WO2012081308A1 - Projector and control method - Google Patents

Projector and control method Download PDF

Info

Publication number
WO2012081308A1
WO2012081308A1 PCT/JP2011/074160 JP2011074160W WO2012081308A1 WO 2012081308 A1 WO2012081308 A1 WO 2012081308A1 JP 2011074160 W JP2011074160 W JP 2011074160W WO 2012081308 A1 WO2012081308 A1 WO 2012081308A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pulse
detection
projector
stripe
Prior art date
Application number
PCT/JP2011/074160
Other languages
French (fr)
Japanese (ja)
Inventor
想 西村
石橋 修
柳田 美穂
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN2011800599811A priority Critical patent/CN103262145A/en
Priority to US13/884,199 priority patent/US20130229630A1/en
Priority to JP2012548693A priority patent/JPWO2012081308A1/en
Publication of WO2012081308A1 publication Critical patent/WO2012081308A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/002Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • G09G3/025Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen with scanning or deflecting the beams in two directions or dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/026Video wall, i.e. juxtaposition of a plurality of screens to create a display screen of bigger dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/064Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen

Definitions

  • the present invention relates to a projector that displays an image by scanning a screen with a light beam.
  • a scanning projector that displays an image by scanning a fluorescent screen with a light beam has attracted attention.
  • a resonant scanning element such as a galvanometer mirror is often used as a scanning means for scanning the fluorescent screen.
  • Resonant scanning elements have the advantage of being able to perform high-speed scanning, but on the other hand, since the scanning speed and scanning amplitude are likely to change depending on the ambient temperature, the light beam is directed to an appropriate incident position on the screen. It is not easy to enter.
  • Patent Document 1 discloses a scanning beam display system capable of adjusting the incident position of a light beam on a screen.
  • a plurality of fluorescent stripes are periodically arranged, and servo reference marks that reflect the light beam are arranged between the fluorescent stripes.
  • the scanning beam display system emits a light beam composed of a plurality of light pulses from a light source, and scans the fluorescent screen in the direction perpendicular to the fluorescent stripe with the light beam, thereby exciting the phosphors of each fluorescent stripe. To display the image.
  • the scanning beam display system changes the incident position of the light pulse on the screen for each scan by changing the light emission timing of the light source for each scan.
  • the incident position of the light pulse changes, the amount of light incident on the servo reference mark changes, so the amplitude of the feedback light from the servo reference mark also changes.
  • the scanning beam display system detects the change in the amplitude of the feedback light, and adjusts the light emission timing of the light source according to the detection result, so that the light pulse is incident on the fluorescent stripe. Adjust.
  • the light emission timing of the light source is adjusted, but the light emission period of the light source is not adjusted, and light pulses having the same pulse width are emitted even when the scanning speed changes. For this reason, the irradiation region of the light pulse becomes larger than necessary, and the irradiation region on the screen due to the light pulse protrudes from the fluorescent stripe, and there is a problem that the light utilization efficiency is reduced.
  • An object of the present invention is to provide a projector and a control method capable of solving the above-described problem that the light use efficiency is lowered.
  • the projector includes a screen in which color stripes that generate visible light according to incident light are periodically arranged, a light source that emits a light beam, and the color stripes on the screen are arranged with the light beam.
  • a projection unit that scans a region, a detection unit that detects feedback light from the screen with respect to the light beam, and a light emission timing and a light emission period of the light source based on a detection result of the detection unit, And a controller that emits the light beam from the light source so that a light pulse is incident on the color stripe.
  • control method includes a screen in which color stripes that generate visible light according to incident light are periodically arranged, a light source that emits a light beam, and the light beam, the color stripes on the screen. And a projection unit that scans a region where the light source is disposed, and detects a feedback light from the screen to the light beam, and based on the detection result, the light emission timing and light emission of the light source The light beam is emitted from the light source so that a light pulse is incident on each color stripe by adjusting the period.
  • FIG. 1 is a diagram showing a projector according to a first embodiment of the present invention.
  • a projector 1 shown in FIG. 1 is a scanning rear projector that displays an image by scanning the back surface of a screen with a laser beam that is a light beam, and includes a screen 10, a laser light source unit 11, a laser projection unit 12, A light detection unit 13 and a control unit 14 are provided.
  • color stripes that generate visible light according to incident light are periodically arranged in the in-plane direction, and black stripes that block incident light are arranged between the color stripes.
  • FIG. 2 is a diagram showing a specific configuration of a part of the screen 10. As shown in FIG. 2, on the screen 10, color stripes 21 are periodically arranged, and black stripes 22 are arranged between the color stripes.
  • the color stripe 21 is a region formed of a phosphor, and is a region that generates fluorescence in response to incident light and emits it to the front surface of the screen. It is assumed that the fluorescence wavelength is in the visible light region.
  • the color stripes 21A, 21B and 21C which are three sub-color stripes having different fluorescence wavelengths, are arranged in a specific direction in this order as the color stripe 21.
  • the color stripe 21A generates red fluorescence
  • the color stripe 21B generates green fluorescence
  • the color stripe 21C generates blue fluorescence.
  • the color stripes 21 are arranged in the horizontal direction so that the horizontal scanning direction by the laser projection unit 12 intersects the longitudinal direction of the color stripes 21.
  • the color stripe 21 may be formed of a light diffusing material instead of the phosphor. In this case, the color stripe 21 generates visible light for display by diffusing laser light, and emits it to the front surface of the screen 10.
  • the black stripe 22 is a region that shields the laser beam from being transmitted through the front surface of the screen 10 by absorbing or reflecting the laser beam.
  • the reflection includes diffuse reflection and retroreflection.
  • At least one of the color stripe 21 and the black stripe 22 reflects the laser light (including diffuse reflection or retroreflection) or converts the laser light into light of another wavelength and diffuses the reflected light or diffused light. At least a part of the light is configured to be guided to the light detection unit 13 as feedback light.
  • the light of other wavelengths is, for example, fluorescence generated in the color stripe 21.
  • the laser light source unit 11 is a light source composed of a semiconductor laser element or a solid-state laser element, and emits laser light.
  • the laser projection unit 12 displays an image on the screen 10 by scanning the area where the color stripes are arranged on the back surface of the screen 10 with the laser light emitted from the LD light source unit 11.
  • the laser projection unit 12 only needs to scan the screen 10 at least in the horizontal direction, and drawing of the image in the vertical direction may be performed by a one-dimensional SLM (spatial light modulator) or the like.
  • a scanning means for scanning the screen 10 with laser light a resonant light scanning element such as a galvanometer mirror is desirable.
  • the light detection unit 13 is a detection unit that includes a photoelectric conversion device and detects feedback light from the screen 10 with respect to the laser light projected on the screen 10.
  • the photoelectric conversion device include a PD (photodiode) such as an APD (avalanche photodiode).
  • the control unit 14 performs calibration for adjusting the image display area on the screen 10 and the light emission timing of the laser light source unit 11. For example, the control unit 14 adjusts the light emission timing and the light emission period of the laser light source unit 11 based on the detection result of the light detection unit 13 so that the light pulse is incident on each color stripe 21 on the screen 10.
  • control unit 14 scans according to the input video signal while emitting the laser light from the laser light source unit 11 so that the light pulse is incident on each color stripe 21 according to the result of the calibration.
  • the laser projection unit 12 is executed to display an image corresponding to the input video signal on the screen 10.
  • FIG. 3 is a flowchart for explaining the operation of the projector 1.
  • the control unit 14 executes calibration.
  • the projector 1 includes a power-on switch (not shown), and when the switch is turned on, the control unit 14 determines that the projector 1 is activated and executes calibration.
  • control unit 14 adjusts the scanning amplitude of the laser projection unit 12 to adjust the image display area (step S301).
  • control unit 14 performs phase matching for synchronizing the horizontal scanning frequency of the laser projection unit 12 and the horizontal synchronization signal of the input video signal (step S302).
  • control unit 14 causes the laser light source unit 11 to emit continuous light as laser light, and causes the laser projection unit 12 to scan the screen 10 in the horizontal scanning direction, based on the detection result of the light detection unit 13 in the scanning. Then, the irradiation timing adjustment for generating the control information indicating the emission timing and the pulse width of each light pulse incident on each color stripe 21 is performed, and the calibration is completed (step S303).
  • the control unit 14 uses the laser light source unit 11 and the laser projection unit 12 to adjust the light emission timing and the light emission period of the laser light source unit 11 based on the control information generated in step S303, and according to the input video signal. Scanning is performed, and an image corresponding to the input video signal is displayed on the screen 10 (step S304). Note that the luminance of the display image can be changed by adjusting the amplitude of the light pulse.
  • the control unit 14 scans the screen 10 in the horizontal scanning direction with continuous light using the laser light source unit 11 and the laser projection unit 12, and based on the detection result by the light detection unit 13 in the scanning.
  • the correlation between the emission timing and the pulse width of the display light pulse that is the light pulse incident on each color stripe 21 is obtained.
  • FIG. 4 is a diagram for explaining a first calculation method for obtaining the correlation between the emission timing and the pulse width of the display light pulse.
  • the light detection unit 13 detects sub-feedback light that is a plurality of light pulses from each color stripe 21 as feedback light from the screen 10.
  • the detection timing (detection start time) to t i of the sub-feedback light from the i-th color stripe 21 in the horizontal scanning direction, and the detection width and d i.
  • the pulse width of each display light pulse incident on each color stripe 21 is the same value W, and the emission timing of the display light pulse incident on the i-th color stripe 21 is a i .
  • the control unit 14 determines the mutual relationship between the emission timing of the display light pulse and the pulse width.
  • FIG. 5 is a diagram for explaining a second calculation method for obtaining the correlation between the emission timing of the display light pulse and the pulse width.
  • the light detection unit 13 detects a plurality of subfield lights that are light pulses from a plurality of predetermined detection stripes of the color stripe 21 as feedback light.
  • the detection timing of the sub-feedback light from the i-th detection stripe in the horizontal scanning direction by the light detection unit 13 is t i , and the detection width is d i .
  • the number of target color stripes that are color stripes from the i-th detection stripe to the color stripe before the next detection stripe is n
  • the pulse width of the display light pulse incident on each color stripe 21 is ,
  • the same value W, and the emission timing of the display light pulse incident on the j-th target color stripe counted from the i-th detection stripe is aj i .
  • control unit 14 determines the correlation between the emission timing of the display light pulse and the pulse width
  • FIG. 6 is a diagram for explaining a third calculation method for obtaining the correlation between the emission timing of the display light pulse and the pulse width.
  • the light detection unit 13 detects a plurality of sub-feedback lights that are light pulses from each black stripe 22 as feedback light.
  • the detection timing of the sub-feedback light from the i-th black stripe in the horizontal scanning direction by the light detection unit 13 is t i
  • the detection width is d i
  • the pulse width of each display light pulses incident on each color stripe 21 the same value is W
  • the control unit 14 determines the mutual relationship between the emission timing of the display light pulse and the pulse width.
  • control unit 14 When the control unit 14 obtains the mutual relationship between the emission timing and the pulse width of the display light pulse by the above first to third calculation methods, it is displayed on each color stripe as shown in FIGS. An optical pulse can be incident.
  • the display light pulse can be contained in the color stripe. Therefore, if the pulse width W is set sufficiently small in advance, the control unit 14 can suppress the display light pulse from protruding from the desired color stripe and entering the other color stripe or black stripe. , Light utilization efficiency can be increased.
  • the control unit 14 when the control unit 14 obtains the mutual relationship between the emission timing and the pulse width of the display light pulse, the control unit 14 further sets the pulse width of each display light pulse in order to optimize the pulse width of the display light pulse. Ask.
  • control unit 14 uses the laser light source unit 11 and the laser projection unit 12 to scan the screen 10 in the horizontal scanning direction with a pulse train composed of a plurality of adjustment light pulses having the above-described correlations, and performs light detection in the scanning. Based on the detection result of the unit 13, the pulse width of each display light pulse is determined.
  • control unit 14 repeatedly scans the screen 10 in the horizontal scanning direction with the above pulse train while gradually increasing the pulse width of the light control light pulse in the pulse train, and the detection result in each scan Based on the above, the pulse width of the display light pulse is determined. It is assumed that the light control light pulses in the pulse train in each scan have the same pulse width.
  • the control unit 14 determines that the adjustment light pulse at the current scanning time is not increased from the detection period at the previous scanning time among the plurality of detection time periods of each sub feedback light.
  • the pulse width is determined as the pulse width of the display light pulse.
  • the pulse width of the adjustment light pulse when any of the light control light pulses protrudes from the color stripe 21 is determined as the pulse width of the display light pulse.
  • the light quantity of the light pulse incident on can be maximized. For this reason, it becomes possible to reduce the utilization efficiency of a laser beam, maximizing the brightness
  • the control unit 14 obtains the sum of the luminances of the sub-feedback lights, and the increase rate is linear for each scan of the sum of the luminances. If not, the pulse width of the adjustment optical pulse during the current scan may be determined as the pulse width of the display optical pulse.
  • the pulse width of the adjustment light pulse when the luminance increase rate becomes low is the pulse width of the display light pulse
  • the laser light utilization efficiency is maximized and the highest utilization efficiency is achieved.
  • the brightness of the display image can be maximized.
  • control unit 14 determines the maximum value of the moving speed of the incident position of the laser beam on the screen 10 based on the detection result in the same scanning as when the correlation between the emission timing and the pulse width is obtained. May be obtained, and the pulse width of the display light pulse may be obtained based on the maximum movement speed V.
  • control unit 14 determines the display optical pulse based on the mutual relationship and the pulse width.
  • the control information indicating the emission timing and the pulse width is generated. For example, the control unit 14 substitutes the obtained pulse width into the correlation, obtains the emission timing, and generates control information indicating the obtained pulse width and the emission timing.
  • control unit 14 When generating the control information, the control unit 14 holds the control information or records the control information in a memory (not shown) outside the control unit 14.
  • FIG. 8 is a diagram showing a state in which the screen 10 is scanned with laser light in the projector 1 configured as described above.
  • the laser scanning unit 30 includes the laser light source unit 11, the laser projection unit 12, the light detection unit 13, and the control unit 14 illustrated in FIG. 1.
  • the image drawing start position is the upper left of the display area 31.
  • the laser light projected from the laser scanning unit 30 moves on the screen 10 in a direction intersecting the longitudinal direction of the color stripe 21.
  • the incident position of the laser beam on the screen 10 moves from the left end to the right end within the display area as shown by the locus 32, and when it reaches the right end, it is folded and moved to the left end. Then, the incident position of the laser beam is folded at the left end and moves again to the right end.
  • Such scanning is continuously performed from the upper side to the lower side.
  • the longitudinal direction of the color stripe 21 is in the vertical direction, and the laser scanning unit 30 scans the screen 10 in the horizontal direction so that the incident position of the laser beam is the color stripe 21. It is moved in a direction intersecting with the longitudinal direction.
  • the longitudinal direction of the color stripe 21 is oriented in the horizontal direction, and the laser scanning unit 30 scans the screen 10 in the vertical direction so that the incident position of the laser light is the longitudinal direction of the color stripe 21. You may move to the direction which crosses.
  • the light emission timing and the light emission period of the laser light source unit 11 are adjusted based on the detection result of the light detection unit 13 so that the light pulse is incident on each color stripe. Therefore, even if the scanning speed of the projector 1 changes, it becomes possible to store the light pulse in the color stripe 21 and to increase the utilization efficiency of the laser light from the laser light source unit 11.
  • control unit 14 adjusts the emission timing and the pulse width of the display light pulse while the calibration is completed and scanning according to the input video signal is performed.
  • control unit 14 causes the laser light source unit 11 and the laser projection unit 12 to perform scanning according to the input video signal using a pulse train including display light pulses.
  • the control unit 14 obtains the maximum movement speed V of the laser light on the screen 10 based on the detection result of the light detection unit 13 at the time of scanning, and corrects the control information based on the maximum movement speed V. .
  • the control unit 14 obtains the pulse width and emission timing of the display light pulse from the movement maximum velocity V from the movement maximum velocity V, and sets the pulse width and emission timing indicated by the control information to the obtained pulse width and emission timing. to correct.
  • the timing for correcting the control information may be every frame of the display image, every predetermined frame, or every horizontal scan. Further, the method for obtaining the pulse width and the emission timing of the display light pulse from the maximum moving speed V may be the same method as described in the first embodiment.
  • the control information is corrected during scanning according to the input video signal, even if the scanning speed changes during scanning according to the input video signal, the brightness of the display image is optimized. Can be.
  • the projector 1 may be applied to projectors 1-1 to 1-9 of a multi-projector system as shown in FIG.
  • the multi-projector system displays the projected images of the projectors 1-1 to 1-9 side by side on a screen to form a large display image.
  • the number of projectors in the multi-projector system is only nine in FIG.
  • the projector 1 When the projector 1 is applied to a multi-projector system, the projector 1 does not need to be provided with a special mark for generating feedback light or the like other than the display area.
  • a seamless multi-projector system can be configured.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

The present invention provides a projector which can solve the problem of low light use efficiency. A screen (10) has color stripes disposed at intervals, said color stripes generating visible light corresponding to inputted light. A laser light source unit (11) outputs an optical beam. A laser scanning unit (12) scans areas where the color stripes are disposed on the screen (10) with the optical beam outputted from the laser light source unit (11). A light detecting unit (13) detects feedback light from the screen (10) with respect to the optical beam. A control unit (14) adjusts light emitting timing and light emitting period of the laser light source unit (11), on the basis of detection results obtained from the light detecting unit (13), and has the optical beam outputted from the laser light source unit (11) such that optical pulses are inputted within each of the color stripes.

Description

プロジェクタおよび制御方法Projector and control method
 本発明は、光ビームでスクリーンを走査することで画像を表示するプロジェクタに関する。 The present invention relates to a projector that displays an image by scanning a screen with a light beam.
 近年、光ビームで蛍光スクリーンを走査することで画像を表示する走査型プロジェクタが注目されている。このような走査型プロジェクタでは、蛍光スクリーンを走査する走査手段として、ガルバノミラーのような共振走査素子が使用されることが多い。共振走査素子は、高速な走査を行うことができるという利点があるが、その一方で、周囲の温度などによって走査速度や走査振幅が変化しやすいため、スクリーン上の適切な入射位置に光ビームを入射することは容易ではない。 In recent years, a scanning projector that displays an image by scanning a fluorescent screen with a light beam has attracted attention. In such a scanning projector, a resonant scanning element such as a galvanometer mirror is often used as a scanning means for scanning the fluorescent screen. Resonant scanning elements have the advantage of being able to perform high-speed scanning, but on the other hand, since the scanning speed and scanning amplitude are likely to change depending on the ambient temperature, the light beam is directed to an appropriate incident position on the screen. It is not easy to enter.
 これに対して、スクリーン上の光ビームの入射位置を調整することが可能な走査ビーム表示システムが特許文献1に記載されている。 On the other hand, Patent Document 1 discloses a scanning beam display system capable of adjusting the incident position of a light beam on a screen.
 特許文献1の走査ビーム表示システムで使用される蛍光スクリーンでは、複数の蛍光ストライプが周期的に配置され、各蛍光ストライプの間に光ビームを反射するサーボ基準マークが配置される。 In the fluorescent screen used in the scanning beam display system of Patent Document 1, a plurality of fluorescent stripes are periodically arranged, and servo reference marks that reflect the light beam are arranged between the fluorescent stripes.
 走査ビーム表示システムは、複数の光パルスからなる光ビームを光源から出射させ、その光ビームで、上記の蛍光スクリーンを蛍光ストライプと直交する方向に走査し、各蛍光ストライプの蛍光体を励起することで画像を表示する。 The scanning beam display system emits a light beam composed of a plurality of light pulses from a light source, and scans the fluorescent screen in the direction perpendicular to the fluorescent stripe with the light beam, thereby exciting the phosphors of each fluorescent stripe. To display the image.
 また、走査ビーム表示システムは、光源の発光タイミングを走査ごとに変化させることで、スクリーンにおける光パルスの入射位置を走査ごとに変化させる。光パルスの入射位置が変化すると、サーボ基準マークに入射される光の光量が変化するので、サーボ基準マークからのフィードバック光の振幅も変化する。走査ビーム表示システムは、このフィードバック光の振幅の変化を検出し、その検出結果に応じて、光源の発光タイミングを調整することで、光パルスが蛍光ストライプに入射するように、光パルスの入射位置を調整する。 Also, the scanning beam display system changes the incident position of the light pulse on the screen for each scan by changing the light emission timing of the light source for each scan. When the incident position of the light pulse changes, the amount of light incident on the servo reference mark changes, so the amplitude of the feedback light from the servo reference mark also changes. The scanning beam display system detects the change in the amplitude of the feedback light, and adjusts the light emission timing of the light source according to the detection result, so that the light pulse is incident on the fluorescent stripe. Adjust.
特表2009-539120号公報Special table 2009-539120
 共振走査素子の走査速度が変化すると、一定のパルス幅を有する光パルスが光源から出射されても、その光パルスによるスクリーン上の照射領域が変化する。 When the scanning speed of the resonant scanning element changes, even if a light pulse having a constant pulse width is emitted from the light source, the irradiation area on the screen due to the light pulse changes.
 特許文献1の走査ビーム表示システムでは、光源の発光タイミングを調整しているが、光源の発光期間は調整されてなく、走査速度が変化した場合でも同じパルス幅の光パルスが照射される。このため、光パルスの照射領域が必要以上に大きくなり、光パルスによるスクリーン上の照射領域が蛍光ストライプからはみ出てしまい、光の利用効率が低減するという問題がある。 In the scanning beam display system of Patent Document 1, the light emission timing of the light source is adjusted, but the light emission period of the light source is not adjusted, and light pulses having the same pulse width are emitted even when the scanning speed changes. For this reason, the irradiation region of the light pulse becomes larger than necessary, and the irradiation region on the screen due to the light pulse protrudes from the fluorescent stripe, and there is a problem that the light utilization efficiency is reduced.
 本発明の目的は、上記の課題である、光の利用効率が低くなるという問題を解決することが可能なプロジェクタおよび制御方法を提供することである。 An object of the present invention is to provide a projector and a control method capable of solving the above-described problem that the light use efficiency is lowered.
 本発明によるプロジェクタは、入射光に応じた可視光を発生させるカラーストライプが周期的に配置されたスクリーンと、光ビームを出射する光源と、前記光ビームで、前記スクリーンにおける前記カラーストライプが配置された領域を走査する投射部と、前記光ビームに対する前記スクリーンからのフィードバック光を検出する検出部と、前記検出部の検出結果に基づいて、前記光源の発光タイミングおよび発光期間を調節して、各カラーストライプ内に光パルスが入射されるように前記光ビームを前記光源から出射させる制御部と、を有する。 The projector according to the present invention includes a screen in which color stripes that generate visible light according to incident light are periodically arranged, a light source that emits a light beam, and the color stripes on the screen are arranged with the light beam. A projection unit that scans a region, a detection unit that detects feedback light from the screen with respect to the light beam, and a light emission timing and a light emission period of the light source based on a detection result of the detection unit, And a controller that emits the light beam from the light source so that a light pulse is incident on the color stripe.
 また、本発明による制御方法は、入射光に応じた可視光を発生させるカラーストライプが周期的に配置されたスクリーンと、光ビームを出射する光源と、前記光ビームで、前記スクリーンにおける前記カラーストライプが配置された領域を走査する投射部と、を有するプロジェクタの制御方法であって、前記光ビームに対する前記スクリーンからのフィードバック光を検出し、当該検出結果に基づいて、前記光源の発光タイミングおよび発光期間を調節して、各カラーストライプ内に光パルスが入射されるように前記光ビームを前記光源から出射させる。 Also, the control method according to the present invention includes a screen in which color stripes that generate visible light according to incident light are periodically arranged, a light source that emits a light beam, and the light beam, the color stripes on the screen. And a projection unit that scans a region where the light source is disposed, and detects a feedback light from the screen to the light beam, and based on the detection result, the light emission timing and light emission of the light source The light beam is emitted from the light source so that a light pulse is incident on each color stripe by adjusting the period.
 本発明によれば、光の利用効率を高くすることが可能になる。 According to the present invention, it is possible to increase the light use efficiency.
本発明の第1の実施形態のプロジェクタを示す図である。It is a figure which shows the projector of the 1st Embodiment of this invention. スクリーンの具体的な構成例を示す図である。It is a figure which shows the specific structural example of a screen. プロジェクタの動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of a projector. 表示用光パルスの出射タイミングおよびパルス幅の相互関係を求める算出方法の一例を説明するための図である。It is a figure for demonstrating an example of the calculation method which calculates | requires the correlation of the emission timing of a light pulse for a display, and a pulse width. 表示用光パルスの出射タイミングおよびパルス幅の相互関係を求める算出方法の他の例を説明するための図である。It is a figure for demonstrating the other example of the calculation method which calculates | requires the correlation of the emission timing of a display optical pulse, and a pulse width. 表示用光パルスの出射タイミングおよびパルス幅の相互関係を求める算出方法の他の例を説明するための図である。It is a figure for demonstrating the other example of the calculation method which calculates | requires the correlation of the emission timing of a display optical pulse, and a pulse width. 表示用光パルスの出射タイミングおよびパルス幅を決定するためのパラメータを示す図である。It is a figure which shows the parameter for determining the emission timing and pulse width of a display optical pulse. レーザ光でスクリーンを走査する様子を示す図である。It is a figure which shows a mode that a screen is scanned with a laser beam. マルチプロジェクタシステムの一例を示す図である。It is a figure which shows an example of a multi projector system.
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明では、同じ機能を有するものには同じ符号を付け、その説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, components having the same function may be denoted by the same reference numerals and description thereof may be omitted.
 図1は、本発明の第1の実施形態のプロジェクタを示す図である。図1に示すプロジェクタ1は、光ビームであるレーザ光でスクリーンの背面を走査することで画像を表示する走査型リアプロジェクタであり、スクリーン10と、レーザ光源部11と、レーザ投射部12と、光検出部13と、制御部14とを備える。 FIG. 1 is a diagram showing a projector according to a first embodiment of the present invention. A projector 1 shown in FIG. 1 is a scanning rear projector that displays an image by scanning the back surface of a screen with a laser beam that is a light beam, and includes a screen 10, a laser light source unit 11, a laser projection unit 12, A light detection unit 13 and a control unit 14 are provided.
 スクリーン10では、入射光に応じた可視光を発生させるカラーストライプが面内方向に周期的に配置され、各カラーストライプの間には、入射光を遮光するブラックストライプが配置されている。 On the screen 10, color stripes that generate visible light according to incident light are periodically arranged in the in-plane direction, and black stripes that block incident light are arranged between the color stripes.
 図2は、スクリーン10の一部の具体的な構成を示す図である。図2に示すように、スクリーン10では、カラーストライプ21が周期的に配置され、各カラーストライプの間にはブラックストライプ22が配置されている。 FIG. 2 is a diagram showing a specific configuration of a part of the screen 10. As shown in FIG. 2, on the screen 10, color stripes 21 are periodically arranged, and black stripes 22 are arranged between the color stripes.
 カラーストライプ21は、蛍光体で形成される領域であり、入射光に応じて蛍光を発生してスクリーンの前面に出射する領域である。なお、蛍光の波長は、可視光領域にあるものとする。 The color stripe 21 is a region formed of a phosphor, and is a region that generates fluorescence in response to incident light and emits it to the front surface of the screen. It is assumed that the fluorescence wavelength is in the visible light region.
 図2では、カラーストライプ21として、蛍光の波長がそれぞれ異なる3つのサブカラーストライプであるカラーストライプ21A、21Bおよび21Cとが、この順番で特定の方向に並んでいる。例えば、カラーストライプ21Aは、赤色の蛍光を発生させ、カラーストライプ21Bは、緑色の蛍光を発生させ、カラーストライプ21Cは、青色の蛍光を発生させる。また、各カラーストライプ21は、レーザ投射部12による水平走査方向がカラーストライプ21の長手方向と交差するように、水平方向に並んでいるものとする。 In FIG. 2, the color stripes 21A, 21B and 21C, which are three sub-color stripes having different fluorescence wavelengths, are arranged in a specific direction in this order as the color stripe 21. For example, the color stripe 21A generates red fluorescence, the color stripe 21B generates green fluorescence, and the color stripe 21C generates blue fluorescence. The color stripes 21 are arranged in the horizontal direction so that the horizontal scanning direction by the laser projection unit 12 intersects the longitudinal direction of the color stripes 21.
 なお、スクリーン10に照射されるレーザ光が可視光線(波長:380nm~730nm程度)の場合、カラーストライプ21は、蛍光体の代わりに光拡散材で形成されてもよい。この場合、カラーストライプ21は、レーザ光を拡散させることで、表示用の可視光を発生させ、スクリーン10の前面に出射する。 Note that when the laser light applied to the screen 10 is visible light (wavelength: about 380 nm to 730 nm), the color stripe 21 may be formed of a light diffusing material instead of the phosphor. In this case, the color stripe 21 generates visible light for display by diffusing laser light, and emits it to the front surface of the screen 10.
 ブラックストライプ22は、レーザ光を吸収または反射させることにより、レーザ光をスクリーン10の前面に透過させないように遮光する領域である。なお、反射とは、拡散反射や再帰反射などを含む。 The black stripe 22 is a region that shields the laser beam from being transmitted through the front surface of the screen 10 by absorbing or reflecting the laser beam. The reflection includes diffuse reflection and retroreflection.
 また、カラーストライプ21およびブラックストライプ22の少なくとも一方は、レーザ光を反射(拡散反射や再帰反射を含む)させるか、レーザ光を他の波長の光に変換して拡散させ、その反射光または拡散光の少なくも一部を、フィードバック光として光検出部13に導くように構成される。ここで、他の波長の光は、例えば、カラーストライプ21で発生する蛍光である。 In addition, at least one of the color stripe 21 and the black stripe 22 reflects the laser light (including diffuse reflection or retroreflection) or converts the laser light into light of another wavelength and diffuses the reflected light or diffused light. At least a part of the light is configured to be guided to the light detection unit 13 as feedback light. Here, the light of other wavelengths is, for example, fluorescence generated in the color stripe 21.
 図1の説明に戻る。レーザ光源部11は、半導体レーザ素子または固体レーザ素子で構成された光源であり、レーザ光を出射する。 Returning to the explanation of FIG. The laser light source unit 11 is a light source composed of a semiconductor laser element or a solid-state laser element, and emits laser light.
 レーザ投射部12は、LD光源部11から出射されたレーザ光で、スクリーン10の背面におけるカラーストライプが配置された領域を走査することで、スクリーン10に画像を表示する。また、レーザ投射部12は、スクリーン10を、少なくとも水平方向に走査すればよく、画像の垂直方向の描画は1次元SLM(spatial light modulator:空間光変調器)などで行われてもよい。また、レーザ光でスクリーン10を走査するための走査手段としては、ガルバノミラーのような共振光走査素子が望ましい。 The laser projection unit 12 displays an image on the screen 10 by scanning the area where the color stripes are arranged on the back surface of the screen 10 with the laser light emitted from the LD light source unit 11. The laser projection unit 12 only needs to scan the screen 10 at least in the horizontal direction, and drawing of the image in the vertical direction may be performed by a one-dimensional SLM (spatial light modulator) or the like. Further, as a scanning means for scanning the screen 10 with laser light, a resonant light scanning element such as a galvanometer mirror is desirable.
 光検出部13は、光電気変換デバイスで構成され、スクリーン10に投射されたレーザ光に対するスクリーン10からのフィードバック光を検出する検出部である。光電気変換デバイスとしては、APD(avalanche photodiode:アバランシェフォトダイオード)などのPD(photodiode:フォトダイオード)が挙げられる。 The light detection unit 13 is a detection unit that includes a photoelectric conversion device and detects feedback light from the screen 10 with respect to the laser light projected on the screen 10. Examples of the photoelectric conversion device include a PD (photodiode) such as an APD (avalanche photodiode).
 制御部14は、スクリーン10における画像の表示領域やレーザ光源部11の発光タイミングなどを調節するキャリブレーションを行う。例えば、制御部14は、光検出部13の検出結果に基づいて、スクリーン10における各カラーストライプ21内に光パルスが入射されるように、レーザ光源部11の発光タイミングおよび発光期間を調節する。 The control unit 14 performs calibration for adjusting the image display area on the screen 10 and the light emission timing of the laser light source unit 11. For example, the control unit 14 adjusts the light emission timing and the light emission period of the laser light source unit 11 based on the detection result of the light detection unit 13 so that the light pulse is incident on each color stripe 21 on the screen 10.
 キャリブレーションが終了すると、制御部14は、キャリブレーションの結果に従って各カラーストライプ21内に光パルスが入射されるようにレーザ光をレーザ光源部11から出射させつつ、入力映像信号に応じた走査をレーザ投射部12に実行させて、入力映像信号に応じた画像をスクリーン10に表示する。 When the calibration is completed, the control unit 14 scans according to the input video signal while emitting the laser light from the laser light source unit 11 so that the light pulse is incident on each color stripe 21 according to the result of the calibration. The laser projection unit 12 is executed to display an image corresponding to the input video signal on the screen 10.
 次にプロジェクタ1の動作について説明する。 Next, the operation of the projector 1 will be described.
 図3は、プロジェクタ1の動作を説明するためのフローチャートである。 FIG. 3 is a flowchart for explaining the operation of the projector 1.
 プロジェクタ1が起動されると、制御部14は、キャリブレーションを実行する。例えば、プロジェクタ1は電源投入用のスイッチ(不図示)を備えており、そのスイッチがオンになると、制御部14は、プロジェクタ1が起動したと判断して、キャリブレーションを実行する。 When the projector 1 is activated, the control unit 14 executes calibration. For example, the projector 1 includes a power-on switch (not shown), and when the switch is turned on, the control unit 14 determines that the projector 1 is activated and executes calibration.
 キャリブレーションでは、先ず、制御部14は、レーザ投射部12の走査振幅を調整して、画像の表示領域を調整する(ステップS301)。 In calibration, first, the control unit 14 adjusts the scanning amplitude of the laser projection unit 12 to adjust the image display area (step S301).
 続いて、制御部14は、レーザ投射部12の水平走査周波数と入力映像信号の水平同期信号とを同期させる位相合わせを行う(ステップS302)。 Subsequently, the control unit 14 performs phase matching for synchronizing the horizontal scanning frequency of the laser projection unit 12 and the horizontal synchronization signal of the input video signal (step S302).
 その後、制御部14は、レーザ光源部11からレーザ光として連続光を出射させるとともに、レーザ投射部12にスクリーン10を水平走査方向に走査させ、その走査における光検出部13の検出結果に基づいて、各カラーストライプ21内に入射する光パルスのそれぞれの出射タイミングおよびパルス幅を示す制御情報を生成する照射タイミング合わせを行い、キャリブレーションを終了する(ステップS303)。 Thereafter, the control unit 14 causes the laser light source unit 11 to emit continuous light as laser light, and causes the laser projection unit 12 to scan the screen 10 in the horizontal scanning direction, based on the detection result of the light detection unit 13 in the scanning. Then, the irradiation timing adjustment for generating the control information indicating the emission timing and the pulse width of each light pulse incident on each color stripe 21 is performed, and the calibration is completed (step S303).
 そして、制御部14は、レーザ光源部11およびレーザ投射部12を用いて、ステップS303で生成した制御情報に基づいてレーザ光源部11の発光タイミングおよび発光期間を調節しつつ、入力映像信号に応じた走査を行い、入力映像信号に応じた画像をスクリーン10に表示する(ステップS304)。なお、表示画像の輝度は、光パルスの振幅を調整することで変更できる。 The control unit 14 uses the laser light source unit 11 and the laser projection unit 12 to adjust the light emission timing and the light emission period of the laser light source unit 11 based on the control information generated in step S303, and according to the input video signal. Scanning is performed, and an image corresponding to the input video signal is displayed on the screen 10 (step S304). Note that the luminance of the display image can be changed by adjusting the amplitude of the light pulse.
 次に、制御部14による照射タイミング合わせについてより詳細に説明する。 Next, the irradiation timing adjustment by the control unit 14 will be described in more detail.
 照射タイミング合わせでは、先ず、制御部14は、レーザ光源部11およびレーザ投射部12を用いて、連続光でスクリーン10を水平走査方向に走査し、その走査における光検出部13による検出結果に基づいて、各カラーストライプ21に入射する光パルスである表示用光パルスの出射タイミングおよびパルス幅の相互関係を求める。 In the irradiation timing adjustment, first, the control unit 14 scans the screen 10 in the horizontal scanning direction with continuous light using the laser light source unit 11 and the laser projection unit 12, and based on the detection result by the light detection unit 13 in the scanning. Thus, the correlation between the emission timing and the pulse width of the display light pulse that is the light pulse incident on each color stripe 21 is obtained.
 図4は、表示用光パルスの出射タイミングおよびパルス幅の相互関係を求める第1の算出方法を説明するための図である。 FIG. 4 is a diagram for explaining a first calculation method for obtaining the correlation between the emission timing and the pulse width of the display light pulse.
 図4で示す例では、光検出部13は、スクリーン10からのフィードバック光として、各カラーストライプ21からの複数の光パルスであるサブフィードバック光を検出する。 In the example shown in FIG. 4, the light detection unit 13 detects sub-feedback light that is a plurality of light pulses from each color stripe 21 as feedback light from the screen 10.
 ここで、光検出部13による、水平走査方向のi番目のカラーストライプ21からのサブフィードバック光の検出タイミング(検出開始時刻)をt、その検出幅をdとする。また、各カラーストライプ21に入射する各表示用光パルスのパルス幅を、同一の値Wとし、i番目のカラーストライプ21に入射する表示用光パルスの出射タイミングをaとする。この場合、制御部14は、表示用光パルスの出射タイミングおよびパルス幅の相互関係を、 Here, according to the optical detection unit 13, the detection timing (detection start time) to t i of the sub-feedback light from the i-th color stripe 21 in the horizontal scanning direction, and the detection width and d i. The pulse width of each display light pulse incident on each color stripe 21 is the same value W, and the emission timing of the display light pulse incident on the i-th color stripe 21 is a i . In this case, the control unit 14 determines the mutual relationship between the emission timing of the display light pulse and the pulse width.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
と求める。 I ask.
 図5は、表示用光パルスの出射タイミングおよびパルス幅の相互関係を求める第2の算出方法を説明するための図である。 FIG. 5 is a diagram for explaining a second calculation method for obtaining the correlation between the emission timing of the display light pulse and the pulse width.
 図5で示す例では、光検出部13は、フィードバック光として、カラーストライプ21のうちの予め定められた複数の検出用ストライプからの光パルスである複数のサブフィールド光を検出する。 In the example shown in FIG. 5, the light detection unit 13 detects a plurality of subfield lights that are light pulses from a plurality of predetermined detection stripes of the color stripe 21 as feedback light.
 ここで、光検出部13による、水平走査方向のi番目の検出用ストライプからのサブフィードバック光の検出タイミングをt、その検出幅をdとする。また、i番目の検出用ストライプから、次の検出用ストライプの手前のカラーストライプまでにあるカラーストライプである対象カラーストライプの数をn、各カラーストライプ21に入射する表示用光パルスのパルス幅を、同一の値Wとし、i番目の検出用ストライプから数えてj番目にある対象カラーストライプに入射する表示用光パルスの出射タイミングをajとする。 Here, the detection timing of the sub-feedback light from the i-th detection stripe in the horizontal scanning direction by the light detection unit 13 is t i , and the detection width is d i . Also, the number of target color stripes that are color stripes from the i-th detection stripe to the color stripe before the next detection stripe is n, and the pulse width of the display light pulse incident on each color stripe 21 is , The same value W, and the emission timing of the display light pulse incident on the j-th target color stripe counted from the i-th detection stripe is aj i .
 この場合、制御部14は、表示用光パルスの出射タイミングおよびパルス幅の相互関係を、 In this case, the control unit 14 determines the correlation between the emission timing of the display light pulse and the pulse width,
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
と求める。 I ask.
 上記の第2の算出方法において、例えば、検出用ストライプをカラーストライプ21A、21Bおよび21Cのうちの所定のカラーストライプとした場合、表示用光パルスの出射タイミングおよびパルス幅の相互関係は、n=3なので、 In the second calculation method, for example, when the detection stripe is a predetermined color stripe of the color stripes 21A, 21B, and 21C, the correlation between the emission timing of the display light pulse and the pulse width is n = 3
Figure JPOXMLDOC01-appb-M000006

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-M000006

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
となる。 It becomes.
 図6は、表示用光パルスの出射タイミングおよびパルス幅の相互関係を求める第3の算出方法を説明するための図である。 FIG. 6 is a diagram for explaining a third calculation method for obtaining the correlation between the emission timing of the display light pulse and the pulse width.
 図6で示す例では、光検出部13は、フィードバック光として、各ブラックストライプ22から光パルスである複数のサブフィードバック光を検出する。 In the example illustrated in FIG. 6, the light detection unit 13 detects a plurality of sub-feedback lights that are light pulses from each black stripe 22 as feedback light.
 ここで、光検出部13による、水平走査方向のi番目のブラックストライプからのサブフィードバック光の検出タイミングをt、その検出幅をdとする。また、各カラーストライプ21に入射する各表示用光パルスのパルス幅を、同一の値Wとし、i番目のカラーストライプに入射する表示用光パルスの出射タイミングをbとする。この場合、制御部14は、表示用光パルスの出射タイミングおよびパルス幅の相互関係を、 Here, the detection timing of the sub-feedback light from the i-th black stripe in the horizontal scanning direction by the light detection unit 13 is t i , and the detection width is d i . Further, the pulse width of each display light pulses incident on each color stripe 21, the same value is W, the emission timing of the display light pulses incident on the i-th color stripe and b i. In this case, the control unit 14 determines the mutual relationship between the emission timing of the display light pulse and the pulse width.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
と求める。 I ask.
 制御部14が上記の第1~第3の算出方法により、表示用光パルスの出射タイミングおよびパルス幅の相互関係を求めた場合、図4~図6で示したように、各カラーストライプに表示用光パルスを入射することができる。 When the control unit 14 obtains the mutual relationship between the emission timing and the pulse width of the display light pulse by the above first to third calculation methods, it is displayed on each color stripe as shown in FIGS. An optical pulse can be incident.
 また、全ての検出幅dに対して、d>Wとなるようにすれば、表示用光パルスをカラーストライプ内に収めることができる。このため、制御部14は、パルス幅Wを予め十分小さく設定すれば、表示用光パルスが所望のカラーストライプからはみ出て、他のカラーストライプやブラックストライプに入射されることを抑制することができ、光の利用効率を高くすることができる。 Further, if d i > W is satisfied for all the detection widths d i , the display light pulse can be contained in the color stripe. Therefore, if the pulse width W is set sufficiently small in advance, the control unit 14 can suppress the display light pulse from protruding from the desired color stripe and entering the other color stripe or black stripe. , Light utilization efficiency can be increased.
 しかしながら、パルス幅が小さいと、画像の輝度が低下することがある。このため、制御部14は、表示用光パルスの出射タイミングおよびパルス幅の相互関係を求めると、表示用光パルスのパルス幅を最適化するために、さらに、各表示用光パルスのパルス幅を求める。 However, if the pulse width is small, the brightness of the image may be reduced. For this reason, when the control unit 14 obtains the mutual relationship between the emission timing and the pulse width of the display light pulse, the control unit 14 further sets the pulse width of each display light pulse in order to optimize the pulse width of the display light pulse. Ask.
 例えば、制御部14は、レーザ光源部11およびレーザ投射部12を用いて、上記の相互関係を有する複数の調整時光パルスからなるパルス列でスクリーン10を水平走査方向に走査させ、その走査における光検出部13による検出結果に基づいて、各表示用光パルスのパルス幅を決定する。 For example, the control unit 14 uses the laser light source unit 11 and the laser projection unit 12 to scan the screen 10 in the horizontal scanning direction with a pulse train composed of a plurality of adjustment light pulses having the above-described correlations, and performs light detection in the scanning. Based on the detection result of the unit 13, the pulse width of each display light pulse is determined.
 より具体的には、制御部14は、上記のパルス列でスクリーン10を、パルス列内の調光用光パルスのパルス幅を段階的に増加させながら繰り返し水平走査方向に走査させ、各走査における検出結果に基づいて、表示用光パルスのパルス幅を決定する。なお、各走査におけるパルス列内の調光用光パルスは、同一のパルス幅を有するものとする。 More specifically, the control unit 14 repeatedly scans the screen 10 in the horizontal scanning direction with the above pulse train while gradually increasing the pulse width of the light control light pulse in the pulse train, and the detection result in each scan Based on the above, the pulse width of the display light pulse is determined. It is assumed that the light control light pulses in the pulse train in each scan have the same pulse width.
 ここで、光検出部13は、各カラーストライプ21のそれぞれからのフィードバック光を検出するとする。このとき、制御部14は、各サブフィードバック光の複数の検出期間の中で、前回の走査時の検出期間より増加していないものがあったときに、現在の走査時の調整用光パルスのパルス幅を、表示用光パルスのパルス幅として決定する。 Here, it is assumed that the light detection unit 13 detects feedback light from each of the color stripes 21. At this time, the control unit 14 determines that the adjustment light pulse at the current scanning time is not increased from the detection period at the previous scanning time among the plurality of detection time periods of each sub feedback light. The pulse width is determined as the pulse width of the display light pulse.
 あるサブフィードバック光の検出期間が増加しなかった場合、そのサブフィードバック光に対応する調光用光パルスがカラーストライプ21からはみ出たことになる。このため、上記の方法では、調光用光パルスのいずれかがカラーストライプ21からはみ出たときの、調整用光パルスのパルス幅が表示用光パルスのパルス幅として決定されるので、カラーストライプ21に入射される光パルスの光量を最も大きくすることができる。このため、表示画像の輝度を最大にしつつ、レーザ光の利用効率を低減することが可能になる。 If the detection period of a certain sub feedback light does not increase, the light control light pulse corresponding to the sub feedback light protrudes from the color stripe 21. Therefore, in the above method, the pulse width of the adjustment light pulse when any of the light control light pulses protrudes from the color stripe 21 is determined as the pulse width of the display light pulse. The light quantity of the light pulse incident on can be maximized. For this reason, it becomes possible to reduce the utilization efficiency of a laser beam, maximizing the brightness | luminance of a display image.
 また、光検出部13が各カラーストライプ21のそれぞれからのフィードバック光を検出する場合、制御部14は、各サブフィードバック光の輝度の総和を求め、その輝度の総和の走査ごとに増加率が線形とならない場合、現在の走査時の調整用光パルスのパルス幅を、表示用光パルスのパルス幅として決定してもよい。 When the light detection unit 13 detects the feedback light from each of the color stripes 21, the control unit 14 obtains the sum of the luminances of the sub-feedback lights, and the increase rate is linear for each scan of the sum of the luminances. If not, the pulse width of the adjustment optical pulse during the current scan may be determined as the pulse width of the display optical pulse.
 この場合、輝度の増加率が低くなったときの調整用光パルスのパルス幅が、表示用光パルスのパルス幅となるので、レーザ光の利用効率を最も高くし、その最も高い利用効率の中で、表示画像の輝度を最大にすることができる。 In this case, since the pulse width of the adjustment light pulse when the luminance increase rate becomes low is the pulse width of the display light pulse, the laser light utilization efficiency is maximized and the highest utilization efficiency is achieved. Thus, the brightness of the display image can be maximized.
 また、上記の方法とは別に、制御部14は、出射タイミングおよびパルス幅の相互関係を求めたときと同じ走査における検出結果に基づいて、スクリーン10におけるレーザ光の入射位置の移動速度の最大値である移動最大速度Vを求め、その移動最大速度Vに基づいて、表示用光パルスのパルス幅を求めてもよい。 In addition to the above method, the control unit 14 determines the maximum value of the moving speed of the incident position of the laser beam on the screen 10 based on the detection result in the same scanning as when the correlation between the emission timing and the pulse width is obtained. May be obtained, and the pulse width of the display light pulse may be obtained based on the maximum movement speed V.
 この場合、図7に示したように、各カラーストライプ21の幅をR、各ブラックストライプ22の幅をQ、レーザ光のビーム径をDとすると、制御部14は、各パルス幅Wを、Q>Dの場合、W=(R+2D)/Vと決定し、Q<Dの場合、W=(R+2Q-D)/Vとする。なお、各カラーストライプ21の幅R、各ブラックストライプ22の幅Q、および、レーザ光のビーム径Dは固定値であり、制御部14にて予め保持されているものとする。この場合、表示画像の輝度を最大にしつつ、レーザ光の利用効率を低減することが可能になる。 In this case, as shown in FIG. 7, when the width of each color stripe 21 is R, the width of each black stripe 22 is Q, and the beam diameter of the laser beam is D, the control unit 14 sets each pulse width W to When Q> D, W = (R + 2D) / V is determined, and when Q <D, W = (R + 2Q−D) / V. It is assumed that the width R of each color stripe 21, the width Q of each black stripe 22, and the beam diameter D of the laser beam are fixed values and are held in advance by the control unit 14. In this case, it is possible to reduce the utilization efficiency of the laser light while maximizing the luminance of the display image.
 また、制御部14は、各パルス幅Wを、W=(R-D)/Vとしてもよい。この場合、
レーザ光の利用効率が最も高くし、その利用効率において、表示画像の輝度を最大にすることができる。
Further, the control unit 14 may set each pulse width W to W = (RD) / V. in this case,
The utilization efficiency of the laser beam is maximized, and the luminance of the display image can be maximized at the utilization efficiency.
 制御部14は、上記のように表示用光パルスの出射タイミングおよびパルス幅の相互関係と、表示用光パルスのパルス幅とを求めると、その相互関係およびパルス幅に基づいて、表示用光パルスの出射タイミングおよびパルス幅を示す制御情報を生成する。例えば、制御部14は、その求めたパルス幅を相互関係に代入して、出射タイミングを求め、その求めたパルス幅および出射タイミングを示す制御情報を生成する。 When the control unit 14 obtains the mutual relationship between the emission timing and pulse width of the display optical pulse and the pulse width of the display optical pulse as described above, the control unit 14 determines the display optical pulse based on the mutual relationship and the pulse width. The control information indicating the emission timing and the pulse width is generated. For example, the control unit 14 substitutes the obtained pulse width into the correlation, obtains the emission timing, and generates control information indicating the obtained pulse width and the emission timing.
 制御部14は、制御情報を生成すると、その制御情報を保持するか、制御部14外のメモリ(図示せず)などに制御情報を記録する。 When generating the control information, the control unit 14 holds the control information or records the control information in a memory (not shown) outside the control unit 14.
 図8は、上記のように構成されたプロジェクタ1において、レーザ光でスクリーン10を走査する様子を示す図である。図8において、レーザ走査部30は、図1に示した、レーザ光源部11、レーザ投射部12、光検出部13および制御部14を備えるものである。 FIG. 8 is a diagram showing a state in which the screen 10 is scanned with laser light in the projector 1 configured as described above. In FIG. 8, the laser scanning unit 30 includes the laser light source unit 11, the laser projection unit 12, the light detection unit 13, and the control unit 14 illustrated in FIG. 1.
 図8で示す例では、画像の描画開始位置は表示領域31の左上とされている。レーザ走査部30から投射されたレーザ光は、スクリーン10上をカラーストライプ21の長手方向と交差する方向に移動する。スクリーン10上のレーザ光の入射位置は、軌跡32のように、表示領域内を左端から右端へ移動し、右端に達すると、そこで折り返され、左端へ移動する。そして、レーザ光の入射位置は、左端で折り返され、再度右端へと移動する。このような走査が上側から下側に向かって連続して行われる。 In the example shown in FIG. 8, the image drawing start position is the upper left of the display area 31. The laser light projected from the laser scanning unit 30 moves on the screen 10 in a direction intersecting the longitudinal direction of the color stripe 21. The incident position of the laser beam on the screen 10 moves from the left end to the right end within the display area as shown by the locus 32, and when it reaches the right end, it is folded and moved to the left end. Then, the incident position of the laser beam is folded at the left end and moves again to the right end. Such scanning is continuously performed from the upper side to the lower side.
 なお、本実施形態のプロジェクタ1では、カラーストライプ21の長手方向が垂直方向を向いており、レーザ走査部30は、スクリーン10を水平方向に走査することで、レーザ光の入射位置をカラーストライプ21の長手方向と交差する方向に移動させている。しかしながら、プロジェクタ1では、カラーストライプ21の長手方向が水平方向に向いており、レーザ走査部30は、スクリーン10を垂直方向に走査することで、レーザ光の入射位置をカラーストライプ21の長手方向と交差する方向に移動させてもよい。 In the projector 1 of the present embodiment, the longitudinal direction of the color stripe 21 is in the vertical direction, and the laser scanning unit 30 scans the screen 10 in the horizontal direction so that the incident position of the laser beam is the color stripe 21. It is moved in a direction intersecting with the longitudinal direction. However, in the projector 1, the longitudinal direction of the color stripe 21 is oriented in the horizontal direction, and the laser scanning unit 30 scans the screen 10 in the vertical direction so that the incident position of the laser light is the longitudinal direction of the color stripe 21. You may move to the direction which crosses.
 以上説明したように本実施形態によれば、光検出部13の検出結果に基づいて、各カラーストライプ内に光パルスが入射されるように、レーザ光源部11の発光タイミングおよび発光期間が調節されるので、プロジェクタ1の走査速度が変化しても、光パルスをカラーストライプ21内に収めることが可能になり、レーザ光源部11からのレーザ光の利用効率を高くすることが可能になる。 As described above, according to the present embodiment, the light emission timing and the light emission period of the laser light source unit 11 are adjusted based on the detection result of the light detection unit 13 so that the light pulse is incident on each color stripe. Therefore, even if the scanning speed of the projector 1 changes, it becomes possible to store the light pulse in the color stripe 21 and to increase the utilization efficiency of the laser light from the laser light source unit 11.
 次に本発明の第2の実施形態について説明する。 Next, a second embodiment of the present invention will be described.
 本実施形態では、キャリブレーションが終了し、入力映像信号に応じた走査が行われている間に、制御部14は、表示用光パルスの出射タイミングおよびパルス幅を調整する。 In the present embodiment, the control unit 14 adjusts the emission timing and the pulse width of the display light pulse while the calibration is completed and scanning according to the input video signal is performed.
 制御部14は、キャリブレーションが終了すると、レーザ光源部11およびレーザ投射部12に対して、表示用光パルスからなるパルス列による、入力映像信号に応じた走査を実行させる。 When the calibration is completed, the control unit 14 causes the laser light source unit 11 and the laser projection unit 12 to perform scanning according to the input video signal using a pulse train including display light pulses.
 このとき、制御部14は、その走査時における光検出部13の検出結果に基づいて、スクリーン10におけるレーザ光の移動最大速度Vを求め、その移動最大速度Vに基づいて、制御情報を補正する。例えば、制御部14は、移動最大速度Vから移動最大速度Vから表示用光パルスのパルス幅および出射タイミングを求め、制御情報が示すパルス幅および出射タイミングを、その求めたパルス幅および出射タイミングに補正する。 At this time, the control unit 14 obtains the maximum movement speed V of the laser light on the screen 10 based on the detection result of the light detection unit 13 at the time of scanning, and corrects the control information based on the maximum movement speed V. . For example, the control unit 14 obtains the pulse width and emission timing of the display light pulse from the movement maximum velocity V from the movement maximum velocity V, and sets the pulse width and emission timing indicated by the control information to the obtained pulse width and emission timing. to correct.
 なお、制御情報を補正するタイミングは、表示画像の1フレームごとでもよいし、予め定められた複数フレームごとでもよいし、1水平走査ごとでもよい。また、移動最大速度Vから表示用光パルスのパルス幅および出射タイミングを求める方法は、第1の実施形態で説明した方法と同じ方法でよい。 The timing for correcting the control information may be every frame of the display image, every predetermined frame, or every horizontal scan. Further, the method for obtaining the pulse width and the emission timing of the display light pulse from the maximum moving speed V may be the same method as described in the first embodiment.
 本実施形態によれば、入力映像信号に応じた走査中に、制御情報が補正されるので、入力映像信号に応じた走査中に走査速度が変化しても、表示画像の輝度を最適な値にすることができる。 According to the present embodiment, since the control information is corrected during scanning according to the input video signal, even if the scanning speed changes during scanning according to the input video signal, the brightness of the display image is optimized. Can be.
 以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。 In each of the embodiments described above, the illustrated configuration is merely an example, and the present invention is not limited to the configuration.
 例えば、プロジェクタ1は、図9で示すような、マルチプロジェクタシステムのプロジェクタ1-1~1-9に適用されてもよい。ここで、マルチプロジェクタシステムは、プロジェクタ1-1~1-9のそれぞれの投射画像をスクリーン上に並んで表示して、大きな表示画像を形成させるものである。なお、マルチプロジェクタシステムのプロジェクタの数は、図9では9個だけだが、実際には複数あればよい。 For example, the projector 1 may be applied to projectors 1-1 to 1-9 of a multi-projector system as shown in FIG. Here, the multi-projector system displays the projected images of the projectors 1-1 to 1-9 side by side on a screen to form a large display image. The number of projectors in the multi-projector system is only nine in FIG.
 プロジェクタ1がマルチプロジェクタシステムに適用された場合、プロジェクタ1には、フィードバック光の生成のためなどの特別なマークを表示領域以外の箇所に設ける必要がないため、各投射画像の境界に継ぎ目のないシームレスなマルチプロジェクタシステムを構成することができる。 When the projector 1 is applied to a multi-projector system, the projector 1 does not need to be provided with a special mark for generating feedback light or the like other than the display area. A seamless multi-projector system can be configured.
 この出願は、2010年12月13日に出願された日本出願特願2010-276835号公報を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2010-276835 filed on Dec. 13, 2010, the entire disclosure of which is incorporated herein.

Claims (14)

  1.  入射光に応じた可視光を発生させるカラーストライプが周期的に配置されたスクリーンと、
     光ビームを出射する光源と、
     前記光ビームで、前記スクリーンにおける前記カラーストライプが配置された領域を走査する投射部と、
     前記光ビームに対する前記スクリーンからのフィードバック光を検出する検出部と、
     前記検出部の検出結果に基づいて、前記光源の発光タイミングおよび発光期間を調節して、各カラーストライプ内に光パルスが入射されるように前記光ビームを前記光源から出射させる制御部と、を有するプロジェクタ。
    A screen in which color stripes that generate visible light according to incident light are periodically arranged;
    A light source that emits a light beam;
    A projection unit that scans an area of the screen where the color stripes are arranged with the light beam;
    A detector for detecting feedback light from the screen with respect to the light beam;
    A control unit that adjusts the light emission timing and the light emission period of the light source based on the detection result of the detection unit, and causes the light beam to be emitted from the light source so that a light pulse enters each color stripe; Projector.
  2.  請求項1に記載のプロジェクタにおいて、
     前記制御部は、前記光源から前記光ビームとして連続光を出射させるとともに、前記投射部に前記スクリーンを各カラーストライプと交差する方向に走査させ、当該走査における前記検出結果に基づいて、各光パルスのそれぞれの出射タイミングおよびパルス幅を示す制御情報を生成し、当該制御情報に応じて前記光源の発光タイミングおよび発光期間を調節する、プロジェクタ。
    The projector according to claim 1, wherein
    The control unit causes the light source to emit continuous light as the light beam, and causes the projection unit to scan the screen in a direction intersecting each color stripe, and based on the detection result in the scanning, each light pulse A projector that generates control information indicating the respective emission timings and pulse widths, and adjusts the light emission timing and light emission period of the light source according to the control information.
  3.  請求項2に記載のプロジェクタにおいて、
     前記制御部は、前記検出結果に基づいて、各光パルスの出射タイミングおよびパルス幅の関係と、各光パルスのパルス幅とを求め、当該求めた関係およびパルス幅に応じて前記制御情報を生成する、プロジェクタ。
    The projector according to claim 2,
    The control unit obtains the relationship between the emission timing and pulse width of each optical pulse and the pulse width of each optical pulse based on the detection result, and generates the control information according to the obtained relationship and pulse width. A projector.
  4.  請求項3に記載のプロジェクタにおいて、
     前記検出部は、前記フィードバック光として、各カラーストライプからの複数のサブフィードバック光を検出し、
     前記制御部は、前記方向のi番目のカラーストライプからのサブフィードバック光の検出タイミングをt、当該サブフィードバック光の検出幅をd、前記i番目のカラーストライプに入射する光パルスの出射タイミングをa、各光パルスのパルス幅をWとすると、前記関係を、
    Figure JPOXMLDOC01-appb-M000001

     と求める、プロジェクタ。
    The projector according to claim 3, wherein
    The detection unit detects a plurality of sub-feedback lights from each color stripe as the feedback light,
    The control unit sets the detection timing of the sub-feedback light from the i-th color stripe in the direction as t i , the detection width of the sub-feedback light as d i , and the emission timing of the light pulse incident on the i-th color stripe. A i and the pulse width of each light pulse as W,
    Figure JPOXMLDOC01-appb-M000001

    I ask for a projector.
  5.  請求項3に記載のプロジェクタにおいて、
     前記検出部は、前記フィードバック光として、前記複数のカラーストライプのうちの予め定められた複数の検出用ストライプからの複数のサブフィードバック光を検出し、
     前記制御部は、前記方向のi番目の検出用ストライプからのフィードバック光の検出タイミングをt、当該フィードバック光の検出幅をd、前記i番目の検出用ストライプから、次の検出用ストライプの手前のカラーストライプまでにある対象カラーストライプの数をn、前記i番目の検出用ストライプから数えてj番目にある対象カラーストライプに入射する光パルスの出射タイミングをaj、各光パルスのパルス幅をWとすると、前記関係を、
    Figure JPOXMLDOC01-appb-M000002

     と求める、プロジェクタ。
    The projector according to claim 3, wherein
    The detection unit detects a plurality of sub-feedback lights from a plurality of predetermined detection stripes among the plurality of color stripes as the feedback light,
    The control unit sets the detection timing of feedback light from the i-th detection stripe in the direction to t i , the detection width of the feedback light to d i , and the detection stripe of the next detection stripe from the i-th detection stripe. The number of target color stripes up to the previous color stripe is n, the emission timing of light pulses incident on the jth target color stripe counted from the i-th detection stripe is aj i , and the pulse width of each light pulse Is W, the relationship is
    Figure JPOXMLDOC01-appb-M000002

    I ask for a projector.
  6.  請求項5に記載のプロジェクタにおいて、
     前記スクリーンは、前記カラーストライプとして、前記可視光の波長がそれぞれ異なる複数のサブカラーストライプが所定の順番で周期的に配置され、
     前記検出用ストライプは、前記サブカラーストライプのうち、所定の波長の可視光を発生するサブカラーストライプである、プロジェクタ。
    The projector according to claim 5, wherein
    In the screen, as the color stripe, a plurality of sub-color stripes having different visible light wavelengths are periodically arranged in a predetermined order,
    The detection stripe is a projector that is a sub-color stripe that generates visible light having a predetermined wavelength among the sub-color stripes.
  7.  請求項3に記載のプロジェクタにおいて、
     前記スクリーンでは、各カラーストライプの間に入射光を遮光するブラックストライプが配置され、
     前記検出部は、前記フィードバック光として、各ブラックストライプからの複数のサブフィードバック光を検出し、
     前記制御部は、前記方向のi番目のブラックストライプからのサブフィードバック光の検出タイミングをt、当該サブフィードバック光の検出幅をd、前記i番目のブラックストライプの次のカラーストライプに入射する光パルスの出射タイミングをb、各光パルスのパルス幅をWとすると、前記関係を、
    Figure JPOXMLDOC01-appb-M000003

     と求める、プロジェクタ。
    The projector according to claim 3, wherein
    In the screen, black stripes that block incident light are arranged between the color stripes,
    The detection unit detects a plurality of sub-feedback lights from each black stripe as the feedback light,
    The control unit makes the detection timing of the sub-feedback light from the i-th black stripe in the direction t i , the detection width of the sub-feedback light is d i , and enters the color stripe next to the i-th black stripe. When the emission timing of the optical pulse is b i and the pulse width of each optical pulse is W, the relationship is
    Figure JPOXMLDOC01-appb-M000003

    I ask for a projector.
  8.  請求項3ないし7のいずれか1項に記載のプロジェクタにおいて、
     前記制御部は、前記検出結果に基づいて、前記スクリーンにおける前記光ビームの入射位置の移動最大速度Vを求め、各カラーストライプの幅をR、各ブラックストライプの幅をQ、前記光ビームのビーム径をDとしたき、各光パルスのパルス幅Wを、Q>Dの場合、W=(R+2D)/Vと求め、Q<Dの場合、W=(R+2Q-D)/Vと求める、プロジェクタ。
    The projector according to any one of claims 3 to 7,
    The control unit obtains the maximum moving speed V of the incident position of the light beam on the screen based on the detection result, the width of each color stripe is R, the width of each black stripe is Q, and the beam of the light beam When the diameter is D, the pulse width W of each optical pulse is obtained as W = (R + 2D) / V when Q> D, and as W = (R + 2Q−D) / V when Q <D. projector.
  9.  請求項3ないし7のいずれか1項に記載のプロジェクタにおいて、
     前記制御部は、前記スクリーンにおける前記光ビームの入射位置の移動最大速度Vを求め、各カラーストライプの幅をR、前記光ビームのビーム径をDとしたき、各光パルスのパルス幅Wを(R-D)/Vと求める、プロジェクタ。
    The projector according to any one of claims 3 to 7,
    The control unit obtains the maximum moving speed V of the incident position of the light beam on the screen, and sets the width of each color stripe as R, the beam diameter of the light beam as D, and the pulse width W of each light pulse. A projector that obtains (RD) / V.
  10.  請求項3ないし7のいずれか1項に記載のプロジェクタにおいて、
     前記制御部は、前記光源および前記投射部を用いて、前記関係を有する複数の調整用光パルスで、各調整用光パルスのパルス幅を増加させながら前記方向に繰り返し走査させ、各走査における前記検出部の検出結果に基づいて、各光パルスのパルス幅を求める、プロジェクタ。
    The projector according to any one of claims 3 to 7,
    The control unit uses the light source and the projection unit to repeatedly scan in the direction while increasing the pulse width of each adjustment light pulse with the plurality of adjustment light pulses having the relationship, and A projector that determines a pulse width of each light pulse based on a detection result of a detection unit.
  11.  請求項10に記載のプロジェクタにおいて、
     前記検出部は、前記各走査において、前記フィードバック光として、各カラーストライプからの複数の第2サブフィードバック光を検出し、
     前記制御部は、各第2サブフィードバック光の検出期間の中で、前回の走査における検出期間より増加していないものがあった場合、現在の走査における各調整用光パルスのパルス幅を各光パルスのパルス幅として求める、プロジェクタ。
    The projector according to claim 10, wherein
    The detection unit detects a plurality of second sub-feedback lights from each color stripe as the feedback light in each scan,
    In the detection period of each second sub-feedback light, the control unit determines the pulse width of each adjustment optical pulse in the current scan for each light when there is no increase in the detection period in the previous scan. The projector that is calculated as the pulse width of the pulse.
  12.  請求項10に記載のプロジェクタにおいて、
     前記検出部は、前記各走査において、前記フィードバック光として、各カラーストライプからの複数の第2サブフィードバック光を検出し、
     前記制御部は、走査ごとの各第2サブフィードバック光の輝度の総和の増加率が線形とならない場合、現在の走査における各調整用光パルスのパルス幅を各光パルスのパルス幅として求める、プロジェクタ。
    The projector according to claim 10, wherein
    The detection unit detects a plurality of second sub-feedback lights from each color stripe as the feedback light in each scan,
    The control unit obtains the pulse width of each adjustment optical pulse in the current scan as the pulse width of each light pulse when the rate of increase in the sum of the brightness of each second sub-feedback light for each scan is not linear. .
  13.  請求項2ないし12のいずれか1項に記載のプロジェクタにおいて、
     前記制御部は、前記光源の発光タイミングおよび発光期間を調節しつつ、入力映像信号に応じた走査を前記投射部に実行させ、当該走査における前記検出結果に基づいて、前記制御情報を補正する、プロジェクタ。
    The projector according to any one of claims 2 to 12,
    The control unit causes the projection unit to perform a scan according to an input video signal while adjusting a light emission timing and a light emission period of the light source, and corrects the control information based on the detection result in the scan. projector.
  14.  入射光に応じた可視光を発生させるカラーストライプが周期的に配置されたスクリーンと、光ビームを出射する光源と、前記光ビームで、前記スクリーンにおける前記カラーストライプが配置された領域を走査する投射部と、を有するプロジェクタの制御方法であって、
     前記光ビームに対する前記スクリーンからのフィードバック光を検出し、
     当該検出結果に基づいて、前記光源の発光タイミングおよび発光期間を調節して、各カラーストライプ内に光パルスが入射されるように前記光ビームを前記光源から出射させる、制御方法。
    A screen in which color stripes that generate visible light according to incident light are periodically arranged, a light source that emits a light beam, and a projection that scans an area of the screen where the color stripe is arranged with the light beam. And a projector control method comprising:
    Detecting feedback light from the screen to the light beam;
    A control method of adjusting the light emission timing and light emission period of the light source based on the detection result to emit the light beam from the light source so that a light pulse is incident on each color stripe.
PCT/JP2011/074160 2010-12-13 2011-10-20 Projector and control method WO2012081308A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800599811A CN103262145A (en) 2010-12-13 2011-10-20 Projector and control method
US13/884,199 US20130229630A1 (en) 2010-12-13 2011-10-20 Projector and control method
JP2012548693A JPWO2012081308A1 (en) 2010-12-13 2011-10-20 Projector and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-276835 2010-12-13
JP2010276835 2010-12-13

Publications (1)

Publication Number Publication Date
WO2012081308A1 true WO2012081308A1 (en) 2012-06-21

Family

ID=46244423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074160 WO2012081308A1 (en) 2010-12-13 2011-10-20 Projector and control method

Country Status (4)

Country Link
US (1) US20130229630A1 (en)
JP (1) JPWO2012081308A1 (en)
CN (1) CN103262145A (en)
WO (1) WO2012081308A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128865A1 (en) * 2013-02-20 2014-08-28 パイオニア株式会社 Image display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489525A (en) * 1977-12-27 1979-07-16 Sony Corp Picture display unit
JPH02149887A (en) * 1988-11-30 1990-06-08 Pioneer Electron Corp Color display device
JP2007047355A (en) * 2005-08-09 2007-02-22 Seiko Epson Corp Optical scanner and image display apparatus
JP2008538145A (en) * 2005-04-01 2008-10-09 スプドニック インコーポレイテッド Display system and apparatus having a screen containing optical fluorescent material
JP2009537868A (en) * 2006-05-15 2009-10-29 スプドニック インコーポレイテッド Multilayer fluorescent screen for beam display system
JP2009539120A (en) * 2006-02-15 2009-11-12 スプドニック インコーポレイテッド Servo-assisted scanning beam display system using fluorescent screen
JP2011028065A (en) * 2009-07-28 2011-02-10 Panasonic Corp Image display
WO2011136065A1 (en) * 2010-04-26 2011-11-03 日本電気株式会社 Image display device and light emission timing control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791561B2 (en) * 2005-04-01 2010-09-07 Prysm, Inc. Display systems having screens with optical fluorescent materials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489525A (en) * 1977-12-27 1979-07-16 Sony Corp Picture display unit
JPH02149887A (en) * 1988-11-30 1990-06-08 Pioneer Electron Corp Color display device
JP2008538145A (en) * 2005-04-01 2008-10-09 スプドニック インコーポレイテッド Display system and apparatus having a screen containing optical fluorescent material
JP2007047355A (en) * 2005-08-09 2007-02-22 Seiko Epson Corp Optical scanner and image display apparatus
JP2009539120A (en) * 2006-02-15 2009-11-12 スプドニック インコーポレイテッド Servo-assisted scanning beam display system using fluorescent screen
JP2009537868A (en) * 2006-05-15 2009-10-29 スプドニック インコーポレイテッド Multilayer fluorescent screen for beam display system
JP2011028065A (en) * 2009-07-28 2011-02-10 Panasonic Corp Image display
WO2011136065A1 (en) * 2010-04-26 2011-11-03 日本電気株式会社 Image display device and light emission timing control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128865A1 (en) * 2013-02-20 2014-08-28 パイオニア株式会社 Image display device
JPWO2014128865A1 (en) * 2013-02-20 2017-02-02 パイオニア株式会社 Image display device

Also Published As

Publication number Publication date
CN103262145A (en) 2013-08-21
JPWO2012081308A1 (en) 2014-05-22
US20130229630A1 (en) 2013-09-05

Similar Documents

Publication Publication Date Title
JP6694772B2 (en) Laser projection display
US9865188B2 (en) Image display device
JP5120000B2 (en) Image display device
US10944945B2 (en) Projection device and projection method, projection module, electronic device, and program
US8066385B2 (en) Projection display and lighting unit with diffusion optical device
CN104321686A (en) Controlling light sources of a directional backlight
GB2515868A (en) Self aligning imager array
US20180192018A1 (en) Projection device and projection method, projection module, electronic device, and program
US20220070419A1 (en) Display system with multiple beam scanners
US20160255316A1 (en) Display device
JP2018156062A (en) Display device, object device, and display method
US20200174356A1 (en) Projection device
JP6137006B2 (en) Image display device and image display method
US9160995B2 (en) Image display device and light emission timing control method
JP5828323B2 (en) Image projection apparatus and image projection method
JP2009222973A (en) Image projection device
JP2015031782A (en) Image display apparatus
WO2012081308A1 (en) Projector and control method
US10218947B1 (en) Compensation for overlapping scan lines in a scanning-beam display system
JP5929894B2 (en) Projector and control method thereof
JP2017142533A (en) Image display device and image display method
JP2010211149A (en) Image display
JP2016099561A (en) Projection device, projection method, program, and storage medium
WO2013046922A1 (en) Multiprojection system and control method
JP2014178545A (en) Scanning type projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13884199

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012548693

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849445

Country of ref document: EP

Kind code of ref document: A1