh) 一种下行基带信号生成方法及相关设备、系统
US20130279452A1 (en) Frequency domain transmission method and apparatus
CN110249658B (zh) 无线通信系统中操作分组数据会聚协议层处理服务质量的方法和装置
US10334478B2 (en) Method for reducing fronthaul load in centralized radio access networks (C-RAN)
JP5469250B2 (ja) 分散アンテナシステム、および同システムにおける無線通信方法
KR101780495B1 (ko) 무선 통신 시스템에서 리소스 블록을 번들링하기 위한 시스템 및 방법
JP6121124B2 (ja) 無線通信システム、無線通信方法、ユーザ端末及び無線基地局
WO2019029329A1 (zh) 一种dmrs指示和接收方法,发射端和接收端
US20200344017A1 (en) Data transmission indication method, access point and terminal
US20130083768A1 (en) Uplink baseband signal compression method, decompression method, device and system
KR20100022917A (ko) 상향링크 papr을 줄이기 위한 프리코딩 방법 및 이를 위한 장치
WO2014076004A2 (en) Method and system for lossless compression and decompression of baseband digital signals in distributed lte-advanced radio access networks
WO2014015660A1 (zh) 无线通信系统的基带处理装置和无线通信系统
WO2011126203A1 (en) Transmitter having multiple antennas
KR101382420B1 (ko) 무선 네트워크에서 mimo를 수행하는 방법 및 이를 위한 장치
US20230217217A1 (en) Method and device in nodes used for wireless communication
CN111431680B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
JP7078721B2 (ja) ユーザ装置、無線通信方法、基地局及びシステム
CN112769532A (zh) 一种被用于无线通信的节点中的方法和装置
CN113497686B (zh) 一种被用于无线通信的节点中的方法和装置
CN113395769B (zh) 一种被用于无线通信的节点中的方法和装置
CN112688765B (zh) 一种被用于无线通信的节点中的方法和装置
JP2011259335A (ja) 移動通信システム、基地局装置、移動局装置、および、通信方法
Miyamoto et al. Low latency symbol level transmission scheme for mobile fronthaul with intra PHY split RAN architecture
TW202347991A (zh) 多發送接收點操作中作為通道狀態資訊回饋的推薦預編碼器特性的分解

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3802/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011851653

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012157077

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012033705

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012033705

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121228