WO2012081763A1 - Polyimide film - Google Patents

Polyimide film Download PDF

Info

Publication number
WO2012081763A1
WO2012081763A1 PCT/KR2010/009622 KR2010009622W WO2012081763A1 WO 2012081763 A1 WO2012081763 A1 WO 2012081763A1 KR 2010009622 W KR2010009622 W KR 2010009622W WO 2012081763 A1 WO2012081763 A1 WO 2012081763A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
polyimide film
film
tetracarboxylic dianhydride
benzoic acid
Prior art date
Application number
PCT/KR2010/009622
Other languages
French (fr)
Korean (ko)
Inventor
이길남
원동영
안찬재
김성원
명범영
Original Assignee
에스케이씨코오롱피아이주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨코오롱피아이주식회사 filed Critical 에스케이씨코오롱피아이주식회사
Publication of WO2012081763A1 publication Critical patent/WO2012081763A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide film excellent in dimensional stability and tear strength.
  • Polyimide films are widely used in electrical / electronic materials, aerospace / aviation and telecommunications because of their excellent mechanical and thermal dimensional stability and chemical stability.
  • the polyimide film has been widely used as a flexible printed circuit board material having a fine pattern, for example, a base film such as TAB or COF due to light and small size of the component.
  • TAB or COF technology is a kind of technology for sealing IC chip or LSI chip. Specifically, TAB or COF technology is used to make a conductive pattern on a flexible tape and seal it by mounting the chip on it. It is advantageous to reduce the thickness of the product.
  • a polyimide film As a base film for TAB or COF, high dimensional stability is required. This is because a dimensional change may occur due to heat shrinkage or a dimensional change may occur due to residual stress after an etching process in a TAB or COF manufacturing process for bonding a polyimide film in a heated state or a cooling process after a sputtering process. As a result of the dimensional change, a position error may occur during the process of bonding the IC or LSI chip to the TAB or COF.
  • the polyimide film undergoes a high temperature treatment process, expansion occurs due to heat, and a coefficient of thermal expansion (CTE) is measured. If the coefficient of thermal expansion is large, the polyimide film shrinks more than the semiconductor while cooling after the semiconductor bonding at a high temperature, which is not good to stress the bonding site.
  • CTE coefficient of thermal expansion
  • the present invention is to provide a polyimide film with improved dimensional stability and tear strength by the network structure of the polymer.
  • Polyimide film according to an embodiment of the present invention is an aromatic tetracarboxylic dianhydride component containing biphenyltetracarboxylic dianhydride or a functional derivative thereof, p-phenylenediamine, diaminodiphenyl ether and Obtained by imidizing a polyamic acid comprising an aromatic diamine component comprising diamino benzoic acid; Dimensional stability, measured according to IPC TM 650 2.2.4A, is 0.02% or less; Tear strength measured according to ASTM D 1004 standard may be more than 3.0kgf.
  • the aromatic diamine component may include at least 3 mol% of diamine benzoic acid in the total aromatic diamine component.
  • the biphenyl tetracarboxylic dianhydride or a functional derivative thereof may be 90 mol% or more of the total aromatic tetracarboxylic dianhydride component.
  • an aromatic tetracarboxylic dianhydride component comprising biphenyltetracarboxylic dianhydride; It can be obtained by imidizing the polyamic acid which becomes 100 mol% of 55-75 mol% of p-phenylenediamine, 20-40 mol% of diamino phenyl ether, and 3-5 mol% of diamine benzoic acid.
  • the imidization may be accompanied by chemical conversion by a conversion agent comprising an imidization catalyst and a dehydrating agent.
  • the present invention provides an aromatic tetracarboxylic dianhydride component comprising a biphenyltetracarboxylic dianhydride or a functional derivative thereof, and an aromatic diamine component containing p-phenylenediamine, diaminodiphenylether and diamino benzoic acid. It relates to the polyimide film obtained by imidating the polyamic acid derived from it, Especially a dimensional stability is 0.02% or less; It relates to a polyimide film having a tear strength of 3.0 kgf or more.
  • the dimensional stability is performed according to IPC TM 650 2.2.4A, and after 2 hours at the temperature of 200 °C to measure the MD (Mechanical Direction) / TD (Transverse Direction) dimensional change rate, the dimensional change rate is a three-dimensional measuring equipment Measure
  • the tear strength is in accordance with the ASTM D 1004 standard and measured in the MD / TD direction.
  • the cross head speed is 51mm / min.
  • the polyimide film is subjected to a wet process and a high temperature process in order to use a base film for TAB and COF.
  • the polyimide film may have a minute dimensional change due to moisture, heat, etc.
  • it is to provide a polyimide film with improved dimensional stability and tear strength by strengthening the interpolymer network.
  • a polyimide film having a tear strength of 3.5 kgf or more, while the dimensional stability defined as described above is 0.02% or less.
  • the polyimide film according to one embodiment of the present invention is applied to a flexible circuit board, particularly a base film for TAB or COF, which is a semiconductor mounted flexible circuit board, dimensional change or separation of an adhesive layer in a severe flexible circuit board manufacturing process, etc. May not occur.
  • the polyimide film according to one embodiment of the present invention may have a moisture absorption rate of 1.4% or less in particular.
  • the moisture absorption is measured by cutting a portion of the film in a chamber (Chamber) at 100% RH (relative humidity) atmosphere for 48 hours and then analyzing it by using a thermal gravimetric analysis.
  • the temperature can be calculated by analyzing the change in weight by heating the temperature from 35 ° C to 250 ° C at 10 ° C / min.
  • the polyimide film according to the embodiment of the present invention may preferably have a moisture absorption of 1.3% or less.
  • the method for satisfying the dimensional stability and tear strength within the above range is not limited, but the method contemplated by the present invention is biphenyltetracar as the aromatic tetracarboxylic dianhydride component used to prepare the polyamic acid.
  • a method containing an acid dianhydride or a functional derivative thereof, and containing p-phenylenediamine, diaminophenyl ether and diamino benzoic acid as an aromatic diamine component is mentioned.
  • the aromatic diamine component contains at least 3 mol% of diamine benzoic acid in the total aromatic diamine component, thereby improving dimensional stability and tear strength by strengthening the network structure of the polymer while allowing viscosity control.
  • the aromatic tetracarboxylic dianhydride component includes biphenyltetracarboxylic dianhydride or a functional derivative thereof in an amount of 90 mol% or more in the total aromatic tetracarboxylic dianhydride component to improve chemical resistance. You can.
  • the most preferred polyimide film is 100 mol% of an aromatic tetracarboxylic dianhydride component comprising biphenyltetracarboxylic dianhydride; It may be obtained by imidizing a polyamic acid consisting of 100 mol% of an aromatic diamine component comprising 55 to 75 mol% of p-phenylenediamine, 20 to 40 mol% of diaminodiphenyl ether, and 3 to 5 mol% of diamino benzoic acid. .
  • imidization may involve chemical conversion by a conversion agent comprising an imidization catalyst and a dehydrating agent.
  • composition and the film forming method are specifically described below, but are not limited thereto.
  • the aromatic tetracarboxylic dianhydride that can be used in the present invention is biphenyltetracarboxylic dianhydride or functional derivatives thereof, such as 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, pyromelli Benzophenonetetracarboxylic dianhydride or its functional derivative, such as 3,3 ', 4,4'-benzophenonetetracarboxylic anhydride or p-phenylene-bis trimellis thereof
  • an acid dianhydride etc. can be used, it is preferable to use biphenyl tetracarboxylic dianhydride in 90 mol% or more of all aromatic tetracarboxylic dianhydride as mentioned above.
  • a polyimide film containing an excess of biphenyltetracarboxylic dianhydride units has a high modulus of elasticity, low moisture absorption and excellent chemical resistance.
  • Diamines usable in the present invention include p-phenylene diamine, diaminophenyl ethers such as 4,4'-diaminophenyl ether, 3,4-diaminophenyl ether, 2,4-diaminophenyl ether, And diamino benzoic acid such as 3,5-diamino benzoic acid.
  • the proportion of p-phenylene diamine in the total diamine is at least 55 mol%, more preferably 55 to 75 mol% in the total aromatic diamine component.
  • p-phenylene diamine is a monomer having a linearity compared to diamino phenyl ether serves to lower the coefficient of thermal expansion of the film (Coefficient of thermal expansion).
  • the content of p-phenylene diamine is high, the flexibility of the film may be reduced and the film forming ability may be lost.
  • the content of diaminophenyl ether used in combination may be 40 mol% or less, preferably 20 to 40 mol% of the total aromatic diamine components.
  • diamino benzoic acid used in combination may be 3 mol% or more, preferably 3 to 5 mol% in the total aromatic diamine component.
  • Diamino benzoic acid can improve the physical properties such as dimensional stability, tear strength by strengthening the intermolecular network structure at the same time to control the viscosity.
  • the method for forming a polyimide film is not particularly noticeable to those skilled in the art, but provides an example;
  • the aromatic tetracarboxylic dianhydride and the aromatic diamine component are reacted with an organic solvent to obtain a polyamic acid solution.
  • the solvent is generally preferably an aprotic polar solvent (Aprotic solvent) as the amide solvent, for example, N, N'- dimethylformamide, N, N'- dimethylacetamide, N-methyl- Pyrrolidone etc. can be mentioned and can also be used in combination of 2 types as needed.
  • Aprotic solvent aprotic polar solvent
  • the input form of the monomer may be added in the form of powder, lump, and solution.
  • the monomer may be added in the form of powder, and the reaction may be performed in the form of a solution to control the polymerization viscosity.
  • the weight of the monomer added in the total polyamic acid solution in the state in which the equimolar amount of the aromatic diamine component and the aromatic tetracarboxylic dianhydride is added is called solid content, and the solid content is between 10-30%, preferably between 14-20%
  • the polymerization may be performed in the range of. In particular, it is preferable to proceed block polymerization.
  • the order of monomer addition may be controlled so that the polyamic acid as described above contains a large amount of a molecular chain whose terminal is an amine.
  • a filler may be added to the polyimide film to improve various properties such as sliding properties, thermal conductivity, conductivity, and corona resistance.
  • the type of filler may not be limited, preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, and the like.
  • the particle size of the filler depends on the thickness or type of the film and may be a modified surface of the filler. 0.1-100 micrometers is preferable and, as for the average particle diameter of a filler, 0.1-3 micrometers is more preferable.
  • the addition amount of the filler is also not particularly limited and may vary depending on the film to be modified, the type and particle size of the particles, the particle surface, and the like.
  • the addition amount of the filler is preferably used in the range of 0.04 to 3% based on the solids content of the polymerized polyamic acid solution. If the amount of the filler is used in the above range, the physical properties of the polyimide film may be impaired. If the filler is used in the range below, the modification effect is hardly seen.
  • the dosing method can be added at the beginning of the reactants or after the reaction is over. Alternatively, in order to prevent contamination of the reactor, it may be added in a catalyst mixing step, and the addition method and timing are not particularly limited.
  • the obtained polyamic acid solution may be applied to the support by mixing with a converting agent, preferably an imidization catalyst and a dehydrating agent.
  • a converting agent preferably an imidization catalyst and a dehydrating agent.
  • the catalyst used may include tertiary amines, and anhydrides may be cited as the dehydrating agent.
  • anhydrous acid include acetic anhydride, and tertiary amines include isoquinoline, ⁇ -picolin, pyridine and the like.
  • the amount of anhydrous acid can be calculated by the molar ratio of o-carboxylic amide functional group in the polyamic acid solution, and it is preferable to use 1.0-5.0 molar ratio.
  • the amount of tertiary amine can be calculated by the molar ratio of o-carboxylic amide groups in the polyamic acid solution, and it is appropriate to add between 0.2 and 3.0 molar ratios.
  • the conversion agent may be used in the form of a mixture of anhydrous acid / amines or anhydrous acid / amine / solvent mixture.
  • the film applied on the support is gelled on the support by dry air and heat treatment.
  • the gelation temperature of the coated film is preferably 100 ⁇ 250 °C and may be used as a support, such as glass plate, aluminum foil, circulating stainless belt or stainless drum, but is not limited thereto.
  • the treatment time required for gelation depends on the temperature, the type of the support, the amount of the polyamic acid solution applied, and the mixing conditions of the conversion agent, and is not limited to a certain time, but is preferably performed within a range of 5 minutes to 30 minutes. It is good.
  • the gelled film is separated from the support and heat treated to complete drying and imidization.
  • Heat treatment temperature is between 100 ⁇ 600 °C and treatment time is between 1 ⁇ 30 minutes.
  • the gelled film proceeds by being fixed to a support during heat treatment.
  • Gel film can be fixed using a pin type frame or a clip type.
  • the residual volatile content of the film after heat treatment is 5% or less and preferably 3% or less.
  • the film is heat treated under a constant tension to remove residual stress in the film. Since the tension and temperature conditions are correlated with each other, the tension conditions may vary with temperature. Temperature is preferably maintained between 100 ⁇ 600 °C, the tension is preferably 50N or less, the time is preferably maintained for 1 minute to 1 hour.
  • diamino benzoic acid (DABA) solution was added and stirred.
  • the diamino benzoic acid solution was prepared at 5% concentration using DMF as a solvent.
  • the completed polyamic acid solution had a solid content of 15 wt% and a viscosity of 2,000 poise.
  • the molar ratio of the injected monomer is BPDA 100%, ODA 35%, PDA 62%, DABA 3%.
  • the film on which the film was fixed was placed in a vacuum oven, heated slowly from 100 ° C. to 350 ° C. for 30 minutes, and then slowly cooled to separate the film from the frame.
  • the thickness of the film finally obtained is 38 micrometers.
  • the polyimide film was prepared in the same manner as in Example 1, except that the polyimide film was prepared by varying the monomer composition ratio as shown in Table 1 during the polyamic acid polymerization.
  • N, N'-dimethylformamide (DMF) was added to the 2 L jacket reactor as a solvent.
  • the temperature was 35 degreeC
  • 20.6g of p-phenylenediamine (p-PDA), biphenyl tetracarboxylic dianhydride (BPDA), and pyromellitic dianhydride (PMDA) were added.
  • ODA diaminophenyl ether
  • p-phenylenediamine p-PDA was added.
  • block polymerization was carried out for 2 hours while maintaining the temperature at 40 °C.
  • diamino benzoic acid (DABA) solution was added and stirred.
  • the diamino benzoic acid solution was prepared at 5% concentration using DMF as a solvent.
  • the completed polyamic acid solution had a solid content of 15 wt% and a viscosity of 1,800 poise.
  • the molar ratio of the injected monomer is 95 mol% BPDA, 5 mol% PMDA, 35 mol% ODA, 62 mol% PDA, and 3 mol% DABA.
  • the film on which the film was fixed was placed in a vacuum oven, heated slowly from 100 ° C. to 350 ° C. for 30 minutes, and then slowly cooled to separate the film from the frame.
  • a polyimide film was prepared in the same manner as in Example 1, except that paraphenylenediamine (PPD) was used instead of diamino benzoic acid (DABA) in polyamic acid polymerization.
  • PPD paraphenylenediamine
  • DABA diamino benzoic acid
  • N, N'-dimethylformamide (DMF) was added to the 2L jacket reactor as a solvent.
  • the temperature was set to 30 ° C., and 23.1 g of p-phenylenediamine (p-PDA) and 24.2 g of diaminophenyl ether (ODA) were added. Then, the resultant was dissolved.
  • a paraphenylenediamine (PPD) solution was added to the mixture, followed by stirring.
  • the paraphenylenediamine (PPD) solution was prepared in 5% concentration using DMF as a solvent.
  • the reaction solution of the polyamic acid has a solid content of 15 wt% and a viscosity of 1800 poise.
  • the molar ratio of the injected monomer is 100% BPDA, 35% ODA, 65% PDA.
  • the polyamic acid solution was applied to a stainless plate, cast at 250 ⁇ m, dried for 10 minutes with hot air at 120 ° C., and the film was peeled off from the stainless plate to fix the pin to the frame.
  • the film on which the film was fixed was placed in a vacuum oven, heated slowly from 100 ° C. to 350 ° C. for 30 minutes, and then slowly cooled to separate the film from the frame.
  • Tensile modulus was averaged by testing three times in accordance with ASTM D 882 using a standard instron testing apparatus.
  • a portion of the finished film was cut into a width of 4 mm and a width of 30 mm, and the coefficient of thermal expansion was measured using a TA company thermal mechanical apparatus Q400.
  • the sample was hooked to a quartz hook and subjected to a force of 0.010 N and then heated at 10 ° C./min from 30 ° C. to 420 ° C. in a nitrogen atmosphere.
  • the coefficient of thermal expansion was obtained within the range of 50 ° C to 200 ° C.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 Comparative Example 1 Comparative Example 2
  • Tensile Modulus (GPa) 5.4 5.7 6.0 6.2 5.5 6.2 5.5 5.4 5.1
  • Coefficient of linear expansion ppm /
  • 14 13 10 9
  • 14 9 14 18 Tear strength (kgf) 3.0 3.1 3.0 3.1 3.5 3.2 3.1 2.8 2.7
  • the polyimide film obtained by Comparative Examples 1 to 2 was found to have a lower tensile modulus and tear strength and a higher coefficient of linear expansion than the polyimide film obtained by Examples 1 to 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention relates to a polyimide film, and relates to a polyimide film which has outstanding dimensional stability and tear strength, and which is used as a base film for products where high reliability is required.

Description

폴리이미드 필름Polyimide film
본 발명은 치수안정성과 인열강도가 우수한 폴리이미드 필름에 관한 것이다.The present invention relates to a polyimide film excellent in dimensional stability and tear strength.
폴리이미드 필름은 기계적 및 열적 치수 안정성이 우수하고, 화학적 안정성을 갖는 특성으로 인해 전기/전자 재료, 우주/항공 및 전기통신 분야에 넓게 이용되고 있다. Polyimide films are widely used in electrical / electronic materials, aerospace / aviation and telecommunications because of their excellent mechanical and thermal dimensional stability and chemical stability.
특히, 폴리이미드 필름은 부품의 경박단소화로 인해 미세한 패턴을 가진 연성 회로기판 재료, 일예로 TAB이나 COF 등의 베이스 필름으로 많이 사용되고 있다. In particular, the polyimide film has been widely used as a flexible printed circuit board material having a fine pattern, for example, a base film such as TAB or COF due to light and small size of the component.
TAB 또는 COF 기술은 IC 칩이나 LSI 칩을 밀봉하는 기술의 일종으로, 구체적으로는 연성 테이프 위에 전도성 패턴을 만들고 위에 칩을 실장하여 밀봉하는 기술로, 패키지화된 밀봉소자의 크기가 작고 가요성을 가지고 있어 제품의 경박단소화에 유리하다.TAB or COF technology is a kind of technology for sealing IC chip or LSI chip. Specifically, TAB or COF technology is used to make a conductive pattern on a flexible tape and seal it by mounting the chip on it. It is advantageous to reduce the thickness of the product.
폴리이미드 필름을 TAB이나 COF용 베이스 필름으로 이용하기 위해서는 높은 치수 안정성이 요구된다. 이는 폴리이미드 필름을 가열 상태로 접합하는 TAB 또는 COF 제조공정 또는 스퍼터링 공정 후의 냉각 과정에서 열수축에 의해 치수변화가 발생하거나 에칭 공정 이후에 잔류 응력에 의해 치수변화가 발생할 수 있기 때문이다. 치수변화 발생의 결과로 IC나 LSI 칩을 TAB이나 COF에 접합하는 과정 중에서 위치 오차가 발생할 수 있다. In order to use a polyimide film as a base film for TAB or COF, high dimensional stability is required. This is because a dimensional change may occur due to heat shrinkage or a dimensional change may occur due to residual stress after an etching process in a TAB or COF manufacturing process for bonding a polyimide film in a heated state or a cooling process after a sputtering process. As a result of the dimensional change, a position error may occur during the process of bonding the IC or LSI chip to the TAB or COF.
또한 폴리이미드 필름이 고온처리 공정을 거치게 되면서 열에 의해 팽창이 발생하는데 이 정도를 측정하는 것이 열팽창계수(CTE ; Coefficient of Thermal Expansion)이다. 열팽창 계수가 크면 고온에서 반도체 접합 후에 냉각되면서 폴리이미드 필름이 반도체 보다 더욱 많이 수축하게 되어 접합 부위에 응력을 가하게 되어 좋지 않다.In addition, as the polyimide film undergoes a high temperature treatment process, expansion occurs due to heat, and a coefficient of thermal expansion (CTE) is measured. If the coefficient of thermal expansion is large, the polyimide film shrinks more than the semiconductor while cooling after the semiconductor bonding at a high temperature, which is not good to stress the bonding site.
본 발명은 고분자의 네트워크 구조에 의해 치수안정성과 인열강도가 향상된 폴리이미드 필름을 제공하고자 한다.The present invention is to provide a polyimide film with improved dimensional stability and tear strength by the network structure of the polymer.
본 발명의 일 구현예에 의한 폴리이미드 필름은 비페닐테트라카르복실산 이무수물 또는 그의 관능성 유도체를 포함하는 방향족 테트라카르복실산 이무수물 성분과, p-페닐렌디아민, 디아미노디페닐에테르 및 디아미노 벤조산을 포함하는 방향족 디아민 성분으로부터 되는 폴리아믹산을 이미드화하여 얻어지며; IPC TM 650 2.2.4A에 따라 측정된 치수안정성이 0.02% 이하이고; ASTM D 1004 규격에 따라 측정된 인열강도가 3.0kgf 이상인 일 수 있다.Polyimide film according to an embodiment of the present invention is an aromatic tetracarboxylic dianhydride component containing biphenyltetracarboxylic dianhydride or a functional derivative thereof, p-phenylenediamine, diaminodiphenyl ether and Obtained by imidizing a polyamic acid comprising an aromatic diamine component comprising diamino benzoic acid; Dimensional stability, measured according to IPC ™ 650 2.2.4A, is 0.02% or less; Tear strength measured according to ASTM D 1004 standard may be more than 3.0kgf.
상기 구현예에 있어서, 방향족 디아민 성분은 디아민 벤조산을 전체 방향족 디아민 성분 중 3몰% 이상으로 포함하는 것일 수 있다.In the above embodiment, the aromatic diamine component may include at least 3 mol% of diamine benzoic acid in the total aromatic diamine component.
상기 구현예에 있어서, 비페닐테트라카르복실산 이무수물 또는 그의 관능성 유도체를 전체 방향족 테트라카르복실산 이무수물 성분 중 90몰% 이상으로 포함하는 것일 수 있다.In the above embodiment, the biphenyl tetracarboxylic dianhydride or a functional derivative thereof may be 90 mol% or more of the total aromatic tetracarboxylic dianhydride component.
상기 구현예에 있어서, 비페닐테트라카르복실산 이무수물로 되는 방향족 테트라카르복실산 이무수물 성분 100몰%와; p-페닐렌디아민 55 내지 75몰%, 디아미노페닐에테르 20 내지 40몰% 및 디아민 벤조산 3 내지 5몰%로 되는 방향족 디아민 성분 100몰%로 되는 폴리아믹산을 이미드화하여 얻어지는 것일 수 있다.100 mole% of an aromatic tetracarboxylic dianhydride component comprising biphenyltetracarboxylic dianhydride; It can be obtained by imidizing the polyamic acid which becomes 100 mol% of 55-75 mol% of p-phenylenediamine, 20-40 mol% of diamino phenyl ether, and 3-5 mol% of diamine benzoic acid.
상기 구현예에 있어서, 이미드화는 이미드화 촉매 및 탈수제를 포함하는 변환약제에 의한 화학적 변환을 수반하는 것일 수 있다.In the above embodiment, the imidization may be accompanied by chemical conversion by a conversion agent comprising an imidization catalyst and a dehydrating agent.
이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.
본 발명은 비페닐테트라카르복실산 이무수물 또는 그의 관능성 유도체를 포함하는 방향족 테트라카르복실산 이무수물 성분과, p-페닐렌디아민, 디아미노디페닐에테르 및 디아미노 벤조산을 포함하는 방향족 디아민 성분으로부터 되는 폴리아믹산을 이미드화하여 얻어지는 폴리이미드 필름에 관한 것으로, 특히 치수안정성이 0.02%이하이고; 인열강도가 3.0kgf이상인 폴리이미드 필름에 관한 것이다.The present invention provides an aromatic tetracarboxylic dianhydride component comprising a biphenyltetracarboxylic dianhydride or a functional derivative thereof, and an aromatic diamine component containing p-phenylenediamine, diaminodiphenylether and diamino benzoic acid. It relates to the polyimide film obtained by imidating the polyamic acid derived from it, Especially a dimensional stability is 0.02% or less; It relates to a polyimide film having a tear strength of 3.0 kgf or more.
여기서, 치수안정성은 IPC TM 650 2.2.4A에 따라 진행되며, 온도 200℃에 2시간 처리하여 전후 MD(Mechanical Direction)/TD(Transverse Direction) 치수변화율을 측정하되, 치수변화율은 3차원 측정장비로 측정한다.Here, the dimensional stability is performed according to IPC TM 650 2.2.4A, and after 2 hours at the temperature of 200 ℃ to measure the MD (Mechanical Direction) / TD (Transverse Direction) dimensional change rate, the dimensional change rate is a three-dimensional measuring equipment Measure
또한, 인열강도는 ASTM D 1004 규격에 따라 진행되며 MD/TD방향으로 측정한다. Cross Head 속도는 51mm/min으로 한다.In addition, the tear strength is in accordance with the ASTM D 1004 standard and measured in the MD / TD direction. The cross head speed is 51mm / min.
일반적으로 폴리이미드 필름을 TAB 및 COF용 베이스 필름을 사용하기 위해서는 습식공정, 고온공정 등을 거치게 된다. 이 과정에서 폴리이미드 필름은 수분, 열 등에 의해 미세한 치수변화를 가질 수 있는데, 본 발명에서는 고분자간 네트워크를 강화시켜 치수안정성 및 인열강도가 향상된 폴리이미드 필름을 제공하고자 한다. In general, the polyimide film is subjected to a wet process and a high temperature process in order to use a base film for TAB and COF. In this process, the polyimide film may have a minute dimensional change due to moisture, heat, etc. In the present invention, it is to provide a polyimide film with improved dimensional stability and tear strength by strengthening the interpolymer network.
이에 본 발명의 일 구현예에서는 상기한 것과 같이 정의되는 치수안정성이 0.02%이하이면서, 상기한 것과 같이 정의되는 인열강도가 3.5kgf이상인 폴리이미드 필름을 제공한다.Thus, in one embodiment of the present invention provides a polyimide film having a tear strength of 3.5 kgf or more, while the dimensional stability defined as described above is 0.02% or less.
이와 같은 본 발명의 일 구현예에 의한 폴리이미드 필름을 연성 회로기판, 특히 반도체 실장형 연성 회로기판인 TAB 또는 COF용 베이스 필름으로 적용하는 경우 가혹한 연성 회로기판 제조공정에 있어서 치수변화 또는 접착층 분리 등의 발생이 없을 수 있다. When the polyimide film according to one embodiment of the present invention is applied to a flexible circuit board, particularly a base film for TAB or COF, which is a semiconductor mounted flexible circuit board, dimensional change or separation of an adhesive layer in a severe flexible circuit board manufacturing process, etc. May not occur.
이러한 점에서 본 발명의 일 구현예에 의한 폴리이미드 필름은 특히 흡습율이 1.4% 이하인 것일 수 있다. In this regard, the polyimide film according to one embodiment of the present invention may have a moisture absorption rate of 1.4% or less in particular.
이때 흡습율의 측정은, 필름의 일부를 잘라 100% RH(상대습도)분위기의 챔버(Chamber) 안에 48시간 동안 보관한 후 열무게분석법(Thermal gravimetric analysis)을 이용해 분석한다. 온도를 35℃에서 10℃/min으로 250℃까지 가열하여 무게변화를 분석해 계산할 수 있다. At this time, the moisture absorption is measured by cutting a portion of the film in a chamber (Chamber) at 100% RH (relative humidity) atmosphere for 48 hours and then analyzing it by using a thermal gravimetric analysis. The temperature can be calculated by analyzing the change in weight by heating the temperature from 35 ° C to 250 ° C at 10 ° C / min.
폴리이미드 필름을 이용하여 연성 회로기판을 제작하는 과정 중 습식공정을 거치면서 필름이 수분을 흡수하면 부피팽창이 발생해 연성 회로기판의 치수를 왜곡시키며, 고온공정에서 기화되는 증기(vapor)로 인해 접착층분리(delamination)의 원인이 될 수 있다. During the manufacturing process of flexible circuit board using polyimide film, if the film absorbs moisture during the wet process, volume expansion occurs, distorting the dimensions of the flexible circuit board, and due to vapor evaporated in high temperature process This may cause delamination.
이러한 점에서 본 발명의 일 구현예에 의한 폴리이미드 필름은 흡습율이 1.3% 이하인 것이 바람직할 수 있다. In this regard, the polyimide film according to the embodiment of the present invention may preferably have a moisture absorption of 1.3% or less.
상기한 범위내로 치수안정성 및 인열강도를 만족시키기 위한 방법은 한정되는 것은 아니나, 본 발명에서 고려된 방법으로는 폴리아믹산을 제조하는 데 사용되는 방향족 테트라카르복실산 이무수물 성분으로 비페닐테트라카르복실산 이무수물 또는 이의 관능성 유도체를 함유하며, 방향족 디아민 성분으로 p-페닐렌디아민, 디아미노페닐에테르 및 디아미노 벤조산을 함유하는 방법을 들 수 있다. The method for satisfying the dimensional stability and tear strength within the above range is not limited, but the method contemplated by the present invention is biphenyltetracar as the aromatic tetracarboxylic dianhydride component used to prepare the polyamic acid. A method containing an acid dianhydride or a functional derivative thereof, and containing p-phenylenediamine, diaminophenyl ether and diamino benzoic acid as an aromatic diamine component is mentioned.
특히 바람직하기로는 방향족 디아민 성분은 디아민 벤조산을 전체 방향족 디아민 성분 중 3몰% 이상으로 포함하는 것이, 점도조절을 가능하게 하면서 고분자의 네트워크 구조를 강화함으로써 치수안정성과 인열강도를 향상시킬 수 있다.Particularly preferably, the aromatic diamine component contains at least 3 mol% of diamine benzoic acid in the total aromatic diamine component, thereby improving dimensional stability and tear strength by strengthening the network structure of the polymer while allowing viscosity control.
또한 바람직하기로 방향족 테트라카르복실산 이무수물 성분으로는 비페닐테트라카르복실산 이무수물 또는 그의 관능성 유도체를 전체 방향족 테트라카르복실산 이무수물 성분 중 90몰% 이상으로 포함하는 것이 내약품성을 향상시킬 수 있다. Also preferably, the aromatic tetracarboxylic dianhydride component includes biphenyltetracarboxylic dianhydride or a functional derivative thereof in an amount of 90 mol% or more in the total aromatic tetracarboxylic dianhydride component to improve chemical resistance. You can.
상기한 치수안정성과 인열강도를 만족시키는 측면에서 가장 바람직한 폴리이미드 필름은 비페닐테트라카르복실산 이무수물로 되는 방향족 테트라카르복실산 이무수물 성분 100몰%와; p-페닐렌디아민 55 내지 75몰%, 디아미노디페닐에테르 20 내지 40몰% 및 디아미노 벤조산 3 내지 5몰%로 되는 방향족 디아민 성분 100몰%로 되는 폴리아믹산을 이미드화하여 얻어지는 것일 수 있다. In view of satisfying the above dimensional stability and tear strength, the most preferred polyimide film is 100 mol% of an aromatic tetracarboxylic dianhydride component comprising biphenyltetracarboxylic dianhydride; It may be obtained by imidizing a polyamic acid consisting of 100 mol% of an aromatic diamine component comprising 55 to 75 mol% of p-phenylenediamine, 20 to 40 mol% of diaminodiphenyl ether, and 3 to 5 mol% of diamino benzoic acid. .
상기한 치수안정성 및 인열강도를 만족시키기 위해 고려될 수 있는 다른 방법으로는 이미드화는 이미드화 촉매 및 탈수제를 포함하는 변환약제에 의한 화학적 변환을 수반할 수도 있다.Another method that can be considered to satisfy the above dimensional stability and tear strength is that imidization may involve chemical conversion by a conversion agent comprising an imidization catalyst and a dehydrating agent.
본 발명을 달성하기 위한 폴리이미드 필름의 제조의 이해를 돕기 위해 다음에서 조성 및 제막 방법에 대해 구체적으로 살피나, 이에 한정되는 것은 아니다. In order to facilitate understanding of the preparation of the polyimide film for achieving the present invention, the composition and the film forming method are specifically described below, but are not limited thereto.
[방향족 테트라카르복실산 이무수물][Aromatic Tetracarboxylic Anhydride]
본 발명에서 사용할 수 있는 방향족 테트라카르복실산 이무수물은 3,3',4,4'-비페닐테트라카르복실산 이무수물과 같은 비페닐테트라카르복실산 이무수물 또는 그의 관능성 유도체, 피로멜리트산 이무수물 또는 그의 관능성 유도체, 3,3',4,4'-벤조페논테트라카르복실산 무수물과 같은 벤조페논테트라카르복실산 이무수물 또는 그의 관능성 유도체, p-페닐렌-비스 트리멜리트산 이무수물 등을 사용할 수 있으나 상기한 것과 같이 비페닐테트라카르복실산 이무수물을 전체 방향족 테트라카르복실산 이무수물 중 90몰% 이상으로 사용하는 것이 바람직하다. The aromatic tetracarboxylic dianhydride that can be used in the present invention is biphenyltetracarboxylic dianhydride or functional derivatives thereof, such as 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, pyromelli Benzophenonetetracarboxylic dianhydride or its functional derivative, such as 3,3 ', 4,4'-benzophenonetetracarboxylic anhydride or p-phenylene-bis trimellis thereof Although an acid dianhydride etc. can be used, it is preferable to use biphenyl tetracarboxylic dianhydride in 90 mol% or more of all aromatic tetracarboxylic dianhydride as mentioned above.
비페닐테트라카르복실산 이무수물 단위를 과량으로 포함하는 폴리이미드 필름은 탄성계수값이 높고 낮은 흡습율을 보이며 내약품성이 우수하다. A polyimide film containing an excess of biphenyltetracarboxylic dianhydride units has a high modulus of elasticity, low moisture absorption and excellent chemical resistance.
[방향족 디아민 성분] [Aromatic Diamine Component]
본 발명에 사용할 수 있는 디아민류는 p-페닐렌 디아민과, 4,4'-디아미노페닐에테르, 3,4-디아미노페닐에테르, 2,4-디아미노페닐에테르와 같은 디아미노페닐에테르, 3,5-디아미노 벤조산과 같은 디아미노 벤조산을 들 수 있다. Diamines usable in the present invention include p-phenylene diamine, diaminophenyl ethers such as 4,4'-diaminophenyl ether, 3,4-diaminophenyl ether, 2,4-diaminophenyl ether, And diamino benzoic acid such as 3,5-diamino benzoic acid.
바람직하기로는 전체 디아민 중 p-페닐렌 디아민의 비율을 전체 방향족 디아민 성분 중 55몰% 이상, 더욱 좋기로는 55 내지 75몰%인 것이다. p-페닐렌 디아민은 디아미노페닐에테르와 비교하여 직선성을 가진 단량체로 필름의 열팽창계수(Coefficient of thermal expansion)값을 떨어뜨리는 역할을 한다. 반면에 p-페닐렌 디아민의 함량이 높으면 필름의 가요성이 떨어지고 필름형성능을 상실할 수도 있다.Preferably the proportion of p-phenylene diamine in the total diamine is at least 55 mol%, more preferably 55 to 75 mol% in the total aromatic diamine component. p-phenylene diamine is a monomer having a linearity compared to diamino phenyl ether serves to lower the coefficient of thermal expansion of the film (Coefficient of thermal expansion). On the other hand, if the content of p-phenylene diamine is high, the flexibility of the film may be reduced and the film forming ability may be lost.
이러한 측면에서 병용되는 디아미노페닐에테르의 함량은 전체 방향족 디아민 성분 중 40몰% 이하, 좋기로는 20 내지 40몰%인 것일 수 있다. In this aspect, the content of diaminophenyl ether used in combination may be 40 mol% or less, preferably 20 to 40 mol% of the total aromatic diamine components.
또한, 병용되는 디아미노 벤조산의 함량은 전체 방향족 디아민 성분 중 3몰% 이상, 좋기로는 3 내지 5몰%인 것일 수 있다. 디아미노 벤조산은 점도를 조절하는 역할을 하는 동시에 고분자간 네트워크 구조를 강화시켜 치수안정성, 인열강도 등의 물성을 향상시킬 수 있다.In addition, the content of diamino benzoic acid used in combination may be 3 mol% or more, preferably 3 to 5 mol% in the total aromatic diamine component. Diamino benzoic acid can improve the physical properties such as dimensional stability, tear strength by strengthening the intermolecular network structure at the same time to control the viscosity.
[폴리이미드 필름 제막법][Polyimide Film Film Forming Method]
일반적으로 폴리이미드 필름의 제막법은 당업계의 통상의 지식을 가진 자에게 자명한 정도로서 각별하지 않으나, 일예를 제시하면; 먼저, 유기 용매를 이용해 상기한 방향족 테트라카르복실산 이무수물과 방향족 디아민 성분을 반응시켜 폴리아믹산 용액을 얻는다. 이때, 용매는 일반적으로 아미드계 용매로 비양성자성 극성 용매(Aprotic solvent)를 사용하는 것이 바람직하며 그 예로는 N,N'-디메틸포름아미드, N,N'-디메틸아세트아미드, N-메틸-피롤리돈 등을 들 수 있으며 필요에 따라 2종을 조합해서 사용할 수도 있다.In general, the method for forming a polyimide film is not particularly noticeable to those skilled in the art, but provides an example; First, the aromatic tetracarboxylic dianhydride and the aromatic diamine component are reacted with an organic solvent to obtain a polyamic acid solution. In this case, the solvent is generally preferably an aprotic polar solvent (Aprotic solvent) as the amide solvent, for example, N, N'- dimethylformamide, N, N'- dimethylacetamide, N-methyl- Pyrrolidone etc. can be mentioned and can also be used in combination of 2 types as needed.
단량체의 투입형태는 가루(powder), 덩어리(lump) 및 용액형태로 투입할 수 있으며 반응 초기에는 가루형태로 투입하여 반응을 진행하고 중합 점도 조절을 위해 용액형태로 투입하는 것이 바람직하다.The input form of the monomer may be added in the form of powder, lump, and solution. In the initial stage of the reaction, the monomer may be added in the form of powder, and the reaction may be performed in the form of a solution to control the polymerization viscosity.
실질적으로 등몰량의 방향족 디아민 성분과 방향족 테트라카르복실산 이무수물이 투입된 상태에서 전체 폴리아믹산 용액 중 투입된 단량체의 무게를 고형분 함량이라고 하는데, 고형분 함량 10~30%, 바람직하게는 14~20%사이의 범위에서 중합을 진행하는 것일 수 있다. 특히, 블록중합을 진행하는 것이 바람직하다.The weight of the monomer added in the total polyamic acid solution in the state in which the equimolar amount of the aromatic diamine component and the aromatic tetracarboxylic dianhydride is added is called solid content, and the solid content is between 10-30%, preferably between 14-20% The polymerization may be performed in the range of. In particular, it is preferable to proceed block polymerization.
*또한 상술한 것과 같은 폴리아믹산이 말단이 아민인 분자쇄를 다량 포함하도록 단량체의 투입순서를 제어할 수도 있다. In addition, the order of monomer addition may be controlled so that the polyamic acid as described above contains a large amount of a molecular chain whose terminal is an amine.
한편 폴리이미드 필름에 접동성, 열전도성, 도전성, 내코로나성과 같은 여러가지 특성을 개선하기 위해 충진제를 첨가할 수도 있다. 충진제의 종류를 한정할 수는 없지만 바람직한 예로는 실리카, 산화티탄, 알루미나, 질화규소, 질화붕소, 인산수소칼슘, 인산칼슘, 운모 등을 들 수 있다. On the other hand, a filler may be added to the polyimide film to improve various properties such as sliding properties, thermal conductivity, conductivity, and corona resistance. Although the type of filler may not be limited, preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, and the like.
충진제의 입경은 필름의 두께나 종류에 따라 다르며 충진제의 표면도 개질된 것일 수 있다. 충진제의 평균입경은 0.1~100㎛가 바람직하며 0.1~3㎛가 더욱 바람직하다.The particle size of the filler depends on the thickness or type of the film and may be a modified surface of the filler. 0.1-100 micrometers is preferable and, as for the average particle diameter of a filler, 0.1-3 micrometers is more preferable.
상기 충전제의 첨가량도 특별히 한정된 것은 아니며 개질해야 할 필름, 입자의 종류 및 입경, 입자표면 등에 따라 변동될 수 있다. 충진제의 첨가량은 중합이 끝난 폴리아믹산 용액의 고형분 함량을 기준으로 하여 0.04~3%범위에서 사용하는 것이 바람직하다. 충진제의 첨가량이 상기 범위 이상으로 사용되면 폴리이미드 필름의 물성을 손상시킬 수 있으며 상기 범위 이하로 사용되면 개질 효과를 보기 어렵다.The addition amount of the filler is also not particularly limited and may vary depending on the film to be modified, the type and particle size of the particles, the particle surface, and the like. The addition amount of the filler is preferably used in the range of 0.04 to 3% based on the solids content of the polymerized polyamic acid solution. If the amount of the filler is used in the above range, the physical properties of the polyimide film may be impaired. If the filler is used in the range below, the modification effect is hardly seen.
투입방법은 반응물 초기에 투입할 수도 있으며 반응이 끝난 후에 투입할 수도 있다. 또는, 반응기의 오염을 방지하기 위해 촉매 혼합공정에서 투입할 수도 있어 투입 방법 및 시기가 특별히 한정된 것은 아니다.The dosing method can be added at the beginning of the reactants or after the reaction is over. Alternatively, in order to prevent contamination of the reactor, it may be added in a catalyst mixing step, and the addition method and timing are not particularly limited.
얻어진 폴리아믹산 용액은 바람직하기로는 이미드화 촉매 및 탈수제로 되는 변환약제와 혼합되어 지지체에 도포될 수 있다. 사용되는 촉매의 일예로는 3급아민류를 들 수 있으며, 탈수제로는 무수산을 들 수 있다. 무수산의 예로는 아세트산 무수물이 있으며 3급아민류로는 이소퀴놀린, β-피콜린, 피리딘 등을 예로 들 수 있다.The obtained polyamic acid solution may be applied to the support by mixing with a converting agent, preferably an imidization catalyst and a dehydrating agent. Examples of the catalyst used may include tertiary amines, and anhydrides may be cited as the dehydrating agent. Examples of anhydrous acid include acetic anhydride, and tertiary amines include isoquinoline, β-picolin, pyridine and the like.
무수산의 투입량은 폴리아믹산 용액 중 o-카르복실릭아미드기(o-carboxylic amide functional group)의 몰비율로 계산할 수 있으며 1.0~5.0몰비율로 사용하는 것이 바람직하다. The amount of anhydrous acid can be calculated by the molar ratio of o-carboxylic amide functional group in the polyamic acid solution, and it is preferable to use 1.0-5.0 molar ratio.
3급아민의 투입량은 폴리아믹산 용액 중 o-카르복실릭아미드기의 몰비율로 계산할 수 있으며 0.2~3.0몰비율 사이로 투입하는 것이 적당하다.The amount of tertiary amine can be calculated by the molar ratio of o-carboxylic amide groups in the polyamic acid solution, and it is appropriate to add between 0.2 and 3.0 molar ratios.
변환약제의 투입은 무수산/아민류의 혼합물 또는 무수산/아민/용매 혼합물의 형태로 사용할 수 있다.The conversion agent may be used in the form of a mixture of anhydrous acid / amines or anhydrous acid / amine / solvent mixture.
지지체 상에 도포된 필름은 건조 공기 및 열처리에 의해 지지체 위에서 겔화된다. 도포된 필름의 겔화 온도 조건은 100~250℃가 바람직하며 지지체로는 유리판, 알루미늄박, 순환 스테인레스 벨트 또는 스테인레스 드럼 등을 사용할 수 있으며 이에 한정이 있는 것은 아니다. The film applied on the support is gelled on the support by dry air and heat treatment. The gelation temperature of the coated film is preferably 100 ~ 250 ℃ and may be used as a support, such as glass plate, aluminum foil, circulating stainless belt or stainless drum, but is not limited thereto.
겔화에 필요한 처리 시간은 온도, 지지체의 종류, 도포된 폴리아믹산 용액의 양, 변환약제의 혼합조건에 따라 다르며 일정한 시간으로 한정되어 있지 않으나, 바람직하기로는 5분~30분 사이의 범위에서 시행하는 것이 좋다.The treatment time required for gelation depends on the temperature, the type of the support, the amount of the polyamic acid solution applied, and the mixing conditions of the conversion agent, and is not limited to a certain time, but is preferably performed within a range of 5 minutes to 30 minutes. It is good.
겔화된 필름을 지지체에서 분리하고 열처리하여 건조 및 이미드화를 완료시킨다. 열처리온도는 100~600℃ 사이에서 진행하며 처리 시간은 1분~30분 사이에서 진행한다. 겔화된 필름은 열처리시에 지지대에 고정시켜 진행한다. 겔필름은 핀타입의 프레임을 사용하거나 클립형을 사용하여 고정할 수 있다. The gelled film is separated from the support and heat treated to complete drying and imidization. Heat treatment temperature is between 100 ~ 600 ℃ and treatment time is between 1 ~ 30 minutes. The gelled film proceeds by being fixed to a support during heat treatment. Gel film can be fixed using a pin type frame or a clip type.
열처리를 마친 필름의 잔류 휘발성분은 5%이하이며 바람직하게는 3%이하이다.The residual volatile content of the film after heat treatment is 5% or less and preferably 3% or less.
열처리를 마친 필름은 일정한 장력하에서 열처리하여 제막에서 발생한 필름내부의 잔류응력을 제거한다. 장력 및 온도 조건은 서로 상관관계를 가지므로 온도에 따라 장력 조건은 달라질 수 있다. 온도는 100~600℃ 사이에서 유지하는 것이 좋으며 장력은 50N 이하, 시간은 1분에서 1시간 사이로 유지시키는 것이 바람직하다.After the heat treatment, the film is heat treated under a constant tension to remove residual stress in the film. Since the tension and temperature conditions are correlated with each other, the tension conditions may vary with temperature. Temperature is preferably maintained between 100 ~ 600 ℃, the tension is preferably 50N or less, the time is preferably maintained for 1 minute to 1 hour.
이하에서, 본 발명을 실시예에 의거하여 상세히 설명하면 다음과 같은바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples, the present invention is not limited by the Examples.
실시예 1Example 1
2L 자켓 반응기에 용매로 N,N'-디메틸포름아미드(DMF)를 820g 투입하였다. 온도를 30℃로 하고 p-페닐렌디아민(p-PDA) 20.5g과 비페닐테트카르복실산 이무수물(BPDA)을 넣었다. 30분 가량 교반하여 반응이 완료된 것을 반응기 내부 온도변화로 확인한 뒤에 디아미노페닐 에테르(ODA)을 투입하였다. 반응 완료 후에 p-페닐렌디아민(p-PDA)을 투입하였다. 투입이 끝나면 온도를 30℃로 유지하면서 1시간동안 교반하여 블록중합하였다.820 g of N, N'-dimethylformamide (DMF) was added to the 2L jacket reactor as a solvent. The temperature was 30 degreeC, 20.5 g of p-phenylenediamine (p-PDA), and biphenyl tetracarboxylic dianhydride (BPDA) were added. After stirring for about 30 minutes to confirm that the reaction was completed by changing the temperature inside the reactor was added diaminophenyl ether (ODA). After completion of the reaction, p-phenylenediamine (p-PDA) was added. After the addition, block polymerization was carried out for 1 hour while maintaining the temperature at 30 ℃.
그 후, 디아미노 벤조산(DABA) 용액을 투입하여 교반하였다. 이때, 상기 디아미노 벤조산 용액은 DMF를 용매로 하여 5% 농도로 제조하였다.Then, diamino benzoic acid (DABA) solution was added and stirred. In this case, the diamino benzoic acid solution was prepared at 5% concentration using DMF as a solvent.
반응이 완료된 폴리아믹산 용액은 고형분 함량이 15wt%이며 점도는 2,000 poise이다. 투입된 단량체의 몰비율은 BPDA 100%, ODA 35%, PDA 62%, DABA 3%이다.The completed polyamic acid solution had a solid content of 15 wt% and a viscosity of 2,000 poise. The molar ratio of the injected monomer is BPDA 100%, ODA 35%, PDA 62%, DABA 3%.
이 폴리아믹산 용액 100g과 30g의 변환약제 용액(이소퀴놀린 5.9g, 무수초산 14g, DMF 10.1g)을 균일하게 교반하여 스테인레스 판에 도포한 후 250㎛로 캐스팅하고 150℃의 열풍으로 5분간 건조한 후 필름을 스테인레스판에서 박리하여 프레임에 핀으로 고정하였다. 100 g of this polyamic acid solution and 30 g of a conversion pharmaceutical solution (5.9 g of isoquinoline, 14 g of anhydrous acetic acid, 10.1 g of DMF) were uniformly stirred, applied to a stainless plate, cast at 250 μm, dried for 5 minutes with 150 ° C. hot air The film was peeled off the stainless plate and pinned to the frame.
필름이 고정된 프레임을 진공오븐에 넣고 100℃부터 350℃까지 30분 동안 천천히 가열한 후 서서히 냉각해 필름을 프레임으로부터 분리하였다. 최종 얻어지는 필름의 두께는 38㎛이다.The film on which the film was fixed was placed in a vacuum oven, heated slowly from 100 ° C. to 350 ° C. for 30 minutes, and then slowly cooled to separate the film from the frame. The thickness of the film finally obtained is 38 micrometers.
실시예 2 내지 실시예 6Examples 2-6
상기 실시예 1과 같은 방법으로 폴리이미드 필름을 제조하되, 다만 폴리아믹산 중합시 다음 표 1과 같이 단량체 조성비를 달리하여, 폴리이미드 필름을 제조하였다.The polyimide film was prepared in the same manner as in Example 1, except that the polyimide film was prepared by varying the monomer composition ratio as shown in Table 1 during the polyamic acid polymerization.
실시예 7Example 7
2L 자켓 반응기에 용매로 N,N'-디메틸포름아미드(DMF)를 850g 투입하였다. 온도를 35℃로 하고 p-페닐렌디아민(p-PDA) 20.6g과 비페닐테트카르복실산 이무수물(BPDA)과 피로멜리트산 이무수물(PMDA)을 넣었다. 30분 가량 교반하여 반응이 완료된 것을 반응기 내부 온도변화로 확인한 뒤에 디아미노페닐 에테르(ODA)을 투입하였다. 반응 완료 후에 p-페닐렌디아민(p-PDA)을 투입하였다. 투입이 끝나면 온도를 40℃로 유지하면서 2시간동안 교반하여 블록중합하였다.850 g of N, N'-dimethylformamide (DMF) was added to the 2 L jacket reactor as a solvent. The temperature was 35 degreeC, 20.6g of p-phenylenediamine (p-PDA), biphenyl tetracarboxylic dianhydride (BPDA), and pyromellitic dianhydride (PMDA) were added. After stirring for about 30 minutes to confirm that the reaction was completed by changing the temperature inside the reactor was added diaminophenyl ether (ODA). After completion of the reaction, p-phenylenediamine (p-PDA) was added. After the addition, block polymerization was carried out for 2 hours while maintaining the temperature at 40 ℃.
그 후, 디아미노 벤조산(DABA) 용액을 투입하여 교반하였다. 이때, 상기 디아미노 벤조산 용액은 DMF를 용매로 하여 5% 농도로 제조하였다.Then, diamino benzoic acid (DABA) solution was added and stirred. In this case, the diamino benzoic acid solution was prepared at 5% concentration using DMF as a solvent.
반응이 완료된 폴리아믹산 용액은 고형분 함량이 15wt%이며 점도는 1,800 poise이다. 투입된 단량체의 몰비율은 BPDA 95mol%, PMDA 5mol%, ODA 35mol%, PDA 62mol%, DABA 3mol%이다.The completed polyamic acid solution had a solid content of 15 wt% and a viscosity of 1,800 poise. The molar ratio of the injected monomer is 95 mol% BPDA, 5 mol% PMDA, 35 mol% ODA, 62 mol% PDA, and 3 mol% DABA.
이 폴리아믹산 용액 100g과 30g의 변환약제 용액(이소퀴놀린 5.9g, 무수초산 14g, DMF 10.1g)을 균일하게 교반하여 스테인레스 판에 도포한 후 250㎛로 캐스팅하고 150℃의 열풍으로 5분간 건조한 후 필름을 스테인레스판에서 박리하여 프레임에 핀으로 고정하였다. 100 g of this polyamic acid solution and 30 g of a conversion pharmaceutical solution (5.9 g of isoquinoline, 14 g of anhydrous acetic acid, 10.1 g of DMF) were uniformly stirred, applied to a stainless plate, cast at 250 μm, dried for 5 minutes with 150 ° C. hot air The film was peeled off the stainless plate and pinned to the frame.
필름이 고정된 프레임을 진공오븐에 넣고 100℃부터 350℃까지 30분 동안 천천히 가열한 후 서서히 냉각해 필름을 프레임으로부터 분리하였다.The film on which the film was fixed was placed in a vacuum oven, heated slowly from 100 ° C. to 350 ° C. for 30 minutes, and then slowly cooled to separate the film from the frame.
비교예 1Comparative Example 1
상기 실시예 1과 같은 방법으로 폴리이미드 필름을 제조하되, 다만 폴리아믹산 중합시 디아미노 벤조산(DABA) 대신 파라페닐렌디아민(PPD)를 사용하였다.A polyimide film was prepared in the same manner as in Example 1, except that paraphenylenediamine (PPD) was used instead of diamino benzoic acid (DABA) in polyamic acid polymerization.
비교예 2Comparative Example 2
2L 자켓 반응기에 용매로 N,N'-디메틸포름아미드(DMF)를 830g 투입하였다. 온도를 30℃로 하고 p-페닐렌디아민(p-PDA) 23.1g과 디아미노페닐 에테르(ODA) 24.2g을 투입한 후 용해된 것을 확인 한 후 비페닐테트카르복실산 이무수물(BPDA) 101.6g을 넣었다. 30분 가량 교반하여 반응이 완료된 것을 반응기 내부 온도변화로 확인한 뒤에 온도를 30℃로 유지하면서 1시간동안 교반하여 중합하였다.830 g of N, N'-dimethylformamide (DMF) was added to the 2L jacket reactor as a solvent. The temperature was set to 30 ° C., and 23.1 g of p-phenylenediamine (p-PDA) and 24.2 g of diaminophenyl ether (ODA) were added. Then, the resultant was dissolved. Biphenyl-tetracarboxylic dianhydride (BPDA) 101.6 g was added. After stirring for about 30 minutes to confirm that the reaction was completed by the change in the temperature inside the reactor, the polymerization was stirred for 1 hour while maintaining the temperature at 30 ℃.
그 후, 파라페닐렌디아민(PPD) 용액 22.4g 을 투입하여 교반하되, 분할 투입하여 최종 점도에 이르면 투입을 종료하였다. 이때, 상기 파라페닐렌디아민(PPD) 용액은 DMF를 용매로 하여 5% 농도로 제조하였다.Thereafter, 22.4 g of a paraphenylenediamine (PPD) solution was added to the mixture, followed by stirring. In this case, the paraphenylenediamine (PPD) solution was prepared in 5% concentration using DMF as a solvent.
반응이 완료된 폴리아믹산 용액은 고형분 함량이 15wt%이며 점도는 1800 poise이다. 투입된 단량체의 몰비율은 BPDA 100%, ODA 35%, PDA 65%이다.The reaction solution of the polyamic acid has a solid content of 15 wt% and a viscosity of 1800 poise. The molar ratio of the injected monomer is 100% BPDA, 35% ODA, 65% PDA.
이 폴리아믹산 용액을 스테인레스 판에 도포한 후 250㎛로 캐스팅하고 120℃의 열풍으로 10분간 건조한 후 필름을 스테인레스판에서 박리하여 프레임에 핀으로 고정하였다. The polyamic acid solution was applied to a stainless plate, cast at 250 μm, dried for 10 minutes with hot air at 120 ° C., and the film was peeled off from the stainless plate to fix the pin to the frame.
필름이 고정된 프레임을 진공오븐에 넣고 100℃부터 350℃까지 30분 동안 천천히 가열한 후 서서히 냉각해 필름을 프레임으로부터 분리하였다.The film on which the film was fixed was placed in a vacuum oven, heated slowly from 100 ° C. to 350 ° C. for 30 minutes, and then slowly cooled to separate the film from the frame.
실시예 및 비교예에서 제조된 필름에 대하여, 하기와 같이 인장탄성율, 선팽창계수 및 인열강도를 측정하여, 그 결과를 표 2에 나타내었다.For the films prepared in Examples and Comparative Examples, the tensile modulus, linear expansion coefficient and tear strength were measured as follows, and the results are shown in Table 2.
(1) 인장탄성율(1) Tensile modulus
인장탄성율은 인스트론 장비(Standard Instron testing apparatus)를 이용해 ASTM D 882 규정에 맞추어 3번을 테스트해 평균값을 취했다.Tensile modulus was averaged by testing three times in accordance with ASTM D 882 using a standard instron testing apparatus.
(2) 선팽창계수(2) coefficient of linear expansion
제막이 끝난 샘플의 일부를 폭 4mm, 너비 30mm로 잘라 TA사 열기계 분석장치(Thermal mechanical apparatus) Q400을 이용해 열팽창계값(Coefficient of thermal expansion)을 측정하였다. 샘플을 수정 후크(quartz hook)에 걸고 0.010 N의 힘을 가한 뒤에 질소분위기에서 30℃에서 420℃까지 10℃/min으로 가열하였다. 열팽창계수값은 50℃ 에서 200℃ 범위 내에서 구하였다A portion of the finished film was cut into a width of 4 mm and a width of 30 mm, and the coefficient of thermal expansion was measured using a TA company thermal mechanical apparatus Q400. The sample was hooked to a quartz hook and subjected to a force of 0.010 N and then heated at 10 ° C./min from 30 ° C. to 420 ° C. in a nitrogen atmosphere. The coefficient of thermal expansion was obtained within the range of 50 ° C to 200 ° C.
(3) 인열강도(3) tear strength
인열강도는 ASTM D 1004 방법으로 측정하였다.Tear strength was measured by ASTM D 1004 method.
표 1
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 실시예 7 비교예 1 비교예 2
BPDA 100 100 100 100 100 100 95 100 100
PMDA - - - - - - 5 - -
PDA 62 67 69 72 65 70 62 65 65
ODA 35 30 28 25 30 25 35 35 35
DABA 3 3 3 3 5 5 3 - -
Table 1
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Comparative Example 1 Comparative Example 2
BPDA 100 100 100 100 100 100 95 100 100
PMDA - - - - - - 5 - -
PDA 62 67 69 72 65 70 62 65 65
ODA 35 30 28 25 30 25 35 35 35
DABA 3 3 3 3 5 5 3 - -
표 2
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 실시예 7 비교예 1 비교예 2
인장탄성율(GPa) 5.4 5.7 6.0 6.2 5.5 6.2 5.5 5.4 5.1
선팽창계수(ppm/) 14 13 10 9 14 9 14 14 18
인열강도(kgf) 3.0 3.1 3.0 3.1 3.5 3.2 3.1 2.8 2.7
TABLE 2
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Comparative Example 1 Comparative Example 2
Tensile Modulus (GPa) 5.4 5.7 6.0 6.2 5.5 6.2 5.5 5.4 5.1
Coefficient of linear expansion (ppm /) 14 13 10 9 14 9 14 14 18
Tear strength (kgf) 3.0 3.1 3.0 3.1 3.5 3.2 3.1 2.8 2.7
상기 표 2의 결과로부터, 실시예 1 내지 7에 의해 얻어지는 폴리이미드 필름은 인장탄성율 우수하며, 선팽창계수가 낮고, 인열강도가 우수한 것을 알 수 있다.From the results of Table 2, it can be seen that the polyimide films obtained in Examples 1 to 7 have excellent tensile modulus, low linear expansion coefficient, and excellent tear strength.
반면, 비교예 1 내지 2에 의해 얻어지는 폴리이미든 필름은 실시예 1 내지 7에 의해 얻어지는 폴리이미드 필름에 비하여 인장탄성율과 인열강도가 낮고 선팽창계수는 높은 것으로 나타났다.On the other hand, the polyimide film obtained by Comparative Examples 1 to 2 was found to have a lower tensile modulus and tear strength and a higher coefficient of linear expansion than the polyimide film obtained by Examples 1 to 7.

Claims (5)

  1. 비페닐테트라카르복실산 이무수물 또는 그의 관능성 유도체를 포함하는 방향족 테트라카르복실산 이무수물 성분과, p-페닐렌디아민, 디아미노디페닐에테르 및 디아미노 벤조산을 포함하는 방향족 디아민 성분으로부터 되는 폴리아믹산을 이미드화하여 얻어지며; Aromatic tetracarboxylic dianhydride component containing biphenyl tetracarboxylic dianhydride or its functional derivative, and polya which consists of aromatic diamine component containing p-phenylenediamine, diamino diphenyl ether, and diamino benzoic acid. Obtained by imidizing the mic acid;
    IPC TM 650 2.2.4A에 따라 측정된 치수안정성이 0.02% 이하이고;Dimensional stability, measured according to IPC ™ 650 2.2.4A, is 0.02% or less;
    ASTM D 1004 규격에 따라 측정된 인열강도가 3.0kgf 이상인 폴리이미드 필름.Polyimide film with a tear strength of at least 3.0 kgf measured according to ASTM D 1004 specifications.
  2. 제 1 항에 있어서, 방향족 디아민 성분은 디아민 벤조산을 전체 방향족 디아민 성분 중 3몰% 이상으로 포함하는 것임을 특징으로 하는 폴리이미드 필름.The polyimide film of claim 1, wherein the aromatic diamine component comprises at least 3 mol% of diamine benzoic acid in the total aromatic diamine component.
  3. 제 1 항 또는 제 2 항에 있어서, 비페닐테트라카르복실산 이무수물 또는 그의 관능성 유도체를 전체 방향족 테트라카르복실산 이무수물 성분 중 90몰% 이상으로 포함하는 것임을 특징으로 하는 폴리이미드 필름.The polyimide film according to claim 1 or 2, comprising biphenyltetracarboxylic dianhydride or a functional derivative thereof in an amount of 90 mol% or more in the total aromatic tetracarboxylic dianhydride component.
  4. 제 1 항에 있어서, 비페닐테트라카르복실산 이무수물로 되는 방향족 테트라카르복실산 이무수물 성분 100몰%와; p-페닐렌디아민 55 내지 75몰%, 디아미노페닐에테르 20 내지 40몰% 및 디아민 벤조산 3 내지 5몰%로 되는 방향족 디아민 성분 100몰%로 되는 폴리아믹산을 이미드화하여 얻어지는 것임을 특징으로 하는 폴리이미드 필름. 100 mol% of an aromatic tetracarboxylic dianhydride component according to claim 1, comprising biphenyltetracarboxylic dianhydride; Polyimide obtained by imidating a polyamic acid consisting of 100 mol% of an aromatic diamine component comprising 55 to 75 mol% of p-phenylenediamine, 20 to 40 mol% of diaminophenyl ether, and 3 to 5 mol% of diamine benzoic acid. Mid film.
  5. 제 1 항에 있어서, 이미드화는 이미드화 촉매 및 탈수제를 포함하는 변환약제에 의한 화학적 변환을 수반하는 것을 특징으로 하는 폴리이미드 필름.The polyimide film of claim 1, wherein the imidation involves chemical conversion by a conversion agent comprising an imidization catalyst and a dehydrating agent.
PCT/KR2010/009622 2010-12-16 2010-12-31 Polyimide film WO2012081763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100129175A KR101558621B1 (en) 2010-12-16 2010-12-16 Polyimide film
KR10-2010-0129175 2010-12-16

Publications (1)

Publication Number Publication Date
WO2012081763A1 true WO2012081763A1 (en) 2012-06-21

Family

ID=46244849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009622 WO2012081763A1 (en) 2010-12-16 2010-12-31 Polyimide film

Country Status (2)

Country Link
KR (1) KR101558621B1 (en)
WO (1) WO2012081763A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107207747A (en) * 2014-12-30 2017-09-26 韩国爱思开希可隆Pi股份有限公司 Thermal welding multilayer polyimide film using cross-linking type water insoluble thermoplastic polyamic acid and preparation method thereof
EP3162838A4 (en) * 2014-06-30 2018-04-25 Kolon Industries, Inc. High heat-resistant polyamic acid solution and polyimide film
CN111491988A (en) * 2017-12-28 2020-08-04 韩国爱思开希可隆Pi股份有限公司 Polyimide film for preparing flexible copper foil laminated board and flexible copper foil laminated board comprising same
CN113795537A (en) * 2019-05-08 2021-12-14 聚酰亚胺先端材料有限公司 Preparation method of polyimide film and polyimide film prepared by same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072692A1 (en) * 2013-11-15 2015-05-21 한양대학교 산학협력단 Thermally rearranged poly(benzoxazole-imide) copolymer having cross-linked structure, gas separation membrane comprising same and preparation method therefor
KR101668059B1 (en) * 2014-12-30 2016-10-20 에스케이씨코오롱피아이 주식회사 Crosslinking water-soluble thermoplastic polyamic acid and method of preparation thereof
KR102147299B1 (en) 2019-09-30 2020-08-24 에스케이이노베이션 주식회사 Window cover film and flexible display panel including the same
KR102147349B1 (en) 2019-09-30 2020-08-25 에스케이이노베이션 주식회사 Window cover film and flexible display panel including the same
KR102141891B1 (en) * 2019-11-08 2020-08-07 피아이첨단소재 주식회사 Polyimide Film for Preparing Flexible Copper Clad Laminate And Flexible Copper Clad Laminate Comprising the Same
CN114685787B (en) * 2020-12-27 2024-03-08 上海市塑料研究所有限公司 Polyimide film with synergistic crosslinking structure and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040063898A1 (en) * 2001-02-23 2004-04-01 Masaru Nishinaka Polymide film and process for producing the same
KR20070121727A (en) * 2005-04-12 2007-12-27 가부시키가이샤 가네카 Polyimide film
WO2009019968A1 (en) * 2007-08-03 2009-02-12 Kaneka Corporation Multilayer polyimide film, laminate and metal-clad laminate
KR20100065350A (en) * 2007-09-20 2010-06-16 우베 고산 가부시키가이샤 Process for production of polyimide film, and polyamic acid solution composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040063898A1 (en) * 2001-02-23 2004-04-01 Masaru Nishinaka Polymide film and process for producing the same
KR20070121727A (en) * 2005-04-12 2007-12-27 가부시키가이샤 가네카 Polyimide film
WO2009019968A1 (en) * 2007-08-03 2009-02-12 Kaneka Corporation Multilayer polyimide film, laminate and metal-clad laminate
KR20100065350A (en) * 2007-09-20 2010-06-16 우베 고산 가부시키가이샤 Process for production of polyimide film, and polyamic acid solution composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3162838A4 (en) * 2014-06-30 2018-04-25 Kolon Industries, Inc. High heat-resistant polyamic acid solution and polyimide film
US10538665B2 (en) 2014-06-30 2020-01-21 Kolon Industries, Inc. High heat-resistant polyamic acid solution and polyimide film
CN107207747A (en) * 2014-12-30 2017-09-26 韩国爱思开希可隆Pi股份有限公司 Thermal welding multilayer polyimide film using cross-linking type water insoluble thermoplastic polyamic acid and preparation method thereof
CN107207747B (en) * 2014-12-30 2020-06-02 韩国爱思开希可隆Pi股份有限公司 Heat-welded multilayer polyimide film using cross-linked water-soluble thermoplastic polyamic acid and method for preparing same
CN111491988A (en) * 2017-12-28 2020-08-04 韩国爱思开希可隆Pi股份有限公司 Polyimide film for preparing flexible copper foil laminated board and flexible copper foil laminated board comprising same
CN111491988B (en) * 2017-12-28 2023-02-17 聚酰亚胺先端材料有限公司 Polyimide film for preparing flexible copper foil laminated board and flexible copper foil laminated board comprising same
CN113795537A (en) * 2019-05-08 2021-12-14 聚酰亚胺先端材料有限公司 Preparation method of polyimide film and polyimide film prepared by same

Also Published As

Publication number Publication date
KR20120067645A (en) 2012-06-26
KR101558621B1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
WO2012081763A1 (en) Polyimide film
EP2342266A2 (en) Polyimide film
WO2021040127A1 (en) Polyimide film and manufacturing method for same
KR20100083249A (en) Polyimide film
WO2020054912A1 (en) Polyimide film having improved surface quality and method for manufacturing same
WO2021060613A1 (en) Polyamic acid composition, method for preparing same, and polyimide film comprising same
WO2011013904A2 (en) Polyimide film
WO2021091014A1 (en) Polyimide film having improved dielectric properties, and manufacturing method for same
WO2021091011A1 (en) Highly heat-resistant and low dialectric-polyimide film and method for producing same
WO2019132184A1 (en) Polyimide film for manufacturing flexible copper clad laminate and flexible copper clad laminate comprising same
WO2021095975A1 (en) Low-dialectric polyimide film and method for producing same
WO2021095976A1 (en) Highly elastic and heat-resistant polyimide film and method for producing same
WO2021096245A2 (en) Polyimide film having improved dimensional stability and manufacturing method thereof
WO2019004677A1 (en) Polyimide precursor composition, preparation method therefor, and polyimide substrate manufactured therefrom
WO2021054515A1 (en) Polyimide film, method for manufacturing same, and flexible metal foil laminate comprising same
WO2016003146A1 (en) High heat-resistant polyamic acid solution and polyimide film
WO2021091012A1 (en) Polyimide film having low dielectric properties, and manufacturing method for same
KR101045823B1 (en) Black polyimide film
WO2021107294A1 (en) Polyimide film, method for producing same, and flexible metal foil clad laminate comprising same
KR20110035620A (en) Polyimide film
WO2021091013A1 (en) Polyimide film having high heat resistance and low dielectric properties, and manufacturing method for same
WO2022098042A1 (en) Polyimide film having high dimensional stability, and method for manufacturing same
WO2021060612A1 (en) Polyamic acid composition, method for preparing same, and polyimide film comprising same
WO2021060616A1 (en) Polyamic acid composition, method for preparing polyamic acid composition, and polyimide comprising same
WO2019132515A1 (en) Method for preparing polyamic acid, and polyamic acid, polyimide resin, and polyimide film which are manufactured thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860705

Country of ref document: EP

Kind code of ref document: A1