WO2012083476A1 - Tratamiento de aguas - Google Patents

Tratamiento de aguas Download PDF

Info

Publication number
WO2012083476A1
WO2012083476A1 PCT/CL2010/000053 CL2010000053W WO2012083476A1 WO 2012083476 A1 WO2012083476 A1 WO 2012083476A1 CL 2010000053 W CL2010000053 W CL 2010000053W WO 2012083476 A1 WO2012083476 A1 WO 2012083476A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
minimum
reactor
water
volume
Prior art date
Application number
PCT/CL2010/000053
Other languages
English (en)
French (fr)
Inventor
Edmundo Ganter Parga
Cristóbal GANTER HORST
Original Assignee
Edmundo Ganter Parga
Ganter Horst Cristobal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edmundo Ganter Parga, Ganter Horst Cristobal filed Critical Edmundo Ganter Parga
Priority to PCT/CL2010/000053 priority Critical patent/WO2012083476A1/es
Publication of WO2012083476A1 publication Critical patent/WO2012083476A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1263Sequencing batch reactors [SBR]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a process for the treatment of domestic sewage, which uses the Batch Reactor Sequential System (SBR).
  • SBR Batch Reactor Sequential System
  • the water treatment plants that use the SBR system consist of one or more ponds provided with aeration means, a fixed minimum water level, and a maximum, variable water level. Below the minimum level, the reactor in a state of rest (without aeration) has two perfectly separated phases, in the background the sedimented biological sludge, determining a mud height, and above it, a clarified water.
  • the area between the maximum level of mud (mud height) and the minimum level of operation of the reactor is called the interface.
  • the basic concept can be defined as an SBR system operated on a variable minimum level mode, generating a new definition, that of the minimum-minimum level.
  • the wastewater can continue to be fed into the system, in the same location while the last cell is temporarily closed.
  • the mixing aeration device is diverted.
  • a transfer pump is diverted there to transfer the suspended solids of the mixing liquor and the partially treated residual water, mixed back to a pretreatment cell, and at the end of the transfer step the mixing aeration device is deflects until the housing of the biological solids is allowed again before the discharge of the treated wastewater on a continuous basis.
  • the suspended solids of the mixed liquor flow in the same general direction as the residual water, but always receive at least partial back transfer to a previous treatment cell, housing and separating the remaining solids from the waste water before the discharge of the treated wastewater from the last cell.
  • continuous discharges and constant level operation are included essentially completely through the use of two discharge cells alternately and treatment of soluble and particulate contaminants as well as biological removal of nitrogen and phosphorus.
  • EP 0834474 (Holm) dated June 13, 2001, describes a procedure for the discontinuous purification of wastewater according to the activated sludge procedure, where the cycle strategy for SBR reactors foresees at least two internal cycles. From a storage tank, the first internal filling with supernatant is preferably carried out in order to obtain a biological P redisolution. The last internal fillings are made with the sediment, preferably in order for denitrification to occur.
  • This procedure is characterized in that: residual water from an intermediate tank, which is used for the fractionation of raw water and is equipped with a circulation device, is transported to the less to an SBR reactor with at least two internal cycles; during the filling phase of the first or the first internal cycles, a previously treated wastewater is formed from the intermediate tank to the SBR reactor, which forms a poorly charged excess; at least during the last filling phase of the total cycle an essentially smaller amount of residual water concentrated essentially as sediment is transported from the intermediate tank to the SBR reactor; when the circulation is stopped, pre-purified wastewater is extracted from the upper zone of the intermediate pond; When the circulation is in progress, the concentrated residual water tank is taken from the intermediate tank, a high sediment content is dragged, or concentrated residual water is obtained by taking residual water from the bottom zone of the intermediate tank, and with it, sediment is transported almost exclusively ( eventually along with a certain amount of leftover); and the amount of nitrate to be denitrified directly after the first or penultimate cycle is calculated directly or indirectly and, based on this,
  • None of the prior art background refers to the fact that when working with SBR systems, the problem is that the minimum level, determined by the level at which the minimum reactor volume has a pre-established design concentration (by design) of volatile suspended solids (mainly referred to biomass) of mixed liquor (SSVLM, homogeneous mixture of water and volatile suspended solids), is well above the level of the level of sedimented sludge with more than one hour of decantation, generating an interface of 1 meter or several times more, which constitutes an unused volume for treatment and that through the present invention is available, thereby making the total civil works even more profitable.
  • SSVLM mixed liquor
  • the present invention solves this problem by means of a process for the treatment of domestic sewage, which uses the Sequential Batch Reactor (SBR) system, where to the traditional process, two concepts have been incorporated that allow at will and automatically, increase the useful volume of treatment of the plant in certain cycles of the day that require it.
  • SBR Sequential Batch Reactor
  • the basic concept can be defined as an SBR system operated on a new modality, the minimum variable level, generating a new definition, the minimum-minimum level.
  • Figure 1 shows a schematic view of the SBR reactor of the prior art.
  • Figure 2 shows a schematic view of the SBR reactor, whose level parameters have been modified according to the process of the present invention.
  • Figure 3 shows a schematic view of a pumping chamber connected to the SBR reactor.
  • Figure 4 shows the graph approximation of the memory to a real value.
  • Figure 5 Shows a detail of the clarification evacuation system.
  • SBR systems consist of one or more ponds (1) provided with aeration systems (2), a minimum water level (3), and a maximum water level (4), variable.
  • aeration systems (2) Under the minimum level, the reactor in a state of rest (without aeration), two perfectly separated phases appear, in the background the sedimented biological sludge (5), determined a mud height (6) and above it, a clarified water (7) .
  • TO The area between the maximum level of mud (mud height) and the minimum level of operation of the reactor is called the interface (8).
  • Cycle is understood as the sequence of filling, aeration, decantation and discharge processes; which is repeated every certain period of time according to the program.
  • Aeration at this stage the wastewater is aerated.
  • Aeration systems can be by submerged diffusers or by surface aerators. In this way the microorganisms are provided with the oxygen necessary for their metabolic activity and therefore for the degradation of the polluting substances. On the other hand, through aeration a complete mixture is achieved.
  • Sedimentation stage at this stage no action is performed, taking place in the SBR reactor.
  • the activated sludge can then decant by sedimentation.
  • a zone of clarified water is formed and in the bottom a layer of mud.
  • Clarified water drain stage at this stage the clarified and biologically purified water is evacuated from the SBR reactor. This stage of partial emptying is carried out by different systems, but always taking care to suck only the upper part of the water, to the minimum level.
  • Sludge discharge stage in this phase the proportion of excess sludge that has formed in each cycle is extracted from the SBR reactor. The excess sludge is aspirated from the bottom of the reactor.
  • the first four stages occur alternately and sequentially, operating in cycles of 6 hours each and subdivided into 3 hours of simultaneous filling and aeration, 1 additional hour of aeration interrupted, 1 hour of decantation and one hour of emptying of treated water.
  • the evacuation of mud is done only once a week.
  • the SBR system is therefore an effluent treatment modality characterized by operating with variable volume, usually it is used with suspended biological culture and it differs from the normal concept of activated sludge of continuous operation, in the following aspects:
  • Waste water inlets and treated water outlets are temporarily decoupled.
  • a portion of the treated water is periodically discharged from each pond, to generate the volume necessary for a new batch of wastewater to be treated.
  • SBR systems are mentioned in the literature as periodic processes, single pond systems (although they can be several in parallel) filling and emptying reactors, or variable volume reactors.
  • the domestic wastewater treatment process operates in an SBR system.
  • SBR single-reliable and low-latency wastewater treatment process
  • the basic concept can be defined as an SBR system operated on a new modality, the minimum variable level (9), generating a new definition, the minimum-minimum level (10).
  • This concept has two variants, namely:
  • Variant I This variant assumes that if it can be anticipated (by statistical data stored in memory) that in the following cycle the amount of water that will enter the SBR reactor, in this case, will exceed the volume between the maximum level and the minimum level, then during the drainage stage, the reactor evacuates effluent to the minimum-minimum level, effectively occupying the normally unusable volume of the interface area, thus allowing to absorb a greater inlet flow to the reactor in a possible cycle peack For the achievement of this purpose the system relies on the following:
  • Variant II This variant operates based on a real data, which is the determination of the existence of a certain volume of water to be treated in the lung pond before the end of the evacuation and acts whenever this volume is equal to or greater than the existing volume in the SBR reactor between the minimum level and the minimum-minimum level. When this situation occurs, the evacuation continues until the minimum-minimum level is reached. In turn for the achievement of this purpose, the system operates as follows:
  • a system for placing level sensors in the lung pond prior to the SBR reactor where if before the end of the evacuation stage of each cycle, the lung pond detects that the stored water equals or exceeds the reactor volume between the minimum level and the minimum-minimum level, then also the evacuation is carried out until reaching the minimum-minimum level.
  • This safety interface can be as small as 0.3 m, and can reach 0.5 m or more depending on the need not to generate an excessive volume that prevents the minimum level for operation in many cycles.
  • the busy control system stores the data of the volume fed by the pump to the SBR system during each cycle, averaging it in turn with the average value of the previous records, all during the seven days of the week, with which obtains the flow rate fed in each cycle and the corresponding maximum operating height.
  • the program will determine if the volume that will probably enter exceeds the volume between the maximum level and the minimum level, and if so, it will automatically evacuate to the minimum-minimum level.
  • Water volume memories are calculated according to the following formula (average): The numerical values with which the program works depend on the flow of the pump and a multiplier (currently 0.01). To get an idea of how much time can pass until the plant adapts we will take a pump flow of 250 [L / min].
  • the load function remains active for a total of 60 minutes, that is 15,000 [L] and applying the internal multiplier, the number that will control the control system is 150 hecto-Liters.
  • This concept aims to solve the problem that is generated in all SBR systems when, as a result of any circumstance, in a given cycle, there is a flow income above what is expected by design, risking a overflow, which can generate a loss of biology by drag (wash out).
  • the control system used receives an emergency signal, and immediately stops the function that is being executed at that moment, decants (stops any function in the reactor, especially referred to aeration) a short time according to design , eventually 5 minutes and then activate the evacuation function for another short time, eventually another 5 minutes. In this way, a low level occurs in the reactor without risk of loss of biology. If at the end of this process the level sensor is not If activated, the program re-executes the action where it would correspond by time. But if the level sensor continues to indicate emergency, the system continues to evacuate until the level sensor stops indicating emergency level.
  • a pumping chamber (11) which is connected through an outlet pipe (15), a load pump (16) and an inlet pipe (17) with the SBR reactor (1) .
  • the sludge is removed through the discharge pipe (18), and the clarified water is removed through a drain pipe (19).
  • the activation of the upper level sensor (14) of the pumping chamber (1 1) forces the load.
  • the upper level sensor (14) of the pumping chamber (1 1) is deactivated, the load stops being forced.
  • the emergency level sensor (20) is activated, the emergency program, which lasts for a defined time, is activated.
  • the emergency program is activated, the water load and aeration are inhibited for the duration of the emergency program.
  • the emergency program is activated, a certain time is expected for the sludge to decant (5). Once the decanting time of the emergency program is over, the discharge is forced for a controlled time.
  • the emergency level sensor (20) If, after the time defined for the operation of the emergency program has ended, the emergency level sensor (20) has not been deactivated, the water load and aeration continue to be inhibited; and the download continues to be forced. This until the emergency level sensor (20) is deactivated. Whenever the minimum-minimum height level sensor (hmm) (22) is deactivated (water level below the level sensor), the discharge is inhibited. When the hmm level sensor (22) is activated, the discharge is only inhibited if the hm level sensor (21), the medium level sensor (13) of the pumping chamber (11) and the memory output, They are all disabled.
  • hmm minimum-minimum height level sensor
  • hmm level sensor (22) Whenever the hmm level sensor (22) is activated and any of the signals: hm level sensor (21), the medium level sensor (13) of the pumping chamber (1 1) and the memory output; If activated, the download will not be inhibited. As long as the monitoring signal of the charge pump (16) is activated, the value of the internal hour meter of the control system will be increased, in order to measure the amount of water entered into the reactor (1).
  • the system continuously transforms the time values in which the supervision signal of the charge pump (16) has been activated, in volume, multiplying by the flow rate of the load pump (16).
  • the flow of the charge pump is stored in the control system.
  • Clarification evacuation is carried out by means of a submerged pump (23) attached to a flotation medium (24).
  • a flexible hose (26) is connected, which allows the pump to rise and fall with the water level (4) in the reactor (1).
  • a system has been designed that consists of placing the pump inside a container (27) that is also hung to the flotation medium (24), through fixing means (29).
  • This kind of "bucket" inside which the pump (23) is located is provided with large perforations (28) in the upper part, which requires that the flow evacuated by the pump inside the bucket is replaced by the perforations ( 28), thus preventing sludge suction from occurring at the bottom of the pump at the time when it approaches the minimum-minimum level.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)

Abstract

Tratamiento de aguas que utiliza un sistema Sequential Batch Reactor (SBR). Este sistema opera en un reactor (1) aireado (2) con un nivel mínimo de operación (9) determinado por la concentración máxima de sólidos suspendidos volátiles durante el periodo de aireación y un nivel máximo (4) variable. Durante la sedimentación, se forma una capa de lodo en el reactor que permite definir un volumen denominado interfase, comprendido entre la altura del lodo (6) y el nivel mínimo de operación del reactor. Dicho volumen, en la modalidad convencional, no se utiliza como volumen de carga. La modificación del sistema propuesta se basa en el uso selectivo del volumen de interfase como volumen de carga. Para ello durante la etapa de desagüe del agua clarificada, se evacúa agua por debajo del nivel mínimo de operación del reactor SBR.

Description

TRATAMIENTO DE AGUAS MEMORIA DESCRIPTIVA
La presente invención se refiere a un proceso para el tratamiento de aguas servidas domésticas, que utiliza el sistema Sequencial Batch Reactor (SBR). Al procedimiento tradicional utilizado en el sistema SBR, se le ha incorporado el concepto que permite en forma automática, aumentar el volumen útil de tratamiento de aguas en la planta en determinados ciclos del día que así lo requieran. En términos generales, las plantas de tratamiento de agua que utilizan el sistema SBR, consisten en uno o más estanques provistos de medios de aireación, un nivel de agua mínimo fijo, y un nivel de agua máximo, variable. Bajo el nivel mínimo, el reactor en estado de reposo (sin aireación) posee dos fases perfectamente separadas, en el fondo el lodo biológico sedimentado, determinando una altura de lodo, y sobre él, un agua clarificada. A la zona comprendida entre el nivel máximo del lodo (altura de lodo) y el nivel mínimo de operación del reactor, se le denomina interfase. En la presente invención, el concepto básico se puede definir como un sistema SBR operado sobre una modalidad de nivel mínimo variable, generando una nueva definición, la del nivel mínimo-mínimo.
ANTECEDENTES DE LA INVENCION
Actualmente, son conocidos los tratamientos de aguas servidas de tipo domiciliario mediante sistema SBR, siendo ésta la modalidad actualmente más usada en Alemania. En el arte previo existen varios antecedentes de procesos que operan con sistemas SBR, por ejemplo el documento WO 95/09130 (Timpany) de fecha 06 de Abril de 1995, divulga un proceso para el tratamiento del agua y de aguas residuales con contenido biológico sustancialmente constante, que posibilita el tratamiento eficiente de agua residual, combinando las ventajas y eliminando las desventajas tanto de los procesos de fango activado como del SBR. En el presente caso, el agua residual fluye continuamente en una dirección a través de una pluralidad de celdas de tratamiento en serie conectadas hidráulicamente. El agua residual se somete a tratamiento biológico, en al menos una de las celdas y se aloja en al menos una última celda de tratamiento y descarga, inmediatamente antes de la descarga del sistema. En pasos subsecuentes, el agua residual puede continuar para ser alimentada dentro del sistema, en la misma localización mientras se cierra temporalmente la última celda. Allí se desvía el dispositivo de aireación de mezcla. Para resuspender los sólidos en suspensión del licor de mezcla alojado y proporcionar tratamiento adicional. Una bomba de transferencia se desvía allí para transferir los sólidos en suspensión del licor de mezcla y el agua residual tratada parcialmente, comezclada de vuelta a una celda de tratamiento previa, y en la terminación del paso de transferencia el dispositivo de aireación de mezcla, se desvía hasta que se permite de nuevo el alojamiento de los sólidos biológicos antes de la descarga del agua residual tratada en una base continua. Los sólidos en suspensión del licor mezclado, fluyen en la misma dirección general al igual que el agua residual, pero siempre recibe al menos retrotransferecia parcial hasta una celda de tratamiento anterior, alojando y separando los sólidos remanentes procedentes del agua residual antes de la descarga del agua residual tratada proveniente de la última celda. Además, se incluyen descargas continuas y funcionamiento a nivel constantes esencialmente de forma completa a través del uso de dos celdas de descarga alternativamente y tratamiento de contaminantes solubles y particulados al igual que remoción biológica de nitrógeno y fosforo.
El documento EP 0834474 (Holm) de fecha 13 de Junio de 2001, describe un procedimiento para la purificación discontinua de aguas residuales según el procedimiento de fangos activados, donde la estrategia del ciclo para los reactores SBR prevé al menos dos ciclos internos. A partir de un tanque de almacenamiento se realiza el primer llenado interno con sobrenadante preferentemente con el fin de obtener una redisolución P biológica. Los últimos llenados internos se realizan con el sedimento, preferentemente con el fin de que se produzca la desnitrificación. Este procedimiento está caracterizado porque: el agua residual procedente de un tanque intermedio, que sirve para el fraccionamiento del agua bruta y está equipado con un dispositivo de circulación, es transportada al menos a un reactor SBR con al menos dos ciclos internos; durante la fase de llenado del primer o de los primeros ciclos internos se transporta desde el tanque intermedio al reactor SBR un agua residual previamente tratada que forma un sobrante poco cargado; al menos durante la última fase de llenado del ciclo total se transporta desde el estanque intermedio al reactor SBR una cantidad esencialmente menor de agua residual concentrada esencialmente como sedimento; estando parada la circulación se extrae agua residual predepurada de la zona superior del estanque intermedio; estado en marcha la circulación se toma del estanque intermedio agua residual concentrada, arrastrándose un elevado contenido de sedimento, o se obtiene agua residual concentrada tomando agua residual de la zona del fondo del estanque intermedio, y con ello se transporta prácticamente de manera exclusiva sedimento (eventualmente junto con una cierta cantidad de sobrante); y se calcula directa o indirectamente la cantidad de nitrato que hay que desnitrificar después del primero o del penúltimo ciclo y, basándose en ello, se calcula la cantidad/clase de agua residual concentrada para el último ciclo interno. En este procedimiento la fase de llenado y eventualmente también la posterior de circulación pura del primer ciclo interno, se utiliza principalmente para la eliminación biológica de P y se produce, mediante el correspondiente dispositivo medidor, un control/regulación de la necesaria duración de esta fase.
Ninguno de los antecedentes del arte previo, hace referencia a que al trabajar con los sistemas SBR, se presenta el problema que el nivel mínimo, determinado por el nivel en el que el volumen mínimo del reactor tiene una concentración de diseño preestablecida (por diseño) de sólidos suspendidos volátiles (fundamentalmente referido a biomasa) de licor mezclado (SSVLM, mezcla homogénea de agua y sólidos suspendidos volátiles), se encuentra muy por encima de la altura del nivel de lodo sedimentado con más de una hora de decantación, generándose una interfase de 1 metro o de varias veces más, lo cual constituye un volumen inutilizado para tratamiento y que a través de la presente invención queda disponible, rentabilizando por lo tanto aún más la obra civil total. La presente invención soluciona este problema mediante un proceso para el tratamiento de aguas servidas domésticas, que utiliza el sistema Sequencial Batch Reactor (SBR), en donde al proceso tradicional, se le han incorporado dos conceptos que permiten a voluntad y en forma automática, aumentar el volumen útil de tratamiento de la planta en determinados ciclos del día que así lo requieran. El concepto básico se puede definir como un sistema SBR operado sobre una modalidad nueva, la de nivel mínimo variable, generando una nueva definición, la del nivel mínimo-mínimo.
DESCRIPCION DE LOS DIBUJOS
Los dibujos que se acompañan, los cuales se incluyen para proporcionar una mayor compresión de la invención, quedan incorporados y constituyen parte de esta descripción, ilustran el arte previo y una de las ejecuciones del invento, y junto con la descripción sirven para explicar los principios de esta invención.
La figura 1 : muestra una vista esquemática del reactor SBR del arte previo.
La figura 2: muestra una vista esquemática del reactor SBR, cuyos parámetros de nivel han sido modificados de acuerdo al proceso de la presente invención.
La figura 3: muestran una vista esquemática de una cámara de bombeo conectada al reactor SBR. La figura 4: muestra el gráfico aproximación de la memoria a un valor real.
La figura 5: Muestra un detalle del sistema de evacuación de clarificado.
DESCRIPCION DE LA INVENCION
Los sistemas SBR consisten en uno o más estanques (1) provistos de sistemas de aireación (2), un nivel de agua mínimo (3), y un nivel de agua máximo (4), variable. Bajo el nivel mínimo, el reactor en estado de reposo (sin aireación) aparecen dos fases perfectamente separadas, en el fondo el lodo biológico sedimentado (5), determinado una altura de lodo (6) y sobre él, un agua clarificada (7). A la zona comprendida entre el nivel máximo del lodo (altura de lodo) y el nivel mínimo de operación del reactor, se le denomina interfase (8).
Actualmente para aguas servidas domésticas lo usual es trabajar con cuatro ciclos al día (6 horas cada ciclo). Se entiende por ciclo a la secuencia de procesos de llenado, aireación, decantación y descarga; que se repite cada cierto período de tiempo según programa.
En un reactor SBR tienen lugar las siguientes etapas temporales de tratamiento durante un ciclo: 1. Carga: en esta etapa el agua residual entra al reactor SBR, proviniendo de un tratamiento primario de tipo sedimentación o tamizado, o bien puede ser un agua residual sin tratamiento previo.
2. Aireación: en esta etapa se airea el agua residual. Los sistemas de aireación pueden ser por difusores sumergidos o por aireadores superficiales. De esta forma se provee a los microorganismos del oxígeno necesario para su actividad metabólica y por ende para la degradación de las sustancias contaminantes. Por otro lado, mediante la aireación se logra una mezcla completa.
3. Etapa de sedimentación: en esta etapa no se realiza ninguna acción, teniendo lugar el reposo en el reactor SBR. El lodo activado puede entonces decantar por sedimentación. En la parte superior se forma una zona de agua clarificada y en el fondo una capa de lodo.
4. Etapa de desagüe del agua clarificada: en esta etapa el agua clarificada y depurada biológicamente se evacúa del reactor SBR. Esta etapa de vaciado parcial se lleva a cabo por diferentes sistemas, pero siempre cuidando succionar solo la parte superior del agua, hasta el nivel mínimo.
5. Etapa de descarga del excedente de lodo (semanal): en esta fase se extrae del reactor SBR la proporción de lodo en exceso que se ha formado en cada ciclo. El excedente de lodo es aspirado desde el fondo del reactor.
Las cuatro primeras etapas ocurren en forma alternada y secuencial, operando en ciclos de 6 horas cada uno y subdivididos en 3 horas de llenado y aireado simultáneo, 1 hora adicional de aireación interrumpida, 1 hora de decantación y una hora de vaciado de agua tratada. La evacuación de lodo se efectúa solo una vez por semana.
El sistema SBR es por lo tanto una modalidad de tratamiento de efluentes caracterizada por operar con volumen variable, por lo general se usa con cultivo biológico suspendido y que difiere del concepto normal de lodo activado de operación continua, en los siguientes aspectos:
1. Las entradas de agua residual y las salidas de agua tratada están desacopladas temporalmente.
2. La separación de la biomasa ocurre en el mismo reactor biológico y no en un clarificador aparte, por lo que no existe la recirculación de lodos.
3. Las operaciones unitarias y los procesos unitarios que tienen lugar en cada reactor siguen una a otra en una secuencia de tiempo en forma "periódica" o "cíclica" y no de estanque en estanque como ocurre en los sistemas orientados espacialmente.
4. Una porción del agua tratada es periódicamente descargada de cada estanque, para generar el volumen necesario para un nuevo batch de agua residual a tratar.
Por estas razones los sistemas SBR son mencionados en la literatura como procesos periódicos, sistemas de estanque único (aún cuando pueden ser varios en paralelo) reactores de llenado y vaciado, o reactores de volumen variable.
Los principales factores que han hecho que esta tecnología haya ganado gran aceptación por las personas versadas en el arte, son los siguientes:
• La aplicabilidad de una automatización simple, comúnmente PLC.
· La facilidad con la cual su operación puede ser modificada para permitir un efectivo control sobre especies de bacterias que causan el fenómeno de abultamiento filamentoso (filamentous bulking), remoción de nutrientes (nitrógeno y fósforo) o la destrucción de compuestos orgánicos peligrosos.
• La capacidad de seleccionar comunidades microbianas robustas, que son capaces de mantener altos niveles de desempeño durante períodos de cargas altas. • La capacidad de ajustar el tiempo y magnitud del input energético, la fracción de uso del volumen de cada estanque y el número de estanques puestos en operación para poder abatir las condiciones de carga según requerimiento de un instante determinado.
En la presente invención el proceso de tratamiento de aguas servidas domésticas, funciona en un sistema SBR. A este proceso se le han incorporado dos conceptos que permiten a voluntad y en forma automática, aumentar el volumen útil de tratamiento de la planta en determinados ciclos del día que así lo requieran. El concepto básico se puede definir como un sistema SBR operado sobre una modalidad nueva, la de nivel mínimo variable (9), generando una nueva definición, la del nivel mínimo-mínimo (10).
Este concepto tiene dos variantes, a saber:
Variante I: Esta variante supone que si se puede anticipar (por datos estadísticos guardados en memoria) que en el ciclo siguiente la cantidad de agua que va a entrar al reactor SBR, en este caso, superará al volumen comprendido entre el nivel máximo y el nivel mínimo, entonces durante la etapa de desagüe, el reactor evacúa efluente hasta el nivel mínimo-mínimo, ocupando efectivamente el volumen normalmente no útil de la zona de interfase, permitiendo absorber por lo tanto un mayor caudal de entrada al reactor en un posible ciclo peack. Para el logro de esta finalidad el sistema se apoya sobre lo siguiente:
Operar sobre la base de datos históricos de ingreso de caudal a la planta, y que anticipa en forma estadística, en qué ciclos se requerirá más capacidad de tratamiento, bajando para ello al final del ciclo anterior el nivel mínimo de operación hasta el nivel mínimo-mínimo, con lo que aumenta la capacidad de tratamiento en el ciclo siguiente. A su vez en los ciclos en que el método anticipe que no se requiere de un mayor volumen de tratamiento, o aún más, que no va a haber ingreso de caudal a tratar, la planta opera al nivel mínimo convencional, el que asegura que la concentración de sólidos suspendidos volátiles del licor mezcla no va a superar el valor elegido de diseño. Variante II: Esta variante opera basado en un dato real, que es la determinación de la existencia de un cierto volumen de agua a tratar en el estanque pulmón antes de finalizar la evacuación y actúa siempre que este volumen sea igual o superior al volumen existente en el reactor SBR entre el nivel mínimo y el nivel mínimo-mínimo. Cuando esta situación se da, la evacuación continúa hasta alcanzar el nivel mínimo-mínimo. A su vez para el logro de esta finalidad, el sistema opera de la siguiente manera:
Un sistema de colocación de sensores de nivel en el estanque pulmón previo al reactor SBR, donde si antes de finalizar la etapa de evacuación de cada ciclo, el estanque pulmón detecta que el agua almacenada iguala o supera al volumen del reactor entre el nivel mínimo y el nivel mínimo-mínimo, entonces también la evacuación se realiza hasta alcanzar el nivel mínimo-mínimo.
Los problemas detectados en los sistemas actualmente en uso, punto a punto, son solucionados en esta invención de acuerdo a lo siguiente:
1. Un cambio en la operación de los sistemas SBR, en donde la biología no sufre alteración alguna si durante la fase de sedimentación y descarga, el nivel mínimo de líquido al interior del estanque se aproxima al nivel determinado por la altura de lodo (nivel mínimo-mínimo).
2. Aceptar que las alturas de interfase resultantes de diseño carecen de sentido durante las etapas de decantación y evacuación, pudiendo en estas etapas ser reducidas drásticamente, respetando solo un nivel de interfase mínimo de seguridad para que el mecanismo de evacuación no succione lodo. Esta interfase de seguridad puede ser tan pequeña como 0,3 m, pudiendo llegar a 0,5 m o más según necesidad de no generar un volumen excesivo que impida en muchos ciclos alcanzar el nivel mínimo para la operación.
3. Disponer de un primer sistema que estadísticamente anticipe el caudal que va a ingresar a la planta en el ciclo siguiente, y si el caudal esperado para el próximo ciclo pudiese ser igual o superior al volumen entre el nivel máximo y el nivel mínimo, durante la etapa de evacuación previa, el nivel mínimo deberá bajarse hasta el nivel mínimo-mínimo, aumentando sensiblemente la capacidad útil del reactor, especialmente en las horas peack. La lógica que controla esta variable estadística del sistema se basa en que, en un sistema de depuración de aguas servidas domésticas, el comportamiento durante cada ciclo en cada día de la semana, es muy similar al del mismo ciclo en el mismo día de la semana anterior. Por lo tanto el sistema de control ocupado almacena el dato del volumen alimentado por la bomba al sistema SBR durante cada ciclo, promediándolo a su vez con el valor promedio de los históricos anteriores, todo durante los siete días de la semana, con lo que se obtiene el caudal alimentado en cada ciclo y la altura máxima de operación correspondiente. El programa determinará si el volumen que probablemente entrará excede el volumen comprendido entre el nivel máximo y el nivel mínimo, y de ser así, automáticamente evacuará hasta el nivel mínimo-mínimo.
4. Disponer de un segundo sistema basado en un simple sensor de nivel colocado en el estanque pulmón, a una altura tal que indique un volumen igual al volumen ocupado en el reactor entre el nivel mínimo y el nivel mínimo- mínimo, por lo tanto, cuando durante las etapas de decantación y evacuación, el sensor de nivel indica que ya se acumuló una cantidad de agua que iguala o supera al volumen entre el nivel mínimo y el nivel mínimo-mínimo, entonces el sistema de control dará la instrucción de evacuar hasta el nivel mínimo-mínimo, lo que automáticamente aumentará la capacidad de tratamiento en el ciclo siguiente.
Cabe señalar que, en su conjunto, el sistema permite una configuración de varios sistemas unidos en paralelo.
Descripción de la adaptación de la memoria en la puesta en marcha de la planta.
Cuando se inicia el programa todas las celdas de memoria comienzan en cero, por lo tanto, dado que las memorias de volumen de agua se adaptan, puede pasar algún tiempo hasta que lleguen a sus valores de trabajo normal.
Las memorias de volumen de agua se calculan según la siguiente formula (promedio): Los valores numéricos con los cuales trabaja el programa dependen del caudal de la bomba y de un multiplicador (actualmente 0,01). Para hacerse una idea de cuánto tiempo puede pasar hasta que se adapte la planta tomaremos un caudal de bomba de 250 [L/min].
Durante un ciclo normal y sin emergencias la función de carga permanece activa un total de 60 minutos, esto es 15.000[L] y aplicando el multiplicador interno, el numero que manejará el sistema de control es 150 hecto-Litros.
Suponiendo que cada semana se tratan exactamente 150 hecto-Litros en el ciclo que estamos analizando, puede calcularse cuanto tiempo demoraría la memoria en llegar al valor real de agua tratada.
0 Ü++ 1 0U≡75 ^nu≡U3 1 H 1 Π3 + + Η0U .131 S 141 S 145? 148 149; 149; 150
Entonces notamos que en la cuarta semana la memoria es un 94% del valor real de agua tratada, lo cual se puede considerar como una buena aproximación. En el gráfico de la figura 4, apreciar de mejor forma el efecto.
Evacuación de emergencia
Este concepto apunta a resolver el problema que se genera en todos los sistemas SBR cuando producto de cualquier circunstancia, en un determinado ciclo, hay un ingreso de caudal por sobre lo esperado por diseño, arriesgando un rebalse, el cual puede generar pérdida de biología por arrastre (wash out). Para dar solución a este problema, el sistema de control usado recibe una señal de emergencia, e inmediatamente detiene la función que se esté ejecutando en ese instante, decanta (detiene toda función en el reactor, especialmente referido a aireación) un corto tiempo según diseño, eventualmente 5 minutos y luego activa la función de evacuación por otro corto tiempo, eventualmente otros 5 minutos. De esta forma se produce en corto tiempo una baja de nivel en el reactor sin riesgo de pérdida de biología. Si al cabo de este proceso el sensor de nivel, no se encuentra activado, el programa vuelve a ejecutar la acción donde le correspondería por tiempo. Pero si el sensor de nivel continúa indicando emergencia, el sistema continúa evacuando hasta que el sensor de nivel deje de indicar nivel de emergencia.
En la figura 3, se muestra una cámara de bombeo (11) que está conectada a través de una tubería de salida (15), una bomba de carga (16) y una tubería de entrada (17) con el reactor SBR (1). Los lodos son retirados a través de la tubería de descarga (18), y el agua clarificada, es retirada a través de una tubería de desagüe (19). En la cámara de bombeo, están colocados varios sensores de nivel: un sensor de nivel inferior (12); un sensor de nivel medio (13) y un sensor de nivel superior (14). Asimismo, en el reactor SBR (1), están colocados varios sensores de nivel: sensor de nivel de emergencia (20); un sensor de nivel de detección de altura mínima [hm] (21) y un sensor de nivel de altura mínimo-mínimo [hmm] (22).
La activación del sensor de nivel superior (14) de la cámara de bombeo (1 1), fuerza la carga. Al desactivarse el sensor de nivel superior (14) de la cámara de bombeo (1 1), se deja de forzar la carga. Al activarse el sensor de nivel de emergencia (20), se activa el programa de emergencia, que dura un tiempo definido. Al activarse el programa de emergencia se inhiben la carga de agua y la aireación durante el tiempo que dura el programa de emergencia. Al activarse el programa de emergencia se espera cierto tiempo, para que decante el lodo (5). Una vez finalizado el tiempo de decantación del programa de emergencia, se fuerza la descarga durante un tiempo controlado. Si una vez finalizado el tiempo definido para el funcionamiento del programa de emergencia, el sensor de nivel de emergencia (20) no se ha desactivado, se siguen inhibiendo la carga de agua y la aireación; y se sigue forzando la descarga. Esto hasta que el sensor de nivel de emergencia (20) se desactive. Siempre que el sensor de nivel de altura mínimo-mínimo (hmm) (22) se encuentre desactivado (nivel de agua bajo del sensor de nivel), se inhibe la descarga. Cuando el sensor de nivel hmm (22) esta activada, solo se inhibe la descarga si el sensor de nivel hm (21), el sensor de nivel medio (13) de la cámara de bombeo (11) y la salida de la memoria, están todas desactivadas. Siempre que el sensor de nivel hmm (22) esta activada y alguna de las señales: sensor de nivel hm (21), el sensor de nivel medio (13) de la cámara de bombeo (1 1) y la salida de la memoria; este activada, no se inhibirá la descarga. Mientras se mantenga activada la señal de supervisión de la bomba de carga (16), se incrementara el valor del horómetro interno del sistema de control, con el fin de medir la cantidad de agua ingresada al reactor (1).
El sistema transforma continuamente los valores de tiempo en que la señal de supervisión de la bomba de carga (16) ha estado activada, en volumen, multiplicando por el caudal de la bomba de carga (16). El caudal de la bomba de carga es almacenado en el sistema de control. Detalle del sistema de evacuación de clarificado
La evacuación de clarificado se efectúa mediante una bomba sumergida (23) sujeta a un medio de flotación (24). A su vez en el punto de evacuación (25) de la bomba (23) va conectada una manguera flexible (26) que permite que la bomba suba y baje con el nivel del agua (4) en el reactor (1). Para poder ejecutar adecuadamente la operación de succionar clarificado desde el nivel mínimo-mínimo sin riesgo de succión de lodo, se ha diseñado un sistema que consiste en colocar la bomba en el interior de un recipiente (27) que también va colgado al medio de flotación (24), a través de medios de fijación (29). Esta especie de "balde" en cuyo interior se encuentra la bomba (23), está provisto de grandes perforaciones (28) en la parte superior, lo que obliga que el caudal evacuado por la bomba al interior del balde sea repuesto por las perforaciones (28), impidiendo de esta forma que ocurra una succión de lodo por la parte baja de la bomba en los momentos en que ésta se acerque al nivel mínimo-mínimo.

Claims

REIVINDICACIONES
1. Un proceso para el tratamiento de aguas servidas domésticas, que utiliza el sistema Sequencial Batch Reactor (SBR), que posee estanques (1) provistos de sistemas de aireación (2), un nivel de agua mínimo (3), y un nivel de agua máximo (4), variable, en donde bajo el nivel mínimo, el reactor en estado de reposo, aparecen dos fases separadas, en el fondo el lodo biológico sedimentado (5), determinado una altura de lodo (6) y sobre él, un agua clarificada (7), generando una interfase (8) conformada por el nivel máximo del lodo y el nivel mínimo de operación del reactor, definiendo en dicho estanque (1) un nivel mínimo (9) y un nivel mínimo-mínimo (lO)comprendiendo el proceso las etapas de:
(a) cargar el agua residual en el reactor SBR, en donde dicha agua proviene de un tratamiento primario;
(b) airear el agua residual, proveyendo a los microorganismos del oxígeno necesario para la actividad metabólica y para la degradación de las sustancias contaminantes;
(c) hacer reposar el reactor SBR por el tiempo necesario, en donde el lodo activado decanta por sedimentación;
(d) desaguar el agua clarificada del reactor SBR; y
(e) descargar del excedente de lodo desde el reactor SBR.
CARACTERIZADO porque:
en la etapa de desagüe (d), el reactor evacúa agua clarificada hasta el nivel mínimo-mínimo (10); y en la etapa (a) el agua residual se carga en el reactor SBR, en un volumen cuya altura está comprendida entre una altura mínima y una altura máxima, en donde la altura mínima está dada por el rango conformado dicho nivel mínimo (9) y dicho nivel mínimo-mínimo (10) y en donde la altura máxima está dada por dicho nivel máximo (4).
2. Un proceso, según la reivindicación 1, CARACTERIZADO porque si la información estadística anticipada determina que no hay un mayor volumen de tratamiento o que no hay ingreso de volumen a tratar, el reactor SBR opera en dicho nivel mínimo (3).
3. Un proceso, según la reivindicación 1, CARACTERIZADO porque en la etapa (a) el volumen de ingreso al reactor SBR está determinado por la cantidad de volumen de agua a tratar en el estanque pulmón antes de finalizar la etapa (d) de desagüe.
4. Un proceso, según la reivindicación 3, CARACTERIZADO porque dicho volumen es igual o superior al volumen existente en el reactor SBR entre el nivel mínimo (9) y el nivel mínimo-mínimo
(10).
5. Un proceso, según la reivindicación 4, CARACTERIZADO porque el desagüe continúa hasta alcanzar el nivel mínimo-mínimo (10).
6. Un proceso, según la reivindicación 3, 4 ó 5 CARACTERIZADO porque la información para determinar la cantidad de volumen de agua a tratar está dada por los datos entregados por sensores de nivel en el estanque pulmón previo al reactor SBR.
7. Un proceso, según la reivindicación 6, CARACTERIZADO porque si antes de finalizar la etapa (d) de desagüe, el sensor en el estanque pulmón detecta que el agua almacenada iguala o supera al volumen del reactor SBR entre el nivel mínimo (9) y el nivel mínimo-mínimo (10), la etapa (d) de desagüe se realiza hasta alcanzar el nivel mínimo-mínimo (10).
8. Un proceso, según la reivindicación 1, CARACTERIZADO porque dicho proceso contempla una función de desagüe de emergencia sobre la base de un sistema de control, en donde dicha función de emergencia comprende:
(a) recibir una señal de activación del sensor de nivel de emergencia (20) ubicada en el reactor SBR;
(b) inhibir la carga de agua y la aireación durante un tiempo controlado por el sistema de control, para dejar decantar el lodo (5);
(c) finalizar el tiempo de decantación determinado por el sistema de control; y
(d) forzar la descarga durante un tiempo controlado por el sistema de control.
9. Un proceso, según la reivindicación 8, CARACTERIZADO porque dicha etapa de desagüe de emergencia además comprende:
(e) recibir una señal de activación desde un sensor de nivel superior (14) y
(f) inhibir la descarga desde la cámara de bombeo durante un tiempo controlado por el sistema de control, para dejar decantar el lodo (5) en el reactor SBR.
10. Un proceso, según la reivindicación 8 ó 9, CARACTERIZADO porque si una vez finalizado el tiempo definido para el funcionamiento de la emergencia determinada por el sistema de control, el sensor de nivel de emergencia (20) no se ha desactivado, se continúa inhibiendo la carga de agua y la aireación; y se sigue forzando la descarga.
11. Un proceso, según la reivindicación 10, CARACTERIZADO porque la etapa (f) continúa hasta que el sensor de nivel de emergencia (20) se desactive.
12. Un proceso, según la reivindicación 11, CARACTERIZADO porque si el sensor de nivel de altura mínimo-mínimo (hmm) (22) se encuentre desactivada (nivel de agua bajo el sensor de nivel), se inhibe la descarga.
13. Un proceso, según la reivindicación 12, CARACTERIZADO porque cuando el sensor de nivel hmm (22) esta activada, solo se inhibe la descarga si el sensor de nivel hm (21), el sensor de nivel medio (13) de la cámara de bombeo (11) y la salida de la memoria, están todas desactivadas.
14. Un proceso, según la reivindicación 11 ó 12, CARACTERIZADO porque cuando el sensor de nivel hmm (22) y alguna de las señales: el sensor de nivel hm (21), el sensor de nivel medio (13) de la cámara de bombeo (11) y la salida de la memoria; este activada, no se inhibe la descarga.
15. Un proceso, según la reivindicación 11 ó 12, CARACTERIZADO porque si el sensor de nivel hmm (22) está desactivada y el sensor de nivel hm (21) esta activada, se despliega un mensaje de error.
16. Un proceso, según la reivindicación 11 ó 12, CARACTERIZADO porque mientras se mantenga activada la señal de emergencia en el sistema de control, que controla una bomba de carga (16) ubicada antes del reactor SBR (1), se incrementa el valor del horómetro del sistema de control, para medir la cantidad de agua ingresada a dicho reactor SBR (1).
17. Un proceso, según la reivindicación 16, CARACTERIZADO porque el sistema de control transforma continuamente los valores de tiempo en que la señal de emergencia en la bomba de carga (16) ha estado activada, en volumen, multiplicando por el caudal de la bomba de carga (16), dicho caudal de la bomba de carga (16) es almacenado en el sistema de control.
18. Un proceso, según cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque en la etapa (a) el agua residual entra al reactor SBR, proviene de un tratamiento primario de tipo sedimentación o tamizado, o bien puede ser un agua residual sin tratamiento previo.
19. Un proceso, según cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque la etapa (e) se realiza de manera semanal extrayendo desde el fondo del reactor SBR (1) la proporción de lodo en exceso que se ha formado en cada ciclo.
20. Un sistema de evacuación de clarificado para ser utilizado en un Sequencial Batch Reactor (SBR), que posee un reactor (1) provisto de medios de aireación (2), en donde dicho reactor tiene un nivel de agua mínimo (3), y un nivel de agua máximo (4), variable, en que bajo el nivel mínimo, el reactor en estado de reposo, aparecen dos fases separadas, en el fondo el lodo biológico sedimentado (5), determinado una altura de lodo (6) y sobre él, un agua clarificada (7), generando una interfase (8)conformada por el nivel máximo del lodo y el nivel mínimo de operación del reactor, definiendo en dicho estanque (1) un nivel mínimo (9) y un nivel mínimo-mínimo (10), CARACTERIZADO porque dicho sistema de evacuación comprende una bomba sumergida (23) sujeta a un medio de flotación (24), en donde desde el punto de evacuación (25) de la bomba (23) está conectada una manguera flexible (26) que permite que la bomba suba y baje con el nivel del agua (4) en el reactor ( 1 ).
21. Un sistema de evacuación de clarificado, según la. reivindicación 20, CARACTERIZADO porque la bomba (23) está ubicada en el interior de un recipiente (27), el que también está suspendido al medio de flotación (24).
22. Un sistema de evacuación de clarificado, según la reivindicación 21, CARACTERIZADO porque dicho recipiente (27) posee medios de fijación (29) para unirlo al medio de flotación (24).
23. Un sistema de evacuación de clarificado, según cualquiera de las reivindicaciones 20 a 22, CARACTERIZADO porque dicho recipiente (27) posee perforaciones (28) en la parte superior.
PCT/CL2010/000053 2010-12-21 2010-12-21 Tratamiento de aguas WO2012083476A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2010/000053 WO2012083476A1 (es) 2010-12-21 2010-12-21 Tratamiento de aguas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2010/000053 WO2012083476A1 (es) 2010-12-21 2010-12-21 Tratamiento de aguas

Publications (1)

Publication Number Publication Date
WO2012083476A1 true WO2012083476A1 (es) 2012-06-28

Family

ID=46312979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2010/000053 WO2012083476A1 (es) 2010-12-21 2010-12-21 Tratamiento de aguas

Country Status (1)

Country Link
WO (1) WO2012083476A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107795308A (zh) * 2016-08-30 2018-03-13 中国石油化工股份有限公司 一种提高外源功能微生物油藏适应性的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695376A (en) * 1986-10-20 1987-09-22 Aqua-Aerobic Systems, Inc. Floating decanter
US5205936A (en) * 1992-02-05 1993-04-27 Bio Clear Technology Inc. Sequencing batch reactors
WO1993016781A1 (en) * 1992-02-19 1993-09-02 Murphy D Thomas Decanting apparatus
US6126827A (en) * 1993-11-30 2000-10-03 Charles L. Johnson, Jr. High-strength septage biological treatment system
EP1082987A1 (en) * 1999-09-08 2001-03-14 Aquasystems International N.V. Floating decanting device for water treatment plants

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695376A (en) * 1986-10-20 1987-09-22 Aqua-Aerobic Systems, Inc. Floating decanter
US5205936A (en) * 1992-02-05 1993-04-27 Bio Clear Technology Inc. Sequencing batch reactors
WO1993016781A1 (en) * 1992-02-19 1993-09-02 Murphy D Thomas Decanting apparatus
US6126827A (en) * 1993-11-30 2000-10-03 Charles L. Johnson, Jr. High-strength septage biological treatment system
EP1082987A1 (en) * 1999-09-08 2001-03-14 Aquasystems International N.V. Floating decanting device for water treatment plants

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BUNGAY, S., HUMPHRIES ET AL.: "T. Operating strategies for variable-flow sequencing batch reactors", WATER AND ENVIRONMENTAL JOURNAL, March 2007 (2007-03-01), pages 1 - 8 *
ENVIROPAX: "Floating Decanter System", 29 May 2009 (2009-05-29), Retrieved from the Internet <URL:http://replay.waybackmachine.org/20090529113008/http://www.enviropax.com/decanter.htm> [retrieved on 20110414] *
KIRSCHENMAN, T. ET AL.: "A regulatory guide to sequencing batch reactors", 2ND INTERNATIONAL SYMPOSIUM ON SEQUENCING BATCH REACTOR TECHNOLOGY, 28 May 2010 (2010-05-28), Retrieved from the Internet <URL:http://replay.waybackmachine.org/201000528005608/http://www.iowadnr.gov/water/wastewater/files/sbr.pdf> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107795308A (zh) * 2016-08-30 2018-03-13 中国石油化工股份有限公司 一种提高外源功能微生物油藏适应性的方法
CN107795308B (zh) * 2016-08-30 2019-08-09 中国石油化工股份有限公司 一种提高外源功能微生物油藏适应性的方法

Similar Documents

Publication Publication Date Title
US9902633B2 (en) Wastewater treatment system design
AU2006284174B2 (en) Waste water purifying device
CN104944682A (zh) 一种膜-生物反应器生活污水处理装置及处理方法
CN107140736A (zh) 一种改良节能aao农村生活污水处理方法
CN101633545B (zh) 一体化生物生态协同污水处理方法及反应器
CN109851173A (zh) 一种高负荷脱氮除磷人工湿地污水净化系统
ES2375142T3 (es) Equipo para el tratamiento biológico de lodo activado de aguas residuales y procedimiento para su operación.
CN108862821A (zh) 双级免曝气无回流的生活污水处理系统
CN105060644B (zh) 一体化污水深度处理装置的安装方法及污水深度处理方法
CN202322561U (zh) 一种工业园区污水处理装置
US9145317B2 (en) Limited volume waste water SBR treatment system and process
CN105967333A (zh) 一种处理乡镇生活污水的一体化设备及方法
CN114269695B (zh) 用于从废水流中移除铵的系统和方法
HUE030155T2 (en) Biological wastewater treatment plant with increased efficiency
WO2012083476A1 (es) Tratamiento de aguas
CN101973630B (zh) 压力管式污水处理反应器
CN104986854A (zh) 污泥回流控制系统、方法及污水处理系统
CN101134619B (zh) 悬浮填料澄清池
CN201458913U (zh) 一种一体化生物生态协同污水处理反应器
JP6941439B2 (ja) 膜分離活性汚泥処理装置、膜分離活性汚泥処理方法及び原水供給装置
JP2005144290A (ja) Mlssの制御方法
CN208717090U (zh) 双级免曝气无回流的生活污水处理系统
CZ111998A3 (cs) Způsob dvoustupňového čištění odpadních vod biologickou cestou a zařízení k provádění způsobu
CN101759331B (zh) 前置活性污泥-廊道式人工湿地污水处理系统及方法
BR112019012125A2 (pt) reator aerado com separação interna de sólidos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 001457-2013

Country of ref document: PE

122 Ep: pct application non-entry in european phase

Ref document number: 10860968

Country of ref document: EP

Kind code of ref document: A1