WO2012081585A1 - Production method for optically active alcohol compound - Google Patents

Production method for optically active alcohol compound Download PDF

Info

Publication number
WO2012081585A1
WO2012081585A1 PCT/JP2011/078816 JP2011078816W WO2012081585A1 WO 2012081585 A1 WO2012081585 A1 WO 2012081585A1 JP 2011078816 W JP2011078816 W JP 2011078816W WO 2012081585 A1 WO2012081585 A1 WO 2012081585A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
unsubstituted
substituted
optically active
Prior art date
Application number
PCT/JP2011/078816
Other languages
French (fr)
Japanese (ja)
Inventor
真也 明石
井上 勉
毅 大熊
則義 新井
Original Assignee
国立大学法人北海道大学
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学, 日本曹達株式会社 filed Critical 国立大学法人北海道大学
Priority to JP2012548794A priority Critical patent/JP5616977B2/en
Publication of WO2012081585A1 publication Critical patent/WO2012081585A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/08Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon radicals, substituted by hetero atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/20Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms
    • C07D211/22Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/301,4-Oxazines; Hydrogenated 1,4-oxazines not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/10Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/12Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/06Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Definitions

  • the present invention relates to a method for producing an optically active alcohol compound.
  • this invention relates to the manufacturing method of the optically active alcohol compound including hydrogenating the carbonyl compound represented by a formula (I) diastereoselectively and enantioselectively.
  • Optically active alcohol derivatives having a heterocycle are known as pharmaceuticals and intermediates thereof.
  • esreboxetine registered trademark
  • formula (1) which is an antidepressant represented by formula (1)
  • a compound effective for attention deficit hyperactivity disorder represented by formula (2) etc.
  • Patent Document 2 formula (3)
  • Patent Document 3 A compound useful for pain disorder represented by (Patent Document 2), a compound having an aspartic protease inhibitory activity represented by Formula (4) (Patent Document 3), and the like are known.
  • R 2 represents a halogen atom
  • R 3 represents a C1-6 alkyl group, etc.
  • * represents an optically active carbon
  • R 4 represents an aminocarbonyloxy group
  • R 5 represents a C1-6 alkyl group
  • R 6 represents an aminocarbonyl group, etc.
  • * represents an optically active carbon.
  • Patent Document 4 a synthesis method by asymmetric dihydroxylation
  • Patent Documents 1, 5, 6, Patent Documents 2, 3, and 4 a synthesis method by asymmetric dihydroxylation
  • Patent Documents 1, 5, 6, Patent Documents 2, 3, and 4 a synthesis method using an optically active raw material
  • An object of the present invention is to provide a method for producing an optically active alcohol compound, comprising diastereoselectively and enantioselectively hydrogenating a carbonyl compound represented by the following formula (I).
  • the present invention includes the following. [1] comprising hydrogenating a carbonyl compound represented by formula (I) in the presence of a ruthenium compound represented by formula (II) and a base, formula (IIIa), formula (IIIb), A method for producing any of the optically active alcohol compounds represented by formula (IIIc) or formula (IIId).
  • R represents an unsubstituted or substituted C6-10 aryl group, an unsubstituted or substituted 5- to 8-membered heteroaryl group, or an unsubstituted or substituted vinyl group.
  • Het represents an unsubstituted or substituted 3- to 8-membered heterocycle. * Indicates that the carbon atom is an asymmetric carbon.
  • X and Y each independently represent a hydrogen atom, a hydroxyl group, a tetrahydroboric acid, a halogen atom, a C1-20 alkoxy group, or a C1-20 acyloxy group.
  • Px represents an optically active or racemic phosphine ligand.
  • n represents the number of Px and is 1 or 2.
  • A represents an optically active or racemic diamine ligand. However, both Px and A are not racemic.
  • A is a ligand represented by Formula (IIa), Formula (IIb), Formula (IIc), Formula (IId), or Formula (IIe), [1] or [2] The production method according to [2].
  • R 1 CH (NH 2 ) CH 2 (NR 2 R 3 ) (IIa) R 1 CH (NR 2 R 3 ) CH 2 (NH 2 ) (IIb) (H 2 N) HR 4 CB—CHR 4 (NH 2 ) (IIc) R 1 CH (NH 2 ) CR 5 R 5 (NH 2 ) (IId) R 1 CH (NH 2 ) R 1 CH (NH 2 ) (IIe) (In formula (IIa), formula (IIb), formula (IIc), formula (IId) and formula (IIe), R 1 is an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted C3-8 cycloalkyl group, an unsubstituted Or a substituted C7-20 aralkyl group, an unsubstituted or substituted C6-10 aryl group, or an unsubstituted or
  • R 2 , R 3 and R 5 are each independently a hydrogen atom, an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted A C3-8 cycloalkyl group having a group, or an unsubstituted or substituted C7-20 aralkyl group.
  • R 2 and R 3 may combine to form a ring. However, both R 2 and R 3 are not hydrogen atoms.
  • R 4 represents a hydrogen atom, an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted C3-8 cycloalkyl group, An unsubstituted or substituted C7-20 aralkyl group, an unsubstituted or substituted C6-10 aryl group, or an unsubstituted or substituted 3- to 8-membered heterocyclic group.
  • B represents an unsubstituted or substituted ethylene group, or an unsubstituted or substituted heterocyclic divalent group. When B is an ethylene group having a plurality of substituents, the plurality of substituents may be bonded to form a ring.
  • optically active alcohol compound of the present invention diastereoselective and enantioselective is possible regardless of whether the carbon atom marked with * in the carbonyl compound represented by the formula (I) is optically active or racemic. Therefore, any one of the optically active alcohol compounds represented by formula (IIIa), formula (IIIb), formula (IIIc) or formula (IIId) can be obtained with high selectivity.
  • the optically active alcohol compound represented by the formula (IIIa), the formula (IIIb), the formula (IIIc) or the formula (IIId) is a compound useful as a pharmaceutical and an intermediate thereof.
  • the method for producing an optically active alcohol compound of the present invention includes hydrogenating a carbonyl compound represented by the above formula (I) in the presence of a ruthenium compound represented by the above formula (II) and a base. It is a waste.
  • R represents an unsubstituted or substituted C6-10 aryl group, an unsubstituted or substituted 5- to 8-membered heteroaryl group, or an unsubstituted or substituted vinyl group. Indicates. Examples of the unsubstituted C6-10 aryl group in R include a phenyl group and a naphthyl group.
  • the “substituent” in the C6-10 aryl group having a substituent is not particularly limited, and examples thereof include a hydroxyl group; a thiol group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a cyano group; Group: formyl group; unsubstituted or substituted amino group such as amino group, methylamino group, benzylamino group, anilino group, dimethylamino group; methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group Group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group and other alkyl groups, preferably C1-6 alkyl groups; vinyl group, allyl group, 2-methoxyethenyl group and other alkenyl groups Al
  • Examples of the unsubstituted 5- to 8-membered heteroaryl group in R include thienyl, furyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, thiazolyl, isothiazolyl, 1,3,4 -Thiadiazolyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, pyridyl group, pyrimidyl group, pyridazyl group, pyrazyl group, 1,2,4-triazyl group and the like.
  • the “substituent” in the 5- to 8-membered heteroaryl group having a substituent is not particularly limited, and examples thereof include the same as those mentioned as the “substituent” in the aryl group having the substituent. be able to.
  • the “substituent” in the vinyl group having a substituent in R is not particularly limited, and examples thereof include the same as those mentioned as the “substituent” in the aryl group having the substituent.
  • Het represents an unsubstituted or substituted 3- to 8-membered heterocycle.
  • the unsubstituted 3- to 8-membered heterocycle in Het include an epoxy group, a tetrahydrofuranyl group, a tetrahydropyranyl group, a piperidinyl group, a morpholino group, a pyrrolidinyl group, a piperazinyl group, an oxazolinyl group, an imidazolinyl group, an oxazonidinyl group, and 1 , 2-pyranyl group, thiazinyl group, dioxanyl group, thiomorpholino group and the like.
  • the “substituent” in the 3- to 8-membered heterocycle having a substituent is not particularly limited, and examples thereof include the same as those mentioned as the “substituent” in the aryl group having the substituent. it can.
  • * indicates that the carbon atom is an asymmetric carbon, and the carbon atom may be either optically active or racemic.
  • X and Y each independently represent a hydrogen atom, a hydroxyl group, a tetrahydroboric acid, a halogen atom, a C1-20 alkoxy group, or a C1-20 acyloxy group.
  • a halogen atom in X and Y a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. can be mentioned, for example.
  • Examples of the C1-20 alkoxy group in X and Y include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group, an i-butoxy group, and a t-butoxy group. Can do.
  • Examples of the C1-20 acyloxy group in X and Y include an acetoxy group, a propionyloxy group, a pivaloyloxy group, a benzoyloxy group, a 2-chlorobenzoyloxy group, and a 4-methylbenzoyloxy group.
  • Px represents an optically active or racemic phosphine ligand.
  • the phosphine ligand is typically monodentate or bidentate.
  • Examples of the monodentate phosphine ligand include trimethylphosphine, triethylphosphine, tributylphosphine, triphenylphosphine, tricyclohexylphosphine, tri (p-tolyl) phosphine, diphenylmethylphosphine, dimethylphenylphosphine, diisopropylmethylphosphine, 1- [ 2- (diphenylphosphino) ferrocenyl] ethyl methyl ether, 2- (diphenylphosphino) -2′-methoxy-1,1′-binaphthyl and the like.
  • bidentate phosphine ligand examples include bisdiphenylphosphinomethane, bisdiphenylphosphinoethane, bisdiphenylphosphinopropane, unsubstituted or substituted 2,2′-bis- (diphenylphosphino)- 1,1′-binaphthyl (BINAP) and the like can be mentioned.
  • BINAP having a substituent examples include 2,2′-bis- (di-p-triphosphino) -1,1′-binaphthyl (Tol-BINAP), 2,2′-bis [bis (3,5 -Dimethylphenyl) phosphino] -1,1'-binaphthyl (Xylyl-BINAP) and the like.
  • Px an optically active phosphine ligand is preferable, and a bidentate phosphine ligand having axial asymmetry is more preferable.
  • n represents the number of Px and is 1 or 2.
  • A represents an optically active or racemic diamine ligand.
  • A is preferably an optically active diamine ligand.
  • both Px and A are not racemic.
  • the diamine ligand in A is not particularly limited as long as it can stably form a metal complex, but the above formula (IIa), the above formula (IIb), the above formula (IIc), the above A diamine ligand represented by the formula (IId) or the above formula (IIe) is preferred.
  • R 1 represents an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20.
  • Examples of the unsubstituted C1-20 alkyl group in R 1 include, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, Examples thereof include an n-pentyl group and an n-hexyl group.
  • the “substituent” in the C1-20 alkyl group having a substituent in R 1 is not particularly limited, but examples thereof include a hydroxyl group; a thiol group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom; Group; nitro group; formyl group; unsubstituted or substituted amino group such as amino group, methylamino group, benzylamino group, anilino group and dimethylamino group; alkenyl group such as vinyl group, allyl group and 2-methoxyethenyl group Alkynyl groups such as ethynyl group, 1-propynyl group, 2-phenylethynyl group, propargyl group; methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, s-butoxy group, t-butoxy group, etc
  • Alkoxy groups preferably C1-6 alkoxy groups; alkeni such as vinyloxy group and allyloxy group Oxy group; alkynyloxy group such as ethynyloxy group and propargyloxy group; aryloxy group such as phenoxy group and benzyloxy group; heteroaryloxy group such as 2-pyridyloxy; haloalkoxy group such as fluoromethoxy group and dibromomethoxy group Group, preferably C1-6 haloalkoxy group; alkylthiocarbonyl group such as methylthiocarbonyl group, ethylthiocarbonyl group, etc., preferably C1-6 alkylthiocarbonyl group; alkylsulfonyl such as methylsulfonylamino group, t-butylsulfonylamino group An amino group, preferably a C1-6 alkylsulfonylamino group; an arylsulfonylamino group such as
  • alkoxycarbonyl group such as methoxycarbonyl group and ethoxycarbonyl group, preferably C1-6 alkoxycarbonyl group
  • aryl group such as phenyl group, 1-naphthyl group and 2-naphthyl group, preferably C6-12 Aryl group
  • unsaturated 5-membered ring group such as furanyl group, thiophenyl group, pyrrolyl group, oxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, imidazolyl group, pyrazolyl group; and the like, pyridyl group, pyridazinyl group, pyrazinyl group, etc.
  • Saturated hetero 6-membered ring Groups saturated heterocyclic groups such as tetrahydrofuranyl and piperidinyl groups; N unsubstituted or N-substituted aminocarbonyl groups such as aminocarbonyl groups and dimethylaminocarbonyl groups; alkylthio groups such as methylthio groups, ethylthio groups and t-butylthio groups; Groups, alkenylthio groups such as allylthio groups; alkynylthio groups such as ethynylthio groups and propargylthio groups; arylthio groups such as phenylthio groups and 4-chlorophenylthio groups; heteroarylthio groups such as 2-pyridylthio groups; benzylthio groups and phenethyl groups Aralkylthio group such as thio group; Alkylsulfonyl group such as methylsulfonyl group, eth
  • Examples of the unsubstituted C2-20 alkenyl group for R 1 include a vinyl group, an allyl group, and a 2-methoxyethenyl group.
  • the “substituent” in the C2-20 alkenyl group having a substituent is not particularly limited, but examples thereof include the same as those mentioned as the “substituent” in the C1-20 alkyl group having the substituent. be able to.
  • Examples of the unsubstituted C3-8 cycloalkyl group in R 1 include a cyclopropyl group, a cyclobutyl group, and a cyclopentyl group.
  • the “substituent” in the C3-8 cycloalkyl group having a substituent is not particularly limited.
  • the same “substituent” as the “substituent” in the C1-20 alkyl group having the substituent may be used. Can be mentioned.
  • Examples of the unsubstituted C7-20 aralkyl group in R 1 include a benzyl group and a phenethyl group.
  • the “substituent” in the C7-20 aralkyl group having a substituent is not particularly limited, and examples thereof include the same as those mentioned as the substituent in the C1-20 alkyl group having the substituent. it can.
  • the unsubstituted or substituted C6-10 aryl group of R 1 and the unsubstituted or substituted 3- to 8-membered heterocyclic group are not particularly limited, and examples thereof include unsubstituted or substituted R in R A C6-10 aryl group having a group, an unsubstituted or substituted 5- to 8-membered heteroaryl ring in R, and an unsubstituted or substituted 3- to 8-membered heterocyclic group in Het
  • R 1 is preferably an unsubstituted or substituted C 6-10 aryl group.
  • R 2 , R 3 and R 5 are each independently a hydrogen atom, an unsubstituted or substituted C1-20 alkyl group, an unsubstituted group Or a C2-20 alkenyl group having a substituent, a C3-8 cycloalkyl group having an unsubstituted or substituted group, or a C7-20 aralkyl group having an unsubstituted or substituted group. Note that R 2 and R 3 are not both hydrogen atoms.
  • an unsubstituted or substituted C1-20 alkyl group an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted C3-8 cyclo
  • the alkyl group or the unsubstituted or substituted C7-20 aralkyl group is not particularly limited.
  • R 1 an unsubstituted or substituted C1-20 alkyl group, unsubstituted or substituted
  • the C2-20 alkenyl group having a substituent the C3-8 cycloalkyl group having an unsubstituted or substituted group, or the C7-20 aralkyl group having an unsubstituted or substituted group
  • R 2 , R 3 and R 5 an unsubstituted or substituted C1-20 alkyl group is preferable, and an unsubstituted or substituted C1-6 alkyl group is particularly preferable.
  • R 2 and R 3 may combine to form a ring. Specific examples of the ring formed by combining R 2 and R 3 include, for example, a pyrrolidine ring, a piperidine ring, and a morpholine ring.
  • R 4 represents a hydrogen atom, an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted C3 -8 cycloalkyl group, unsubstituted or substituted C7-20 aralkyl group, unsubstituted or substituted C6-10 aryl group, or unsubstituted or substituted 3- to 8-membered heterocyclic group Indicates.
  • a C7-20 aralkyl group having a substituent, an unsubstituted or substituted C6-10 aryl group, or an unsubstituted or substituted 3-8 membered heterocyclic group is not particularly limited.
  • an unsubstituted or substituted C1-20 alkyl group an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted C3-8 cycloalkyl group, A substituted or substituted C7-20 aralkyl group, an unsubstituted or substituted C6-10 aryl group, or Examples thereof include the same ones as mentioned as specific examples of the substituted or substituted 3- to 8-membered heterocyclic group.
  • R 4 an unsubstituted or substituted C1-20 alkyl group is preferable, and an unsubstituted or substituted C1-6 alkyl group is particularly preferable.
  • B represents an unsubstituted or substituted ethylene group, or an unsubstituted or substituted heterocyclic divalent group.
  • the “substituent” in the ethylene group having a substituent in B is not particularly limited. For example, the same as those mentioned as the “substituent” in the C6-10 aryl group having a substituent in R above Can be mentioned.
  • B is an ethylene group having a plurality of substituents, the plurality of substituents may be bonded to form a ring.
  • Examples of the ring formed by combining a plurality of substituents include hydrocarbon rings such as cyclobutane ring, cyclopentane ring and cyclohexane ring; ether bonds such as tetrahydrofuran ring, 1,3-dioxolane ring and morpholine ring.
  • a saturated ring having a nitrogen atom such as a pyrrolidine ring, a piperidine ring or a piperazine ring; an aromatic ring such as a benzene ring or a pyridine ring;
  • base examples of the base used in the hydrogenation reaction of the present invention include triethylamine, diisopropylethylamine, pyridine, 1,4-diazabicyclo [2.2.2] octane (DABCO), and 1,8-diazabicyclo [5.4.
  • Organic bases such as undec-7-ene (DBU); metal alkoxides such as sodium methoxide, sodium ethoxide, potassium t-butoxide, magnesium methoxide, magnesium ethoxide; organolithium compounds such as n-butyllithium Lithium amides such as lithium diisopropylamide and lithium bistrimethylsilylamide; Alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; Alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide Alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; alkaline earth metal carbonates such as magnesium carbonate and calcium carbonate; sodium hydride and calcium hydride And metal hydrides thereof.
  • DBU undec-7-ene
  • metal alkoxides such as sodium methoxide, sodium ethoxide, potassium t-butoxide, magnesium methoxide
  • Hydrogenation in the method for producing an optically active alcohol compound of the present invention is not particularly limited by the method.
  • a carbonyl compound represented by formula (I) serving as a reaction substrate, a ruthenium compound represented by formula (II) serving as a catalyst, and a base are charged into a reactor, and then hydrogen gas at a predetermined pressure or a predetermined amount of Hydrogenation can be carried out by supplying a hydrogen donor.
  • the ruthenium compound represented by the formula (II) is prepared according to the method described in Japanese Patent Application Laid-Open No. 2005-068113, Japanese Patent Application Laid-Open No. 2003-104993, and the like. Or may be prepared and used in a hydrogenation reaction system.
  • the amount of the ruthenium compound represented by the formula (II) in the hydrogenation reaction system varies depending on the size of the reaction vessel and the activity of the ruthenium compound, but is preferably 1/50 to the carbonyl compound as the reaction substrate. It is 1 / 2,000,000 times mole, more preferably 1/500 to 1 / 500,000 times mole.
  • the amount of the base used is preferably 2 to 500,000 times mol, more preferably 2 to 5,000 times mol, with respect to the ruthenium compound represented by the formula (II).
  • the hydrogenation reaction can be carried out without solvent or in a solvent.
  • the solvent used in the hydrogenation reaction is not particularly limited as long as it is inert to the hydrogenation reaction and can dissolve the carbonyl compound and the ruthenium compound.
  • Specific examples of the solvent used include aromatic hydrocarbon solvents such as toluene and xylene; aliphatic hydrocarbon solvents such as pentane and hexane; halogen-containing hydrocarbon solvents such as methylene chloride; diethyl ether and tetrahydrofuran (THF) Ether solvents such as methanol, ethanol and benzyl alcohol; organic solvents containing heteroatoms such as acetonitrile, dimethylformamide (DMF), N-methylpyrrolidone and dimethyl sulfoxide (DMSO); it can.
  • aromatic hydrocarbon solvents such as toluene and xylene
  • aliphatic hydrocarbon solvents such as pentane and hexane
  • alcohol solvents are preferable as the solvent.
  • the amount of the solvent used depends on the solubility of the carbonyl compound represented by the formula (I) and is preferably 0.1 to 10,000 with respect to 100 parts by weight of the carbonyl compound represented by the formula (I). Part by weight, more preferably 20 to 1,000 parts by weight.
  • the pressure of the hydrogen gas is preferably 1 to 200 atm, more preferably 3 to 50 atm.
  • a hydrogen donor for example, a hydrogen storage alloy or diimide can be used, and the supply amount of the hydrogen donor is based on the carbonyl compound represented by the formula (I):
  • the equivalent is preferably 1 to 100 times equivalent.
  • the temperature in the hydrogenation reaction is preferably ⁇ 50 ° C. to + 100 ° C., more preferably + 25 ° C. to + 40 ° C.
  • the reaction time depends on the reaction conditions such as the concentration of the reaction substrate, temperature and pressure, the size of the reaction vessel, etc., but is preferably several minutes to several days.
  • the reaction format may be a batch type or a continuous type.
  • the optically active alcohol compounds represented by the formulas (IIIa) to (IIId), which are target products are obtained by isolation and purification by methods such as distillation, recrystallization and silica gel column chromatography. be able to.
  • the structure of the target product can be determined by known analytical means such as 1 H-NMR, optical rotation measurement, liquid chromatography, gas chromatography and the like.
  • the crude product was concentrated and then purified by silica gel column chromatography to obtain 0.283 g (0.96 mmol) of optically active N-benzoyl-morpholin-2-yl-phenyl-methanol in a 96% yield.
  • Example 2 Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine RuCl 2 ⁇ (S) -binap ⁇ ⁇ (R) -dmapen ⁇ is converted to RuCl 2 ⁇ (S)-
  • Example 3 Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine RuCl 2 ⁇ (S) -binap ⁇ ⁇ (R) -dmapen ⁇ is converted to RuCl 2 ⁇ (S)-
  • Example 4 Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine RuCl 2 ⁇ (S) -binap ⁇ ⁇ (R) -dmapen ⁇ is converted to RuCl 2 ⁇ (S)-
  • Example 5 Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine 4.45 g (15 mmol, racemate) of N-benzoyl-morpholin-2-yl-phenyl-methanone
  • the amount of isopropanol was 10.2 ml
  • the amount of potassium t-butoxide was 4.8 ml (0.48 mmol) as a 0.1 M isopropanol solution
  • This enantiomer was analyzed and found to be N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine.
  • Example 8 Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine 4.45 g (15 mmol, racemate) of N-benzoyl-morpholin-2-yl-phenyl-methanone
  • Example 9 Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine RuCl 2 ⁇ (S) -binap ⁇ ⁇ (R) -dmapen ⁇ is converted to RuCl 2 ⁇ (S)-
  • Example 10 Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine RuCl 2 ⁇ (S) -binap ⁇ ⁇ (R) -dmapen ⁇ is converted to RuCl 2 ⁇ (S)-
  • Example 11 Preparation of N-benzoyl- (2R) -2-[(S) -hydroxy-phenyl-methyl] -morpholine RuCl 2 ⁇ (S) -binap ⁇ ⁇ (R) -dmapen ⁇ is converted to RuCl 2 ⁇ (S)-
  • the crude product was concentrated and purified by silica gel column chromatography to obtain 8.77 g (30.0 mmol) of optically active Nt-butoxycarbonyl-piperidin-3-yl-phenyl-methanol in 100% yield. .
  • the enantiomer was analyzed and found to be Nt-butoxycarbonyl (3S) -3-[(S) -hydroxy-phenyl-methyl] -piperidine.
  • Example 13 Preparation of Nt-butoxycarbonyl (3S) -3-[(S) -hydroxy-phenyl-methyl] -piperidine
  • the amount of Nt-butoxycarbonyl-piperidin-3-yl-phenyl-methanone was 11.57 g ( 40 mmol, racemate), the amount of isopropanol to 38.8 ml, the amount of potassium t-butoxide to 1.2 ml (1.2 mmol) as a 1.0 M isopropanol solution, RuCl 2 ⁇ (S) -binap ⁇ ⁇
  • the crude product thus obtained was analyzed by HPLC (same conditions as in Example 12, retention time of diastereomer 12.2 minutes, 14.8 minutes). The production ratio of diastereomer was> 99: 1. .
  • the crude product was concentrated and purified by silica gel column chromatography, and 4.81 g (14.9 mmol) of optically active Nt-butoxycarbonyl-piperidin-3-yl-3-chloro-phenylmethanol was obtained in a yield of 99%. Obtained.
  • the production ratio of diastereomers was> 99: 1.
  • the crude product was concentrated and purified by silica gel column chromatography. 1.12 g (3.8 mmol) of optically active Nt-butoxycarbonyl-piperidin-3-yl-2-thienyl-methanol was obtained in a yield of 95%. Obtained.
  • this enantiomer was found to be Nt-butoxycarbonyl (3S) -3-[(S) -hydroxy- (2-thienyl) -methyl] -piperidine.
  • Example 16 Preparation of Nt-butoxycarbonyl (3S) -3-[(S) -hydroxy- (2-thienyl) -methyl] -piperidine RuCl 2 ⁇ (S) -binap ⁇ ⁇ (R) -dmapen ⁇ is replaced by RuCl 2
  • the obtained crude product was analyzed by HPLC (same conditions as in Example 1, retention time of diastereomer 13.0 minutes, 15.3 minutes). The production ratio of diastereomer was> 99: 1. It was.
  • the crude product was concentrated and purified by silica gel column chromatography. As a result, 0.888 g (4.0 mmol) of optically active 1-phenyl-hexahydro-oxazolo- [3,4-a] pyridin-3-one was 100%. Obtained in yield.
  • the production ratio of diastereomers was> 99: 1.
  • the crude product was concentrated and purified by silica gel column chromatography to obtain 0.834 g (2.85 mmol) of optically active N-benzoyl-piperidin-2-yl-phenyl-methanol in a yield of 95%.
  • the crude product was concentrated and purified by silica gel column chromatography to obtain 1.10 g (39 mmol) of optically active N-benzoyl-piperidin-2-yl-phenyl-methanol in a yield of 98%.
  • the obtained crude product was subjected to gas chromatography ( ⁇ -DEX 120 (30 m ⁇ 0.25 ⁇ m), 120 ° C., 20 minutes, 5 ° C./minute, 150 ° C., 60 minutes, carrier gas: helium (100 kPa), detector. : FID, retention times of 4 isomers 54.1 min, 55.1 min, 56.6 min, 58.3 min) The production ratio of diastereomers was 95: 5.
  • the crude product was concentrated and purified by silica gel column chromatography. As a result, 0.491 mg (2.76 mmol) of optically active phenyl- (tetrahydrofuran-2-yl) -methanol was obtained in a yield of 92%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Furan Compounds (AREA)
  • Hydrogenated Pyridines (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyrrole Compounds (AREA)

Abstract

The present invention provides a method for diastereo-selectively and enantioselectively producing an optically active alcohol compound indicated in formula (IIIa), etc., that includes hydrogenation of a carbonyl compound indicated in formula (I) in the presence of a ruthenium compound indicated in formula (II) and a base. (In formula (I) R indicates a C6-C10 aryl group with an unsubstituted or substituted group. Het indicates a 3- to 8-member heterocycle with an unsubstituted or substituted group.) (In formula (II), X and Y each independently indicate a hydrogen group, a tetrahydro borate, etc. Px indicates an optically active or racemate phosphine ligand. n indicates the number of Px and is 1 or 2. A indicates an optically active or racemate dyamine ligand. However, Px and A cannot both be a racemate.) (In formula (IIIa) R and Het have the same meaning as R and Het in formula (I).)

Description

光学活性アルコール化合物の製造方法Method for producing optically active alcohol compound
 本発明は、光学活性アルコール化合物の製造方法に関する。より詳細に、本発明は、式(I)で表わされるカルボニル化合物をジアステレオ選択的且つエナンチオ選択的に水素化することを含む光学活性アルコール化合物の製造方法に関する。 The present invention relates to a method for producing an optically active alcohol compound. In more detail, this invention relates to the manufacturing method of the optically active alcohol compound including hydrogenating the carbonyl compound represented by a formula (I) diastereoselectively and enantioselectively.
 ヘテロ環を有する光学活性アルコール誘導体は、医薬品およびそれの中間体として知られている。
 例えば、式(1)で表される抗うつ薬であるエスレボキセチン(登録商標)、式(2)で表される注意欠陥多動性障害などに有効な化合物(特許文献1)、式(3)で表される疼痛性障害に有用な化合物(特許文献2)、および、式(4)で表されるアスパラギン酸プロテアーゼ抑制活性を有する化合物(特許文献3)などが知られている。
Optically active alcohol derivatives having a heterocycle are known as pharmaceuticals and intermediates thereof.
For example, esreboxetine (registered trademark) which is an antidepressant represented by formula (1), a compound effective for attention deficit hyperactivity disorder represented by formula (2), etc. (Patent Document 1), formula (3) A compound useful for pain disorder represented by (Patent Document 2), a compound having an aspartic protease inhibitory activity represented by Formula (4) (Patent Document 3), and the like are known.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(式(2)中、Xは硫黄原子または酸素原子を表わし、R1はC1-4アルキル基などを表わし、*は光学活性な炭素であることを表す。)
Figure JPOXMLDOC01-appb-C000008
(In formula (2), X represents a sulfur atom or an oxygen atom, R 1 represents a C1-4 alkyl group, etc., and * represents an optically active carbon.)
Figure JPOXMLDOC01-appb-C000009
(式(3)中、R2はハロゲン原子などを表わし、R3はC1~6アルキル基などを表わし、*は光学活性な炭素であることを表す。)
 
Figure JPOXMLDOC01-appb-C000009
(In Formula (3), R 2 represents a halogen atom, R 3 represents a C1-6 alkyl group, etc., and * represents an optically active carbon.)
Figure JPOXMLDOC01-appb-C000010
(式(4)中、R4はアミノカルボニルオキシ基などを表わし、R5はC1~6アルキル基などを表わし、R6はアミノカルボニル基などを表わし、*は光学活性な炭素であることを表す。)
Figure JPOXMLDOC01-appb-C000010
(In formula (4), R 4 represents an aminocarbonyloxy group, R 5 represents a C1-6 alkyl group, R 6 represents an aminocarbonyl group, etc., and * represents an optically active carbon. To express.)
 こうしたヘテロ環を有する光学活性アルコール化合物の合成法として、不斉ジヒドロキシ化による合成法(特許文献4、非特許文献1)や、光学活性な原料を用いる方法(特許文献1、5、6、非特許文献2、3、4)が知られているが、これらの合成法は、工程が長かったり、原料が光学活性な化合物に限定されるという問題がある。 As a synthesis method of such an optically active alcohol compound having a heterocycle, a synthesis method by asymmetric dihydroxylation (Patent Document 4, Non-Patent Document 1) or a method using an optically active raw material (Patent Documents 1, 5, 6, Patent Documents 2, 3, and 4) are known. However, these synthesis methods have a problem that a process is long and a raw material is limited to an optically active compound.
米国特許出願公開第2006/0258654号明細書US Patent Application Publication No. 2006/0258654 国際公開第2010/011811号International Publication No. 2010/011811 国際公開第2007/070201号International Publication No. 2007/070201 国際公開第2007/005935号International Publication No. 2007/005935 国際公開第2008/036247号International Publication No. 2008/036247 米国特許出願公開第2010/0010228号明細書US Patent Application Publication No. 2010/0010228
 本発明は、下記式(I)で表わされるカルボニル化合物をジアステレオ選択的且つエナンチオ選択的に水素化することを含む光学活性アルコール化合物の製造方法を提供することが課題である。 An object of the present invention is to provide a method for producing an optically active alcohol compound, comprising diastereoselectively and enantioselectively hydrogenating a carbonyl compound represented by the following formula (I).
 本発明者らは、上記課題を解決すべく鋭意検討した結果、下記式(I)で表されるカルボニル化合物を、光学活性なルテニウム触媒を用いて速度論分割を伴う不斉水素化反応で還元することにより、ジアステレオ選択的かつエナンチオ選択的に光学活性アルコール化合物を製造できることを見出した。本発明は、この知見に基づいてさらに検討を重ねた結果、完成するに至ったものである。 As a result of intensive studies to solve the above problems, the present inventors reduced a carbonyl compound represented by the following formula (I) by an asymmetric hydrogenation reaction involving kinetic resolution using an optically active ruthenium catalyst. It was found that an optically active alcohol compound can be produced diastereoselectively and enantioselectively. The present invention has been completed as a result of further studies based on this finding.
 すなわち、本発明は、以下のものを含む。
〔1〕 式(I)で表されるカルボニル化合物を、式(II)で表されるルテニウム化合物と塩基との存在下に、水素化することを含む、式(IIIa)、式(IIIb)、式(IIIc)または式(IIId)で表される光学活性アルコール化合物のいずれかを製造する方法。
That is, the present invention includes the following.
[1] comprising hydrogenating a carbonyl compound represented by formula (I) in the presence of a ruthenium compound represented by formula (II) and a base, formula (IIIa), formula (IIIb), A method for producing any of the optically active alcohol compounds represented by formula (IIIc) or formula (IIId).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式(I)中、
 Rは無置換の若しくは置換基を有するC6~10アリール基、無置換の若しくは置換基を有する5~8員環ヘテロアリール基、または無置換の若しくは置換基を有するビニル基を示す。
 Hetは無置換の若しくは置換基を有する3~8員ヘテロ環を示す。
 *は該炭素原子が不斉炭素であることを示す。)
(In the formula (I),
R represents an unsubstituted or substituted C6-10 aryl group, an unsubstituted or substituted 5- to 8-membered heteroaryl group, or an unsubstituted or substituted vinyl group.
Het represents an unsubstituted or substituted 3- to 8-membered heterocycle.
* Indicates that the carbon atom is an asymmetric carbon. )
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式(II)中、XおよびYは、それぞれ独立に、水素原子、水酸基、テトラヒドロホウ酸、ハロゲン原子、C1~20アルコキシ基、またはC1~20アシルオキシ基を示す。
 Pxは光学活性若しくはラセミ体のホスフィン配位子を示す。
 nはPxの数を示し且つ1または2である。
 Aは光学活性若しくはラセミ体のジアミン配位子を示す。
 ただし、PxとAとの両方がラセミ体であることはない。)
(In the formula (II), X and Y each independently represent a hydrogen atom, a hydroxyl group, a tetrahydroboric acid, a halogen atom, a C1-20 alkoxy group, or a C1-20 acyloxy group.
Px represents an optically active or racemic phosphine ligand.
n represents the number of Px and is 1 or 2.
A represents an optically active or racemic diamine ligand.
However, both Px and A are not racemic. )
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式(IIIa)、式(IIIb)、式(IIIc)および式(IIId)中、RおよびHetは式(I)中のそれらと同じ意味を示す。) (In formula (IIIa), formula (IIIb), formula (IIIc) and formula (IIId), R and Het have the same meaning as in formula (I).)
〔2〕 式(I)中の、Hetが5~7員ヘテロ環である、〔1〕に記載の製造方法。
〔3〕 式(II)中、Aが、式(IIa)、式(IIb)、式(IIc)、式(IId)または式(IIe)で表される配位子である、〔1〕または〔2〕に記載の製造方法。
[2] The production method according to [1], wherein Het in the formula (I) is a 5- to 7-membered heterocycle.
[3] In Formula (II), A is a ligand represented by Formula (IIa), Formula (IIb), Formula (IIc), Formula (IId), or Formula (IIe), [1] or [2] The production method according to [2].
   R1CH(NH2)CH2(NR23)       (IIa)
   R1CH(NR23)CH2(NH2)       (IIb)
   (H2N)HR4C-B-CHR4(NH2)     (IIc)
   R1CH(NH2)CR55(NH2)       (IId)
   R1CH(NH2)R1CH(NH2)        (IIe)
 
(式(IIa)、式(IIb)、式(IIc)、式(IId)および式(IIe)中、
 R1は、無置換の若しくは置換基を有するC1~20アルキル基、無置換の若しくは置換基を有するC2~20アルケニル基、無置換の若しくは置換基を有するC3~8シクロアルキル基、無置換の若しくは置換基を有するC7~20アラルキル基、無置換の若しくは置換基を有するC6~10アリール基、または無置換の若しくは置換基を有する3~8員ヘテロ環基を示す。
 R2、R3およびR5は、それぞれ独立に、水素原子、無置換の若しくは置換基を有するC1~20アルキル基、無置換の若しくは置換基を有するC2~20アルケニル基、無置換の若しくは置換基を有するC3~8シクロアルキル基、または無置換の若しくは置換基を有するC7~20アラルキル基を示す。R2とR3は結合して環を形成してもよい。ただし、R2とR3との両方が水素原子であることはない。
 R4は、水素原子、無置換の若しくは置換基を有するC1~20アルキル基、無置換の若しくは置換基を有するC2~20アルケニル基、無置換の若しくは置換基を有するC3~8シクロアルキル基、無置換の若しくは置換基を有するC7~20アラルキル基、無置換の若しくは置換基を有するC6~10アリール基、または無置換の若しくは置換基を有する3~8員ヘテロ環基を示す。
 Bは、無置換の若しくは置換基を有するエチレン基、または無置換の若しくは置換基を有するヘテロ環の2価基を示す。Bが複数の置換基を有するエチレン基の場合、当該複数の置換基同士が結合して環を形成してもよい。)
R 1 CH (NH 2 ) CH 2 (NR 2 R 3 ) (IIa)
R 1 CH (NR 2 R 3 ) CH 2 (NH 2 ) (IIb)
(H 2 N) HR 4 CB—CHR 4 (NH 2 ) (IIc)
R 1 CH (NH 2 ) CR 5 R 5 (NH 2 ) (IId)
R 1 CH (NH 2 ) R 1 CH (NH 2 ) (IIe)

(In formula (IIa), formula (IIb), formula (IIc), formula (IId) and formula (IIe),
R 1 is an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted C3-8 cycloalkyl group, an unsubstituted Or a substituted C7-20 aralkyl group, an unsubstituted or substituted C6-10 aryl group, or an unsubstituted or substituted 3- to 8-membered heterocyclic group.
R 2 , R 3 and R 5 are each independently a hydrogen atom, an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted A C3-8 cycloalkyl group having a group, or an unsubstituted or substituted C7-20 aralkyl group. R 2 and R 3 may combine to form a ring. However, both R 2 and R 3 are not hydrogen atoms.
R 4 represents a hydrogen atom, an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted C3-8 cycloalkyl group, An unsubstituted or substituted C7-20 aralkyl group, an unsubstituted or substituted C6-10 aryl group, or an unsubstituted or substituted 3- to 8-membered heterocyclic group.
B represents an unsubstituted or substituted ethylene group, or an unsubstituted or substituted heterocyclic divalent group. When B is an ethylene group having a plurality of substituents, the plurality of substituents may be bonded to form a ring. )
〔4〕 式(II)中、Pxが光学活性なホスフィン配位子である、〔1〕~〔3〕いずれか1項に記載の製造方法。
〔5〕 式(II)中、Pxが軸不斉を有する2座のホスフィン配位子である、〔1〕~〔4〕いずれか1項に記載の製造方法。
〔6〕 式(II)中、Aが光学活性なジアミン配位子である、〔1〕~〔5〕のいずれか1項に記載の製造方法。
[4] The production method according to any one of [1] to [3], wherein Px in formula (II) is an optically active phosphine ligand.
[5] The production method according to any one of [1] to [4], wherein in formula (II), Px is a bidentate phosphine ligand having axial asymmetry.
[6] The production method according to any one of [1] to [5], wherein in formula (II), A is an optically active diamine ligand.
 本発明の光学活性アルコール化合物の製造方法によると、式(I)で表わされるカルボニル化合物中の*のついた炭素原子が光学活性およびラセミ体のいずれであってもジアステレオ選択的且つエナンチオ選択的に水素化できるので、式(IIIa)、式(IIIb)、式(IIIc)または式(IIId)で表される光学活性アルコール化合物のいずれか一つを高選択率で得ることができる。式(IIIa)、式(IIIb)、式(IIIc)または式(IIId)で表される光学活性アルコール化合物は、医薬品およびそれの中間体として有用な化合物である。 According to the method for producing an optically active alcohol compound of the present invention, diastereoselective and enantioselective is possible regardless of whether the carbon atom marked with * in the carbonyl compound represented by the formula (I) is optically active or racemic. Therefore, any one of the optically active alcohol compounds represented by formula (IIIa), formula (IIIb), formula (IIIc) or formula (IIId) can be obtained with high selectivity. The optically active alcohol compound represented by the formula (IIIa), the formula (IIIb), the formula (IIIc) or the formula (IIId) is a compound useful as a pharmaceutical and an intermediate thereof.
 本発明の光学活性アルコール化合物の製造方法は、上記式(I)で表されるカルボニル化合物を、上記式(II)で表されるルテニウム化合物と塩基との存在下に、水素化することを含むものである。 The method for producing an optically active alcohol compound of the present invention includes hydrogenating a carbonyl compound represented by the above formula (I) in the presence of a ruthenium compound represented by the above formula (II) and a base. It is a waste.
〔式(I)のカルボニル化合物〕
 式(I)中、Rは無置換の若しくは置換基を有するC6~10アリール基、無置換の若しくは置換基を有する5~8員環ヘテロアリール基、または無置換の若しくは置換基を有するビニル基を示す。
 Rにおける無置換のC6~10アリール基としては、例えば、フェニル基、ナフチル基などを挙げることができる。
[Carbonyl Compound of Formula (I)]
In the formula (I), R represents an unsubstituted or substituted C6-10 aryl group, an unsubstituted or substituted 5- to 8-membered heteroaryl group, or an unsubstituted or substituted vinyl group. Indicates.
Examples of the unsubstituted C6-10 aryl group in R include a phenyl group and a naphthyl group.
 置換基を有するC6~10アリール基中の「置換基」としては、特に制限されないが、例えば、水酸基;チオール基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;シアノ基;ニトロ基;ホルミル基;アミノ基、メチルアミノ基、ベンジルアミノ基、アニリノ基、ジメチルアミノ基などの無置換若しくは置換アミノ基;メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基などのアルキル基、好ましくはC1~6アルキル基;ビニル基、アリル基、2-メトキシエテニル基などのアルケニル基;エチニル基、1-プロピニル基、2-フェニルエチニル基、プロパルギル基などのアルキニル基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、t-ブトキシ基などのアルコキシ基、好ましくはC1~6アルコキシ基;ビニルオキシ基、アリルオキシ基などのアルケニルオキシ基;エチニルオキシ基、プロパルギルオキシ基などのアルキニルオキシ基;フェノキシ基、ベンジルオキシ基などのアリールオキシ基;2-ピリジルオキシなどのヘテロアリールオキシ基;クロロメチル基、トリフルオロメチル基などのハロアルキル基、好ましくはC1~6ハロアルキル基;フルオロメトキシ基、ジブロモメトキシ基などのハロアルコキシ基、好ましくはC1~6ハロアルコキシ基;メチルチオカルボニル基、エチルチオカルボニル基、などのアルキルチオカルボニル基、好ましくはC1~6アルキルチオカルボニル基;メチルスルホニルアミノ基、t-ブチルスルホニルアミノ基などのアルキルスルホニルアミノ基(C1~6アルキルスルホニルアミノ基が好ましい);フェニルスルホニルアミノ基などのアリールスルホニルアミノ基、好ましくはC6-12アリールスルホニルアミノ基;ピペラジニルスルホニルアミノ基などのヘテロアリールスルホニルアミノ基、好ましくはC3-12へテロアリールスルホニルアミノ基;メチルカルボニルアミノ基、エチルカルボニルアミノ基などのアルキルカルボニルアミノ基、好ましくはC1~6アルキルカルボニルアミノ基;メトキシカルボニルアミノ基、エトキシカルボニルアミノ基などのアルコキシカルボニルアミノ基、好ましくはC1~6アルコキシカルボニルアミノ基;フルオロメチルスルホニルアミノ基、ジクロロメチルスルホニルアミノ基などのハロアルキルスルホニルアミノ基、好ましくはC1~6ハロアルキルスルホニルアミノ基;ビス(メチルスルホニル)アミノ基などのビス(アルキルスルホニル)アミノ基、好ましくはビス(C1~6アルキルスルホニル)アミノ基;ビス(フルオロメチルスルホニル)アミノ基などのビス(ハロアルキルスルホニル)アミノ基、好ましくはビス(C1~6ハロアルキルスルホニル)アミノ基;ヒドラジノ基、N’-フェニルヒドラジノ基、N’-メトキシカルボニヒドラジノ基などの無置換もしくは置換ヒドラジノ基;メトキシカルボニル基、エトキシカルボニル基などのアルコキシカルボニル基、好ましくはC1~6アルコキシカルボニル基;フェニル基、1-ナフチル基、2-ナフチル基などのアリール基、好ましくはC6~12アリール基;ベンジル基、フェネチル基などのアラルキル基、好ましくはC7~20アラルキル基;フラニル基、チオフェニル基、ピロリル基、オキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、イミダゾリル基、ピラゾリル基などの不飽和複素5員環基;ピリジル基、ピリダジニル基、ピラジニル基などの不飽和複素6員環基;テトラヒドロフラニル、ピペリジニル基などの飽和複素環基;アミノカルボニル基、ジメチルアミノカルボニル基などのN無置換もしくはN置換アミノカルボニル基;メチルチオ基、エチルチオ基、t-ブチルチオ基などのアルキルチオ基;ビニルチオ基、アリルチオ基などのアルケニルチオ基;エチニルチオ基、プロパルギルチオ基などのアルキニルチオ基;フェニルチオ基、4-クロロフェニルチオ基などのアリールチオ基;2-ピリジルチオ基などのヘテロアリールチオ基;ベンジルチオ基、フェネチルチオ基などのアラルキルチオ基;メチルスルホニル基、エチルスルホニル基、t-ブチルスルホニル基などのアルキルスルホニル基;アリルスルホニル基などのアルケニルスルホニル基;プロパルギルスルホニル基などのアルキニルスルホニル基;フェニルスルホニル基などのアリールスルホニル基;2-ピリジルスルホニル基、3-ピリジルスルホニル基などのヘテロアリールスルホニル基;ベンジルスルホニル基などのアラルキルスルホニル基;などを挙げることができる。 The “substituent” in the C6-10 aryl group having a substituent is not particularly limited, and examples thereof include a hydroxyl group; a thiol group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a cyano group; Group: formyl group; unsubstituted or substituted amino group such as amino group, methylamino group, benzylamino group, anilino group, dimethylamino group; methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group Group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group and other alkyl groups, preferably C1-6 alkyl groups; vinyl group, allyl group, 2-methoxyethenyl group and other alkenyl groups Alkynyl groups such as ethynyl group, 1-propynyl group, 2-phenylethynyl group, propargyl group; methoxy group, ethoxy group, propoxy group Alkoxy groups such as isopropoxy group, n-butoxy group, s-butoxy group and t-butoxy group, preferably C1-6 alkoxy group; alkenyloxy groups such as vinyloxy group and allyloxy group; ethynyloxy group, propargyloxy group and the like An alkynyloxy group such as phenoxy group and benzyloxy group; a heteroaryloxy group such as 2-pyridyloxy; a haloalkyl group such as chloromethyl group and trifluoromethyl group, preferably a C1-6 haloalkyl group; A haloalkoxy group such as a methoxy group and a dibromomethoxy group, preferably a C1-6 haloalkoxy group; an alkylthiocarbonyl group such as a methylthiocarbonyl group and an ethylthiocarbonyl group, preferably a C1-6 alkylthiocarbonyl group; An alkylsulfonylamino group such as a ruamino group and a t-butylsulfonylamino group (preferably a C1-6 alkylsulfonylamino group); an arylsulfonylamino group such as a phenylsulfonylamino group, preferably a C6-12 arylsulfonylamino group; piperazini A heteroarylsulfonylamino group such as a rusulfonylamino group, preferably a C3-12 heteroarylsulfonylamino group; an alkylcarbonylamino group such as a methylcarbonylamino group, an ethylcarbonylamino group, preferably a C1-6 alkylcarbonylamino group; Alkoxycarbonylamino groups such as methoxycarbonylamino group and ethoxycarbonylamino group, preferably C1-6 alkoxycarbonylamino group; fluoromethylsulfonylamino group, dichloromethyl A haloalkylsulfonylamino group such as a tilsulfonylamino group, preferably a C1-6 haloalkylsulfonylamino group; a bis (alkylsulfonyl) amino group such as a bis (methylsulfonyl) amino group, preferably a bis (C1-6 alkylsulfonyl) amino group A bis (haloalkylsulfonyl) amino group such as a bis (fluoromethylsulfonyl) amino group, preferably a bis (C1-6 haloalkylsulfonyl) amino group; a hydrazino group, an N′-phenylhydrazino group, an N′-methoxycarbonylhydra Unsubstituted or substituted hydrazino groups such as dino groups; alkoxycarbonyl groups such as methoxycarbonyl groups and ethoxycarbonyl groups, preferably C1-6 alkoxycarbonyl groups; aryls such as phenyl groups, 1-naphthyl groups and 2-naphthyl groups , Preferably a C6-12 aryl group; an aralkyl group such as a benzyl group or a phenethyl group, preferably a C7-20 aralkyl group; a furanyl group, a thiophenyl group, a pyrrolyl group, an oxazolyl group, a thiazolyl group, an isoxazolyl group, an isothiazolyl group, an imidazolyl group Unsaturated hetero 5-membered ring group such as pyrazolyl group; Unsaturated hetero 6-membered ring group such as pyridyl group, pyridazinyl group and pyrazinyl group; Saturated heterocyclic group such as tetrahydrofuranyl and piperidinyl group; Aminocarbonyl group, dimethylaminocarbonyl N-unsubstituted or N-substituted aminocarbonyl groups such as groups; alkylthio groups such as methylthio groups, ethylthio groups and t-butylthio groups; alkenylthio groups such as vinylthio groups and allylthio groups; alkynylthio groups such as ethynylthio groups and propargylthio groups ; Arylthio groups such as an phenylthio group and 4-chlorophenylthio group; heteroarylthio groups such as a 2-pyridylthio group; aralkylthio groups such as a benzylthio group and a phenethylthio group; a methylsulfonyl group, an ethylsulfonyl group, a t-butylsulfonyl group, and the like An alkylsulfonyl group such as an allylsulfonyl group; an alkynylsulfonyl group such as a propargylsulfonyl group; an arylsulfonyl group such as a phenylsulfonyl group; a heteroarylsulfonyl group such as a 2-pyridylsulfonyl group and a 3-pyridylsulfonyl group; An aralkylsulfonyl group such as a benzylsulfonyl group;
 Rにおける無置換の5~8員環ヘテロアリール基としては、例えば、チエニル基、フリル基、ピラゾリル基、イミダゾリル基、1,2,4-トリアゾリル基、チアゾリル基、イソチアゾリル基、1,3,4-チアジアゾリル基、オキサゾリル基、イソオキサゾリル基、オキサジアゾリル基、ピリジル基、ピリミジル基、ピリダジル基、ピラジル基、1,2,4-トリアジル基などを挙げることができる。置換基を有する5~8員環ヘテロアリール基中の「置換基」としては、特に制限されないが、例えば、前記置換基を有するアリール基中の「置換基」として挙げたものと同じものを挙げることができる。 Examples of the unsubstituted 5- to 8-membered heteroaryl group in R include thienyl, furyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, thiazolyl, isothiazolyl, 1,3,4 -Thiadiazolyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, pyridyl group, pyrimidyl group, pyridazyl group, pyrazyl group, 1,2,4-triazyl group and the like. The “substituent” in the 5- to 8-membered heteroaryl group having a substituent is not particularly limited, and examples thereof include the same as those mentioned as the “substituent” in the aryl group having the substituent. be able to.
 Rにおける置換基を有するビニル基中の「置換基」としては、特に制限されないが、例えば、前記置換基を有するアリール基中の「置換基」として挙げたものと同じものを挙げることができる。 The “substituent” in the vinyl group having a substituent in R is not particularly limited, and examples thereof include the same as those mentioned as the “substituent” in the aryl group having the substituent.
 式(I)中、Hetは無置換の若しくは置換基を有する3~8員ヘテロ環を示す。
 Hetにおける無置換の3~8員ヘテロ環としては、例えば、エポキシ基、テトラヒドロフラニル基、テトラヒドロピラニル基、ピペリジニル基、モルホリノ基、ピロリジニル基、ピペラジニル基、オキサゾリニル基、イミダゾリニル基、オキサゾニジニル基、1,2-ピラニル基、チアジニル基、ジオキサニル基、チオモルホリノ基などを挙げることができる。これらのうち、5~7員へテロ環が好ましい。置換基を有する3~8員ヘテロ環中の「置換基」としては、特に制限されないが、例えば、前記置換基を有するアリール基中の「置換基」として挙げたものと同じものを挙げることができる。
 式(I)中、*は該炭素原子が不斉炭素であることを示すが、該炭素原子は光学活性またはラセミのいずれであってもよい。
In the formula (I), Het represents an unsubstituted or substituted 3- to 8-membered heterocycle.
Examples of the unsubstituted 3- to 8-membered heterocycle in Het include an epoxy group, a tetrahydrofuranyl group, a tetrahydropyranyl group, a piperidinyl group, a morpholino group, a pyrrolidinyl group, a piperazinyl group, an oxazolinyl group, an imidazolinyl group, an oxazonidinyl group, and 1 , 2-pyranyl group, thiazinyl group, dioxanyl group, thiomorpholino group and the like. Of these, 5- to 7-membered heterocycles are preferred. The “substituent” in the 3- to 8-membered heterocycle having a substituent is not particularly limited, and examples thereof include the same as those mentioned as the “substituent” in the aryl group having the substituent. it can.
In the formula (I), * indicates that the carbon atom is an asymmetric carbon, and the carbon atom may be either optically active or racemic.
[式(II)のルテニウム化合物]
 上記式(II)中、XおよびYは、それぞれ独立に、水素原子、水酸基、テトラヒドロホウ酸、ハロゲン原子、C1~20アルコキシ基、またはC1~20アシルオキシ基を示す。
 XおよびYにおけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などを挙げることができる。
 XおよびYにおけるC1~20アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、i-ブトキシ基、t-ブトキシ基などを挙げることができる。
[Ruthenium compound of formula (II)]
In the above formula (II), X and Y each independently represent a hydrogen atom, a hydroxyl group, a tetrahydroboric acid, a halogen atom, a C1-20 alkoxy group, or a C1-20 acyloxy group.
As a halogen atom in X and Y, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. can be mentioned, for example.
Examples of the C1-20 alkoxy group in X and Y include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group, an i-butoxy group, and a t-butoxy group. Can do.
 XおよびYにおけるC1~20アシルオキシ基としては、例えば、アセトキシ基、プロピオニルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、2-クロロベンゾイルオキシ基、4-メチルベンゾイルオキシ基などを挙げることができる。 Examples of the C1-20 acyloxy group in X and Y include an acetoxy group, a propionyloxy group, a pivaloyloxy group, a benzoyloxy group, a 2-chlorobenzoyloxy group, and a 4-methylbenzoyloxy group.
 式(II)中、Pxは、光学活性若しくはラセミ体のホスフィン配位子を示す。ホスフィン配位子は、単座若しくは二座のものが代表的なものとして挙げられる。
 単座ホスフィン配位子としては、例えば、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリ(p-トリル)ホスフィン、ジフェニルメチルホスフィン、ジメチルフェニルホスフィン、ジイソプロピルメチルホスフィン、1-〔2-(ジフェニルホスフィノ)フェロセニル〕エチルメチルエーテル、2-(ジフェニルホスフィノ)-2’-メトキシ―1,1’―ビナフチルなどを挙げることができる。
In formula (II), Px represents an optically active or racemic phosphine ligand. The phosphine ligand is typically monodentate or bidentate.
Examples of the monodentate phosphine ligand include trimethylphosphine, triethylphosphine, tributylphosphine, triphenylphosphine, tricyclohexylphosphine, tri (p-tolyl) phosphine, diphenylmethylphosphine, dimethylphenylphosphine, diisopropylmethylphosphine, 1- [ 2- (diphenylphosphino) ferrocenyl] ethyl methyl ether, 2- (diphenylphosphino) -2′-methoxy-1,1′-binaphthyl and the like.
 二座ホスフィン配位子としては、例えば、ビスジフェニルホスフィノメタン、ビスジフェニルホスフィノエタン、ビスジフェニルホスフィノプロパン、無置換の若しくは置換基を有する2,2’-ビス―(ジフェニルホスフィノ)-1,1’―ビナフチル(BINAP)などを挙げることができる。置換基を有するBINAPの具体例としては、2,2’-ビス―(ジ―p―トリホスフィノ)-1,1’―ビナフチル(Tol-BINAP)、2,2’-ビス[ビス(3,5-ジメチルフェニル)ホスフィノ]―1,1’―ビナフチル(Xylyl-BINAP)などを挙げることができる。
 これらの中で、Pxとしては、光学活性なホスフィン配位子が好ましく、軸不斉を有する2座のホスフィン配位子がさらに好ましい。
 式(II)中、nは、Pxの数を示し且つ1または2である。
Examples of the bidentate phosphine ligand include bisdiphenylphosphinomethane, bisdiphenylphosphinoethane, bisdiphenylphosphinopropane, unsubstituted or substituted 2,2′-bis- (diphenylphosphino)- 1,1′-binaphthyl (BINAP) and the like can be mentioned. Specific examples of BINAP having a substituent include 2,2′-bis- (di-p-triphosphino) -1,1′-binaphthyl (Tol-BINAP), 2,2′-bis [bis (3,5 -Dimethylphenyl) phosphino] -1,1'-binaphthyl (Xylyl-BINAP) and the like.
Among these, as Px, an optically active phosphine ligand is preferable, and a bidentate phosphine ligand having axial asymmetry is more preferable.
In the formula (II), n represents the number of Px and is 1 or 2.
 式(II)中、Aは、光学活性若しくはラセミ体のジアミン配位子を示す。なお、Aは光学活性なジアミン配位子であることが好ましい。
 なお、式(II)において、PxとAとの両方がラセミ体であることはない。
In the formula (II), A represents an optically active or racemic diamine ligand. A is preferably an optically active diamine ligand.
In formula (II), both Px and A are not racemic.
 Aにおけるジアミン配位子は、安定して金属錯体を形成し得るものであれば、何ら限定されるものではないが、上記式(IIa)、上記式(IIb)、上記式(IIc)、上記式(IId)または上記式(IIe)で表されるジアミン配位子が好ましい。 The diamine ligand in A is not particularly limited as long as it can stably form a metal complex, but the above formula (IIa), the above formula (IIb), the above formula (IIc), the above A diamine ligand represented by the formula (IId) or the above formula (IIe) is preferred.
 式(IIa)、式(IIb)、式(IId)および式(IIe)中、R1は、無置換の若しくは置換基を有するC1~20アルキル基、無置換の若しくは置換基を有するC2~20アルケニル基、無置換の若しくは置換基を有するC3~8シクロアルキル基、無置換の若しくは置換基を有するC7~20アラルキル基、無置換の若しくは置換基を有するC6~10アリール基、または無置換の若しくは置換基を有する3~8員ヘテロ環基を示す。 In formula (IIa), formula (IIb), formula (IId) and formula (IIe), R 1 represents an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20. An alkenyl group, an unsubstituted or substituted C3-8 cycloalkyl group, an unsubstituted or substituted C7-20 aralkyl group, an unsubstituted or substituted C6-10 aryl group, or an unsubstituted group Alternatively, it represents a 3- to 8-membered heterocyclic group having a substituent.
 R1における無置換のC1~20アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基などを挙げることができる。 Examples of the unsubstituted C1-20 alkyl group in R 1 include, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, Examples thereof include an n-pentyl group and an n-hexyl group.
 R1における置換基を有するC1~20アルキル基中の「置換基」としては、特に制限されないが、例えば、水酸基;チオール基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;シアノ基;ニトロ基;ホルミル基;アミノ基、メチルアミノ基、ベンジルアミノ基、アニリノ基、ジメチルアミノ基などの無置換若しくは置換アミノ基;ビニル基、アリル基、2-メトキシエテニル基などのアルケニル基;エチニル基、1-プロピニル基、2-フェニルエチニル基、プロパルギル基などのアルキニル基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、t-ブトキシ基などのアルコキシ基、好ましくはC1~6アルコキシ基;ビニルオキシ基、アリルオキシ基などのアルケニルオキシ基;エチニルオキシ基、プロパルギルオキシ基などのアルキニルオキシ基;フェノキシ基、ベンジルオキシ基などのアリールオキシ基;2-ピリジルオキシなどのヘテロアリールオキシ基;フルオロメトキシ基、ジブロモメトキシ基などのハロアルコキシ基、好ましくはC1~6ハロアルコキシ基;メチルチオカルボニル基、エチルチオカルボニル基、などのアルキルチオカルボニル基、好ましくはC1~6アルキルチオカルボニル基;メチルスルホニルアミノ基、t-ブチルスルホニルアミノ基などのアルキルスルホニルアミノ基、好ましくはC1~6アルキルスルホニルアミノ基;フェニルスルホニルアミノ基などのアリールスルホニルアミノ基、好ましくはC6~12アリールスルホニルアミノ基;ピペラジニルスルホニルアミノ基などのヘテロアリールスルホニルアミノ基、好ましくはC3~12へテロアリールスルホニルアミノ基;メチルカルボニルアミノ基、エチルカルボニルアミノ基などのアルキルカルボニルアミノ基、好ましくはC1~6アルキルカルボニルアミノ基;メトキシカルボニルアミノ基、エトキシカルボニルアミノ基などのアルコキシカルボニルアミノ基、好ましくはC1~6アルコキシカルボニルアミノ基;フルオロメチルスルホニルアミノ基、ジクロロメチルスルホニルアミノ基などのハロアルキルスルホニルアミノ基、好ましくはC1~6ハロアルキルスルホニルアミノ基;ビス(メチルスルホニル)アミノ基などのビス(アルキルスルホニル)アミノ基、好ましくはビス(C1~6アルキルスルホニル)アミノ基;ビス(フルオロメチルスルホニル)アミノ基などのビス(ハロアルキルスルホニル)アミノ基、好ましくはビス(C1~6ハロアルキルスルホニル)アミノ基;ヒドラジノ基、N’-フェニルヒドラジノ基、N’-メトキシカルボニヒドラジノ基などの無置換もしくは置換ヒドラジノ基;メトキシカルボニル基、エトキシカルボニル基などのアルコキシカルボニル基、好ましくはC1~6アルコキシカルボニル基;フェニル基、1-ナフチル基、2-ナフチル基などのアリール基、好ましくはC6-12アリール基;フラニル基、チオフェニル基、ピロリル基、オキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、イミダゾリル基、ピラゾリル基などの不飽和複素5員環基;ピリジル基、ピリダジニル基、ピラジニル基などの不飽和複素6員環基;テトラヒドロフラニル、ピペリジニル基などの飽和複素環基;アミノカルボニル基、ジメチルアミノカルボニル基などのN無置換もしくはN置換アミノカルボニル基;メチルチオ基、エチルチオ基、t-ブチルチオ基などのアルキルチオ基;ビニルチオ基、アリルチオ基などのアルケニルチオ基;エチニルチオ基、プロパルギルチオ基などのアルキニルチオ基;フェニルチオ基、4-クロロフェニルチオ基などのアリールチオ基;2-ピリジルチオ基などのヘテロアリールチオ基;ベンジルチオ基、フェネチルチオ基などのアラルキルチオ基;メチルスルホニル基、エチルスルホニル基、t-ブチルスルホニル基などのアルキルスルホニル基;アリルスルホニル基などのアルケニルスルホニル基;プロパルギルスルホニル基などのアルキニルスルホニル基;フェニルスルホニル基などのアリールスルホニル基;2-ピリジルスルホニル基、3-ピリジルスルホニル基などのヘテロアリールスルホニル基;ベンジルスルホニル基などのアラルキルスルホニル基;などを挙げることができる。 The “substituent” in the C1-20 alkyl group having a substituent in R 1 is not particularly limited, but examples thereof include a hydroxyl group; a thiol group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom; Group; nitro group; formyl group; unsubstituted or substituted amino group such as amino group, methylamino group, benzylamino group, anilino group and dimethylamino group; alkenyl group such as vinyl group, allyl group and 2-methoxyethenyl group Alkynyl groups such as ethynyl group, 1-propynyl group, 2-phenylethynyl group, propargyl group; methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, s-butoxy group, t-butoxy group, etc. Alkoxy groups, preferably C1-6 alkoxy groups; alkeni such as vinyloxy group and allyloxy group Oxy group; alkynyloxy group such as ethynyloxy group and propargyloxy group; aryloxy group such as phenoxy group and benzyloxy group; heteroaryloxy group such as 2-pyridyloxy; haloalkoxy group such as fluoromethoxy group and dibromomethoxy group Group, preferably C1-6 haloalkoxy group; alkylthiocarbonyl group such as methylthiocarbonyl group, ethylthiocarbonyl group, etc., preferably C1-6 alkylthiocarbonyl group; alkylsulfonyl such as methylsulfonylamino group, t-butylsulfonylamino group An amino group, preferably a C1-6 alkylsulfonylamino group; an arylsulfonylamino group such as a phenylsulfonylamino group, preferably a C6-12 arylsulfonylamino group; a piperazinylsulfonylamino group; A heteroarylsulfonylamino group such as a methyl group, preferably a C3-12 heteroarylsulfonylamino group; an alkylcarbonylamino group such as a methylcarbonylamino group, an ethylcarbonylamino group, preferably a C1-6 alkylcarbonylamino group; Alkoxycarbonylamino groups such as amino groups and ethoxycarbonylamino groups, preferably C1-6 alkoxycarbonylamino groups; haloalkylsulfonylamino groups such as fluoromethylsulfonylamino groups and dichloromethylsulfonylamino groups, preferably C1-6 haloalkylsulfonylamino groups A bis (alkylsulfonyl) amino group such as a bis (methylsulfonyl) amino group, preferably a bis (C1-6 alkylsulfonyl) amino group; bis (fluoromethyl) Bis (haloalkylsulfonyl) amino group such as sulfonyl) amino group, preferably bis (C1-6 haloalkylsulfonyl) amino group; hydrazino group, N′-phenylhydrazino group, N′-methoxycarbonylhydrazino group, etc. Substituted or substituted hydrazino group; alkoxycarbonyl group such as methoxycarbonyl group and ethoxycarbonyl group, preferably C1-6 alkoxycarbonyl group; aryl group such as phenyl group, 1-naphthyl group and 2-naphthyl group, preferably C6-12 Aryl group; unsaturated 5-membered ring group such as furanyl group, thiophenyl group, pyrrolyl group, oxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, imidazolyl group, pyrazolyl group; and the like, pyridyl group, pyridazinyl group, pyrazinyl group, etc. Saturated hetero 6-membered ring Groups; saturated heterocyclic groups such as tetrahydrofuranyl and piperidinyl groups; N unsubstituted or N-substituted aminocarbonyl groups such as aminocarbonyl groups and dimethylaminocarbonyl groups; alkylthio groups such as methylthio groups, ethylthio groups and t-butylthio groups; Groups, alkenylthio groups such as allylthio groups; alkynylthio groups such as ethynylthio groups and propargylthio groups; arylthio groups such as phenylthio groups and 4-chlorophenylthio groups; heteroarylthio groups such as 2-pyridylthio groups; benzylthio groups and phenethyl groups Aralkylthio group such as thio group; Alkylsulfonyl group such as methylsulfonyl group, ethylsulfonyl group and t-butylsulfonyl group; Alkenylsulfonyl group such as allylsulfonyl group; Alkylsulfonyl group such as propargylsulfonyl group Rusuruhoniru group; arylsulfonyl groups such as phenylsulfonyl group; aralkyl sulfonyl group such as benzylsulfonyl group; pyridylmethyl sulfonyl group, 3-heteroarylsulfonyl groups such as pyridyl sulfonyl group and the like.
 R1における無置換のC2~20アルケニル基としては、例えば、ビニル基、アリル基、2-メトキシエテニル基などを挙げることができる。置換基を有するC2~20アルケニル基中の「置換基」としては、特に制限されないが、例えば、前記置換基を有するC1~20アルキル基中の「置換基」として挙げたものと同じものを挙げることができる。 Examples of the unsubstituted C2-20 alkenyl group for R 1 include a vinyl group, an allyl group, and a 2-methoxyethenyl group. The “substituent” in the C2-20 alkenyl group having a substituent is not particularly limited, but examples thereof include the same as those mentioned as the “substituent” in the C1-20 alkyl group having the substituent. be able to.
 R1における無置換のC3~8シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基などを挙げることができる。置換基を有するC3~8シクロアルキル基中の「置換基」としては、特に制限されないが、例えば、前記置換基を有するC1~20アルキル基中の「置換基」として挙げたものと同じものを挙げることができる。 Examples of the unsubstituted C3-8 cycloalkyl group in R 1 include a cyclopropyl group, a cyclobutyl group, and a cyclopentyl group. The “substituent” in the C3-8 cycloalkyl group having a substituent is not particularly limited. For example, the same “substituent” as the “substituent” in the C1-20 alkyl group having the substituent may be used. Can be mentioned.
 R1における無置換のC7~20アラルキル基としては、例えば、ベンジル基、フェネチル基などを挙げることができる。置換基を有するC7~20アラルキル基中の「置換基」としては、特に制限されないが、例えば、前記置換基を有するC1~20アルキル基中の置換基として挙げたものと同じものを挙げることができる。
 R1の無置換の若しくは置換基を有するC6~10アリール基および無置換の若しくは置換基を有する3~8員ヘテロ環基としては、特に制限されないが、例えば、前記Rにおける無置換の若しくは置換基を有するC6~10アリール基、ならびに前記Rにおける無置換の若しくは置換基を有する5~8員環のヘテロアリール環、および前記Hetにおける無置換の若しくは置換基を有する3~8員ヘテロ環基の具体例として挙げたものと同じものを挙げることができる。
 これらの中で、R1としては、無置換の若しくは置換基を有するC6~10アリール基が好ましい。
Examples of the unsubstituted C7-20 aralkyl group in R 1 include a benzyl group and a phenethyl group. The “substituent” in the C7-20 aralkyl group having a substituent is not particularly limited, and examples thereof include the same as those mentioned as the substituent in the C1-20 alkyl group having the substituent. it can.
The unsubstituted or substituted C6-10 aryl group of R 1 and the unsubstituted or substituted 3- to 8-membered heterocyclic group are not particularly limited, and examples thereof include unsubstituted or substituted R in R A C6-10 aryl group having a group, an unsubstituted or substituted 5- to 8-membered heteroaryl ring in R, and an unsubstituted or substituted 3- to 8-membered heterocyclic group in Het The same thing as what was mentioned as a specific example of can be mentioned.
Among these, R 1 is preferably an unsubstituted or substituted C 6-10 aryl group.
 式(IIa)、式(IIb)および式(IId)中、R2、R3およびR5は、それぞれ独立に、水素原子、無置換の若しくは置換基を有するC1~20アルキル基、無置換の若しくは置換基を有するC2~20アルケニル基、無置換の若しくは置換基を有するC3~8シクロアルキル基、または無置換の若しくは置換基を有するC7~20アラルキル基を示す。なお、R2とR3との両方が水素原子であることはない。
 R2、R3およびR5における、無置換の若しくは置換基を有するC1~20アルキル基、無置換の若しくは置換基を有するC2~20アルケニル基、無置換の若しくは置換基を有するC3~8シクロアルキル基、または無置換の若しくは置換基を有するC7~20アラルキル基としては、特に制限されないが、例えば、前記R1における、無置換の若しくは置換基を有するC1~20アルキル基、無置換の若しくは置換基を有するC2~20アルケニル基、無置換の若しくは置換基を有するC3~8シクロアルキル基、または無置換の若しくは置換基を有するC7~20アラルキル基の具体例として挙げたものと同じものを挙げることができる。
 これらの中で、R2、R3およびR5としては、無置換の若しくは置換基を有するC1~20アルキル基が好ましく、無置換の若しくは置換基を有するC1~6アルキル基が特に好ましい。
 R2とR3は結合して環を形成してもよい。R2とR3が結合して形成する環の具体例としては、例えば、ピロリジン環、ピペリジン環、モルホリン環などを挙げることができる。
In formula (IIa), formula (IIb) and formula (IId), R 2 , R 3 and R 5 are each independently a hydrogen atom, an unsubstituted or substituted C1-20 alkyl group, an unsubstituted group Or a C2-20 alkenyl group having a substituent, a C3-8 cycloalkyl group having an unsubstituted or substituted group, or a C7-20 aralkyl group having an unsubstituted or substituted group. Note that R 2 and R 3 are not both hydrogen atoms.
In R 2 , R 3 and R 5 , an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted C3-8 cyclo The alkyl group or the unsubstituted or substituted C7-20 aralkyl group is not particularly limited. For example, in R 1 , an unsubstituted or substituted C1-20 alkyl group, unsubstituted or substituted The same as those mentioned as specific examples of the C2-20 alkenyl group having a substituent, the C3-8 cycloalkyl group having an unsubstituted or substituted group, or the C7-20 aralkyl group having an unsubstituted or substituted group Can be mentioned.
Among these, as R 2 , R 3 and R 5 , an unsubstituted or substituted C1-20 alkyl group is preferable, and an unsubstituted or substituted C1-6 alkyl group is particularly preferable.
R 2 and R 3 may combine to form a ring. Specific examples of the ring formed by combining R 2 and R 3 include, for example, a pyrrolidine ring, a piperidine ring, and a morpholine ring.
 式(IIc)中、R4は、水素原子、無置換の若しくは置換基を有するC1~20アルキル基、無置換の若しくは置換基を有するC2~20アルケニル基、無置換の若しくは置換基を有するC3~8シクロアルキル基、無置換の若しくは置換基を有するC7~20アラルキル基、無置換の若しくは置換基を有するC6~10アリール基、または無置換の若しくは置換基を有する3~8員ヘテロ環基を示す。 In the formula (IIc), R 4 represents a hydrogen atom, an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted C3 -8 cycloalkyl group, unsubstituted or substituted C7-20 aralkyl group, unsubstituted or substituted C6-10 aryl group, or unsubstituted or substituted 3- to 8-membered heterocyclic group Indicates.
 R4における、無置換の若しくは置換基を有するC1~20アルキル基、無置換の若しくは置換基を有するC2~20アルケニル基、無置換の若しくは置換基を有するC3~8シクロアルキル基、無置換の若しくは置換基を有するC7~20アラルキル基、無置換の若しくは置換基を有するC6~10アリール基、または無置換の若しくは置換基を有する3~8員ヘテロ環基としては、特に制限されないが、例えば、前記R1における、無置換の若しくは置換基を有するC1~20アルキル基、無置換の若しくは置換基を有するC2~20アルケニル基、無置換の若しくは置換基を有するC3~8シクロアルキル基、無置換の若しくは置換基を有するC7~20アラルキル基、無置換の若しくは置換基を有するC6~10アリール基、または無置換の若しくは置換基を有する3~8員ヘテロ環基の具体例として挙げたものと同じものを挙げることができる。
 これらの中で、R4としては、無置換の若しくは置換基を有するC1~20アルキル基が好ましく、無置換の若しくは置換基を有するC1~6アルキル基が特に好ましい。
In R 4 , an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted C3-8 cycloalkyl group, an unsubstituted Alternatively, a C7-20 aralkyl group having a substituent, an unsubstituted or substituted C6-10 aryl group, or an unsubstituted or substituted 3-8 membered heterocyclic group is not particularly limited. In the above R 1 , an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted C3-8 cycloalkyl group, A substituted or substituted C7-20 aralkyl group, an unsubstituted or substituted C6-10 aryl group, or Examples thereof include the same ones as mentioned as specific examples of the substituted or substituted 3- to 8-membered heterocyclic group.
Among these, as R 4 , an unsubstituted or substituted C1-20 alkyl group is preferable, and an unsubstituted or substituted C1-6 alkyl group is particularly preferable.
 式(IIc)中、Bは、無置換の若しくは置換基を有するエチレン基、または無置換の若しくは置換基を有するヘテロ環の2価基を示す。
 Bにおける、置換基を有するエチレン基中の「置換基」としては、特に制限されないが、例えば、前記Rにおける置換基を有するC6~10アリール基中の「置換基」として挙げたものと同じものを挙げることができる。
 Bが複数の置換基を有するエチレン基の場合、当該複数の置換基同士が結合して環を形成してもよい。複数の置換基同士が結合して形成される環としては、例えば、シクロブタン環、シクロペンタン環、シクロヘキサン環などの炭化水素環;テトラヒドロフラン環、1,3-ジオキソラン環、モルホリン環などのエーテル結合を有する飽和環;ピロリジン環、ピペリジン環、ピペラジン環などの窒素原子を含有する飽和環;ベンゼン環、ピリジン環などの芳香族環;などを挙げることができる。
In formula (IIc), B represents an unsubstituted or substituted ethylene group, or an unsubstituted or substituted heterocyclic divalent group.
The “substituent” in the ethylene group having a substituent in B is not particularly limited. For example, the same as those mentioned as the “substituent” in the C6-10 aryl group having a substituent in R above Can be mentioned.
When B is an ethylene group having a plurality of substituents, the plurality of substituents may be bonded to form a ring. Examples of the ring formed by combining a plurality of substituents include hydrocarbon rings such as cyclobutane ring, cyclopentane ring and cyclohexane ring; ether bonds such as tetrahydrofuran ring, 1,3-dioxolane ring and morpholine ring. A saturated ring having a nitrogen atom such as a pyrrolidine ring, a piperidine ring or a piperazine ring; an aromatic ring such as a benzene ring or a pyridine ring;
 Bにおける、無置換の若しくは置換基を有するヘテロ環の2価基中の「無置換の若しくは置換基を有するヘテロ環」の具体例としては、特に制限されないが、例えば、前記式(I)中のHetにおける、無置換の若しくは置換基を有する3~8員へテロ環の具体例として挙げたものと同じものを挙げることができる。 Specific examples of the “unsubstituted or substituted heterocycle” in the divalent group of the unsubstituted or substituted heterocycle in B are not particularly limited. For example, in the formula (I), In Het, there can be mentioned the same ones as mentioned as specific examples of unsubstituted or substituted 3- to 8-membered heterocycles.
[塩基]
 本発明の水素化反応において使用される塩基としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)などの有機塩基;ナトリウムメトキシド、ナトリウムエトキシド、カリウムt-ブトキシド、マグネシウムメトキシド、マグネシウムエトキシドなどの金属アルコキシド類;n-ブチルリチウムなどの有機リチウム化合物;リチウムジイソプロピルアミド、リチウムビストリメチルシリルアミドなどのリチウムアミド類;水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;水酸化マグネシウム、水酸化カルシウムなどのアルカリ土類金属水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属炭酸水素塩;炭酸マグネシウム、炭酸カルシウムなどのアルカリ土類金属炭酸塩;水素化ナトリウム、水素化カルシウムなどの金属水素化物;などを挙げることができる。
[base]
Examples of the base used in the hydrogenation reaction of the present invention include triethylamine, diisopropylethylamine, pyridine, 1,4-diazabicyclo [2.2.2] octane (DABCO), and 1,8-diazabicyclo [5.4. 0] Organic bases such as undec-7-ene (DBU); metal alkoxides such as sodium methoxide, sodium ethoxide, potassium t-butoxide, magnesium methoxide, magnesium ethoxide; organolithium compounds such as n-butyllithium Lithium amides such as lithium diisopropylamide and lithium bistrimethylsilylamide; Alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; Alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide Alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; alkaline earth metal carbonates such as magnesium carbonate and calcium carbonate; sodium hydride and calcium hydride And metal hydrides thereof.
[水素化]
 本発明の光学活性アルコール化合物の製造方法における水素化は、その手法によって特に制限されない。例えば、反応基質となる式(I)で表されるカルボニル化合物と、触媒となる式(II)で表されるルテニウム化合物と塩基とを反応器に仕込み、次いで所定圧力の水素ガスまたは所定量の水素供与体を供給することで、水素化を行うことができる。
[Hydrogenation]
Hydrogenation in the method for producing an optically active alcohol compound of the present invention is not particularly limited by the method. For example, a carbonyl compound represented by formula (I) serving as a reaction substrate, a ruthenium compound represented by formula (II) serving as a catalyst, and a base are charged into a reactor, and then hydrogen gas at a predetermined pressure or a predetermined amount of Hydrogenation can be carried out by supplying a hydrogen donor.
 式(II)で表されるルテニウム化合物は、例えば、日本国特開2005-068113号公報、日本国特開2003-104993号公報などに記載の方法に準じて調製したものを当該水素化反応系に添加してもよいし、水素化反応系内で調製して用いてもよい。
 水素化反応系における、式(II)で表されるルテニウム化合物の使用量は、反応容器の大きさやルテニウム化合物の活性によって異なるが、反応基質であるカルボニル化合物に対して、好ましくは1/50~1/2,000,000倍モル、より好ましくは1/500~1/500,000倍モルである。
 塩基の使用量は、式(II)で表されるルテニウム化合物に対して、好ましくは2~500,000倍モル、より好ましくは2~5,000倍モルである。
The ruthenium compound represented by the formula (II) is prepared according to the method described in Japanese Patent Application Laid-Open No. 2005-068113, Japanese Patent Application Laid-Open No. 2003-104993, and the like. Or may be prepared and used in a hydrogenation reaction system.
The amount of the ruthenium compound represented by the formula (II) in the hydrogenation reaction system varies depending on the size of the reaction vessel and the activity of the ruthenium compound, but is preferably 1/50 to the carbonyl compound as the reaction substrate. It is 1 / 2,000,000 times mole, more preferably 1/500 to 1 / 500,000 times mole.
The amount of the base used is preferably 2 to 500,000 times mol, more preferably 2 to 5,000 times mol, with respect to the ruthenium compound represented by the formula (II).
 水素化反応は無溶媒若しくは溶媒中で行うことができる。水素化反応において用いられる溶媒は、水素化反応に不活性で且つカルボニル化合物およびルテニウム化合物を溶解できるものであれば特に制限されない。用いる溶媒の具体例としては、トルエン、キシレンなどの芳香族炭化水素系溶媒;ペンタン、ヘキサンなどの脂肪族炭化水素系溶媒;塩化メチレンなどのハロゲン含有炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン(THF)などのエーテル系溶媒;メタノール、エタノール、ベンジルアルコールなどのアルコール系溶媒;アセトニトリル、ジメチルホルムアミド(DMF)、N-メチルピロリドン、ジメチルスルホキシド(DMSO)などのヘテロ原子を含む有機溶媒;などを挙げることができる。これらの中でも、溶媒としてはアルコール系溶媒が好ましい。
 溶媒の使用量は、式(I)で表されるカルボニル化合物の溶解度などに依存するが、式(I)で表されるカルボニル化合物100重量部に対して、好ましくは0.1~10,000重量部、より好ましくは20~1,000重量部である。
The hydrogenation reaction can be carried out without solvent or in a solvent. The solvent used in the hydrogenation reaction is not particularly limited as long as it is inert to the hydrogenation reaction and can dissolve the carbonyl compound and the ruthenium compound. Specific examples of the solvent used include aromatic hydrocarbon solvents such as toluene and xylene; aliphatic hydrocarbon solvents such as pentane and hexane; halogen-containing hydrocarbon solvents such as methylene chloride; diethyl ether and tetrahydrofuran (THF) Ether solvents such as methanol, ethanol and benzyl alcohol; organic solvents containing heteroatoms such as acetonitrile, dimethylformamide (DMF), N-methylpyrrolidone and dimethyl sulfoxide (DMSO); it can. Among these, alcohol solvents are preferable as the solvent.
The amount of the solvent used depends on the solubility of the carbonyl compound represented by the formula (I) and is preferably 0.1 to 10,000 with respect to 100 parts by weight of the carbonyl compound represented by the formula (I). Part by weight, more preferably 20 to 1,000 parts by weight.
 水素ガスを供給する場合、水素ガスの圧力は、好ましくは1~200気圧、より好ましくは3~50気圧である。
 水素供与体を供給する場合、水素供与体としては、例えば、水素貯蔵合金やジイミドなどを用いることができ、水素供与体の供給量は、式(I)で表されるカルボニル化合物に対して、好ましくは1~100倍当量である。
 水素化反応における温度は、好ましくは-50℃~+100℃、より好ましくは+25℃~+40℃である。また、反応時間は、反応基質濃度、温度、圧力などの反応条件、反応容器の大きさなどに依存するが、好ましくは数分間~数日間である。反応形式は、バッチ式であってもよいし、連続式であってもよい。
When supplying hydrogen gas, the pressure of the hydrogen gas is preferably 1 to 200 atm, more preferably 3 to 50 atm.
When supplying a hydrogen donor, as the hydrogen donor, for example, a hydrogen storage alloy or diimide can be used, and the supply amount of the hydrogen donor is based on the carbonyl compound represented by the formula (I): The equivalent is preferably 1 to 100 times equivalent.
The temperature in the hydrogenation reaction is preferably −50 ° C. to + 100 ° C., more preferably + 25 ° C. to + 40 ° C. The reaction time depends on the reaction conditions such as the concentration of the reaction substrate, temperature and pressure, the size of the reaction vessel, etc., but is preferably several minutes to several days. The reaction format may be a batch type or a continuous type.
 反応終了後は、蒸留、再結晶、シリカゲルカラムクロマトグラフィーなどの方法によって、単離・精製することにより、目的物である式(IIIa)~式(IIId)で表される光学活性アルコール化合物を得ることができる。目的物の構造は、1H-NMR、旋光度測定、液体クロマトグラフィー、ガスクロマトグラフィーなどの公知の分析手段によって決定することができる。
 本発明の製造方法によって、式(IIIa)~式(IIId)で表される光学活性アルコール化合物のいずれかを高選択的に得ることができる。
After completion of the reaction, the optically active alcohol compounds represented by the formulas (IIIa) to (IIId), which are target products, are obtained by isolation and purification by methods such as distillation, recrystallization and silica gel column chromatography. be able to. The structure of the target product can be determined by known analytical means such as 1 H-NMR, optical rotation measurement, liquid chromatography, gas chromatography and the like.
By the production method of the present invention, any of the optically active alcohol compounds represented by the formulas (IIIa) to (IIId) can be obtained with high selectivity.
 次に、実施例を示し、本発明をより具体的に説明する。ただし、本発明は、これら実施例などによって何ら限定されるものではない。
 各実施例中に示す略語は、以下の意味を表す。
 S/C:基質/触媒の比
 RuCl2{(S)-binap}{(R)-dmapen}:
Next, an Example is shown and this invention is demonstrated more concretely. However, the present invention is not limited to these examples.
The abbreviations shown in the examples represent the following meanings.
S / C: substrate / catalyst ratio RuCl 2 {(S) -binap} {(R) -dmapen}:
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 RuCl2{(S)-p-tolbinap}{(R)-dmapen}: RuCl 2 {(S) -p-tolbinap} {(R) -dmapen}:
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 RuCl2{(S)-binap}{(R)-iphan}: RuCl 2 {(S) -binap} {(R) -iphan}:
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 RuCl2{(S)-binap}{(R,R)-dpen}: RuCl 2 {(S) -binap} {(R, R) -dpen}:
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 RuCl2{(S)-binap}{(S,S)-dpen}: RuCl 2 {(S) -binap} {(S, S) -dpen}:
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 RuCl2{(S)-p-tolbinap}{(S,S)-dpen}: RuCl 2 {(S) -p-tolbinap} {(S, S) -dpen}:
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 RuCl2{(S)-xylbinap}{(S,S)-dpen}: RuCl 2 {(S) -xylbinap} {(S, S) -dpen}:
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 各実施例における物性は以下の装置を用いて測定した。
(1)NMR:JNM-A300(300MHz、日本電子社製)およびJNM-A400(400MHz、日本電子社製)
(2)旋光度:旋光度計、JASCO DIP-360(日本分光社製)
(3)高速液体クロマトグラフィー:LC-10Advp、SPD-10Avp(島津製作所社製)
(4)ガスクロマトグラフィー:GC-17A(島津製作所社製)
The physical properties in each example were measured using the following apparatus.
(1) NMR: JNM-A300 (300 MHz, manufactured by JEOL Ltd.) and JNM-A400 (400 MHz, manufactured by JEOL Ltd.)
(2) Optical rotation: Optical rotation meter, JASCO DIP-360 (manufactured by JASCO)
(3) High performance liquid chromatography: LC-10Advp, SPD-10Avp (manufactured by Shimadzu Corporation)
(4) Gas chromatography: GC-17A (manufactured by Shimadzu Corporation)
実施例1
 N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンの製造
Example 1
Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 アルゴン雰囲気下、オートクレーブに、N-ベンゾイル-モルホリン-2-イル-フェニル-メタノン0.295g(1mmol、ラセミ体)、イソプロパノール0.5ml、カリウムt-ブトキシドを0.1Mイソプロパノール溶液として0.5ml(0.05mmol)、およびRuCl2{(S)-binap}{(R)-dmapen}9.6mg(10μmol,S/C=100)を添加した。脱気操作後、水素を10気圧まで圧入し、25℃で20時間撹拌しながら反応させた。得られた粗生成物をHPLC(GL Science Inertsil ODS-3(25cm) アセトニトリル/水/ドデシル硫酸ナトリウム/10%リン酸=400ml/600ml/9g/1ml,1ml/分,40℃,ジアステレオマーのリテンションタイム 6.4分,7.3分)で分析したところ、ジアステレオマーの生成比は>99:1であった。粗生成物を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、光学活性N-ベンゾイル-モルホリン-2-イル-フェニル-メタノール0.283g(0.96mmol)を96%の収率で得た。鏡像異性体過剰率をHPLC(YMC-Pack SIL (25cm) とDaicel Chiralcel OJ-H (15cm)を直列に接続,ヘキサン/イソプロパノール/エタノール=85/15/5,1ml/分,20℃,鏡像異性体のリテンションタイム36.4分 および50.7分)により分析したところ99%ee(リテンションタイム36.4分の鏡像異性体)であった。この鏡像異性体は、分析の結果、N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンであることがわかった。 In an autoclave under an argon atmosphere, 0.295 g (1 mmol, racemate) of N-benzoyl-morpholin-2-yl-phenyl-methanone, 0.5 ml of isopropanol, 0.5 ml of potassium t-butoxide as a 0.1 M isopropanol solution ( 0.05 mmol), and RuCl 2 {(S) -binap} {(R) -dmapen} 9.6 mg (10 μmol, S / C = 100) were added. After the deaeration operation, hydrogen was injected to 10 atm, and the reaction was allowed to proceed with stirring at 25 ° C. for 20 hours. The obtained crude product was purified by HPLC (GL Science Inertsil ODS-3 (25 cm) acetonitrile / water / sodium dodecyl sulfate / 10% phosphoric acid = 400 ml / 600 ml / 9 g / 1 ml, 1 ml / min, 40 ° C., diastereomeric As a result of retention time 6.4 min, 7.3 min), the production ratio of diastereomers was> 99: 1. The crude product was concentrated and then purified by silica gel column chromatography to obtain 0.283 g (0.96 mmol) of optically active N-benzoyl-morpholin-2-yl-phenyl-methanol in a 96% yield. Enantiomeric excess was determined by HPLC (YMC-Pack SIL (25 cm) and Daicel Chiralcel OJ-H (15 cm) connected in series, hexane / isopropanol / ethanol = 85/15/5, 1 ml / min, 20 ° C., enantiomeric Body retention times of 36.4 minutes and 50.7 minutes) and 99% ee (enantiomer of retention time 36.4 minutes). This enantiomer was analyzed and found to be N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine.
実施例2
 N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンの製造
 RuCl2{(S)-binap}{(R)-dmapen}を、RuCl2{(S)-p-tolbinap}{(R)-dmapen}(S/C=100)に替えた以外は実施例1と同じ手法で反応させ、得られた粗生成物を精製した。この結果、ジアステレオマーの生成比99:1、単離収率97%、97%eeで光学活性N-ベンゾイル-モルホリン-2-イル-フェニル-メタノール(リテンションタイム36.4分の鏡像異性体)を得た。この鏡像異性体は、分析の結果、N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンであることがわかった。
Example 2
Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine RuCl 2 {(S) -binap} {(R) -dmapen} is converted to RuCl 2 {(S)- The reaction was carried out in the same manner as in Example 1 except that p-tolbinap} {(R) -dmapen} (S / C = 100) was used, and the resulting crude product was purified. This resulted in an optically active N-benzoyl-morpholin-2-yl-phenyl-methanol (enantiomer with a retention time of 36.4 minutes) in a diastereomer formation ratio of 99: 1, an isolation yield of 97%, and 97% ee. ) This enantiomer was analyzed and found to be N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine.
実施例3
 N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンの製造
 RuCl2{(S)-binap}{(R)-dmapen}を、RuCl2{(S)-binap}{(R)-iphan}(S/C=100)に替えた以外は実施例1と同じ手法で反応させ、得られた粗生成物を精製した。この結果、ジアステレオマーの生成比94:6、単離収率96%、92%eeで光学活性N-ベンゾイル-モルホリン-2-イル-フェニル-メタノール(リテンションタイム36.4分の鏡像異性体)を得た。この鏡像異性体は、分析の結果、N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンであることがわかった。
Example 3
Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine RuCl 2 {(S) -binap} {(R) -dmapen} is converted to RuCl 2 {(S)- The resulting crude product was purified by reacting in the same manner as in Example 1 except that binap} {(R) -iphan} (S / C = 100) was used. As a result, optically active N-benzoyl-morpholin-2-yl-phenyl-methanol (enantiomer with a retention time of 36.4 minutes) was obtained with a production ratio of diastereomer of 94: 6, an isolation yield of 96%, and 92% ee. ) This enantiomer was analyzed and found to be N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine.
実施例4
 N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンの製造
 RuCl2{(S)-binap}{(R)-dmapen}を、RuCl2{(S)-binap}{(R,R)-dpen}(S/C=100)に替えた以外は実施例1と同じ手法で反応させ、得られた粗生成物を精製した。この結果、ジアステレオマーの生成比96:4、単離収率94%、87%eeで光学活性N-ベンゾイル-モルホリン-2-イル-フェニル-メタノール(リテンションタイム36.4分の鏡像異性体)を得た。この鏡像異性体は、分析の結果、N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンであることがわかった。
Example 4
Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine RuCl 2 {(S) -binap} {(R) -dmapen} is converted to RuCl 2 {(S)- The resulting crude product was purified by reacting in the same manner as in Example 1 except that binap} {(R, R) -dpen} (S / C = 100) was used. As a result, the optically active N-benzoyl-morpholin-2-yl-phenyl-methanol (enantiomer with a retention time of 36.4 minutes) was obtained with a diastereomer production ratio of 96: 4, an isolation yield of 94%, and 87% ee. ) This enantiomer was analyzed and found to be N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine.
実施例5
 N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンの製造
 N-ベンゾイル-モルホリン-2-イル-フェニル-メタノンの量を4.45g(15mmol、ラセミ体)に、イソプロパノールの量を10.2mlに、カリウムt-ブトキシドの量を0.1M イソプロパノール溶液として4.8ml(0.48mmol)に、およびRuCl2{(S)-binap}{(R)-dmapen}の量を14.4mg(15μmol,S/C=1,000)に変えた以外は、実施例1と同じ手法で反応させ、得られた粗生成物を精製した。この結果、ジアステレオマーの生成比>99:1、単離収率99%、99%eeで光学活性N-ベンゾイル-モルホリン-2-イル-フェニル-メタノール(リテンションタイム36.4分の鏡像異性体)を得た。この鏡像異性体は、分析の結果、N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンであることがわかった。
Example 5
Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine 4.45 g (15 mmol, racemate) of N-benzoyl-morpholin-2-yl-phenyl-methanone The amount of isopropanol was 10.2 ml, the amount of potassium t-butoxide was 4.8 ml (0.48 mmol) as a 0.1 M isopropanol solution, and RuCl 2 {(S) -binap} {(R) -dmapen } Was changed to 14.4 mg (15 μmol, S / C = 1,000) and reacted in the same manner as in Example 1, and the resulting crude product was purified. As a result, the production ratio of diastereomer> 99: 1, the isolation yield 99%, the optically active N-benzoyl-morpholin-2-yl-phenyl-methanol (retention time 36.4 min enantiomer) with 99% ee Body). This enantiomer was analyzed and found to be N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine.
実施例6
 N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンの製造
 N-ベンゾイル-モルホリン-2-イル-フェニル-メタノンの量を1.18g(4mmol、ラセミ体)に、イソプロパノールの量を2.7mlに、カリウムt-ブトキシドの量を0.1M イソプロパノール溶液として1.3ml(0.13mmol)に、およびRuCl2{(S)-p-tolbinap}{(R)-dmapen}の量を4.1mg(4μmol,S/C=1,000)に変えた以外は、実施例2と同じ手法で反応させ、得られた粗生成物を精製した。この結果、ジアステレオマーの生成比99:1、単離収率94%、98%eeで光学活性N-ベンゾイル-モルホリン-2-イル-フェニル-メタノール(リテンションタイム36.4分の鏡像異性体)を得た。この鏡像異性体は、分析の結果、N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンであることがわかった。
Example 6
Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine 1.18 g (4 mmol, racemic) of N-benzoyl-morpholin-2-yl-phenyl-methanone The amount of isopropanol to 2.7 ml, the amount of potassium t-butoxide to 1.3 ml (0.13 mmol) as a 0.1 M isopropanol solution, and RuCl 2 {(S) -p-tolbinap} {(R) -Dmapen} was reacted in the same manner as in Example 2 except that the amount was changed to 4.1 mg (4 μmol, S / C = 1,000), and the resulting crude product was purified. This resulted in an optically active N-benzoyl-morpholin-2-yl-phenyl-methanol (enantiomer with a retention time of 36.4 minutes) in a diastereomer formation ratio of 99: 1, an isolation yield of 94%, and 98% ee. ) This enantiomer was analyzed and found to be N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine.
実施例7
 N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンの製造
 N-ベンゾイル-モルホリン-2-イル-フェニル-メタノンの量を4.45g(15mmol、ラセミ体)に、イソプロパノールの量を20.9mlに、カリウムt-ブトキシドの量を0.1M イソプロパノール溶液として9.1ml(0.91mmol)に、およびRuCl2{(S)-binap}{(R)-dmapen}の量を2.9mg(3μmol,S/C=5,000)に変えた以外は、実施例1と同じ手法で反応させ、得られた粗生成物を精製した。この結果、ジアステレオマーの生成比>99:1、単離収率99%、99%eeで光学活性N-ベンゾイル-モルホリン-2-イル-フェニル-メタノール(リテンションタイム36.4分の鏡像異性体)を得た。この鏡像異性体の比旋光度は[α]D=+27.9(c=2.53,CHCl3)を示した。この鏡像異性体は、分析の結果、N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンであることがわかった。
Example 7
Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine 4.45 g (15 mmol, racemate) of N-benzoyl-morpholin-2-yl-phenyl-methanone The amount of isopropanol to 20.9 ml, the amount of potassium t-butoxide to 9.1 ml (0.91 mmol) as a 0.1 M isopropanol solution, and RuCl 2 {(S) -binap} {(R) -dmapen } Was changed to 2.9 mg (3 μmol, S / C = 5,000) in the same manner as in Example 1, and the resulting crude product was purified. As a result, the production ratio of diastereomer> 99: 1, the isolation yield 99%, the optically active N-benzoyl-morpholin-2-yl-phenyl-methanol (retention time 36.4 min enantiomer) with 99% ee Body). The specific rotation of this enantiomer was [α] D = + 27.9 (c = 2.53, CHCl 3 ). This enantiomer was analyzed and found to be N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine.
実施例8
 N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンの製造
 N-ベンゾイル-モルホリン-2-イル-フェニル-メタノンの量を4.45g(15mmol、ラセミ体)に、イソプロパノールの量を10.4mlに、カリウムt-ブトキシドの量を0.1M イソプロパノール溶液として4.6ml(0.46mmol)に、およびRuCl2{(S)-binap}{(R)-dmapen}の量を3.0mg(3μmol,S/C=5,000)に変え、且つ水素圧を50気圧に変えた以外は実施例1と同じ手法で反応させ、得られた粗生成物を精製した。この結果、ジアステレオマーの生成比99:1、単離収率98%、98%eeで光学活性N-ベンゾイル-モルホリン-2-イル-フェニル-メタノール(リテンションタイム36.4分の鏡像異性体)を得た。この鏡像異性体は、分析の結果、N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンであることがわかった。
Example 8
Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine 4.45 g (15 mmol, racemate) of N-benzoyl-morpholin-2-yl-phenyl-methanone The amount of isopropanol to 10.4 ml, the amount of potassium t-butoxide to 4.6 ml (0.46 mmol) as a 0.1 M isopropanol solution, and RuCl 2 {(S) -binap} {(R) -dmapen } Was changed to 3.0 mg (3 μmol, S / C = 5,000), and the reaction was carried out in the same manner as in Example 1 except that the hydrogen pressure was changed to 50 atm. The resulting crude product was purified. did. This resulted in an optically active N-benzoyl-morpholin-2-yl-phenyl-methanol (enantiomer with a retention time of 36.4 minutes) in a diastereomer formation ratio of 99: 1, an isolated yield of 98%, and 98% ee. ) This enantiomer was analyzed and found to be N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine.
実施例9
 N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンの製造
 RuCl2{(S)-binap}{(R)-dmapen}を、RuCl2{(S)-binap}{(S,S)-dpen}(S/C=100)に替えた以外は実施例1と同じ手法で反応させ、得られた粗生成物を精製した。この結果、ジアステレオマーの生成比95:5、単離収率96%、62%eeで光学活性N-ベンゾイル-モルホリン-2-イル-フェニル-メタノール(リテンションタイム36.4分の鏡像異性体)を得た。この鏡像異性体は、分析の結果、N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンであることがわかった。
Example 9
Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine RuCl 2 {(S) -binap} {(R) -dmapen} is converted to RuCl 2 {(S)- The resulting crude product was purified by reacting in the same manner as in Example 1 except that binap} {(S, S) -dpen} (S / C = 100) was used. As a result, the optically active N-benzoyl-morpholin-2-yl-phenyl-methanol (enantiomer with a retention time of 36.4 minutes) was obtained with a diastereomer formation ratio of 95: 5, an isolation yield of 96%, and 62% ee. ) This enantiomer was analyzed and found to be N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine.
実施例10
 N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンの製造
 RuCl2{(S)-binap}{(R)-dmapen}を、RuCl2{(S)-p-tolbinap}{(S,S)-dpen}(S/C=100)に替えた以外は実施例1と同じ手法で反応させ、得られた粗生成物を精製した。この結果、ジアステレオマーの生成比93:7、単離収率93%の収率、64%eeで光学活性N-ベンゾイル-モルホリン-2-イル-フェニル-メタノール(リテンションタイム36.4分の鏡像異性体)を得た。この鏡像異性体は、分析の結果、N-ベンゾイル-(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-モルホリンであることがわかった。
Example 10
Preparation of N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine RuCl 2 {(S) -binap} {(R) -dmapen} is converted to RuCl 2 {(S)- The reaction was performed in the same manner as in Example 1 except that p-tolbinap} {(S, S) -dpen} (S / C = 100) was used, and the resulting crude product was purified. As a result, the optically active N-benzoyl-morpholin-2-yl-phenyl-methanol (retention time of 36.4 minutes) was obtained at a diastereomer production ratio of 93: 7, an isolated yield of 93%, and a yield of 64% ee. Enantiomers). This enantiomer was analyzed and found to be N-benzoyl- (2S) -2-[(R) -hydroxy-phenyl-methyl] -morpholine.
実施例11
 N-ベンゾイル-(2R)-2-[(S)-ヒドロキシ-フェニル-メチル]-モルホリンの製造
 RuCl2{(S)-binap}{(R)-dmapen}を、RuCl2{(S)-xylbinap}{(S,S)-dpen}(S/C=100)に替えた以外は実施例1と同じ手法で反応させ、得られた粗生成物を精製した。この結果、ジアステレオマーの生成比95:5、単離収率94%、33%eeで光学活性N-ベンゾイル-モルホリン-2-イル-フェニル-メタノール(実施例1と逆の鏡像異性体)を得た。この鏡像異性体は、分析の結果、N-ベンゾイル-(2R)-2-[(S)-ヒドロキシ-フェニル-メチル]-モルホリンであることがわかった。
Example 11
Preparation of N-benzoyl- (2R) -2-[(S) -hydroxy-phenyl-methyl] -morpholine RuCl 2 {(S) -binap} {(R) -dmapen} is converted to RuCl 2 {(S)- The reaction was performed in the same manner as in Example 1 except that xylbinap} {(S, S) -dpen} (S / C = 100) was used, and the resulting crude product was purified. As a result, an optically active N-benzoyl-morpholin-2-yl-phenyl-methanol (enantiomer opposite to that in Example 1) was produced with a diastereomer production ratio of 95: 5, an isolation yield of 94%, and 33% ee. Got. This enantiomer was analyzed and found to be N-benzoyl- (2R) -2-[(S) -hydroxy-phenyl-methyl] -morpholine.
実施例12
 N-t-ブトキシカルボニル(3S)-3-[(S)-ヒドロキシ-フェニル-メチル]-ピペリジンの製造
Example 12
Preparation of Nt-butoxycarbonyl (3S) -3-[(S) -hydroxy-phenyl-methyl] -piperidine
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 アルゴン雰囲気下、オートクレーブに、N-t-ブトキシカルボニル-ピペリジン-3-イル-フェニル-メタノン8.68g(30mmol、ラセミ体)、イソプロパノール29.1ml、カリウムt-ブトキシドを1.0M イソプロパノール溶液として0.91ml(0.91mmol)、およびRuCl2{(S)-binap}{(R)-dmapen}2.9mg(3μmol,S/C=10,000)を添加した。脱気操作後、水素を10気圧まで圧入し、25℃で20時間撹拌しながら反応させた。得られた粗生成物をHPLC(GL Science Inertsil ODS-3(25cm) アセトニトリル/水/ドデシル硫酸ナトリウム/10%リン酸=600ml/400ml/9g/1ml, 1ml/分,40℃,ジアステレオマーのリテンションタイム 8.9分,10.2分)で分析したところ、ジアステレオマーの生成比は>99:1であった。粗生成物を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、光学活性N-t-ブトキシカルボニル-ピペリジン-3-イル-フェニル-メタノール8.77g(30.0mmol)を100%の収率で得た。鏡像異性体過剰率をHPLC(Daicel Chiralpack AD-H (25cm),ヘキサン/イソプロパノール/エタノール=97/2/1,1ml/分,20℃,鏡像異性体のリテンションタイム24.7分 および32.5分)により分析したところ>99%ee(リテンションタイム32.5分の鏡像異性体)であった。また、この鏡像異性体の比旋光度は[α]D=-30.0(c=1.04,MeOH)を示した。この鏡像異性体は、分析の結果、N-t-ブトキシカルボニル(3S)-3-[(S)-ヒドロキシ-フェニル-メチル]-ピペリジンであることがわかった。 Under an argon atmosphere, the autoclave was charged with Nt-butoxycarbonyl-piperidin-3-yl-phenyl-methanone 8.68 g (30 mmol, racemate), isopropanol 29.1 ml, potassium t-butoxide as a 1.0 M isopropanol solution. .91 ml (0.91 mmol) and RuCl 2 {(S) -binap} {(R) -dmapen} 2.9 mg (3 μmol, S / C = 10,000) were added. After the deaeration operation, hydrogen was injected to 10 atm, and the reaction was allowed to proceed with stirring at 25 ° C. for 20 hours. The obtained crude product was purified by HPLC (GL Science Inertsil ODS-3 (25 cm) acetonitrile / water / sodium dodecyl sulfate / 10% phosphoric acid = 600 ml / 400 ml / 9 g / 1 ml, 1 ml / min, 40 ° C., diastereomeric Analysis with retention times (8.9 minutes, 10.2 minutes) showed a diastereomer formation ratio> 99: 1. The crude product was concentrated and purified by silica gel column chromatography to obtain 8.77 g (30.0 mmol) of optically active Nt-butoxycarbonyl-piperidin-3-yl-phenyl-methanol in 100% yield. . Enantiomeric excess was determined by HPLC (Daicel Chiralpack AD-H (25 cm), hexane / isopropanol / ethanol = 97/2/1, 1 ml / min, 20 ° C., enantiomer retention time 24.7 min and 32.5 Min), it was> 99% ee (enantiomer with a retention time of 32.5 minutes). The specific rotation of this enantiomer was [α] D = −30.0 (c = 1.04, MeOH). The enantiomer was analyzed and found to be Nt-butoxycarbonyl (3S) -3-[(S) -hydroxy-phenyl-methyl] -piperidine.
実施例13
 N-t-ブトキシカルボニル(3S)-3-[(S)-ヒドロキシ-フェニル-メチル]-ピペリジンの製造
 N-t-ブトキシカルボニル-ピペリジン-3-イル-フェニル-メタノンの量を11.57g(40mmol、ラセミ体)に、イソプロパノールの量を38.8mlに、カリウム-t-ブトキシドの量を1.0M イソプロパノール溶液として1.2ml(1.2mmol)に、RuCl2{(S)-binap}{(R)-dmapen}の量を1.9mg(2μmol,S/C=20,000)に変え、且つ水素圧を50気圧に変えた以外は実施例12と同じ手法で反応させ、得られた粗生成物を精製した。この結果、ジアステレオマーの生成比>99:1、単離収率97%、>99%eeでN-t-ブトキシカルボニル(3S)-3-[(S)-ヒドロキシ-フェニル-メチル]-ピペリジンを得た。
Example 13
Preparation of Nt-butoxycarbonyl (3S) -3-[(S) -hydroxy-phenyl-methyl] -piperidine The amount of Nt-butoxycarbonyl-piperidin-3-yl-phenyl-methanone was 11.57 g ( 40 mmol, racemate), the amount of isopropanol to 38.8 ml, the amount of potassium t-butoxide to 1.2 ml (1.2 mmol) as a 1.0 M isopropanol solution, RuCl 2 {(S) -binap} { The amount of (R) -dmapen} was changed to 1.9 mg (2 μmol, S / C = 20,000), and the reaction was performed in the same manner as in Example 12 except that the hydrogen pressure was changed to 50 atm. The crude product was purified. As a result, Nt-butoxycarbonyl (3S) -3-[(S) -hydroxy-phenyl-methyl]-in a diastereomer formation ratio> 99: 1, isolation yield 97%,> 99% ee Piperidine was obtained.
実施例14
 N-t-ブトキシカルボニル(3S)-3-[(S)-ヒドロキシ-(2-クロロ-フェニル)-メチル]-ピペリジンの製造
Example 14
Preparation of Nt-butoxycarbonyl (3S) -3-[(S) -hydroxy- (2-chloro-phenyl) -methyl] -piperidine
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 アルゴン雰囲気下、オートクレーブに、N-t-ブトキシカルボニル-ピペリジン-3-イル-3-クロロ-フェニルメタノン4.86g(15mmol、ラセミ体)、イソプロパノール14.5ml、カリウムt-ブトキシドを1.0M イソプロパノール溶液として0.46ml(0.46mmol)、およびRuCl2{(S)-binap}{(R)-dmapen}2.9mg(3μmol,S/C=5,000)を添加した。脱気操作後、水素を10気圧まで圧入し、25℃で20時間撹拌しながら反応させた。得られた粗生成物をHPLC(実施例12と同じ条件,ジアステレオマーのリテンションタイム 12.2分, 14.8分)で分析したところジアステレオマーの生成比は>99:1であった。粗生成物を濃縮後、シリカゲルカラムクロマトグラフィーで精製し光学活性N-t-ブトキシカルボニル-ピペリジン-3-イル-3-クロロ-フェニルメタノール4.81g(14.9mmol)を99%の収率で得た。鏡像異性体過剰率をHPLC(Daicel Chiralpack AD-H (25cm), ヘキサン/イソプロパノール/エタノール=98/1/1,1ml/分,20℃,鏡像異性体のリテンションタイム30.7分 および38.2分)により分析したところ>99%ee(リテンションタイム38.2分の鏡像異性体)であった。また、この鏡像異性体の比旋光度は[α]D=-25.0(c=1.01, MeOH)を示した。この鏡像異性体は、分析の結果、N-t-ブトキシカルボニル(3S)-3-[(S)-ヒドロキシ-(2-クロロ-フェニル)-メチル]-ピペリジンであることがわかった。 In an autoclave under an argon atmosphere, 4.86 g (15 mmol, racemate) of Nt-butoxycarbonyl-piperidin-3-yl-3-chloro-phenylmethanone, 14.5 ml of isopropanol, and 1.0 M of potassium t-butoxide. 0.46 ml (0.46 mmol) as an isopropanol solution and 2.9 mg (3 μmol, S / C = 5,000) of RuCl 2 {(S) -binap} {(R) -dmapen} were added. After the deaeration operation, hydrogen was injected to 10 atm, and the reaction was allowed to proceed with stirring at 25 ° C. for 20 hours. The crude product thus obtained was analyzed by HPLC (same conditions as in Example 12, retention time of diastereomer 12.2 minutes, 14.8 minutes). The production ratio of diastereomer was> 99: 1. . The crude product was concentrated and purified by silica gel column chromatography, and 4.81 g (14.9 mmol) of optically active Nt-butoxycarbonyl-piperidin-3-yl-3-chloro-phenylmethanol was obtained in a yield of 99%. Obtained. The enantiomeric excess was determined by HPLC (Daicel Chiralpack AD-H (25 cm), hexane / isopropanol / ethanol = 98/1/1, 1 ml / min, 20 ° C., enantiomer retention time 30.7 min and 38.2. Min), it was> 99% ee (enantiomer of retention time 38.2 min). The specific rotation of this enantiomer was [α] D = -25.0 (c = 1.01, MeOH). As a result of analysis, this enantiomer was found to be Nt-butoxycarbonyl (3S) -3-[(S) -hydroxy- (2-chloro-phenyl) -methyl] -piperidine.
実施例15
 N-t-ブトキシカルボニル(3S)-3-[(S)-ヒドロキシ-(2-チエニル)-メチル]-ピペリジンの製造
Example 15
Preparation of Nt-butoxycarbonyl (3S) -3-[(S) -hydroxy- (2-thienyl) -methyl] -piperidine
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 アルゴン雰囲気下、オートクレーブに、N-t-ブトキシカルボニル-ピペリジン-3-イル-2-チエニル-メタノン1.18g(4mmol、ラセミ体)、イソプロパノール5.4ml、カリウムt-ブトキシドを0.1M イソプロパノール溶液として2.6ml(0.26mmol)、およびRuCl2{(S)-binap}{(R)-dmapen}7.8mg(8.1μmol,S/C=500)を添加した。脱気操作後、水素を10気圧まで圧入し、25℃で20時間撹拌しながら反応させた。得られた粗生成物をHPLC(GL Science Inertsil ODS-3(25cm) アセトニトリル/水/ドデシル硫酸ナトリウム/10%リン酸=600ml/400ml/8g/1ml, 1ml/分,40℃,ジアステレオマーのリテンションタイム 8.2分,9.2分)ジアステレオマーの生成比は>99:1であった。粗生成物を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、光学活性N-t-ブトキシカルボニル-ピペリジン-3-イル-2-チエニル-メタノール1.12g(3.8mmol)を95%の収率で得た。鏡像異性体過剰率をHPLC(Daicel Chiralpack AD-H (25cm), ヘキサン/イソプロパノール/エタノール=92/3/5,1ml/分,20℃,鏡像異性体のリテンションタイム10.5分 および13.1分)により分析したところ99%ee(リテンションタイム13.1分の鏡像異性体)であった。また、この鏡像異性体の比旋光度は[α]D=+7.7(c=1.05, MeOH)を示した。この鏡像異性体は、分析の結果、N-t-ブトキシカルボニル(3S)-3-[(S)-ヒドロキシ-(2-チエニル)-メチル]-ピペリジンであることがわかった。 In an autoclave under an argon atmosphere, 1.18 g (4 mmol, racemate) of Nt-butoxycarbonyl-piperidin-3-yl-2-thienyl-methanone, 5.4 ml of isopropanol, 0.1M isopropanol solution of potassium t-butoxide 2.6 ml (0.26 mmol), and RuCl 2 {(S) -binap} {(R) -dmapen} 7.8 mg (8.1 μmol, S / C = 500) were added. After the deaeration operation, hydrogen was injected to 10 atm, and the reaction was allowed to proceed with stirring at 25 ° C. for 20 hours. The resulting crude product was purified by HPLC (GL Science Inertsil ODS-3 (25 cm) acetonitrile / water / sodium dodecyl sulfate / 10% phosphoric acid = 600 ml / 400 ml / 8 g / 1 ml, 1 ml / min, 40 ° C., diastereomeric Retention time 8.2 minutes, 9.2 minutes) The production ratio of diastereomers was> 99: 1. The crude product was concentrated and purified by silica gel column chromatography. 1.12 g (3.8 mmol) of optically active Nt-butoxycarbonyl-piperidin-3-yl-2-thienyl-methanol was obtained in a yield of 95%. Obtained. Enantiomeric excess was determined by HPLC (Daicel Chiralpack AD-H (25 cm), hexane / isopropanol / ethanol = 92/3/5, 1 ml / min, 20 ° C., retention time of enantiomers 10.5 min and 13.1. Min) was 99% ee (enantiomer with a retention time of 13.1 min). The specific rotation of this enantiomer was [α] D = + 7.7 (c = 1.05, MeOH). As a result of analysis, this enantiomer was found to be Nt-butoxycarbonyl (3S) -3-[(S) -hydroxy- (2-thienyl) -methyl] -piperidine.
実施例16
 N-t-ブトキシカルボニル(3S)-3-[(S)-ヒドロキシ-(2-チエニル)-メチル]-ピペリジンの製造
 RuCl2{(S)-binap}{(R)-dmapen}を、RuCl2{(S)-p-tolbinap}{(R)-dmapen}(S/C=500)に替えた以外は実施例15と同じ手法で反応させ、得られた粗生成物を精製した。この結果、ジアステレオマーの生成比>99:1、単離収率99%、95%eeで光学活性N-t-ブトキシカルボニル-ピペリジン-3-イル-2-チエニル-メタノールを得た。この鏡像異性体は、分析の結果、N-t-ブトキシカルボニル(3S)-3-[(S)-ヒドロキシ-(2-チエニル)-メチル]-ピペリジンであることがわかった。
Example 16
Preparation of Nt-butoxycarbonyl (3S) -3-[(S) -hydroxy- (2-thienyl) -methyl] -piperidine RuCl 2 {(S) -binap} {(R) -dmapen} is replaced by RuCl 2 The reaction was performed in the same manner as in Example 15 except that {(S) -p-tolbinap} {(R) -dmapen} (S / C = 500) was used, and the resulting crude product was purified. As a result, an optically active Nt-butoxycarbonyl-piperidin-3-yl-2-thienyl-methanol was obtained with a diastereomer production ratio> 99: 1, an isolation yield of 99%, and 95% ee. As a result of analysis, this enantiomer was found to be Nt-butoxycarbonyl (3S) -3-[(S) -hydroxy- (2-thienyl) -methyl] -piperidine.
実施例17
 (1R,8aR)-1-フェニル-ヒドロキシ-オキサゾロ-[3,4-a]ピリジン-3-オンの製造
Example 17
Preparation of (1R, 8aR) -1-phenyl-hydroxy-oxazolo- [3,4-a] pyridin-3-one
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 アルゴン雰囲気下、オートクレーブに、N-t-ブトキシカルボニル-ピペリジン-2-イル-フェニル-メタノン1.18g(4.0mmol、ラセミ体)、イソプロパノール2.7ml、カリウムt-ブトキシドを0.1M イソプロパノール溶液として1.3ml(0.13mmol)、およびRuCl2{(S)-binap}{(R)-dmapen}3.8mg(4μmol,S/C=1,000)を添加した。脱気操作後、水素を10気圧まで圧入し、25℃で20時間撹拌しながら反応させた。得られた粗生成物をHPLC(実施例1と同条件、ジアステレオマーのリテンションタイム 13.0分,15.3分)で分析したところ、ジアステレオマーの生成比は>99:1であった。粗生成物を濃縮後、シリカゲルカラムクロマトグラフィーで精製したところ、光学活性1-フェニル-ヘキサヒドロ-オキサゾロ-[3,4-a]ピリジン-3-オン0.888g(4.0mmol)が100%の収率で得られた。鏡像異性体過剰率をHPLC(Daicel Chiralcel OD-H (25cm), ヘキサン/エタノール=95/5,1.0ml/分,20℃,鏡像異性体のリテンションタイム16.6分 および31.2分)により分析したところ96.7%ee (リテンションタイム31.2分の異性体)であった。また、この鏡像異性体の比旋光度は[α]D=+9.6(c=1.20, MeOH)を示した。この鏡像異性体は、分析の結果、(1R,8aR)-1-フェニル-ヒドロキシ-オキサゾロ-[3,4-a]ピリジン-3-オンであることがわかった。 In an autoclave under an argon atmosphere, 1.18 g of Nt-butoxycarbonyl-piperidin-2-yl-phenyl-methanone (4.0 mmol, racemate), 2.7 ml of isopropanol, 0.1 M isopropanol solution of potassium t-butoxide 1.3 ml (0.13 mmol) and RuCl 2 {(S) -binap} {(R) -dmapen} 3.8 mg (4 μmol, S / C = 1,000) were added. After the deaeration operation, hydrogen was injected to 10 atm, and the reaction was allowed to proceed with stirring at 25 ° C. for 20 hours. The obtained crude product was analyzed by HPLC (same conditions as in Example 1, retention time of diastereomer 13.0 minutes, 15.3 minutes). The production ratio of diastereomer was> 99: 1. It was. The crude product was concentrated and purified by silica gel column chromatography. As a result, 0.888 g (4.0 mmol) of optically active 1-phenyl-hexahydro-oxazolo- [3,4-a] pyridin-3-one was 100%. Obtained in yield. Enantiomeric excess was determined by HPLC (Daicel Chiralcel OD-H (25 cm), hexane / ethanol = 95/5, 1.0 ml / min, 20 ° C., enantiomer retention times 16.6 min and 31.2 min) Was 96.7% ee (isomer with a retention time of 31.2 minutes). The specific rotation of this enantiomer was [α] D = + 9.6 (c = 1.20, MeOH). As a result of analysis, this enantiomer was found to be (1R, 8aR) -1-phenyl-hydroxy-oxazolo- [3,4-a] pyridin-3-one.
実施例18
 (1R,8aR)-1-フェニル-ヒドロキシ-オキサゾロ-[3,4-a]ピリジン-3-オンの製造
 RuCl2{(S)-binap}{(R)-dmapen}を、RuCl2{(S)-p-tolbinap}{(R)-dmapen}(S/C=500)に替えた以外は実施例17と同じ手法で反応させ、得られた粗生成物を精製した。この結果、ジアステレオマーの生成比>99:1、単離収率98%、87%eeで光学活性1-フェニル-ヘキサヒドロ-オキサゾロ-[3,4-a]ピリジン-3-オンを得た。この鏡像異性体は、分析の結果、(1R,8aR)-1-フェニル-ヒドロキシ-オキサゾロ-[3,4-a]ピリジン-3-オンであることがわかった。
Example 18
Preparation of (1R, 8aR) -1-phenyl-hydroxy-oxazolo- [3,4-a] pyridin-3-one RuCl 2 {(S) -binap} {(R) -dmapen} is converted to RuCl 2 {( S) -p-tolbinap} {(R) -dmapen} (S / C = 500) was used for the reaction in the same manner as in Example 17, and the resulting crude product was purified. As a result, an optically active 1-phenyl-hexahydro-oxazolo- [3,4-a] pyridin-3-one was obtained with a production ratio of diastereomer> 99: 1, an isolation yield of 98%, and 87% ee. . As a result of analysis, this enantiomer was found to be (1R, 8aR) -1-phenyl-hydroxy-oxazolo- [3,4-a] pyridin-3-one.
実施例19
 N-ベンゾイル (2R)-2-[(R)-ヒドロキシ-フェニル-メチル]-ピペリジンの製造
Example 19
Preparation of N-benzoyl (2R) -2-[(R) -hydroxy-phenyl-methyl] -piperidine
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 アルゴン雰囲気下、オートクレーブに、N-ベンゾイル-ピペリジン-2-イル-フェニル-メタノン0.880g(3mmol、ラセミ体)、イソプロパノール2.2ml、カリウム-t-ブトキシドを0.1M イソプロパノール溶液として2.1ml(0.21mmol)、およびRuCl2{(S)-binap}{(R)-dmapen} 14.4mg(15μmol,S/C=200)を添加した。脱気操作後、水素を10気圧まで圧入し、25℃で20時間撹拌しながら反応させた。得られた粗生成物をHPLC(GL Science Inertsil ODS-3(25cm) アセトニトリル/水/ドデシル硫酸ナトリウム/10%リン酸=400ml/600ml/8g/1ml, 1ml/分,40℃,ジアステレオマーのリテンションタイム 5.0分,6.3分)ジアステレオマーの生成比は>99:1であった。粗生成物を濃縮後、シリカゲルカラムクロマトグラフィーで精製したところ、光学活性N-ベンゾイル-ピペリジン-2-イル-フェニル-メタノール0.834g(2.85mmol)が95%の収率で得られた。鏡像異性体過剰率をHPLC(Daicel Chiralpack AD-H (25cm), ヘキサン/エタノール/イソプロパノール=85/10/5 1.0ml/分,20℃,鏡像異性体のリテンションタイム18.0分 および21.4分)により分析したところ96%ee(リテンションタイム18.0分の鏡像異性体)であった。また、この鏡像異性体の比旋光度は[α]D=-118.5(c=1.10, MeOH)を示した。この鏡像異性体は、分析の結果、N-ベンゾイル (2R)-2-[(R)-ヒドロキシ-フェニル-メチル]-ピペリジンであることがわかった。 In an autoclave under an argon atmosphere, 0.880 g (3 mmol, racemate) of N-benzoyl-piperidin-2-yl-phenyl-methanone, 2.2 ml of isopropanol, and 2.1 ml of potassium t-butoxide as a 0.1 M isopropanol solution. (0.21 mmol) and RuCl 2 {(S) -binap} {(R) -dmapen} 14.4 mg (15 μmol, S / C = 200) were added. After the deaeration operation, hydrogen was injected to 10 atm, and the reaction was allowed to proceed with stirring at 25 ° C. for 20 hours. The obtained crude product was purified by HPLC (GL Science Inertsil ODS-3 (25 cm) acetonitrile / water / sodium dodecyl sulfate / 10% phosphoric acid = 400 ml / 600 ml / 8 g / 1 ml, 1 ml / min, 40 ° C., diastereomeric Retention time 5.0 min, 6.3 min) The production ratio of diastereomers was> 99: 1. The crude product was concentrated and purified by silica gel column chromatography to obtain 0.834 g (2.85 mmol) of optically active N-benzoyl-piperidin-2-yl-phenyl-methanol in a yield of 95%. Enantiomeric excess was determined by HPLC (Daicel Chiralpack AD-H (25 cm), hexane / ethanol / isopropanol = 85/10/5 1.0 ml / min, 20 ° C., enantiomeric retention time 18.0 min and 21. 4 min), it was 96% ee (enantiomer with a retention time of 18.0 min). The specific rotation of this enantiomer was [α] D = −118.5 (c = 1.10, MeOH). This enantiomer was analyzed and found to be N-benzoyl (2R) -2-[(R) -hydroxy-phenyl-methyl] -piperidine.
実施例20
 N-ベンゾイル (2R)-2-[(R)-ヒドロキシ-フェニル-メチル]-ピロリジンの製造
Example 20
Preparation of N-benzoyl (2R) -2-[(R) -hydroxy-phenyl-methyl] -pyrrolidine
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 アルゴン雰囲気下、オートクレーブに、N-ベンゾイル-ピロリジン-2-イル-フェニル-メタノン1.11g(4mmol、ラセミ体)、イソプロパノール3.9ml、ジクロロメタン1.3ml、カリウム-t-ブトキシドを0.1M イソプロパノール溶液として2.8ml(0.28mmol)、およびRuCl2{(S)-binap}{(R)-dmapen} 19.1mg(20μmol,S/C=200)を添加した。脱気操作後、水素を10気圧まで圧入し、25℃で20時間撹拌しながら反応させた。得られた粗生成物をHPCL(YMC-Pack SIL (25cm), ヘキサン/エタノール=98/2,ジアステレオマーのリテンションタイム15.9分および22.5分)で分析したところのジアステレオマーの生成比は98:2であった。粗生成物を濃縮後、シリカゲルカラムクロマトグラフィーで精製したところ、光学活性N-ベンゾイル-ピペリジン-2-イル-フェニル-メタノール1.10g(39mmol)が98%の収率で得られた。鏡像異性体過剰率をHPLC(Daicel Chiralpack AD-H (25cm), ヘキサン/エタノール/イソプロパノール=85/10/5, 1.0ml/分,20℃,鏡像異性体のリテンションタイム35.0分および42.8分)により分析したところ94%ee(リテンションタイム35.0分の鏡像異性体)であった。この鏡像異性体は、分析の結果、N-ベンゾイル (2R)-2-[(R)-ヒドロキシ-フェニル-メチル]-ピロリジンであることがわかった。 In an autoclave under an argon atmosphere, 1.11 g (4 mmol, racemate) of N-benzoyl-pyrrolidin-2-yl-phenyl-methanone, 3.9 ml of isopropanol, 1.3 ml of dichloromethane, 0.1M isopropanol of potassium tert-butoxide As a solution, 2.8 ml (0.28 mmol) and RuCl 2 {(S) -binap} {(R) -dmapen} 19.1 mg (20 μmol, S / C = 200) were added. After the deaeration operation, hydrogen was injected to 10 atm, and the reaction was allowed to proceed with stirring at 25 ° C. for 20 hours. The obtained crude product was analyzed by HPCL (YMC-Pack SIL (25 cm), hexane / ethanol = 98/2, retention time of diastereomer 15.9 minutes and 22.5 minutes). The production ratio was 98: 2. The crude product was concentrated and purified by silica gel column chromatography to obtain 1.10 g (39 mmol) of optically active N-benzoyl-piperidin-2-yl-phenyl-methanol in a yield of 98%. Enantiomeric excess was determined by HPLC (Daicel Chiralpack AD-H (25 cm), hexane / ethanol / isopropanol = 85/10/5, 1.0 ml / min, 20 ° C., enantiomeric retention times 35.0 min and 42 .8 minutes) and 94% ee (enantiomer with a retention time of 35.0 minutes). This enantiomer was analyzed and found to be N-benzoyl (2R) -2-[(R) -hydroxy-phenyl-methyl] -pyrrolidine.
実施例21
 (2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-テトラヒドロフランの製造
Example 21
Preparation of (2S) -2-[(R) -hydroxy-phenyl-methyl] -tetrahydrofuran
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 アルゴン雰囲気下、オートクレーブに、フェニル-(テトラヒドロフラン-2-イル)-メタノン0.529g(3mmol、ラセミ体)、イソプロパノール1.98ml、カリウム-t-ブトキシドを0.1M イソプロパノール溶液として1.02ml(0.102mmol)、およびRuCl2{(S)-binap}{(R)-dmapen}5.8mg(6μmol,S/C=500)を添加した。脱気操作後、水素を10気圧まで圧入し、25℃で20時間撹拌しながら反応させた。得られた粗生成物をガスクロマトグラフィー(β-DEX 120(30m×0.25μm)、120℃、20分、5℃/分、150℃、60分、キャリアガス:ヘリウム (100kPa)、検出器:FID、4つの異性体のリテンションタイム54.1分、55.1分、56.6分、58.3分)ジアステレオマーの生成比は95:5であった。粗生成物を濃縮後、シリカゲルカラムクロマトグラフィーで精製したところ、光学活性フェニル-(テトラヒドロフラン-2-イル)-メタノール0.491mg(2.76mmol)が92%の収率で得られた。鏡像異性体過剰率を上記と同条件のガスクロマトグラフィーで分析したとろ99%ee(リテンションタイム58.3分の鏡像異性体)であった。この鏡像異性体は、分析の結果、(2S)-2-[(R)-ヒドロキシ-フェニル-メチル]-テトラヒドロフランであることがわかった。 Under an argon atmosphere, an autoclave was charged with 0.529 g (3 mmol, racemate) of phenyl- (tetrahydrofuran-2-yl) -methanone, 1.98 ml of isopropanol, and 1.02 ml (0) of a 0.1M isopropanol solution of potassium tert-butoxide. .102 mmol), and RuCl 2 {(S) -binap} {(R) -dmapen} 5.8 mg (6 μmol, S / C = 500) were added. After the deaeration operation, hydrogen was injected to 10 atm, and the reaction was allowed to proceed with stirring at 25 ° C. for 20 hours. The obtained crude product was subjected to gas chromatography (β-DEX 120 (30 m × 0.25 μm), 120 ° C., 20 minutes, 5 ° C./minute, 150 ° C., 60 minutes, carrier gas: helium (100 kPa), detector. : FID, retention times of 4 isomers 54.1 min, 55.1 min, 56.6 min, 58.3 min) The production ratio of diastereomers was 95: 5. The crude product was concentrated and purified by silica gel column chromatography. As a result, 0.491 mg (2.76 mmol) of optically active phenyl- (tetrahydrofuran-2-yl) -methanol was obtained in a yield of 92%. When the enantiomeric excess was analyzed by gas chromatography under the same conditions as described above, it was 99% ee (enantiomer with a retention time of 58.3 minutes). This enantiomer was analyzed and found to be (2S) -2-[(R) -hydroxy-phenyl-methyl] -tetrahydrofuran.
実施例22
 N-t-ブトキシカルボニル-(3S)-3-[(S)-ヒドロキシ-フェニル-メチル-]-ピロリジンの製造
Example 22
Preparation of Nt-butoxycarbonyl- (3S) -3-[(S) -hydroxy-phenyl-methyl-]-pyrrolidine
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 アルゴン雰囲気下、オートクレーブに、N-ベンゾイル-ピロリジン-3-イル-フェニル-メタノン1.10g(4mmol、ラセミ体)、イソプロパノール2.7ml、カリウム-t-ブトキシドを0.1M イソプロパノール溶液として1.3ml(0.13mmol)、およびRuCl2{(S)-binap}{(R)-dmapen}3.8mg(4μmol,S/C=1,000)を添加した。脱気操作後、水素を10気圧まで圧入し、25℃で20時間撹拌しながら反応させた。得られた粗生成物をHPLC(実施例15と同条件,ジアステレオマーのリテンションタイム 8.4分,9.1分)で分析したところ、ジアステレオマーの生成比は75:25であった。粗生成物を濃縮後、シリカゲルカラムクロマトグラフィーで精製したところ、光学活性N-ベンゾイル-ピペリジン-2-イル-フェニル-メタノール0.833g(3.0mmol)が75%の収率で得られた。鏡像異性体過剰率をHPLC(Daicel Chiralpack AD-H (25cm), ヘキサン/イソプロパノール=90/10,1.0ml/分,20℃,鏡像異性体のリテンションタイム15.8分 および20.3分)により分析したところ98%ee(リテンションタイム15.8分の鏡像異性体)であった。この鏡像異性体は、分析の結果、N-t-ブトキシカルボニル-(3S)-3-[(S)-ヒドロキシ-フェニル-メチル-]-ピロリジンであることがわかった。 In an autoclave under an argon atmosphere, 1.10 g (4 mmol, racemate) of N-benzoyl-pyrrolidin-3-yl-phenyl-methanone, 2.7 ml of isopropanol, 1.3 ml of potassium tert-butoxide as a 0.1 M isopropanol solution. (0.13 mmol), and RuCl 2 {(S) -binap} {(R) -dmapen} 3.8 mg (4 μmol, S / C = 1,000) were added. After the deaeration operation, hydrogen was injected to 10 atm, and the reaction was allowed to proceed with stirring at 25 ° C. for 20 hours. When the obtained crude product was analyzed by HPLC (same conditions as in Example 15, diastereomer retention time 8.4 minutes, 9.1 minutes), the diastereomer production ratio was 75:25. . The crude product was concentrated and purified by silica gel column chromatography. As a result, 0.833 g (3.0 mmol) of optically active N-benzoyl-piperidin-2-yl-phenyl-methanol was obtained in a yield of 75%. Enantiomeric excess was determined by HPLC (Daicel Chiralpack AD-H (25 cm), hexane / isopropanol = 90/10, 1.0 ml / min, 20 ° C., enantiomer retention times 15.8 min and 20.3 min) Was 98% ee (enantiomer with a retention time of 15.8 minutes). This enantiomer was analyzed and found to be Nt-butoxycarbonyl- (3S) -3-[(S) -hydroxy-phenyl-methyl-]-pyrrolidine.
 本発明を詳細に説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2010年12月15日出願の日本特許出願2010-279412及び2011年4月18日出願の日本特許出願2011-092511に基づくものであり、その内容はここに参照として取り込まれる。また、明細書中に記載の文献の全ての内容も、参照として取り込まれる。
Although the present invention has been described in detail, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application 2010-279412 filed on December 15, 2010 and Japanese Patent Application 2011-092511 filed on April 18, 2011, the contents of which are incorporated herein by reference. Moreover, all the content of the literature described in the specification is also taken in as a reference.

Claims (6)

  1.  式(I)で表されるカルボニル化合物を、式(II)で表されるルテニウム化合物と塩基との存在下に水素化することを含む、式(IIIa)、式(IIIb)、式(IIIc)または式(IIId)で表される光学活性アルコール化合物のいずれかを製造する方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、
     Rは無置換の若しくは置換基を有するC6~10アリール基、無置換の若しくは置換基を有する5~8員環ヘテロアリール基、または無置換の若しくは置換基を有するビニル基を示す。
     Hetは無置換の若しくは置換基を有する3~8員ヘテロ環を示す。
     *は該炭素原子が不斉炭素であることを示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(II)中、XおよびYは、それぞれ独立に、水素原子、水酸基、テトラヒドロホウ酸、ハロゲン原子、C1~20アルコキシ基、またはC1~20アシルオキシ基を示す。
     Pxは光学活性若しくはラセミ体のホスフィン配位子を示す。
     nはPxの数を示し且つ1または2である。
     Aは光学活性若しくはラセミ体のジアミン配位子を示す。
     ただし、PxとAとの両方がラセミ体であることはない。)
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (式(IIIa)、式(IIIb)、式(IIIc)および式(IIId)中、RおよびHetは式(I)中のそれらと同じ意味を示す。)
    Hydrogenating the carbonyl compound represented by formula (I) in the presence of a ruthenium compound represented by formula (II) and a base, formula (IIIa), formula (IIIb), formula (IIIc) Alternatively, a method for producing any of the optically active alcohol compounds represented by the formula (IIId).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (I),
    R represents an unsubstituted or substituted C6-10 aryl group, an unsubstituted or substituted 5- to 8-membered heteroaryl group, or an unsubstituted or substituted vinyl group.
    Het represents an unsubstituted or substituted 3- to 8-membered heterocycle.
    * Indicates that the carbon atom is an asymmetric carbon. )
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (II), X and Y each independently represent a hydrogen atom, a hydroxyl group, a tetrahydroboric acid, a halogen atom, a C1-20 alkoxy group, or a C1-20 acyloxy group.
    Px represents an optically active or racemic phosphine ligand.
    n represents the number of Px and is 1 or 2.
    A represents an optically active or racemic diamine ligand.
    However, both Px and A are not racemic. )
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (In formula (IIIa), formula (IIIb), formula (IIIc) and formula (IIId), R and Het have the same meaning as in formula (I).)
  2.  式(I)中の、Hetが5~7員ヘテロ環である、請求項1に記載の製造方法。 The production method according to claim 1, wherein Het in the formula (I) is a 5- to 7-membered heterocycle.
  3.  式(II)中の、Aが、式(IIa)、式(IIb)、式(IIc)、式(IId)または式(IIe)で表される配位子である、請求項1または2に記載の製造方法。
     
       R1CH(NH2)CH2(NR23)       (IIa)
       R1CH(NR23)CH2(NH2)       (IIb)
       (H2N)HR4C-B-CHR4(NH2)     (IIc)
       R1CH(NH2)CR55(NH2)       (IId)
       R1CH(NH2)R1CH(NH2)        (IIe)
     
    (式(IIa)、式(IIb)、式(IIc)、式(IId)および式(IIe)中、
     R1は、無置換の若しくは置換基を有するC1~20アルキル基、無置換の若しくは置換基を有するC2~20アルケニル基、無置換の若しくは置換基を有するC3~8シクロアルキル基、無置換の若しくは置換基を有するC7~20アラルキル基、無置換の若しくは置換基を有するC6~10アリール基、または無置換の若しくは置換基を有する3~8員ヘテロ環基を示す。
     R2、R3およびR5は、それぞれ独立に、水素原子、無置換の若しくは置換基を有するC1~20アルキル基、無置換の若しくは置換基を有するC2~20アルケニル基、無置換の若しくは置換基を有するC3~8シクロアルキル基、または無置換の若しくは置換基を有するC7~20アラルキル基を示す。R2とR3は結合して環を形成してもよい。ただし、R2とR3との両方が水素原子であることはない。
     R4は、水素原子、無置換の若しくは置換基を有するC1~20アルキル基、無置換の若しくは置換基を有するC2~20アルケニル基、無置換の若しくは置換基を有するC3~8シクロアルキル基、無置換の若しくは置換基を有するC7~20アラルキル基、無置換の若しくは置換基を有するC6~10アリール基、または無置換の若しくは置換基を有する3~8員ヘテロ環基を示す。
     Bは、無置換の若しくは置換基を有するエチレン基、または無置換の若しくは置換基を有するヘテロ環の2価基を示す。Bが複数の置換基を有するエチレン基の場合、当該複数の置換基同士が結合して環を形成してもよい。)
    In Formula (II), A is a ligand represented by Formula (IIa), Formula (IIb), Formula (IIc), Formula (IId), or Formula (IIe). The manufacturing method as described.

    R 1 CH (NH 2 ) CH 2 (NR 2 R 3 ) (IIa)
    R 1 CH (NR 2 R 3 ) CH 2 (NH 2 ) (IIb)
    (H 2 N) HR 4 CB—CHR 4 (NH 2 ) (IIc)
    R 1 CH (NH 2 ) CR 5 R 5 (NH 2 ) (IId)
    R 1 CH (NH 2 ) R 1 CH (NH 2 ) (IIe)

    (In formula (IIa), formula (IIb), formula (IIc), formula (IId) and formula (IIe),
    R 1 is an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted C3-8 cycloalkyl group, an unsubstituted Or a substituted C7-20 aralkyl group, an unsubstituted or substituted C6-10 aryl group, or an unsubstituted or substituted 3- to 8-membered heterocyclic group.
    R 2 , R 3 and R 5 are each independently a hydrogen atom, an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted A C3-8 cycloalkyl group having a group, or an unsubstituted or substituted C7-20 aralkyl group. R 2 and R 3 may combine to form a ring. However, both R 2 and R 3 are not hydrogen atoms.
    R 4 represents a hydrogen atom, an unsubstituted or substituted C1-20 alkyl group, an unsubstituted or substituted C2-20 alkenyl group, an unsubstituted or substituted C3-8 cycloalkyl group, An unsubstituted or substituted C7-20 aralkyl group, an unsubstituted or substituted C6-10 aryl group, or an unsubstituted or substituted 3- to 8-membered heterocyclic group.
    B represents an unsubstituted or substituted ethylene group, or an unsubstituted or substituted heterocyclic divalent group. When B is an ethylene group having a plurality of substituents, the plurality of substituents may be bonded to form a ring. )
  4.  式(II)中、Pxが光学活性なホスフィン配位子である、請求項1~3いずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein Px in the formula (II) is an optically active phosphine ligand.
  5.  式(II)中、Pxが軸不斉を有する2座のホスフィン配位子である、請求項1~4いずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein, in the formula (II), Px is a bidentate phosphine ligand having axial asymmetry.
  6.  式(II)中、Aが光学活性なジアミン配位子である、請求項1~5のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein in the formula (II), A is an optically active diamine ligand.
PCT/JP2011/078816 2010-12-15 2011-12-13 Production method for optically active alcohol compound WO2012081585A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012548794A JP5616977B2 (en) 2010-12-15 2011-12-13 Method for producing optically active alcohol compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010279412 2010-12-15
JP2010-279412 2010-12-15
JP2011-092511 2011-04-18
JP2011092511 2011-04-18

Publications (1)

Publication Number Publication Date
WO2012081585A1 true WO2012081585A1 (en) 2012-06-21

Family

ID=46244684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078816 WO2012081585A1 (en) 2010-12-15 2011-12-13 Production method for optically active alcohol compound

Country Status (2)

Country Link
JP (1) JP5616977B2 (en)
WO (1) WO2012081585A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505336A (en) * 2017-02-21 2020-02-20 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Method for producing chiral pyrrolidin-2-yl-methanol derivative

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041997A1 (en) * 1999-01-18 2000-07-20 Nippon Soda Co., Ltd. Process for the preparation of optically active amino alcohols
WO2004007506A1 (en) * 2002-07-15 2004-01-22 Nippon Soda Co.,Ltd. Ruthenium compounds, diamine ligands, and process for preparation of optically active alcohols
JP2008515916A (en) * 2004-10-07 2008-05-15 ビテ ファーマシューティカルズ, インコーポレイテッド Diaminoalkane aspartic protease inhibitor
JP2009515893A (en) * 2005-11-14 2009-04-16 ビテ ファーマシューティカルズ, インコーポレイテッド Aspartic protease inhibitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041997A1 (en) * 1999-01-18 2000-07-20 Nippon Soda Co., Ltd. Process for the preparation of optically active amino alcohols
WO2004007506A1 (en) * 2002-07-15 2004-01-22 Nippon Soda Co.,Ltd. Ruthenium compounds, diamine ligands, and process for preparation of optically active alcohols
JP2008515916A (en) * 2004-10-07 2008-05-15 ビテ ファーマシューティカルズ, インコーポレイテッド Diaminoalkane aspartic protease inhibitor
JP2009515893A (en) * 2005-11-14 2009-04-16 ビテ ファーマシューティカルズ, インコーポレイテッド Aspartic protease inhibitor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 18, no. 20, 2008, pages 5550 - 5553 *
JOURNAL OF ORGANIC CHEMISTRY, vol. 73, no. 22, 2008, pages 9084 - 9093 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505336A (en) * 2017-02-21 2020-02-20 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Method for producing chiral pyrrolidin-2-yl-methanol derivative

Also Published As

Publication number Publication date
JPWO2012081585A1 (en) 2014-05-22
JP5616977B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
Frolov et al. Piperidine derivatives: recent advances in synthesis and pharmacological applications
Quan et al. The synthesis of chiral β-aryl-α, β-unsaturated amino alcohols via a Pd-catalyzed asymmetric allylic amination
Amat et al. Access to enantiopure 4-substituted 1, 5-aminoalcohols from phenylglycinol-derived δ-lactams: synthesis of Haliclona alkaloids
Reddy et al. CN-assisted oxidative cyclization of cyano cinnamates and styrene derivatives: a facile entry to 3-substituted chiral phthalides
Zhang et al. Squaramide-catalyzed asymmetric Mannich reactions between 3-fluorooxindoles and pyrazolinone ketimines
Zheng et al. One-pot asymmetric synthesis of 2-aryl-2, 3-dihydro-4-quinolones catalyzed by amino acid-derived sulfonamides
EP2949645A1 (en) Processes for the preparation of ß-aminosulfone compounds
Toribatake et al. Asymmetric synthesis of optically active 3-amino-1, 2-diols from N-acyl-protected allylamines via catalytic diboration with Rh [bis (oxazolinyl) phenyl] catalysts
Kim et al. Stereoselective synthesis of 4-substituted-cyclic sulfamidate-5-carboxylates by asymmetric transfer hydrogenation accompanied by dynamic kinetic resolution and applications to concise stereoselective syntheses of (−)-epi-cytoxazone and the taxotere side-chain
US9108986B2 (en) Method for producing optically active tetrahydroquinolines
CN105693598B (en) A kind of method that iridium catalytic hydrogenation synthesizes 3 derivative of piperidone
US20140330027A1 (en) Single step enantioselective process for the preparation of 3-substituted chiral phthalides
CN103304447B (en) (S) synthesis technique of-rivastigmine
JP5616977B2 (en) Method for producing optically active alcohol compound
Verkade et al. An enantioselective organocatalytic approach to both enantiomers of lasubine II
KR20160125115A (en) Preparation Method for 3-Hydroxytetrahydrofuran
Aga et al. Natural (−)‐Vasicine as a Novel Source of Optically Pure 1‐Benzylpyrrolidin‐3‐ol
Li et al. Highly Enantioselective Synthesis of α‐Trifluoromethyldihydropyrans Using a Chiral Trifluoroethyl‐substituted Thiourea Catalyst Derived from Amino Acid
JP2006028154A (en) Method for producing optically active compound
JP6858993B1 (en) Amino alcohol-boron-binol complex and a method for producing an optically active amino alcohol derivative using the complex
Tayama et al. Resolution of nitrogen-centered chiral tetraalkylammonium salts: application to [1, 2] Stevens rearrangements with N-to-C chirality transmission
JP2008222600A (en) Method for producing optically active 1,2-aminoalcohol compound and optically active catalyst
JPWO2008099730A1 (en) Method for producing amine compound using optically active 2- (aroyloxy) propionic acid
US11053188B2 (en) Process for the preparation of enantiomerically and diastereomerically enriched cyclobutane amines and amides
CN111004264B (en) Preparation method of N-substituted tetrahydropyridine-3/4-boric acid/ester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548794

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849825

Country of ref document: EP

Kind code of ref document: A1