WO2012081854A2 - Waste heat recovery device for a marine vessel - Google Patents

Waste heat recovery device for a marine vessel Download PDF

Info

Publication number
WO2012081854A2
WO2012081854A2 PCT/KR2011/009379 KR2011009379W WO2012081854A2 WO 2012081854 A2 WO2012081854 A2 WO 2012081854A2 KR 2011009379 W KR2011009379 W KR 2011009379W WO 2012081854 A2 WO2012081854 A2 WO 2012081854A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerant
heat exchanger
condenser
seawater
Prior art date
Application number
PCT/KR2011/009379
Other languages
French (fr)
Korean (ko)
Other versions
WO2012081854A3 (en
Inventor
손문호
박건일
이승재
이호기
진정근
최재웅
Original Assignee
삼성중공업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110052514A external-priority patent/KR101359640B1/en
Priority claimed from KR1020110052456A external-priority patent/KR101291170B1/en
Application filed by 삼성중공업주식회사 filed Critical 삼성중공업주식회사
Priority to US14/364,655 priority Critical patent/US9464539B2/en
Publication of WO2012081854A2 publication Critical patent/WO2012081854A2/en
Publication of WO2012081854A3 publication Critical patent/WO2012081854A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a waste heat recovery apparatus for ships, and more particularly, to a waste heat recovery apparatus for ships that recovers waste heat of exhaust gas discharged from an engine of a ship.
  • FIG. 1 is a schematic diagram showing a waste heat recovery apparatus for ships according to the prior art.
  • the waste heat recovery apparatus for ships according to the prior art recovers the heat of the exhaust gas after installing a heat recovery device (boiler) 121 in the exhaust pipe 111 from which the exhaust gas is discharged from the engine 110 of the vessel (Isothermal heating) produced high temperature steam and used as various energy sources.
  • a heat recovery device (boiler) 121 in the exhaust pipe 111 from which the exhaust gas is discharged from the engine 110 of the vessel (Isothermal heating) produced high temperature steam and used as various energy sources.
  • the waste heat recovery apparatus for ships is configured to recover the waste heat of the exhaust gas only through a single configured heat recoverer 121, the waste heat of the exhaust gas in the high temperature state still passes through the heat recoverer 121. There is a problem such that it is not recovered and released to the atmosphere, causing waste of energy.
  • the operation rate of the engine 110 is changed while the ship is operating.
  • a vessel may operate the engine 110 at full load for about two thirds of the total number of operating days, and operate the engine 110 at a lower load than the full load. .
  • the exhaust gas is generated relatively less than when the full load is used.
  • the technical problem to be achieved by the present invention is to provide a waste heat recovery apparatus for ships that can improve the energy (electricity) generating ability by driving the turbine by recovering the heat source of the exhaust gas of the engine as much as possible.
  • a heat exchanger for recovering heat from the exhaust gas discharged from the engine to heat isostatic pressure of the first refrigerant;
  • a heat exchange pump for compressing the condensed first refrigerant to be recycled to the heat exchanger.
  • the coolant may further include a plurality of coolers for cooling the heat generated by the engine, and the condensed first refrigerant may be recycled to the heat exchanger by receiving heat from the plurality of coolers.
  • the apparatus may further include a recuperator for supplying heat discharged from the turbine to the first refrigerant supplied to the heat exchanger.
  • the exhaust pipe through which the exhaust gas discharged from the engine passes may be provided in front of the heat exchanger may further include a heat recovery for recovering the heat of the exhaust gas separately from the heat exchanger.
  • An auxiliary turbine driven by adiabatic expansion of the second refrigerant heated isostatically by using the heat recovered from the heat recovery unit;
  • an auxiliary pump compressing the condensed second refrigerant and recycling the second refrigerant to the heat recovery unit.
  • the condenser may use seawater as a cooling medium.
  • the condensed first refrigerant may be recycled to the heat exchanger receives the heat from the jacket cooler.
  • a condenser cooling line connected to the condenser to supply a third refrigerant, which is a cooling medium of the condenser, to the condenser;
  • a condenser cooling pump for forcibly circulating the third refrigerant on the condenser cooling line;
  • a seawater heat exchanger in which heat exchange is performed between the third refrigerant and seawater;
  • a seawater line connected to the seawater heat exchanger for supplying seawater to the seawater heat exchanger; And a seawater pump for forcibly circulating the seawater on the seawater line.
  • a condenser cooling line connected to the condenser to supply a third refrigerant, which is a cooling medium of the condenser, to the condenser;
  • a condenser cooling pump for forcibly circulating the third refrigerant on the condenser cooling line;
  • a main cooler configured to exchange heat between the third refrigerant and the sea water, and to exchange fresh water for cooling and the sea water;
  • a seawater line connected to the main cooler for supplying the seawater to the main cooler; And a seawater pump for forcibly circulating the seawater on the seawater line.
  • the first refrigerant may be any one of ammonia, C2H6, C7H8, C8H16, R11, R113, R12, R123, R134a, and R245fa.
  • a turbocharger operated by the exhaust gas wherein the heat exchanger is disposed between the turbocharger and the turbine to exchange heat between the exhaust gas discharged from the turbocharger and the first refrigerant supplied to the turbine. It may include a heat exchange unit that mediates.
  • the heat exchanger may include at least one circulation pump to circulate the trough fluid circulating through the heat exchange unit.
  • the heat exchange unit may include: a first heat exchange unit configured to exchange heat between the exhaust gas discharged from the turbocharger and the trough fluid; And a second heat exchanger configured to exchange heat between the exhaust gas discharged from the first heat exchanger and the first refrigerant supplied to the turbine.
  • the heat exchange unit may further include a third heat exchanger disposed at a front end of the first heat exchanger to heat the trough fluid by exchanging air supplied from the turbocharger with the trough fluid.
  • the heat exchanger may further include a bypass unit for bypassing the trough fluid to the first heat exchange unit without passing through the third heat exchange unit.
  • the bypass unit may further include a control valve for adjusting the flow rate of the trough fluid.
  • the control valve may adjust a flow rate of the trough fluid supplied to the third heat exchange part in response to a load change of the engine.
  • the heat exchanger may further include a storage unit in which the trough fluid is temporarily stored.
  • the control valve may adjust the flow rate of the trough fluid supplied to the third heat exchange unit so that the amount of heat supplied to the second heat exchange unit is maintained at a constant level.
  • a temperature sensor for measuring the temperature of the heat-mediated fluid supplied to the second heat exchanger is provided at the front end of the second heat exchanger, and the control valve is supplied to the second heat exchanger based on the detected value of the temperature sensor.
  • the flow rate of the thigh fluid supplied to the third heat exchange part may be adjusted to maintain the temperature of the tide fluid.
  • the circulation pump may adjust the flow rate of the trough fluid so that the temperature of the trough fluid that exchanges heat with the first refrigerant is kept constant.
  • Embodiments of the present invention can improve the energy (electricity) generating ability while being able to drive the plurality of turbines by recovering the heat source of the exhaust gas of the engine as much as possible.
  • FIG. 1 is a schematic diagram showing a waste heat recovery apparatus for ships according to the prior art.
  • FIG. 2 is a schematic view showing a waste heat recovery apparatus for ships according to a first embodiment of the present invention.
  • FIG. 3 is a schematic view showing a waste heat recovery apparatus for a ship according to a second embodiment of the present invention.
  • Figure 4 is a schematic diagram showing a waste heat recovery apparatus for ships according to a third embodiment of the present invention.
  • FIG. 5 is a schematic view showing a waste heat recovery apparatus for a ship according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic view showing a waste heat recovery apparatus for a ship according to a fifth embodiment of the present invention.
  • FIG. 7 is a view for explaining a waste heat recovery apparatus for ships according to a sixth embodiment of the present invention.
  • FIG. 8 is a view for explaining the waste heat recovery apparatus for ships according to a seventh embodiment of the present invention.
  • thermodynamic heating should be understood as “isothermal heating” of the term used in thermodynamics, rather than heating the pressure mathematically or physically while maintaining the exact same.
  • thermodynamics rather than heating the pressure mathematically or physically while maintaining the exact same.
  • thermal expansion and the like described herein should be interpreted in the same manner.
  • FIG. 2 is a schematic view showing a waste heat recovery apparatus for ships according to a first embodiment of the present invention.
  • the waste heat recovery apparatus for ships the heat exchanger 41 for recovering heat from the exhaust gas discharged from the engine 10 to isothermally heat the first refrigerant, and isothermally heated
  • a turbine 42 driven by adiabatic expansion of the first refrigerant a condenser 43 condensing the adiabatic expansion first refrigerant, and a heat exchange pump 44 which compresses and recycles the condensed first refrigerant to the heat exchanger 41.
  • a heat recovery unit 31 provided at the front end of the heat exchanger 41 on the exhaust pipe 11 through which the exhaust gas discharged from the engine 10 passes, for recovering heat of the exhaust gas separately from the heat exchanger 41.
  • the heat of the exhaust gas is recovered through the heat recovery unit 31 installed in the exhaust pipe 11 of the engine 10 from which the exhaust gas is discharged to generate steam, and then utilized as various energy sources.
  • the heat exchanger 41 is further provided in the exhaust pipe 11 of the rear stage, and the turbine 42 driven using the heat
  • a condenser 43 for condensing and a heat exchange pump 44 for compressing the condensed water (first refrigerant) waste heat of the exhaust gas can be further recovered.
  • the first refrigerant may be any one of an organic compound, that is, ammonia, C2H6, C7H8, C8H16, R11, R113, R12, R123, R134a, and R245fa.
  • the scope of the present invention is not limited thereto, and if the first refrigerant can recover the waste heat from the high temperature exhaust gas, the heat recovery unit 31 may be omitted, and the first refrigerant may not be an organic compound. Cooling media may also be used.
  • the ship waste heat recovery apparatus further includes a recuperator 45 for supplying waste heat discharged from the turbine 42 to the first refrigerant supplied to the heat exchanger 41.
  • a recuperator 45 for supplying waste heat discharged from the turbine 42 to the first refrigerant supplied to the heat exchanger 41.
  • the engine 10 is provided with a plurality of coolers for cooling the heat generated by the engine itself, that is, the oil cooler 12, the air cooler 13, the jacket cooler 14, for ships according to an embodiment of the present invention
  • the first refrigerant compressed through the heat exchange pump 44 is configured to receive heat from the plurality of coolers 12, 13, and 14 to be recycled to the heat exchanger 41. have.
  • seawater may be used as the cooling medium used in the condenser 43
  • the cooling line 51 connected to the condenser 43 and the cooling line 51 may be used to supply seawater to the condenser 43.
  • a cooling pump 52 for forcibly circulating seawater is further provided.
  • the heat of the exhaust gas is recovered (isometrically heated) through the heat recovery unit 31 to generate superheated steam and used as various energy sources.
  • the heat exchanger 41 then uses the exhaust gas that has passed through the heat recovery unit 31.
  • the heat is recovered again (isothermal heating) so that the first refrigerant is in a superheated steam state, and then the turbine 42 is driven while adiabatic expansion of the first refrigerant is performed in the turbine 42, and discharged from the turbine 42.
  • the gas (first refrigerant) is isothermally cooled by the cooling medium in the condenser 43 to become saturated water (first refrigerant), and adiabaticly compressed by the heat exchange pump 44, and then supplied to the heat exchanger 41 to be evaporated.
  • the first refrigerant compressed through the heat exchange pump 44 receives heat from the plurality of coolers, that is, the oil cooler 12, the air cooler 13, and the jacket coolers 14, and then recuperators 45 again. Since the waste heat discharged from the turbine 42 is supplied to the heat exchanger 41, the efficiency may be further improved.
  • the heat recovery unit 31 is provided, but the first refrigerant used in the heat exchanger 41 recovers heat of the high-temperature exhaust gas like the refrigerant used in the heat recovery unit 31 of the present embodiment.
  • the heat recoverer 31 may be omitted.
  • FIG 3 is a view showing the configuration of the waste heat recovery apparatus for ships according to a second embodiment of the present invention.
  • This embodiment differs in part of the configuration when compared with the first embodiment, and in other configurations is the same as that of the first embodiment of FIG. 2, the following description will only be given of the configuration that differs from the present embodiment. Shall be.
  • a heat exchanger 41 is installed in an exhaust pipe 11 at a rear end of a heat recovery unit 31 and recovered from the heat exchanger 41.
  • a turbine 42 driven using heat, a condenser 43 for condensing the gas (first refrigerant) of the turbine 42, and a heat exchange pump 44 for compressing the condensed water (first refrigerant) are provided.
  • the second refrigerant is condensed in the auxiliary condenser 33, the condensed second refrigerant is compressed in the auxiliary pump 34 is supplied back to the heat recovery machine (31) To drive the auxiliary turbine 32 by continuously recovering the waste heat of the exhaust gas while repeating It is adding more cycles.
  • the heat recovery unit 31 recovers the heat of the exhaust gas (isothermal heating) so that the second refrigerant is in the superheated steam state, and then, the second refrigerant is adiabaticly expanded in the auxiliary turbine 32 while the auxiliary turbine 32 is insulated.
  • the second refrigerant discharged from the auxiliary turbine 32 is then isothermally cooled by a cooling medium (sea water) in the first condenser 33 to become saturated water, and then adiabaticly compressed by the auxiliary pump 34 again.
  • the auxiliary turbine 32 is driven by continuously recovering the waste heat of the exhaust gas while repeating the process of being supplied to the heat recoverer 31 and evaporating.
  • the heat exchanger 41 recovers (heat isothermally) the heat of the exhaust gas which has passed through the heat recoverer 31 so that the first refrigerant is in the superheated steam state, and then the turbine 42 has the next step.
  • the turbine 42 After the refrigerant is adiabaticly expanded, the turbine 42 is driven, and the gas (first refrigerant) discharged from the turbine 42 is isothermally cooled by the cooling water in the condenser 43, which is the next step, to become saturated water.
  • the heat exchange pump 44 which is the next step, is adiabatic and supplied to the heat exchanger 41 and is repeatedly evaporated to recover the waste heat of the exhaust gas as much as possible to drive the turbine 42.
  • the first refrigerant compressed by the heat exchange pump 44 receives heat from the plurality of coolers, that is, the oil cooler 12, the air cooler 13, and the jacket coolers 14, and then returns the recuperator 45 again. Since the waste heat discharged from the turbine 42 is supplied to the heat exchanger 41, the efficiency is further improved.
  • the embodiment of the present invention provides a heat exchanger 41 and a turbine 42 unlike the conventional waste heat recovery apparatus for ships, so that the heat of exhaust gas discharged from the engine 10 of the vessel, that is, waste heat, is recovered. 31 to recover the primary through the primary turbine 32, and again to recover the waste heat through the heat exchanger 41 to drive the turbine 42, thereby basically exhausting the engine 10 It is possible to drive the plurality of turbines 32 and 42 by recovering the heat source of the gas as much as possible, thereby improving the energy (electricity) generating ability.
  • the first refrigerant from the plurality of coolers 12, 13, and 14 also recovers heat and supplies the heat to the heat exchanger 41, and also recovers heat by using the waste heat discharged from the turbine 42. Also in the hot air 45, the efficiency is improved by supplying heat to the first refrigerant supplied to the heat exchanger 41.
  • FIG. 4 is a view showing the configuration of a waste heat recovery apparatus for ships according to a third embodiment of the present invention.
  • This embodiment differs in part of the configuration when compared with the first embodiment, and in other configurations is the same as that of the first embodiment of FIG. 2, the following description will only be given of the configuration that differs from the present embodiment. Shall be.
  • the waste heat recovery apparatus includes a jacket cooler 14 for cooling heat generated in the engine 10, and the condensed first refrigerant may be a jacket cooler ( The heat is supplied from 14) and recycled to the heat exchanger 41. That is, in the present embodiment, unlike the first embodiment, the first refrigerant compressed through the heat exchange pump 44 receives heat from only the jacket cooler 14 and is supplied to the heat exchanger 41. This is because the heat can be supplied from the jacket cooler 14 relatively more than the oil cooler 12 and the air cooler 13, so that the line passing through the oil cooler 12 and the air cooler 13 is omitted. While the entire cycle can be simplified compared to the example, there is an advantage in that there can be no significant reduction in efficiency compared to the first embodiment.
  • FIG. 5 is a view showing the configuration of the waste heat recovery apparatus for ships according to a fourth embodiment of the present invention.
  • This embodiment differs in part of the configuration when compared with the first embodiment, and in other configurations is the same as that of the first embodiment of FIG. 2, the following description will only be given of the configuration that differs from the present embodiment. Shall be.
  • the condenser 43 of the waste heat recovery apparatus uses a third refrigerant as a cooling medium, and the third refrigerant exchanges heat with seawater.
  • the condenser cooling line 61 connected to the condenser 43 for supplying the third refrigerant to the condenser 43 and the condenser cooling for forcibly circulating the third refrigerant on the condenser cooling line 61.
  • a pump 62 a seawater heat exchanger 63 in which heat is exchanged between the third refrigerant and seawater, and a seawater line 64 connected to the seawater heat exchanger 63 to supply seawater to the seawater heat exchanger 63.
  • the sea water line 64 includes a sea water pump 65 for forcibly circulating sea water.
  • FIG. 6 is a view showing the configuration of the waste heat recovery apparatus for ships according to a fifth embodiment of the present invention.
  • This embodiment differs in part of the configuration when compared with the first embodiment, and in other configurations is the same as that of the first embodiment of FIG. 2, the following description will only be given of the configuration that differs from the present embodiment. Shall be.
  • the waste heat recovery apparatus includes a condenser cooling line 61 connected to the condenser 43 to supply a third refrigerant to the condenser 43, and the condenser cooling.
  • a seawater line 64 connected to the main cooler 71 to supply seawater to the seawater 71, and a seawater pump 65 for forcibly circulating the seawater in the seawater line 64.
  • the main cooler 71 refers to a place where the fresh water for cooling and the sea water are exchanged for cooling the device in the ship, and the cooling fresh water is supplied through the fresh water line 81 and the fresh water pump (not shown).
  • the third coolant that cools the condenser 43 in the main cooler 71 exchanges seawater with the condenser 43 by indirectly exchanging the seawater with the seawater, thereby preventing corrosion of the condenser 43 by seawater. .
  • FIG. 7 is a view for explaining a waste heat recovery apparatus for ships according to a sixth embodiment of the present invention.
  • This embodiment differs only in part from its configuration when compared to the first embodiment, and in other configurations is the same as that of the first embodiment of FIG.
  • the description and reference numerals of the embodiments are used.
  • the waste heat recovery apparatus for ships operates as an energy source using the exhaust gas of the engine 10 generating the propulsion force of the ship as in the first embodiment.
  • the exhaust gas discharged from the engine 10 is introduced into the turbocharger 15 at a temperature higher than the temperature range of about 240 ° C to 250 ° C, and the exhaust gas discharged from the turbocharger 15 is about 240 It has a temperature range of °C to 250 °C.
  • the exhaust gas discharged from the engine 10 is a high pressure state and the exhaust gas rotates a blade (not shown) provided in the turbocharger 15.
  • the exhaust gas discharged from the turbocharger 15 may be supplied to the heat exchange unit 70 provided in the heat exchanger 41, and the exhaust gas may be supplied to the first heat exchange unit from a plurality of heat exchange units provided in the heat exchange unit 70. Can be supplied to 70a.
  • the heat exchanger 41 may be provided with a pipe, so that the nut fluid can be continuously circulated.
  • the nut carrier fluid may be heated to a predetermined temperature through heat exchange with the exhaust gas and circulated along the arrangement path of the heat exchanger 41.
  • the trough fluid is not particularly limited, but it is preferable that the initial physical viscosity is stably maintained without oxidation by hot exhaust gas.
  • the mediator fluid may be water or thermal oil.
  • the first heat exchange part 70a may supply heat to the nut medium fluid through heat exchange with the exhaust gas.
  • the outside air introduced into the turbocharger 15 may be heated to a predetermined temperature and then moved to the third heat exchanger 71c.
  • the third heat exchanger 71c may heat the thigh fluid by heat-exchanging the outside air heated in the turbocharger 15 and the trough fluid circulated along the inside of the heat exchanger 41.
  • the trough fluid is heated to a predetermined temperature in the third heat exchanger 71c before being moved to the first heat exchanger 70a, and then supplied from the turbocharger 15 in the first heat exchanger 70a. It can be heated again by the exhaust gas.
  • the air discharged from the third heat exchange part 71c may be supplied to the engine 10 after being cooled by sea water.
  • the first heat exchanger 70a may heat the nutritive fluid by heat-exchanging the nutritive fluid and the exhaust gas discharged from the turbocharger 15, and the heat larger than the third heat exchanger 71c described above. It may be provided to have an exchange area.
  • the second heat exchange part 70b heats the first refrigerant that drives the turbine 200 and the nut carrier fluid supplied from the first heat exchange part 70a to heat the first refrigerant. In other words, the heat energy of the nut carrier fluid is transferred to the first refrigerant in the second heat exchange part 70b.
  • an organic refrigerant may be used as the first refrigerant, and an organic compound may be used as the organic refrigerant.
  • the first refrigerant has a low boiling point, vaporization may be stably performed even at low temperatures, and the blade may be used to rotate the blade in a steam state within the turbine 200.
  • the first refrigerant a freon-based refrigerant and a hydrocarbon-based material such as propane may be used.
  • the first refrigerant may be any one of R134a, R245fa, R236, R401, and R404 suitable for use in a relatively low heat source (400 ° C. or less).
  • the first refrigerant having such characteristics is vaporized by absorbing heat from the second heat exchanger 70b and is supplied to the turbine 42.
  • the turbine 42 generates electricity by driving a generator G using the first refrigerant as an energy source.
  • the first refrigerant may be moved to the recuperator 45 via the turbine 42, and the first refrigerant via the recuperator 45 is liquefied in the condenser 43 in which heat exchange with sea water is performed. It may be pumped through) and circulated to the recuperator 45.
  • the first refrigerant may be supplied to the second heat exchange part 70b via the recuperator 45.
  • the above-described heat exchanger 70 that is, the first heat exchanger 70a, the second heat exchanger 70b, and the third heat exchanger 71c may be arranged in series, and the fruit fluid in the heat exchanger 41 may be arranged in series.
  • At least one circulation pump 72 may be provided to circulate.
  • the circulation pump 72 may be disposed at the front end of the third heat exchange part 71c, but the scope of the present invention is not limited thereto.
  • the heat exchanger 41 includes a storage unit for temporarily storing a nut fluid through the heat exchange unit 70, that is, the first heat exchange unit 70a, the second heat exchange unit 70b, and the third heat exchange unit 70c ( 73) may be further included.
  • the storage unit 73 may store more tide fluid than the flow rate of the tide fluid circulating through the heat exchanger 41 to prevent shortage of tide fluid.
  • the nut medium fluid via the second heat exchange part 70b may be temporarily stored in the storage part 73, pumped by the circulation pump 72, and then supplied to the third heat exchange part 70c.
  • the heat exchanger 41 includes a bypass unit 74 for allowing the nutritive fluid via the circulation pump 72 to be bypassed to the first heat exchange unit 70a without passing through the third heat exchange unit 70c. It may further include.
  • the bypass section 74 includes a bypass pipe 74a, a first valve 74b for supplying a nut nut fluid to the bypass pipe 74a, or a third heat exchange part 70c, and a bypass pipe. It may include a second valve (74c) for joining the nut nut fluid passing through (74a) to the main flow path.
  • the first valve 74b may adjust the flow such that some or all of the nut opening fluid moves to the bypass pipe 74a, and may similarly adjust the flow rate of the nut opening fluid supplied to the third heat exchange unit 70c.
  • the first valve 74b is capable of adjusting the flow rate of the trough fluid supplied to the bypass pipe 74a and the third heat exchange part 70c, and may be referred to as a flow rate adjusting means.
  • the second valve 74c can adjust so that the trough fluid via the bypass pipe 74a does not flow to the third heat exchange part 70c.
  • the first valve 74b and the second valve 74c are provided as three-way valves as an example, but the scope of the present invention is not limited thereto.
  • the valve provided in the bypass pipe 74a and the valve provided in the front end of the 3rd heat exchange part 70c may be provided, and the bypass pipe 74a and 3rd may be provided.
  • the adjustment of the flow rate flowing into the heat exchange part 70c can be achieved by simultaneous control of each valve.
  • the nut fluid does not pass through the third heat exchange part 70c through the bypass part 74. If the engine 10 is not operated at full load, a part or all of the nutritive fluid passes through the third heat exchanger 70c and the first heat exchanger 70a is adjusted to flow into the first heat exchanger 70a. ) Can be adjusted to enter.
  • the engine 10 may be driven in a largely loaded state and not in a full load state.
  • the full load state refers to a state in which the engine is operated at a load of 100% as well as a state in which the engine is operated at a similar load to supply a sufficient amount of heat to the medium.
  • the exhaust gas discharged from the turbocharger 15 is supplied to the first heat exchanger 70a to heat the nutritive fluid circulating through the heat exchanger 41.
  • the nutty fluid When the engine 10 is operated at a full load, since the exhaust gas discharged from the engine 10 includes a large amount of heat, the nutty fluid can absorb a large amount of heat in the first heat exchange part 70a. . Therefore, the nutty fluid may flow into the first heat exchanger 70a after passing through the bypass unit 74 without passing through the third heat exchanger 70c.
  • first valve 74b may be adjusted to move all the nut carrier fluid to the bypass pipe 74a
  • second valve 74c may be adjusted to open all the flow paths connected to the bypass pipe 74a. have.
  • the heating medium fluid heated in the first heat exchange part 70a flows into the second heat exchange part 70b to heat the first refrigerant.
  • the first refrigerant absorbs heat from the second heat exchanger 70b and vaporizes and is then supplied to the turbine 42.
  • the first refrigerant used to expand in the turbine 42 to generate electricity may be circulated by the pump 44 after sequentially passing through the recuperator 45 and the condenser 43.
  • the engine 10 when the engine 10 is driven at a state other than the full load, that is, when the amount of exhaust gas generated in the engine 10 is reduced to a predetermined level or less, the amount of heat contained in the exhaust gas is sufficient to bring the nutritive fluid. May be insufficient to heat.
  • the heat exchanger 41 may allow a part of the nut-bearing fluid to flow into the third heat exchanger 70c to be heated in advance.
  • the outside air is compressed in the turbocharger 15 and the temperature is high.
  • the outside air whose temperature is increased flows into the third heat exchange part 70c.
  • the first valve 74b allows a part of the nut-bearing fluid to flow into the third heat exchange part 70c instead of the bypass pipe 74a.
  • the air heated by the turbocharger 15 and the nut opening fluid are exchanged to heat the nut opening fluid.
  • a part of the nut-bearing fluid is heated before flowing into the first heat exchange part 70a.
  • the first heat exchange part ( The amount of heat released at 70a) can be maintained at a constant level.
  • the first valve 74b may adjust the flow rate of the trough fluid flowing into the third heat exchange part 70c in response to the changed load amount of the engine 10, that is, the changed exhaust gas discharge amount.
  • the first valve 74b measures the flow rate of the trough fluid flowing into the third heat exchange unit 70c so that the amount of heat contained in the trough fluid flowing into the second heat exchange unit 70b can be maintained at a constant level. I can regulate it.
  • the amount of heat provided to the second heat exchange part 70b can be kept constant. Therefore, the first refrigerant absorbs a sufficient amount of heat and can be stably evaporated, whereby the turbine 42 can also be driven stably, so that the generator G can stably generate electricity.
  • a ship power generation system according to a seventh embodiment of the present invention will be described with reference to FIG. 8.
  • the seventh embodiment is different from the sixth embodiment in that at least one of the first valve and the pump is controlled to maintain a constant temperature of the trough fluid flowing into the second heat exchanger.
  • the differences from the sixth embodiment will be mainly described, and the same reference numerals are used to describe the sixth embodiment.
  • FIG. 8 is a view for explaining the waste heat recovery apparatus for ships according to a seventh embodiment of the present invention.
  • the marine waste heat recovery apparatus always maintains the power generation efficiency of the turbine 42 even when the load of the engine 10 changes and the amount of exhaust gas changes. Ensure power generation with optimum efficiency.
  • a temperature sensor 80 for measuring a temperature of a first refrigerant on a side of a first refrigerant outlet of a second heat exchanger 70b is provided. Can be provided.
  • the efficiency of the Rankine cycle including the turbine 42 may be constant.
  • the first valve 74b supplies a portion of the nut fluid to the third heat exchange part 70c to increase the temperature. Can be.
  • the temperature of the tide fluid can be further increased by the amount of heat supplied from the first heat exchange part 70a and the third heat exchange part 70c. have.
  • Control of the first valve 74b and the pump 72 as described above may be performed independently or in parallel.
  • the temperature of the nut carrier fluid flowing into the second heat exchange part 70b may be maintained at a constant level, and the turbine 42 may be always driven at an optimum efficiency.
  • the present invention can be used in ships, such ships have self-defense capability and ships for transporting people or cargo, as well as Liquefied Natural Gas-Floating Production Storage Offloading (LNG-FPSO) And floating offshore structures for storing and unloading cargo, such as floating storage units (FSUs).
  • LNG-FPSO Liquefied Natural Gas-Floating Production Storage Offloading
  • FSUs floating storage units

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A waste heat recovery device for a marine vessel is disclosed. According to the embodiments of the present invention, the waste heat recovery device for a marine vessel includes: a heat exchanger, which recovers heat from the exhaust fumes discharged from the engine, to heat a first refrigerant under uniform pressure; a turbine which is driven by adiabatically expanding the first refrigerant heated under uniform pressure; a condenser which condenses the adiabatically expanded first refrigerant; and a heat exchanging pump which compresses the condensed first refrigerant so as to re-circulate the compressed first refrigerant to the heat exchanger.

Description

선박용 폐열회수장치Waste heat recovery device for ship
본 발명은, 선박용 폐열회수장치에 관한 것으로서, 보다 상세하게는, 선박의 엔진에서 배출되는 배기 가스의 폐열을 회수하는 선박용 폐열회수장치에 관한 것이다.The present invention relates to a waste heat recovery apparatus for ships, and more particularly, to a waste heat recovery apparatus for ships that recovers waste heat of exhaust gas discharged from an engine of a ship.
최근에는 고유가 시대가 도래함에 따라 선박의 에너지 효율을 향상시켜 연료비를 감소시키고, 선박 운항의 친환경성을 확보하고자 하는 노력이 많이 진행되고 있다.Recently, with the advent of high oil prices, efforts have been made to improve the energy efficiency of ships, reduce fuel costs, and secure eco-friendliness of ship operations.
일반적으로 선박을 운항하는데 있어 에너지는 추진용 주 엔진에서 대부분의 에너지를 소비하고 있으며, 주 엔진의 작동을 위해 소요되는 연료의 약 25%는 배기 가스로 대기 중에 버려지고 있는 것이 현실이다. 따라서, 이러한 배기 가스를 이용해 폐열의 일부를 회수하는 여러 장치가 활발하게 도입되고 있다.In general, energy consumes most of the propulsion main engine in ship operation, and about 25% of the fuel required for the operation of the main engine is exhausted into the atmosphere as exhaust gas. Therefore, various apparatuses for recovering a part of waste heat by using such exhaust gas are actively introduced.
도 1은 종래 기술에 따른 선박용 폐열회수장치를 나타낸 개략도이다. 도 1을 참조하면, 종래 기술에 따른 선박용 폐열회수장치는 선박의 엔진(110)에서 배기 가스가 배출되는 배기관(111)에 열회수기(보일러)(121)를 설치한 후 배기 가스의 열을 회수(등압가열)하여 고온의 스팀을 생성하여 다양한 에너지원으로 사용하였다.1 is a schematic diagram showing a waste heat recovery apparatus for ships according to the prior art. Referring to Figure 1, the waste heat recovery apparatus for ships according to the prior art recovers the heat of the exhaust gas after installing a heat recovery device (boiler) 121 in the exhaust pipe 111 from which the exhaust gas is discharged from the engine 110 of the vessel (Isothermal heating) produced high temperature steam and used as various energy sources.
그러나, 이러한 종래 기술에 따른 선박용 폐열회수장치는 단일 구성된 열회수기(121)만을 통해 배기 가스의 폐열을 회수하도록 되어 있기 때문에, 열회수기(121)를 통과하고도 여전히 고온 상태의 배기 가스의 폐열을 회수하지 못하고 대기로 방출시키게 됨으로써 에너지 낭비를 초래하게 되는 등의 문제점을 갖고 있다.However, since the waste heat recovery apparatus for ships according to the prior art is configured to recover the waste heat of the exhaust gas only through a single configured heat recoverer 121, the waste heat of the exhaust gas in the high temperature state still passes through the heat recoverer 121. There is a problem such that it is not recovered and released to the atmosphere, causing waste of energy.
또한, 엔진 자체의 발생열을 냉각시키기 위한 쿨러들로부터의 열을 회수하기 위한 열회수 수단도 마련되어 있지 않고 있다.Further, no heat recovery means is provided for recovering heat from coolers for cooling the generated heat of the engine itself.
한편, 선박이 운항되는 동안 상기 엔진(110)의 가동률은 변화된다. 예를 들어, 선박은 전체 운항 일수의 2/3 정도는 엔진(110)을 풀 로드(Full load)로 가동하고, 나머지 운항 일수는 엔진(110)을 풀 로드에 비해 낮은 로드로 가동할 수 있다. 이와 같이 엔진(110)을 풀 로드에 비해 낮은 로드로 가동할 경우 배기 가스가 풀 로드일 때에 비해 상대적으로 적게 발생된다.On the other hand, the operation rate of the engine 110 is changed while the ship is operating. For example, a vessel may operate the engine 110 at full load for about two thirds of the total number of operating days, and operate the engine 110 at a lower load than the full load. . As such, when the engine 110 is operated at a lower load than the full load, the exhaust gas is generated relatively less than when the full load is used.
이와 같은 배기 가스 양의 변화는 랭킨 사이클로 유입되는 열량에 변화를 가져오게 되고, 이는 랭킨 사이클의 효율에 심각한 영향을 미치게 되므로, 엔진의 배기 가스의 폐열을 종래보다 더 많이 회수하여 터빈을 구동시킬 수 있도록 하는 선박용 폐열회수장치의 개발에 있어서 이러한 점이 고려되어야 보다 안정적으로 전기를 발생시킬 수 있을 것이다. Such a change in the amount of exhaust gas has a change in the amount of heat introduced into the Rankine cycle, which seriously affects the efficiency of the Rankine cycle, so that the waste heat of the engine exhaust gas can be recovered more than before to drive the turbine. This should be taken into consideration in the development of the ship's waste heat recovery system to generate electricity more stably.
따라서 본 발명이 이루고자 하는 기술적 과제는, 엔진의 배기 가스의 열원을 최대한 회수하여 터빈을 구동시킬 수 있도록 하여 에너지(전기) 발생 능력을 향상시킬 수 있는 선박용 폐열회수장치를 제공하는 것이다.Therefore, the technical problem to be achieved by the present invention is to provide a waste heat recovery apparatus for ships that can improve the energy (electricity) generating ability by driving the turbine by recovering the heat source of the exhaust gas of the engine as much as possible.
본 발명의 실시예의 일 측면에 따르면, 엔진에서 배출되는 배기 가스로부터 열을 회수하여 제1 냉매를 등압가열하는 열교환기; 등압가열된 상기 제1 냉매를 단열팽창시켜 구동되는 터빈; 단열팽창된 상기 제1 냉매를 응축시키는 응축기; 및 응축된 상기 제1 냉매를 압축시켜 상기 열교환기로 재순환시키는 열교환펌프를 포함하는 선박용 폐열회수장치가 제공될 수 있다.According to an aspect of an embodiment of the present invention, a heat exchanger for recovering heat from the exhaust gas discharged from the engine to heat isostatic pressure of the first refrigerant; A turbine driven by adiabatic expansion of the isothermally heated first refrigerant; A condenser for condensing the thermally expanded first refrigerant; And a heat exchange pump for compressing the condensed first refrigerant to be recycled to the heat exchanger.
상기 엔진에서 발생하는 열을 냉각시키기 위한 복수개의 쿨러를 더 포함하며, 상기 응축된 제1 냉매는 상기 복수개의 쿨러로부터 열을 공급받아 상기 열교환기로 재순환될 수 있다.The coolant may further include a plurality of coolers for cooling the heat generated by the engine, and the condensed first refrigerant may be recycled to the heat exchanger by receiving heat from the plurality of coolers.
상기 터빈에서 배출되는 열을 상기 열교환기로 공급되는 상기 제1 냉매에 공급하는 복열기를 더 포함할 수 있다.The apparatus may further include a recuperator for supplying heat discharged from the turbine to the first refrigerant supplied to the heat exchanger.
상기 엔진에서 배출되는 배기 가스가 통과하는 배기관에서 상기 열교환기의 전단에 마련되어 상기 열교환기와 별도로 상기 배기 가스의 열을 회수하기 위한 열회수기를 더 포함할 수 있다.In the exhaust pipe through which the exhaust gas discharged from the engine passes may be provided in front of the heat exchanger may further include a heat recovery for recovering the heat of the exhaust gas separately from the heat exchanger.
상기 열회수기에서 회수된 열을 이용하여 등압가열된 제2 냉매를 단열팽창시켜 구동하는 보조터빈; 상기 단열팽창된 제2 냉매를 응축시키는 보조응축기; 및 상기 응축된 제2 냉매를 압축시켜 상기 열회수기로 재순환시키는 보조펌프를 더 포함할 수 있다.An auxiliary turbine driven by adiabatic expansion of the second refrigerant heated isostatically by using the heat recovered from the heat recovery unit; An auxiliary condenser for condensing the adiabatic expanded second refrigerant; And an auxiliary pump compressing the condensed second refrigerant and recycling the second refrigerant to the heat recovery unit.
상기 응축기는 냉각매체로 해수를 사용할 수 있다.The condenser may use seawater as a cooling medium.
상기 응축기로 해수를 공급하기 위해 상기 응축기와 연결되는 냉각라인; 및 상기 냉각라인 상에 해수를 강제 순환시키기 위한 냉각펌프를 포함할 수 있다.A cooling line connected to the condenser for supplying seawater to the condenser; And it may include a cooling pump for forcibly circulating sea water on the cooling line.
상기 엔진에서 발생하는 열을 냉각시키기 위한 자켓쿨러를 포함하며, 상기 응축된 제1 냉매는 상기 자켓쿨러로부터 열을 공급받아 상기 열교환기로 재순환될 수 있다.It includes a jacket cooler for cooling the heat generated in the engine, the condensed first refrigerant may be recycled to the heat exchanger receives the heat from the jacket cooler.
상기 응축기로 상기 응축기의 냉각매체인 제3 냉매를 공급하기 위해 상기 응축기와 연결되는 응축기 냉각라인; 상기 응축기 냉각라인 상에 상기 제3 냉매를 강제 순환시키기 위한 응축기 냉각펌프; 상기 제3 냉매와 해수와의 열교환이 이루어지는 해수 열교환기; 상기 해수 열교환기로 해수를 공급하기 위해 상기 해수 열교환기와 연결되는 해수 라인; 및 상기 해수라인 상에 상기 해수를 강제 순환시키기 위한 해수펌프를 포함할 수 있다.A condenser cooling line connected to the condenser to supply a third refrigerant, which is a cooling medium of the condenser, to the condenser; A condenser cooling pump for forcibly circulating the third refrigerant on the condenser cooling line; A seawater heat exchanger in which heat exchange is performed between the third refrigerant and seawater; A seawater line connected to the seawater heat exchanger for supplying seawater to the seawater heat exchanger; And a seawater pump for forcibly circulating the seawater on the seawater line.
상기 응축기로 상기 응축기의 냉각매체인 제3 냉매를 공급하기 위해 상기 응축기와 연결되는 응축기 냉각라인; 상기 응축기 냉각라인 상에 상기 제3 냉매를 강제 순환시키기 위한 응축기 냉각펌프; 상기 제3 냉매와 해수와의 열교환 및 냉각용 청수와 상기 해수와의 열교환이 이루어지는 메인 쿨러; 상기 메인 쿨러로 상기 해수를 공급하기 위해 상기 메인 쿨러와 연결되는 해수라인; 및 상기 해수라인 상에 상기 해수를 강제 순환시키기 위한 해수펌프를 포함할 수 있다.A condenser cooling line connected to the condenser to supply a third refrigerant, which is a cooling medium of the condenser, to the condenser; A condenser cooling pump for forcibly circulating the third refrigerant on the condenser cooling line; A main cooler configured to exchange heat between the third refrigerant and the sea water, and to exchange fresh water for cooling and the sea water; A seawater line connected to the main cooler for supplying the seawater to the main cooler; And a seawater pump for forcibly circulating the seawater on the seawater line.
상기 제1 냉매는 암모니아, C2H6, C7H8, C8H16, R11, R113, R12, R123, R134a, R245fa 중 어느 하나일 수 있다.The first refrigerant may be any one of ammonia, C2H6, C7H8, C8H16, R11, R113, R12, R123, R134a, and R245fa.
상기 배기 가스에 의해 작동되는 터보차저를 더 포함하며, 상기 열교환기는, 상기 터보차저와 상기 터빈 사이에 배치되어 상기 터보차저에서 배출되는 상기 배기 가스와 상기 터빈에 공급되는 상기 제1 냉매와의 열교환을 매개하는 열교환유닛을 포함할 수 있다.And a turbocharger operated by the exhaust gas, wherein the heat exchanger is disposed between the turbocharger and the turbine to exchange heat between the exhaust gas discharged from the turbocharger and the first refrigerant supplied to the turbine. It may include a heat exchange unit that mediates.
상기 열교환기는, 상기 열교환유닛을 순환하는 열매개 유체의 순환을 위해, 적어도 1개 이상의 순환 펌프를 포함할 수 있다.The heat exchanger may include at least one circulation pump to circulate the trough fluid circulating through the heat exchange unit.
상기 열교환유닛은, 상기 터보차저에서 배출된 배기 가스와 상기 열매개 유체의 열 교환을 실시하는 제1 열교환부; 및 상기 제1 열교환부에서 배출된 배기 가스와 상기 터빈에 공급되는 제1 냉매가 열교환하는 제2 열교환부를 포함할 수 있다.The heat exchange unit may include: a first heat exchange unit configured to exchange heat between the exhaust gas discharged from the turbocharger and the trough fluid; And a second heat exchanger configured to exchange heat between the exhaust gas discharged from the first heat exchanger and the first refrigerant supplied to the turbine.
상기 열교환유닛은, 상기 제1 열교환부의 전단에 배치되며, 상기 터보 차저에서 공급되는 공기와 상기 열매개 유체가 열교환하여 상기 열매개 유체를 가열하는 제3 열교환부를 더 포함할 수 있다.The heat exchange unit may further include a third heat exchanger disposed at a front end of the first heat exchanger to heat the trough fluid by exchanging air supplied from the turbocharger with the trough fluid.
상기 열교환기는, 상기 제3 열교환부를 경유하지 않고, 상기 제1 열교환부로 상기 열매개 유체를 바이패스시키기 위한 바이패스부를 더 포함할 수 있다.The heat exchanger may further include a bypass unit for bypassing the trough fluid to the first heat exchange unit without passing through the third heat exchange unit.
상기 바이패스부는, 상기 열매개 유체의 유량을 조절하기 위한 조절 밸브를 더 포함할 수 있다.The bypass unit may further include a control valve for adjusting the flow rate of the trough fluid.
상기 조절밸브는, 상기 엔진의 로드(Load) 변화에 대응하여 상기 제3 열교환부로 공급되는 상기 열매개 유체의 유량을 조절할 수 있다.The control valve may adjust a flow rate of the trough fluid supplied to the third heat exchange part in response to a load change of the engine.
상기 열교환기는, 상기 열매개 유체가 일시적으로 저장되는 저장부를 더 포함할 수 있다.The heat exchanger may further include a storage unit in which the trough fluid is temporarily stored.
상기 조절밸브는 상기 제2 열교환부로 공급되는 열량이 일정한 수준으로 유지되도록 상기 제 3 열교환부로 공급되는 상기 열매개 유체의 유량을 조절할 수 있다.The control valve may adjust the flow rate of the trough fluid supplied to the third heat exchange unit so that the amount of heat supplied to the second heat exchange unit is maintained at a constant level.
상기 제2 열교환부의 전단에는 상기 제2 열교환부로 공급되는 상기 열 매개 유체의 온도를 측정하기 위한 온도 센서가 마련되며, 상기 조절 밸브는 상기 온도 센서의 감지 값을 바탕으로 제2 열교환부로 공급되는 상기 열매개 유체의 온도가 일정한 수준으로 유지되도록 상기 제3 열교환부로 공급되는 상기 열매개 유체의 유량을 조절할 수 있다.A temperature sensor for measuring the temperature of the heat-mediated fluid supplied to the second heat exchanger is provided at the front end of the second heat exchanger, and the control valve is supplied to the second heat exchanger based on the detected value of the temperature sensor. The flow rate of the thigh fluid supplied to the third heat exchange part may be adjusted to maintain the temperature of the tide fluid.
상기 순환 펌프는 상기 제1 냉매와 열교환하는 상기 열매개 유체의 온도가 일정하게 유지되도록 상기 열매개 유체의 유량을 조절할 수 있다.The circulation pump may adjust the flow rate of the trough fluid so that the temperature of the trough fluid that exchanges heat with the first refrigerant is kept constant.
본 발명의 실시예들은, 엔진의 배기 가스의 열원을 최대한 회수하여 복수의 터빈을 구동시킬 수 있게 되면서 에너지(전기) 발생 능력을 향상시킬 수 있다.Embodiments of the present invention can improve the energy (electricity) generating ability while being able to drive the plurality of turbines by recovering the heat source of the exhaust gas of the engine as much as possible.
또한, 열교환기를 순환하는 열매개 유체의 유량을 적절히 조절함으로써 엔진의 로드(load) 변화에도 불구하고 안정적으로 전기를 발생시킬 수 있다.In addition, by appropriately adjusting the flow rate of the trough fluid circulating the heat exchanger, it is possible to generate electricity stably despite the load change of the engine.
도 1은 종래 기술에 따른 선박용 폐열회수장치를 나타낸 개략도이다.1 is a schematic diagram showing a waste heat recovery apparatus for ships according to the prior art.
도 2는 본 발명의 제1 실시예에 따른 선박용 폐열회수장치를 나타낸 개략도이다.2 is a schematic view showing a waste heat recovery apparatus for ships according to a first embodiment of the present invention.
도 3은 본 발명의 제2 실시예에 따른 선박용 폐열회수장치를 나타낸 개략도이다.3 is a schematic view showing a waste heat recovery apparatus for a ship according to a second embodiment of the present invention.
도 4는 본 발명의 제3 실시예에 따른 선박용 폐열회수장치를 나타낸 개략도이다.Figure 4 is a schematic diagram showing a waste heat recovery apparatus for ships according to a third embodiment of the present invention.
도 5는 본 발명의 제4 실시예에 따른 선박용 폐열회수장치를 나타낸 개략도이다.5 is a schematic view showing a waste heat recovery apparatus for a ship according to a fourth embodiment of the present invention.
도 6은 본 발명의 제5 실시예에 따른 선박용 폐열회수장치를 나타낸 개략도이다.6 is a schematic view showing a waste heat recovery apparatus for a ship according to a fifth embodiment of the present invention.
도 7은 본 발명의 제6 실시예에 따른 선박용 폐열회수장치를 설명하기 위한 도면이다.7 is a view for explaining a waste heat recovery apparatus for ships according to a sixth embodiment of the present invention.
도 8은 본 발명의 제7 실시예에 따른 선박용 폐열회수장치를 설명하기 위한 도면이다.8 is a view for explaining the waste heat recovery apparatus for ships according to a seventh embodiment of the present invention.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시 예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다.In order to fully understand the present invention, the operational advantages of the present invention, and the objects achieved by the practice of the present invention, reference should be made to the accompanying drawings which illustrate preferred embodiments of the present invention and the contents described in the accompanying drawings.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상세히 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Like reference numerals in the drawings denote like elements.
이하, 본 발명의 실시예를 설명함에 있어서, “등압가열”은 압력을 수학적으로 또는 물리적으로 완전 동일을 유지하면서 가열하는 것이 아니라, 열역학에서 사용되는 용어의 “등압가열”로 이해하여야 할 것이다. 또한, 본 명세서에서 기재되는 “단열팽창” 등의 의미도 마찬가지로 해석하여야 할 것이다.Hereinafter, in describing the embodiments of the present invention, “isothermal heating” should be understood as “isothermal heating” of the term used in thermodynamics, rather than heating the pressure mathematically or physically while maintaining the exact same. In addition, the meaning of “thermal expansion” and the like described herein should be interpreted in the same manner.
도 2는 본 발명의 제1 실시예에 따른 선박용 폐열회수장치를 나타낸 개략도이다.2 is a schematic view showing a waste heat recovery apparatus for ships according to a first embodiment of the present invention.
도 2를 참조하면, 본 발명의 실시예에 따른 선박용 폐열회수장치는, 엔진(10)에서 배출되는 배기 가스로부터 열을 회수하여 제1 냉매를 등압가열하는 열교환기(41)와, 등압가열된 제1 냉매를 단열팽창시켜 구동되는 터빈(42)과, 단열팽창된 제1 냉매를 응축시키는 응축기(43)와, 응축된 제1 냉매를 압축시켜 열교환기(41)로 재순환시키는 열교환펌프(44)와, 엔진(10)에서 배출되는 배기 가스가 통과하는 배기관(11) 상의 열교환기(41)의 전단에 마련되어 열교환기(41)와 별도로 배기 가스의 열을 회수하기 위한 열회수기(31)를 포함한다.2, the waste heat recovery apparatus for ships according to an embodiment of the present invention, the heat exchanger 41 for recovering heat from the exhaust gas discharged from the engine 10 to isothermally heat the first refrigerant, and isothermally heated A turbine 42 driven by adiabatic expansion of the first refrigerant, a condenser 43 condensing the adiabatic expansion first refrigerant, and a heat exchange pump 44 which compresses and recycles the condensed first refrigerant to the heat exchanger 41. And a heat recovery unit 31 provided at the front end of the heat exchanger 41 on the exhaust pipe 11 through which the exhaust gas discharged from the engine 10 passes, for recovering heat of the exhaust gas separately from the heat exchanger 41. Include.
본 실시예에서는 배기 가스가 배출되는 엔진(10)의 배기관(11)에 설치한 열회수기(31)를 통해 배기 가스의 열을 회수하여 스팀을 발생시킨 후 다양한 에너지원으로 활용하는 동시에 열회수기(31) 후단의 배기관(11)에 열교환기(41)를 추가로 설치하고, 이 열교환기(41)에서 회수한 열을 이용하여 구동되는 터빈(42)과, 이 터빈(42)의 제1 냉매를 응축시키는 응축기(43)와, 응축된 응축수(제1 냉매)를 압축시키는 열교환펌프(44)를 마련함으로써 배기 가스의 폐열을 추가로 회수할 수 있도록 하고 있다. 여기서 제1 냉매는 유기화합물 즉 암모니아, C2H6, C7H8, C8H16, R11, R113, R12, R123, R134a, R245fa 중 어느 하나가 사용될 수 있다. In this embodiment, the heat of the exhaust gas is recovered through the heat recovery unit 31 installed in the exhaust pipe 11 of the engine 10 from which the exhaust gas is discharged to generate steam, and then utilized as various energy sources. 31) The heat exchanger 41 is further provided in the exhaust pipe 11 of the rear stage, and the turbine 42 driven using the heat | fever recovered by this heat exchanger 41, and the 1st refrigerant | coolant of this turbine 42 are provided. By providing a condenser 43 for condensing and a heat exchange pump 44 for compressing the condensed water (first refrigerant), waste heat of the exhaust gas can be further recovered. The first refrigerant may be any one of an organic compound, that is, ammonia, C2H6, C7H8, C8H16, R11, R113, R12, R123, R134a, and R245fa.
그러나 본 발명의 권리범위가 이에 한정되지 않으며, 만약 제1 냉매가 고온의 배기 가스로부터 폐열을 회수할 수 있다면 열회수기(31)는 생략될 수 있을 것이고, 또한 제1 냉매도 유기화합물이 아닌 다른 냉각매체가 사용될 수도 있을 것이다. However, the scope of the present invention is not limited thereto, and if the first refrigerant can recover the waste heat from the high temperature exhaust gas, the heat recovery unit 31 may be omitted, and the first refrigerant may not be an organic compound. Cooling media may also be used.
한편 본 발명의 실시예에 따른 선박용 폐열회수장치는, 열교환기(41)로 공급되는 제1 냉매에 터빈(42)에서 배출된 폐열을 공급하기 위한 복열기(45)를 더 포함한다. 이에 의하여 터빈(42)에서 배출된 폐열을 공급받은 제1 냉매가 열교환기(41)에 공급됨으로써 효율이 더 좋아지도록 하고 있는 것이다.Meanwhile, the ship waste heat recovery apparatus according to the embodiment of the present invention further includes a recuperator 45 for supplying waste heat discharged from the turbine 42 to the first refrigerant supplied to the heat exchanger 41. As a result, the first refrigerant supplied with the waste heat discharged from the turbine 42 is supplied to the heat exchanger 41 so as to improve the efficiency.
또한, 엔진(10)에는 엔진 자체에서 발생되는 열을 냉각시키기 위한 복수의 쿨러 즉 오일쿨러(12), 에어쿨러(13), 자켓쿨러(14)들이 마련되는데, 본 발명의 실시예에 따른 선박용 폐열회수장치의 효율을 더 향상시키기 위해, 열교환펌프(44)를 통해 압축된 제1 냉매가 복수의 쿨러들(12, 13, 14)로부터 열을 공급받아 열교환기(41)로 재순환되도록 구성하고 있다.In addition, the engine 10 is provided with a plurality of coolers for cooling the heat generated by the engine itself, that is, the oil cooler 12, the air cooler 13, the jacket cooler 14, for ships according to an embodiment of the present invention In order to further improve the efficiency of the waste heat recovery device, the first refrigerant compressed through the heat exchange pump 44 is configured to receive heat from the plurality of coolers 12, 13, and 14 to be recycled to the heat exchanger 41. have.
한편, 응축기(43)에서 사용되는 냉각매체로는 해수가 사용될 수 있으며, 응축기(43)로 해수를 공급하기 위해 응축기(43)와 연결되는 냉각라인(51) 및 이 냉각라인(51) 상에 해수를 강제 순환시키기 위한 냉각펌프(52)가 더 마련된다.Meanwhile, seawater may be used as the cooling medium used in the condenser 43, and the cooling line 51 connected to the condenser 43 and the cooling line 51 may be used to supply seawater to the condenser 43. A cooling pump 52 for forcibly circulating seawater is further provided.
이하 본 발명의 제1 실시예인 선박용 폐열회수장치의 작동 과정에 대하여 설명하면 다음과 같다.Hereinafter, a description will be given of the operation of the waste heat recovery apparatus for ships which is the first embodiment of the present invention.
우선, 열회수기(31)를 통해 배기 가스의 열을 회수(등압가열)하여 과열증기를 발생시켜 다양한 에너지원으로 사용하고, 그 후 열교환기(41)에서는 열회수기(31)를 거친 배기 가스의 열을 다시 회수(등압가열)하여 제1 냉매가 과열증기 상태가 되도록 하고, 그 다음으로 터빈(42)에서 제1 냉매가 단열팽창되면서 터빈(42)을 구동시키며, 터빈(42)에서 배출된 가스(제1 냉매)는 응축기(43)에서 냉각매체에 의해 등압냉각되어 포화수(제1 냉매)가 된 후, 열교환펌프(44)에서 단열 압축되어 다시 열교환기(41)로 공급되어 증발되는 과정을 반복하면서 배기 가스의 폐열을 최대한 회수하여 터빈(42)을 구동시키게 되는 것이다. First, the heat of the exhaust gas is recovered (isometrically heated) through the heat recovery unit 31 to generate superheated steam and used as various energy sources. The heat exchanger 41 then uses the exhaust gas that has passed through the heat recovery unit 31. The heat is recovered again (isothermal heating) so that the first refrigerant is in a superheated steam state, and then the turbine 42 is driven while adiabatic expansion of the first refrigerant is performed in the turbine 42, and discharged from the turbine 42. The gas (first refrigerant) is isothermally cooled by the cooling medium in the condenser 43 to become saturated water (first refrigerant), and adiabaticly compressed by the heat exchange pump 44, and then supplied to the heat exchanger 41 to be evaporated. By repeating the process to recover the waste heat of the exhaust gas as possible to drive the turbine 42.
이때, 열교환펌프(44)를 통해 압축된 제1 냉매는 복수의 쿨러, 즉 오일쿨러(12), 에어쿨러(13) 및 자켓쿨러(14)들로부터 열을 공급받은 후 다시 복열기(45)로부터 터빈(42)에서 배출된 폐열을 공급받아 열교환기(41)로 공급됨으로써 효율이 더욱 향상될 수 있다.At this time, the first refrigerant compressed through the heat exchange pump 44 receives heat from the plurality of coolers, that is, the oil cooler 12, the air cooler 13, and the jacket coolers 14, and then recuperators 45 again. Since the waste heat discharged from the turbine 42 is supplied to the heat exchanger 41, the efficiency may be further improved.
전술한 바와 같이 본 실시 예에서는 열회수기(31)가 마련되어 있으나, 열교환기(41)에 사용되는 제1 냉매가 본 실시 예의 열회수기(31)에서 사용되는 냉매처럼 고온의 배기 가스의 열을 회수할 수 있다면 이 경우 열회수기(31)는 생략될 수도 있을 것이다.As described above, in the present embodiment, the heat recovery unit 31 is provided, but the first refrigerant used in the heat exchanger 41 recovers heat of the high-temperature exhaust gas like the refrigerant used in the heat recovery unit 31 of the present embodiment. In this case, the heat recoverer 31 may be omitted.
도 3은 본 발명의 제2 실시예에 따른 선박용 폐열회수장치의 구성을 도시한 도면이다.3 is a view showing the configuration of the waste heat recovery apparatus for ships according to a second embodiment of the present invention.
본 실시예는 제1 실시예와 비교할 때에 일부의 구성에 있어서 차이가 있을 뿐, 다른 구성에 있어서는 도 2의 제1 실시예의 구성과 동일하므로, 이하에서는 본 실시예의 차이점이 있는 구성에 대해서만 설명하기로 한다.This embodiment differs in part of the configuration when compared with the first embodiment, and in other configurations is the same as that of the first embodiment of FIG. 2, the following description will only be given of the configuration that differs from the present embodiment. Shall be.
도 3을 참조하면, 본 발명의 제2 실시예에 따른 선박용 폐열회수장치는, 열회수기(31) 후단의 배기관(11)에 열교환기(41)를 설치하고 이 열교환기(41)에서 회수된 열을 이용하여 구동되는 터빈(42)과, 이 터빈(42)의 가스(제1 냉매)를 응축시키는 응축기(43) 및 응축된 응축수(제1 냉매)를 압축시키는 열교환펌프(44)를 마련하여 배기 가스의 폐열을 추가로 회수할 수 있도록 하는 전술한 제1 실시예와 동일한 사이클 외에, 배기 가스가 배출되는 엔진(10)의 배기관(11)에 설치한 열회수기(31)를 통해 배기 가스의 열을 회수하여 보조터빈(32)을 구동시킨 후 보조응축기(33)에서 제2 냉매가 응축되고 응축된 제2 냉매는 보조펌프(34)에서 압축되어 다시 열회수기(31)로 공급되는 과정을 반복하면서 배기 가스의 폐열을 지속적으로 회수함으로써 보조터빈(32)을 구동시키도록 하는 사이클이 더 추가된다.Referring to FIG. 3, in a ship waste heat recovery apparatus according to a second embodiment of the present invention, a heat exchanger 41 is installed in an exhaust pipe 11 at a rear end of a heat recovery unit 31 and recovered from the heat exchanger 41. A turbine 42 driven using heat, a condenser 43 for condensing the gas (first refrigerant) of the turbine 42, and a heat exchange pump 44 for compressing the condensed water (first refrigerant) are provided. Exhaust gas through a heat recovery unit 31 provided in the exhaust pipe 11 of the engine 10 through which the exhaust gas is discharged, in addition to the same cycle as the above-described first embodiment for allowing the waste heat of the exhaust gas to be recovered further. After recovering the heat to drive the auxiliary turbine 32, the second refrigerant is condensed in the auxiliary condenser 33, the condensed second refrigerant is compressed in the auxiliary pump 34 is supplied back to the heat recovery machine (31) To drive the auxiliary turbine 32 by continuously recovering the waste heat of the exhaust gas while repeating It is adding more cycles.
이러한 구성에 따른 본 발명의 제2 실시예인 선박용 폐열회수장치의 작동 과정을 살펴보면 다음과 같다.Looking at the operation process of the waste heat recovery apparatus for ships according to the second embodiment of the present invention according to such a configuration as follows.
우선, 열회수기(31)에서 배기 가스의 열을 회수(등압가열)하여 제2 냉매가 과열증기 상태가 되도록 하고, 다음으로 보조터빈(32)에서 제2 냉매가 단열팽창되면서 보조터빈(32)을 구동시키며, 보조터빈(32)에서 배출된 제2 냉매는 다음으로 제1응축기(33)에서 냉각매체(해수)에 의해 등압냉각되어 포화수가 된 후, 보조펌프(34)에서 단열압축되어 다시 열회수기(31)로 공급되어 증발되는 과정을 반복하면서 배기 가스의 폐열을 지속적으로 회수하여 보조터빈(32)을 구동시킨다.First, the heat recovery unit 31 recovers the heat of the exhaust gas (isothermal heating) so that the second refrigerant is in the superheated steam state, and then, the second refrigerant is adiabaticly expanded in the auxiliary turbine 32 while the auxiliary turbine 32 is insulated. The second refrigerant discharged from the auxiliary turbine 32 is then isothermally cooled by a cooling medium (sea water) in the first condenser 33 to become saturated water, and then adiabaticly compressed by the auxiliary pump 34 again. The auxiliary turbine 32 is driven by continuously recovering the waste heat of the exhaust gas while repeating the process of being supplied to the heat recoverer 31 and evaporating.
그리고, 이와 동시에 열교환기(41)에서는 열회수기(31)를 거친 배기 가스의 열을 다시 회수(등압가열)하여 제1 냉매가 과열증기 상태가 되도록 하고, 그 다음 단계인 터빈(42)에서 제1 냉매가 단열팽창되면서 이 터빈(42)을 구동시키며, 이 터빈(42)에서 배출된 가스(제1 냉매)는 그 다음 단계인 응축기(43)에서 냉각수에 의해 등압냉각되어 포화수가 된 후, 그 다음 단계인 열교환펌프(44)에서 단열압축되어 다시 열교환기(41)로 공급되어 증발되는 과정을 반복하면서 배기 가스의 폐열을 최대한 회수하여 터빈(42)을 구동시키게 되는 것이다. At the same time, the heat exchanger 41 recovers (heat isothermally) the heat of the exhaust gas which has passed through the heat recoverer 31 so that the first refrigerant is in the superheated steam state, and then the turbine 42 has the next step. After the refrigerant is adiabaticly expanded, the turbine 42 is driven, and the gas (first refrigerant) discharged from the turbine 42 is isothermally cooled by the cooling water in the condenser 43, which is the next step, to become saturated water. The heat exchange pump 44, which is the next step, is adiabatic and supplied to the heat exchanger 41 and is repeatedly evaporated to recover the waste heat of the exhaust gas as much as possible to drive the turbine 42.
또한 열교환펌프(44)를 통해 압축된 제1 냉매는 복수의 쿨러, 즉 오일쿨러(12), 에어쿨러(13) 및 자켓쿨러(14)들로부터 열을 공급받은 후 다시 복열기(45)를 통하여 터빈(42)에서 배출된 폐열을 공급받은 후 열교환기(41)로 공급됨으로써 더욱 효율이 향상된다.In addition, the first refrigerant compressed by the heat exchange pump 44 receives heat from the plurality of coolers, that is, the oil cooler 12, the air cooler 13, and the jacket coolers 14, and then returns the recuperator 45 again. Since the waste heat discharged from the turbine 42 is supplied to the heat exchanger 41, the efficiency is further improved.
이와 같이, 본 발명의 실시예는 종래의 선박용 폐열회수장치와 달리 열교환기(41)와 터빈(42)을 마련하여 선박의 엔진(10)에서 배출되는 배기 가스의 열, 즉 폐열을 열회수기(31)를 통해 1차적으로 회수하여 보조터빈(32)을 구동시키고, 다시 열교환기(41)를 통해 2차적으로 폐열을 회수하여 터빈(42)을 구동시키게 함으로써, 기본적으로 엔진(10)의 배기 가스의 열원을 최대한 회수하여 복수의 터빈(32, 42)을 구동시킬 수 있게 되면서 에너지(전기) 발생 능력을 향상시킬 수 있다.As described above, the embodiment of the present invention provides a heat exchanger 41 and a turbine 42 unlike the conventional waste heat recovery apparatus for ships, so that the heat of exhaust gas discharged from the engine 10 of the vessel, that is, waste heat, is recovered. 31 to recover the primary through the primary turbine 32, and again to recover the waste heat through the heat exchanger 41 to drive the turbine 42, thereby basically exhausting the engine 10 It is possible to drive the plurality of turbines 32 and 42 by recovering the heat source of the gas as much as possible, thereby improving the energy (electricity) generating ability.
또한, 이에 더해 복수의 쿨러들(12, 13, 14)로부터도 제1 냉매는 열을 회수한 후 열교환기(41)로 공급할 수 있도록 할 뿐만 아니라 터빈(42)에서 배출된 폐열을 이용하여 복열기(45)에서도 열교환기(41)로 공급되는 제1 냉매에 열을 공급함으로써 효율 향상을 도모하고 있다.In addition, the first refrigerant from the plurality of coolers 12, 13, and 14 also recovers heat and supplies the heat to the heat exchanger 41, and also recovers heat by using the waste heat discharged from the turbine 42. Also in the hot air 45, the efficiency is improved by supplying heat to the first refrigerant supplied to the heat exchanger 41.
도 4는 본 발명의 제3 실시예에 따른 선박용 폐열회수장치의 구성을 도시한 도면이다.4 is a view showing the configuration of a waste heat recovery apparatus for ships according to a third embodiment of the present invention.
본 실시예는 제1 실시예와 비교할 때에 일부의 구성에 있어서 차이가 있을 뿐, 다른 구성에 있어서는 도 2의 제1 실시예의 구성과 동일하므로, 이하에서는 본 실시예의 차이점이 있는 구성에 대해서만 설명하기로 한다.This embodiment differs in part of the configuration when compared with the first embodiment, and in other configurations is the same as that of the first embodiment of FIG. 2, the following description will only be given of the configuration that differs from the present embodiment. Shall be.
도 4를 참조하면, 본 발명의 제3실시예에 따른 폐열회수장치는, 엔진(10)에서 발생하는 열을 냉각시키기 위한 자켓쿨러(14)를 포함하며, 응축된 제1 냉매는 자켓쿨러(14)로부터 열을 공급받아 열교환기(41)로 재순환한다. 즉, 본 실시 예에서는 제1 실시 예와 달리 열교환펌프(44)를 통해 압축된 제1 냉매가 자켓쿨러(14)만으로부터 열을 공급받아 열교환기(41)로 공급되도록 하고 있다. 이는 오일쿨러(12), 에어쿨러(13)에 비하여 자켓쿨러(14)로부터 상대적으로 많은 열을 공급받을 수 있기 때문에 오일쿨러(12) 및 에어쿨러(13)를 거치는 라인을 생략하여 제1 실시예 대비 전체 사이클을 단순화시킬 수 있으면서도 효율 면에서는 제1 실시예 대비 큰 저하가 없을 수 있는 장점이 있다.Referring to FIG. 4, the waste heat recovery apparatus according to the third embodiment of the present invention includes a jacket cooler 14 for cooling heat generated in the engine 10, and the condensed first refrigerant may be a jacket cooler ( The heat is supplied from 14) and recycled to the heat exchanger 41. That is, in the present embodiment, unlike the first embodiment, the first refrigerant compressed through the heat exchange pump 44 receives heat from only the jacket cooler 14 and is supplied to the heat exchanger 41. This is because the heat can be supplied from the jacket cooler 14 relatively more than the oil cooler 12 and the air cooler 13, so that the line passing through the oil cooler 12 and the air cooler 13 is omitted. While the entire cycle can be simplified compared to the example, there is an advantage in that there can be no significant reduction in efficiency compared to the first embodiment.
도 5는 본 발명의 제4 실시예에 따른 선박용 폐열회수장치의 구성을 도시한 도면이다.5 is a view showing the configuration of the waste heat recovery apparatus for ships according to a fourth embodiment of the present invention.
본 실시예는 제1 실시예와 비교할 때에 일부의 구성에 있어서 차이가 있을 뿐, 다른 구성에 있어서는 도 2의 제1 실시예의 구성과 동일하므로, 이하에서는 본 실시예의 차이점이 있는 구성에 대해서만 설명하기로 한다.This embodiment differs in part of the configuration when compared with the first embodiment, and in other configurations is the same as that of the first embodiment of FIG. 2, the following description will only be given of the configuration that differs from the present embodiment. Shall be.
도 5를 참조하면, 본 발명의 제4 실시예에 따른 폐열회수장치의 응축기(43)는 냉각매체로 제3 냉매를 사용하며, 제3 냉매는 해수와 열교환한다.5, the condenser 43 of the waste heat recovery apparatus according to the fourth embodiment of the present invention uses a third refrigerant as a cooling medium, and the third refrigerant exchanges heat with seawater.
보다 자세히 설명하면, 응축기(43)로 제3 냉매를 공급하기 위해 응축기(43)와 연결되는 응축기 냉각라인(61)과, 응축기 냉각라인(61) 상에 제3 냉매를 강제 순환시키기 위한 응축기 냉각펌프(62)와, 제3 냉매와 해수와의 열교환이 이루어지는 해수 열교환기(63)와, 해수 열교환기(63)로 해수를 공급하기 위해 해수 열교환기(63)와 연결되는 해수라인(64)과, 해수라인(64)에 해수를 강제 순환시키기 위한 해수펌프(65)를 포함한다.In more detail, the condenser cooling line 61 connected to the condenser 43 for supplying the third refrigerant to the condenser 43 and the condenser cooling for forcibly circulating the third refrigerant on the condenser cooling line 61. A pump 62, a seawater heat exchanger 63 in which heat is exchanged between the third refrigerant and seawater, and a seawater line 64 connected to the seawater heat exchanger 63 to supply seawater to the seawater heat exchanger 63. And, the sea water line 64 includes a sea water pump 65 for forcibly circulating sea water.
즉, 응축기(43)의 냉각이 해수에 의해 이루어질 경우 응축기(43) 등에 부식이 발생될 우려가 있으므로 이를 방지하기 위해 별도의 응축기 냉각라인(61)을 구비하여 간접적으로 해수와 응축기(43)가 열교환되도록 한다.That is, when the cooling of the condenser 43 is made by sea water, there is a possibility that corrosion occurs in the condenser 43, etc. In order to prevent this, a separate condenser cooling line 61 is provided indirectly, so that the sea water and the condenser 43 Allow heat exchange.
도 6은 본 발명의 제5 실시예에 따른 선박용 폐열회수장치의 구성을 도시한 도면이다.6 is a view showing the configuration of the waste heat recovery apparatus for ships according to a fifth embodiment of the present invention.
본 실시예는 제1 실시예와 비교할 때에 일부의 구성에 있어서 차이가 있을 뿐, 다른 구성에 있어서는 도 2의 제1 실시예의 구성과 동일하므로, 이하에서는 본 실시예의 차이점이 있는 구성에 대해서만 설명하기로 한다.This embodiment differs in part of the configuration when compared with the first embodiment, and in other configurations is the same as that of the first embodiment of FIG. 2, the following description will only be given of the configuration that differs from the present embodiment. Shall be.
도 6을 참조하면, 본 발명의 제5 실시예에 따른 폐열회수장치는, 응축기(43)로 제3 냉매를 공급하기 위해 응축기(43)와 연결되는 응축기 냉각라인(61)과, 상기 응축기 냉각라인(61)에 제3 냉매를 강제 순환시키기 위한 응축기 냉각펌프(62)와, 제3 냉매와 해수와의 열교환 및 냉각용 청수와 해수와의 열교환이 이루어지는 메인 쿨러(71)와, 메인 쿨러(71)로 해수를 공급하기 위해 메인 쿨러(71)와 연결되는 해수라인(64)과, 해수라인(64)에 상기 해수를 강제 순환시키기 위한 해수펌프(65)를 포함한다.Referring to FIG. 6, the waste heat recovery apparatus according to the fifth embodiment of the present invention includes a condenser cooling line 61 connected to the condenser 43 to supply a third refrigerant to the condenser 43, and the condenser cooling. A condenser cooling pump 62 for forcibly circulating the third refrigerant in the line 61, a main cooler 71 in which heat exchange between the third refrigerant and sea water and heat exchange between the fresh water and cooling water is performed, and a main cooler ( A seawater line 64 connected to the main cooler 71 to supply seawater to the seawater 71, and a seawater pump 65 for forcibly circulating the seawater in the seawater line 64.
메인 쿨러(71)는 선박 내의 장치를 냉각시키기 위한 냉각용 청수(freshwater)와 해수가 열교환되는 곳을 말하며, 냉각용 청수는 청수라인(81)과 청수펌프(미도시)를 통해 공급된다.The main cooler 71 refers to a place where the fresh water for cooling and the sea water are exchanged for cooling the device in the ship, and the cooling fresh water is supplied through the fresh water line 81 and the fresh water pump (not shown).
메인 쿨러(71)에서 응축기(43)를 냉각시키는 제3 냉매와 해수가 열교환됨으로써 응축기(43)와 해수가 간접적으로 열교환되기 때문에 응축기(43) 등에 해수에 의한 부식을 방지할 수 있는 장점이 있다.The third coolant that cools the condenser 43 in the main cooler 71 exchanges seawater with the condenser 43 by indirectly exchanging the seawater with the seawater, thereby preventing corrosion of the condenser 43 by seawater. .
도 7은 본 발명의 제6 실시예에 따른 선박용 폐열회수장치를 설명하기 위한 도면이다.7 is a view for explaining a waste heat recovery apparatus for ships according to a sixth embodiment of the present invention.
본 실시예는 제1 실시예와 비교할 때에 일부의 구성에 있어서 차이가 있을 뿐, 다른 구성에 있어서는 도 2의 제1 실시예의 구성과 동일하므로, 이하에서는 차이점을 위주로 설명하며 동일한 부분에 대해서는 제1 실시예의 설명과 도면 부호를 원용한다.This embodiment differs only in part from its configuration when compared to the first embodiment, and in other configurations is the same as that of the first embodiment of FIG. The description and reference numerals of the embodiments are used.
도 7을 참조하면, 본 발명의 제6 실시예에 따른 선박용 폐열회수장치는, 제1 실시예와 같이 선박의 추진력을 발생시키는 엔진(10)의 배기 가스를 에너지원으로 동작된다. Referring to FIG. 7, the waste heat recovery apparatus for ships according to the sixth embodiment of the present invention operates as an energy source using the exhaust gas of the engine 10 generating the propulsion force of the ship as in the first embodiment.
보다 상세하게 설명하면, 엔진(10)에서 배출된 배기 가스는 약 240℃ 내지 250℃의 온도 범위보다 높은 온도로 터보차저(15)로 유입되며 터보차저(15)에서 배출되는 배기 가스는 약 240℃ 내지 250℃의 온도 범위를 갖는다. 엔진(10)에서 배출되는 배기 가스는 고압 상태이며 배기 가스는 터보차저(15)에 구비된 블레이드(미도시)를 회전시킨다.In more detail, the exhaust gas discharged from the engine 10 is introduced into the turbocharger 15 at a temperature higher than the temperature range of about 240 ° C to 250 ° C, and the exhaust gas discharged from the turbocharger 15 is about 240 It has a temperature range of ℃ to 250 ℃. The exhaust gas discharged from the engine 10 is a high pressure state and the exhaust gas rotates a blade (not shown) provided in the turbocharger 15.
이와 동시에 터보차저(15)에는 외부 공기가 유입되는데, 터보차저(15)에 유입된 외부 공기는 터보차저(15)로 공급된 배기 가스에 의해 회전되는 블레이드(미도시)에 의해 압축된다. 이 과정에서 외부 공기는 온도가 높아진다.At the same time, external air flows into the turbocharger 15, and the external air introduced into the turbocharger 15 is compressed by a blade (not shown) that is rotated by the exhaust gas supplied to the turbocharger 15. In this process, the outside air becomes hot.
터보차저(15)에서 배출된 배기 가스는 열교환기(41)에 구비된 열교환유닛(70)으로 공급될 수 있으며, 이러한 배기 가스는 열교환유닛(70)에 마련된 다수개의 열교환부 중에서 제1 열교환부(70a)로 공급될 수 있다.The exhaust gas discharged from the turbocharger 15 may be supplied to the heat exchange unit 70 provided in the heat exchanger 41, and the exhaust gas may be supplied to the first heat exchange unit from a plurality of heat exchange units provided in the heat exchange unit 70. Can be supplied to 70a.
한편, 열교환기(41)는 내부에 열매개 유체가 연속적으로 순환 가능하도록, 배관이 마련될 수 있다.On the other hand, the heat exchanger 41 may be provided with a pipe, so that the nut fluid can be continuously circulated.
열매개 유체는 배기 가스와의 열교환을 통해 소정의 온도로 가열되어 열교환기(41)의 배치 경로를 따라 순환될 수 있다.The nut carrier fluid may be heated to a predetermined temperature through heat exchange with the exhaust gas and circulated along the arrangement path of the heat exchanger 41.
본 실시예에서는 열매개 유체에 대해 특별히 한정하지는 않으나, 고온의 배기 가스에 의해 산화하지 않고, 초기의 물리적인 점성이 안정적으로 유지되는 것이 바람직하다. 예를 들면, 열매개 유체는 물 또는 열매체유(thermal oil)일 수 있다.In the present embodiment, the trough fluid is not particularly limited, but it is preferable that the initial physical viscosity is stably maintained without oxidation by hot exhaust gas. For example, the mediator fluid may be water or thermal oil.
제1 열교환부(70a)는 배기 가스와의 열교환을 통해 열매개 유체에 열을 공급할 수 있다.The first heat exchange part 70a may supply heat to the nut medium fluid through heat exchange with the exhaust gas.
이와 동시에, 터보차저(15)로 유입된 외부 공기는 소정의 온도로 가열된 후 제3 열교환부(71c)로 이동될 수 있다.At the same time, the outside air introduced into the turbocharger 15 may be heated to a predetermined temperature and then moved to the third heat exchanger 71c.
이러한 제3 열교환부(71c)는 터보차저(15)에서 가열된 외부 공기와 열교환기(41)의 내부를 따라 순환되는 열매개 유체를 열교환시켜 열매개 유체를 가열할 수 있다.The third heat exchanger 71c may heat the thigh fluid by heat-exchanging the outside air heated in the turbocharger 15 and the trough fluid circulated along the inside of the heat exchanger 41.
즉, 열매개 유체는 제1 열교환부(70a)로 이동되기 이전에 제3 열교환부(71c)에서 소정의 온도로 가열되고, 그 후 제1 열교환부(70a)에서 터보차저(15)로부터 공급된 배기 가스에 의해 재차 가열될 수 있다.In other words, the trough fluid is heated to a predetermined temperature in the third heat exchanger 71c before being moved to the first heat exchanger 70a, and then supplied from the turbocharger 15 in the first heat exchanger 70a. It can be heated again by the exhaust gas.
제3 열교환부(71c)에서 배출되는 공기는 해수에 의해 냉각된 후 엔진(10)으로 공급될 수 있다.The air discharged from the third heat exchange part 71c may be supplied to the engine 10 after being cooled by sea water.
제1 열교환부(70a)는 열매개 유체와 터보차저(15)에서 배출된 배기 가스를 열교환시킴으로써 열매개 유체를 가열시킬 수 있으며, 앞서 서술된 제3 열교환부(71c)에 비해 상대적으로 큰 열 교환 면적을 가지도록 마련될 수 있다.The first heat exchanger 70a may heat the nutritive fluid by heat-exchanging the nutritive fluid and the exhaust gas discharged from the turbocharger 15, and the heat larger than the third heat exchanger 71c described above. It may be provided to have an exchange area.
제2 열교환부(70b)는 제1 열교환부(70a)에서 공급되는 열매개 유체와 터빈(200)을 구동하는 제1 냉매를 열교환시켜 제1 냉매를 가열한다. 즉, 제2 열교환부(70b)에서 열매개 유체가 갖는 열에너지가 제1 냉매로 전달된다.The second heat exchange part 70b heats the first refrigerant that drives the turbine 200 and the nut carrier fluid supplied from the first heat exchange part 70a to heat the first refrigerant. In other words, the heat energy of the nut carrier fluid is transferred to the first refrigerant in the second heat exchange part 70b.
본 실시 예에서 제1 냉매는 유기 냉매가 사용될 수 있으며, 유기 냉매는 유기혼합물(organic compound)이 사용될 수 있다. 또한, 제1 냉매는 비등점이 낮아 저온에서도 기화가 안정적으로 이루어 질 수 있고, 터빈(200) 내부에서 증기 상태로 블레이드를 회전 작동시킬 수 있는 것이 사용될 수 있다. In the present exemplary embodiment, an organic refrigerant may be used as the first refrigerant, and an organic compound may be used as the organic refrigerant. In addition, since the first refrigerant has a low boiling point, vaporization may be stably performed even at low temperatures, and the blade may be used to rotate the blade in a steam state within the turbine 200.
이러한 제1 냉매로는 주로 프레온(freon) 계열의 냉매와, 프로판(propane) 등의 탄화수소계(hydro carbon series) 물질이 사용될 수 있다. 예를 들면, 상기 제1 냉매로는 비교적 저열원(400℃ 이하)에서 사용되기 적합한 R134a, R245fa, R236, R401, R404 중 어느 하나일 수 있다.As the first refrigerant, a freon-based refrigerant and a hydrocarbon-based material such as propane may be used. For example, the first refrigerant may be any one of R134a, R245fa, R236, R401, and R404 suitable for use in a relatively low heat source (400 ° C. or less).
이와 같은 특성을 갖는 제1 냉매는 상기 제2 열교환부(70b)에서 열을 흡수하여 기화되고, 터빈(42)으로 공급된다.The first refrigerant having such characteristics is vaporized by absorbing heat from the second heat exchanger 70b and is supplied to the turbine 42.
터빈(42)은 제1 냉매를 에너지원으로 하여 발전기(G, Generator)를 구동함으로써 전기를 발생시킨다.The turbine 42 generates electricity by driving a generator G using the first refrigerant as an energy source.
제1 냉매는 터빈(42)을 경유하여 복열기(45)로 이동될 수 있으며, 복열기(45)를 경유한 제1 냉매는 해수와 열교환이 이루어지는 응축기(43)에서 액화되고, 펌프(44)를 통해 펌핑되어 복열기(45)로 순환 공급될 수 있다.The first refrigerant may be moved to the recuperator 45 via the turbine 42, and the first refrigerant via the recuperator 45 is liquefied in the condenser 43 in which heat exchange with sea water is performed. It may be pumped through) and circulated to the recuperator 45.
제1 냉매는 복열기(45)를 경유하여 제2 열교환부(70b)로 공급될 수 있다.The first refrigerant may be supplied to the second heat exchange part 70b via the recuperator 45.
이하에서는 본 실시예에 따른 열교환기(41)에 대해 상세히 설명한다.Hereinafter, the heat exchanger 41 according to the present embodiment will be described in detail.
앞서 설명된 열교환부(70) 즉 제1 열교환부(70a), 제2 열교환부(70b) 및 제3 열교환부(71c)는 직렬로 배치될 수 있으며, 열교환기(41) 내에서 열매개 유체가 순환되도록 적어도 1개 이상의 순환 펌프(72)가 마련될 수 있다.The above-described heat exchanger 70, that is, the first heat exchanger 70a, the second heat exchanger 70b, and the third heat exchanger 71c may be arranged in series, and the fruit fluid in the heat exchanger 41 may be arranged in series. At least one circulation pump 72 may be provided to circulate.
순환 펌프(72)는 제3 열교환부(71c)의 전단에 배치될 수 있으나, 본 발명의 권리범위가 이에 한정되는 것은 아니다.The circulation pump 72 may be disposed at the front end of the third heat exchange part 71c, but the scope of the present invention is not limited thereto.
열교환기(41)는, 열교환부(70) 즉 제1 열교환부(70a), 제2 열교환부(70b) 및 제3 열교환부(70c)를 경유한 열매개 유체가 일시적으로 저장되는 저장부(73)를 더 포함할 수 있다. 저장부(73)에는 열매개 유체의 부족을 방지하기 위해 열교환기(41)를 순환하는 열매개 유체의 유량보다 더 많은 열매개 유체가 저장될 수도 있다.The heat exchanger 41 includes a storage unit for temporarily storing a nut fluid through the heat exchange unit 70, that is, the first heat exchange unit 70a, the second heat exchange unit 70b, and the third heat exchange unit 70c ( 73) may be further included. The storage unit 73 may store more tide fluid than the flow rate of the tide fluid circulating through the heat exchanger 41 to prevent shortage of tide fluid.
제2 열교환부(70b)를 경유한 열매개 유체는 저장부(73)에서 일시적으로 저장되었다가, 순환 펌프(72)에 의해 펌핑되어 제3 열교환부(70c)로 이동 공급될 수 있다.The nut medium fluid via the second heat exchange part 70b may be temporarily stored in the storage part 73, pumped by the circulation pump 72, and then supplied to the third heat exchange part 70c.
또한 열교환기(41)는 순환 펌프(72)를 경유한 열매개 유체가 제3 열교환부(70c)를 경유하지 않고, 제1 열교환부(70a)로 바이패스되도록 하기 위한 바이패스부(74)를 더 포함할 수 있다. In addition, the heat exchanger 41 includes a bypass unit 74 for allowing the nutritive fluid via the circulation pump 72 to be bypassed to the first heat exchange unit 70a without passing through the third heat exchange unit 70c. It may further include.
바이패스부(74)는, 바이패스관(74a)과, 열매개 유체를 바이패스관(74a)으로 공급하거나 제3 열교환부(70c)로 공급하는 제1 밸브(74b)와, 바이패스관(74a)을 지나온 열매개 유체를 메인 유로에 합류시키는 제2 밸브(74c)를 포함할 수 있다. The bypass section 74 includes a bypass pipe 74a, a first valve 74b for supplying a nut nut fluid to the bypass pipe 74a, or a third heat exchange part 70c, and a bypass pipe. It may include a second valve (74c) for joining the nut nut fluid passing through (74a) to the main flow path.
제1 밸브(74b)는 열매개 유체의 일부 또는 전부가 바이패스관(74a)으로 이동하도록 흐름을 조절할 수 있으며, 마찬가지로 제3 열교환부(70c)로 공급되는 열매개 유체의 유량을 조절할 수도 있다. 여기서, 제1 밸브(74b)는 바이패스관(74a) 및 제3 열교환부(70c)로 공급되는 열매개 유체의 유량을 조절할 수 있는 것으로서, 유량 조절 수단이라고 부를 수도 있다.The first valve 74b may adjust the flow such that some or all of the nut opening fluid moves to the bypass pipe 74a, and may similarly adjust the flow rate of the nut opening fluid supplied to the third heat exchange unit 70c. . Here, the first valve 74b is capable of adjusting the flow rate of the trough fluid supplied to the bypass pipe 74a and the third heat exchange part 70c, and may be referred to as a flow rate adjusting means.
또한, 제2 밸브(74c)는 바이패스관(74a)을 경유한 열매개 유체가 제3 열교환부(70c)로 흐르지 않도록 조절할 수 있다. In addition, the second valve 74c can adjust so that the trough fluid via the bypass pipe 74a does not flow to the third heat exchange part 70c.
본 실시예에서는 제1 밸브(74b) 및 제2 밸브(74c)가 3방향 밸브로 마련되는 것을 예로 설명하였으나, 본 발명의 권리범위는 이에 한정되지 않는다. 예를 들면, 제1 밸브(74b) 대신 바이패스관(74a)에 설치되는 밸브와 제3 열교환부(70c)의 전단에 설치되는 밸브를 마련할 수도 있으며, 바이패스관(74a) 및 제3 열교환부(70c)로 유입되는 유량의 조절은 각각의 밸브의 동시 제어에 의해 달성될 수 있다.In the present embodiment, the first valve 74b and the second valve 74c are provided as three-way valves as an example, but the scope of the present invention is not limited thereto. For example, instead of the 1st valve 74b, the valve provided in the bypass pipe 74a and the valve provided in the front end of the 3rd heat exchange part 70c may be provided, and the bypass pipe 74a and 3rd may be provided. The adjustment of the flow rate flowing into the heat exchange part 70c can be achieved by simultaneous control of each valve.
제1 밸브(74b)와 제2 밸브(74c)는, 엔진(10)이 풀 로드로 작동되는 경우에는 열매개 유체가 바이패스부(74)를 통해 제3 열교환부(70c)를 경유하지 않고 제1 열교환부(70a)로 유입되도록 조절하고, 엔진(10)이 풀 로드로 작동되지 않는 경우에는 열매개 유체의 일부 또는 전부가 제3 열교환부(70c)를 경유하고 제1 열교환부(70a)로 유입되도록 조절할 수 있다.In the first valve 74b and the second valve 74c, when the engine 10 is operated at the full load, the nut fluid does not pass through the third heat exchange part 70c through the bypass part 74. If the engine 10 is not operated at full load, a part or all of the nutritive fluid passes through the third heat exchanger 70c and the first heat exchanger 70a is adjusted to flow into the first heat exchanger 70a. ) Can be adjusted to enter.
이러한 구성에 의하여 본 발명의 제6 실시예에 따른 선박용 폐열회수장치의의 작동에 대하여 도 7을 참조하여 설명한다.The operation of the ship waste heat recovery apparatus according to the sixth embodiment of the present invention by this configuration will be described with reference to FIG.
선박의 운항 시 엔진(10)은 크게 풀 로드 상태와 풀 로드가 아닌 상태로 구동될 수 있다. 여기서 풀 로드 상태는 엔진이 100%의 부하로 가동되는 상태뿐만 아니라 이와 유사한 부하로 가동되어 열매개 유체에 충분한 열량을 공급할 수 있는 상태를 의미한다. In operation of the ship, the engine 10 may be driven in a largely loaded state and not in a full load state. Here, the full load state refers to a state in which the engine is operated at a load of 100% as well as a state in which the engine is operated at a similar load to supply a sufficient amount of heat to the medium.
우선 풀 로드 상태인 경우를 살펴보면, 터보차저(15)에서 배출되는 배기 가스는 제1 열교환부(70a)로 공급되어 열교환기(41)를 순환하는 열매개 유체를 가열한다.First, in the case of the full load state, the exhaust gas discharged from the turbocharger 15 is supplied to the first heat exchanger 70a to heat the nutritive fluid circulating through the heat exchanger 41.
엔진(10)이 풀 로드로 가동되는 경우에는 엔진(10)으로부터 배출되는 배기 가스에 충분히 많은 열량이 포함되어 있으므로, 열매개 유체는 제1 열교환부(70a)에서 충분히 많은 열량을 흡수할 수 있다. 따라서, 열매개 유체는 제3 열교환부(70c)를 경유하지 않고 바이패스부(74)를 통과한 후 제1 열교환부(70a)로 유입될 수 있다.When the engine 10 is operated at a full load, since the exhaust gas discharged from the engine 10 includes a large amount of heat, the nutty fluid can absorb a large amount of heat in the first heat exchange part 70a. . Therefore, the nutty fluid may flow into the first heat exchanger 70a after passing through the bypass unit 74 without passing through the third heat exchanger 70c.
즉, 제1 밸브(74b)는 바이패스관(74a)으로 모든 열매개 유체가 이동되도록 조절되고, 제2 밸브(74c)는 바이패스관(74a)과 연결되는 유로를 모두 개방하도록 조절될 수 있다.That is, the first valve 74b may be adjusted to move all the nut carrier fluid to the bypass pipe 74a, and the second valve 74c may be adjusted to open all the flow paths connected to the bypass pipe 74a. have.
제1 열교환부(70a)에서 가열된 열매개 유체는 제2 열교환부(70b)로 유입되어 제1 냉매를 가열한다. 제1 냉매는 제2 열교환부(70b)에서 열을 흡수하여 기화된 후 터빈(42)으로 공급된다.The heating medium fluid heated in the first heat exchange part 70a flows into the second heat exchange part 70b to heat the first refrigerant. The first refrigerant absorbs heat from the second heat exchanger 70b and vaporizes and is then supplied to the turbine 42.
터빈(42)에서 팽창하여 전기를 발생시키는데 사용된 제1 냉매는 복열기(45) 및 응축기(43)를 순차적으로 통과한 후 펌프(44)에 의해 순환될 수 있다.The first refrigerant used to expand in the turbine 42 to generate electricity may be circulated by the pump 44 after sequentially passing through the recuperator 45 and the condenser 43.
한편, 엔진(10)이 풀 로드가 아닌 상태로 구동되는 경우, 즉 엔진(10)에서 발생되는 배기 가스의 양이 일정 수준 이하로 감소되는 경우, 배기 가스에 포함되는 열량은 열매개 유체를 충분히 가열하기에 부족할 수 있다. On the other hand, when the engine 10 is driven at a state other than the full load, that is, when the amount of exhaust gas generated in the engine 10 is reduced to a predetermined level or less, the amount of heat contained in the exhaust gas is sufficient to bring the nutritive fluid. May be insufficient to heat.
이 경우, 열교환기(41)는 열매개 유체의 일부가 제3 열교환부(70c)로 유입되어 미리 가열되도록 할 수 있다.In this case, the heat exchanger 41 may allow a part of the nut-bearing fluid to flow into the third heat exchanger 70c to be heated in advance.
보다 상세하게 설명하면, 외기는 터보차저(15)에서 압축되며 온도가 높아진다. 온도가 높아진 외기는 제3 열교환부(70c)로 유입된다.In more detail, the outside air is compressed in the turbocharger 15 and the temperature is high. The outside air whose temperature is increased flows into the third heat exchange part 70c.
또한, 제1 밸브(74b)는 열매개 유체의 일부가 바이패스관(74a)이 아닌 상기 제3 열교환부(70c)로 유입되도록 한다. In addition, the first valve 74b allows a part of the nut-bearing fluid to flow into the third heat exchange part 70c instead of the bypass pipe 74a.
제3 열교환부(70c)에서는 터보차저(15)에서 가열된 공기와 열매개 유체를 열교환하여 열매개 유체를 가열한다. 즉, 열매개 유체의 일부가 제1 열교환부(70a)에 유입되기 전에 가열되는 것이다.In the third heat exchange part 70c, the air heated by the turbocharger 15 and the nut opening fluid are exchanged to heat the nut opening fluid. In other words, a part of the nut-bearing fluid is heated before flowing into the first heat exchange part 70a.
따라서, 제1 열교환부(70a)에 공급되는 배기 가스에 포함된 열량이 줄어들더라도, 열매개 유체가 제1 열교환부(70a)로의 진입 전에 미리 열량을 전달받은 상태로 공급되므로 제1 열교환부(70a)에서 배출되는 열량은 일정한 수준으로 유지될 수 있다.Therefore, even if the amount of heat contained in the exhaust gas supplied to the first heat exchange part 70a is reduced, since the nutritive fluid is supplied in a state in which the heat quantity is delivered before entering the first heat exchange part 70a, the first heat exchange part ( The amount of heat released at 70a) can be maintained at a constant level.
이때, 제1 밸브(74b)는 엔진(10)의 변화된 부하량, 즉 변화된 배기 가스 배출량에 대응하여 제3 열교환부(70c)로 유입되는 열매개 유체의 유량을 조절할 수 있다. 특히, 제1 밸브(74b)는 제2 열교환부(70b)로 유입되는 열매개 유체에 포함된 열량이 일정한 수준으로 유지될 수 있도록 제3 열교환부(70c)로 유입되는 열매개 유체의 유량을 조절할 수 있다.In this case, the first valve 74b may adjust the flow rate of the trough fluid flowing into the third heat exchange part 70c in response to the changed load amount of the engine 10, that is, the changed exhaust gas discharge amount. In particular, the first valve 74b measures the flow rate of the trough fluid flowing into the third heat exchange unit 70c so that the amount of heat contained in the trough fluid flowing into the second heat exchange unit 70b can be maintained at a constant level. I can regulate it.
이러한 구성 및 방법에 의해 엔진(10)의 로드가 변화되더라도, 제2 열교환부(70b)로 제공되는 열량은 일정하게 유지될 수 있다. 따라서, 제1 냉매는 충분한 열량을 흡수하여 안정적으로 기화될 수 있고, 그에 의해 터빈(42)도 안정적으로 구동될 수 있는 바, 발전기(G, Generator)도 안정적으로 전기를 발생시킬 수 있다.Even if the load of the engine 10 is changed by this configuration and method, the amount of heat provided to the second heat exchange part 70b can be kept constant. Therefore, the first refrigerant absorbs a sufficient amount of heat and can be stably evaporated, whereby the turbine 42 can also be driven stably, so that the generator G can stably generate electricity.
이하에서는 본 발명의 제7 실시예에 따른 선박의 발전 시스템에 대하여 도 8을 참조하여 설명한다. 다만, 제7 실시예는 제6 실시예와 비교하여 제2 열교환부에 유입되는 열매개 유체의 온도가 일정하게 유지되도록 제1 밸브 및 펌프 중 적어도 하나 이상을 제어한다는 점에 있어서 차이가 있으므로, 제6 실시예와의 차이점을 위주로 설명하며 동일한 부분에 대하여는 제6 실시예의 설명과 도면 부호를 원용한다.Hereinafter, a ship power generation system according to a seventh embodiment of the present invention will be described with reference to FIG. 8. However, the seventh embodiment is different from the sixth embodiment in that at least one of the first valve and the pump is controlled to maintain a constant temperature of the trough fluid flowing into the second heat exchanger. The differences from the sixth embodiment will be mainly described, and the same reference numerals are used to describe the sixth embodiment.
도 8은 본 발명의 제7 실시예에 따른 선박용 폐열회수장치를 설명하기 위한 도면이다.8 is a view for explaining the waste heat recovery apparatus for ships according to a seventh embodiment of the present invention.
이에 도시된 바와 같이, 본 발명의 제7 실시예에 따른 선박용 폐열회수장치는, 엔진(10)의 부하가 변경되어 배기 가스의 배출량이 변화되더라도 터빈(42)의 발전 효율을 일정하게 유지함으로써 항상 최적의 효율로 발전이 이뤄질 수 있도록 한다.As shown in the drawing, the marine waste heat recovery apparatus according to the seventh embodiment of the present invention always maintains the power generation efficiency of the turbine 42 even when the load of the engine 10 changes and the amount of exhaust gas changes. Ensure power generation with optimum efficiency.
구체적으로, 도 8을 참조하면 본 발명의 제7 실시예에 따른 선박용 폐열회수장치는 제2 열교환부(70b)의 제1 냉매 출구 측에 제1 냉매의 온도를 측정하는 온도 센서(80)가 제공될 수 있다.Specifically, referring to FIG. 8, in a ship waste heat recovery apparatus according to a seventh embodiment of the present invention, a temperature sensor 80 for measuring a temperature of a first refrigerant on a side of a first refrigerant outlet of a second heat exchanger 70b is provided. Can be provided.
본 발명의 실시예와 같은 시스템에서 제2 열교환부(70b)로 유입되는 열매개 유체의 온도가 일정하면, 터빈(42)을 포함한 랭킨 사이클의 효율을 일정하게 할 수 있다. If the temperature of the nut carrier fluid flowing into the second heat exchange part 70b is constant in the system as in the embodiment of the present invention, the efficiency of the Rankine cycle including the turbine 42 may be constant.
즉, 랭킨 사이클이 일정한 효율로 작동될 수 있도록, 제1 밸브(74b)를 조절하여 바이패스관(74a) 및 제3 열교환부(70c)로 공급되는 유량을 조절하거나, 펌프(72)를 조절하여 제1 밸브(74b)로 공급되는 열매개 유체의 유량 자체를 조절할 수 있다. That is, by adjusting the first valve 74b to adjust the flow rate supplied to the bypass pipe 74a and the third heat exchange part 70c so that the Rankine cycle can be operated at a constant efficiency, or to adjust the pump 72. By adjusting the flow rate itself of the nut medium fluid supplied to the first valve (74b).
예를 들어, 엔진(10)의 부하가 줄어든 경우, 배기 가스에 포함되어 있는 열량이 줄어들게 되므로 제1 밸브(74b)는 제3 열교환부(70c) 측으로 열매개 유체의 일부를 공급하여 온도를 높일 수 있다. 또한, 펌프(72)에서 제1 밸브(74b)로 공급되는 유량을 줄이면, 제1 열교환부(70a) 및 제3 열교환부(70c)에서 공급되는 열량에 의해 열매개 유체의 온도를 더 높일 수 있다. For example, when the load of the engine 10 is reduced, since the amount of heat contained in the exhaust gas is reduced, the first valve 74b supplies a portion of the nut fluid to the third heat exchange part 70c to increase the temperature. Can be. In addition, if the flow rate supplied from the pump 72 to the first valve 74b is reduced, the temperature of the tide fluid can be further increased by the amount of heat supplied from the first heat exchange part 70a and the third heat exchange part 70c. have.
반대로 엔진(10)의 부하가 늘어난 경우에는, 전술한 작동과 반대로 제1 밸브(74b) 및 펌프(72)를 제어함으로써 제2 열교환부(70b)로 유입되는 열매개 유체의 온도를 낮출 수 있다.On the contrary, when the load of the engine 10 is increased, by controlling the first valve 74b and the pump 72 as opposed to the above-described operation, it is possible to lower the temperature of the tide fluid flowing into the second heat exchange part 70b. .
이와 같은 제1 밸브(74b) 및 펌프(72)의 제어는 각각 독립적으로 수행될 수도 있고, 함께 병행될 수도 있다.Control of the first valve 74b and the pump 72 as described above may be performed independently or in parallel.
이에 의해, 제2 열교환부(70b)로 유입되는 열매개 유체의 온도는 일정한 수준으로 유지될 수 있으며, 터빈(42)은 항상 최적의 효율로 구동될 수 있다.As a result, the temperature of the nut carrier fluid flowing into the second heat exchange part 70b may be maintained at a constant level, and the turbine 42 may be always driven at an optimum efficiency.
이와 같이 본 발명은 기재된 실시 예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정 예 또는 변형 예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.As described above, the present invention is not limited to the described embodiments, and various modifications and changes can be made without departing from the spirit and scope of the present invention, which will be apparent to those skilled in the art. Therefore, such modifications or variations will have to be belong to the claims of the present invention.
본 발명은 선박에 이용될 수 있으며, 이러한 선박은 자항능력을 가지며 사람이나 화물을 이송시키는 선박 뿐만 아니라, 액화천연가스-부유식 생산저장설비(LNG-FPSO : Liquefied Natural Gas-Floating Production Storage Offloading), 부유식 원유 저장 설비(FSU : Floating Storage Unit) 등 화물을 저장 및 하역하는 부유식 해상 구조물을 포함할 수 있다.The present invention can be used in ships, such ships have self-defense capability and ships for transporting people or cargo, as well as Liquefied Natural Gas-Floating Production Storage Offloading (LNG-FPSO) And floating offshore structures for storing and unloading cargo, such as floating storage units (FSUs).

Claims (22)

  1. 엔진에서 배출되는 배기 가스로부터 열을 회수하여 제1 냉매를 등압가열하는 열교환기;A heat exchanger for recovering heat from the exhaust gas discharged from the engine and isothermally heating the first refrigerant;
    등압가열된 상기 제1 냉매를 단열팽창시켜 구동되는 터빈;A turbine driven by adiabatic expansion of the isothermally heated first refrigerant;
    단열팽창된 상기 제1 냉매를 응축시키는 응축기; 및A condenser for condensing the thermally expanded first refrigerant; And
    응축된 상기 제1 냉매를 압축시켜 상기 열교환기로 재순환시키는 열교환펌프를 포함하는 선박용 폐열회수장치.And a heat exchange pump for compressing the condensed first refrigerant and recirculating it to the heat exchanger.
  2. 제1항에 있어서,The method of claim 1,
    상기 엔진에서 발생하는 열을 냉각시키기 위한 복수개의 쿨러를 더 포함하며, Further comprising a plurality of coolers for cooling the heat generated in the engine,
    상기 응축된 제1 냉매는 상기 복수개의 쿨러로부터 열을 공급받아 상기 열교환기로 재순환되는 것을 특징으로 하는 선박용 폐열회수장치.The condensed first refrigerant is a waste heat recovery apparatus for a ship, characterized in that it is recycled to the heat exchanger receives heat from the plurality of coolers.
  3. 제1항에 있어서, The method of claim 1,
    상기 터빈에서 배출되는 열을 상기 열교환기로 공급되는 상기 제1 냉매에 공급하는 복열기를 더 포함하는 선박용 폐열회수장치.And a recuperator for supplying heat discharged from the turbine to the first refrigerant supplied to the heat exchanger.
  4. 제1항에 있어서,The method of claim 1,
    상기 엔진에서 배출되는 배기 가스가 통과하는 배기관에서 상기 열교환기의 전단에 마련되어 상기 열교환기와 별도로 상기 배기 가스의 열을 회수하기 위한 열회수기를 더 포함하는 선박용 폐열회수장치.And a heat recovery unit provided at a front end of the heat exchanger in an exhaust pipe through which exhaust gas discharged from the engine passes, for recovering heat of the exhaust gas separately from the heat exchanger.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 열회수기에서 회수된 열을 이용하여 등압가열된 제2 냉매를 단열팽창시켜 구동하는 보조터빈; An auxiliary turbine driven by adiabatic expansion of the second refrigerant heated isostatically by using the heat recovered from the heat recovery unit;
    상기 단열팽창된 제2 냉매를 응축시키는 보조응축기; 및An auxiliary condenser for condensing the adiabatic expanded second refrigerant; And
    상기 응축된 제2 냉매를 압축시켜 상기 열회수기로 재순환시키는 보조펌프를 더 포함하는 것을 특징으로 하는 선박용 폐열회수장치.And an auxiliary pump for compressing the condensed second refrigerant to be recycled to the heat recoverer.
  6. 제1항에 있어서, The method of claim 1,
    상기 응축기는 냉각매체로 해수를 사용하는 것을 특징으로 하는 선박용 폐열회수장치.The condenser waste heat recovery apparatus for ships, characterized in that using the sea water as the cooling medium.
  7. 제1항에 있어서, The method of claim 1,
    상기 응축기로 해수를 공급하기 위해 상기 응축기와 연결되는 냉각라인; 및A cooling line connected to the condenser for supplying seawater to the condenser; And
    상기 냉각라인 상에 해수를 강제 순환시키기 위한 냉각펌프를 포함하는 선박용 폐열회수장치.Waste heat recovery apparatus for a ship comprising a cooling pump for forcibly circulating sea water on the cooling line.
  8. 제1항에 있어서,The method of claim 1,
    상기 엔진에서 발생하는 열을 냉각시키기 위한 자켓쿨러를 포함하며,A jacket cooler for cooling the heat generated by the engine,
    상기 응축된 제1 냉매는 상기 자켓쿨러로부터 열을 공급받아 상기 열교환기로 재순환되는 것을 특징으로 하는 선박용 폐열회수장치The condensed first refrigerant receives heat from the jacket cooler and is recycled to the heat exchanger.
  9. 제1항에 있어서, The method of claim 1,
    상기 응축기로 상기 응축기의 냉각매체인 제3 냉매를 공급하기 위해 상기 응축기와 연결되는 응축기 냉각라인;A condenser cooling line connected to the condenser to supply a third refrigerant, which is a cooling medium of the condenser, to the condenser;
    상기 응축기 냉각라인 상에 상기 제3 냉매를 강제 순환시키기 위한 응축기 냉각펌프;A condenser cooling pump for forcibly circulating the third refrigerant on the condenser cooling line;
    상기 제3 냉매와 해수와의 열교환이 이루어지는 해수 열교환기;A seawater heat exchanger in which heat exchange is performed between the third refrigerant and seawater;
    상기 해수 열교환기로 해수를 공급하기 위해 상기 해수 열교환기와 연결되는 해수 라인; 및 A seawater line connected to the seawater heat exchanger for supplying seawater to the seawater heat exchanger; And
    상기 해수라인 상에 상기 해수를 강제 순환시키기 위한 해수펌프를 포함하는 선박용 폐열회수장치.Wastewater recovery apparatus for a ship comprising a seawater pump for forcibly circulating the seawater on the seawater line.
  10. 제1항에 있어서, The method of claim 1,
    상기 응축기로 상기 응축기의 냉각매체인 제3 냉매를 공급하기 위해 상기 응축기와 연결되는 응축기 냉각라인;A condenser cooling line connected to the condenser to supply a third refrigerant, which is a cooling medium of the condenser, to the condenser;
    상기 응축기 냉각라인 상에 상기 제3 냉매를 강제 순환시키기 위한 응축기 냉각펌프;A condenser cooling pump for forcibly circulating the third refrigerant on the condenser cooling line;
    상기 제3 냉매와 해수와의 열교환 및 냉각용 청수와 상기 해수와의 열교환이 이루어지는 메인 쿨러;A main cooler configured to exchange heat between the third refrigerant and the sea water, and to exchange fresh water for cooling and the sea water;
    상기 메인 쿨러로 상기 해수를 공급하기 위해 상기 메인 쿨러와 연결되는 해수라인; 및 A seawater line connected to the main cooler for supplying the seawater to the main cooler; And
    상기 해수라인 상에 상기 해수를 강제 순환시키기 위한 해수펌프를 포함하는 선박용 폐열회수장치.Wastewater recovery apparatus for a ship comprising a seawater pump for forcibly circulating the seawater on the seawater line.
  11. 제1항에 있어서, The method of claim 1,
    상기 제1 냉매는 암모니아, C2H6, C7H8, C8H16, R11, R113, R12, R123, R134a, R245fa 중 어느 하나인 것을 특징으로 하는 선박용 폐열회수장치.The first refrigerant is a waste heat recovery apparatus for ships, characterized in that any one of ammonia, C2H6, C7H8, C8H16, R11, R113, R12, R123, R134a, R245fa.
  12. 제1항에 있어서,The method of claim 1,
    상기 배기 가스에 의해 작동되는 터보차저를 더 포함하며, Further comprising a turbocharger operated by the exhaust gas,
    상기 열교환기는, The heat exchanger,
    상기 터보차저와 상기 터빈 사이에 배치되어 상기 터보차저에서 배출되는 상기 배기 가스와 상기 터빈에 공급되는 상기 제1 냉매와의 열교환을 매개하는 열교환유닛을 포함하는 선박용 폐열회수장치.And a heat exchange unit disposed between the turbocharger and the turbine to mediate heat exchange between the exhaust gas discharged from the turbocharger and the first refrigerant supplied to the turbine.
  13. 제12항에 있어서,The method of claim 12,
    상기 열교환기는,The heat exchanger,
    상기 열교환유닛을 순환하는 열매개 유체의 순환을 위해, 적어도 1개 이상의 순환 펌프를 포함하는 선박용 폐열회수장치.Waste heat recovery apparatus for a ship comprising at least one circulation pump for circulation of the fruit medium fluid circulating through the heat exchange unit.
  14. 제13항에 있어서,The method of claim 13,
    상기 열교환유닛은,The heat exchange unit,
    상기 터보차저에서 배출된 배기 가스와 상기 열매개 유체의 열 교환을 실시하는 제1 열교환부; 및A first heat exchanger configured to exchange heat between the exhaust gas discharged from the turbocharger and the trough fluid; And
    상기 제1 열교환부에서 배출된 배기 가스와 상기 터빈에 공급되는 제1 냉매가 열교환하는 제2 열교환부를 포함하는 선박용 폐열회수장치.And a second heat exchanger configured to exchange heat between the exhaust gas discharged from the first heat exchanger and the first refrigerant supplied to the turbine.
  15. 제14항에 있어서,The method of claim 14,
    상기 열교환유닛은,The heat exchange unit,
    상기 제1 열교환부의 전단에 배치되며,It is disposed in front of the first heat exchanger,
    상기 터보 차저에서 공급되는 공기와 상기 열매개 유체가 열교환하여 상기 열매개 유체를 가열하는 제3 열교환부를 더 포함하는 선박용 폐열회수장치.And a third heat exchanger configured to heat the trough fluid by heat-exchanging air supplied from the turbocharger with the trough fluid.
  16. 제15항에 있어서,The method of claim 15,
    상기 열교환기는,The heat exchanger,
    상기 제3 열교환부를 경유하지 않고, 상기 제1 열교환부로 상기 열매개 유체를 바이패스시키기 위한 바이패스부를 더 포함하는 선박용 폐열회수장치.A waste heat recovery apparatus for ships further comprising a bypass section for bypassing the trough fluid to the first heat exchange section without passing through the third heat exchange section.
  17. 제16항에 있어서,The method of claim 16,
    상기 바이패스부는,The bypass unit,
    상기 열매개 유체의 유량을 조절하기 위한 조절 밸브를 더 포함하는 선박용 폐열회수장치.Waste heat recovery apparatus for a ship further comprising a control valve for adjusting the flow rate of the nut medium fluid.
  18. 제17항에 있어서,The method of claim 17,
    상기 조절밸브는,The control valve,
    상기 엔진의 로드(Load) 변화에 대응하여 상기 제3 열교환부로 공급되는 상기 열매개 유체의 유량을 조절하는 것을 특징으로 하는 선박용 폐열회수장치.The waste heat recovery apparatus for ships, characterized in that for controlling the flow rate of the nut medium fluid supplied to the third heat exchange unit in response to a load change of the engine.
  19. 제12항에 있어서,The method of claim 12,
    상기 열교환기는,The heat exchanger,
    상기 열매개 유체가 일시적으로 저장되는 저장부를 더 포함하는 선박용 폐열회수장치.Waste heat recovery apparatus for a ship further comprises a storage unit for temporarily storing the fruit medium fluid.
  20. 제17항에 있어서,The method of claim 17,
    상기 조절밸브는 상기 제2 열교환부로 공급되는 열량이 일정한 수준으로 유지되도록 상기 제3 열교환부로 공급되는 상기 열매개 유체의 유량을 조절하는 것을 특징으로 하는 선박용 폐열회수장치.The control valve is a waste heat recovery apparatus for a ship, characterized in that for adjusting the flow rate of the nut medium fluid supplied to the third heat exchange unit so that the heat amount supplied to the second heat exchange unit is maintained at a constant level.
  21. 제17항에 있어서,The method of claim 17,
    상기 제2 열교환부의 전단에는 상기 제2 열교환부로 공급되는 상기 열 매개 유체의 온도를 측정하기 위한 온도 센서가 마련되며,In front of the second heat exchanger is provided a temperature sensor for measuring the temperature of the heat-mediated fluid supplied to the second heat exchanger,
    상기 조절 밸브는 상기 온도 센서의 감지 값을 바탕으로 제2 열교환부로 공급되는 상기 열매개 유체의 온도가 일정한 수준으로 유지되도록 상기 제3 열교환부로 공급되는 상기 열매개 유체의 유량을 조절하는 것을 특징으로 하는 선박용 폐열회수장치.The regulating valve adjusts the flow rate of the trough fluid supplied to the third heat exchange unit so that the temperature of the trough fluid supplied to the second heat exchange unit is maintained at a constant level based on the sensed value of the temperature sensor. Waste heat recovery device for ships.
  22. 제13항에 있어서,The method of claim 13,
    상기 순환 펌프는 상기 제1 냉매와 열교환하는 상기 열매개 유체의 온도가 일정하게 유지되도록 상기 열매개 유체의 유량을 조절하는 것을 특징으로 하는 선박용 폐열회수장치.The circulation pump is a waste heat recovery apparatus for a ship, characterized in that for controlling the flow rate of the tide fluid so that the temperature of the tide fluid to heat exchange with the first refrigerant is kept constant.
PCT/KR2011/009379 2010-12-17 2011-12-06 Waste heat recovery device for a marine vessel WO2012081854A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/364,655 US9464539B2 (en) 2010-12-17 2011-12-06 Waste heat recovery device for a marine vessel

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20100129728 2010-12-17
KR10-2010-0129728 2010-12-17
KR10-2011-0045819 2011-05-16
KR20110045819 2011-05-16
KR1020110052514A KR101359640B1 (en) 2011-05-16 2011-05-31 Generating system of vessel
KR1020110052456A KR101291170B1 (en) 2010-12-17 2011-05-31 Waste heat recycling apparatus for ship
KR10-2011-0052514 2011-05-31
KR10-2011-0052456 2011-05-31

Publications (2)

Publication Number Publication Date
WO2012081854A2 true WO2012081854A2 (en) 2012-06-21
WO2012081854A3 WO2012081854A3 (en) 2012-09-07

Family

ID=46245190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009379 WO2012081854A2 (en) 2010-12-17 2011-12-06 Waste heat recovery device for a marine vessel

Country Status (1)

Country Link
WO (1) WO2012081854A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952723A1 (en) * 2014-06-05 2015-12-09 Samsung Heavy Ind. Co., Ltd. Waste heat recovery device for a marine vessel
CN105201682A (en) * 2014-06-12 2015-12-30 三星重工业株式会社 Waste heat recycling device for ship
US9464539B2 (en) 2010-12-17 2016-10-11 Samsung Heavy Ind. Co., Ltd Waste heat recovery device for a marine vessel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214450A (en) * 1977-04-19 1980-07-29 Mitsubishi Jukogyo Kabushiki Kaisha Apparatus for recovering heat from exhaust gases of marine prime movers
KR820000996B1 (en) * 1978-02-14 1982-06-04 미쯔이 도시마사 Apparatus for restoring heat of hexhaust gas for marine mover
JP2009236014A (en) * 2008-03-27 2009-10-15 Isuzu Motors Ltd Waste heat recovery system
KR20100067247A (en) * 2008-12-11 2010-06-21 대우조선해양 주식회사 Waste heat recovery system and method in ship

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214450A (en) * 1977-04-19 1980-07-29 Mitsubishi Jukogyo Kabushiki Kaisha Apparatus for recovering heat from exhaust gases of marine prime movers
KR820000996B1 (en) * 1978-02-14 1982-06-04 미쯔이 도시마사 Apparatus for restoring heat of hexhaust gas for marine mover
JP2009236014A (en) * 2008-03-27 2009-10-15 Isuzu Motors Ltd Waste heat recovery system
KR20100067247A (en) * 2008-12-11 2010-06-21 대우조선해양 주식회사 Waste heat recovery system and method in ship

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9464539B2 (en) 2010-12-17 2016-10-11 Samsung Heavy Ind. Co., Ltd Waste heat recovery device for a marine vessel
EP2952723A1 (en) * 2014-06-05 2015-12-09 Samsung Heavy Ind. Co., Ltd. Waste heat recovery device for a marine vessel
CN105201682A (en) * 2014-06-12 2015-12-30 三星重工业株式会社 Waste heat recycling device for ship

Also Published As

Publication number Publication date
WO2012081854A3 (en) 2012-09-07

Similar Documents

Publication Publication Date Title
KR101291170B1 (en) Waste heat recycling apparatus for ship
JP3650112B2 (en) Gas turbine cooling medium cooling system for gas / steam turbine combined equipment
WO2016167445A1 (en) Hybrid generation system using supercritical carbon dioxide cycle
US10400636B2 (en) Supercritical CO2 generation system applying plural heat sources
JP5801449B1 (en) Marine waste heat recovery system
WO2016178470A1 (en) Supercritical carbon dioxide power generation system
CN101622425A (en) The system and method for oxygen separation in integrated gasification combined cycle system
CN102834591A (en) Exhaust heat recovery power generation device and vessel provided therewith
JP2005527808A (en) Method and apparatus for generating electricity from heat generated in at least one high temperature reactor core
KR101185444B1 (en) system for recovering waste heat from engine of ship applying exhaust gas recirculation
RU2007114050A (en) METHOD AND SYSTEM OF ENERGY RECOVERY AND (OR) COOLING
WO2012081854A2 (en) Waste heat recovery device for a marine vessel
WO2018131760A1 (en) Complex supercritical carbon dioxide power generation system
WO2018066845A1 (en) Hybrid-type generation system
KR102220071B1 (en) Boiler system
US10287926B2 (en) Supercritical CO2 generation system applying recuperator per each heat source
JPH094510A (en) Combustion engine plant, supercharging combustion engine device for combustion engine plant and improving method of efficiency of combustion engine plant
KR20090018619A (en) Method and device for converting thermal energy into mechanical work
Legmann Recovery of industrial heat in the cement industry by means of the ORC process
KR101644942B1 (en) Power generation system for waste heat recovery and ship having the same
WO2018066860A1 (en) System and method for supplying fuel gas for ship
KR101359640B1 (en) Generating system of vessel
KR20180097363A (en) Supercritical Carbon Dioxide Power Generation System
KR101999811B1 (en) Supercritical Rankine cycle-based heat engine and method for operating the same heat engine
JP2007002761A (en) Cogeneration system and power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849020

Country of ref document: EP

Kind code of ref document: A2

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849020

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14364655

Country of ref document: US