WO2011013904A2 - Polyimide film - Google Patents

Polyimide film Download PDF

Info

Publication number
WO2011013904A2
WO2011013904A2 PCT/KR2010/004018 KR2010004018W WO2011013904A2 WO 2011013904 A2 WO2011013904 A2 WO 2011013904A2 KR 2010004018 W KR2010004018 W KR 2010004018W WO 2011013904 A2 WO2011013904 A2 WO 2011013904A2
Authority
WO
WIPO (PCT)
Prior art keywords
thermal expansion
polyimide film
coefficient
cte
film
Prior art date
Application number
PCT/KR2010/004018
Other languages
French (fr)
Korean (ko)
Other versions
WO2011013904A3 (en
Inventor
원동영
김성원
Original Assignee
에스케이씨코오롱피아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨코오롱피아이 주식회사 filed Critical 에스케이씨코오롱피아이 주식회사
Publication of WO2011013904A2 publication Critical patent/WO2011013904A2/en
Publication of WO2011013904A3 publication Critical patent/WO2011013904A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N

Definitions

  • the present invention relates to a polyimide film useful as a flexible circuit board, a base film such as TAB or COF.
  • Polyimide films are widely used in electrical / electronic materials, aerospace / aviation and telecommunications because of their excellent mechanical and thermal dimensional stability and chemical stability.
  • the polyimide film has been widely used as a base film of a flexible circuit board material having a fine pattern, for example, TAB (tape automated bonding) or COF (chips on film) due to the thin and short size of parts.
  • TAB tape automated bonding
  • COF chips on film
  • TAB or COF technology is a kind of technology to seal IC chip or LSI chip. Specifically, it is a technology that creates a conductive pattern on a flexible tape and seals it by mounting the chip on it. It is advantageous for light and thin product.
  • a polyimide film As a base film for TAB or COF, high dimensional stability is required. This is because a dimensional change may occur due to heat shrinkage or a dimensional change may occur due to residual stress in the cooling process after the TAB or COF manufacturing process for bonding the polyimide film in a heated state or after the sputtering process for laminating the metal layer. As a result, positional errors can occur during the bonding of ICs or LSI chips to TABs or COFs.
  • the TAB tape is then exposed to high temperatures (about 300 ° C.) during a solder reflow process to electrically connect the chip to the substrate. At this time, the moisture is released, the gas is generated, which causes a dimensional change of the film and also forms a foam between the conductive pattern and the polyimide film. In order to solve this problem, the moisture absorption rate should be small.
  • U.S. Patent No. 5,166,308 uses pyromellitic dianhydride and biphenyltetracarboxylic dianhydride as aromatic tetracarboxylic acid components, and p-phenylenediamine and diaminodiphenyl ether are aromatic.
  • a polyimide film comprising a diamine component, the polyimide film obtained therefrom has a high moisture absorption rate, the degree of expansion with respect to heat is large for a specific direction and the degree of expansion in the width direction of the film and the mechanical direction The difference in degree of expansion is large.
  • to provide a polyimide film having a degree of expansion with respect to the heat across the film direction to provide a polyimide film having a uniform degree of thermal expansion along the film direction.
  • In one embodiment of the present invention also to provide a polyimide film that satisfies low hygroscopicity.
  • a polyamic acid comprising an aromatic tetracarboxylic acid component containing a biphenyltetracarboxylic acid or a functional derivative thereof and an aromatic diamine component containing p-phenylenediamine and diaminodiphenylether. Obtained by imidizing; In the 50 to 200 °C section, the thermal expansion coefficient for the mechanical direction may be 9.9ppm / °C or less, the thermal expansion coefficient for the width direction may be 9.9ppm / °C or less.
  • a polyimide film having a thermal expansion coefficient of 3.0 to 9.9 ppm / ° C in the mechanical direction and a thermal expansion coefficient of 3.0 to 9.9 ppm / ° C in the width direction is provided.
  • the coefficient of thermal expansion deviation defined by the ratio of the coefficient of thermal expansion (CTE MD ) in the mechanical direction to the coefficient of thermal expansion (CTE TD ) in the width direction (CTE MD / CTE TD ) is 1.55 or less, in particular the coefficient of thermal expansion is 0.5 to 1.55. It provides a polyimide film.
  • the aromatic diamine component may include diaminodiphenyl ether at 20 mol% or less in the total aromatic diamine component.
  • the polyimide film according to a preferred embodiment may include biphenyltetracarboxylic acid or a functional derivative thereof in an amount of 90 mol% or more in the total aromatic tetracarboxylic acid component.
  • Polyimide film according to a preferred embodiment is 100 mol% aromatic tetracarboxylic acid component of biphenyltetracarboxylic acid; It can be obtained by imidating the polyamic acid which consists of 100 mol% of aromatic diamine components which consist of 80-99 mol% of p-phenylenediamine and 1-20 mol% of diamino diphenyl ether.
  • the polyimide film according to one embodiment of the present invention also has a moisture absorption expansion coefficient of 3.0 to 9.0 ppm /% RH in a mechanical direction at a temperature of 25 ° C. and a relative humidity of 20 to 80% RH, and a moisture absorption expansion in a width direction.
  • the coefficient may be between 3.0 and 9.0 ppm /% RH.
  • the imidation may be accompanied by chemical conversion by a conversion agent including an imidization catalyst and a dehydrating agent.
  • the thermal dimensional stability is excellent, and in particular, the thermal expansion coefficient according to the direction of the film is all small, and the circuit during the process of bonding the driver driver IC which realizes the image during the LCD manufacturing process onto the TAB or COF circuit Due to the heat received, dimensional change of the circuit occurs, which can prevent mis-matching with the Drive IC which has a relatively small dimensional change.
  • a polyimide film can be used as base films, such as TAB and COF, and can respond especially to the demand of a fine line width.
  • the polyimide film according to the embodiment of the present invention has low hygroscopicity, and thus, dimensional stability may be secured even in a process such as a wet process in a flexible circuit board manufacturing process such as TAB or COF.
  • the present invention relates to a polyimide film, and in particular, provides a polyimide film having a thermal expansion coefficient of 9.9 ppm / ° C. or less in the mechanical direction and a thermal expansion coefficient of 9.9 ppm / ° C. or less in the width direction.
  • the coefficient of thermal expansion was measured by cutting a portion of the finished film into a width of 6mm ⁇ length of 30mm to measure the coefficient of thermal expansion (Coefficient of thermal expansion, CTE) by using a TA thermal mechanical apparatus (Q400).
  • the sample was hooked to a quartz hook and subjected to a force of 0.010 N and then heated at a rate of 10 ° C./minute from 30 ° C. to 420 ° C. in a nitrogen atmosphere.
  • the coefficient of thermal expansion was determined within the range of 50 ° C to 200 ° C.
  • a metal layer is directly laminated on a polyimide film, for example, by deposition or plating, or a metal layer is laminated on a polyimide film using an adhesive.
  • a polyimide / metal laminate followed by etching the metal portion to obtain a patterned polyimide / metal laminate.
  • the polyimide film must ensure thermal dimensional stability, and in particular, dimensional stability in all directions of the film.
  • a polyimide film having a thermal expansion coefficient of 9.9 ppm / ° C. or less in the width direction of the film and a thermal expansion coefficient of 9.9 ppm / ° C. or less of the mechanical direction of the film.
  • the thermal expansion coefficient in the width direction of the film is 4.0 to 9.0 ppm / ⁇ ⁇
  • the thermal expansion coefficient in the mechanical direction of the film is 4.0 to 9.0 ppm / ⁇ ⁇ .
  • the polyimide film according to the embodiment of the present invention has a coefficient of thermal expansion deviation defined as the ratio (CTE MD / CTE TD ) of the thermal expansion coefficient (CTE MD ) in the mechanical direction and the thermal expansion coefficient (CTE TD ) in the width direction. It is less than 1.55.
  • the variation in coefficient of thermal expansion is 0.8 to 1.4.
  • the polyimide film having thermal dimensional stability may not only have excellent mechanical strength but also have a low hygroscopic expansion coefficient.
  • the film absorbs moisture during the wet process during the manufacturing of the flexible circuit board using the polyimide film, volume expansion occurs, distorting the dimensions of the flexible circuit board, and due to vapor evaporated at a high temperature process This may cause delamination.
  • the polyimide film according to the embodiment of the present invention has a hygroscopic expansion coefficient of 3.0 to 9.0 ppm /% RH, and thus has a low hygroscopic expansion coefficient, thereby ensuring dimensional stability in a humid environment.
  • the hygroscopic expansion coefficient was measured by fastening the specimen 25mm x 150mm to a CHE meter (manufactured by BMA Co.) and measuring the dimensional change from 20% to 80% relative humidity at 25 ° C.
  • the polyimide film according to one embodiment of the present invention when applied to a flexible printed circuit board, particularly a base film for TAB or COF, which is a semiconductor mounted flexible printed circuit board, it may contribute to fine line width and in a severe flexible printed circuit board manufacturing process There may be no dimensional change or adhesive layer separation.
  • the method for satisfying the coefficient of thermal expansion and the coefficient of thermal expansion within the above range is not limited, but the method considered in the present invention is biphenylcar as an aromatic tetracarboxylic dianhydride component used to prepare polyamic acid.
  • a method containing an acid dianhydride or a functional derivative thereof, and containing p-phenylenediamine and diaminophenyl ether as an aromatic diamine component is mentioned.
  • the aromatic diamine component contains diaminophenyl ether at 20 mol% or less in the total aromatic diamine component.
  • the molecular chain has a rigid structure with an appropriate degree, and thus the thermal expansion coefficient value and the hygroscopic expansion are satisfied. The coefficient can be lowered.
  • the aromatic tetracarboxylic acid component may contain at least 90 mol% of biphenyltetracarboxylic acid or a functional derivative thereof in the total aromatic tetracarboxylic acid component to lower the coefficient of thermal expansion and absorption coefficient. have.
  • the most preferable polyimide film in terms of satisfying the above-described coefficient of thermal expansion and coefficient of thermal expansion is 100 mol% of an aromatic tetracarboxylic acid component of biphenyltetracarboxylic acid; It can be obtained by imidating the polyamic acid which consists of 100 mol% of aromatic diamine components which consist of 80-99 mol% of p-phenylenediamine and 1-20 mol% of diamino diphenyl ether.
  • Another method to reduce the coefficient of thermal expansion is a method of holding both ends with a tenter clip or pin in the tenter step after obtaining the gel film.
  • imidation is preferably accompanied by chemical conversion by a conversion agent including an imidization catalyst and a dehydrating agent in that the thermal expansion coefficient value can be lowered and the hygroscopic expansion coefficient can be lowered.
  • composition and the film forming method are specifically described below, but are not limited thereto.
  • the aromatic tetracarboxylic dianhydride that can be used in the present invention is biphenyltetracarboxylic dianhydride or functional derivatives thereof, such as 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, pyromelli Benzophenonetetracarboxylic dianhydride or a functional derivative thereof, such as triacid dianhydride or a functional derivative thereof, 3,3 ', 4,4'-benzophenonetetracarboxylic anhydride, p-phenylene-bistri Mellitic dianhydride and the like can be used, but as described above, it is preferable to use biphenyltetracarboxylic dianhydride in 90% or more of the total aromatic tetracarboxylic dianhydride.
  • the polyimide film containing an excessive amount of biphenyltetracarboxylic acid units has excellent mechanical properties, low coefficient of thermal expansion, and low coefficient of hygroscopic expansion, and excellent dimensional stability under high temperature and high humidity.
  • Diamines usable in the present invention include p-phenylene diamine and diaminophenyl ethers such as 4,4'-diaminophenyl ether, 3,4-diaminophenyl ether or 2,4-diaminophenyl ether. Can be mentioned.
  • the proportion of diaminophenyl ether in the total diamine is 20 mol% or less, preferably 1-20 mol%, more preferably 5-15 mol% in the total aromatic diamine component.
  • Diaminophenyl ether is a monomer having flexibility compared to p-phenylenediamine. When the content thereof is increased, the polyimide molecular chain may become soft and dimensional stability may be inferior. In this regard, it is preferable to use an excessive amount of p-phenylenediamine in terms of lowering the coefficient of thermal expansion and lowering the hygroscopic expansion coefficient.
  • the method for forming a polyimide film is not particularly noticeable to those skilled in the art, but provides an example;
  • the aromatic tetracarboxylic dianhydride and the aromatic diamine component are reacted with an organic solvent to obtain a polyamic acid solution.
  • the solvent is generally preferably an aprotic polar solvent (Aprotic solvent) as the amide solvent, for example, N, N'- dimethylformamide, N, N'- dimethylacetamide, N-methyl- Pyrrolidone etc. can be mentioned and can also be used in combination of 2 types as needed.
  • Aprotic solvent aprotic polar solvent
  • the input form of the monomer may be added in the form of powder, lump, and solution.
  • the monomer may be added in the form of powder, and the reaction may be performed in the form of a solution to control the polymerization viscosity.
  • the weight of the monomer added in the total polyamic acid solution in the state in which the equimolar amount of the aromatic diamine component and the aromatic tetracarboxylic dianhydride are added is called a solid content, and the solid content is in the range of 10-30% or 12-23%. It is preferable to proceed with polymerization.
  • the order of the monomers may be controlled so that the polyamic acid contains a large amount of a molecular chain whose terminal is an amine.
  • a filler may be added to the polyimide film to improve various properties such as sliding properties, thermal conductivity, conductivity, and corona resistance.
  • the type of filler may not be limited, preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, and the like.
  • the particle size of the filler depends on the thickness or type of the film and may be a modified surface of the filler. 0.1-100 micrometers is preferable and, as for the average particle diameter of a filler, 0.1-25 micrometers is more preferable.
  • the addition amount of the filler is not particularly limited, and may vary depending on the film to be modified, the type and particle size of the particles, the particle surface, and the like.
  • the addition amount of the filler is preferably used in the range of 10ppm to 5% based on the solids content of the polymerized polyamic acid solution. If the amount of the filler is used in the above range, the physical properties of the polyimide film may be impaired. If the filler is used in the range below, the modification effect is hardly seen.
  • the dosing method can be added at the beginning of the reactants or after the reaction is over. Alternatively, in order to prevent contamination of the reactor, it may be added in a catalyst mixing step, and the addition method and timing are not particularly limited.
  • the obtained polyamic acid solution may be applied to the support by mixing with a converting agent, preferably an imidization catalyst and a dehydrating agent.
  • a converting agent preferably an imidization catalyst and a dehydrating agent.
  • the catalyst used may include tertiary amines, and anhydrides may be cited as the dehydrating agent.
  • anhydrous acid include acetic anhydride, and tertiary amines include isoquinoline, ⁇ -picolin, pyridine and the like.
  • the amount of anhydrous acid can be calculated by the molar ratio of o-carboxylic amide functional group in the polyamic acid solution, and it is preferable to use 1.0-5.0 molar ratio.
  • the amount of tertiary amine can be calculated by the molar ratio of o-carboxylic amide groups in the polyamic acid solution, and it is appropriate to add between 0.2 and 3.0 molar ratios.
  • the conversion agent may be used in the form of a mixture of anhydrous acid / amines or anhydrous acid / amine / solvent mixture.
  • the film applied on the support is gelled on the support by dry air and heat treatment.
  • the gelation temperature of the coated film is preferably 100 ⁇ 250 °C and may be used as a support, such as glass plate, aluminum foil, circulating stainless belt or stainless drum, but is not limited thereto.
  • the treatment time required for gelation depends on the temperature, the type of the support, the amount of the polyamic acid solution applied, and the mixing conditions of the conversion agent, and is not limited to a certain time, but is preferably performed within a range of 5 minutes to 30 minutes. It is good.
  • the gelled film is separated from the support and heat treated to complete drying and imidization.
  • the heat treatment temperature is between 100 ⁇ 500 °C and the treatment time is between 1 ⁇ 30 minutes.
  • the gelled film may be fixed to the support during heat treatment.
  • Gel film can be fixed using a pin type frame or a clip type.
  • the residual volatile content of the film after heat treatment is 5% or less and preferably 3% or less.
  • the film is heat treated under a constant tension to remove residual stress in the film. Since the tension and temperature conditions are correlated with each other, the tension conditions may vary with temperature. Temperature is preferably maintained between 100 ⁇ 500 °C, tension is 50N or less, the time is preferably maintained for 1 minute to 1 hour.
  • N, N'-dimethylformamide (DMF) was added to the 400 L jacket reactor.
  • the temperature was 40 ° C, 10.6 kg of p-phenylenediamine (p-PDA) and 0.2 kg of 4,4'-diaminophenyl ether (ODA) were added and stirred until complete dissolution.
  • p-PDA p-phenylenediamine
  • ODA 4,4'-diaminophenyl ether
  • the completed polyamic acid solution had a solid content of 17 wt% and a viscosity of 2,000 poise.
  • the molar ratio of the introduced monomer is BPDA 100%, ODA 99%, PDA 1%.
  • the polyamic acid solution was mixed with 5 molar equivalents of acetic anhydride (based on polyamic acid) and 1 molar equivalent of isoquinoline (based on polyamic acid), and the mixed solution was cast on an endless type steel belt and held at 100 to 150 ° C. for about 10 minutes. After drying to peel off to prepare a gel film.
  • the film After fixing both ends of the gel film with a pin, the film is put into a tenter capable of adjusting the tension received in the width direction (TD), heated at 250 to 450 ° C. for about 10 minutes, and finally dried by dehydration ring drying.
  • TD width direction
  • a polyimide film having a thickness of 38 ⁇ m was prepared.
  • the dehydration ring drying process was performed with both ends of the gel film fixed without tension adjustment in the TD direction.
  • a portion of the obtained film was cut out and stored in a chamber of 100% RH (Relative Humidity) atmosphere for 48 hours and analyzed using Thermal gravimetric analysis.
  • the temperature was heated at a rate of temperature increase of 10 ° C./min from 35 ° C. to 250 ° C. to analyze the change in weight to calculate water absorption.
  • CTE coefficient of thermal expansion
  • the hygroscopic expansion coefficient (CHE) was measured by measuring a dimensional change of 5% to 90% relative humidity at 25 ° C by fastening a 25mm x 150mm specimen to a CHE meter (BMA Co.).
  • Example 2 After the reaction, the polyamic acid solution was formed into a film as in Example 1 and measured for physical properties. The results are shown in Table 2 below.
  • N, N'-dimethylformamide (DMF) was added to the 400 L jacket reactor.
  • the temperature was 40 ° C, 10.2 kg of p-phenylenediamine (p-PDA) and 1.0 kg of 4,4'-diaminophenyl ether (ODA) were added and stirred until complete dissolution.
  • p-PDA p-phenylenediamine
  • ODA 4,4'-diaminophenyl ether
  • BPDA 3,4,3 ', 4'-biphenyl tetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • the completed polyamic acid solution had a solid content of 17 wt% and a viscosity of 2,000 poise.
  • the molar ratio of injected monomer is BPDA 97%, PMDA 3%, ODA 5%, PDA 95%.
  • Example 2 After the reaction, the polyamic acid solution was formed into a film as in Example 1 and measured for physical properties. The results are shown in Table 2 below.
  • N, N'-dimethylformamide (DMF) was added to the 400 L jacket reactor as a solvent.
  • the temperature was 40 ° C, and 3.4 kg of p-phenylenediamine (p-PDA) and 18.9 kg of diaminophenyl (ODA) were added thereto.
  • p-PDA p-phenylenediamine
  • ODA diaminophenyl
  • BPDA biphenyl tetracarboxylic dianhydride
  • pyromellitic dianhydride 16.5 kg of pyromellitic dianhydride
  • the reaction solution was mixed with 5 molar equivalents of acetic anhydride (based on polyamic acid) and 1 molar equivalent of isoquinoline (based on polyamic acid), and the mixed solution was cast on an endless steel belt and subjected to about 10 at 100 to 150 ° C.
  • the gel film was prepared by drying for 2 minutes and then peeling off.
  • the film After fixing both ends of the gel film with a pin, the film is put into a tenter capable of adjusting the tension received in the width direction (TD), heated at 250 to 450 ° C. for about 10 minutes, and finally dried by dehydration ring drying.
  • TD width direction
  • a polyimide film having a thickness of 38 ⁇ m was prepared.
  • tensile_strength which a film receives in the tenter was adjusted by adjusting the position of both ends of a tenter so that TD CTE of the film finally obtained may be 10 ppm / degrees C or less.
  • MD machine direction
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 Comparative Example 1 Comparative Example 2
  • BPDA 100 100 100 100 100 97 40
  • PMDA - - - - - 3 60 - PDA 99 95 90 85 80 95 25 75 ODA
  • the polyimide films obtained in Examples 1 to 6 had thermal expansion coefficients of 9.9 ppm / ° C or less in the width direction of the film and thermal expansion coefficients of 9.9 ppm / ° C or less in the mechanical direction. It can be seen that the coefficient deviation is 1.55 or less, and the hygroscopic expansion coefficient is 3.0 to 9.0 ppm /% RH, which is excellent in dimensional stability under high temperature and high humidity environment.
  • the polyimide film according to Comparative Example 1 has both a large coefficient of thermal expansion and a large coefficient of thermal expansion variation in the width direction and the mechanical direction.
  • the hygroscopic expansion coefficient is also remarkably large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention relates to a polyimide film, and discloses a polyimide film having a low degree of thermal expansion and little difference in the degree of expansion in the widthwise direction and in the degree of expansion in the mechanical direction of the film, so as to retain dimensional stability even under extreme heat conditions.

Description

폴리이미드 필름Polyimide film
본 발명은 연성 회로기판, TAB이나 COF 등의 베이스 필름 등으로 유용한 폴리이미드 필름에 관한 것이다.The present invention relates to a polyimide film useful as a flexible circuit board, a base film such as TAB or COF.
폴리이미드 필름은 기계적 및 열적 치수 안정성이 우수하고, 화학적 안정성을 갖는 특성으로 인해 전기/전자 재료, 우주/항공 및 전기통신 분야에 넓게 이용되고 있다. Polyimide films are widely used in electrical / electronic materials, aerospace / aviation and telecommunications because of their excellent mechanical and thermal dimensional stability and chemical stability.
특히, 폴리이미드 필름은 부품의 경박단소화로 인해 미세한 패턴을 가진 연성 회로기판 재료, 일예로 TAB(tape automated bonding)이나 COF(chips on film) 등의 베이스 필름으로 많이 사용되고 있다. In particular, the polyimide film has been widely used as a base film of a flexible circuit board material having a fine pattern, for example, TAB (tape automated bonding) or COF (chips on film) due to the thin and short size of parts.
TAB 또는 COF 기술은 IC 칩이나 LSI 칩을 밀봉하는 기술의 일종으로, 구체적으로는 연성 테이프 위에 전도성 패턴을 만들고 위에 칩을 실장하여 밀봉하는 기술로 패키지화된 밀봉소자의 크기가 작고 가요성을 가지고 있어 제품의 경박단소화에 유리하다.TAB or COF technology is a kind of technology to seal IC chip or LSI chip. Specifically, it is a technology that creates a conductive pattern on a flexible tape and seals it by mounting the chip on it. It is advantageous for light and thin product.
폴리이미드 필름을 TAB이나 COF용 베이스 필름으로 이용하기 위해서는 높은 치수 안정성이 요구된다. 폴리이미드 필름을 가열 상태로 접합하는 TAB 또는 COF 제조공정 또는 금속층 적층을 위한 스퍼터링 공정 후의 냉각 과정에서 열수축에 의해 치수변화가 발생하거나 에칭 공정 이후에 잔류 응력에 의해 치수변화가 발생할 수 있기 때문이다. 그 결과로 IC나 LSI 칩을 TAB이나 COF에 접합하는 과정 중에서 위치 오차가 발생할 수 있다. In order to use a polyimide film as a base film for TAB or COF, high dimensional stability is required. This is because a dimensional change may occur due to heat shrinkage or a dimensional change may occur due to residual stress in the cooling process after the TAB or COF manufacturing process for bonding the polyimide film in a heated state or after the sputtering process for laminating the metal layer. As a result, positional errors can occur during the bonding of ICs or LSI chips to TABs or COFs.
그리고, 칩을 기판과 전기적으로 연결하기 위해 납땜 리플로우(Reflow) 공정을 거치면서 TAB 테이프가 고온(약 300℃)에 노출된다. 이때 흡습되어 있던 수분이 발산되면서 가스가 발생되는데 이것은 필름의 치수 변화를 일으키며 전도성 패턴과 폴리이미드 필름 사이에 발포체를 형성하기도 한다. 이 문제를 해결하기 위해서는 흡습율이 작아야 한다.The TAB tape is then exposed to high temperatures (about 300 ° C.) during a solder reflow process to electrically connect the chip to the substrate. At this time, the moisture is released, the gas is generated, which causes a dimensional change of the film and also forms a foam between the conductive pattern and the polyimide film. In order to solve this problem, the moisture absorption rate should be small.
더욱이 제품의 소형화, 첨단화와 함께 경제적인 측면을 고려하여 TAB이나 COF 등과 같은 연성 회로기판은 선폭(pitch)이 미세화되고 있는 추세에 있으며, 이와 같은 추세에 대응하기 위해서는 폴리이미드 필름은 보다 향상된 성능을 발휘해야 할 것을 요구하고 있다. In addition, in consideration of economical aspects along with miniaturization and advancement of the product, flexible circuit boards such as TAB and COF have tended to be miniaturized. To cope with this trend, polyimide films have improved performance. It requires something to be done.
종래 폴리이미드 필름의 일예로 미국특허 제5,166,308호에는 피로멜리트산 이무수물, 비페닐테트라카르복실산 이무수물을 방향족 테트라카르복실산 성분으로 하고, p-페닐렌디아민과 디아미노디페닐 에테르를 방향족 디아민 성분으로 포함하는 폴리이미드 필름에 대해 개시하고 있는데, 이로부터 얻어지는 폴리이미드 필름은 흡습율이 높고, 열에 대한 팽창의 정도가 특정 방향에 대해서는 크고 필름의 폭 방향에 대한 팽창의 정도와 기계적 방향에 대한 팽창의 정도의 차이가 크다. As an example of a conventional polyimide film, U.S. Patent No. 5,166,308 uses pyromellitic dianhydride and biphenyltetracarboxylic dianhydride as aromatic tetracarboxylic acid components, and p-phenylenediamine and diaminodiphenyl ether are aromatic. Disclosed is a polyimide film comprising a diamine component, the polyimide film obtained therefrom has a high moisture absorption rate, the degree of expansion with respect to heat is large for a specific direction and the degree of expansion in the width direction of the film and the mechanical direction The difference in degree of expansion is large.
본 발명의 일 구현예에서는 열에 대한 팽창의 정도가 필름 전 방향에 걸쳐 작은 폴리이미드 필름을 제공하고자 한다. 특히 필름 방향에 따른 열 팽창의 정도가 고른 폴리이미드 필름을 제공하고자 한다. In one embodiment of the present invention to provide a polyimide film having a degree of expansion with respect to the heat across the film direction. In particular, to provide a polyimide film having a uniform degree of thermal expansion along the film direction.
본 발명의 일 구현예에서는 열적 치수안정성이 향상된 폴리이미드 필름을 제공하고자 한다. In one embodiment of the present invention to provide a polyimide film with improved thermal dimensional stability.
본 발명의 일 구현예에서는 또한 저흡습성을 만족하는 폴리이미드 필름을 제공하고자 한다. In one embodiment of the present invention also to provide a polyimide film that satisfies low hygroscopicity.
본 발명의 일 구현예에서는 선폭의 미세화에 따른 TAB 또는 COF 등의 베이스 필름 등으로 유용한 폴리이미드 필름을 제공하고자 한다.In one embodiment of the present invention to provide a polyimide film useful as a base film such as TAB or COF according to the miniaturization of the line width.
본 발명의 일 구현예에서는 비페닐테트라카르복실산 또는 그의 관능성 유도체를 포함하는 방향족 테트라카르복실산 성분과, p-페닐렌디아민 및 디아미노디페닐에테르를 포함하는 방향족 디아민 성분으로부터 되는 폴리아믹산을 이미드화하여 얻어지며; 50 내지 200℃ 구간에서, 기계적 방향에 대한 열팽창계수가 9.9ppm/℃ 이하이고, 폭방향에 대한 열팽창계수가 9.9ppm/℃ 이하인 것일 수 있다.In one embodiment of the present invention, a polyamic acid comprising an aromatic tetracarboxylic acid component containing a biphenyltetracarboxylic acid or a functional derivative thereof and an aromatic diamine component containing p-phenylenediamine and diaminodiphenylether. Obtained by imidizing; In the 50 to 200 ℃ section, the thermal expansion coefficient for the mechanical direction may be 9.9ppm / ℃ or less, the thermal expansion coefficient for the width direction may be 9.9ppm / ℃ or less.
본 발명의 일 구현예에 의한 폴리이미드 필름에 있어서, 기계적 방향에 대한 열팽창계수가 3.0 내지 9.9 ppm/℃이고, 폭방향에 대한 열팽창계수가 3.0 내지 9.9ppm/℃인 폴리이미드 필름을 제공한다. 바람직하기로는 기계적 방향의 열팽창계수(CTEMD)와 폭방향의 열팽창계수(CTETD)의 비(CTEMD/CTETD)로서 정의되는 열팽창계수 편차가 1.55 이하, 특히 열팽창계수 편차가 0.5 내지 1.55인 폴리이미드 필름을 제공한다.In the polyimide film according to one embodiment of the present invention, a polyimide film having a thermal expansion coefficient of 3.0 to 9.9 ppm / ° C in the mechanical direction and a thermal expansion coefficient of 3.0 to 9.9 ppm / ° C in the width direction is provided. Preferably, the coefficient of thermal expansion deviation defined by the ratio of the coefficient of thermal expansion (CTE MD ) in the mechanical direction to the coefficient of thermal expansion (CTE TD ) in the width direction (CTE MD / CTE TD ) is 1.55 or less, in particular the coefficient of thermal expansion is 0.5 to 1.55. It provides a polyimide film.
바람직한 일 구현예에 의한 폴리이미드 필름에 있어서, 방향족 디아민 성분은 디아미노디페닐에테르를 전체 방향족 디아민 성분 중 20몰% 이하로 포함하는 것일 수 있다. In the polyimide film according to the preferred embodiment, the aromatic diamine component may include diaminodiphenyl ether at 20 mol% or less in the total aromatic diamine component.
바람직한 일 구현예에 의한 폴리이미드 필름은 비페닐테트라카르복실산 또는 그의 관능성 유도체를 전체 방향족 테트라카르복실산 성분 중 90몰% 이상으로 포함하는 것일 수 있다. The polyimide film according to a preferred embodiment may include biphenyltetracarboxylic acid or a functional derivative thereof in an amount of 90 mol% or more in the total aromatic tetracarboxylic acid component.
바람직한 일 구현예에 의한 폴리이미드 필름은 비페닐테트라카르복실산으로 되는 방향족 테트라카르복실산 성분 100몰%와; p-페닐렌디아민 80 내지 99몰% 및 디아미노디페닐에테르 1 내지 20몰%로 이루어지는 방향족 디아민 성분 100몰%로 되는 폴리아믹산을 이미드화하여 얻어지는 것일 수 있다. Polyimide film according to a preferred embodiment is 100 mol% aromatic tetracarboxylic acid component of biphenyltetracarboxylic acid; It can be obtained by imidating the polyamic acid which consists of 100 mol% of aromatic diamine components which consist of 80-99 mol% of p-phenylenediamine and 1-20 mol% of diamino diphenyl ether.
본 발명의 일 구현예에 의한 폴리이미드 필름은 또한 25℃ 온도, 상대습도 20 내지 80%RH 구간에서, 기계적 방향에 대한 흡습팽창계수가 3.0 내지 9.0ppm/%RH이고, 폭방향에 대한 흡습팽창계수가 3.0 내지 9.0 ppm/%RH인 것일 수 있다. The polyimide film according to one embodiment of the present invention also has a moisture absorption expansion coefficient of 3.0 to 9.0 ppm /% RH in a mechanical direction at a temperature of 25 ° C. and a relative humidity of 20 to 80% RH, and a moisture absorption expansion in a width direction. The coefficient may be between 3.0 and 9.0 ppm /% RH.
본 발명의 일 구현예에 의한 폴리이미드 필름에 있어서 이미드화는 이미드화 촉매 및 탈수제를 포함하는 변환약제에 의한 화학적 변환을 수반하는 것일 수 있다.In the polyimide film according to one embodiment of the present invention, the imidation may be accompanied by chemical conversion by a conversion agent including an imidization catalyst and a dehydrating agent.
본 발명의 일 구현예에 의하면 열적 치수안정성이 우수하며 특히 필름의 방향에 따른 열팽창계수가 모두 작음으로써 LCD 제작 공정 중 영상을 구현하는 구동 Driver IC를 TAB나 COF 회로상에 Bonding 하는 공정 중 회로가 받는 열에 의해 회로의 치수변화가 발생하여 상대적으로 치수 변화가 적은 Drive IC 와의 Mis-Matching 되는 현상을 방지할 수 있다. 이와 같은 폴리이미드 필름은 TAB이나 COF 등의 베이스 필름으로 사용할 수 있으며, 특히 미세 선폭의 요구에 부응할 수 있다. 더욱이 본 발명의 일 구현예에 의한 폴리이미드 필름은 흡습성 또한 낮아 TAB 또는 COF 등 연성 회로기판 제조공정에 있어 습식공정 등의 공정에서도 치수안정성을 확보할 수 있다. According to one embodiment of the present invention, the thermal dimensional stability is excellent, and in particular, the thermal expansion coefficient according to the direction of the film is all small, and the circuit during the process of bonding the driver driver IC which realizes the image during the LCD manufacturing process onto the TAB or COF circuit Due to the heat received, dimensional change of the circuit occurs, which can prevent mis-matching with the Drive IC which has a relatively small dimensional change. Such a polyimide film can be used as base films, such as TAB and COF, and can respond especially to the demand of a fine line width. In addition, the polyimide film according to the embodiment of the present invention has low hygroscopicity, and thus, dimensional stability may be secured even in a process such as a wet process in a flexible circuit board manufacturing process such as TAB or COF.
이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.
본 발명은 폴리이미드 필름에 관한 것으로, 특히 기계적 방향에 대한 열팽창계수가 9.9 ppm/℃ 이하이고, 폭방향에 대한 열팽창계수가 9.9 ppm/℃ 이하인 폴리이미드 필름을 제공한다.The present invention relates to a polyimide film, and in particular, provides a polyimide film having a thermal expansion coefficient of 9.9 ppm / ° C. or less in the mechanical direction and a thermal expansion coefficient of 9.9 ppm / ° C. or less in the width direction.
이때 열팽창계수는 제막이 끝난 샘플의 일부를 폭 6mm × 길이 30mm로 잘라 TA사 열분석장치(Thermal mechanical apparatus) Q400을 이용해 열팽창계수값(Coefficient of thermal expansion, CTE)을 측정하였다. 샘플을 수정 후크(quartz hook)에 걸고 0.010 N의 힘을 가한 뒤에 질소분위기에서 30℃에서 420℃까지 10℃/분의 속도로 가열하였다. 열팽창계수값은 50℃ 에서 200℃ 범위 내에서 구하였다.In this case, the coefficient of thermal expansion was measured by cutting a portion of the finished film into a width of 6mm × length of 30mm to measure the coefficient of thermal expansion (Coefficient of thermal expansion, CTE) by using a TA thermal mechanical apparatus (Q400). The sample was hooked to a quartz hook and subjected to a force of 0.010 N and then heated at a rate of 10 ° C./minute from 30 ° C. to 420 ° C. in a nitrogen atmosphere. The coefficient of thermal expansion was determined within the range of 50 ° C to 200 ° C.
일반적으로 폴리이미드 필름을 이용하여 연성 회로기판을 제작하는 공정을 보면, 폴리이미드 필름 위에, 예를 들면 증착 또는 도금에 의해 금속층을 직접적으로 적층시키거나, 금속층을 접착제를 사용하여 폴리이미드 필름 위에 적층시킴으로써 폴리이미드/금속 적층체를 제공한 다음, 금속 부분을 에칭시켜 패턴화된 폴리이미드/금속 적층체를 얻는다. In general, in the process of manufacturing a flexible circuit board using a polyimide film, a metal layer is directly laminated on a polyimide film, for example, by deposition or plating, or a metal layer is laminated on a polyimide film using an adhesive. Thereby providing a polyimide / metal laminate, followed by etching the metal portion to obtain a patterned polyimide / metal laminate.
특히 최근 소형의 고성능 전기장치에 대한 요구가 증가함에 따라 연성 회로기판이 보다 심한 고온 다습하에서 보다 빈번히 사용된다. In particular, with the recent increase in the demand for small, high-performance electrical devices, flexible circuit boards are used more frequently under severe high temperature and high humidity.
이러한 점에서 폴리이미드 필름은 열적 치수안정성을 확보해야 하며, 특히 필름의 전 방향에 대한 치수안정성을 확보해야 한다. In this regard, the polyimide film must ensure thermal dimensional stability, and in particular, dimensional stability in all directions of the film.
이에 본 발명의 일 구현예에서는 필름의 폭방향에 대한 열팽창계수가 9.9ppm/℃ 이하이고, 필름의 기계적 방향에 대한 열팽창계수가 9.9ppm/℃ 이하인 폴리이미드 필름을 제공한다. 바람직하기로는 필름의 폭방향에 대한 열팽창계수가 4.0 내지 9.0ppm/℃이고, 필름의 기계적 방향에 대한 열팽창계수가 4.0 내지 9.0ppm/℃인 것이다.Thus, in one embodiment of the present invention provides a polyimide film having a thermal expansion coefficient of 9.9 ppm / ° C. or less in the width direction of the film and a thermal expansion coefficient of 9.9 ppm / ° C. or less of the mechanical direction of the film. Preferably, the thermal expansion coefficient in the width direction of the film is 4.0 to 9.0 ppm / 占 폚, and the thermal expansion coefficient in the mechanical direction of the film is 4.0 to 9.0 ppm / 占 폚.
한편 필름의 폭방향 및 기계적 방향에 대한 열팽창계수값이 작다 하더라도 폭방향의 열팽창계수값과 기계적 방향의 열팽창계수값의 차이가 크면 주위로부터 열을 받았을 때 열팽창계수의 비대칭으로 말미암아 필름에 변형이 생기는 문제가 발생될 수 있다. 이러한 점에서 본 발명의 일 구현예에 의한 폴리이미드 필름은 기계적 방향의 열팽창계수(CTEMD)와 폭방향의 열팽창계수(CTETD)의 비(CTEMD/CTETD)로서 정의되는 열팽창계수 편차가 1.55 이하인 것이다. 바람직하게는 열팽창계수 편차가 0.8 내지 1.4인 것이다. On the other hand, even if the coefficient of thermal expansion in the width and mechanical directions of the film is small, if the difference in the coefficient of thermal expansion in the width direction and the coefficient of thermal expansion in the mechanical direction is large, deformation of the film occurs due to asymmetry of the coefficient of thermal expansion when heat is received from the surroundings. Problems may arise. In this regard, the polyimide film according to the embodiment of the present invention has a coefficient of thermal expansion deviation defined as the ratio (CTE MD / CTE TD ) of the thermal expansion coefficient (CTE MD ) in the mechanical direction and the thermal expansion coefficient (CTE TD ) in the width direction. It is less than 1.55. Preferably the variation in coefficient of thermal expansion is 0.8 to 1.4.
이와 같이 열적 치수안정성을 확보한 폴리이미드 필름은 기계적 강도가 우수할 뿐만 아니라 또한 흡습팽창계수도 낮을 수 있다. As such, the polyimide film having thermal dimensional stability may not only have excellent mechanical strength but also have a low hygroscopic expansion coefficient.
폴리이미드 필름을 이용하여 연성 회로기판을 제작하는 과정 중 습식공정을 거치면서 필름이 수분을 흡수하면 부피팽창이 발생해 연성 회로기판의 치수를 왜곡시키며, 고온공정에서 기화되는 증기(vapor)로 인해 접착층분리(delamination)의 원인이 될 수 있다. If the film absorbs moisture during the wet process during the manufacturing of the flexible circuit board using the polyimide film, volume expansion occurs, distorting the dimensions of the flexible circuit board, and due to vapor evaporated at a high temperature process This may cause delamination.
특히 본 발명의 일 구현예에 의한 폴리이미드 필름은 흡습팽창계수가 3.0 내지 9.0 ppm/%RH로, 이와 같이 낮은 흡습팽창계수를 가짐에 따라 다습한 환경에서의 치수안정성을 확보할 수 있다. In particular, the polyimide film according to the embodiment of the present invention has a hygroscopic expansion coefficient of 3.0 to 9.0 ppm /% RH, and thus has a low hygroscopic expansion coefficient, thereby ensuring dimensional stability in a humid environment.
여기서 흡습팽창계수는 시편 25mm x 150mm를 CHE meter(BMA co.사 제품)에 체결하여 온도 25℃ 조건에서 상대습도 20%에서 80%까지의 치수변화를 측정하였다. Here, the hygroscopic expansion coefficient was measured by fastening the specimen 25mm x 150mm to a CHE meter (manufactured by BMA Co.) and measuring the dimensional change from 20% to 80% relative humidity at 25 ° C.
따라서 본 발명의 일 구현예에 의한 폴리이미드 필름을 연성 회로기판, 특히 반도체 실장형 연성 회로기판인 TAB 또는 COF용 베이스 필름으로 적용하는 경우 미세 선폭화에 기여할 수 있고 가혹한 연성 회로기판 제조공정에 있어서 치수변화 또는 접착층 분리 등의 발생이 없을 수 있다.  Therefore, when the polyimide film according to one embodiment of the present invention is applied to a flexible printed circuit board, particularly a base film for TAB or COF, which is a semiconductor mounted flexible printed circuit board, it may contribute to fine line width and in a severe flexible printed circuit board manufacturing process There may be no dimensional change or adhesive layer separation.
상기한 범위내로 열팽창계수값 및 열팽창계수 편차를 만족시키기 위한 방법은 한정되는 것은 아니나, 본 발명에서 고려된 방법으로는 폴리아믹산을 제조하는 데 사용되는 방향족 테트라카르복실산 이무수물 성분으로 비페닐카르복실산 이무수물 또는 이의 관능성 유도체를 함유하며, 방향족 디아민 성분으로 p-페닐렌디아민 및 디아미노페닐에테르를 함유하는 방법을 들 수 있다. The method for satisfying the coefficient of thermal expansion and the coefficient of thermal expansion within the above range is not limited, but the method considered in the present invention is biphenylcar as an aromatic tetracarboxylic dianhydride component used to prepare polyamic acid. A method containing an acid dianhydride or a functional derivative thereof, and containing p-phenylenediamine and diaminophenyl ether as an aromatic diamine component is mentioned.
특히 바람직하기로는 방향족 디아민 성분은 디아미노페닐에테르를 전체 방향족 디아민 성분 중 20몰% 이하로 포함하는 것이, 분자쇄가 적정한 정도의 강직한 구조를 가짐으로써 기계적 물성을 만족하면서 열팽창계수값 및 흡습팽창계수를 낮출 수 있다. Particularly preferably, the aromatic diamine component contains diaminophenyl ether at 20 mol% or less in the total aromatic diamine component. The molecular chain has a rigid structure with an appropriate degree, and thus the thermal expansion coefficient value and the hygroscopic expansion are satisfied. The coefficient can be lowered.
또한 바람직하기로 방향족 테트라카르복실산 성분으로는 비페닐테트라카르복실산 또는 그의 관능성 유도체를 전체 방향족 테트라카르복실산 성분 중 90몰% 이상으로 포함하는 것이 열팽창계수값 및 흡습팽창계수를 낮출 수 있다. Preferably, the aromatic tetracarboxylic acid component may contain at least 90 mol% of biphenyltetracarboxylic acid or a functional derivative thereof in the total aromatic tetracarboxylic acid component to lower the coefficient of thermal expansion and absorption coefficient. have.
상기한 열팽창계수값 및 열팽창계수 편차를 만족시키는 측면에서 가장 바람직한 폴리이미드 필름은 비페닐테트라카르복실산으로 되는 방향족 테트라카르복실산 성분 100몰%와; p-페닐렌디아민 80 내지 99몰% 및 디아미노디페닐에테르 1 내지 20몰%로 이루어지는 방향족 디아민 성분 100몰%로 되는 폴리아믹산을 이미드화하여 얻어지는 것일 수 있다. The most preferable polyimide film in terms of satisfying the above-described coefficient of thermal expansion and coefficient of thermal expansion is 100 mol% of an aromatic tetracarboxylic acid component of biphenyltetracarboxylic acid; It can be obtained by imidating the polyamic acid which consists of 100 mol% of aromatic diamine components which consist of 80-99 mol% of p-phenylenediamine and 1-20 mol% of diamino diphenyl ether.
한편 열팽창계수 편차를 줄일 수 있는 다른 방법으로는 겔 필름을 얻은 후 텐터링 단계에서 텐터 클립 또는 핀으로 양 말단을 유지하는 방법을 들 수 있다. On the other hand, another method to reduce the coefficient of thermal expansion is a method of holding both ends with a tenter clip or pin in the tenter step after obtaining the gel film.
또 다른 방법의 일예로 이미드화는 이미드화 촉매 및 탈수제를 포함하는 변환약제에 의한 화학적 변환을 수반하는 것이 열팽창계수값을 낮추고 흡습팽창계수를 낮출 수 있는 점에서 바람직하다. As an example of another method, imidation is preferably accompanied by chemical conversion by a conversion agent including an imidization catalyst and a dehydrating agent in that the thermal expansion coefficient value can be lowered and the hygroscopic expansion coefficient can be lowered.
본 발명을 달성하기 위한 폴리이미드 필름의 제조의 이해를 돕기 위해 다음에서 조성 및 제막 방법에 대해 구체적으로 살피나, 이에 한정되는 것은 아니다. In order to facilitate understanding of the preparation of the polyimide film for achieving the present invention, the composition and the film forming method are specifically described below, but are not limited thereto.
[방향족 테트라카르복실산 이무수물][Aromatic Tetracarboxylic Anhydride]
본 발명에서 사용할 수 있는 방향족 테트라카르복실산 이무수물은 3,3',4,4'-비페닐테트라카르복실산 이무수물과 같은 비페닐테트라카르복실산 이무수물 또는 그의 관능성 유도체, 피로멜리트산 이무수물 또는 그의 관능성 유도체, 3,3',4,4'-벤조페논테트라카르복실산 무수물과 같은 벤조페논테트라카르복실산 이무수물 또는 그의 관능성 유도체,, p-페닐렌-비스 트리멜리트산 이무수물 등을 사용할 수 있으나 상기한 것과 같이 비페닐테트라카르복실산 이무수물을 전체 방향족 테트라카르복실산 이무수물 중 90몰% 이상으로 사용하는 것이 바람직하다. The aromatic tetracarboxylic dianhydride that can be used in the present invention is biphenyltetracarboxylic dianhydride or functional derivatives thereof, such as 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, pyromelli Benzophenonetetracarboxylic dianhydride or a functional derivative thereof, such as triacid dianhydride or a functional derivative thereof, 3,3 ', 4,4'-benzophenonetetracarboxylic anhydride, p-phenylene-bistri Mellitic dianhydride and the like can be used, but as described above, it is preferable to use biphenyltetracarboxylic dianhydride in 90% or more of the total aromatic tetracarboxylic dianhydride.
비페닐테트라카르복실산 단위를 과량으로 포함하는 폴리이미드 필름은 기계적 물성이 우수하고 열팽창계수값이 낮으며 또한 흡습팽창계수가 낮아 고온다습한 환경하에서의 치수안정성이 우수하다. The polyimide film containing an excessive amount of biphenyltetracarboxylic acid units has excellent mechanical properties, low coefficient of thermal expansion, and low coefficient of hygroscopic expansion, and excellent dimensional stability under high temperature and high humidity.
[방향족 디아민 성분] [Aromatic Diamine Component]
본 발명에 사용할 수 있는 디아민류는 p-페닐렌 디아민과, 4,4'-디아미노페닐에테르, 3,4-디아미노페닐에테르 또는 2,4-디아미노페닐에테르와 같은 디아미노페닐에테르를 들 수 있다. Diamines usable in the present invention include p-phenylene diamine and diaminophenyl ethers such as 4,4'-diaminophenyl ether, 3,4-diaminophenyl ether or 2,4-diaminophenyl ether. Can be mentioned.
바람직하기로는 전체 디아민 중 디아미노페닐에테르의 비율이 전체 방향족 디아민 성분 중 20몰% 이하, 좋기로는 1 내지 20몰%, 더욱 좋기로는 5 내지 15몰%인 것이다. 디아미노페닐에테르는 p-페닐렌디아민과 비교하여 굴곡성을 가진 단량체로 그 함량이 많아지면 폴리이미드 분자쇄가 유연해지면서 치수안정성이 떨어질 수 있다. 이러한 점에서 p-페닐렌디아민을 과량으로 사용하는 것이 열팽창계수(Coefficient of thermal expansion)값을 떨어뜨리고 흡습팽창계수를 낮추는 점에서 바람직하다. Preferably the proportion of diaminophenyl ether in the total diamine is 20 mol% or less, preferably 1-20 mol%, more preferably 5-15 mol% in the total aromatic diamine component. Diaminophenyl ether is a monomer having flexibility compared to p-phenylenediamine. When the content thereof is increased, the polyimide molecular chain may become soft and dimensional stability may be inferior. In this regard, it is preferable to use an excessive amount of p-phenylenediamine in terms of lowering the coefficient of thermal expansion and lowering the hygroscopic expansion coefficient.
[폴리이미드 필름 제막법][Polyimide Film Film Forming Method]
일반적으로 폴리이미드 필름의 제막법은 당업계의 통상의 지식을 가진 자에게 자명한 정도로서 각별하지 않으나, 일예를 제시하면; 먼저, 유기 용매를 이용해 상기한 방향족 테트라카르복실산 이무수물과 방향족 디아민 성분을 반응시켜 폴리아믹산 용액을 얻는다. 이때, 용매는 일반적으로 아미드계 용매로 비양성자성 극성 용매(Aprotic solvent)를 사용하는 것이 바람직하며 그 예로는 N,N'-디메틸포름아미드, N,N'-디메틸아세트아미드, N-메틸-피롤리돈 등을 들 수 있으며 필요에 따라 2종을 조합해서 사용할 수도 있다.In general, the method for forming a polyimide film is not particularly noticeable to those skilled in the art, but provides an example; First, the aromatic tetracarboxylic dianhydride and the aromatic diamine component are reacted with an organic solvent to obtain a polyamic acid solution. In this case, the solvent is generally preferably an aprotic polar solvent (Aprotic solvent) as the amide solvent, for example, N, N'- dimethylformamide, N, N'- dimethylacetamide, N-methyl- Pyrrolidone etc. can be mentioned and can also be used in combination of 2 types as needed.
단량체의 투입형태는 가루(powder), 덩어리(lump) 및 용액형태로 투입할 수 있으며 반응 초기에는 가루형태로 투입하여 반응을 진행하고 중합 점도 조절을 위해 용액형태로 투입하는 것이 바람직하다.The input form of the monomer may be added in the form of powder, lump, and solution. In the initial stage of the reaction, the monomer may be added in the form of powder, and the reaction may be performed in the form of a solution to control the polymerization viscosity.
실질적으로 등몰량의 방향족 디아민 성분과 방향족 테트라카르복실산 이무수물이 투입된 상태에서 전체 폴리아믹산 용액 중 투입된 단량체의 무게를 고형분 함량이라고 하는데, 고형분 함량 10~30% 또는 12~23%사이의 범위에서 중합을 진행하는 것이 바람직하다.The weight of the monomer added in the total polyamic acid solution in the state in which the equimolar amount of the aromatic diamine component and the aromatic tetracarboxylic dianhydride are added is called a solid content, and the solid content is in the range of 10-30% or 12-23%. It is preferable to proceed with polymerization.
또한 상술한 것과 같이 폴리아믹산이 말단이 아민인 분자쇄를 다량 포함하도록 단량체의 투입순서를 제어할 수도 있다. In addition, as described above, the order of the monomers may be controlled so that the polyamic acid contains a large amount of a molecular chain whose terminal is an amine.
한편 폴리이미드 필름에 접동성, 열전도성, 도전성, 내코로나성과 같은 여러가지 특성을 개선하기 위해 충진제를 첨가할 수도 있다. 충진제의 종류를 한정할 수는 없지만 바람직한 예로는 실리카, 산화티탄, 알루미나, 질화규소, 질화붕소, 인산수소칼슘, 인산칼슘, 운모 등을 들 수 있다. On the other hand, a filler may be added to the polyimide film to improve various properties such as sliding properties, thermal conductivity, conductivity, and corona resistance. Although the type of filler may not be limited, preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, and the like.
충진제의 입경은 필름의 두께나 종류에 따라 다르며 충진제의 표면도 개질된 것일 수 있다. 충진제의 평균입경은 0.1~100㎛가 바람직하며 0.1~25㎛가 더욱 바람직하다.The particle size of the filler depends on the thickness or type of the film and may be a modified surface of the filler. 0.1-100 micrometers is preferable and, as for the average particle diameter of a filler, 0.1-25 micrometers is more preferable.
상기 충전제의 첨가량도 특별히 한정된 것은 아니며 개질해야 할 필름, 입자의 종류 및 입경, 입자표면 등에 따라 변동될 수 있다. 충진제의 첨가량은 중합이 끝난 폴리아믹산 용액의 고형분 함량을 기준으로 하여 10ppm~5%범위에서 사용하는 것이 바람직하다. 충진제의 첨가량이 상기 범위 이상으로 사용되면 폴리이미드 필름의 물성을 손상시킬 수 있으며 상기 범위 이하로 사용되면 개질 효과를 보기 어렵다.The addition amount of the filler is not particularly limited, and may vary depending on the film to be modified, the type and particle size of the particles, the particle surface, and the like. The addition amount of the filler is preferably used in the range of 10ppm to 5% based on the solids content of the polymerized polyamic acid solution. If the amount of the filler is used in the above range, the physical properties of the polyimide film may be impaired. If the filler is used in the range below, the modification effect is hardly seen.
투입방법은 반응물 초기에 투입할 수도 있으며 반응이 끝난 후에 투입할 수도 있다. 또는, 반응기의 오염을 방지하기 위해 촉매 혼합공정에서 투입할 수도 있어 투입 방법 및 시기가 특별히 한정된 것은 아니다.The dosing method can be added at the beginning of the reactants or after the reaction is over. Alternatively, in order to prevent contamination of the reactor, it may be added in a catalyst mixing step, and the addition method and timing are not particularly limited.
얻어진 폴리아믹산 용액은 바람직하기로는 이미드화 촉매 및 탈수제로 되는 변환약제와 혼합되어 지지체에 도포될 수 있다. 사용되는 촉매의 일예로는 3급아민류를 들 수 있으며, 탈수제로는 무수산을 들 수 있다. 무수산의 예로는 아세트산 무수물이 있으며 3급아민류로는 이소퀴놀린, β-피콜린, 피리딘 등을 예로 들 수 있다.The obtained polyamic acid solution may be applied to the support by mixing with a converting agent, preferably an imidization catalyst and a dehydrating agent. Examples of the catalyst used may include tertiary amines, and anhydrides may be cited as the dehydrating agent. Examples of anhydrous acid include acetic anhydride, and tertiary amines include isoquinoline, β-picolin, pyridine and the like.
무수산의 투입량은 폴리아믹산 용액 중 o-카르복실릭아미드기(o-carboxylic amide functional group)의 몰비율로 계산할 수 있으며 1.0~5.0몰비율로 사용하는 것이 바람직하다. The amount of anhydrous acid can be calculated by the molar ratio of o-carboxylic amide functional group in the polyamic acid solution, and it is preferable to use 1.0-5.0 molar ratio.
3급아민의 투입량은 폴리아믹산 용액 중 o-카르복실릭아미드기의 몰비율로 계산할 수 있으며 0.2~3.0몰비율 사이로 투입하는 것이 적당하다.The amount of tertiary amine can be calculated by the molar ratio of o-carboxylic amide groups in the polyamic acid solution, and it is appropriate to add between 0.2 and 3.0 molar ratios.
변환약제의 투입은 무수산/아민류의 혼합물 또는 무수산/아민/용매 혼합물의 형태로 사용할 수 있다.The conversion agent may be used in the form of a mixture of anhydrous acid / amines or anhydrous acid / amine / solvent mixture.
지지체 상에 도포된 필름은 건조 공기 및 열처리에 의해 지지체 위에서 겔화된다. 도포된 필름의 겔화 온도 조건은 100~250℃가 바람직하며 지지체로는 유리판, 알루미늄박, 순환 스테인레스 벨트 또는 스테인레스 드럼 등을 사용할 수 있으며 이에 한정이 있는 것은 아니다. The film applied on the support is gelled on the support by dry air and heat treatment. The gelation temperature of the coated film is preferably 100 ~ 250 ℃ and may be used as a support, such as glass plate, aluminum foil, circulating stainless belt or stainless drum, but is not limited thereto.
겔화에 필요한 처리 시간은 온도, 지지체의 종류, 도포된 폴리아믹산 용액의 양, 변환약제의 혼합조건에 따라 다르며 일정한 시간으로 한정되어 있지 않으나, 바람직하기로는 5분~30분 사이의 범위에서 시행하는 것이 좋다.The treatment time required for gelation depends on the temperature, the type of the support, the amount of the polyamic acid solution applied, and the mixing conditions of the conversion agent, and is not limited to a certain time, but is preferably performed within a range of 5 minutes to 30 minutes. It is good.
겔화된 필름을 지지체에서 분리하고 열처리하여 건조 및 이미드화를 완료시킨다. 열처리온도는 100~500℃ 사이에서 진행하며 처리 시간은 1분~30분 사이에서 진행한다. 필름의 폭방향 및 기계적 방향에 대한 열팽창계수의 편차를 줄이기 위한 일환으로 열처리시에 겔화된 필름을 지지대에 고정시켜 진행할 수 있다. 겔필름은 핀타입의 프레임을 사용하거나 클립형을 사용하여 고정할 수 있다. The gelled film is separated from the support and heat treated to complete drying and imidization. The heat treatment temperature is between 100 ~ 500 ℃ and the treatment time is between 1 ~ 30 minutes. As part of reducing the coefficient of thermal expansion relative to the width direction and the mechanical direction of the film, the gelled film may be fixed to the support during heat treatment. Gel film can be fixed using a pin type frame or a clip type.
열처리를 마친 필름의 잔류 휘발성분은 5%이하이며 바람직하게는 3%이하이다.The residual volatile content of the film after heat treatment is 5% or less and preferably 3% or less.
열처리를 마친 필름은 일정한 장력하에서 열처리하여 제막에서 발생한 필름내부의 잔류응력을 제거한다. 장력 및 온도 조건은 서로 상관관계를 가지므로 온도에 따라 장력 조건은 달라질 수 있다. 온도는 100~500℃ 사이에서 유지하는 것이 좋으며 장력은 50N 이하, 시간은 1분에서 1시간 사이로 유지시키는 것이 바람직하다.After the heat treatment, the film is heat treated under a constant tension to remove residual stress in the film. Since the tension and temperature conditions are correlated with each other, the tension conditions may vary with temperature. Temperature is preferably maintained between 100 ~ 500 ℃, tension is 50N or less, the time is preferably maintained for 1 minute to 1 hour.
이하에서, 본 발명을 실시예에 의거하여 상세히 설명하면 다음과 같은바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples, the present invention is not limited by the Examples.
실시예 1Example 1
400L 자켓 반응기에 용매로 N,N'-디메틸포름아미드(DMF) 192kg을 투입하였다. 온도를 40℃로 하고 p-페닐렌디아민(p-PDA) 10.6kg과 4,4'-디아미노페닐 에테르(ODA) 0.2kg을 투입하여 완전히 용해할 때까지 교반하였다. 192 kg of N, N'-dimethylformamide (DMF) was added to the 400 L jacket reactor. The temperature was 40 ° C, 10.6 kg of p-phenylenediamine (p-PDA) and 0.2 kg of 4,4'-diaminophenyl ether (ODA) were added and stirred until complete dissolution.
용해가 완료된 후 3,4,3',4'-비페닐 테트라카르복실산 이무수물(BPDA) 29.16kg을 서서히 가하여 실질적으로 방향족 테트라카르복시산 이무수물 성분과 방향족 디아민 성분이 등몰량이 되도록 조절한 후 2시간 동안 교반하여 폴리아미드산의 DMF 용액을 얻었다. After dissolution is completed, 29.16 kg of 3,4,3 ', 4'-biphenyl tetracarboxylic dianhydride (BPDA) is slowly added to adjust the aromatic tetracarboxylic dianhydride component and the aromatic diamine component to an equimolar amount. Stirring for time gave a DMF solution of polyamic acid.
반응이 완료된 폴리아믹산 용액은 고형분 함량이 17wt%이며 점도는 2,000 poise이다. 투입된 단량체의 몰비율은 BPDA 100%, ODA 99%, PDA 1%이다.The completed polyamic acid solution had a solid content of 17 wt% and a viscosity of 2,000 poise. The molar ratio of the introduced monomer is BPDA 100%, ODA 99%, PDA 1%.
이 폴리아믹산 용액을 아세트산 무수물 5몰당량(폴리아믹산 기준) 및 이소퀴놀린 1몰당량(폴리아믹산 기준)과 혼합하여 그 혼합액을 엔드리스 타입의 스틸 벨트 상에 캐스팅하고 100~150℃에서 약 10분간 체류하도록 하여 건조한 후 박리하여 겔필름을 제조하였다.The polyamic acid solution was mixed with 5 molar equivalents of acetic anhydride (based on polyamic acid) and 1 molar equivalent of isoquinoline (based on polyamic acid), and the mixed solution was cast on an endless type steel belt and held at 100 to 150 ° C. for about 10 minutes. After drying to peel off to prepare a gel film.
이 겔 필름의 양 단부를 핀으로 고정한 후, 필름이 폭방향(TD)으로 받는 장력(Tension)을 조정할 수 있는 텐터에 투입하여 250~450℃에서 약 10분 동안 가열하여 탈수폐환 건조함으로써 최종적으로 두께 38㎛의 폴리이미드 필름을 제조하였다.After fixing both ends of the gel film with a pin, the film is put into a tenter capable of adjusting the tension received in the width direction (TD), heated at 250 to 450 ° C. for about 10 minutes, and finally dried by dehydration ring drying. A polyimide film having a thickness of 38 μm was prepared.
다만, 본 실시예에서는 TD 방향으로의 장력 조정이 없이 겔 필름의 양 단부가 고정된 상태로 탈수폐환 건조 공정을 수행하였다. However, in this embodiment, the dehydration ring drying process was performed with both ends of the gel film fixed without tension adjustment in the TD direction.
얻어진 필름의 일부를 잘라 100% RH(상대습도)분위기의 챔버(Chamber) 안에 48시간 동안 보관한 후 열무게분석법(Thermal gravimetric analysis)을 이용해 분석하였다. 온도를 35℃에서 250℃까지 10℃/min의 승온속도로 가열하여 무게변화를 분석해 흡습율(water absorption)을 계산하였다.A portion of the obtained film was cut out and stored in a chamber of 100% RH (Relative Humidity) atmosphere for 48 hours and analyzed using Thermal gravimetric analysis. The temperature was heated at a rate of temperature increase of 10 ° C./min from 35 ° C. to 250 ° C. to analyze the change in weight to calculate water absorption.
그리고, 제막이 끝난 샘플의 일부를 폭 6mm × 길이 30mm로 잘라 TA사 열분석장치(Thermal mechanical apparatus) Q400을 이용해 열팽창계수값(Coefficient of thermal expansion, CTE)을 측정하였다. 샘플을 수정 후크(quartz hook)에 걸고 0.010 N의 힘을 가한 뒤에 질소분위기에서 30℃에서 420℃까지 10℃/분의 속도로 가열하였다. 열팽창계수값은 50℃ 에서 200℃ 범위 내에서 구하였다.Then, a portion of the finished film was cut into a width of 6 mm × length of 30 mm, and the coefficient of thermal expansion (CTE) was measured using a TA thermal mechanical apparatus Q400. The sample was hooked to a quartz hook and subjected to a force of 0.010 N and then heated at a rate of 10 ° C./minute from 30 ° C. to 420 ° C. in a nitrogen atmosphere. The coefficient of thermal expansion was determined within the range of 50 ° C to 200 ° C.
흡습팽창계수(CHE)는 시편 25mm x 150mm를 CHE meter(BMA co.사 제품)에 체결하여 온도 25℃ 조건에서 상대습도 5%에서 90%까지의 치수변화를 측정하였다. The hygroscopic expansion coefficient (CHE) was measured by measuring a dimensional change of 5% to 90% relative humidity at 25 ° C by fastening a 25mm x 150mm specimen to a CHE meter (BMA Co.).
인장강도, 탄성율 및 연신율은 인스트론 장비(Standard Instron testing apparatus)를 이용해 ASTM D 882 규정에 맞추어 3번을 테스트해 평균값을 취했다.Tensile strength, modulus and elongation were averaged using three standard Instron testing apparatus in accordance with ASTM D 882.
열수축율(heat shrinkage)은 IPC 650.2.2.4 방법으로 측정하였다.Heat shrinkage was measured by IPC 650.2.2.4 method.
상기한 모든 물성은 필름의 폭방향 및 기계적 방향에 대해 구하였으며, 특히 기계적 방향의 열팽창계수(CTEMD)와 폭방향의 열팽창계수(CTETD)로부터 열팽창계수 편차(CTEMD/CTETD)를 계산하였다. All the above properties were obtained for the width direction and the mechanical direction of the film. In particular, the coefficient of thermal expansion (CTE MD / CTE TD ) was calculated from the thermal expansion coefficient (CTE MD ) and the thermal expansion coefficient (CTE TD ) in the mechanical direction. It was.
그 결과를 다음 표 2에 나타내었다.The results are shown in Table 2 below.
실시예 2 내지 실시예 5Examples 2-5
상기 실시예 1과 같은 방법으로 폴리이미드 필름을 제조하되, 다만 폴리아믹산 중합시 다음 표 1과 같이 단량체 조성비를 달리하였다.To prepare a polyimide film in the same manner as in Example 1, but when the polyamic acid polymerization, the monomer composition ratio was different as shown in Table 1 below.
반응이 끝난 폴리아믹산 용액을 상기 실시예 1에서와 같이 제막하고 물성을 측정하여 그 결과를 다음 표 2에 나타내었다. After the reaction, the polyamic acid solution was formed into a film as in Example 1 and measured for physical properties. The results are shown in Table 2 below.
실시예 6Example 6
400L 자켓 반응기에 용매로 N,N'-디메틸포름아미드(DMF) 192kg 투입하였다. 온도를 40℃로 하고 p-페닐렌디아민(p-PDA) 10.2 kg과 4,4'-디아미노페닐 에테르(ODA) 1.0 kg을 투입하여 완전히 용해할 때까지 교반하였다. 192 kg of N, N'-dimethylformamide (DMF) was added to the 400 L jacket reactor. The temperature was 40 ° C, 10.2 kg of p-phenylenediamine (p-PDA) and 1.0 kg of 4,4'-diaminophenyl ether (ODA) were added and stirred until complete dissolution.
용해가 완료된 후 3,4,3',4'-비페닐 테트라카르복실산 이무수물(BPDA) 28.2kg과 피로멜리트산 이무수물(PMDA) 0.8kg을 가하여 실질적으로 방향족 테트라카르복시산 이무수물 성분과 방향족 디아민 성분이 등몰량이 되도록 조절한 후 2시간 동안 교반하여 폴리아미드산의 DMF 용액을 얻었다. After dissolution was completed, 28.2 kg of 3,4,3 ', 4'-biphenyl tetracarboxylic dianhydride (BPDA) and 0.8 kg of pyromellitic dianhydride (PMDA) were added to substantially add the aromatic tetracarboxylic dianhydride component and the aromatic. The diamine component was adjusted to an equimolar amount and stirred for 2 hours to obtain a DMF solution of polyamic acid.
반응이 완료된 폴리아믹산 용액은 고형분 함량이 17wt%이며 점도는 2,000 poise이다. 투입된 단량체의 몰비율은 BPDA 97%, PMDA 3%, ODA 5%, PDA 95%이다.The completed polyamic acid solution had a solid content of 17 wt% and a viscosity of 2,000 poise. The molar ratio of injected monomer is BPDA 97%, PMDA 3%, ODA 5%, PDA 95%.
반응이 끝난 폴리아믹산 용액을 상기 실시예 1에서와 같이 제막하고 물성을 측정하여 그 결과를 다음 표 2에 나타내었다. After the reaction, the polyamic acid solution was formed into a film as in Example 1 and measured for physical properties. The results are shown in Table 2 below.
비교예 1Comparative Example 1
400L 자켓 반응기에 용매로 N,N'-디메틸포름아미드(DMF)를 304kg 투입하였다. 온도를 40℃로 하고 p-페닐렌디아민(p-PDA) 3.4kg과 디아미노페닐(ODA) 18.9kg을 넣었다. 여기에 비페닐테트카르복실산 이무수물(BPDA) 14.8kg과 피로멜리틱 디 안하이드라이드를 16.5kg을 넣었다. 투입이 끝나면 온도를 40℃로 유지하면서 2시간동안 교반하였다.304 kg of N, N'-dimethylformamide (DMF) was added to the 400 L jacket reactor as a solvent. The temperature was 40 ° C, and 3.4 kg of p-phenylenediamine (p-PDA) and 18.9 kg of diaminophenyl (ODA) were added thereto. Into this was added 14.8 kg of biphenyl tetracarboxylic dianhydride (BPDA) and 16.5 kg of pyromellitic dianhydride. After the addition, the mixture was stirred for 2 hours while maintaining the temperature at 40 ℃.
반응이 끝난 폴리아믹산 용액을 아세트산 무수물 5몰당량(폴리아믹산 기준) 및 이소퀴놀린 1몰당량(폴리아믹산 기준)과 혼합하여 그 혼합액을 엔드리스 타입의 스틸 벨트 상에 캐스팅하고 100 내지 150℃에서 약 10분간 체류하도록 하여 건조한 후 박리하여 겔필름을 제조하였다.The reaction solution was mixed with 5 molar equivalents of acetic anhydride (based on polyamic acid) and 1 molar equivalent of isoquinoline (based on polyamic acid), and the mixed solution was cast on an endless steel belt and subjected to about 10 at 100 to 150 ° C. The gel film was prepared by drying for 2 minutes and then peeling off.
이 겔 필름의 양 단부를 핀으로 고정한 후, 필름이 폭방향(TD)으로 받는 장력(Tension)을 조정할 수 있는 텐터에 투입하여 250~450℃에서 약 10분 동안 가열하여 탈수폐환 건조함으로써 최종적으로 두께 38㎛의 폴리이미드 필름을 제조하였다.After fixing both ends of the gel film with a pin, the film is put into a tenter capable of adjusting the tension received in the width direction (TD), heated at 250 to 450 ° C. for about 10 minutes, and finally dried by dehydration ring drying. A polyimide film having a thickness of 38 μm was prepared.
본 비교예에서는 최종적으로 얻어지는 필름의 TD CTE가 10ppm/℃ 이하가 되도록 텐터 양 단부의 위치를 조정하여 텐터내부에서 필름이 받는 장력을 조정하였다. TD로 추가적인 장력이 가해지게 되면, 필름이 TD로 당겨지게 되는 것이며, 이로써 TD의 CTE값은 감소하게 되는 반면 기계방향(MD)의 CTE값은 증가하게 된다.In this comparative example, the tension | tensile_strength which a film receives in the tenter was adjusted by adjusting the position of both ends of a tenter so that TD CTE of the film finally obtained may be 10 ppm / degrees C or less. When an additional tension is applied to the TD, the film is pulled to the TD, thereby decreasing the CTE value of the TD while increasing the CTE value of the machine direction (MD).
비교예 2Comparative Example 2
상기 실시예 1과 같은 방법으로 폴리이미드 필름을 제조하되, 다만 폴리아믹산 중합시 다음 표 1과 같이 단량체 조성비를 달리하였다. To prepare a polyimide film in the same manner as in Example 1, but when the polyamic acid polymerization, the monomer composition ratio was different as shown in Table 1 below.
반응이 끝난 폴리아믹산 용액을 상기 비교예 1에서와 같이 제막하고 물성을 측정하여 그 결과를 다음 표 2에 나타내었다. After the reaction, the polyamic acid solution was formed into a film as in Comparative Example 1 and measured for physical properties. The results are shown in Table 2 below.
표 1
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 비교예 1 비교예 2
BPDA 100 100 100 100 100 97 40 100
PMDA - - - - - 3 60 -
PDA 99 95 90 85 80 95 25 75
ODA 1 5 10 15 20 5 75 25
Table 1
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Comparative Example 1 Comparative Example 2
BPDA 100 100 100 100 100 97 40 100
PMDA - - - - - 3 60 -
PDA 99 95 90 85 80 95 25 75
ODA One 5 10 15 20 5 75 25
표 2
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 비교예 1 비교예 2
인장탄성율(GPa) MD 10.1 9.5 8.7 7.8 7.3 9.4 4.5 6.1
TD 11.0 10.1 9.3 8.7 8.2 10.3 5.6 7.2
인장강도(MPa) MD 430 425 430 420 425 415 380 400
TD 435 430 430 415 430 413 375 400
신장율(%) MD 40 43 45 51 55 44 60 58
TD 38 40 44 48 53 40 51 55
열팽창계수(CTE, ppm/℃) MD 4.8 6.8 6.5 9.0 9.8 7.0 15.3 16.1
TD 4.2 4.8 7.8 7.5 8.5 5.1 9.7 9.5
열팽창계수편차(CTEMD/CTETD) 1.1 1.4 0.8 1.2 1.2 1.4 1.6 1.7
흡습율(%) - 1.3 1.3 1.3 1.3 1.3 1.3 1.6 1.4
흡습팽창계수(ppm/RH%) MD 5.5 5.8 6.5 7.6 8.7 5.9 10.5 9.7
TD 5.6 5.8 6.3 7.7 8.5 6.1 11.3 10.4
열수축율(%) MD 0.02 0.02 0.03 0.03 0.04 0.03 0.03 0.04
TD 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.03
TABLE 2
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Comparative Example 1 Comparative Example 2
Tensile Modulus (GPa) MD 10.1 9.5 8.7 7.8 7.3 9.4 4.5 6.1
TD 11.0 10.1 9.3 8.7 8.2 10.3 5.6 7.2
Tensile Strength (MPa) MD 430 425 430 420 425 415 380 400
TD 435 430 430 415 430 413 375 400
Elongation (%) MD 40 43 45 51 55 44 60 58
TD 38 40 44 48 53 40 51 55
Coefficient of Thermal Expansion (CTE, ppm / ℃) MD 4.8 6.8 6.5 9.0 9.8 7.0 15.3 16.1
TD 4.2 4.8 7.8 7.5 8.5 5.1 9.7 9.5
Coefficient of thermal expansion (CTE MD / CTE TD ) 1.1 1.4 0.8 1.2 1.2 1.4 1.6 1.7
Hygroscopicity (%) - 1.3 1.3 1.3 1.3 1.3 1.3 1.6 1.4
Hygroscopic expansion coefficient (ppm / RH%) MD 5.5 5.8 6.5 7.6 8.7 5.9 10.5 9.7
TD 5.6 5.8 6.3 7.7 8.5 6.1 11.3 10.4
Heat Shrinkage (%) MD 0.02 0.02 0.03 0.03 0.04 0.03 0.03 0.04
TD 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.03
상기 표 2의 결과로부터, 실시예 1 내지 6에 의해 얻어지는 폴리이미드 필름은 필름의 폭방향에 대한 열팽창계수값이 9.9 ppm/℃이하이고 기계적 방향에 대한 열팽창계수값이 9.9 ppm/℃이하이면서 열팽창계수 편차가 1.55 이하이며, 흡습팽창계수가 3.0 내지 9.0 ppm/%RH로 고온다습한 환경 하에서 치수안정성이 우수함을 알 수 있다. From the results in Table 2, the polyimide films obtained in Examples 1 to 6 had thermal expansion coefficients of 9.9 ppm / ° C or less in the width direction of the film and thermal expansion coefficients of 9.9 ppm / ° C or less in the mechanical direction. It can be seen that the coefficient deviation is 1.55 or less, and the hygroscopic expansion coefficient is 3.0 to 9.0 ppm /% RH, which is excellent in dimensional stability under high temperature and high humidity environment.
이에 비하여 비교예 1에 의한 폴리이미드 필름은 폭방향 및 기계적 방향에 대한 열팽창계수 모두가 크고 열팽창계수 편차도 큼을 알 수 있다. 또한 흡습팽창계수도 현저히 크다. On the other hand, it can be seen that the polyimide film according to Comparative Example 1 has both a large coefficient of thermal expansion and a large coefficient of thermal expansion variation in the width direction and the mechanical direction. In addition, the hygroscopic expansion coefficient is also remarkably large.
또한 비교예 2에 의한 폴리이미드 필름의 경우는 디아미노페닐(ODA) 함량이 증가함에 따라 열팽창 계수와 흡습팽창계수가 증가함을 알 수 있다. In addition, in the case of the polyimide film according to Comparative Example 2, it can be seen that the coefficient of thermal expansion and the coefficient of hygroscopic expansion increase as the content of diaminophenyl (ODA) increases.
특히 비교예 1과 2의 경우 폭방향(TD)에 대한 CTE 값을 낮추기 위해 제막 과정 중 텐터 내에서 TD로의 추가적인 장력을 주었으나, 이로 인해 기계방향(MD)에 대한 CTE값은 더욱 증가되는 양상을 보였으며, 결과적으로 필름의 양 방향의 CTE 편차는 더욱 심화됨을 알 수 있다.In particular, in Comparative Examples 1 and 2, in order to lower the CTE value in the width direction (TD), an additional tension was given to the TD in the tenter during the film forming process, but this increased the CTE value in the machine direction (MD). As a result, it can be seen that the CTE deviation in both directions of the film is further intensified.

Claims (9)

  1. 비페닐테트라카르복실산 또는 그의 관능성 유도체를 포함하는 방향족 테트라카르복실산 성분과, p-페닐렌디아민 및 디아미노디페닐에테르를 포함하는 방향족 디아민 성분으로부터 되는 폴리아믹산을 이미드화하여 얻어지며; Obtained by imidizing a polyamic acid comprising an aromatic tetracarboxylic acid component containing a biphenyltetracarboxylic acid or a functional derivative thereof and an aromatic diamine component containing p-phenylenediamine and diaminodiphenylether;
    50 내지 200℃ 구간에서, 기계적 방향에 대한 열팽창계수가 9.9ppm/℃ 이하이고, 폭방향에 대한 열팽창계수가 9.9ppm/℃ 이하인 폴리이미드 필름. In the 50 to 200 ℃ section, the coefficient of thermal expansion in the mechanical direction is 9.9ppm / ℃ or less, the polyimide film having a coefficient of thermal expansion in the width direction of 9.9ppm / ℃ or less.
  2. 제 1 항에 있어서, 기계적 방향에 대한 열팽창계수가 3.0 내지 9.9 ppm/℃이고, 폭방향에 대한 열팽창계수가 3.0 내지 9.9ppm/℃인 폴리이미드 필름. The polyimide film according to claim 1, wherein the coefficient of thermal expansion in the mechanical direction is 3.0 to 9.9 ppm / 占 폚, and the coefficient of thermal expansion in the width direction is 3.0 to 9.9 ppm / 占 폚.
  3. 제 1 항에 있어서, 기계적 방향의 열팽창계수(CTEMD)와 폭방향의 열팽창계수(CTETD)의 비(CTEMD/CTETD)로서 정의되는 열팽창계수 편차가 1.55 이하인 폴리이미드 필름.The polyimide film of claim 1, wherein a coefficient of thermal expansion deviation defined as a ratio (CTE MD / CTE TD ) of the thermal expansion coefficient (CTE MD ) in the mechanical direction and the thermal expansion coefficient (CTE TD ) in the width direction is 1.55 or less.
  4. 제 1 항 또는 제 2 항에 있어서, 기계적 방향의 열팽창계수(CTEMD)와 폭방향의 열팽창계수(CTETD)의 비(CTEMD/CTETD)로서 정의되는 열팽창계수 편차가 0.5 내지 1.55인 것인 폴리이미드 필름.The thermal expansion coefficient deviation according to claim 1 or 2, defined as the ratio (CTE MD / CTE TD ) of the thermal expansion coefficient (CTE MD ) in the mechanical direction and the thermal expansion coefficient (CTE TD ) in the width direction, is 0.5 to 1.55. Polyimide film.
  5. 제 1 항에 있어서, 방향족 디아민 성분은 디아미노디페닐에테르를 전체 방향족 디아민 성분 중 20몰% 이하로 포함하는 폴리이미드 필름. 2. The polyimide film of claim 1, wherein the aromatic diamine component comprises diaminodiphenyl ether in 20 mol% or less in the total aromatic diamine component.
  6. 제 1 항 또는 제 2 항에 있어서, 비페닐테트라카르복실산 또는 그의 관능성 유도체를 전체 방향족 테트라카르복실산 성분 중 90몰% 이상으로 포함하는 것임을 특징으로 하는 폴리이미드 필름.The polyimide film according to claim 1 or 2, comprising biphenyltetracarboxylic acid or a functional derivative thereof in an amount of 90 mol% or more in the total aromatic tetracarboxylic acid component.
  7. 제 1 항에 있어서, 비페닐테트라카르복실산으로 되는 방향족 테트라카르복실산 성분 100몰%와; p-페닐렌디아민 80 내지 99몰% 및 디아미노디페닐에테르 1 내지 20몰%로 이루어지는 방향족 디아민 성분 100몰%로 되는 폴리아믹산을 이미드화하여 얻어지는 것임을 특징으로 하는 폴리이미드 필름. The method of claim 1, wherein 100 mol% of an aromatic tetracarboxylic acid component comprising biphenyltetracarboxylic acid; A polyimide film obtained by imidating a polyamic acid comprising 100 mol% of an aromatic diamine component comprising 80 to 99 mol% of p-phenylenediamine and 1 to 20 mol% of diaminodiphenyl ether.
  8. 제 1 항 또는 제 6 항에 있어서, 25℃ 온도, 상대습도 20 내지 80%RH 구간에서, 기계적 방향에 대한 흡습팽창계수가 3.0 내지 9.0ppm/%RH이고, 폭방향에 대한 흡습팽창계수가 3.0 내지 9.0 ppm/%RH인 것임을 특징으로 하는 폴리이미드 필름. According to claim 1 or 6, in the 25 ℃ temperature, relative humidity 20 to 80% RH section, the moisture absorption expansion coefficient in the mechanical direction is 3.0 to 9.0ppm /% RH, the moisture absorption expansion coefficient in the width direction 3.0 To 9.0 ppm /% RH polyimide film.
  9. 제 1 항에 있어서, 이미드화는 이미드화 촉매 및 탈수제를 포함하는 변환약제에 의한 화학적 변환을 수반하는 것을 특징으로 하는 폴리이미드 필름. The polyimide film of claim 1, wherein the imidation involves chemical conversion by a conversion agent comprising an imidization catalyst and a dehydrating agent.
PCT/KR2010/004018 2009-07-31 2010-06-22 Polyimide film WO2011013904A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0070605 2009-07-31
KR1020090070605A KR101142723B1 (en) 2009-07-31 2009-07-31 Polyimide film

Publications (2)

Publication Number Publication Date
WO2011013904A2 true WO2011013904A2 (en) 2011-02-03
WO2011013904A3 WO2011013904A3 (en) 2011-04-14

Family

ID=43529797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004018 WO2011013904A2 (en) 2009-07-31 2010-06-22 Polyimide film

Country Status (2)

Country Link
KR (1) KR101142723B1 (en)
WO (1) WO2011013904A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111925543A (en) * 2020-08-17 2020-11-13 中国科学院光电技术研究所 Low-humidity low-thermal expansion coefficient polyimide composite film material and preparation method thereof
CN113795537A (en) * 2019-05-08 2021-12-14 聚酰亚胺先端材料有限公司 Preparation method of polyimide film and polyimide film prepared by same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102382019B1 (en) * 2019-09-18 2022-04-01 피아이첨단소재 주식회사 Polyimide film, manufacturing method thereof, and flexible metal foil clad laminate comprising same
JP2023547673A (en) * 2020-11-04 2023-11-13 ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド Polyimide film with high dimensional stability and method for producing the same
KR102634467B1 (en) * 2021-08-20 2024-02-06 에스케이마이크로웍스 주식회사 Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising same
KR102634466B1 (en) * 2021-08-20 2024-02-06 에스케이마이크로웍스 주식회사 Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising same
KR20230063057A (en) * 2021-11-01 2023-05-09 피아이첨단소재 주식회사 Polyimide film with high dimensional stability and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251507B1 (en) * 1998-09-29 2001-06-26 Ube Industries, Ltd. Flexible aromatic polymide film/metal film composite sheet
US20040058172A1 (en) * 2002-09-20 2004-03-25 Summers John Donald High modulus polyimide compositions useful as dielectric substrates for electronics applications, and methods relating thereto
WO2005063860A1 (en) * 2003-12-26 2005-07-14 Toyo Boseki Kabushiki Kaisha Polyimide film
WO2006033267A1 (en) * 2004-09-24 2006-03-30 Kaneka Corporation Novel polyimide film and adhesive film and flexible metal-clad laminate both obtained with the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165456A (en) 2005-12-12 2007-06-28 Toyobo Co Ltd Display apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251507B1 (en) * 1998-09-29 2001-06-26 Ube Industries, Ltd. Flexible aromatic polymide film/metal film composite sheet
US20040058172A1 (en) * 2002-09-20 2004-03-25 Summers John Donald High modulus polyimide compositions useful as dielectric substrates for electronics applications, and methods relating thereto
WO2005063860A1 (en) * 2003-12-26 2005-07-14 Toyo Boseki Kabushiki Kaisha Polyimide film
WO2006033267A1 (en) * 2004-09-24 2006-03-30 Kaneka Corporation Novel polyimide film and adhesive film and flexible metal-clad laminate both obtained with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795537A (en) * 2019-05-08 2021-12-14 聚酰亚胺先端材料有限公司 Preparation method of polyimide film and polyimide film prepared by same
CN111925543A (en) * 2020-08-17 2020-11-13 中国科学院光电技术研究所 Low-humidity low-thermal expansion coefficient polyimide composite film material and preparation method thereof

Also Published As

Publication number Publication date
KR20110012753A (en) 2011-02-09
KR101142723B1 (en) 2012-05-04
WO2011013904A3 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
WO2012081763A1 (en) Polyimide film
WO2010114338A2 (en) Polyamic acid solution, polyimide resin and a soft metal-foil laminate employing the same
KR100845328B1 (en) Polyimide film
WO2019088454A1 (en) Ultra-thin black polyimide film and manufacturing method therefor
WO2011013904A2 (en) Polyimide film
EP2342266A2 (en) Polyimide film
KR20100083249A (en) Polyimide film
WO2021040127A1 (en) Polyimide film and manufacturing method for same
WO2021060613A1 (en) Polyamic acid composition, method for preparing same, and polyimide film comprising same
WO2021091014A1 (en) Polyimide film having improved dielectric properties, and manufacturing method for same
WO2021091011A1 (en) Highly heat-resistant and low dialectric-polyimide film and method for producing same
WO2019132184A1 (en) Polyimide film for manufacturing flexible copper clad laminate and flexible copper clad laminate comprising same
WO2021095975A1 (en) Low-dialectric polyimide film and method for producing same
WO2021096245A2 (en) Polyimide film having improved dimensional stability and manufacturing method thereof
WO2021054515A1 (en) Polyimide film, method for manufacturing same, and flexible metal foil laminate comprising same
WO2021095976A1 (en) Highly elastic and heat-resistant polyimide film and method for producing same
WO2019004677A1 (en) Polyimide precursor composition, preparation method therefor, and polyimide substrate manufactured therefrom
WO2011049357A2 (en) Polyamic acid solution, polyimide resin, and flexible copper clad laminate using same
KR20110035620A (en) Polyimide film
WO2021091012A1 (en) Polyimide film having low dielectric properties, and manufacturing method for same
WO2016003146A1 (en) High heat-resistant polyamic acid solution and polyimide film
WO2021107294A1 (en) Polyimide film, method for producing same, and flexible metal foil clad laminate comprising same
WO2021091013A1 (en) Polyimide film having high heat resistance and low dielectric properties, and manufacturing method for same
WO2022098042A1 (en) Polyimide film having high dimensional stability, and method for manufacturing same
WO2021060612A1 (en) Polyamic acid composition, method for preparing same, and polyimide film comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804617

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804617

Country of ref document: EP

Kind code of ref document: A2