WO2012081672A1 - Acoustic structure - Google Patents

Acoustic structure Download PDF

Info

Publication number
WO2012081672A1
WO2012081672A1 PCT/JP2011/079062 JP2011079062W WO2012081672A1 WO 2012081672 A1 WO2012081672 A1 WO 2012081672A1 JP 2011079062 W JP2011079062 W JP 2011079062W WO 2012081672 A1 WO2012081672 A1 WO 2012081672A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
acoustic
absorbing material
sound
sound absorbing
Prior art date
Application number
PCT/JP2011/079062
Other languages
French (fr)
Japanese (ja)
Inventor
本地 由和
藤森 潤一
栗原 誠
Original Assignee
ヤマハ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010279660A external-priority patent/JP5771973B2/en
Application filed by ヤマハ株式会社 filed Critical ヤマハ株式会社
Priority to KR1020137006388A priority Critical patent/KR101452662B1/en
Publication of WO2012081672A1 publication Critical patent/WO2012081672A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/20Reflecting arrangements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8457Solid slabs or blocks
    • E04B2001/8476Solid slabs or blocks with acoustical cavities, with or without acoustical filling
    • E04B2001/848Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element
    • E04B2001/8485Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element the opening being restricted, e.g. forming Helmoltz resonators

Definitions

  • the present invention relates to a technique for preventing acoustic disturbance in an acoustic space.
  • FIG. 10 is a front view showing a conventional acoustic structure 50 suitable for preventing this type of acoustic disturbance.
  • a conventional acoustic structure 50 suitable for preventing this type of acoustic disturbance.
  • the pipe 51-j of the acoustic structure 50 has a low sound absorption effect and scattering effect generated when a sound wave in a high frequency band, particularly a frequency band of 2 kHz to 4 kHz is incident on the opening 52-j. This is smaller than the sound absorption effect and the scattering effect generated when the sound wave in the frequency band is incident on the opening 52-j. For this reason, when a sound wave in a high frequency band is generated in the acoustic space, the acoustic energy of the sound wave cannot be sufficiently dissipated by the pipe 51-j.
  • the present invention has been made in view of the above points, and even when a sound wave in a high frequency band is generated in an acoustic space, an acoustic structure capable of reliably preventing the occurrence of an acoustic failure in the space. Is to provide.
  • the acoustic structure according to the first aspect of the present invention is an acoustic structure in which a cavity is formed and an opening is provided in a wall member surrounding the cavity, and the side of the plate that does not face the cavity A sound absorbing material is affixed to a region excluding the vicinity of the opening and the opening on the surface.
  • the acoustic structure according to the second aspect of the present invention includes a wall member that forms a plurality of cavities, and a plurality of openings provided in the wall member so that each of the plurality of cavities communicates with an external space. And a sound absorbing material filled in at least one of the plurality of cavities, wherein the sound absorbing material is exposed to an external space from an opening corresponding to the at least one cavity.
  • An acoustic structure is provided. In this case as well, when a sound wave in a high frequency band where the sound absorption effect and the scattering effect are difficult to occur is incident, the acoustic energy of the sound wave is lost by the sound absorbing material.
  • the thickness of the acoustic structure itself can be made uniform, and the sound absorbing material can be peeled off from the wall member to generate the sound absorbing effect and the scattering effect. The problem of disappearance can also be prevented.
  • FIG. 1 It is a figure which shows the shape of the opening part of the acoustic structure which is other embodiment of this invention. It is a front view which shows the acoustic structure which is other embodiment of this invention. It is the front view and sectional drawing of a door with an articulation panel function which are other embodiments of this invention. It is a front view which shows the conventional acoustic structure.
  • FIG. 1A is a left side view showing an acoustic structure 10 according to the first embodiment of the present invention.
  • FIG. 1B is a front view showing the acoustic structure 10.
  • FIG. 1C is a right side view showing the acoustic structure 10.
  • the acoustic structure 10 When the acoustic structure 10 is installed with the plate 18 facing the center of the acoustic space, the acoustic structure 10 generates a sound absorption effect and a scattering effect, and the acoustic energy of the sound wave propagated from the acoustic space toward the acoustic structure 10 is generated. Dissipate in the plate 18.
  • the principle of generation of the sound absorption effect and the scattering effect by the acoustic structure 10 is as described below.
  • the cavity 22-i behind one opening 21-i in the acoustic structure 10 has an opening 21-i as an opening end and an end on the left side of the cavity 22-i.
  • the acoustic tube CLP-b having the opening 21-i as the opening end and the right end of the cavity 22-i as the closing end. it can.
  • the opening end (opening 21-i) of the acoustic tube CLP-a is closed to the closed end (cavity 22) in the cavity 22-i.
  • traveling wave toward the left end of i) and a traveling wave toward the closed end (the right end of the cavity 22-i) from the open end (opening 21-i) of the acoustic tube CLP-b are generated.
  • the former traveling wave is reflected at the closed end of the acoustic tube CLP-a, and the reflected wave returns to the opening 21-i.
  • the latter traveling wave is reflected at the closed end of the acoustic tube CLP-b, and the reflected wave returns to the opening 21-i.
  • the sound wave is a standing wave having a particle velocity node at the closed end of the acoustic tube CLP-a and a particle velocity antinode at the open end.
  • the acoustic wave becomes a standing wave having a particle velocity node at the closed end of the acoustic tube CLP-b and a particle velocity antinode at the open end.
  • La is the length in the extending direction of the acoustic tube CLP-a (the length from the left end of the cavity 22-i to the opening 21-i)
  • Lb Is the length of the acoustic tube CLP-b in the extending direction (the length from the right end of the cavity 22-i to the opening 21-i)
  • c the propagation velocity of the sound wave
  • n is an integer of 1 or more .
  • the component of the resonance frequency fa n of waves incident on the vicinity of the opening portion 21-i at the opening 21-i and the reflective surface ref from acoustic space surface not facing the cavity 22-i of the plate 18
  • the sound wave reflected at the closed end of the acoustic tube CLP-a and radiated from the opening 21-i to the acoustic space is a sound wave having a phase opposite to the sound wave incident on the opening 21-i from the acoustic space. It becomes.
  • the incident wave from the acoustic space is reflected without phase rotation.
  • the above is the details of the principle of the sound absorption effect and the scattering effect.
  • FIG. 4A is a left side view showing an acoustic structure 10A according to the second embodiment of the present invention.
  • FIG. 4B is a front view showing the acoustic structure 10A.
  • FIG. 4C is a right side view showing the acoustic structure 10A.
  • 4A, FIG. 4B, and FIG. 4C the same elements as those of the acoustic structure 10A (FIGS. 1A, 1B, and 1C) are the same.
  • symbol is attached
  • strip-shaped sound absorbing materials 32, 33, 34, 35, and 36 parallel to the plates 11-2, 11-3, 11-4, 11-5, and 11-6 are attached. That is, the plurality of longitudinal sound absorbing materials 32 to 36 are arranged at a predetermined interval so as not to overlap the positions of the openings 21-1 to 21-7.
  • FIG. 5A is a left side view showing an acoustic structure 10B according to the third embodiment of the present invention.
  • FIG. 5B is a front view showing the acoustic structure 10B.
  • FIG. 5C is a right side view showing the acoustic structure 10B.
  • 5A, FIG. 5B, and FIG. 5C the same reference numerals are used for the same elements as those of the acoustic structure 10B (FIGS. 1A, 1B, and 1C). Is attached.
  • FIG. 6A is a front view showing an acoustic structure 10C according to the fourth embodiment of the present invention.
  • 6B is a cross-sectional view taken along the line BB ′ of FIG.
  • FIG. 6C shows the C- It is C 'sectional view.
  • the sound absorbing material is pasted on the plate 18.
  • 73-4 is exposed to the external acoustic space. More specifically, in this acoustic structure 10C, plates 60 to 71 are interposed between two plates 58 and 59 facing in the vertical direction.
  • the plates 60 to 71 face each other in the left-right direction with a distance D1 equal to the width in the left-right direction of the plate 58 between them.
  • the plates 62 and 63 face each other in the front-rear direction with a distance D2 that is the same as the width in the front-rear direction of the plate 58 therebetween.
  • the plates 64, 65, 66, 67 and 68 are arranged with a distance D3 between adjacent ones.
  • a plate 69 is disposed at a position between the plate 64 and the plate 65 away from the plate 61 by a distance D4.
  • a plate 70 is disposed at a position between the plate 66 and the plate 67 away from the plate 61 by a distance D5.
  • a plate 71 is disposed between the plate 67 and the plate 68 at a position separated from the plate 61 by a distance D6.
  • the opening 73-4 has a rectangular shape having the same vertical width as the distance D3 between the plates 62 and 64 and the same horizontal width as the distance D1 between the plates 20 and 21.
  • the opening 73-1 serves to communicate the cavity 72-1 surrounded by the plates 58, 59, 60, 61, 62, and 64 with an external acoustic space.
  • the cavity 72-2 surrounded by 59, 60, 64, 65, 69 serves to communicate with an external acoustic space.
  • the opening 73-3 serves to communicate the cavity 72-3 surrounded by the plates 58, 59, 61, 64, 65, and 69 with the external acoustic space.
  • the cavity 72-5 surrounded by 59, 60, 66, 67 and 70 serves to communicate with the external acoustic space.
  • the opening 73-6 serves to communicate the cavity 72-6 surrounded by the plates 58, 59, 61, 66, 67, and 70 with the external acoustic space
  • the opening 73-7 includes the plates 58, 59
  • the cavity 72-7 surrounded by 59, 60, 67, 68 and 71 serves to communicate with the external acoustic space
  • the opening 73-8 serves to communicate the cavity 72-8 surrounded by the plates 58, 59, 61, 67, 68, 71 with the external acoustic space
  • the opening 73-9 includes the plates 58, 59,
  • the cavity 72-9 surrounded by 59, 60, 61, 63 and 68 serves to communicate with the external acoustic space.
  • the opening 73-4 serves to communicate the cavity 72-4 surrounded by the plates 58, 59, 60, 61, 65, 66 with the external acoustic space.
  • a sound absorbing material 80 is loaded in the cavity 72-4 at the back of the opening 73-4, and the sound absorbing material 80 is exposed to the acoustic space through the opening 73-4.
  • the portion of the sound absorbing material 80 exposed from the opening 73-4 is substantially flush with the plate 58 provided with the opening 73-4 (the exposed surface of the sound absorbing material 80 is flush with the surface of the plate 58). About the same height).
  • the above is the details of the configuration of the acoustic structure 10C.
  • the openings 73-1 to 73-3 and 73-5 to 73-7 in which the sound absorbing material 80 is not provided form a sound absorbing region in the same manner as the opening 21-i shown in FIG. Acts as follows. That is, sound absorbing regions around the openings 73-1 to 73-3 and 73-5 to 73-7 are created by the action of the sound absorbing material 80 exposed from the opening 73-4. As illustrated, when the area of the opening 73-4 is larger than the areas of the other openings (73-1 to 73-3, 73-5 to 73-7), a plurality of other openings It is possible to widen the sound absorption region that can extend to (73-1 to 73-3, 73-5 to 73-7).
  • a sound absorbing material 80 is loaded therein.
  • the sound absorbing material 80 is exposed to the acoustic space through the opening 73-4. Therefore, according to the acoustic structure 10C, the thickness of the acoustic structure 10C itself can be made uniform. Further, it is possible to prevent the problem that the sound absorbing material is peeled off from the plate 58 and the sound absorbing effect and the scattering effect cannot be generated.
  • the number of the cavities 22-i of the acoustic structures 10, 10A, 10B may be 7 or more, or 5 or less. Further, the width of each of the cavities 22-i may be changed.
  • one cavity 22-i may be surrounded by five or less plates, or one cavity 22-i may be composed of seven or more plates. It is good also as a structure which is surrounded.
  • the cavity 22-i has a square shape, and the region where the sound absorbing material 38 in the vicinity of the opening 22-i on the reflection surface ref is not attached is more than the space 22-i. It was a square shape.
  • the area where the cavity 22-i and the sound absorbing material 38 in the vicinity thereof are not attached may have a shape other than a square (for example, a perfect circle or a shape in which four corners of a square are curved). In this case, as shown in FIG. 7A and FIG. 7B, the area AR where the sound absorbing material 38 in the vicinity of the opening 22-i is not pasted is set on each inner circumference IN of the area AR.
  • the shortest distance from the point to the outer periphery OUT of the opening 22-i may be uniform.
  • the outer periphery OUT of the opening 22-i and the inner periphery IN of the area AR where the sound absorbing material 38 in the vicinity of the opening 22-i is not attached may be formed in different shapes.
  • the outer periphery OUT of the opening 22-i has a square shape, and the inner periphery IN of the area AR where the sound absorbing material 38 in the vicinity of the opening 22-i is not attached.
  • the shortest distance from each point on the inner periphery IN of the area AR to the outer periphery OUT of the opening 22-i may be uniform.
  • the cut surface parallel to the plate 18 in at least one of the openings 21-i (i 1 to 6) (for example, the opening 21-1).
  • the area S o that is, the area of the opening
  • the area S p that is, the cross-sectional area of the cavity
  • the sound absorption effect is obtained when sound waves having resonance frequencies fa n and fb n of the resonance tubes CLP-a and CLP-b in the acoustic structure 10 and frequencies in the vicinity thereof are incident on the acoustic structure 10. This is an effect generated when the phase of the sound wave radiated from the opening 21-i to the acoustic space and the phase of the reflected wave radiated from the reflecting surface ref to the acoustic space are close to each other.
  • the sound wave that enters the acoustic structure 10 through the opening 21-i of the acoustic structure 10 and the reflected wave that is reflected from the opening 21-i toward the incident direction of the sound wave have an inverse phase relationship.
  • a sound wave is perpendicularly directed from the second medium (for example, air in the acoustic space) toward the first medium (for example, air in the opening 21-i or a rigid body that is a material of the acoustic structure 10).
  • the boundary surface bsur when the absolute value
  • the band where the imaginary part Im ( ⁇ ) in the frequency characteristic is a certain value (for example, Im ( ⁇ ) 1) is wide (for the relationship between the area ratio rs and the frequency characteristic of the imaginary part Im ( ⁇ )) Reference 2 (see in particular FIG. 9)). Therefore, as the area S o is smaller than the area S p, a reflected wave having a phase difference close to a reverse phase with respect to the sound wave incident on the opening 22-1 is spread over a wider band. Can radiate from. For the above reasons, the sound absorption effect can be generated in a wider band by making the area S o smaller than the area S p .
  • the number of the cavities 72-k of the acoustic structure 10C may be 2 to 8, or 10 or more.
  • the width of the cavity 72-4 in which the sound absorbing material 80 is loaded is set to the same width as the other cavities 72-1 to 72-3 and 72-5 to 72-9. And the width may be different.
  • the left-right direction of the opening 73-4 that plays a role of communicating the cavity 72-4 with the outside rather than the width D1 of the cavity 72-4 itself in the left-right direction.
  • the width D7 may be shortened.
  • the sound absorbing material 80 is loaded only in the space just below the opening 73-4 in the cavity 72-4 so that a sealed space is formed on the left and right sides of the sound absorbing material 80 in the cavity 72-4. May be. Further, two or more cavities 72 may be filled with the sound absorbing material 80.
  • a material other than the porous material may be used as the sound absorbing material 80.
  • the cavity 72-4 in which the sound absorbing material 80 is loaded has a shape extending in the left-right direction.
  • the cavity 72-4 may have a shape extending in the front-rear direction or a shape extending in an oblique direction. Moreover, it is good also as a shape which combined those shapes.
  • FIG. 9 is a front view of a door 10E with a sound control panel function, which is an example of a door provided with an acoustic structure 10C on both sides, and a cross-sectional view taken along line E-E '.
  • the front plate 5F and the rear plate 5B are overlapped with a space, and the plates 6U, 6D, 7L, and 7R are joined to the upper, lower, left, and right edges of the plates 5F and 5B. It is a thing.
  • the plate 5F has an opening 2- that communicates the cavity 1-1, 1-2, 1'-3, 1-4, 1-9 with the outside. 1, 2-2, 2'-3, 2-4, 2-9 are provided.
  • the plate 5B has cavities 1 "-3, 1-5, 1-6, 1-7, 1-8. Are provided with openings 2 ′′ -3, 2-5, 2-6, 2-7, 2-8.
  • the sound absorbing material 3 ′ is placed in the cavity 1′-3.
  • the sound absorbing material 3 ' is exposed to the outside through the opening 2'-3.
  • the sound absorbing material 3 " is loaded in the cavity 1" -3.
  • "" Open 2 "-3 through the outside
  • the sound absorbing materials 3 ′ and 3 ′′ and the plate 5C may be made of a transparent or translucent material so that light can pass through.

Abstract

[Problem] To reliably prevent the occurrence of acoustic problems within an acoustic space even in an instance in which sound waves in a high-frequency band are being generated within the space. [Solution] This acoustic structure comprises wall members (58, 59, 60-71) that form a plurality of voids (72), a plurality of openings (73) provided to the wall members so as to allow each of the voids (72) to communicate with the exterior space, and a sound-absorbing material (80) that fills at least one void (72-4) from amongst the plurality of voids (72). The sound-absorbing material (80) is exposed to the exterior space from an opening (73-4) that corresponds to the at least one void (72-4). The area of the opening (73-4) that corresponds to the at least one void (72-4) filled with the sound-absorbing material (80) is greater than the area of an opening (73-1) that corresponds to a void (72-1) not filled with the sound-absorbing material (80).

Description

音響構造体Acoustic structure
 本発明は、音響空間における音響障害を防止する技術に関する。 The present invention relates to a technique for preventing acoustic disturbance in an acoustic space.
 ホールや劇場などの壁に囲まれた音響空間では、平行対面する壁面間で音が繰り返し反射することによりブーミングやフラッターエコーなどの音響障害が発生する。図10は、この種の音響障害の防止に好適な従来の音響構造体50を示す正面図である。この音響構造体50は、各々が異なる長さをもった複数の角筒状のパイプ51-j(j=1~7)を全体として平面をなすように並列配置したものである。各パイプ51-j(j=1~7)は、剛性率の高い材質の反射性の材料からなる。また、各パイプ51-j(j=1~7)は、同じ方向を向いた開口部52-j(j=1~7)を各々有している。この音響構造体50は、各パイプ51-j(j=1~7)の開口部52-j(j=1~7)を音響空間の中央に向けた状態で、音響空間の内壁や天井などに設置される。 In an acoustic space surrounded by walls such as halls and theaters, acoustic disturbances such as booming and flutter echoes occur due to repeated reflection of sound between parallel facing walls. FIG. 10 is a front view showing a conventional acoustic structure 50 suitable for preventing this type of acoustic disturbance. In this acoustic structure 50, a plurality of rectangular tube-shaped pipes 51-j (j = 1 to 7) each having a different length are arranged in parallel so as to form a plane as a whole. Each pipe 51-j (j = 1 to 7) is made of a reflective material having a high rigidity. Each pipe 51-j (j = 1 to 7) has an opening 52-j (j = 1 to 7) facing the same direction. This acoustic structure 50 has an inner wall, a ceiling, etc. of the acoustic space with the opening 52-j (j = 1 to 7) of each pipe 51-j (j = 1 to 7) facing the center of the acoustic space. Installed.
 このような構成において、音響構造体50の各パイプ51-j(j=1~7)は、音響空間から各々の開口部52-j(j=1~7)に入射する音波のうち特定の共鳴周波数の音波に共鳴する。この共鳴に伴って、パイプ51-j(j=1~7)内の空洞から開口部52-j(j=1~7)を介して音響空間に放射される音波が各パイプ51-j(j=1~7)の各開口部52-j(j=1~7)の近傍において吸音効果と散乱効果を発生させる。この結果、音響空間からパイプ51-j(j=1~7)に向かって伝搬される音波がパイプ51-j(j=1~7)において散逸され、ブーミングやフラッターエコーなどの音響障害の発生が防止される。なお、この種の音響構造体50は、たとえば、特許文献1に開示されている。 In such a configuration, each of the pipes 51-j (j = 1 to 7) of the acoustic structure 50 has a specific sound wave among the sound waves incident on the respective openings 52-j (j = 1 to 7) from the acoustic space. Resonates with sound waves of resonance frequency. Along with this resonance, sound waves radiated from the cavities in the pipes 51-j (j = 1 to 7) to the acoustic spaces through the openings 52-j (j = 1 to 7) are transmitted to the pipes 51-j ( The sound absorption effect and the scattering effect are generated in the vicinity of each opening 52-j (j = 1 to 7) of j = 1 to 7). As a result, sound waves propagating from the acoustic space toward the pipe 51-j (j = 1 to 7) are dissipated in the pipe 51-j (j = 1 to 7), and acoustic disturbances such as booming and flutter echo occur. Is prevented. In addition, this kind of acoustic structure 50 is disclosed by patent document 1, for example.
特開2002-30744号公報JP 2002-30744 A 特開2010-84509号公報JP 2010-84509 A
 この種の音響構造体50において、吸音効果および散乱効果は、パイプ51-j(j=1~7)の各々の構造により定まる共鳴周波数において発生する。ここで、各パイプ51-j(j=1~7)は、基本モードの他に高次の共鳴モードを有している。従って、各パイプ51-j(j=1~7)を基本モードで共鳴させるだけでなく、高次のモードで共鳴させることにより、広い帯域に亙って吸音効果と散乱効果を得ることが可能である。 In this type of acoustic structure 50, the sound absorption effect and the scattering effect are generated at the resonance frequency determined by the structure of each of the pipes 51-j (j = 1 to 7). Here, each pipe 51-j (j = 1 to 7) has a higher-order resonance mode in addition to the fundamental mode. Therefore, it is possible not only to resonate each pipe 51-j (j = 1 to 7) in the fundamental mode but also to obtain a sound absorption effect and a scattering effect over a wide band by resonating in a higher order mode. It is.
 しかしながら、実際には、音響構造体50のパイプ51-jでは、高周波帯域、特に、2kHz~4kHzの周波数帯域の音波が開口部52-jに入射した場合に発生する吸音効果および散乱効果は低周波帯域の音波が開口部52-jに入射した場合に発生する吸音効果および散乱効果に比べると小さい。このため、音響空間内において高周波帯域の音波が発生した場合、その音波の音響エネルギーをパイプ51-jによって十分に散逸させることができなかった。 However, in reality, the pipe 51-j of the acoustic structure 50 has a low sound absorption effect and scattering effect generated when a sound wave in a high frequency band, particularly a frequency band of 2 kHz to 4 kHz is incident on the opening 52-j. This is smaller than the sound absorption effect and the scattering effect generated when the sound wave in the frequency band is incident on the opening 52-j. For this reason, when a sound wave in a high frequency band is generated in the acoustic space, the acoustic energy of the sound wave cannot be sufficiently dissipated by the pipe 51-j.
 本発明は上述の点に鑑みてなされたもので、音響空間内において高周波帯域の音波が発生した場合でも、その空間内における音響障害の発生を確実に防止することができるようにした音響構造体を提供しようとするものである。 The present invention has been made in view of the above points, and even when a sound wave in a high frequency band is generated in an acoustic space, an acoustic structure capable of reliably preventing the occurrence of an acoustic failure in the space. Is to provide.
 本発明の第1の観点に従う音響構造体は、内部に空洞が形成され前記空洞を包囲する壁部材に開口部が設けられた音響構造体であって、前記板の前記空洞を向いていない側の面における前記開口部の近傍と前記開口部とを除いた領域に吸音素材を貼付したことを特徴とする。この発明によると、吸音効果および散乱効果が発生し難い高周波帯域の音波が入射した場合、その音波の音響エネルギーが吸音素材によって失われる。よって、音響空間内において高周波帯域の音波が発生している場合でも、その空間内における音響障害の発生を確実に防止することができる。 The acoustic structure according to the first aspect of the present invention is an acoustic structure in which a cavity is formed and an opening is provided in a wall member surrounding the cavity, and the side of the plate that does not face the cavity A sound absorbing material is affixed to a region excluding the vicinity of the opening and the opening on the surface. According to the present invention, when a sound wave in a high frequency band where the sound absorption effect and the scattering effect hardly occur is incident, the acoustic energy of the sound wave is lost by the sound absorbing material. Therefore, even when a sound wave in a high frequency band is generated in the acoustic space, it is possible to reliably prevent the occurrence of an acoustic failure in the space.
 本発明の第2の観点に従う音響構造体は、複数の空洞を形成する壁部材と、前記複数の空洞の各々を外部空間に連通するように、前記壁部材に設けられた、複数の開口部と、前記複数の空洞中の少なくとも1つの空洞内に充填された吸音素材とを備え、前記吸音素材は、該少なくとも1つの空洞に対応する開口部から外部空間に露出していることを特徴とする音響構造体を提供する。この場合も、吸音効果および散乱効果が発生し難い高周波帯域の音波が入射した場合、その音波の音響エネルギーが吸音素材によって失われることになり、よって、音響空間内において高周波帯域の音波が発生している場合でも、その空間内における音響障害の発生を確実に防止することができる。更に、第2の観点に従う音響構造体によると、当該音響構造体自体の厚みを均一にすることができ、また、吸音素材が壁部材から剥がれ落ちて吸音効果および散乱効果を発生させることができなくなる、という問題の発生も防ぐことができる。 The acoustic structure according to the second aspect of the present invention includes a wall member that forms a plurality of cavities, and a plurality of openings provided in the wall member so that each of the plurality of cavities communicates with an external space. And a sound absorbing material filled in at least one of the plurality of cavities, wherein the sound absorbing material is exposed to an external space from an opening corresponding to the at least one cavity. An acoustic structure is provided. In this case as well, when a sound wave in a high frequency band where the sound absorption effect and the scattering effect are difficult to occur is incident, the acoustic energy of the sound wave is lost by the sound absorbing material. Even in such a case, it is possible to reliably prevent the occurrence of acoustic disturbance in the space. Furthermore, according to the acoustic structure according to the second aspect, the thickness of the acoustic structure itself can be made uniform, and the sound absorbing material can be peeled off from the wall member to generate the sound absorbing effect and the scattering effect. The problem of disappearance can also be prevented.
この発明の第1実施形態である音響構造体を示す左側面図、正面図、および右側面図である。It is the left view, front view, and right view which show the acoustic structure which is 1st Embodiment of this invention. 同音響構造体の空洞の縦断面図である。It is a longitudinal cross-sectional view of the cavity of the acoustic structure. 同音響構造体による吸音効果と散乱効果の発生の原理を示す図である。It is a figure which shows the principle of generation | occurrence | production of the sound absorption effect and the scattering effect by the acoustic structure. この発明の第2実施形態である音響構造体を示す左側面図、正面図、および右側面図である。It is the left view, front view, and right view which show the acoustic structure which is 2nd Embodiment of this invention. この発明の第3実施形態である音響構造体を示す左側面図、正面図、および右側面図である。It is the left view, front view, and right view which show the acoustic structure which is 3rd Embodiment of this invention. この発明の第4実施形態である音響構造体を示す正面図および断面図である。It is the front view and sectional drawing which show the acoustic structure which is 4th Embodiment of this invention. この発明の他の実施形態である音響構造体の開口部の形状を示す図である。It is a figure which shows the shape of the opening part of the acoustic structure which is other embodiment of this invention. この発明の他の実施形態である音響構造体を示す正面図である。It is a front view which shows the acoustic structure which is other embodiment of this invention. この発明の他の実施形態である調音パネル機能付き扉の正面図及び断面図である。It is the front view and sectional drawing of a door with an articulation panel function which are other embodiments of this invention. 従来の音響構造体を示す正面図である。It is a front view which shows the conventional acoustic structure.
 以下、図面を参照しつつ本発明の実施形態について説明する。
<第1実施形態>
 図1(A)は、この発明の第1実施形態である音響構造体10を示す左側面図である。図1(B)は、音響構造体10を示す正面図である。図1(C)は、音響構造体10を示す右側面図である。この音響構造体10では、間隔を空けて対向する2枚の板(壁部材)18および19の間に板(壁部材)11-n(n=1~7),20,および23が介在している。板(壁部材)18,19,11-n(n=1~7),20,および23は、スチール材などの剛体からなる。板(壁部材)11-n(n=1~7),20,および23は、板18と板19の間の空間を、左右方向に延在する空洞22-i(i=1~6)に仕切っており、板20および23は、空洞22-i(i=1~6)における左右の端部を塞いでいる。以下、「壁部材」(18,19,11-n(n=1~7),20,および23)を単に「板」という。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1A is a left side view showing an acoustic structure 10 according to the first embodiment of the present invention. FIG. 1B is a front view showing the acoustic structure 10. FIG. 1C is a right side view showing the acoustic structure 10. In this acoustic structure 10, plates (wall members) 11-n (n = 1 to 7), 20, and 23 are interposed between two plates (wall members) 18 and 19 that are opposed to each other with a space therebetween. ing. The plates (wall members) 18, 19, 11-n (n = 1 to 7), 20, and 23 are made of a rigid body such as a steel material. The plates (wall members) 11-n (n = 1 to 7), 20, and 23 are cavities 22-i (i = 1 to 6) extending in the left-right direction in the space between the plates 18 and 19. The plates 20 and 23 block the left and right ends of the cavity 22-i (i = 1 to 6). Hereinafter, “wall members” (18, 19, 11-n (n = 1 to 7), 20, and 23) are simply referred to as “plates”.
 この音響構造体10の板18には開口部21-i(i=1~6)が設けられている。板18の開口部21-i(i=1~6)における各開口部21-iは、板18,19,11-i,11-(i+1),20,および21によって包囲されている空洞22-iを、音響構造体10が設置される室空間である音響空間と連通させる役割を果たすものである。また、板18における空洞22-i(i=1~6)を向いていない側の面(即ち、外側の面、音波が入射する側の面:以下、反射面refという)の任意の箇所には吸音素材30-m(m=1~7)が貼付されている。吸音素材30-m(m=1~7)の役割については、後述する。 The plate 18 of the acoustic structure 10 is provided with openings 21-i (i = 1 to 6). Each opening 21-i in the opening 21-i (i = 1 to 6) of the plate 18 is a cavity 22 surrounded by the plates 18, 19, 11-i, 11- (i + 1), 20, and 21. -I serves to communicate with an acoustic space that is a room space in which the acoustic structure 10 is installed. Further, on the surface of the plate 18 that does not face the cavity 22-i (i = 1 to 6) (that is, the outer surface, the surface on which sound waves are incident: hereinafter referred to as the reflective surface ref). The sound absorbing material 30-m (m = 1 to 7) is attached. The role of the sound absorbing material 30-m (m = 1 to 7) will be described later.
 音響構造体10は、開口部21-i(i=1~6)を有する板18を音響空間の中央に向けた状態で、音響空間の内壁や天井に設置される。音響構造体10は、板18を音響空間の中央に向けた状態で設置されると、吸音効果および散乱効果を発生させ、音響空間から音響構造体10に向かって伝搬される音波の音響エネルギーを板18において散逸させる。音響構造体10による吸音効果および散乱効果の発生の原理は次に説明する通りである。 The acoustic structure 10 is installed on the inner wall or ceiling of the acoustic space with the plate 18 having the openings 21-i (i = 1 to 6) facing the center of the acoustic space. When the acoustic structure 10 is installed with the plate 18 facing the center of the acoustic space, the acoustic structure 10 generates a sound absorption effect and a scattering effect, and the acoustic energy of the sound wave propagated from the acoustic space toward the acoustic structure 10 is generated. Dissipate in the plate 18. The principle of generation of the sound absorption effect and the scattering effect by the acoustic structure 10 is as described below.
 図2の断面図に示すように、音響構造体10における1つの開口部21-iの奥の空洞22-iには、開口部21-iを開口端とし空洞22-iの左側の端部を閉口端とする音響管CLP-aと、開口部21-iを開口端とし空洞22-iの右側の端部を閉口端とする音響管CLP-bとが形成されているとみなすことができる。音響空間から開口部21-iを介して空洞22-i内に音波が入射すると、空洞22-i内では、音響管CLP-aの開口端(開口部21-i)から閉口端(空洞22-iの左側の端部)に向かう進行波と、音響管CLP-bの開口端(開口部21-i)から閉口端(空洞22-iの右側の端部)に向かう進行波とが発生する。そして、前者の進行波は、音響管CLP-aの閉口端において反射され、その反射波が開口部21-iへ戻る。また、後者の進行波は、音響管CLP-bの閉口端において反射され、その反射波が開口部21-iへ戻る。 As shown in the cross-sectional view of FIG. 2, the cavity 22-i behind one opening 21-i in the acoustic structure 10 has an opening 21-i as an opening end and an end on the left side of the cavity 22-i. And the acoustic tube CLP-b having the opening 21-i as the opening end and the right end of the cavity 22-i as the closing end. it can. When a sound wave enters the cavity 22-i from the acoustic space via the opening 21-i, the opening end (opening 21-i) of the acoustic tube CLP-a is closed to the closed end (cavity 22) in the cavity 22-i. -A traveling wave toward the left end of i) and a traveling wave toward the closed end (the right end of the cavity 22-i) from the open end (opening 21-i) of the acoustic tube CLP-b are generated. To do. Then, the former traveling wave is reflected at the closed end of the acoustic tube CLP-a, and the reflected wave returns to the opening 21-i. The latter traveling wave is reflected at the closed end of the acoustic tube CLP-b, and the reflected wave returns to the opening 21-i.
 そして、音響管CLP-aでは、下記式(1)に示す共鳴周波数fan(n=1、2、…)において共鳴が発生し、音響管CLP-a内において進行波と反射波とを合成した音波は、音響管CLP-aの閉口端に粒子速度の節を有し、開口端に粒子速度の腹を有する定在波となる。また、音響管CLP-bでは、下記式(2)に示す共鳴周波数fbn(n=1、2、…)において共鳴が発生し、音響管CLP-b内において進行波と反射波とを合成した音波は、音響管CLP-bの閉口端に粒子速度の節を有し、開口端に粒子速度の腹を有する定在波となる。なお、下記式(1)および(2)において、Laは音響管CLP-aの延在方向の長さ(空洞22-iの左側の端部から開口部21-iまでの長さ)、Lbは音響管CLP-bの延在方向の長さ(空洞22-iの右側の端部から開口部21-iまでの長さ)、cは音波の伝搬速度、nは1以上の整数である。
fan=(2n-1)・(c/(4・La)) (n=1,2…)…(1)
fbn=(2n-1)・(c/(4・Lb)) (n=1,2…)…(2)
In the acoustic tube CLP-a, resonance occurs at the resonance frequency fa n (n = 1, 2,...) Shown in the following formula (1), and the traveling wave and the reflected wave are synthesized in the acoustic tube CLP-a. The sound wave is a standing wave having a particle velocity node at the closed end of the acoustic tube CLP-a and a particle velocity antinode at the open end. In the acoustic tube CLP-b, resonance occurs at the resonance frequency fb n (n = 1, 2,...) Shown in the following formula (2), and the traveling wave and the reflected wave are synthesized in the acoustic tube CLP-b. The acoustic wave becomes a standing wave having a particle velocity node at the closed end of the acoustic tube CLP-b and a particle velocity antinode at the open end. In the following formulas (1) and (2), La is the length in the extending direction of the acoustic tube CLP-a (the length from the left end of the cavity 22-i to the opening 21-i), Lb Is the length of the acoustic tube CLP-b in the extending direction (the length from the right end of the cavity 22-i to the opening 21-i), c is the propagation velocity of the sound wave, and n is an integer of 1 or more .
fa n = (2n−1) · (c / (4 · La)) (n = 1, 2,...) (1)
fb n = (2n−1) · (c / (4 · Lb)) (n = 1, 2...) (2)
 ここで、音響空間から開口部21-iおよび反射面ref(板18の空洞22-iを向いていない面)における開口部21-iの近傍に入射する音波のうち共鳴周波数fanの成分に着目すると、音響管CLP-aの閉口端において反射されて開口部21-iから音響空間へと放射される音波は、音響空間から開口部21-iに入射する音波に対して逆相の音波となる。一方、反射面refにおける開口部21-iの近傍では、音響空間からの入射波が位相回転を伴うことなく反射される。 Here, the component of the resonance frequency fa n of waves incident on the vicinity of the opening portion 21-i at the opening 21-i and the reflective surface ref from acoustic space (surface not facing the cavity 22-i of the plate 18) When attention is paid, the sound wave reflected at the closed end of the acoustic tube CLP-a and radiated from the opening 21-i to the acoustic space is a sound wave having a phase opposite to the sound wave incident on the opening 21-i from the acoustic space. It becomes. On the other hand, in the vicinity of the opening 21-i on the reflection surface ref, the incident wave from the acoustic space is reflected without phase rotation.
 よって、図3に示すように、共鳴周波数fan(n=1、2…)の成分を含む音波が開口部21-iを介して空洞22-iに入射した場合、開口部21-iから見て入射方向(図3の吸音領域)に対しては、音響管CLP-aから開口部21-iを介して放射される音波と反射面refにおける開口部21-iの近傍の各点から反射される音波が逆相となって互いの位相が干渉し合い、吸音効果が発生する。また、開口部21-iからの音波と反射面refからの反射波とが互いに隣接する散乱領域では、開口部21-iからの音波と反射面refからの反射波の位相が不連続となる。このような位相差のある波が隣接することにより、散乱領域付近では、位相の不連続を解消しようとする気体分子の流れが発生する。この結果、散乱領域付近では、入射方向に対する鏡面反射方向以外の方向への音響エネルギーの流れが発生し、散乱効果が発生する。同様に、共鳴周波数fbn(n=1、2、…)の成分を含む音波が開口部21-iを介して空洞22-iに入射した場合、開口部21-iへの入射方向に鏡面反射する方向(図3の吸音領域)に対しては、吸音効果が発生する。また、散乱領域付近では、散乱効果が発生する。 Therefore, as shown in FIG. 3, when a sound wave including a component of the resonance frequency fa n (n = 1, 2,...) Is incident on the cavity 22-i through the opening 21-i, As seen from the incident direction (sound absorption region in FIG. 3), sound waves emitted from the acoustic tube CLP-a through the opening 21-i and points near the opening 21-i on the reflection surface ref. The reflected sound waves are out of phase and interfere with each other, producing a sound absorbing effect. In the scattering region where the sound wave from the opening 21-i and the reflected wave from the reflection surface ref are adjacent to each other, the phases of the sound wave from the opening 21-i and the reflection wave from the reflection surface ref are discontinuous. . When waves having such a phase difference are adjacent to each other, a gas molecule flow is generated in the vicinity of the scattering region so as to eliminate the phase discontinuity. As a result, in the vicinity of the scattering region, acoustic energy flows in a direction other than the specular reflection direction with respect to the incident direction, and a scattering effect occurs. Similarly, when a sound wave including a component of the resonance frequency fb n (n = 1, 2,...) Is incident on the cavity 22-i through the opening 21-i, the mirror surface is reflected in the direction of incidence on the opening 21-i. A sound absorbing effect occurs in the direction of reflection (sound absorbing region in FIG. 3). In addition, a scattering effect occurs near the scattering region.
 また、共鳴周波数fanおよびfbnの各々の近傍の周波数帯域においては、共鳴周波数fanまたはfbnからずれていたとしても、周波数がある程度近ければ、開口部21-iから音響空間に放射される音波の位相と反射面refから音響空間に放射される反射波の位相とが逆相に近い関係になる。このため、共鳴周波数fanおよびfbnの各々の近傍の周波数帯域では、共鳴周波数fanまたはfbnに対する周波数の近さに応じた程度の吸音効果および散乱効果が発生する。 In the frequency band of each vicinity of the resonance frequency fa n and fb n, even deviated from the resonant frequency fa n or fb n, the closer the frequency is to some extent, is radiated into the acoustic space from the opening 21-i The phase of the sound wave to be transmitted and the phase of the reflected wave radiated from the reflection surface ref to the acoustic space have a relationship close to an opposite phase. Therefore, in the frequency band of each vicinity of the resonance frequency fa n and fb n, sound absorbing effect and scattering effect of degree depending on the proximity of the frequency to the resonant frequency fa n or fb n occurs.
 以上が、吸音効果および散乱効果の原理の詳細である。上述したように、この吸音効果および散乱効果は、高周波帯域の音波についても発生するものの、その効果の大きさは低周波帯域のものの効果の大きさに比べると小さい。図1における吸音素材30-m(m=1~7)は、このような高周波帯域における吸音効果と散乱効果の不足を補う役割を果たす。吸音素材30-m(m=1~7)は、空気に対する比音響インピーダンス比ζの絶対値|ζ|が1以下の素材(たとえば、多孔質素材とする)を複数の小片とし、反射面refにおける以下の2つの条件a.b.を満足する位置に貼付したものである。 The above is the details of the principle of the sound absorption effect and the scattering effect. As described above, although the sound absorption effect and the scattering effect are also generated for the sound wave in the high frequency band, the magnitude of the effect is smaller than that of the effect in the low frequency band. The sound absorbing material 30-m (m = 1 to 7) in FIG. 1 plays a role of compensating for such a lack of sound absorbing effect and scattering effect in the high frequency band. The sound absorbing material 30-m (m = 1 to 7) has a plurality of small pieces of a material (for example, a porous material) having an absolute value | ζ | The following two conditions a. b. Affixed at a position satisfying
[条件a.] 板18の反射面refにおける開口部21-i(i=1~6)の近傍の領域を除いた領域内にある位置であること。より具体的には、各開口部21-iの周囲に散乱領域を発生させるように(図3参照)、板18の反射面refにおける開口部21-i(i=1~6)およびそれらの近傍を含む領域の外側の位置(とり囲む領域内のいずれかの位置)に吸音素材30-m(m=1~7)を貼り付けること。 [Condition a. ] A position in a region excluding a region near the opening 21-i (i = 1 to 6) on the reflection surface ref of the plate 18. More specifically, the apertures 21-i (i = 1 to 6) in the reflection surface ref of the plate 18 and their respective so as to generate a scattering region around each aperture 21-i (see FIG. 3). The sound absorbing material 30-m (m = 1 to 7) is pasted to a position outside the area including the vicinity (any position in the surrounding area).
[条件b.] 複数の吸音素材30-m(m=1~7)の各々を貼付する各位置は、吸音素材30-m(m=1~7)間に十分な距離が空くように分散されていること。 [Condition b. ] Each position where each of the plurality of sound absorbing materials 30-m (m = 1 to 7) is attached is dispersed so that a sufficient distance is provided between the sound absorbing materials 30-m (m = 1 to 7). .
 以上説明したように、本実施形態では、吸音効果と散乱効果が発生しにくい高周波帯域の音波が開口部21-i(i=1~6)と反射面refを有する板18に入射した場合には、反射面refに貼付された吸音素材30-m(m=1~7)にその音波が吸収される。従って、低周波帯域から高周波帯域までの広い周波数帯域の音波について、ブーミングやフラッターエコーなどの音響障害の発生を確実に防止することができる。 As described above, in the present embodiment, when a sound wave in a high frequency band that hardly generates the sound absorption effect and the scattering effect is incident on the plate 18 having the openings 21-i (i = 1 to 6) and the reflection surface ref. The sound wave is absorbed by the sound absorbing material 30-m (m = 1 to 7) attached to the reflecting surface ref. Therefore, it is possible to reliably prevent the occurrence of acoustic disturbances such as booming and flutter echo for sound waves in a wide frequency band from the low frequency band to the high frequency band.
 また、本実施形態では、反射面refにおける開口部21-i(i=1~6)の近傍の領域を除いた領域に吸音素材30-m(m=1~7)が貼付されている。よって、反射面refにおける開口部21-i(i=1~6)の近傍の領域からの入射波と同位相の反射波の放射が吸音素材30-m(m=1~7)によって妨げられることがない。従って、反射面refに吸音素材30-m(m=1~7)が貼付されていない場合と同等の吸音効果および散乱効果を発生させることができる。 Further, in the present embodiment, the sound absorbing material 30-m (m = 1 to 7) is attached to the area excluding the area near the opening 21-i (i = 1 to 6) on the reflection surface ref. Therefore, the sound absorbing material 30-m (m = 1 to 7) prevents the radiation of the reflected wave having the same phase as the incident wave from the region near the opening 21-i (i = 1 to 6) on the reflection surface ref. There is nothing. Therefore, it is possible to generate the sound absorption effect and the scattering effect equivalent to the case where the sound absorbing material 30-m (m = 1 to 7) is not attached to the reflecting surface ref.
 また、本実施形態では、吸音素材30-m(m=1~7)は小片とされ、それらの吸音素材30-m(m=1~7)が、各々の間に十分な距離が空くように分散して貼付されている。反射面refにおける吸音素材30-m(m=1~7)の各々の周囲の各点で反射した音波は、反射後の回折によって吸音素材30-m(m=1~7)に入射し、吸音素材30-m(m=1~7)に吸収される。よって、吸音素材30-m(m=1~7)を反射面refにおける一か所に纏めて貼付した場合よりも単位面積当たりの吸音率を高くすることができる。 Further, in this embodiment, the sound absorbing material 30-m (m = 1 to 7) is a small piece, and the sound absorbing material 30-m (m = 1 to 7) has a sufficient distance between each other. It is dispersed and affixed. Sound waves reflected at each point around each of the sound absorbing material 30-m (m = 1 to 7) on the reflecting surface ref are incident on the sound absorbing material 30-m (m = 1 to 7) by diffraction after reflection. Absorbed by the sound absorbing material 30-m (m = 1 to 7). Therefore, the sound absorption rate per unit area can be made higher than when the sound absorbing material 30-m (m = 1 to 7) is stuck together at one place on the reflecting surface ref.
<第2実施形態>
 図4(A)は、この発明の第2実施形態である音響構造体10Aを示す左側面図である。図4(B)は、音響構造体10Aを示す正面図である。図4(C)は、音響構造体10Aを示す右側面図である。図4(A),図4(B),および図4(C)において、音響構造体10A(図1(A),図1(B),図1(C))と同じ要素には同一の符号を付してある。この音響構造体10Aでは、板18の反射面ref上における板11-2,11-3,11-4,11-5,11-6の反対側に相当する位置(板11の側面に対応する位置)に、それらの板11-2,11-3,11-4,11-5,11-6と平行な帯状の吸音素材32,33,34,35,36が貼付されている。すなわち、複数の長手状の吸音素材32乃至36が開口部21-1乃至21-7の位置に重ならないように所定間隔をあけて配置されている。
Second Embodiment
FIG. 4A is a left side view showing an acoustic structure 10A according to the second embodiment of the present invention. FIG. 4B is a front view showing the acoustic structure 10A. FIG. 4C is a right side view showing the acoustic structure 10A. 4A, FIG. 4B, and FIG. 4C, the same elements as those of the acoustic structure 10A (FIGS. 1A, 1B, and 1C) are the same. The code | symbol is attached | subjected. In this acoustic structure 10A, a position corresponding to the opposite side of the plates 11-2, 11-3, 11-4, 11-5, and 11-6 on the reflection surface ref of the plate 18 (corresponding to the side surface of the plate 11). At positions, strip-shaped sound absorbing materials 32, 33, 34, 35, and 36 parallel to the plates 11-2, 11-3, 11-4, 11-5, and 11-6 are attached. That is, the plurality of longitudinal sound absorbing materials 32 to 36 are arranged at a predetermined interval so as not to overlap the positions of the openings 21-1 to 21-7.
 本実施形態によっても、低周波帯域から高周波帯域までの広い周波数帯域の音波について、音響空間内における音響障害の発生を確実に防止することができる。 Also according to the present embodiment, it is possible to reliably prevent the occurrence of acoustic disturbance in the acoustic space for sound waves in a wide frequency band from a low frequency band to a high frequency band.
<第3実施形態>
 図5(A)は、この発明の第3実施形態である音響構造体10Bを示す左側面図である。図5(B)は、音響構造体10Bを示す正面図である。図5(C)は、音響構造体10Bを示す右側面図である。図5(A),図5(B),図5(C)において、音響構造体10B(図1(A),図1(B),図1(C))と同じ要素には同一の符号を付してある。この音響構造体10Bでは、板18の反射面refにおける開口部21-i(i=1~6)と開口部21-i(i=1~6)の近傍とを除いた領域の全面に亙って吸音素材38が貼付されている。
<Third Embodiment>
FIG. 5A is a left side view showing an acoustic structure 10B according to the third embodiment of the present invention. FIG. 5B is a front view showing the acoustic structure 10B. FIG. 5C is a right side view showing the acoustic structure 10B. 5A, FIG. 5B, and FIG. 5C, the same reference numerals are used for the same elements as those of the acoustic structure 10B (FIGS. 1A, 1B, and 1C). Is attached. In the acoustic structure 10B, the entire surface of the region excluding the opening 21-i (i = 1 to 6) and the vicinity of the opening 21-i (i = 1 to 6) on the reflection surface ref of the plate 18 The sound absorbing material 38 is affixed.
 本実施形態によっても、低周波帯域から高周波帯域までの広い周波数帯域の音波について、音響空間内における音響障害の発生を確実に防止することができる。 Also according to the present embodiment, it is possible to reliably prevent the occurrence of acoustic disturbance in the acoustic space for sound waves in a wide frequency band from a low frequency band to a high frequency band.
<第4実施形態>
 図6(A)は、この発明の第4実施形態である音響構造体10Cを示す正面図である。図6(B)は、図6(A)のB-B’線断面図である。図6(C)は、図6(A)のC-
C’線断面図である。上記第1~第3実施形態である音響構造体10、10A、および10Bでは、板18上に吸音素材が貼付されていた。これに対し、本実施形態である音響構造体10Cでは、当該音響構造体10Cの外殻をなす6枚の板58,59,60,61,62,63の内部が9つの空洞72-k(k=1~9)に区画されており、9つの空洞72-k(k=1~9)のうちの空洞72-4に吸音素材80が装填され、この吸音素材80が板58の開口部73-4から外部の音響空間に露出している。より具体的に説明すると、この音響構造体10Cでは、上下方向に対向する2枚の板58及び59の間に板60~71が介在している。板60~71のうち板60及び61は、各々の間に板58の左右方向の幅と同じ距離D1を空けて左右方向に対向している。板62及び63は、各々の間に板58の前後方向の幅と同じ距離D2を空けて前後方向に対向している。板62と板63の間には、板64,65,66,67,68が、隣合うもの同士の間に距離D3を空けて配置されている。さらに、板64と板65の間における板61から距離D4だけ離れた位置には板69が配置されている。板66と板67の間における板61から距離D5だけ離れた位置には板70が配置されている。板67と板68の間における板61から距離D6だけ離れた位置には板71が配置されている。
<Fourth embodiment>
FIG. 6A is a front view showing an acoustic structure 10C according to the fourth embodiment of the present invention. 6B is a cross-sectional view taken along the line BB ′ of FIG. FIG. 6C shows the C-
It is C 'sectional view. In the acoustic structures 10, 10 A, and 10 B according to the first to third embodiments, the sound absorbing material is pasted on the plate 18. On the other hand, in the acoustic structure 10C according to the present embodiment, the inside of the six plates 58, 59, 60, 61, 62, 63 forming the outer shell of the acoustic structure 10C has nine cavities 72-k ( k = 1 to 9), and the sound absorbing material 80 is loaded into the cavity 72-4 of the nine cavities 72-k (k = 1 to 9). 73-4 is exposed to the external acoustic space. More specifically, in this acoustic structure 10C, plates 60 to 71 are interposed between two plates 58 and 59 facing in the vertical direction. Of the plates 60 to 71, the plates 60 and 61 face each other in the left-right direction with a distance D1 equal to the width in the left-right direction of the plate 58 between them. The plates 62 and 63 face each other in the front-rear direction with a distance D2 that is the same as the width in the front-rear direction of the plate 58 therebetween. Between the plates 62 and 63, the plates 64, 65, 66, 67 and 68 are arranged with a distance D3 between adjacent ones. Further, a plate 69 is disposed at a position between the plate 64 and the plate 65 away from the plate 61 by a distance D4. A plate 70 is disposed at a position between the plate 66 and the plate 67 away from the plate 61 by a distance D5. A plate 71 is disposed between the plate 67 and the plate 68 at a position separated from the plate 61 by a distance D6.
 この音響構造体10Cの板58には開口部73-k(k=1~9)が設けられている。これらの開口部73-k(k=1~9)のうち開口部73-1,73-2,73-3,73-5,73-6,73-7,73-8,73-9は、板62及び64間の距離D3と同じ縦幅および横幅を持った正方形状をなしている。開口部73-4は、板62及び64間の距離D3と同じ縦幅並びに板20及び21間の距離D1と同じ横幅を持った長方形状をなしている。 The plate 58 of the acoustic structure 10C is provided with openings 73-k (k = 1 to 9). Of these openings 73-k (k = 1 to 9), the openings 73-1, 73-2, 73-3, 73-5, 73-6, 73-7, 73-8, 73-9 are A square shape having the same vertical width and horizontal width as the distance D3 between the plates 62 and 64 is formed. The opening 73-4 has a rectangular shape having the same vertical width as the distance D3 between the plates 62 and 64 and the same horizontal width as the distance D1 between the plates 20 and 21.
 開口部73-1は、板58,59,60,61,62,64に包囲されている空洞72-1を外部の音響空間と連通させる役割を果たし、開口部73-2は、板58,59,60,64,65,69に包囲されている空洞72-2を外部の音響空間と連通させる役割を果たす。開口部73-3は、板58,59,61,64,65,69に包囲されている空洞72-3を外部の音響空間と連通させる役割を果たし、開口部73-5は、板58,59,60,66,67,70に包囲されている空洞72-5を外部の音響空間と連通させる役割を果たす。開口部73-6は、板58,59,61,66,67,70に包囲されている空洞72-6を外部の音響空間と連通させる役割を果たし、開口部73-7は、板58,59,60,67,68,71に包囲されている空洞72-7を外部の音響空間と連通させる役割を果たす。開口部73-8は、板58,59,61,67,68,71に包囲されている空洞72-8を外部の音響空間と連通させる役割を果たし、開口部73-9は、板58,59,60,61,63,68に包囲されている空洞72-9を外部の音響空間と連通させる役割を果たす。開口部73-4は、板58,59,60,61,65,66に包囲されている空洞72-4を外部の音響空間と連通させる役割を果たす。そして、この開口部73-4の奥の空洞72-4には、吸音素材80が装填されており、この吸音素材80は、開口部73-4を介して音響空間に露出している。また、この吸音素材80における開口部73-4から露出した部分は、開口部73-4が設けられた板58と略面一になっている(吸音素材80の露出面が板58の面と略同じ高さ)。以上が、音響構造体10Cの構成の詳細である。 The opening 73-1 serves to communicate the cavity 72-1 surrounded by the plates 58, 59, 60, 61, 62, and 64 with an external acoustic space. The cavity 72-2 surrounded by 59, 60, 64, 65, 69 serves to communicate with an external acoustic space. The opening 73-3 serves to communicate the cavity 72-3 surrounded by the plates 58, 59, 61, 64, 65, and 69 with the external acoustic space. The cavity 72-5 surrounded by 59, 60, 66, 67 and 70 serves to communicate with the external acoustic space. The opening 73-6 serves to communicate the cavity 72-6 surrounded by the plates 58, 59, 61, 66, 67, and 70 with the external acoustic space, and the opening 73-7 includes the plates 58, 59, The cavity 72-7 surrounded by 59, 60, 67, 68 and 71 serves to communicate with the external acoustic space. The opening 73-8 serves to communicate the cavity 72-8 surrounded by the plates 58, 59, 61, 67, 68, 71 with the external acoustic space, and the opening 73-9 includes the plates 58, 59, The cavity 72-9 surrounded by 59, 60, 61, 63 and 68 serves to communicate with the external acoustic space. The opening 73-4 serves to communicate the cavity 72-4 surrounded by the plates 58, 59, 60, 61, 65, 66 with the external acoustic space. A sound absorbing material 80 is loaded in the cavity 72-4 at the back of the opening 73-4, and the sound absorbing material 80 is exposed to the acoustic space through the opening 73-4. In addition, the portion of the sound absorbing material 80 exposed from the opening 73-4 is substantially flush with the plate 58 provided with the opening 73-4 (the exposed surface of the sound absorbing material 80 is flush with the surface of the plate 58). About the same height). The above is the details of the configuration of the acoustic structure 10C.
 これによれば、吸音素材80が設けられていない開口部73-1乃至73-3,73-5乃至73-7は、図3に示した開口部21-iと同様に吸音領域を形成するように作用する。すなわち、開口部73-4から露出した吸音素材80による作用により、前記開口部73-1乃至73-3,73-5乃至73-7の周辺での吸音領域が作り出される。図示のように、開口部73-4の面積を、他の各開口部(73-1乃至73-3,73-5乃至73-7)の面積よりも大とすると、他の複数の開口部(73-1乃至73-3,73-5乃至73-7)に及ぼせる吸音領域を広くとることができる。 According to this, the openings 73-1 to 73-3 and 73-5 to 73-7 in which the sound absorbing material 80 is not provided form a sound absorbing region in the same manner as the opening 21-i shown in FIG. Acts as follows. That is, sound absorbing regions around the openings 73-1 to 73-3 and 73-5 to 73-7 are created by the action of the sound absorbing material 80 exposed from the opening 73-4. As illustrated, when the area of the opening 73-4 is larger than the areas of the other openings (73-1 to 73-3, 73-5 to 73-7), a plurality of other openings It is possible to widen the sound absorption region that can extend to (73-1 to 73-3, 73-5 to 73-7).
 本実施形態によっても、低周波帯域から高周波帯域までの広い周波数帯域の音波について、音響空間内における音響障害の発生を確実に防止することができる。 Also according to the present embodiment, it is possible to reliably prevent the occurrence of acoustic disturbance in the acoustic space for sound waves in a wide frequency band from a low frequency band to a high frequency band.
 また、この音響構造体10Cでは、当該音響構造体10Cの板58に吸音素材が貼付されておらず、その9つの空洞72-k(k=1~9)のうち一部の空洞72-4内に吸音素材80が装填されている。そして、この吸音素材80が開口部73-4を介して音響空間に露出している。よって、この音響構造体10Cによると、当該音響構造体10C自体の厚みを均一にすることができる。また、吸音素材が板58から剥がれ落ちて吸音効果および散乱効果を発生させることができなくなる、という問題の発生も防ぐことができる。 Further, in this acoustic structure 10C, no sound absorbing material is affixed to the plate 58 of the acoustic structure 10C, and some of the nine cavities 72-k (k = 1 to 9) are the cavities 72-4. A sound absorbing material 80 is loaded therein. The sound absorbing material 80 is exposed to the acoustic space through the opening 73-4. Therefore, according to the acoustic structure 10C, the thickness of the acoustic structure 10C itself can be made uniform. Further, it is possible to prevent the problem that the sound absorbing material is peeled off from the plate 58 and the sound absorbing effect and the scattering effect cannot be generated.
 以上、この発明のいくつかの実施形態について説明したが、この発明には他にも実施形態(変形例)があり得る。例えば、以下の通りである。 Although some embodiments of the present invention have been described above, there may be other embodiments (modifications) in the present invention. For example, it is as follows.
(1)上記第1~第3実施形態において、音響構造体10,10A,10Bの空洞22-iの数を7つ以上としてもよいし、5つ以下としてもよい。また、空洞22-iの各々の横幅を変えてもよい。 (1) In the first to third embodiments, the number of the cavities 22-i of the acoustic structures 10, 10A, 10B may be 7 or more, or 5 or less. Further, the width of each of the cavities 22-i may be changed.
(2)上記第1~第3実施形態において、吸音素材30-m(m=1~7),31,32,33,34,35,36,37として多孔質素材以外の素材を用いてもよい。 (2) In the first to third embodiments, a material other than the porous material may be used as the sound absorbing material 30-m (m = 1 to 7), 31, 32, 33, 34, 35, 36, 37. Good.
(3)上記第1~第3実施形態において、1つの空洞22-iが5枚以下の板により包囲されるような構成としてもよいし、1つの空洞22-iが7枚以上の板により包囲されるような構成としてもよい。 (3) In the first to third embodiments, one cavity 22-i may be surrounded by five or less plates, or one cavity 22-i may be composed of seven or more plates. It is good also as a structure which is surrounded.
(4)上記第3実施形態では、空洞22-iが正方形状をなしており、反射面refにおける開口部22-iの近傍の吸音素材38が貼付されていない領域が空間22-iよりもひと回り大きな正方形状をなしていた。しかし、空洞22-iやその近傍の吸音材38が貼付されていない領域を正方形以外の形状(例えば、真円や正方形の4隅を湾曲させた形状)としてもよい。この場合において、図7(A)や図7(B)に示すように、開口部22-iの近傍の吸音素材38が貼付されていない領域ARを、当該領域ARの内周IN上の各点から開口部22-iの外周OUTまでの最短距離が均一になるようなものとしてもよい。また、開口部22-iの外周OUTと開口部22-iの近傍の吸音素材38が貼付されていない領域ARの内周INとを異なる形状にしてもよい。例えば、図7(C)に示すように、開口部22-iの外周OUTを、正方形状とし、開口部22-iの近傍の吸音素材38が貼付されていない領域ARの内周INを、正方形の4隅を湾曲させた形状として、当該領域ARの内周IN上の各点から開口部22-iの外周OUTまでの最短距離が均一になるようにしてもよい。 (4) In the third embodiment, the cavity 22-i has a square shape, and the region where the sound absorbing material 38 in the vicinity of the opening 22-i on the reflection surface ref is not attached is more than the space 22-i. It was a square shape. However, the area where the cavity 22-i and the sound absorbing material 38 in the vicinity thereof are not attached may have a shape other than a square (for example, a perfect circle or a shape in which four corners of a square are curved). In this case, as shown in FIG. 7A and FIG. 7B, the area AR where the sound absorbing material 38 in the vicinity of the opening 22-i is not pasted is set on each inner circumference IN of the area AR. The shortest distance from the point to the outer periphery OUT of the opening 22-i may be uniform. Further, the outer periphery OUT of the opening 22-i and the inner periphery IN of the area AR where the sound absorbing material 38 in the vicinity of the opening 22-i is not attached may be formed in different shapes. For example, as shown in FIG. 7C, the outer periphery OUT of the opening 22-i has a square shape, and the inner periphery IN of the area AR where the sound absorbing material 38 in the vicinity of the opening 22-i is not attached. As a shape in which the four corners of the square are curved, the shortest distance from each point on the inner periphery IN of the area AR to the outer periphery OUT of the opening 22-i may be uniform.
(5)上記第1~第3実施形態において、開口部21-i(i=1~6)のうちの少なくとも一つ(たとえば、開口部21-1とする)における板18と平行な切断面の面積So(つまり開口部の面積)を空洞22-1における板18と直交する切断面の面積Sp(つまり空洞の横断面積)よりも小さくするとよい。面積Soを面積Spより小さくした音響構造体10Dによると、より広い帯域において吸音効果と散乱効果を発生させることができるからである。 (5) In the first to third embodiments, the cut surface parallel to the plate 18 in at least one of the openings 21-i (i = 1 to 6) (for example, the opening 21-1). The area S o (that is, the area of the opening) is preferably smaller than the area S p (that is, the cross-sectional area of the cavity) of the cut surface perpendicular to the plate 18 in the cavity 22-1. This is because according to the acoustic structure 10D in which the area S o is smaller than the area S p , the sound absorption effect and the scattering effect can be generated in a wider band.
 面積Soを面積Spより小さくすることにより、広い帯域において吸音効果を発生させることができる理由は、次の通りである。上述したように、吸音効果は、音響構造体10内の共鳴管CLP-aおよびCLP-bの共鳴周波数fanおよびfbnとその近傍の周波数の音波が音響構造体10に入射した場合に、開口部21-iから音響空間に放射される音波の位相と反射面refから音響空間に放射される反射波の位相とが逆相に近い関係になることにより発生する効果である。従って、音響構造体10の開口部21-iを介して音響構造体10内に入射する音波と開口部21-iからその音波の入射方向に向かって反射される反射波とが逆相関係に近くなるような周波数帯域が広いほど、吸音効果が発生する帯域も広くなるはずである。 By reducing the area S o than the area S p, why can generate sound absorbing effect in a wide band is as follows. As described above, the sound absorption effect is obtained when sound waves having resonance frequencies fa n and fb n of the resonance tubes CLP-a and CLP-b in the acoustic structure 10 and frequencies in the vicinity thereof are incident on the acoustic structure 10. This is an effect generated when the phase of the sound wave radiated from the opening 21-i to the acoustic space and the phase of the reflected wave radiated from the reflecting surface ref to the acoustic space are close to each other. Accordingly, the sound wave that enters the acoustic structure 10 through the opening 21-i of the acoustic structure 10 and the reflected wave that is reflected from the opening 21-i toward the incident direction of the sound wave have an inverse phase relationship. The wider the frequency band that is closer, the wider the band in which the sound absorption effect occurs.
 ここで、第1の媒質(たとえば、開口部21-i内の空気や音響構造体10の材料である剛体)に向かって第2の媒質(たとえば、音響空間内の空気)から音波が垂直に入射した場合に両媒質の境界面bsurから入射方向に反射される反射波の振幅及び位相は、境界面bsurの比音響インピーダンス比ζ(ζ=r+jx:r=Re(ζ),x=Im(ζ))に依存して決まる。より具体的に説明すると、境界面bsurの比音響インピーダンス比ζの絶対値|ζ|が1未満である場合には、境界面bsurからは境界面bsurに入射する音波に対して±180°以内の位相差を持った反射波が放出される。そして、Im(ζ)>0であれば比音響インピーダンス比ζの虚部Im(ζ)の絶対値|Im(ζ)|が小さいほど位相差は+180°に近づいていき、Im(ζ)<0であれば比音響インピーダンス比ζの虚部Im(ζ)の絶対値|Im(ζ)|が小さいほど位相差は-180°に近づいていく。 Here, a sound wave is perpendicularly directed from the second medium (for example, air in the acoustic space) toward the first medium (for example, air in the opening 21-i or a rigid body that is a material of the acoustic structure 10). When incident, the amplitude and phase of the reflected wave reflected from the boundary surface bsur of both media in the incident direction are expressed by the specific acoustic impedance ratio ζ (ζ = r + jx: r = Re (ζ), x = Im ( It depends on ζ)). More specifically, when the absolute value | ζ | of the specific acoustic impedance ratio ζ of the boundary surface bsur is less than 1, the boundary surface bsur is within ± 180 ° with respect to the sound wave incident on the boundary surface bsur. A reflected wave having a phase difference of is emitted. If Im (ζ)> 0, the smaller the absolute value | Im (ζ) | of the imaginary part Im (ζ) of the specific acoustic impedance ratio ζ, the closer the phase difference approaches + 180 °, and Im (ζ) < If 0, the phase difference approaches -180 ° as the absolute value | Im (ζ) | of the imaginary part Im (ζ) of the specific acoustic impedance ratio ζ decreases.
 さらに、開口部21-iの切断面の面積Soと空洞22-iの切断面の面積Spの面積比rs(rs=So/Sp)が1より大きい(つまり、So>Sp)場合と面積比rsが1より小さい(つまり、So<Sp)場合の各々における比インピーダンス比ζの虚部Im(ζ)の周波数特性を比較すると、前者よりも後者の方が、周波数特性における虚部Im(ζ)がある値(例えば、Im(ζ)=1)以下となる帯域が広い(この面積比rsと虚部Im(ζ)の周波数特性との関係については、特許文献2(特に、図9)を参照されたい。)。よって、面積Soが面積Spよりも小さいほど、より広い帯域に渡って、開口部22-1に入射する音波に対して逆相に近い位相差を持った反射波を開口部21-iから放射することができる。以上の理由により、面積Soを面積Spより小さくすることにより、より広い帯域において吸音効果を発生させることができる。 Furthermore, the area ratio rs (rs = S o / S p ) between the area S o of the cut surface of the opening 21-i and the area S p of the cut surface of the cavity 22-i is larger than 1 (that is, S o > S p ) and the frequency characteristics of the imaginary part Im (ζ) of the specific impedance ratio ζ in each of the case where the area ratio rs is smaller than 1 (that is, S o <S p ), the latter is better than the former. The band where the imaginary part Im (ζ) in the frequency characteristic is a certain value (for example, Im (ζ) = 1) is wide (for the relationship between the area ratio rs and the frequency characteristic of the imaginary part Im (ζ)) Reference 2 (see in particular FIG. 9)). Therefore, as the area S o is smaller than the area S p, a reflected wave having a phase difference close to a reverse phase with respect to the sound wave incident on the opening 22-1 is spread over a wider band. Can radiate from. For the above reasons, the sound absorption effect can be generated in a wider band by making the area S o smaller than the area S p .
(6)上記第4実施形態において、音響構造体10Cの空洞72-kの数を2個~8個としてもよいし、10個以上としてもよい。また、第4実施形態では、吸音素材80が装填される空洞72-4の幅を他の空洞72-1~72-3および72-5~72-9と同じ幅にしたが、他の空洞と幅を異ならせてもよい。また、図8に示す音響構造体10C’のように、空洞72-4自体の左右方向の幅D1よりも、その空洞72-4を外部と連通させる役割を果たす開口部73-4の左右方向の幅D7を短くしてもよい。この場合において、空洞72-4内における開口部73-4の真下の空間にのみ吸音素材80を装填し、空洞72-4内における吸音素材80の左右の側に密閉された空間ができるようにしてもよい。また、2個以上の空洞72に吸音素材80を充填してもよい。 (6) In the fourth embodiment, the number of the cavities 72-k of the acoustic structure 10C may be 2 to 8, or 10 or more. In the fourth embodiment, the width of the cavity 72-4 in which the sound absorbing material 80 is loaded is set to the same width as the other cavities 72-1 to 72-3 and 72-5 to 72-9. And the width may be different. Further, as in the acoustic structure 10C ′ shown in FIG. 8, the left-right direction of the opening 73-4 that plays a role of communicating the cavity 72-4 with the outside rather than the width D1 of the cavity 72-4 itself in the left-right direction. The width D7 may be shortened. In this case, the sound absorbing material 80 is loaded only in the space just below the opening 73-4 in the cavity 72-4 so that a sealed space is formed on the left and right sides of the sound absorbing material 80 in the cavity 72-4. May be. Further, two or more cavities 72 may be filled with the sound absorbing material 80.
(7)上記第4実施形態において、吸音素材80として多孔質素材以外の素材を用いてもよい。 (7) In the fourth embodiment, a material other than the porous material may be used as the sound absorbing material 80.
(8)上記第4実施形態では、吸音素材80を装填する空洞72-4は、左右方向に伸びた形状をなしていた。しかし、空洞72-4を前後方向に伸びた形状としてもよいし、斜め方向に伸びた形状としてもよい。また、それらの形状を組み合わせた形状としてもよい (8) In the fourth embodiment, the cavity 72-4 in which the sound absorbing material 80 is loaded has a shape extending in the left-right direction. However, the cavity 72-4 may have a shape extending in the front-rear direction or a shape extending in an oblique direction. Moreover, it is good also as a shape which combined those shapes.
(9)上記第4実施形態における音響構造体10Cを両面または片面に備えた扉を構成してもよい。図9は、音響構造体10Cを両面に備えた扉の一例である調音パネル機能付き扉10Eの正面図とそのE-E’線断面図である。この調音パネル機能付き扉10Eは、前面板5Fと後面板5B(不図示)とを空間を空けて重ね合わせ、板5F及び5Bの上下左右の縁に板6U,6D、7L、および7Rを接合したものである。この扉10Eの前面板5Fと後面板5BにはドアノブNBが設けられている。また、この扉10Eにおける板5F,5D,6U,6D,7L,7Rに囲まれた空間は9つの空洞1-k(k=1~9)に区画されている。さらに、これらの空洞1-k(k=1~9)のうちの空洞1-3は、板5F及び5Bと平行な中板5Cを間に挟んで板5F側の空洞1’-3と板5B側の空洞1”-3とに区画されている。板5Fには、空洞1-1,1-2,1’-3,1-4,1-9を外部と連通させる開口部2-1,2-2,2’-3,2-4,2-9が設けられている。板5Bには、空洞1”-3,1-5,1-6,1-7,1-8を外部と連通させる開口部2”-3,2-5,2-6,2-7,2-8が設けられている。この扉10Eでは、空洞1’-3には吸音素材3’が装填されており、この吸音素材3’が開口部2’-3を介して外部に露出している。また、空洞1”-3には吸音素材3”が装填されており、この吸音素材3”が開口部2”-3を介して外部に露出している。この調音パネル機能付き扉10Eによると、当該扉10Eを挟んで隔てられた2つの音響空間の各々において、吸音効果および散乱効果を発生させることができる。また、この実施形態において、吸音素材3’及び3”と板5Cは光を通すように透明乃至半透明な素材により形成されていてもよい。 (9) You may comprise the door provided with the acoustic structure 10C in the said 4th Embodiment on both surfaces or one side. FIG. 9 is a front view of a door 10E with a sound control panel function, which is an example of a door provided with an acoustic structure 10C on both sides, and a cross-sectional view taken along line E-E '. In the door 10E with the sound control panel function, the front plate 5F and the rear plate 5B (not shown) are overlapped with a space, and the plates 6U, 6D, 7L, and 7R are joined to the upper, lower, left, and right edges of the plates 5F and 5B. It is a thing. A door knob NB is provided on the front plate 5F and the rear plate 5B of the door 10E. Further, a space surrounded by the plates 5F, 5D, 6U, 6D, 7L, and 7R in the door 10E is divided into nine cavities 1-k (k = 1 to 9). Further, of these cavities 1-k (k = 1 to 9), the cavities 1-3 have a cavity 1′-3 and a plate on the plate 5F side with an intermediate plate 5C parallel to the plates 5F and 5B interposed therebetween. 5B-side cavity 1 "-3. The plate 5F has an opening 2- that communicates the cavity 1-1, 1-2, 1'-3, 1-4, 1-9 with the outside. 1, 2-2, 2'-3, 2-4, 2-9 are provided. The plate 5B has cavities 1 "-3, 1-5, 1-6, 1-7, 1-8. Are provided with openings 2 ″ -3, 2-5, 2-6, 2-7, 2-8. In this door 10E, the sound absorbing material 3 ′ is placed in the cavity 1′-3. The sound absorbing material 3 'is exposed to the outside through the opening 2'-3. The sound absorbing material 3 "is loaded in the cavity 1" -3. "" Open 2 "-3 through the outside According to the door 10E with the sound control panel function, a sound absorbing effect and a scattering effect can be generated in each of the two acoustic spaces separated by the door 10E. The sound absorbing materials 3 ′ and 3 ″ and the plate 5C may be made of a transparent or translucent material so that light can pass through.

Claims (10)

  1.  複数の空洞を形成する壁部材と、
     前記複数の空洞の各々を外部空間に連通するように、前記壁部材に設けられた、複数の開口部と、
     前記複数の空洞中の少なくとも1つの空洞内に充填された吸音素材と
    を備え、前記吸音素材は、該少なくとも1つの空洞に対応する開口部から外部空間に露出していることを特徴とする音響構造体。
    A wall member forming a plurality of cavities;
    A plurality of openings provided in the wall member to communicate each of the plurality of cavities with an external space;
    A sound absorbing material filled in at least one of the plurality of cavities, wherein the sound absorbing material is exposed to an external space from an opening corresponding to the at least one cavity. Structure.
  2.  前記吸音素材が充填される前記少なくとも1つの空洞に対応する開口部の面積は、前記吸音素材が充填されない空洞に対応する開口部の面積よりも大きいことを特徴とする請求項1に記載の音響構造体。 The acoustic according to claim 1, wherein an area of the opening corresponding to the at least one cavity filled with the sound absorbing material is larger than an area of the opening corresponding to the cavity not filled with the sound absorbing material. Structure.
  3.  前記開口部から露出した前記吸音素材の面は、該開口部が設けられた前記壁部材の面と略同じ高さであることを特徴とする請求項1又は2に記載の音響構造体。 3. The acoustic structure according to claim 1, wherein a surface of the sound absorbing material exposed from the opening is substantially the same height as a surface of the wall member provided with the opening.
  4.  前記吸音素材として、多孔質素材が用いられていることを特徴とする請求項1又は2に記載の音響構造体。 The acoustic structure according to claim 1 or 2, wherein a porous material is used as the sound absorbing material.
  5.  請求項1又は2に記載の前記音響構造体を少なくとも片面に具備するドア。 A door comprising the acoustic structure according to claim 1 or 2 on at least one side.
  6.  請求項1又は2に記載の前記音響構造体を両面に具備するドア。 A door comprising the acoustic structure according to claim 1 or 2 on both sides.
  7.  該ドアの各面に設けられた各音響構造体における各吸音素材は、重複した配置からなっており、両吸音素材を仕切る箇所の壁部材が透明又は半透明部分を持つことを特徴とする請求項5に記載のドア。 Each sound absorbing material in each acoustic structure provided on each surface of the door has an overlapping arrangement, and a wall member at a portion that partitions both sound absorbing materials has a transparent or translucent portion. Item 6. The door according to Item 5.
  8.  内部に空洞が形成され前記空洞を包囲する壁部材に開口部が設けられた音響構造体であって、前記板の前記空洞を向いていない側の面における前記開口部の近傍と前記開口部とを除いた領域に吸音素材を貼付したことを特徴とする音響構造体。 An acoustic structure in which a cavity is formed and an opening is provided in a wall member surrounding the cavity, the vicinity of the opening on the surface of the plate not facing the cavity, and the opening An acoustic structure characterized in that a sound-absorbing material is affixed to the area excluding.
  9.  前記吸音素材が、前記開口部の周囲に散乱領域を発生させるように前記開口部およびその近傍の外側の領域に貼付されていることを特徴とする請求項1に記載の音響構造体。 The acoustic structure according to claim 1, wherein the sound absorbing material is affixed to the opening and an outer region near the opening so as to generate a scattering region around the opening.
  10.  複数の吸音素材を各々の間に間隔を空けて前記領域に貼付したことを特徴とする請求項8または9に記載の音響構造体。 The acoustic structure according to claim 8 or 9, wherein a plurality of sound-absorbing materials are attached to the region with an interval between them.
PCT/JP2011/079062 2010-12-15 2011-12-15 Acoustic structure WO2012081672A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137006388A KR101452662B1 (en) 2010-12-15 2011-12-15 Acoustic structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-279660 2010-12-15
JP2010279660A JP5771973B2 (en) 2010-05-17 2010-12-15 Acoustic structure

Publications (1)

Publication Number Publication Date
WO2012081672A1 true WO2012081672A1 (en) 2012-06-21

Family

ID=46244766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079062 WO2012081672A1 (en) 2010-12-15 2011-12-15 Acoustic structure

Country Status (2)

Country Link
KR (1) KR101452662B1 (en)
WO (1) WO2012081672A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016136740A1 (en) * 2015-02-27 2017-04-27 ヤマハ株式会社 Acoustic structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156797A (en) * 1987-12-15 1989-06-20 Matsushita Electric Works Ltd Sound absorber
JPH06158751A (en) * 1992-11-25 1994-06-07 Matsushita Electric Ind Co Ltd Acoustic absorber
JPH07302087A (en) * 1994-05-02 1995-11-14 Yamaha Corp Sound absorbing structure body
WO1996023294A1 (en) * 1995-01-27 1996-08-01 Rieter Automotive (International) Ag μ/4 SOUND ABSORBER

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6021612A (en) * 1995-09-08 2000-02-08 C&D Technologies, Inc. Sound absorptive hollow core structural panel
US20060059801A1 (en) * 2004-09-15 2006-03-23 Quality Research Development & Consulting, Inc. Acoustically intelligent structures with resonators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156797A (en) * 1987-12-15 1989-06-20 Matsushita Electric Works Ltd Sound absorber
JPH06158751A (en) * 1992-11-25 1994-06-07 Matsushita Electric Ind Co Ltd Acoustic absorber
JPH07302087A (en) * 1994-05-02 1995-11-14 Yamaha Corp Sound absorbing structure body
WO1996023294A1 (en) * 1995-01-27 1996-08-01 Rieter Automotive (International) Ag μ/4 SOUND ABSORBER

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016136740A1 (en) * 2015-02-27 2017-04-27 ヤマハ株式会社 Acoustic structure

Also Published As

Publication number Publication date
KR101452662B1 (en) 2014-10-22
KR20130050357A (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5771973B2 (en) Acoustic structure
JP5326946B2 (en) Acoustic structure and acoustic chamber
JP3763682B2 (en) Speaker device
JP2815542B2 (en) Sound absorption mechanism using porous structure
JP5920418B2 (en) Acoustic structure
Jang et al. Lightweight soundproofing membrane acoustic metamaterial for broadband sound insulation
EP3869497B1 (en) Soundproof structural body
JP5958523B2 (en) Acoustic structure
WO2012081672A1 (en) Acoustic structure
EP3693956A1 (en) Soundproof structural body
Tang et al. Broadband ventilated meta-barrier based on the synergy of mode superposition and consecutive Fano resonances
JP7453748B2 (en) Louvers, double skin, noise reduction structure
JP4223438B2 (en) Porous soundproof structure
JP6275608B2 (en) Sound absorption structure and soundproof room
WO2019181614A1 (en) Soundproof cell and soundproof structure using same
KR960004924Y1 (en) Plate for absorbing noise
JPH08199701A (en) Sound-insulating wall unit and sound-insulating wall
JP4114463B2 (en) Sound absorbing structure and sound absorbing and insulating structure
JPH0724573Y2 (en) Sound absorbing splitter
JP2017008553A (en) Sound absorption structure and sound proof room
JP2023115604A (en) Structure and sound absorption material etc. including structure
JP2022141297A (en) Acoustic chamber
JPH04303897A (en) Sound insulating material
JP2018124020A (en) Opening for ventilation
JPH02310598A (en) Sound insulating panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137006388

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848503

Country of ref document: EP

Kind code of ref document: A1