WO2012081279A1 - バッチ式多相流量測定装置及び流量計測方法 - Google Patents

バッチ式多相流量測定装置及び流量計測方法 Download PDF

Info

Publication number
WO2012081279A1
WO2012081279A1 PCT/JP2011/068449 JP2011068449W WO2012081279A1 WO 2012081279 A1 WO2012081279 A1 WO 2012081279A1 JP 2011068449 W JP2011068449 W JP 2011068449W WO 2012081279 A1 WO2012081279 A1 WO 2012081279A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
flow rate
path
guide plate
Prior art date
Application number
PCT/JP2011/068449
Other languages
English (en)
French (fr)
Inventor
朋子 渡邉
通弘 川井
憲治 池田
Original Assignee
独立行政法人石油天然ガス・金属鉱物資源機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人石油天然ガス・金属鉱物資源機構 filed Critical 独立行政法人石油天然ガス・金属鉱物資源機構
Priority to EP11849470A priority Critical patent/EP2546617A1/en
Priority to AU2011342529A priority patent/AU2011342529A1/en
Priority to US13/636,088 priority patent/US20130247684A1/en
Publication of WO2012081279A1 publication Critical patent/WO2012081279A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure

Definitions

  • the present invention relates to a batch type multiphase flow rate measuring device and a flow rate measuring method.
  • the fluid immediately after being pumped from the oil field contains gas such as methane, ethane, butane, pentane and water such as salt water in addition to crude oil. Further, it may contain solid foreign matters such as sand. Therefore, in order to efficiently transport crude oil by tanker or pipeline, it is indispensable to separate gas, water and crude oil in advance and to grasp the respective flow rates.
  • separation tank type gas-liquid separators that mainly use gas buoyancy have been used for gas separation.
  • Separation tank type gas-liquid separator supplies crude oil to a large capacity tank at a low speed with sufficient residence time and floats and separates gas from the liquid during this period. It is bulky, heavy and has a large installation area.
  • the allowable space of the deck is limited, so the reduction of the size and weight of the apparatus is an important issue, and the gas-liquid separator of the separation tank type brings a large financial burden.
  • Patent Document 1 discloses a multiphase fluid flow meter that employs a method that does not separate oil, water, and gas.
  • This multiphase fluid flow meter is composed of two impellers with different mixer and blade angles from the upstream, and a spring connecting the impellers, pressure loss from the front of the mixer to the rear of the impeller, and the rotational speed of the impeller. The torque and temperature generated in the spring are measured. The measured temperature is used to determine the density of oil and water.
  • this empirical formula may not hold depending on the fluid composition.
  • the flow pattern may change, and this empirical formula may not hold. Therefore, empirical calibration is necessary in the field environment.
  • the field data used for calibration must allow a relative error of ⁇ 10% for gas volume flow and liquid volume flow, respectively, and an error of at least ⁇ 3% for moisture content. Therefore, the calibrated empirical formula always includes an error.
  • the measured value itself also has a mechanical error range, and there is a possibility of error due to solid matter adhesion. Although there are the above error factors, it is impossible to specify the measurement value error and the error factor with the multiphase fluid flowmeter of Patent Document 1 alone.
  • the empirical formula is not suitable for the field environment, for example, even if the true moisture content is 30%, the moisture content obtained by solving the empirical formula may indicate 100%. Therefore, it was very difficult to use this multiphase fluid flow meter in the field environment.
  • Non-Patent Document 1 “Handbook of Multiphase Flow Metering” (The Norwegian Society for Oil and Gas Measurement, and The Norwegian Society of Performing Technical and Scientific Professionals) (hereinafter referred to as "Non-Patent Document 1")
  • Other multiphase fluid flow meters employing a system that does not perform gas separation have been disclosed. Since this multiphase fluid flow meter also uses a measurement algorithm that uses an empirical formula, it requires calibration in the field regarding the empirical formula as well as a single error and error. It is difficult to identify the factors.
  • Patent Document 2 discloses a multiphase fluid flow meter that employs a system for separating oil, water, and gas. Yes.
  • This multiphase fluid flow meter is described in “Jhon S. Lievois“ Multiphase Flow Measurement Class 8110 ”(Colorado Experiment Engineering Engineering Station Inc.) (hereinafter referred to as“ Non-Patent Document 2 ”).
  • the simplest cyclone type gas-liquid separator which has no structure inside is used.
  • Patent Document 2 discloses a technique for combining two gas-liquid separation pipes downstream of the gas-liquid separator as a countermeasure when the performance of the gas-liquid separator cannot be exhibited.
  • Non-Patent Document 3 discloses another multi-phase fluid flow meter that employs a method of separating oil, water, and gas.
  • This multiphase fluid flow meter is a sampling method in which a vertical upward flow is confined by upper and lower valves, a liquid surface and an interface are measured by a differential pressure transmitter, and a moisture content is obtained.
  • Non-Patent Document 4 describes a technique for solving the problems of the multiphase fluid flow meter disclosed in Non-Patent Document 3 as oil, water and gas. Part of the technology of another multi-phase fluid flow meter that employs a method for performing separation of the multi-phase fluid flow meter is disclosed, which is disclosed in Non-Patent Document 4.
  • the multi-phase fluid flow meter disclosed in FIG. 1 The multi-phase fluid flow meter disclosed in FIG. 1
  • a measuring pipe a differential pressure transmitter for measuring the liquid level and the interface, a pressure gauge, a thermometer, and a gas flow meter. Is supplied to the gas-liquid separator, and the multiphase fluid is separated into gas and liquid.
  • This is a batch method in which the liquid is measured with a gas flowmeter, the liquid is stored in a measuring tube for several minutes, the liquid level / interface is measured with a differential pressure transmitter, and the liquid volume flow rate and moisture content are obtained.
  • the liquid discharge operation is required after the measurement, and the multiphase fluid flow meter disclosed in Patent Document 2 is a separated liquid.
  • Measurement error of multiphase fluid flow meter disclosed in Reference 4 There are two causes: measurement error caused by the accompanying liquid to the separation gas outlet pipe, and instrument error, and the accompanying liquid to the separation gas outlet pipe is a droplet in the separation gas outlet pipe. This can be confirmed by providing a separator, and the error factor can be confirmed and reduced by returning it to the measuring tube.
  • the gas-liquid separator shown in Non-Patent Document 2 exhibits excellent performance at a specific flow rate.
  • the appropriate range of the flow rate is narrow, and there is a disadvantage that the separation efficiency decreases when the flow rate deviates from that range. Under such conditions, it is impossible to prevent the entrainment of the liquid into the separation gas and the entrainment of the gas into the separation liquid.
  • the fluctuation range of crude oil including gas immediately after being pumped up from an oil field is as much as five times, the above-mentioned drawback of the gas-liquid separator shown in Non-Patent Document 2 becomes a serious problem.
  • Patent Document 3 A structure of a gas-liquid separator that alleviates the above-described drawbacks of the gas-liquid separator shown in Non-Patent Document 2 is disclosed in US Pat. No. 4,596,586 (hereinafter referred to as “Patent Document 3”). Is disclosed.
  • One of the characteristics of this gas-liquid separator is that an inner cylinder having an upper end connected to a gas outlet pipe and a lower end opened downward at a level slightly below the inlet part of the inlet pipe is provided inside the vertical cylinder. This acts as a partition, and the phenomenon that droplets are entrained from the flowing gas-liquid multiphase fluid to the separated gas is reduced.
  • Cyclone type gas-liquid separator is known to function as a mist separator.
  • Patent Document 4 discloses a gas-liquid separator that separates droplets dispersed in a gas by centrifugal force.
  • the gas-liquid separator disclosed in Patent Document 4 includes an inner cylinder and a baffle plate, similar to the gas-liquid separator disclosed in Patent Document 3, but the inner cylinder extends downward and penetrates the baffle plate. Open downward.
  • the baffle plate is connected to the lower part of the inner cylinder to form a ring and form an annular gap with the outer cylinder.
  • the gas containing mist flows into the outer cylinder from the inlet pipe attached tangentially to the outer cylinder side wall and descends while forming a swirling flow along the inner cylinder inner wall, trapping the mist on the inner cylinder inner wall and making it liquid. Flow down the inner wall and reach the liquid outlet piping.
  • the gas passes through an annular gap in the vicinity of the inner wall of the outer cylinder formed by the baffle plate and then reverses to rise in the center inner cylinder and reach the gas outlet pipe.
  • a long inner cylinder and a baffle plate that extends to the vicinity of the outer cylinder provided below the inner cylinder prevent the gas containing the mist from short-circuiting to the gas outlet pipe without sufficiently swirling. Thereby, the separation efficiency of a cyclone type gas-liquid separator increases.
  • Patent Document 5 discloses a cyclone type gas-liquid separator that generates a swirl flow according to another principle.
  • the inlet pipe is connected toward the central axis instead of the side tangential direction of the outer cylinder, and is opened to the annular portion formed by the outer cylinder and the inner cylinder. In the vicinity of the opening, the annular portion is vertically blocked by a plate-shaped guide, so that the liquid containing the inflowing bubbles is guided to the opposite side of the guide to generate a swirling flow.
  • the guide is not only a vertical guide, but also a gas-liquid guide. It extends to the lower surface of the multiphase fluid inlet pipe opening. That is, in the gas-liquid separator disclosed in Patent Document 6, the inlet pipe is connected and opened toward the central axis of the outer cylinder, and the front surface, the upper and lower surfaces, and the object are used while ensuring the flow path space. By completely enclosing the surface opposite to the swirl direction, the gas-liquid multiphase fluid flowing from the inlet pipe is guided in the swirl direction to generate a swirl flow.
  • the gas-liquid separator disclosed in Patent Document 5 is a small amount.
  • a gas-liquid separator that separates surplus ozone mixed in ozone water by a cyclone method is disclosed.
  • the cyclone type gas-liquid separator can be configured as a gas-liquid separator suitable for gas-liquid multiphase fluids having various gas-liquid mixing ratios by various modifications.
  • a multiphase fluid flow meter that employs a method that does not separate oil, water, and gas is difficult to calibrate in the field and to identify error factors.
  • a multi-phase fluid flow meter that employs a system that separates oil, water, and gas, scattering of droplets into the separation gas outlet pipe of the gas-liquid separator and mixing of bubbles into the separation liquid outlet pipe become problems. .
  • Patent Document 2 In addition, in the gas-liquid separator and the multiphase fluid flow meter disclosed in Non-Patent Document 2, Patent Document 2, Patent Document 3, and Patent Document 4, Patent Document 5 and Patent Document in terms of safety at high pressure. 6 is inferior to the gas-liquid separator disclosed in FIG. Further, in the gas-liquid separator disclosed in Patent Document 5, sufficient centrifugal force for gas-liquid separation of the gas-liquid multiphase fluid immediately after being pumped up from the oil field cannot be obtained. In addition, the gas-liquid separator disclosed in Patent Document 6 has a complicated structure and a large pressure loss of the gas-liquid multiphase fluid.
  • the present invention has been made in view of the above technical problems. According to some aspects of the present invention, it is possible to provide a flow rate measuring device and a flow rate measuring method with a simple configuration and less error factors.
  • the batch-type multiphase flow rate measuring device is: A container having a top portion, a bottom portion, and a hollow body portion connecting between the top portion, a bottom portion, an inlet portion for supplying a gas-liquid multiphase fluid from a side surface of the body portion, a liquid outlet portion for discharging liquid from the bottom portion, and the top portion A gas outlet that discharges gas from the top, a hollow inner cylinder having an upper end connected to the top and a lower end opened at a position lower than the lower end of the inlet, an outer surface of the inner cylinder, and the body A gas-liquid separator comprising a guide plate provided on at least one of the inner surfaces;
  • the gas-liquid multiphase inlet port to which the gas-liquid multiphase fluid is supplied, the gas-liquid multiphase outlet port from which the gas-liquid multiphase fluid is discharged, and the gas-liquid from the gas-liquid multiphase inlet port A main pipe having a branching section and a merging section between the multiphase outlet, Connecting the branch portion and
  • the lower part of the guide plate is provided at least at a position directly below a region facing the inlet portion of the outer surface of the inner cylinder, and along a part of the outer surface of the inner cylinder in a plan view. Provided, There is a gap in at least a part between the lower part of the guide plate and the body part.
  • the present invention since it is configured to have a gap in at least a part between the lower portion of the guide plate and the body of the container, the flow rate and the gas-liquid ratio change greatly with time with a simple configuration. It is possible to realize a gas-liquid separator that can separate a gas-liquid multiphase fluid into gas and liquid with high separation efficiency. Therefore, it is possible to realize a multiphase flow rate measuring apparatus with a simple configuration and less error factors.
  • This batch-type multiphase flow rate measuring device is A controller for controlling the flow path switching means, the first opening / closing means and the second opening / closing means;
  • the controller is The flow path switching means is controlled to switch the flow path of the gas-liquid multiphase fluid from the first path to the second path, and the path from the gas outlet portion to the merging portion is closed
  • the flow path switching means is controlled to switch the flow path of the gas-liquid multiphase fluid from the second path to the first path, and the path from the gas outlet portion to the merge portion is opened.
  • the flow path switching means is A third opening / closing means that is provided in the main pipe and switches between a state in which a path from the branch portion to the junction portion is open and closed; Fourth opening / closing means provided on the inlet pipe and switching between a state in which a path from the branch portion to the inlet portion is opened and a state in which the route is closed may be included.
  • This batch-type multiphase flow rate measuring device in the first process, From the state where the fourth opening / closing means is controlled to switch the path from the branch part to the inlet part from the closed state to the open state, and the path from the gas outlet part to the junction part is closed. After controlling the second opening / closing means to switch to the open state, the third opening / closing means is controlled to switch the path from the branching portion to the joining portion from the open state to the closed state. Also good.
  • This batch-type multiphase flow rate measuring device is The control unit, in the second process, After the third opening / closing means is controlled to switch the path from the branch part to the junction part from the closed state to the open state, the path from the branch part to the inlet part is closed from the open state.
  • the fourth opening / closing means may be controlled to switch to a state.
  • This batch-type multiphase flow rate measuring device It has a liquid flow rate calculation part that calculates the liquid flow rate, In the liquid flow rate calculation unit, the pressure measured at two or more measurement points having different heights by the pressure measurement unit, and the flow path of the gas-liquid multiphase fluid becomes the second path by the flow path switching unit.
  • the liquid flow rate may be calculated based on time.
  • This batch type multi-phase flow rate measuring device The first opening / closing means may be provided above a horizontal height of the merging portion.
  • This batch type multi-phase flow rate measuring device You may have the droplet separator provided in the said gas outlet piping, and isolate
  • the batch type multiphase flow rate measuring method is: A batch-type multiphase flow measurement method using any one of these batch-type multiphase flow measurement devices,
  • the flow path switching means switches the flow path of the gas-liquid multiphase fluid from the first path to the second path, and the second opening / closing means switches the path from the gas outlet to the junction.
  • the flow path switching means switches the flow path of the gas-liquid multiphase fluid from the second path to the first path, and the second opening / closing means switches the path from the gas outlet to the junction.
  • a second step of switching from an open state to a closed state A third step of switching from a closed state to an open state by the first opening / closing means from the liquid outlet portion to the junction portion; A fourth step of switching from the opened state to the closed state by the first opening / closing means from the liquid outlet portion to the junction portion; including.
  • FIG. 1 is an example of a schematic diagram of a meridional section of a gas-liquid separator 100 according to this embodiment.
  • FIG. 2 is an example of a schematic view when the gas-liquid separator 100 according to the present embodiment is viewed in plan view from the cross section taken along the line AA of FIG.
  • FIG. 3 is a partially enlarged view showing an example of the configuration of the inner cylinder 30 and the guide plate 40 when the central axis of the trunk portion 13 is viewed horizontally from the inlet portion 20.
  • 4 is a perspective view showing an example of the inner cylinder 30 and the guide plate 40 provided on the inner cylinder 30 shown in FIG. FIG.
  • FIG. 5 is a partially enlarged view showing another example of the configuration of the inner cylinder 30 and the guide plate 40 when the central axis of the trunk portion 13 is viewed horizontally from the inlet portion 20.
  • FIG. 6 is an example of a schematic diagram of a meridional section of the gas-liquid separator 100a according to the second configuration example.
  • FIG. 7 is an example of a schematic view when the gas-liquid separator 100a according to the second configuration example is viewed in plan from the cross section taken along the line AA of FIG.
  • FIG. 8 is an example of a schematic diagram of a meridional section of the gas-liquid separator 100b according to the third configuration example.
  • FIG. 9 is an example of a schematic diagram when the gas-liquid separator 100b according to the third configuration example is viewed in plan from the cross section taken along the line AA of FIG.
  • FIG. 10 is an example of a schematic view when the gas-liquid separator 100c according to the fourth configuration example is viewed in plan from a cross-section at a position corresponding to AA in FIG.
  • FIG. 11 is an example of a schematic diagram of a meridional section of a gas-liquid separator 100d according to a modification of the present embodiment.
  • FIG. 12 is a graph showing the result of measuring the liquid scattering rate using the gas-liquid separator 100 according to the first configuration example.
  • FIG. 13 is an example of a schematic diagram of a meridian cross section of the batch-type multiphase flow rate measuring device 1 according to the first embodiment.
  • FIG. 14 is a flowchart for explaining an example of a batch type multi-phase flow rate measuring method using the batch type multi-phase flow rate measuring apparatus 1 according to the first embodiment.
  • FIG. 15 is a diagram for explaining a calculation example of the liquid flow rate.
  • FIG. 16 is a graph showing an example of the relationship between the volume V and the height h.
  • FIG. 17 is an example of a schematic diagram of a meridian cross section of the batch-type multiphase flow rate measuring device 2 according to the second embodiment.
  • FIG. 18 is a diagram for explaining a calculation example of the liquid flow rate.
  • FIG. 14 is a flowchart for explaining an example of a batch type multi-phase flow rate measuring method using the batch type multi-phase flow rate measuring apparatus 1 according to the first embodiment.
  • FIG. 15 is a diagram for explaining a calculation example of the liquid flow
  • FIG. 19 is an example of a schematic diagram of a meridian cross section of the batch-type multiphase flow rate measuring device 3 according to the third embodiment.
  • FIG. 20 is a diagram for explaining calculation examples of the oil density and the water density.
  • FIG. 21 is an example of a schematic diagram of a meridian cross section of the batch-type multiphase flow rate measuring device 4 according to the fourth embodiment.
  • FIG. 22 is a diagram for explaining a calculation example of the liquid flow rate.
  • FIG. 23 is an example of a schematic diagram of a meridian cross section of the batch-type multiphase flow rate measuring device 5 according to the fifth embodiment.
  • FIG. 24 is an example of a schematic diagram of a meridian cross section of the batch-type multiphase flow rate measuring device 6 according to the sixth embodiment.
  • FIG. 25 is an example of a schematic view of the vicinity of the flow path switching unit 130 of the batch-type multiphase flow rate measuring device 6 according to the sixth embodiment when viewed in plan.
  • FIG. 26 is
  • the batch type multiphase flow rate measuring apparatus has a gas-liquid separator. Below, the structure of the gas-liquid separator used for the batch type multi-phase flow rate measuring apparatus mentioned later is demonstrated first.
  • FIG. 1 is an example of a schematic diagram of a meridional section of a gas-liquid separator 100 according to a first configuration example.
  • FIG. 2 is an example of a schematic diagram when the gas-liquid separator 100 according to the first configuration example is viewed in plan from the cross section taken along the line AA of FIG.
  • a gas-liquid separator 100 is a gas-liquid separator 100 that separates a gas-liquid multiphase fluid into a gas and a liquid, and includes a top 11, a bottom 12, and a hollow body that connects between them.
  • a container 10 having a portion 13, an inlet portion 20 for supplying a gas-liquid multiphase fluid from the side surface of the body portion 13, a liquid outlet portion 21 for discharging liquid from the bottom portion 12, and a gas outlet portion for discharging gas from the top portion 11.
  • a hollow inner cylinder 30 whose upper end is connected to the top 11 and whose lower end is opened at a position lower than the lower end of the inlet portion 20, and a guide plate 40 provided on the outer surface of the inner cylinder 30.
  • the guide plate 40 includes a guide plate side portion 41 having a non-horizontal direction as a longitudinal direction, and a guide plate lower portion 42 provided with a non-vertical direction as a longitudinal direction and provided continuously with the guide plate side portion 41.
  • the plate side portion 41 is at least one side of the inlet portion 20 on the inner side surface of the body portion 13 or one side of a region facing the inlet portion 20 on the outer side surface of the inner cylinder 30.
  • the guide plate lower part 42 is provided at a position that is at least directly below a region of the outer surface of the inner cylinder 30 that faces the inlet portion 20, and the outer side of the inner cylinder 30 in plan view. It is provided along a part of the side surface. Further, a gap 90 is provided at least at a part between the guide plate lower part 42 and the body part 13.
  • the container 10 has the top part 11, the bottom part 12, and the hollow trunk
  • the container 10 is configured as a hollow container that is elongated in the vertical direction.
  • drum 13 is comprised circularly.
  • drum 13 is formed in the same diameter from the top part 11 to the bottom part 12, and the central axis is the perpendicular direction.
  • this invention is not limited to this structure, For example, the location which has a different internal diameter in a part of trunk
  • the inlet portion 20 is provided in the trunk portion 13 of the container 10 as an opening that communicates with the internal space of the container 10.
  • One of the functions of the inlet portion 20 is to communicate with an inlet pipe 120 described later and to be a flow path for supplying a gas-liquid multiphase fluid to the container 10.
  • the inlet pipe 120 has a horizontal cross section passing through the center line of the inlet pipe 120 in the plan view, and an extended surface in the gas-liquid multiphase fluid supply direction is the central axis of the trunk portion 13. It is provided to cross.
  • the inlet pipe 120 has a center line of the inlet pipe 120 in plan view, More preferably, it is provided so as to intersect the central axis of the body portion 13.
  • the shape of the inlet portion 20 is circular.
  • the liquid outlet 21 is provided at the bottom 12 of the container 10 as an opening communicating with the internal space of the container 10.
  • One of the functions of the liquid outlet portion 21 is to communicate with a liquid outlet pipe 121 to be described later and serve as a flow path for discharging the liquid separated by the gas-liquid separator 100 from the container 10.
  • the liquid outlet portion 21 is provided at the center of the bottom portion 12.
  • this invention is not limited to this structure, The liquid outlet part 21 may be provided in the position shifted
  • the shape of the liquid outlet part 21 is comprised circularly.
  • the gas outlet 22 is provided at the top 11 of the container 10 as an opening communicating with the internal space of the container 10.
  • One of the functions of the gas outlet portion 22 is to communicate with a gas outlet pipe 122 to be described later and serve as a flow path for discharging the gas separated by the gas-liquid separator 100 from the container 10.
  • the gas outlet portion 22 is provided at the center of the top portion 11.
  • this invention is not limited to this structure, The gas outlet part 22 may be provided in the position shifted
  • the shape of the gas outlet part 22 is comprised circularly.
  • the inner cylinder 30 has a hollow cylindrical shape.
  • the upper end of the inner cylinder 30 is connected to the top 11 of the container 10.
  • the upper end of the inner cylinder 30 and the top 11 of the container 10 are connected in an airtight manner.
  • the inner cylinder 30 is opened at a position where the lower end is lower than the lower end of the inlet portion 20.
  • the inner cylinder 30 is provided so as to communicate with the gas outlet portion 22.
  • the shape of the outer surface in the cross section of the inner cylinder 30 is configured as a circle. Further, as shown in FIG. 2, the inner surface of the body portion 13 of the container 10 and the outer surface of the inner cylinder 30 are configured to be concentric in a plan view. Moreover, in the example shown in FIG.1 and FIG.2, the shape of the inner surface in the horizontal cross section of the inner cylinder 30 is comprised circularly with the same diameter. In addition, this invention is not limited to this structure, For example, the location which has a different internal diameter in a part of inner cylinder 30, or / and a different outer diameter in a part of inner cylinder 30 may exist.
  • the guide plate 40 is provided on the outer surface of the inner cylinder 30. Moreover, as shown in FIG. 2, the guide plate 40 is configured in a partial annular shape in plan view. It is preferable that the guide plate 40 and the outer surface of the inner cylinder 30 provided with the guide plate 40 are in close contact with each other by welding or the like in order to ensure attachment strength and airtightness.
  • FIG. 3 is a partially enlarged view showing an example of the configuration of the inner cylinder 30 and the guide plate 40 when the central axis of the trunk portion 13 is viewed horizontally from the inlet portion 20.
  • 4 is a perspective view showing an example of the inner cylinder 30 and the guide plate 40 provided on the inner cylinder 30 shown in FIG.
  • the guide plate 40 is provided continuously with the guide plate side portion 41 having the non-horizontal direction as the longitudinal direction and the non-vertical direction as the longitudinal direction. And a guide plate lower portion 42.
  • the guide plate side portion 41 is provided at least at a position on one side of a region facing the inlet portion 20 on the outer surface of the inner cylinder 30.
  • the guide plate lower portion 42 is provided at least at a position directly below the region facing the inlet portion 20 in the outer surface of the inner cylinder 30, and along a part of the outer surface of the inner cylinder 30 in plan view. Is provided.
  • the gas-liquid multiphase fluid supplied from the inlet 20 by the guide plate 40 flows from the inlet 20 to the trunk 13 using a flow path between the inner side of the barrel 13 and the outer side of the inner cylinder 30 of the container 10.
  • the inlet portion 20 turns from one side to the other side. Thereby, centrifugal force acts on the gas-liquid multiphase fluid, and the gas-liquid multiphase fluid can be separated into gas and liquid.
  • the range in which the guide plate lower part 42 is provided on the outer side surface of the inner cylinder 30 is at least from the right side of the guide plate side part 41 to the outer side surface of the inner cylinder 30 when the central axis of the body part 13 is viewed horizontally from the inlet part 20. It is preferably a range that covers up to a position directly below the region facing the inlet portion 20 and that is in a range of 40 degrees or more and 180 degrees or less in plan view with respect to the central axis of the body portion 13.
  • the guide plate lower portion 42 is provided in a range in which the guide plate lower portion 42 has a partial annular shape of 90 degrees from directly below the guide plate side portion 41 in plan view.
  • the gas-liquid multiphase fluid supplied from the inlet 20 can be easily guided in a desired swirl direction. Further, by setting the range in which the guide plate lower part 42 is provided to be 180 degrees or less, it is possible to suppress the rotation of the gas-liquid multiphase fluid supplied from the inlet 20 from being maintained more than necessary, and to suppress pressure loss. Can do.
  • the guide plate lower portion 42 is preferably provided at a position where the distance from the lower end of the inlet portion 20 is in a range not more than twice the length of the inlet portion 20 in the vertical direction. Further, the guide plate lower part 42 is more preferably provided at a position where the distance from the lower end of the inlet part 20 is in a range not more than one time the length of the inlet part 20 in the vertical direction. Thereby, it can suppress that the gas-liquid multiphase fluid supplied from the inlet part 20 flows down too much, and can give sufficient centrifugal force to a gas-liquid multiphase fluid.
  • the guide plate 40 is provided on the outer surface of the inner cylinder 30, provided on the first guide plate 41 a constituting the guide plate side portion 41, and the outer surface of the inner cylinder 30, A second guide plate 42a that constitutes the guide plate lower part 42 may be included.
  • the first guide plate 41 a and the second guide plate 42 a are provided in close contact with the outer surface of the inner cylinder 30.
  • the first guide plate 41a is configured in a plate shape whose longitudinal direction is the vertical direction.
  • the second guide plate 42 a is configured in a plate shape whose longitudinal direction is the horizontal direction.
  • the first guide plate 41a and the second guide plate 42a are configured to contact each other. Furthermore, it is preferable that the first guide plate 41a and the second guide plate 42a are in close contact by welding or the like so that the gas-liquid multiphase fluid supplied from the inlet 20 does not leak.
  • the 1st guide plate 41a (guide plate side part 41) may be comprised by the plate shape inclined from the perpendicular direction, and the 2nd guide plate 42a (guide).
  • the plate lower part 42) may be formed in a plate shape inclined from the horizontal direction.
  • at least one of the first guide plate 41a (guide plate side portion 41) and the second guide plate 42a (guide plate lower portion 42) may be configured in a curved plate shape.
  • the upper surface of the second guide plate 42a is configured to be horizontal.
  • this invention is not limited to this structure,
  • the upper surface of the 2nd guide plate 42a (guide plate lower part 42) inclines so that the inner surface side of the container 10 may become low, or the outer surface side of the inner cylinder 30 becomes low. Or may be inclined.
  • FIG. 5 is a partially enlarged view showing another example of the configuration of the inner cylinder 30 and the guide plate 40 when the central axis of the trunk portion 13 is viewed horizontally from the inlet portion 20.
  • the guide plate 40 may be configured such that the guide plate side portion 41 and the guide plate lower portion 42 are integrally formed when the central axis of the trunk portion 13 is viewed horizontally from the inlet portion 20.
  • the guide plate 40 is composed of a single plate and is in close contact with the outer surface of the inner cylinder 30.
  • the guide plate lower part 42 has a gap 90 at least in part with the body part 13 of the container 10.
  • a gap 90 is provided between the guide plate lower portion 42 (second guide plate 42 a) and the body portion 13 of the container 10.
  • the gap 90 serves as a flow path for quickly flowing the separated liquid downward in the container 10.
  • the gap 90 serves as a flow path for quickly flowing the separated liquid downward in the container 10.
  • the gas-liquid multiphase fluid whose flow rate and gas-liquid ratio greatly change with time can be converted into gas with high separation efficiency with a simple configuration.
  • a gas-liquid separator that can be separated into a liquid can be realized.
  • FIG. 6 is an example of a schematic diagram of a meridional section of the gas-liquid separator 100a according to the second configuration example
  • FIG. 7 shows the gas-liquid separator 100a according to the second configuration example. It is an example of the schematic diagram at the time of planar view from the cross section in AA.
  • the guide plate lower portion 42 is at least directly below the region facing the inlet portion 20 on the outer surface of the inner cylinder 30 from directly below the guide plate side portion 41 when the central axis of the body portion 13 is viewed horizontally from the inlet portion 20.
  • You may be comprised so that it may not have a space
  • the second guide plate 42 a (the guide plate lower portion 42) is directly below the guide plate side portion 41 and directly below the region facing the inlet portion 20 on the outer surface of the inner cylinder 30.
  • the portion up to the position is configured so as not to have a gap between the inner side surface of the body portion 13 continuously.
  • the gas-liquid separator 100a may be configured such that the gap 90 becomes wider as it approaches the side terminal portion of the guide plate lower part 42.
  • FIG. 8 is an example of a schematic diagram of a meridional section of the gas-liquid separator 100b according to the third configuration example
  • FIG. 9 shows the gas-liquid separator 100b according to the third configuration example. It is an example of the schematic diagram at the time of planar view from the cross section in AA.
  • the gas-liquid separator 100 b includes a lower leakage prevention plate 72 that closes between the guide plate lower portion 42 and the body portion 13, and the central axis of the body portion 13 extends horizontally from the inlet portion 20.
  • a lower leakage prevention plate 72 that closes between the guide plate lower portion 42 and the body portion 13, and the central axis of the body portion 13 extends horizontally from the inlet portion 20.
  • the lower leakage prevention plate 72 is provided in close contact with the inner side surface of the body portion 13.
  • the lower leakage prevention plate 72 is a portion of the guide plate lower portion 42 from a position directly below the guide plate side portion 41 (first guide plate 41 a) to a position directly below the region facing the inlet portion 20 on the outer surface of the inner cylinder 30. It may be in close contact with the (second guide plate 42a).
  • the second guide plate 42a is provided on the outer side surface of the inner cylinder 30, a gap is generated between the second guide plate 42a and the inner side surface of the body portion 13 of the container 10 by processing. Accordingly, the lower leakage prevention plate 72 is provided on the inner side surface of the body portion 13 to prevent leakage of the gas-liquid multiphase fluid from the gap between the second guide plate 42a and the inner surface of the body portion 13 of the container 10. Can be prevented. Thereby, a centrifugal force can be effectively applied to the gas-liquid multiphase fluid.
  • the gas-liquid separator 100b may be configured such that the gap 90 becomes wider as it approaches the side terminal portion of the guide plate lower part 42.
  • the gas-liquid separator 100 according to the first configuration example, the second configuration example, and the third configuration example include the side leakage prevention plate 70 that blocks between the guide plate side portion 41 and the body portion 13. Also good.
  • the side leakage prevention plate 70 and the inner side surface of the body portion 13 are in close contact with each other.
  • the side leakage prevention plate 70 may be in close contact with the guide plate side portion 41.
  • the guide plate side portion 41 (first guide plate 41 a) is provided on the outer surface of the inner cylinder 30.
  • a gap is formed between the guide plate 41a) and the inner surface of the body portion 13 of the container 10.
  • the side leakage prevention plate 70 is provided on the inner side surface of the body portion 13, so that the gap between the guide plate side portion 41 (first guide plate 41 a) and the inner side surface of the body portion 13 of the container 10 is reduced. Leakage of gas-liquid multiphase fluid can be prevented. Thereby, a centrifugal force can be effectively applied to the gas-liquid multiphase fluid.
  • the side leakage prevention plate 70 and the lower leakage prevention plate 72 may be integrally formed.
  • the side leakage prevention plate 70 and the lower leakage prevention plate 72 may be configured as a single plate.
  • FIG. 10 is an example of a schematic view of the gas-liquid separator 100c according to the fourth configuration example when viewed in plan from a cross section at a position corresponding to AA in FIG.
  • the meridional section of the gas-liquid separator 100c is the same as the example shown in FIG.
  • the guide plate 40 is provided on the inner surface of the body portion 13, provided on the first guide plate 41 b constituting the guide plate side portion 41, and the outer surface of the inner cylinder 30, A second guide plate 42a that constitutes the guide plate lower part 42 may be included. That is, the first guide plate 41b (guide plate side portion 41) is provided at least at a position on one side of the inlet portion 20 on the inner side surface of the trunk portion 13, and the second guide plate 42a (lower guide plate portion). 42) is provided at least at a position directly below the region facing the inlet 20 on the outer surface of the inner cylinder 30, and is provided along a part of the outer surface of the inner cylinder 30 in plan view. ing. In the example shown in FIGS. 8 and 10, the first guide plate 41 b is provided in close contact with the inner side surface of the body portion 13. In the example shown in FIGS. 8 and 10, the second guide plate 42 a is provided in close contact with the outer surface of the inner cylinder 30.
  • the first guide plate 41b is configured in a plate shape whose longitudinal direction is the vertical direction.
  • the second guide plate 42 a is configured in a plate shape whose longitudinal direction is the horizontal direction.
  • the first guide plate 41b and the second guide plate 42a are configured to contact each other.
  • this invention is not limited to this structure,
  • the 1st guide plate 41b (guide plate side part 41) may be comprised in the plate shape inclined from the perpendicular direction, and the 2nd guide plate 42a (guide).
  • the plate lower part 42) may be formed in a plate shape inclined from the horizontal direction.
  • at least one of the first guide plate 41b (guide plate side portion 41) and the second guide plate 42a (guide plate lower portion 42) may be configured in a curved plate shape.
  • the upper surface of the second guide plate 42a is configured to be horizontal.
  • this invention is not limited to this structure,
  • the upper surface of the 2nd guide plate 42a (guide plate lower part 42) inclines so that the inner surface side of the container 10 may become low, or the outer surface side of the inner cylinder 30 becomes low. Or may be inclined.
  • the gas-liquid separator 100 c may include a side leakage prevention plate 70 a that closes the space between the guide plate side portion 41 (first guide plate 41 b) and the inner cylinder 30.
  • the side leakage prevention plate 70 a and the outer surface of the inner cylinder 30 are in close contact with each other.
  • the side leakage prevention plate 70a may be in close contact with the guide plate side portion 41 (first guide plate 41b).
  • the guide plate side portion 41 (first guide plate 41b) is provided on the inner surface of the body portion 13, so that the inner side of the guide plate side portion 41 (first guide plate 41b) and the inner portion are processed.
  • a gap is formed between the outer surface of the cylinder 30. Therefore, since the side leakage prevention plate 70 a is provided on the outer surface of the inner cylinder 30, a large amount of gas and liquid is generated from the gap between the guide plate side portion 41 (first guide plate 41 b) and the outer surface of the inner cylinder 30. The leakage of the phase fluid can be prevented. Thereby, a centrifugal force can be effectively applied to the gas-liquid multiphase fluid.
  • the gas-liquid separator 100 c includes a lower leakage prevention plate 72 that blocks between the guide plate lower portion 42 and the trunk portion 13, and the central axis of the trunk portion 13 from the inlet portion 20.
  • a lower leakage prevention plate 72 that blocks between the guide plate lower portion 42 and the trunk portion 13, and the central axis of the trunk portion 13 from the inlet portion 20.
  • the guide plate lower portion 42 at least a portion from a position directly below the guide plate side portion 41 to a position directly below the region facing the inlet portion 20 on the outer surface of the inner cylinder 30, and the body portion 13; The space between the two may be closed by the lower leakage prevention plate 72.
  • the lower leakage prevention plate 72 is provided in close contact with the inner side surface of the body portion 13.
  • the lower leakage prevention plate 72 is a portion of the guide plate lower portion 42 from a position directly below the guide plate side portion 41 (first guide plate 41b) to a position directly below a region facing the inlet portion 20 on the outer surface of the inner cylinder 30. It may be in close contact with the (second guide plate 42a).
  • the second guide plate 42a is provided on the outer side surface of the inner cylinder 30, a gap is generated between the second guide plate 42a and the inner side surface of the body portion 13 of the container 10 by processing. Accordingly, the lower leakage prevention plate 72 is provided on the inner side surface of the body portion 13 to prevent leakage of the gas-liquid multiphase fluid from the gap between the second guide plate 42a and the inner surface of the body portion 13 of the container 10. Can be prevented. Thereby, a centrifugal force can be effectively applied to the gas-liquid multiphase fluid.
  • FIG. 11 is an example of a schematic diagram of a meridional section of a gas-liquid separator 100d according to a modification of the present embodiment.
  • a container 10a of the gas-liquid separator 100d shown in FIG. 11 has a structure having a lid part including a top part 11a and a container main body part including a bottom part 12a and a body part 13a. The lid part and the container main body part are joined together by a flange joint.
  • Other configurations are the same as those of the gas-liquid separator 100 shown in FIG.
  • the gas-liquid separator 100 used in the experiment has a diameter of the inner surface of the body 13 of 200 mm, a diameter of the outer surface of the inner cylinder 30 of about 165 mm, the inner surface of the body 13 and the outer surface of the inner cylinder 30.
  • the distance from the side surface is about 17 mm, and the diameter of the inlet 20 is 50 mm.
  • the guide plate lower part 42 is provided in a range of 90 degrees from directly below the guide plate side part 41 in the outer surface of the inner cylinder 30 in a plan view.
  • the gap 90 is approximately 5 mm between the guide plate lower part 42 and the inner side surface of the body part 13.
  • the experimental procedure is as follows. First, the liquid outlet 21 is closed. Next, a water-nitrogen two-phase fluid in which water and nitrogen gas are mixed at a predetermined flow rate is supplied from the inlet 20. Next, the liquid amount Vl supplied during the time t when the liquid level rises to a predetermined position below the lower end of the inner cylinder 30 in the container 10 and the liquid discharged from the gas outlet portion 22 during the time t. The liquid scattering amount S captured by the droplet separator is measured. Hereinafter, the flow rate of water and nitrogen gas is changed, the above procedure is repeated, and the liquid volume Vl and the liquid splash volume S are measured.
  • the flow rate Vn of nitrogen gas in the water-nitrogen two-phase fluid was measured while changing in the range of 0 [m3 / h] ⁇ Vn ⁇ 300 [m3 / h].
  • the liquid scattering rate is obtained by the following equation.
  • Liquid splash rate [%] (Liquid splash amount S / (Liquid splash amount S + Liquid amount Vl)) ⁇ 100
  • FIG. 12 is a graph showing a result of measuring the liquid scattering rate using the gas-liquid separator 100 according to the first configuration example by the above-described procedure.
  • the horizontal axis represents the flow rate of nitrogen gas in the water-nitrogen two-phase fluid, and the vertical axis represents the liquid scattering rate.
  • symbol showing a measurement point represents the flow volume of the water in a water-nitrogen two-phase fluid.
  • the liquid scattering rate is 1% or less under any of the measurement conditions described above.
  • the gas and liquid can be separated into gas and liquid with high separation efficiency in a wide range of flow rate and gas-liquid ratio with a simple configuration. It is shown.
  • FIG. 13 is an example of a schematic diagram of a meridian cross section of the batch type multiphase flow rate measuring device 1 according to the first embodiment.
  • the batch type multiphase flow rate measuring apparatus 1 has the gas-liquid separator 100 described in the section “1-1. First Configuration Example”. Instead of the gas-liquid separator 100, any of the gas-liquid separators 100a, 100b, 100c, and 100d described above may be used.
  • the batch type multiphase flow rate measuring device 1 has a main pipe 110.
  • the main pipe 110 includes a gas-liquid multiphase inlet 111 to which a gas-liquid multiphase fluid is supplied, a gas-liquid multiphase outlet 112 to which the gas-liquid multiphase fluid is discharged, and a gas-liquid multiphase inlet.
  • a branching portion 113 and a merging portion 114 are provided between 111 and the gas-liquid multiphase outlet 112.
  • the merging portion 114 has a first merging portion 114 a that is relatively closer to the gas-liquid multiphase inlet portion 111 and a side that is relatively farther from the gas-liquid multiphase inlet portion 111. It is comprised including the 2nd confluence
  • merging part 114 is the side close
  • the batch-type multiphase flow rate measuring device 1 has an inlet pipe 120.
  • the inlet pipe 120 is configured as a pipe connecting the branch part 113 and the inlet part 20 of the gas-liquid separator 100. That is, the inlet pipe 120 is configured to communicate with the main pipe 110 at the branch portion 113 and to communicate with the internal space of the gas-liquid separator 100 at the inlet portion 20.
  • the inlet pipe 120 is provided toward the central axis of the trunk portion 13 of the gas-liquid separator 100 via the inlet portion 20 of the gas-liquid separator 100 in plan view.
  • the batch type multi-phase flow rate measuring device 1 has a liquid outlet pipe 121.
  • the liquid outlet pipe 121 is configured as a pipe that connects the merging portion 114 and the liquid outlet portion 21. That is, the liquid outlet pipe 121 is configured to communicate with the main pipe 110 at the junction 114 and to communicate with the internal space of the gas-liquid separator 100 at the liquid outlet 21.
  • the liquid outlet pipe 121 is configured as a pipe that connects the first junction part 114 a and the liquid outlet part 21.
  • the batch-type multiphase flow rate measuring device 1 has a gas outlet pipe 122.
  • the gas outlet pipe 122 is configured as a pipe that connects the merging portion 114 and the gas outlet portion 22. That is, the gas outlet pipe 122 is configured to communicate with the main pipe 110 at the junction 114 and to communicate with the internal space of the gas-liquid separator 100 at the gas outlet 22.
  • the gas outlet pipe 122 is configured as a pipe that connects the second junction 114 b and the gas outlet 22.
  • the batch type multi-phase flow rate measuring device 1 has a flow path switching means 130.
  • the flow path switching means 130 switches so that the flow path of the gas-liquid multiphase fluid becomes one of a first path that does not pass through the gas-liquid separator 100 and a second path that passes through the gas-liquid separator 100. .
  • FIG. 1 In the example illustrated in FIG.
  • the flow path switching unit 130 is provided in the main pipe 110, and a third opening / closing unit 133 that switches between an open state and a closed state of the path from the branching unit 113 to the junction unit 114, and an inlet A fourth opening / closing means 134 that is provided in the pipe 120 and switches between a state where the path from the branching portion 113 to the inlet portion 20 of the gas-liquid separator 100 is opened and closed is configured.
  • Various known valves can be employed as the third opening / closing means 133 and the fourth opening / closing means 134.
  • the flow path switching unit 130 may be configured by a three-way valve that switches between the first path and the second path.
  • the first opening / closing means 131 may be provided above the horizontal height of the merging portion 114. Thereby, discharge of the liquid from the gas-liquid separator 100 becomes easy.
  • the first opening / closing means 131 is provided below the horizontal height of the gas-liquid separator 100 and above the horizontal height of the first joining portion 114 a.
  • the liquid outlet pipe 121 between the liquid outlet part 21 and the merging part 114 (first merging part 114a) is preferably a straight pipe. Thereby, it is possible to prevent the liquid pool from remaining in the liquid outlet pipe 121 and to shorten the time for discharging the liquid from the gas-liquid separator 100.
  • the batch type multi-phase flow rate measuring device 1 has a second opening / closing means 132.
  • the 2nd opening-and-closing means 132 is provided in the gas outlet piping 122, and switches the state from the gas outlet part 22 of the gas-liquid separator 100 to the 2nd confluence
  • As the second opening / closing means 132 various known valves can be employed.
  • the batch type multiphase flow rate measuring device 1 has a pressure measuring unit 200.
  • the pressure measuring unit 200 measures the pressure at two or more measurement points having different heights in at least one of the liquid outlet pipe 121 on the gas-liquid separator 100 and the first opening / closing means 131.
  • the pressure measuring unit 200 is provided in the liquid outlet pipe 121 and serves as a pressure measuring point 201, and a pressure measuring short tube 201 and a pressure measuring point provided in the body portion 13 of the gas-liquid separator 100.
  • a differential pressure transmitter 210 that outputs a signal based on the difference between the pressure in the short pipe 201 and the pressure in the short pipe 202, the pressure in the short pipe 202 and the short pipe 203 It includes a differential pressure transmitter 220 that outputs a signal based on the pressure difference between the two.
  • the positions of the single tubes are arranged in the order of the short tube 201, the short tube 202, and the short tube 203 from the lowest.
  • the short tube 201 is preferably provided at a position close to the first opening / closing means 131. Further, it is desirable that the short tube 203 be installed below the lower end of the inner cylinder 30 for stable measurement of pressure loss.
  • the batch type multiphase flow rate measuring apparatus 1 may include a control unit 300 that controls the flow path switching unit 130, the first opening / closing unit 131, the second opening / closing unit 132, and the pressure measuring unit 200.
  • the control unit 300 can be realized by a dedicated circuit so as to perform each control to be described later, for example, a CPU (Central Processing Unit) executes a control program stored in a storage unit (not shown) or the like. It can also be made to function as a computer to perform each control described later. An example of control performed by the control unit 300 will be described later in the section “2-2. Batch-type multiphase flow measurement method using the batch-type multiphase flow measurement device according to the first embodiment”.
  • the batch type multiphase flow rate measuring device 1 may have a liquid flow rate calculation unit 400.
  • the liquid flow rate calculation unit 400 calculates the flow rate (liquid flow rate) of the liquid contained in the gas-liquid multiphase fluid.
  • the liquid flow rate calculation unit 400 uses the pressure measured at two or more measurement points having different heights by the pressure measurement unit 200 and the time during which the flow path of the gas-liquid multiphase fluid becomes the second path by the flow path switching unit 130. Based on the above, the liquid flow rate is calculated. Details of the calculation example performed by the liquid flow rate calculation unit 400 will be described later in the section “2-3. Calculation example of liquid flow rate”.
  • the batch type multi-phase flow rate measuring device 1 has a gas flow meter 500.
  • the gas flow meter 500 is provided in the gas outlet pipe 122 and measures the flow rate of the gas discharged from the gas outlet portion 22 of the gas-liquid separator 100.
  • the gas flow meter 500 for example, a positive displacement flow meter or a mass flow meter can be used.
  • the gas flow meter 500 includes a thermometer and a pressure gauge necessary for calculating the gas flow rate in the standard state, or a function of measuring temperature and pressure.
  • the gas flow meter 500 may be provided upstream or downstream of the second opening / closing means 132.
  • the pressure measuring unit 200 measures the temperature T and pressure P used for calculating the oil density, water density, and liquid density described below. If the gas flow meter 500 is downstream of the second opening / closing means 132 using the temperature T and pressure P measured when the gas is in contact, the gas immediately before the second opening / closing means 132 is controlled from opening to closing is stabilized. It is desirable to use an average temperature T and an average pressure P in a flowing state.
  • FIG. 14 is a flowchart for explaining an example of a batch type multi-phase flow rate measuring method using the batch type multi-phase flow rate measuring apparatus 1 according to the first embodiment.
  • the flow path of the gas-liquid multiphase fluid is switched from the first path to the second path by the flow path switching means 130, and the gas is The first step (step S100) for switching the path from the outlet portion 22 to the merge portion 114 from the closed state to the opened state, and the flow path switching means 130 causes the flow path of the gas-liquid multiphase fluid to pass through the second path.
  • the batch type multiphase flow rate measurement method shown in FIG. 14 is realized mainly by control by the control unit 300 .
  • the batch-type multiphase flow rate measuring method shown in FIG. 14 can also be realized by manual operation or the like.
  • step S100 the control unit 300 controls the flow path switching unit 130 so as to switch the flow path of the gas-liquid multiphase fluid from the first path to the second path, and at the same time, the gas outlet 22 A first process for controlling the second opening / closing means 132 so as to switch the route from the closed state to the junction 114 from the closed state to the open state is performed.
  • the control unit 300 controls the fourth opening / closing means 134 so as to switch the path from the branching unit 113 to the inlet unit 20 of the gas-liquid separator 100 from the closed state to the opened state, And after controlling the 2nd opening / closing means 132 so that the path
  • the third opening / closing means 133 may be controlled to switch from the closed state to the closed state.
  • step S102 the control unit 300 controls the flow path switching unit 130 so as to switch the flow path of the gas-liquid multiphase fluid from the second path to the first path, and the gas outlet 22 2nd processing which controls the 2nd opening-and-closing means 132 is performed so that the path to the confluence
  • the control unit 300 controls the third opening / closing means 133 so that the path from the branching unit 113 to the merging unit 114 is switched from the closed state to the opened state, and then the air from the branching unit 113.
  • the fourth opening / closing means 134 may be controlled so that the path to the inlet 20 of the liquid separator 100 is switched from an open state to a closed state. Thereby, since it can suppress blocking
  • the timing at which the control unit 300 starts the first step may be, for example, after a predetermined time td1 has elapsed since the start of recording of measurement results.
  • the timing at which the control unit 300 starts the second step may be a timing at which a predetermined pressure is measured by the pressure measurement unit 200.
  • the timing at which the control unit 300 starts the second step may be the timing at which the pressure difference of the predetermined value dP ⁇ b> 1 or more is measured by the differential pressure transmitter 220.
  • the predetermined value dP1 may be a pressure difference corresponding to a state in which the liquid level is located between the short tube 202 and the short tube 203, for example.
  • the control unit 300 performs pressure so as to measure the pressure at two or more measurement points having different heights in at least one of the gas-liquid separator 100 and the liquid outlet pipe 121.
  • a third process for controlling the measurement unit 200 is performed. In the example shown in FIG. 13, the pressure is measured at three measurement locations where the short tubes 201, 202 and 203 are provided.
  • the liquid flow rate can be calculated based on the pressure measured by the pressure measuring unit 200.
  • the liquid flow rate calculation unit 400 may perform the liquid flow rate calculation. A calculation example of the liquid flow rate will be described later.
  • the timing at which the control unit 300 starts the third step (step S104) may be, for example, after a predetermined time td2 has elapsed since the completion of the second step (step S102).
  • the predetermined time td2 may be, for example, a time until the liquid level is stabilized within a required measurement accuracy range.
  • Such a predetermined time td2 can be experimentally determined according to the specifications of the batch type multiphase flow rate measuring apparatus 1.
  • control unit 300 may perform the third process in a period other than the third process (step S104). For example, the control unit 300 may continuously perform the third process in the period from the start of the first process (step S100) to the completion of the fifth process (step S108).
  • step S106 the controller 300 performs a fourth process of controlling the first opening / closing means 131 so as to switch the path from the liquid outlet 21 to the junction 114 from the closed state to the opened state.
  • the timing at which the control unit 300 starts the fourth step (step S106) may be, for example, the timing after the third step (step S104) is completed.
  • the control unit 300 performs a fifth process for controlling the first opening / closing means 131 so as to switch the path from the liquid outlet unit 21 to the merge unit 114 from the open state to the closed state.
  • the timing at which the control unit 300 starts the fifth step (step S108) may be a timing at which a pressure difference equal to or less than a predetermined value dP2 is measured by the differential pressure transmitter 210.
  • the predetermined value dP2 may be a pressure difference corresponding to a state in which the liquid level is lower than that of the short tube 201, for example.
  • FIG. 15 is a diagram for explaining a calculation example of the liquid flow rate.
  • FIG. 15 schematically shows a meridional section of the main part of the batch-type multiphase flow rate measuring apparatus 1.
  • the liquid level is located between the short tube 202 and the short tube 203, and the water / oil interface is located between the short tube 201 and the short tube 202. Represents the case.
  • the height of the water-oil interface based on the height of the short tube 201 is h W
  • the height of the short tube 202 based on the height of the short tube 201 is h 1
  • the height of the short tube 201 is the height of the reference and the liquid surface is represented as h L.
  • the oil density calculated under the pressure P and temperature T measured with the gas flow meter 500 is ⁇ O
  • the water density calculated under the pressure P and temperature T measured with the gas flow meter 500 is ⁇ W
  • Gravity acceleration is g
  • the differential pressure output by the differential pressure transmitter 210 is dP W-1
  • the differential pressure output by the differential pressure transmitter 220 is dP L
  • the second process from the start of the first process (step S100). the elapsed time until the completion of S102) and dt L.
  • FIG. 16 is a graph showing an example of the relationship between the volume V and the height h. Using this function, the liquid flow rate (liquid volume flow rate) Q L can be calculated by the following formula (3), and the moisture content WC can be calculated by the following formula (4).
  • the average gas The volume flow rate can represent the gas volume flow rate Q G measured by the gas flow meter 500 from time t1 + dt to time t2 as an average value. That is, the average gas volume flow rate can be expressed by the following equation (5).
  • the gas present in the gas-liquid separator 100 is discharged to the gas outlet pipe 122, and thus a more accurate average gas volume.
  • the flow rate can be expressed by the following formula (6).
  • FIG. 17 is an example of a schematic diagram of a meridian cross section of a batch type multiphase flow rate measuring device 2 according to the second embodiment.
  • symbol is attached
  • the batch-type multiphase flow rate measuring device 2 has a short tube 204 that is provided in the body portion 13 of the gas-liquid separator 100 and serves as a pressure measurement location.
  • the positions of the single tubes are arranged in the order of the short tube 201, the short tube 204, the short tube 202, and the short tube 203 from the lowest.
  • the horizontal cross-sectional area in the gas-liquid separator 100 is the same between the short tube 204 and the short tube 203. It is preferable that the short tube 204 is disposed at a position close to the lowermost part of the range in which the horizontal cross-sectional area in the gas-liquid separator 100 is the same within a design-acceptable range.
  • the pressure measuring unit 200 of the batch type multi-phase flow rate measuring device 2 outputs a signal based on the difference between the pressure in the short tube 201 and the pressure in the short tube 204 instead of the differential pressure transmitter 210.
  • 211 includes a differential pressure transmitter 212 that outputs a signal based on the difference between the pressure in the short pipe 204 and the pressure in the short pipe 202.
  • batch type multiphase flow rate measuring device 2 the batch type multiphase flow rate described in the section “2-2.
  • Batch type multiphase flow rate measuring method using the batch type multiphase flow rate measuring device according to the first embodiment” is used.
  • the flow rate of the liquid contained in the gas-liquid multiphase fluid can be measured by the same method as the measurement method.
  • FIG. 18 is a diagram for explaining a calculation example of the liquid flow rate.
  • FIG. 18 schematically shows a meridional section of the main part of the batch-type multiphase flow rate measuring device 2.
  • FIG. 18 shows a case where the liquid level is located between the short tube 202 and the short tube 203 in the third step (step S104).
  • the height of the short tube 202 based on the height of the short tube 201 is h 1
  • the height of the short tube 204 based on the height of the short tube 201 is h 2
  • the height of the short tube 201 is the height of the reference and the liquid surface is represented as h L.
  • the oil density calculated under the pressure P and temperature T measured with the gas flow meter 500 is ⁇ O
  • the water density calculated under the pressure P and temperature T measured with the gas flow meter 500 is ⁇ W
  • the gravitational acceleration is g
  • the differential pressure output from the differential pressure transmitter 211 is dP W-2
  • the differential pressure output from the differential pressure transmitter 212 is dP W-3 .
  • the height h of the liquid surface based on the height of the short tube 201 L is represented by the above-described formula (1).
  • water content WC can be expressed by the following equation (8).
  • FIG. 19 is an example of a schematic diagram of a meridian cross section of a batch type multiphase flow rate measuring device 3 according to the third embodiment.
  • symbol is attached
  • the batch-type multiphase flow rate measuring device 3 has a short tube 205 provided in the body portion 13 of the gas-liquid separator 100 and serving as a pressure measurement location.
  • the positions of the single tubes are arranged in the order of the short tube 201, the short tube 204, the short tube 205, the short tube 202, and the short tube 203 from the lowest.
  • the pressure measuring unit 200 of the batch type multi-phase flow rate measuring device 3 replaces the differential pressure transmitter 212 and outputs a signal based on the difference between the pressure in the short tube 204 and the pressure in the short tube 205.
  • 213 includes a differential pressure transmitter 214 that outputs a signal based on the difference between the pressure in the short pipe 205 and the pressure in the short pipe 202.
  • batch type multiphase flow rate measuring device 3 the batch type multiphase flow rate described in the section “2-2.
  • Batch type multiphase flow rate measuring method using the batch type multiphase flow rate measuring device according to the first embodiment The flow rate of the liquid contained in the gas-liquid multiphase fluid can be measured by the same method as the measurement method.
  • FIG. 20 is a diagram for explaining calculation examples of the oil density and the water density.
  • FIG. 20 schematically shows a meridional section of the main part of the batch type multiphase flow rate measuring device 3.
  • the liquid level is located between the short tube 202 and the short tube 203, and the water-oil interface is located between the short tube 204 and the short tube 205. Represents the case.
  • the height of the short tube 202 based on the height of the short tube 201 is h 1
  • the height of the short tube 204 based on the height of the short tube 201 is h 2
  • the gravitational acceleration g the differential pressure differential pressure transmitter 211 outputs dP W
  • the differential pressure differential pressure transmitter 214 outputs a dP O.
  • the oil density ⁇ O under pressure can be calculated by the following equation (9), and the water density ⁇ W under pressure can be calculated by the following equation (10).
  • the liquid level does not enter between the short tube 202 and the short tube 203 and falls below the short tube 202 when the second step (S102) is completed.
  • the second step (S102) is completed.
  • measurement can be performed by the same method as the batch type multiphase flow rate measuring apparatus 1 according to the first embodiment.
  • FIG. 21 is an example of a schematic diagram of a meridian cross section of a batch type multiphase flow rate measuring device 4 according to the fourth embodiment.
  • symbol is attached
  • the batch type multiphase flow rate measuring device 4 has a configuration in which the short pipe 202 and the differential pressure transmitter 220 are removed from the batch type multiphase flow rate measuring device 1.
  • the positions of the single tubes are arranged in the order of the short tubes 201 and 203 from the lowest.
  • the pressure measuring unit 200 of the batch type multi-phase flow rate measuring device 4 replaces the differential pressure transmitter 210 and outputs a signal based on the difference between the pressure in the short tube 201 and the pressure in the short tube 203. 215 is configured.
  • batch type multi-phase flow rate measuring device 4 the batch type multi-phase flow rate described in the section “2-2.
  • Batch type multi-phase flow rate measuring method using the batch type multi-phase flow rate measuring device according to the first embodiment The flow rate of the liquid contained in the gas-liquid multiphase fluid can be measured by the same method as the measurement method.
  • FIG. 22 is a diagram for explaining a calculation example of the liquid flow rate.
  • FIG. 22 schematically shows a meridional section of the main part of the batch-type multiphase flow rate measuring device 4.
  • FIG. 22 shows a case where the liquid level is located between the short tube 201 and the short tube 203 in the third step (step S104).
  • the density of the liquid calculated under the pressure P and temperature T measured by the gas flowmeter 500 is ⁇ L
  • the gravitational acceleration is g
  • the differential pressure output by the differential pressure transmitter 215 is dP L
  • the first step is defined as dt L.
  • liquid level height h L can be expressed by the following formula (11), and the liquid flow rate Q L can be expressed by the following formula (12).
  • FIG. 23 is an example of a schematic diagram of a meridian cross section of a batch type multiphase flow rate measuring device 5 according to the fifth embodiment.
  • symbol is attached
  • the batch-type multiphase flow rate measuring device 5 includes a droplet separator 600 that is provided in the gas outlet pipe 122 and separates droplets from the gas discharged from the gas outlet portion 22 of the gas-liquid separator 100.
  • the droplet separator 600 has a configuration for separating droplets from a gas.
  • You may comprise as funnel-shaped piping connected below the gas outlet piping 122 by the opening which has a larger cross-sectional area than this.
  • the horizontal length of the gas outlet pipe 122 upstream of the droplet separator 600 is preferably long enough to promote the separation of droplets from the gas, and is preferably a horizontal pipe or a descending inclined pipe. . In the example shown in FIG.
  • the droplet separator 600 is configured as a funnel-shaped pipe that communicates below the gas outlet pipe 122 with an opening having a cross-sectional area larger than that of the gas outlet pipe 122.
  • the liquid separator and the liquid phase mixed in the gas passing through the gas outlet pipe 122 are guided to the pipe 610 below the gas outlet pipe 122 by the droplet separator 600, and the liquid is downstream of the droplet separator 600. It can prevent flowing into the gas outlet pipe 122. Thereby, a more accurate gas flow rate can be measured.
  • the droplet separator 600 confirmation of the accompanying state of droplets to the gas outlet pipe 122 is facilitated. Therefore, the liquid scattering rate can be confirmed, and the accuracy of this measurement can be confirmed. For example, it can be seen that the measurement accuracy of the liquid flow rate and the gas flow rate is low when the liquid scattering rate is high, and the measurement accuracy of the liquid flow rate and the gas flow rate is high when the liquid scattering rate is low.
  • the pipe 610 may be configured to communicate with the internal space of the gas-liquid separator 100 via the short pipe 620. By returning the liquid separated by the droplet separator 600 to the gas-liquid separator 100, a more accurate liquid flow rate can be measured.
  • the batch-type multiphase flow rate measuring device 5 is provided in the pipe 610 and has a fifth opening / closing means 135 that switches between a state where the path from the droplet separator 600 to the short tube 620 is opened and closed. Good.
  • a fifth opening / closing means 1335 various known valves can be employed. In the flowchart shown in FIG. 14, from the state of step S100 to the state of steps S102 and S104, the fifth opening / closing means 135 is closed, and after step S104 is finished, the fifth opening / closing means 135 is opened.
  • the liquid separated by the droplet separator 600 is returned to the gas-liquid separator 100, and after step S104 is executed, the fifth opening / closing means 135 is closed or closed, and at the same time, the process proceeds to step S106. To do. Thereby, the liquid separated by the droplet separator 600 can be returned to the gas-liquid separator 100, and the liquid scattering rate can be confirmed.
  • the short tube 620 is desirably located at the same height as the short tube 203 or above the short tube 203. Further, it is desirable that the pipe 610 does not pass below the height of the short pipe 620. Thereby, the liquid accumulated in the droplet separator 600 can be smoothly discharged to the gas-liquid separator 100.
  • FIG. 24 is an example of a schematic diagram of a meridional section of a batch type multiphase flow rate measuring device 6 according to the sixth embodiment
  • FIG. 25 is a diagram according to the sixth embodiment. It is an example of the schematic diagram which looked at the flow-path switching means 130 vicinity of the batch type multiphase flow measuring device 6 planarly.
  • symbol is attached
  • the flow path switching means 130 of the batch-type multiphase flow rate measuring device 6 according to the sixth embodiment is provided at a position where the height difference from the inlet 20 of the gas-liquid separator 100 is small.
  • FIG. 26 is a schematic diagram for explaining the slag flow.
  • FIG. 26 shows a vertical cross section of the pipe, and the liquid in the pipe is indicated by diagonal lines and the gas is indicated by white.
  • the gas-liquid multiphase fluid supplied in the direction of the white arrow flows in the order of horizontal piping, vertical piping, and horizontal piping.
  • formation of slag in which liquid is filled in the vertical pipe starts and in (2) of FIG. 26, formation of slag is completed.
  • gas starts to enter the vertical pipe, and in (4) of FIG. 26, the gas penetrates the vertical pipe.
  • the measurement accuracy of the liquid flow rate decreases.
  • the flow path switching unit 130 is provided at a position where the height difference from the inlet 20 of the gas-liquid separator 100 is small, generation of slag flow is prevented. Can be suppressed. Therefore, it is possible to realize a batch type multiphase flow rate measuring device with high measurement accuracy.
  • the present invention includes substantially the same configuration (for example, a configuration having the same function, method and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment.
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

Landscapes

  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Measuring Volume Flow (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Cyclones (AREA)

Abstract

頂部11、底部12及び胴部13を有する容器10と、胴部10に設けられた入口部20と、底部12に設けられた液体出口部21と、頂部11に設けられた気体出口部22と、頂部11に連結され、下端が入口部20の下端よりも低い位置で開口した中空型の内筒30と、内筒30の外側面に設けられたガイド板下部42と、を備えた気液分離器を有し、ガイド板下部42と胴部13との間の少なくとも一部に空隙90を有する、流量測定装置。

Description

バッチ式多相流量測定装置及び流量計測方法
 本発明は、バッチ式多相流量測定装置及び流量計測方法に関する。
 油田から汲み上げられた直後の流体は、原油以外にメタン、エタン、ブタン、ペンタン等のガス及び塩水等の水を含む。さらに、砂等の固体の異物を含むこともある。したがって、原油をタンカーあるいはパイプラインによって効率よく輸送するためには、あらかじめガス、水及び原油を分離するとともに、それぞれの流量を把握することが不可欠である。
 ガスの分離には、石油業界では、主として気体の浮力を利用する分離タンク方式の気液分離器が使用されてきた。分離タンク方式の気液分離器は、大容量のタンクに原油を低速で十分な滞留時間を取って供給してこの間に液中からガスを浮上分離させるものであり、嵩高で重く、広い設置面積を必要とするが、陸上で使用する限り問題は少ない。しかし、洋上プラットホームにおいては、そのデッキの許容空間は限られているので、装置の寸法と重量の軽減は重要課題となり、分離タンク方式の気液分離器は、財務的に大きな負担をもたらす。また、コスト、許容空間の両面から、井戸毎に分離タンクを有することができないため、流量を計測するために、分離タンクを複数の井戸で共有することとなる。このため、洋上プラットホームの多くが、年に数日しか、井戸毎の生産量を計測していない。
 井戸毎の生産量を把握することは、油田から最大量の油を汲み上げるための情報として重要である。例えば、油の生産量が減少し水の生産量が増えた場合は、井戸のバルブを閉めることで、水の流路を塞いで油の生産量を回復させることが、水の流路が確立する前であれば可能である。そのため、井戸毎の生産量を把握するため、もしくは、井戸毎の生産量計量頻度を上げるため、設置が容易な小型で低コストの多相流量測定装置の開発が進められた。このような多相流量測定装置には、油、水及びガスの分離を行わない方式と、油、水及びガスの分離を行う方式の2つの方式がある。
 特開2001-165741号公報(以下では「特許文献1」と記載する)には、油、水及びガスの分離を行わない方式を採用する多相流体流量計が開示されている。この多相流体流量計は、上流よりミキサー、ブレードの角度の違う2つの翼車と、翼車同士を繋ぐばねにより構成され、ミキサー前部から翼車後部までの圧力損失、翼車の回転速度、ばねに発生するトルク及び温度を計測するように構成されている。計測された温度は、油及び水の密度を決定するのに用いる。この多相流体流量計においては、油、水及びガスの多相流体をミキサーで均質化し、圧力損失、回転速度及びばねトルクを、それぞれ総体積流量、液密度及びガス体積流量割合(=ガス体積流量/総体積流量)の実験式として用意している。そして、流量計測アルゴリズムは、計測された圧力損失、回転速度、ばねトルク及び温度を用いて実験式を解き、総体積流量、液密度及びガス体積流量割合を求め、ガス体積流量、液体積流量及び水分率(=水体積流量/液体積流量)を求めるものである。
 しかし、この実験式は、流体組成により成立しない場合がある。また、各相の流量条件次第で、流動様式が変化し、この実験式が成立しない場合がある。よって、現場環境では、実験式の較正が必要である。しかし、較正用に用いる現場のデータは、ガス体積流量及び液体積流量についてそれぞれ相対誤差±10%と、水分率について少なくとも誤差±3%を許容しなければならない。よって較正した実験式は、必ず誤差を含む。さらに、計測値自体も、機械的誤差範囲が存在し、また、固形物付着による誤差の可能性がある。以上の誤差要因が存在するが、特許文献1の多相流体流量計単独では、計測値誤差及び誤差要因を特定することは不可能である。また、実験式が現場環境に適していない場合においては、例えば、真の水分率が30%であっても、実験式を解いて求めた水分率は、100%を示す可能性がある。よって、現場環境では、この多相流体流量計を用いることは極めて困難であった。
 「『Handbook of Multiphase Flow Metering』(The Norwegian Society for Oil and Gas Measurement, and The Norwegian Society of Chartered Technical and Scientific Professionals)」(以下では「非特許文献1」と記載する)には、油、水及びガスの分離を行わない方式を採用する他の多相流体流量計が開示されている。この多相流体流量計においても、実験式を用いた計測アルゴリズムとなるため、特許文献1の多相流体流量計と同様に、実験式に関する現場での較正を必要とし、単独での誤差及び誤差要因の特定は困難である。
 一方、米国特許第5,526,684号明細書(以下では「特許文献2」と記載する)には、油、水及びガスの分離を行う方式を採用する多相流体流量計が開示されている。この多相流体流量計は、「Jhon S. Lievois著『Multiphase Flow Measurement Class 8110』(Colorado Experiment Engineering Station Inc.)」(以下では「非特許文献2」と記載する)に記載されているような内部に構造物を有さない最も単純なサイクロン型の気液分離器を用いている。そして、この多相流体流量計においては、気液分離器の分離ガス出口配管にガスフローメーターを、気液分離器の分離液出口配管にコリオリメーターを設置し、前者からはガス流量を、後者からは水と原油の流量を測定している。したがって、この多相流体流量計の計測精度は気液分離器の分離性能に依存することとなる。また、特許文献2には、気液分離器の性能が発揮できない場合の対処策として、この気液分離器の下流に2つの気液分離配管を組み合わせる技術が開示されている。
 一方、「渡邉朋子、池田憲治、岡津弘明著『多相流量計測システムの開発』(平成19年度技術センター年報、独立行政法人石油天然ガス・金属鉱物資源機構、p.85-88)」(以下では「非特許文献3」と記載する)には、油、水及びガスの分離を行う方式を採用する他の多相流体流量計が開示されている。この多相流体流量計は、垂直上昇流の流れを上下のバルブで閉じ込め、差圧伝送器で液面及び界面を計測し、水分率を求めるサンプリング方式である。この多相流体流量計では、みかけ液速度(液流量/管断面積)が0.5m/s以上であれば油及び水にスリップが発生せず、水分率が誤差±5%で計測が可能であることが記載されている。しかし、ガス体積流量割合が非常に大きい場合(例えば99%以上)にこの多相流体流量計を用いて流量を計測する場合には、液量が少ないため、液体をサンプリングできるだけの長さを持つサンプリング管が必要となる。また、この多相流体流量計を用いて、流量に周期性のある多相流体の流量を測定する場合には、サンプリング回数を上げなければ代表的な水分率を求めることができない。
 「渡邉朋子、池田憲治、市川真、川井通弘、山田光矢、藤原勝憲著『多相流量計測システムの開発』(平成21年度石油技術協会春季講演会特別講演・シンポジウム・個人講演要旨集、石油技術協会、p85-86」(以下では「非特許文献4」と記載する)には、非特許文献3で開示されている多相流体流量計の問題を解決する技術として、油、水及びガスの分離を行う方式を採用する他の多相流体流量計の技術の一部が開示されている。非特許文献4に開示されている多相流体流量計は、4つのバルブと、気液分離器及び計測管と、液面と界面を計測する差圧伝送器と、圧力計と、温度計と、ガス流量計とを含んで構成されている。この多相流体流量計は、多相流体を気液分離器に供給し、多相流体をガスと液とに分離し、ガス体積流量をガス流量計で計測し、液を計測管に数分溜めて差圧伝送器により液面・界面を計測し、液体積流量と水分率を求めるバッチ方式である。なお、このバッチ方式は、計測を連続的に行うものではなく、計測後は液体排出操作が必要となる方式である。また、計測誤差要因の観点では、特許文献2に開示されている多相流体流量計は、分離液出口配管に気泡が混入することに起因する液体積流量の計測誤差の可能性があるのと同時に、水分率計測において、油流速と水流速の違いに起因する計測誤差の可能性がある。一方、非特許文献4に開示されている多相流体流量計は、液中の気泡は分離ガス出口配管に排出され、また、油流速と水流速の差を考慮する必要が無い。したがって、非特許文献4に開示されている多相流体流量計の計測誤差要因は、分離ガス出口配管への液の随伴に起因する計測誤差と、計器類の誤差の2つである。このうち、分離ガス出口配管への液の随伴は、分離ガス出口配管に液滴分離器を設けることにより確認できるとともに、これを計測管に戻すことにより、誤差要因の確認と軽減が可能である。
 気液分離器についても、数多くの提案がなされてきた。非特許文献2に示された気液分離器は、特定の流量においては優れた性能を発揮する。しかし、その流量の適正範囲は狭く、それから外れると分離効率が低下する欠点があり、このような条件下では、分離ガス中への液の随伴及び分離液中へのガスの随伴を防止できない。例えば、油田から汲み上げられた直後のガスを含む原油の変動幅は5倍にも及ぶため、非特許文献2に示された気液分離器の上述の欠点は深刻な問題となる。
 非特許文献2に示された気液分離器の上述の欠点を軽減する気液分離器の構造が、米国特許第4,596,586号明細書(以下では「特許文献3」と記載する)に開示されている。この気液分離器の特徴の1つは、垂直円筒内部に上端がガス出口配管に繋がり下端が入口配管の入口部からやや下のレベルで下方に開放された内筒を設けたことである。これが隔壁として作用し、流入した気液多相流体から分離気体へ液滴が随伴される現象が軽減される。
 サイクロン方式の気液分離器はミストセパレーターとしても機能することが知られている。例えば、特開2001-246216号公報(以下では「特許文献4」と記載する)には、気体中に分散する液滴を遠心力によって分離する気液分離器が開示されている。特許文献4に開示されている気液分離器は、特許文献3に開示されている気液分離器と同様に、内筒とバッフルプレートを備えるが、内筒は下方に伸び、バッフルプレートを突き抜けて下方に開放されている。バッフルプレートは内筒下部に接続されてリングを形成し外筒と円環状の間隙を形成する。ミストを含む気体は外筒側壁に接線方向に取付けられた入口配管から外筒内に流入し外筒内壁に沿って旋回流を形成しながら下降し、ミストを外筒内壁に捕捉させて液状とし内壁を伝って下方へ流下させ、液出口配管に至らしめる。気体は、バッフルプレートが形成する外筒内壁近傍の円環状間隙を下方へ通過後、反転して中央の内筒内を上昇しガス出口配管に至る。長い内筒とその下部に設けた外筒近傍まで広がるバッフルプレートが、ミストを含む気体が十分旋回しないままガス出口配管に短絡することを防止する。これにより、サイクロン方式の気液分離器の分離効率が高まる。
 非特許文献2、特許文献3及び特許文献4の従来技術においては、いずれも入口配管を外筒の側部接線方向に取付けることにより旋回流を発生させているが、特開2000-317212号公報(以下では「特許文献5」と記載する)は別の原理によって旋回流を発生させるサイクロン方式の気液分離器を開示している。特許文献5に開示されている気液分離器では、入口配管を外筒の側部接線方向ではなく中心軸に向けて接続して外筒と内筒が形成する円環部に開口させ、その開口近傍において円環部を板状のガイドにより1箇所縦に遮断することにより、流入する気泡を含む液体をこのガイドと反対側へ誘導して旋回流を発生させている。
 さらに、米国特許第4,187,088号明細書(以下では「特許文献6」と記載する)に開示されているサイクロン方式の気液分離器においては、ガイドは縦のガイドだけではなく気液多相流体入口配管開口部の下面にも及んでいる。すなわち、特許文献6に開示されている気液分離器では、入口配管を外筒の中心軸に向けて接続して開口させ、流路空間を確保しつつ、その前面、上下面及び目的とする旋回方向と反対側の面を完全に囲うことにより、入口配管から流入する気液多相流体をその旋回方向に誘導して旋回流を発生させている。
 油田から汲み上げられた直後の気液多相流体の圧力は極めて高くかつ変動する。このため、気液分離器は設計に当たって耐圧が考慮される。非特許文献2、特許文献3及び特許文献4に開示されている気液分離器のように、入口配管が外筒の側部接線方向に接続されている構成と、特許文献5及び特許文献6に開示されている気液分離器のように、入口配管が、外筒の中心軸方向に接続されている構成とを比較すると、前者の構成は接続部に対称性がないため、内部の高圧流体に圧力変動があると、溶接部に偏荷重が繰り返し掛かり、疲労破壊をもたらす恐れがある。これに対して、後者の構成は接続部の形状に対称性があり、より安全である。
 また、特許文献4に開示されている気液分離器が液滴(ミスト)が分散する気体を対象とするのとは対照的に、特許文献5に開示されている気液分離器は少量の気泡が分散する液体を対象としており、具体的にはオゾン水に混在する余剰オゾンをサイクロン方式により分離する気液分離器を開示している。このように、サイクロン方式の気液分離器は、種々の変形により、様々な気液混合比の気液多相流体にそれぞれ適した気液分離器として構成できる。
 上述したように、油、水及びガスの分離を行わない方式を採用する多相流体流量計は、現場での較正や、誤差要因の特定が困難である。一方、油、水及びガスの分離を行う方式を採用する多相流体流量計においては、気液分離器の分離ガス出口配管への液滴飛散及び分離液出口配管への気泡混入が問題となる。
 また、非特許文献2、特許文献2、特許文献3及び特許文献4に開示されている気液分離器及び多相流体流量計においては、高圧における安全性の面では、特許文献5及び特許文献6に開示されている気液分離器よりも劣る。また、特許文献5に開示されている気液分離器では、油田から汲み上げられた直後の気液多相流体を気液分離するための十分な遠心力が得られない。また、特許文献6に開示されている気液分離器では、構造が複雑であり、気液多相流体の圧力損失も大きい。
 本発明は、以上のような技術的課題に鑑みてなされたものである。本発明のいくつかの態様によれば、簡易な構成で、誤差要因の少ない流量測定装置及び流量計測方法を提供することができる。
(1)本発明に係るバッチ式多相流量測定装置は、
 頂部、底部及びその間を連結する中空型の胴部を有する容器と、前記胴部の側面から気液多相流体を供給する入口部と、前記底部から液体を排出する液体出口部と、前記頂部から気体を排出する気体出口部と、上端が前記頂部に連結され、下端が前記入口部の下端よりも低い位置で開口した中空型の内筒と、前記内筒の外側面及び前記胴部の内側面の少なくとも一方に設けられたガイド板と、を備えた気液分離器と、
 前記気液多相流体が供給される気液多相流入口部と、前記気液多相流体が排出される気液多相流出口部と、前記気液多相流入口部から前記気液多相流出口部までの間に分岐部及び合流部を有する主配管と、
 前記分岐部と前記入口部とを接続し、平面視において、前記入口部を介して前記胴部の中心軸に向かって設けられる入口配管と、
 前記合流部と前記液体出口部とを接続する液体出口配管と、
 前記合流部と前記気体出口部とを接続する気体出口配管と、
 前記気液多相流体の流路が、前記気液分離器を介さない第1経路と、前記気液分離器を介する第2経路とのいずれか一方となるように切り替える流路切替手段と、
 前記液体出口配管に設けられ、前記液体出口部から前記合流部への経路が開いた状態と閉じた状態とを切り替える第1開閉手段と、
 前記気体出口配管に設けられ、前記気体出口部から前記合流部への経路が開いた状態と閉じた状態とを切り替える第2開閉手段と、
 前記気液分離器及び前記液体出口配管のうち少なくとも一方の内部において、高さの異なる2つ以上の測定箇所で圧力を計測する圧力計測部と、
 前記気体出口配管に設けられ、前記気体出口部から排出される気体の流量、温度及び圧力を計測する気体流量計と、を有し、
 前記気液分離器は、
 平面視において、前記胴部の内側面と、前記内筒の外側面とは同心円状となっており、
 前記ガイド板は、非水平方向を長手方向とするガイド板側部と、非鉛直方向を長手方向とし、前記ガイド板側部と連続して設けられたガイド板下部とを有し、
 前記ガイド板側部は、少なくとも、前記胴部の内側面のうち前記入口部の一方の側方となる位置、又は、前記内筒の外側面のうち前記入口部と対向する領域の一方の側方となる位置に設けられ、
 前記ガイド板下部は、少なくとも、前記内筒の外側面のうち前記入口部と対向する領域の真下となる位置に設けられ、かつ、平面視において、前記内筒の外側面の一部に沿って設けられ、
 前記ガイド板下部と、前記胴部との間の少なくとも一部に空隙を有する。
 本発明によれば、ガイド板下部と、容器の胴部との間の少なくとも一部に空隙を有するように構成されているため、簡易な構成で、流量及び気液割合が経時的に大きく変化する気液多相流体を、高い分離効率で気体と液体に分離することができる気液分離器が実現できる。したがって、簡易な構成で、誤差要因の少ない多相流量測定装置が実現できる。
(2)このバッチ式多相流量測定装置は、
 前記流路切替手段、前記第1開閉手段及び前記第2開閉手段を制御する制御部を有し、
 前記制御部は、
 前記気液多相流体の流路を、前記第1経路から前記第2経路へと切り替えるように前記流路切替手段を制御するとともに、前記気体出口部から前記合流部への経路を閉じた状態から開いた状態へと切り替えるように前記第2開閉手段を制御する第1処理と、
 前記気液多相流体の流路を、前記第2経路から前記第1経路へと切り替えるように前記流路切替手段を制御するとともに、前記気体出口部から前記合流部への経路を開いた状態から閉じた状態へと切り替えるように前記第2開閉手段を制御する第2処理と、
 前記液体出口部から前記合流部への経路を閉じた状態から開いた状態へと切り替えるように前記第1開閉手段を制御する第3処理と、
 前記液体出口部から前記合流部への経路を開いた状態から閉じた状態へと切り替えるように前記第1開閉手段を制御する第4処理と、
 を行ってもよい。
 これにより、液体出口配管への気泡の混入に起因する誤差を抑制した多相流量測定装置が実現できる。
(3)このバッチ式多相流量測定装置は、
 前記流路切替手段は、
 前記主配管に設けられ、前記分岐部から前記合流部への経路が開いた状態と閉じた状態とを切り替える第3開閉手段と、
 前記入口配管に設けられ、前記分岐部から前記入口部への経路が開いた状態と閉じた状態とを切り替える第4開閉手段と、を含んでいてもよい。
(4)このバッチ式多相流量測定装置は、
 前記制御部は、前記第1処理において、
 前記分岐部から前記入口部への経路を閉じた状態から開いた状態へと切り替えるように前記第4開閉手段を制御し、かつ、前記気体出口部から前記合流部への経路を閉じた状態から開いた状態へと切り替えるように前記第2開閉手段を制御した後に、前記分岐部から前記合流部への経路を開いた状態から閉じた状態へと切り替えるように前記第3開閉手段を制御してもよい。
 これにより、より安全な操作で、流量を測定できる。
(5)このバッチ式多相流量測定装置は、
 前記制御部は、前記第2処理において、
 前記分岐部から前記合流部への経路を閉じた状態から開いた状態へと切り替えるように前記第3開閉手段を制御した後に、前記分岐部から前記入口部への経路を開いた状態から閉じた状態へと切り替えるように前記第4開閉手段を制御してもよい。
 これにより、より安全な操作で、流量を測定できる。
(6)このバッチ式多相流量測定装置は、
 液流量を計算する液流量計算部を有し、
 前記液流量計算部は、前記圧力計測部により高さの異なる2つ以上の測定箇所で計測される圧力と、前記流路切替手段により前記気液多相流体の流路が第2経路となる時間とに基づいて前記液流量を計算してもよい。
(7)このバッチ式多相流量測定装置は、
 前記第1開閉手段は、前記合流部の水平高さよりも上方に設けられていてもよい。
 これにより、気液分離器からの液体の排出が容易になる。
(8)このバッチ式多相流量測定装置は、
 前記気体出口配管に設けられ、前記気体出口部から排出される気体から液滴を分離する液滴分離器を有していてもよい。
 これにより、気体出口配管への液滴の随伴状況の確認が容易になる。したがって、液飛散率を確認し、本計測の精度を確認することができる。
(9)本発明に係るバッチ式多相流量計測方法は、
 これらのいずれかのバッチ式多相流量測定装置を用いるバッチ式多相流量計測方法であって、
 前記流路切替手段により、前記気液多相流体の流路を、前記第1経路から前記第2経路へと切り替えるとともに、前記第2開閉手段により、前記気体出口部から前記合流部への経路を閉じた状態から開いた状態へと切り替える第1工程と、
 前記流路切替手段により、前記気液多相流体の流路を、前記第2経路から前記第1経路へと切り替えるとともに、前記第2開閉手段により、前記気体出口部から前記合流部への経路を開いた状態から閉じた状態へと切り替える第2工程と、
 前記第1開閉手段により、前記液体出口部から前記合流部への経路を閉じた状態から開いた状態へと切り替える第3工程と、
 前記第1開閉手段により、前記液体出口部から前記合流部への経路を開いた状態から閉じた状態へと切り替える第4工程と、
 を含む。
 これにより、簡易な構成の多相流量測定装置を用いて、誤差要因の少ない流量計測方法が実現できる。
図1は、本実施形態に係る気液分離器100の子午面断面の模式図の一例である。 図2は、本実施形態に係る気液分離器100を図1のA-Aにおける断面から平面視した場合の模式図の一例である。 図3は、入口部20から胴部13の中心軸を水平に見た内筒30及びガイド板40の構成の一例を示す部分拡大図である。 図4は、図3に示す内筒30及び内筒30に設けられたガイド板40の一例を示す斜視図である。 図5は、入口部20から胴部13の中心軸を水平に見た内筒30及びガイド板40の構成の他の例を示す部分拡大図である。 図6は、第2の構成例に係る気液分離器100aの子午面断面の模式図の一例である。 図7は、第2の構成例に係る気液分離器100aを図6のA-Aにおける断面から平面視した場合の模式図の一例である。 図8は、第3の構成例に係る気液分離器100bの子午面断面の模式図の一例である。 図9は、第3の構成例に係る気液分離器100bを図8のA-Aにおける断面から平面視した場合の模式図の一例である。 図10は、第4の構成例に係る気液分離器100cについて、図8のA-Aに相当する位置における断面から平面視した場合の模式図の一例である。 図11は、本実施形態の変形例に係る気液分離器100dの子午面断面の模式図の一例である。 図12は、第1の構成例に係る気液分離器100を用いて液飛散率を測定した結果を示すグラフである。 図13は、第1実施形態に係るバッチ式多相流量測定装置1の子午線断面の模式図の一例である。 図14は、第1実施形態に係るバッチ式多相流量測定装置1を用いたバッチ式多相流量計測方法の一例を説明するためのフローチャートである。 図15は、液流量の計算例について説明するための図である。 図16は、容積Vと高さhとの関係の一例を表すグラフである。 図17は、第2実施形態に係るバッチ式多相流量測定装置2の子午線断面の模式図の一例である。 図18は、液流量の計算例について説明するための図である。 図19は、第3実施形態に係るバッチ式多相流量測定装置3の子午線断面の模式図の一例である。 図20は、油密度及び水密度の計算例について説明するための図である。 図21は、第4実施形態に係るバッチ式多相流量測定装置4の子午線断面の模式図の一例である。 図22は、液流量の計算例について説明するための図である。 図23は、第5実施形態に係るバッチ式多相流量測定装置5の子午線断面の模式図の一例である。 図24は、第6実施形態に係るバッチ式多相流量測定装置6の子午線断面の模式図の一例である。 図25は、第6実施形態に係るバッチ式多相流量測定装置6の流路切替手段130付近を平面的に見た模式図の一例である。 図26は、スラグ流について説明するための模式図である。
 以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1.気液分離器の構成
 本発明に係るバッチ式多相流量測定装置は、気液分離器を有している。以下では、まず、後述されるバッチ式多相流量測定装置に用いられる気液分離器の構成について説明する。
1-1.第1の構成例
 図1は、第1の構成例に係る気液分離器100の子午面断面の模式図の一例である。図2は、第1の構成例に係る気液分離器100を図1のA-Aにおける断面から平面視した場合の模式図の一例である。
 第1の構成例に係る気液分離器100は、気液多相流体を気体と液体とに分離する気液分離器100であって、頂部11、底部12及びその間を連結する中空型の胴部13を有する容器10と、胴部13の側面から気液多相流体を供給する入口部20と、底部12から液体を排出する液体出口部21と、頂部11から気体を排出する気体出口部22と、上端が頂部11に連結され、下端が入口部20の下端よりも低い位置で開口した中空型の内筒30と、内筒30の外側面に設けられたガイド板40と、を備えている。平面視において、胴部13の内側面と、内筒30の外側面とは同心円状となっている。ガイド板40は、非水平方向を長手方向とするガイド板側部41と、非鉛直方向を長手方向とし、ガイド板側部41と連続して設けられたガイド板下部42とを有し、ガイド板側部41は、少なくとも、胴部13の内側面のうち入口部20の一方の側方となる位置、又は、内筒30の外側面のうち入口部20と対向する領域の一方の側方となる位置に設けられ、ガイド板下部42は、少なくとも、内筒30の外側面のうち入口部20と対向する領域の真下となる位置に設けられ、かつ、平面視において、内筒30の外側面の一部に沿って設けられている。また、ガイド板下部42と、胴部13との間の少なくとも一部に空隙90を有する。
 容器10は、頂部11、底部12及びその間を連結する中空型の胴部13を有する。図1に示す例では、容器10は、上下方向に細長い中空容器として構成されている。また、胴部13の水平断面における内側面の形状は、円形に構成されている。図1に示す例では、胴部13は、頂部11から底部12まで同一径に形成され、中心軸は鉛直方向となっている。なお、本発明はこの構成に限定されず、例えば、胴部13の一部に異なる内径を有する箇所が存在していてもよい。
 入口部20は、容器10の胴部13に、容器10の内部空間と連通する開口として設けられている。入口部20の機能の一つは、後述される入口配管120と連通し、容器10に気液多相流体を供給するための流路となることである。なお、図2に示す例では、入口配管120は、平面視において、入口配管120の中心線を通る水平横断面の気液多相流体の供給方向における延長面が、胴部13の中心軸と交わるように設けられている。また、より高度な安全性を求めるために、容器10の胴部13と入口配管120との接続部分の対称性を考慮すると、入口配管120は、平面視において、入口配管120の中心線が、胴部13の中心軸と交わるように設けられることがより好ましい。なお、図1及び図2に示す例では、入口部20の形状は、円形に構成されている。
 液体出口部21は、容器10の底部12に、容器10の内部空間と連通する開口として設けられている。液体出口部21の機能の一つは、後述される液体出口配管121と連通し、気液分離器100で分離された液体を、容器10から排出するための流路となることである。図1に示す例では、液体出口部21は、底部12の中心に設けられている。なお、本発明はこの構成に限定されず、液体出口部21は、例えば、底部12の中心からずれた位置に設けられていてもよい。また、図1及び図2に示す例では、液体出口部21の形状は、円形に構成されている。
 気体出口部22は、容器10の頂部11に、容器10の内部空間と連通する開口として設けられている。気体出口部22の機能の一つは、後述される気体出口配管122と連通し、気液分離器100で分離された気体を、容器10から排出するための流路となることである。図1に示す例では、気体出口部22は、頂部11の中心に設けられている。なお、本発明はこの構成に限定されず、気体出口部22は、例えば、頂部11の中心からずれた位置に設けられていてもよい。また、図1及び図2に示す例では、気体出口部22の形状は、円形に構成されている。
 内筒30は、中空型の筒形状に構成されている。内筒30は、その上端が容器10の頂部11と連結されている。図1に示す例では、内筒30の上端と容器10の頂部11とは、気密に連結されている。内筒30は、その下端が入口部20の下端よりも低い位置で開口している。また、内筒30は、気体出口部22と連通するように設けられている。
 内筒30の断面における外側面の形状は、円形に構成されている。また、図2に示すように、平面視において、容器10の胴部13の内側面と、内筒30の外側面とが同心円状となるように構成されている。また、図1及び図2に示す例では、内筒30の水平断面における内側面の形状は、同一径で円形に構成されている。なお、本発明はこの構成に限定されず、例えば、内筒30の一部に異なる内径、又は/及び、内筒30の一部に異なる外径を有する箇所が存在していてもよい。
 図1及び図2に示す例では、ガイド板40は、内筒30の外側面に設けられている。また、図2に示すように、ガイド板40は、平面視において、部分円環形状に構成されている。ガイド板40と、ガイド板40が設けられる内筒30の外側面とは、取り付け強度と気密性を確保するために、溶接等により密着されていることが好ましい。
 図3は、入口部20から胴部13の中心軸を水平に見た内筒30及びガイド板40の構成の一例を示す部分拡大図である。図4は、図3に示す内筒30及び内筒30に設けられたガイド板40の一例を示す斜視図である。
 図2及び図3に示すように、ガイド板40は、非水平方向を長手方向とするガイド板側部41と、非鉛直方向を長手方向とし、ガイド板側部41と連続して設けられたガイド板下部42とを有する。ガイド板側部41は、少なくとも、内筒30の外側面のうち入口部20と対向する領域の一方の側方となる位置に設けられている。ガイド板下部42は、少なくとも、内筒30の外側面のうち入口部20と対向する領域の真下となる位置に設けられ、かつ、平面視において、内筒30の外側面の一部に沿って設けられている。
 ガイド板40により、入口部20から供給された気液多相流体は、容器10の胴部13の内側面と内筒30の外側面との間を流路として、入口部20から胴部13の中心軸を水平に見て、入口部20の一方の側方から他方の側方に向かって旋回することになる。これにより、気液多相流体に遠心力が作用し、気液多相流体を気体と液体に分離することができる。
 内筒30の外側面におけるガイド板下部42が設けられる範囲は、入口部20から胴部13の中心軸を水平に見て、少なくともガイド板側部41の真下から内筒30の外側面のうち入口部20と対向する領域の真下となる位置までを覆う範囲で、なおかつ、胴部13の中心軸を基準として、平面視において40度以上180度以下となる範囲であることが好ましい。図2に示す例では、ガイド板下部42は、平面視において、ガイド板側部41の真下から90度の部分円環形状となるような範囲に設けられている。ガイド板下部42が設けられる範囲を40度以上とすることにより、入口部20から供給された気液多相流体を所望の旋回方向に誘導しやすくなる。また、ガイド板下部42が設けられる範囲を180度以下とすることにより、入口部20から供給された気液多相流体の旋回が必要以上に維持されることを抑制し、圧力損失を抑えることができる。
 ガイド板下部42は、入口部20の下端との距離が、入口部20の鉛直方向における長さの2倍以下の範囲となる位置に設けられていることが好ましい。また、ガイド板下部42は、入口部20の下端との距離が、入口部20の鉛直方向における長さの1倍以下の範囲となる位置に設けられていることがより好ましい。これにより、入口部20から供給された気液多相流体が過度に下方に流れるのを抑制し、気液多相流体に十分な遠心力を与えることができる。
 図3及び図4に示すように、ガイド板40は、内筒30の外側面に設けられ、ガイド板側部41を構成する第1ガイド板41aと、内筒30の外側面に設けられ、ガイド板下部42を構成する第2ガイド板42aとを含んで構成されていてもよい。図3及び図4に示す例では、第1ガイド板41a及び第2ガイド板42aは、内筒30の外側面に密着されて設けられている。
 図3及び図4に示す例では、第1ガイド板41aは、鉛直方向を長手方向とする板状に構成されている。また、図3及び図4に示す例では、第2ガイド板42aは、水平方向を長手方向とする板状に構成されている。また、図3及び図4に示す例では、第1ガイド板41aと第2ガイド板42aとが接するように構成されている。さらに、入口部20から供給された気液多相流体が漏れないように、第1ガイド板41aと第2ガイド板42aとは、溶接等により密着されていることが好ましい。なお、本発明はこの構成に限定されず、例えば、第1ガイド板41a(ガイド板側部41)は、鉛直方向から傾いた板状に構成されていてもよく、第2ガイド板42a(ガイド板下部42)は、水平方向から傾いた板状に構成されていてもよい。また例えば、第1ガイド板41a(ガイド板側部41)及び第2ガイド板42a(ガイド板下部42)の少なくとも一方が湾曲した板状に構成されていてもよい。
 また、図3及び図4に示す例では、第2ガイド板42aの上面は、水平となるように構成されている。なお、本発明はこの構成に限定されず、第2ガイド板42a(ガイド板下部42)の上面は、容器10の内側面側が低くなるように傾いていたり、内筒30の外側面側が低くなるように傾いていたりしていてもよい。
 図5は、入口部20から胴部13の中心軸を水平に見た内筒30及びガイド板40の構成の他の例を示す部分拡大図である。図5に示すように、ガイド板40は、入口部20から胴部13の中心軸を水平に見て、ガイド板側部41とガイド板下部42とが一体として構成されていてもよい。図5に示す例では、ガイド板40は、1枚の板で構成され、内筒30の外側面に密着されている。
 図3又は図5、並びに図2に示すように、ガイド板下部42は、容器10の胴部13との間の少なくとも一部に空隙90を有する。図2及び図3に示す例では、ガイド板下部42(第2ガイド板42a)と容器10の胴部13との間に空隙90を有するように構成されている。
 空隙90を有することにより、入口部20から供給された気液多相流体がガイド板下部42の側方終端部まで達する以前に、密度の大きい液体を分離して容器10の内側面側に流下させることができる。すなわち、空隙90は、分離された液体を、容器10内の下方へ速やかに流出させるための流路となる。これにより、分離された気体の流路空間を拡大させることができるので、気液多相流体の液流量及び液割合が大きくなっても、高い分離効率で気体と液体に分離することができる。また、空隙90を設けることにより、圧力損失を抑えることができる。なお、空隙90は、1箇所に設けられても複数箇所に設けられていてもよい。
 このように、第1の構成例に係る気液分離器100によれば、簡易な構成で、流量及び気液割合が経時的に大きく変化する気液多相流体を、高い分離効率で気体と液体に分離することができる気液分離器が実現できる。
1-2.第2の構成例
 図6は、第2の構成例に係る気液分離器100aの子午面断面の模式図の一例、図7は、第2の構成例に係る気液分離器100aを図6のA-Aにおける断面から平面視した場合の模式図の一例である。
 ガイド板下部42は、入口部20から胴部13の中心軸を水平に見て、少なくともガイド板側部41の真下から内筒30の外側面のうち入口部20と対向する領域の真下となる位置までの部分では連続して胴部13の内側面との間に空隙を有さないように構成されていてもよい。すなわち、ガイド板40は、入口部20から胴部13の中心軸を水平に見て、少なくとも内筒30の外側面のうち入口部20と対向する領域の真下となる位置では連続して容器10の胴部13の内側面と接していてもよい。図6及び図7に示す例では、第2ガイド板42a(ガイド板下部42)が、ガイド板側部41の真下から内筒30の外側面のうち入口部20と対向する領域の真下となる位置までの部分では連続して胴部13の内側面との間に空隙を有さないように構成されている。
 この構成により、入口部20付近では流体に対する遠心力を与え、入口部20から離れた位置では遠心力により容器10の内側面側に移動した液体を空隙90から効率良く流出させることができる。
 また、図7に示すように、気液分離器100aは、ガイド板下部42の側方終端部に近づくほど空隙90の間隔が広くなるように構成されていてもよい。
 この構成により、遠心力により容器10の内側面側に移動した液体を空隙90から効率よく流出させることができる。
1-3.第3の構成例
 図8は、第3の構成例に係る気液分離器100bの子午面断面の模式図の一例、図9は、第3の構成例に係る気液分離器100bを図8のA-Aにおける断面から平面視した場合の模式図の一例である。
 図8及び図9に示すように、気液分離器100bは、ガイド板下部42と胴部13との間を塞ぐ下部漏れ防止板72を備え、入口部20から胴部13の中心軸を水平に見て、ガイド板下部42のうち少なくともガイド板側部41の真下から内筒30の外側面のうち入口部20と対向する領域の真下となる位置までの部分と、胴部13との間が、下部漏れ防止板72で塞がれていてもよい。図8及び図9に示す例では、下部漏れ防止板72は、胴部13の内側面に密着して設けられている。下部漏れ防止板72は、ガイド板側部41(第1ガイド板41a)の真下から内筒30の外側面のうち入口部20と対向する領域の真下となる位置までの部分のガイド板下部42(第2ガイド板42a)と密着されていてもよい。
 第2ガイド板42aは内筒30の外側面に設けられているため、加工によって、第2ガイド板42aと容器10の胴部13の内側面との間に空隙が生じる。したがって、胴部13の内側面に下部漏れ防止板72が備えられていることにより、第2ガイド板42aと容器10の胴部13の内側面との隙間からの気液多相流体の漏れを防ぐことができる。これにより、気液多相流体に対して効果的に遠心力を与えることができる。
 また、図9に示すように、気液分離器100bは、ガイド板下部42の側方終端部に近づくほど空隙90の間隔が広くなるように構成されていてもよい。
 この構成により、遠心力により容器10の内側面側に移動した液体を空隙90から効率良く流出させることができる。
1-4.第1の構成例、第2の構成例及び第3の構成例の変形例
 さらに、図2、図7又は図9に示すように、第1の構成例に係る気液分離器100、第2の構成例に係る気液分離器100a及び第3の構成例に係る気液分離器100bは、ガイド板側部41と、胴部13との間を塞ぐ側部漏れ防止板70を備えていてもよい。図2、図7及び図9に示す例では、側部漏れ防止板70と胴部13の内側面とは密着されている。側部漏れ防止板70は、ガイド板側部41と密着されていてもよい。
 図2、図7及び図9に示す例では、ガイド板側部41(第1ガイド板41a)は内筒30の外側面に設けられているため、加工によって、ガイド板側部41(第1ガイド板41a)と容器10の胴部13の内側面との間に空隙が生じる。したがって、胴部13の内側面に側部漏れ防止板70が備えられていることにより、ガイド板側部41(第1ガイド板41a)と容器10の胴部13の内側面との隙間からの気液多相流体の漏れを防ぐことができる。これにより、気液多相流体に対して効果的に遠心力を与えることができる。
 なお、側部漏れ防止板70と下部漏れ防止板72とが一体として構成されていてもよい。例えば、側部漏れ防止板70と下部漏れ防止板72とが1枚の板で構成されていてもよい。
1-5.第4の構成例
 図10は、第4の構成例に係る気液分離器100cについて、図8のA-Aに相当する位置における断面から平面視した場合の模式図の一例である。気液分離器100cの子午面断面は、図8に示す例と同様である。
 図8及び図10に示すように、ガイド板40は、胴部13の内側面に設けられ、ガイド板側部41を構成する第1ガイド板41bと、内筒30の外側面に設けられ、ガイド板下部42を構成する第2ガイド板42aとを含んで構成されていてもよい。すなわち、第1ガイド板41b(ガイド板側部41)は、少なくとも、胴部13の内側面のうち入口部20の一方の側方となる位置に設けられ、第2ガイド板42a(ガイド板下部42)は、少なくとも、内筒30の外側面のうち入口部20と対向する領域の真下となる位置に設けられ、かつ、平面視において、内筒30の外側面の一部に沿って設けられている。図8及び図10に示す例では、第1ガイド板41bは胴部13の内側面に密着されて設けられている。また、図8及び図10に示す例では、第2ガイド板42aは内筒30の外側面に密着されて設けられている。
 図8及び図10に示す例では、第1ガイド板41bは、鉛直方向を長手方向とする板状に構成されている。また、図8及び図10に示す例では、第2ガイド板42aは、水平方向を長手方向とする板状に構成されている。また、図8及び図10に示す例では、第1ガイド板41bと第2ガイド板42aとが接するように構成されている。なお、本発明はこの構成に限定されず、例えば、第1ガイド板41b(ガイド板側部41)は、鉛直方向から傾いた板状に構成されていてもよく、第2ガイド板42a(ガイド板下部42)は、水平方向から傾いた板状に構成されていてもよい。また例えば、第1ガイド板41b(ガイド板側部41)及び第2ガイド板42a(ガイド板下部42)の少なくとも一方が湾曲した板状に構成されていてもよい。
 また、図8及び図10に示す例では、第2ガイド板42aの上面は、水平となるように構成されている。なお、本発明はこの構成に限定されず、第2ガイド板42a(ガイド板下部42)の上面は、容器10の内側面側が低くなるように傾いていたり、内筒30の外側面側が低くなるように傾いていたりしていてもよい。
 また、図10に示すように、気液分離器100cは、ガイド板側部41(第1ガイド板41b)と内筒30との間を塞ぐ側部漏れ防止板70aを備えていてもよい。図10に示す例では、側部漏れ防止板70aと内筒30の外側面とは密着されている。側部漏れ防止板70aは、ガイド板側部41(第1ガイド板41b)と密着されていてもよい。
 図10に示す例では、ガイド板側部41(第1ガイド板41b)は胴部13の内側面に設けられているため、加工によって、ガイド板側部41(第1ガイド板41b)と内筒30の外側面との間に空隙が生じる。したがって、内筒30の外側面に側部漏れ防止板70aが備えられていることにより、ガイド板側部41(第1ガイド板41b)と内筒30の外側面との隙間からの気液多相流体の漏れを防ぐことができる。これにより、気液多相流体に対して効果的に遠心力を与えることができる。
 また、図8及び図10に示すように、気液分離器100cは、ガイド板下部42と胴部13との間を塞ぐ下部漏れ防止板72を備え、入口部20から胴部13の中心軸を水平に見て、ガイド板下部42のうち少なくともガイド板側部41の真下から内筒30の外側面のうち入口部20と対向する領域の真下となる位置までの部分と、胴部13との間が、下部漏れ防止板72で塞がれていてもよい。図8及び図10に示す例では、下部漏れ防止板72は、胴部13の内側面に密着して設けられている。下部漏れ防止板72は、ガイド板側部41(第1ガイド板41b)の真下から内筒30の外側面のうち入口部20と対向する領域の真下となる位置までの部分のガイド板下部42(第2ガイド板42a)と密着されていてもよい。
 第2ガイド板42aは内筒30の外側面に設けられているため、加工によって、第2ガイド板42aと容器10の胴部13の内側面との間に空隙が生じる。したがって、胴部13の内側面に下部漏れ防止板72が備えられていることにより、第2ガイド板42aと容器10の胴部13の内側面との隙間からの気液多相流体の漏れを防ぐことができる。これにより、気液多相流体に対して効果的に遠心力を与えることができる。
1-6.第5の構成例
 図11は、本実施形態の変形例に係る気液分離器100dの子午面断面の模式図の一例である。図11に示す気液分離器100dの容器10aは、頂部11aを含む蓋部と、底部12a及び胴部13aを含む容器本体部とを有した構造となっている。蓋部と容器本体部とは、フランジ継手により繋ぎ合わせられている。他の構成は、図1に示す気液分離器100と同一である。
 図11に示す気液分離器100dの構成においても、上述した気液分離器100と同様の理由により同様の効果を奏する。
1-7.実験例
 次に、第1の構成例に係る気液分離器100を用いて気液分離を行った場合の実験例について説明する。
 実験に用いた気液分離器100は、平面視において、胴部13の内側面の直径が200mm、内筒30の外側面の直径が約165mm、胴部13の内側面と内筒30の外側面との間隔が約17mm、入口部20の直径が50mmとなっている。また、ガイド板下部42は、平面視において、内筒30の外側面のうちガイド板側部41の真下から90度の範囲に設けられている。空隙90としては、ガイド板下部42と胴部13の内側面との間に約5mm存在している。
 実験の手順は以下の通りである。まず、液体出口部21を閉じる。次に、水と窒素ガスとをそれぞれ所定の流量で混合した水窒素二相流体を、入口部20から供給する。次に、容器10内の内筒30の下端より下方の所定位置まで液面が上昇する時間tの間に供給された液量Vlと、時間tの間に気体出口部22から排出された液体を液滴分離器により捕捉した液飛散量Sとを測定する。以下、水と窒素ガスとのそれぞれの流量を変更して、上記手順を繰り返して、液量Vlと液飛散量Sとを測定する。
 水窒素二相流体における窒素ガスの流量Vnは、0[m3/h]<Vn<300[m3/h]の範囲で変更して測定した。また、水窒素二相流体における水の流量Vhは、Vh=1[m3/h]、5[m3/h]、10[m3/h]、15[m3/h]の4段階で変更して測定した。
 上記手順により測定した液量Vlと液飛散量Sとから、液飛散率を以下の式で求める。
液飛散率[%]=(液飛散量S/(液飛散量S+液量Vl))×100
 すなわち、液飛散率が小さいほど、気液分離効率は高いと言える。
 図12は、上述の手順により、第1の構成例に係る気液分離器100を用いて液飛散率を測定した結果を示すグラフである。横軸は、水窒素二相流体における窒素ガスの流量、縦軸は、液飛散率を表す。また、測定点を表す符号の種類は、水窒素二相流体における水の流量を表す。
 図12に示すように、上述したいずれの測定条件においても、液飛散率は1%以下となっている。
 このように、第1の構成例に係る気液分離器100によれば、簡易な構成で、広い範囲での流量及び気液割合において、高い分離効率で気体と液体に分離することができることが示されている。
2.バッチ式多相流量測定装置
2-1.第1実施形態に係るバッチ式多相流量測定装置
 図13は、第1実施形態に係るバッチ式多相流量測定装置1の子午線断面の模式図の一例である。バッチ式多相流量測定装置1は、「1-1.第1の構成例」の項で説明した気液分離器100を有している。なお、気液分離器100に代えて、上述した気液分離器100a、100b、100c及び100dのいずれかを用いてもよい。
 バッチ式多相流量測定装置1は、主配管110を有する。主配管110は、気液多相流体が供給される気液多相流入口部111と、気液多相流体が排出される気液多相流出口部112と、気液多相流入口部111から気液多相流出口部112までの間に分岐部113及び合流部114を有している。図13に示す例では、合流部114は、相対的に気液多相流入口部111から近い側に位置する第1合流部114aと、相対的に気液多相流入口部111から遠い側に位置する第2合流部114bを含んで構成されている。なお、この構成に限らず、合流部114は、相対的に気液多相流入口部111から遠い側に位置する第1合流部114aと相対的に気液多相流入口部111から近い側に位置する第2合流部114bを含んで構成されていてもよい。
 バッチ式多相流量測定装置1は、入口配管120を有している。入口配管120は、分岐部113と気液分離器100の入口部20とを接続する配管として構成されている。すなわち、入口配管120は、分岐部113で主配管110と連通し、入口部20で気液分離器100の内部空間と連通するように構成されている。また、入口配管120は、平面視において、気液分離器100の入口部20を介して気液分離器100の胴部13の中心軸に向かって設けられている。
 バッチ式多相流量測定装置1は、液体出口配管121を有している。液体出口配管121は、合流部114と液体出口部21とを接続する配管として構成されている。すなわち、液体出口配管121は、合流部114で主配管110と連通し、液体出口部21で気液分離器100の内部空間と連通するように構成されている。図13に示す例では、液体出口配管121は、第1合流部114aと液体出口部21とを接続する配管として構成されている。
 バッチ式多相流量測定装置1は、気体出口配管122を有している。気体出口配管122は、合流部114と気体出口部22とを接続する配管として構成されている。すなわち、気体出口配管122は、合流部114で主配管110と連通し、気体出口部22で気液分離器100の内部空間と連通するように構成されている。図13に示す例では、気体出口配管122は、第2合流部114bと気体出口部22とを接続する配管として構成されている。
 バッチ式多相流量測定装置1は、流路切替手段130を有している。流路切替手段130は、気液多相流体の流路が、気液分離器100を介さない第1経路と、気液分離器100を介する第2経路とのいずれか一方となるように切り替える。図13に示す例では、流路切替手段130は、主配管110に設けられ、分岐部113から合流部114への経路が開いた状態と閉じた状態とを切り替える第3開閉手段133と、入口配管120に設けられ、分岐部113から気液分離器100の入口部20への経路が開いた状態と閉じた状態とを切り替える第4開閉手段134とを含んで構成されている。第3開閉手段133及び第4開閉手段134としては、種々の公知のバルブを採用することができる。なお、流路切替手段130は、第1経路と第2経路とを切り替える三方弁で構成されていてもよい。
 バッチ式多相流量測定装置1は、第1開閉手段131を有している。第1開閉手段131は、液体出口配管121に設けられ、気液分離器100の液体出口部21から合流部114への経路が開いた状態と閉じた状態とを切り替える。第1開閉手段131としては、種々の公知のバルブを採用することができる。
 また、第1開閉手段131は、合流部114の水平高さよりも上方に設けられていてもよい。これにより、気液分離器100からの液体の排出が容易になる。図13に示す例では、第1開閉手段131は、気液分離器100の水平高さよりも下方で第1合流部114aの水平高さよりも上方に設けられている。液体出口部21と合流部114(第1合流部114a)との間の液体出口配管121は、直線的な配管であることが好ましい。これにより、液体出口配管121中に液溜まりが残留することを防ぎ、気液分離器100から液体を排出する時間を短縮できる。
 バッチ式多相流量測定装置1は、第2開閉手段132を有している。第2開閉手段132は、気体出口配管122に設けられ、気液分離器100の気体出口部22から第2合流部114bへの経路が開いた状態と閉じた状態とを切り替える。第2開閉手段132としては、種々の公知のバルブを採用することができる。
 バッチ式多相流量測定装置1は、圧力計測部200を有している。圧力計測部200は、気液分離器100及び第1開閉手段131の上の液体出口配管121のうち少なくとも一方の内部において、高さの異なる2つ以上の測定箇所で圧力を計測する。図13に示す例では、圧力計測部200は、液体出口配管121に設けられ圧力の測定箇所となる圧力計測用の短管201、気液分離器100の胴部13に設けられ圧力の測定箇所となる圧力計測用の短管202及び203、短管201での圧力と短管202での圧力の差に基づいた信号を出力する差圧発信器210、短管202での圧力と短管203での圧力の差に基づいた信号を出力する差圧発信器220を含んで構成されている。図13に示す例では、各単管の位置は、低い方から短管201、短管202、短管203順に配置されている。後述される液流量の計測精度の観点からは、短管201は、第1開閉手段131に近い位置に設けられることが好ましい。また、短管203は、圧力損失の安定計測のため、内筒30の下端よりも下方に設置されることが望ましい。
 バッチ式多相流量測定装置1は、流路切替手段130、第1開閉手段131、第2開閉手段132及び圧力計測部200を制御する制御部300を有していてもよい。制御部300は、専用回路により実現して後述される各制御を行うようにすることもできるし、例えばCPU(Central Processing Unit)が記憶手段(不図示)等に記憶された制御プログラムを実行してコンピューターとして機能させ、後述される各制御を行うようにすることもできる。制御部300が行う制御例については、「2-2.第1実施形態に係るバッチ式多相流量測定装置を用いたバッチ式多相流量計測方法」の項で後述される。
 バッチ式多相流量測定装置1は、液流量計算部400を有していてもよい。液流量計算部400は、気液多相流体に含まれる液体の流量(液流量)を計算する。液流量計算部400は、圧力計測部200により高さの異なる2つ以上の測定箇所で計測される圧力と、流路切替手段130により気液多相流体の流路が第2経路となる時間とに基づいて液流量を計算する。液流量計算部400が行う計算例の詳細については、「2-3.液流量の計算例」の項で後述される。
 バッチ式多相流量測定装置1は、気体流量計500を有している。気体流量計500は、気体出口配管122に設けられ、気液分離器100の気体出口部22から排出される気体の流量を計測する。気体流量計500としては、例えば、容積式流量計や質量流量計を用いることができる。また、気体流量計500は、標準状態の気体流量を計算するために必要な温度計及び圧力計、もしくは温度及び圧力を計測する機能を含んでいる。気体流量計500は、第2開閉手段132の上流に設けられていても下流に設けられていてもよい。ただし、以下で述べられる油密度、水密度及び液密度の計算に使う温度T及び圧力Pは、気体流量計500が第2開閉手段132より上流であれば、圧力計測部200が計測をしているときに計測されている温度T、圧力Pを用い、気体流量計500が第2開閉手段132より下流であれば、第2開閉手段132が開から閉に制御される直前の気体が安定して流動している状態での平均の温度T及び平均の圧力Pを用いることが望ましい。
2-2.第1実施形態に係るバッチ式多相流量測定装置を用いたバッチ式多相流量計測方法
 次に、第1実施形態に係るバッチ式多相流量測定装置1を用いたバッチ式多相流量計測方法について説明する。図14は、第1実施形態に係るバッチ式多相流量測定装置1を用いたバッチ式多相流量計測方法の一例を説明するためのフローチャートである。
 図14に示すバッチ式多相流量計測方法は、流路切替手段130により、気液多相流体の流路を、第1経路から第2経路へと切り替えるとともに、第2開閉手段132により、気体出口部22から合流部114への経路を閉じた状態から開いた状態へと切り替える第1工程(ステップS100)と、流路切替手段130により、気液多相流体の流路を、第2経路から第1経路へと切り替えるとともに、第2開閉手段132により、気体出口部22から合流部114への経路を開いた状態から閉じた状態へと切り替える第2工程(ステップS102)と、圧力計測部200により、気液分離器100及び液体出口配管121のうち少なくとも一方の内部において、高さの異なる2つ以上の測定箇所で圧力を計測する第3工程(ステップS104)と、第1開閉手段131により、液体出口部21から合流部114への経路を閉じた状態から開いた状態へと切り替える第4工程(ステップS106)と、第1開閉手段131により、液体出口部21から合流部114への経路を開いた状態から閉じた状態へと切り替える第5工程(ステップS108)と、を含んでいる。
 以下では、図14に示すバッチ式多相流量計測方法を、主として制御部300による制御によって実現する例について説明する。なお、図14に示すバッチ式多相流量計測方法を、手動操作等により実現することも可能である。
 第1工程(ステップS100)において、制御部300は、気液多相流体の流路を、第1経路から第2経路へと切り替えるように流路切替手段130を制御するとともに、気体出口部22から合流部114への経路を閉じた状態から開いた状態へと切り替えるように第2開閉手段132を制御する第1処理を行う。例えば、制御部300は、第1処理において、分岐部113から気液分離器100の入口部20への経路を閉じた状態から開いた状態へと切り替えるように第4開閉手段134を制御し、かつ、気体出口部22から合流部114への経路を閉じた状態から開いた状態へと切り替えるように第2開閉手段132を制御した後に、分岐部113から合流部114への経路を開いた状態から閉じた状態へと切り替えるように第3開閉手段133を制御してもよい。これにより、気液多相流体の流れを遮断することを抑制できるため、より安全な操作で、流量を測定できる。
 第2工程(ステップS102)において、制御部300は、気液多相流体の流路を、第2経路から第1経路へと切り替えるように流路切替手段130を制御するとともに、気体出口部22から合流部114への経路を開いた状態から閉じた状態へと切り替えるように第2開閉手段132を制御する第2処理を行う。例えば、制御部300は、第2処理において、分岐部113から合流部114への経路を閉じた状態から開いた状態へと切り替えるように第3開閉手段133を制御した後に、分岐部113から気液分離器100の入口部20への経路を開いた状態から閉じた状態へと切り替えるように第4開閉手段134を制御してもよい。これにより、気液多相流体の流れを遮断することを抑制できるため、より安全な操作で、流量を測定できる。
 制御部300が第1工程(ステップS100)を開始するタイミングは、例えば、計測結果の記録をスタートしてから所定時間td1経過後としてもよい。また例えば、制御部300が第2工程(ステップS102)を開始するタイミングは、圧力計測部200によって所定の圧力が計測されるタイミングとしてもよい。図13に示す例では、制御部300が第2工程(ステップS102)を開始するタイミングは、差圧発信器220で所定値dP1以上の圧力差が計測されるタイミングとしてもよい。所定値dP1は、例えば、液面が短管202と短管203との間に位置する状態に相当する圧力差であってもよい。
 第3工程(ステップS104)において、制御部300は、気液分離器100及び液体出口配管121のうち少なくとも一方の内部において、高さの異なる2つ以上の測定箇所で圧力を計測するように圧力計測部200を制御する第3処理を行う。図13に示す例では、短管201、202及び203が設けられている3つの測定箇所で圧力を計測している。圧力計測部200によって計測された圧力に基づいて、液流量が計算できる。液流量の計算は、液流量計算部400が行ってもよい。液流量の計算例については後述される。
 制御部300が第3工程(ステップS104)を開始するタイミングは、例えば、第2工程(ステップS102)が完了してから所定時間td2経過後としてもよい。ここでの所定時間td2は、例えば、要求される計測精度の範囲内で液面が安定するまでの時間としてもよい。このような所定時間td2は、バッチ式多相流量測定装置1の仕様に応じて実験的に決定することができる。
 なお、第3工程(ステップS104)に加えて、第3工程(ステップS104)以外の期間においても制御部300が第3処理を行ってもよい。例えば、第1工程(ステップS100)の開始前から第5工程(ステップS108)の完了後までの期間において継続的に制御部300が第3処理を行ってもよい。
 第4工程(ステップS106)において、制御部300は、液体出口部21から合流部114への経路を閉じた状態から開いた状態へと切り替えるように第1開閉手段131を制御する第4処理を行う。制御部300が第4工程(ステップS106)を開始するタイミングは、例えば、第3工程(ステップS104)が完了した後のタイミングとしてもよい。
 第5工程(ステップS108)において、制御部300は、液体出口部21から合流部114への経路を開いた状態から閉じた状態へと切り替えるように第1開閉手段131を制御する第5処理を行う。図13に示す例では、制御部300が第5工程(ステップS108)を開始するタイミングは、差圧発信器210で所定値dP2以下の圧力差が計測されるタイミングとしてもよい。所定値dP2は、例えば、液面が短管201よりも低い状態に相当する圧力差であってもよい。
2-3.第1実施形態に係るバッチ式多相流量測定装置を用いたバッチ式多相流量計測方法における液流量の計算例
 次に、第1実施形態に係るバッチ式多相流量測定装置1を用いたバッチ式多相流量計測方法における液流量の計算例について、油、水及びガスの3種からなる気液多相流体を用いた場合を例に取り説明する。以下に説明する例では、油と水が分離している(エマルションではない)ものと仮定した場合について説明する。
 図15は、液流量の計算例について説明するための図である。図15は、バッチ式多相流量測定装置1の要部の子午面断面について模式的に表している。また、図15においては、第3工程(ステップS104)において、液面が短管202と短管203との間に位置し、水油界面が短管201と短管202の間に位置している場合を表している。
 ここで、短管201の高さを基準とした水油界面の高さをh、短管201の高さを基準とした短管202の高さをh、短管201の高さを基準とした液面の高さをhと表す。また、気体流量計500で計測した圧力P及び温度Tの下で計算した油の密度をρ、気体流量計500で計測した圧力P及び温度Tの下で計算した水の密度をρ、重力加速度をg、差圧発信器210が出力する差圧をdPW-1、差圧発信器220が出力する差圧をdP、第1工程(ステップS100)の開始から第2工程(ステップS102)の完了までの経過時間をdtとする。
 油の密度ρが水の密度ρよりも小さい場合、短管201の高さを基準とした液面の高さhは、次の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 また、短管201の高さを基準とした水油界面の高さhは、次の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 一方、短管201からの垂直高さをhとすると、第1開閉手段131の上部から垂直高さhまでの液体出口配管121及び気液分離器100の容積Vは、液体出口配管121及び気液分離器100の形状に応じたhの関数として表すことができる。すなわち、V=f(h)と表すことができる。図16は、容積Vと高さhとの関係の一例を表すグラフである。この関数を用いて、液流量(液体積流量)Qを以下の式(3)で、水分率WCを以下の式(4)で、それぞれ計算することができる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
2-4.第1実施形態に係るバッチ式多相流量測定装置を用いたバッチ式多相流量計測方法におけるガス流量の計算例
 次に、第1実施形態に係るバッチ式多相流量測定装置1を用いたバッチ式多相流量計測方法におけるガス流量の計算例について、油、水及びガスの3種からなる気液多相流体を用いた場合を例に取り説明する。
 第1工程(ステップS100)の開始タイミング時刻をt1、第2工程(ステップS102)の開始タイミング時刻をt2、時刻t1の後にガスの流量が安定するまでに必要な時間をdtとすると、平均ガス体積流量は、時刻t1+dtから時刻t2までに気体流量計500によって計測されたガス体積流量Qを平均値で表すことができる。すなわち、平均ガス体積流量は以下の式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 また、気液分離器100で分離された液体が気液分離器100内に溜まるに従い、気液分離器100内に存在するガスが気体出口配管122に排出されるため、より正確な平均ガス体積流量は、以下の式(6)で表すことができる。
Figure JPOXMLDOC01-appb-M000006
 なお、時刻t1+dtから時刻t2までの平均温度及び平均圧力を用いて、標準状態のガス体積流量に換算することができる。
2-5.第2実施形態に係るバッチ式多相流量測定装置
 図17は、第2実施形態に係るバッチ式多相流量測定装置2の子午線断面の模式図の一例である。なお、第1実施形態に係るバッチ式多相流量測定装置1と同一の構成には同一の符号を付し、詳細な説明を省略する。
 バッチ式多相流量測定装置2は、気液分離器100の胴部13に設けられ圧力の測定箇所となる短管204を有している。図17に示す例では、各単管の位置は、低い方から短管201、短管204、短管202、短管203順に配置されている。また、図17に示す例では、短管204から短管203までの間は、気液分離器100内の水平断面積が同一となっている。短管204は、設計上許容できる範囲で、気液分離器100内の水平断面積が同一となる範囲の最下部に近い位置に配置されることが好ましい。
 バッチ式多相流量測定装置2の圧力計測部200は、差圧発信器210に代えて、短管201での圧力と短管204での圧力の差に基づいた信号を出力する差圧発信器211、短管204での圧力と短管202での圧力の差に基づいた信号を出力する差圧発信器212を含んで構成されている。
 バッチ式多相流量測定装置2においても、「2-2.第1実施形態に係るバッチ式多相流量測定装置を用いたバッチ式多相流量計測方法」の項で説明したバッチ式多相流量計測方法と同様の方法で、気液多相流体に含まれる液体の流量を計測することができる。
2-6.第2実施形態に係るバッチ式多相流量測定装置を用いたバッチ式多相流量計測方法における液流量の計算例
 次に、第2実施形態に係るバッチ式多相流量測定装置2を用いたバッチ式多相流量計測方法における液流量の計算例について、油、水及びガスの3種からなる気液多相流体を用いた場合を例に取り説明する。以下に説明する例では、油と水が分離していない(エマルションになっている)部分が下方にあるものと仮定した場合について説明する。
 図18は、液流量の計算例について説明するための図である。図18は、バッチ式多相流量測定装置2の要部の子午面断面について模式的に表している。また、図18においては、第3工程(ステップS104)において、液面が短管202と短管203との間に位置している場合を表している。
 ここで、短管201の高さを基準とした短管202の高さをh、短管201の高さを基準とした短管204の高さをh、短管201の高さを基準とした液面の高さをhと表す。また、気体流量計500で計測した圧力P及び温度Tの下で計算した油の密度をρ、気体流量計500で計測した圧力P及び温度Tの下で計算した水の密度をρ、重力加速度をg、差圧発信器211が出力する差圧をdPW-2、差圧発信器212が出力する差圧をdPW-3とする。
 油の密度ρが水の密度ρよりも小さく、短管202の高さよりも上方では油のみであるものと仮定できる場合、短管201の高さを基準とした液面の高さhは、上述した式(1)で表される。
 一方、上述したように、短管201からの垂直高さをhとすると、第1開閉手段131の上部から垂直高さhまでの液体出口配管121及び気液分離器100の容積Vは、液体出口配管121及び気液分離器100の形状に応じたhの関数として表すことができる。すなわち、V=f(h)と表すことができる。この関数を用いて、水の体積Vは、以下の式(7)で表すことができる。
Figure JPOXMLDOC01-appb-M000007
 また、水の体積Vを用いて、水分率WCは、以下の式(8)で表すことができる。
Figure JPOXMLDOC01-appb-M000008
2-7.第3実施形態に係るバッチ式多相流量測定装置
 図19は、第3実施形態に係るバッチ式多相流量測定装置3の子午線断面の模式図の一例である。なお、第2実施形態に係るバッチ式多相流量測定装置2と同一の構成には同一の符号を付し、詳細な説明を省略する。
 バッチ式多相流量測定装置3は、気液分離器100の胴部13に設けられ圧力の測定箇所となる短管205を有している。図19に示す例では、各単管の位置は、低い方から短管201、短管204、短管205、短管202、短管203順に配置されている。
 バッチ式多相流量測定装置3の圧力計測部200は、差圧発信器212に代えて、短管204での圧力と短管205での圧力の差に基づいた信号を出力する差圧発信器213、短管205での圧力と短管202での圧力の差に基づいた信号を出力する差圧発信器214を含んで構成されている。
 バッチ式多相流量測定装置3においても、「2-2.第1実施形態に係るバッチ式多相流量測定装置を用いたバッチ式多相流量計測方法」の項で説明したバッチ式多相流量計測方法と同様の方法で、気液多相流体に含まれる液体の流量を計測することができる。
2-8.第3実施形態に係るバッチ式多相流量測定装置を用いた油密度及び水密度の計算例
 次に、第3実施形態に係るバッチ式多相流量測定装置3を用いた油密度及び水密度の計算例について、油、水及びガスの3種からなる気液多相流体を用いた場合を例に取り説明する。以下に説明する例では、油と水が分離している(エマルションではない)ものと仮定した場合について説明する。
 図20は、油密度及び水密度の計算例について説明するための図である。図20は、バッチ式多相流量測定装置3の要部の子午面断面について模式的に表している。また、図20においては、第3工程(ステップS104)において、液面が短管202と短管203との間に位置し、水油界面が短管204と短管205の間に位置している場合を表している。
 ここで、短管201の高さを基準とした短管202の高さをh、短管201の高さを基準とした短管204の高さをh、短管201の高さを基準とした短管205の高さをhと表す。また、重力加速度をg、差圧発信器211が出力する差圧をdP、差圧発信器214が出力する差圧をdPとする。
 この場合、圧力下での油の密度ρを以下の式(9)で、圧力下での水の密度ρを以下の式(10)で、それぞれ計算することができる。
Figure JPOXMLDOC01-appb-M000010
 なお、液面付近で油が発泡している場合は、第2工程(S102)が完了した場合に、液面が、短管202と短管203との間に入らず、短管202より下がる可能性がある。この場合、短管205と短管202との間に液面があれば、第1実施形態に係るバッチ式多相流量測定装置1と同様な方法で計測が可能である。
2-9.第4実施形態に係るバッチ式多相流量測定装置
 図21は、第4実施形態に係るバッチ式多相流量測定装置4の子午線断面の模式図の一例である。なお、第1実施形態に係るバッチ式多相流量測定装置1と同一の構成には同一の符号を付し、詳細な説明を省略する。
 バッチ式多相流量測定装置4は、バッチ式多相流量測定装置1から短管202及び差圧発信器220を取り除いた構成となっている。図21に示す例では、各単管の位置は、低い方から短管201、203順に配置されている。
 バッチ式多相流量測定装置4の圧力計測部200は、差圧発信器210に代えて、短管201での圧力と短管203での圧力の差に基づいた信号を出力する差圧発信器215を含んで構成されている。
 バッチ式多相流量測定装置4においても、「2-2.第1実施形態に係るバッチ式多相流量測定装置を用いたバッチ式多相流量計測方法」の項で説明したバッチ式多相流量計測方法と同様の方法で、気液多相流体に含まれる液体の流量を計測することができる。
2-10.第4実施形態に係るバッチ式多相流量測定装置を用いたバッチ式多相流量計測方法における液流量の計算例
 次に、第4実施形態に係るバッチ式多相流量測定装置4を用いたバッチ式多相流量計測方法における液流量の計算例について、単相の液体(液密度が均一な液体)及びガスの2種からなる気液多相流体を用いた場合を例に取り説明する。
 図22は、液流量の計算例について説明するための図である。図22は、バッチ式多相流量測定装置4の要部の子午面断面について模式的に表している。また、図22においては、第3工程(ステップS104)において、液面が短管201と短管203との間に位置している場合を表している。
 ここで、短管201の高さを基準とした液面の高さをhと表す。また、気体流量計500で計測した圧力P及び温度Tの下で計算した液体の密度をρ、重力加速度をg、差圧発信器215が出力する差圧をdP、第1工程(ステップS100)の開始から第2工程(ステップS102)の完了までの経過時間をdtとする。
 この場合、液面の高さhを以下の式(11)で、液流量Qを以下の式(12)で、それぞれ表すことができる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
2-11.第5実施形態に係るバッチ式多相流量測定装置
 図23は、第5実施形態に係るバッチ式多相流量測定装置5の子午線断面の模式図の一例である。なお、第1実施形態に係るバッチ式多相流量測定装置1と同一の構成には同一の符号を付し、詳細な説明を省略する。
 バッチ式多相流量測定装置5は、気体出口配管122に設けられ、気液分離器100の気体出口部22から排出される気体から液滴を分離する液滴分離器600を有している。
 液滴分離器600は、気体から液滴を分離するための構成であり、例えば、T字配管、Y字配管、逆三角形状の配管、もしくは、流体の速度を低減させるために気体出口配管122の断面積より大きな断面積をもつ開口で気体出口配管122の下方で連通する漏斗状の配管として構成してもよい。液滴分離器600の上流となる気体出口配管122の水平方向の長さは、気体から液滴の分離が促進されるのに十分な長さとすることが好ましく、水平配管もしくは下降傾斜配管が好ましい。図23に示す例では、液滴分離器600は、気体出口配管122の断面積より大きな断面積をもつ開口で気体出口配管122の下方で連通する漏斗状の配管として構成されている。液滴分離器600により、気体出口配管122を通る気体に混入している液ミストや液相を、気体出口配管122より下方の配管610に誘導し、液体が液滴分離器600よりも下流の気体出口配管122に流れるのを防ぐことができる。これにより、より正確なガス流量を計測することができる。
 また、液滴分離器600を設けることにより、気体出口配管122への液滴の随伴状況の確認が容易になる。したがって、液飛散率を確認し、本計測の精度を確認することができる。例えば、液飛散率が高い場合には液流量及びガス流量の計測精度が低く、液飛散率が低い場合には液流量及びガス流量の計測精度が高いことが分かる。
 配管610は、短管620を介して気液分離器100の内部空間と連通するように構成されていてもよい。液滴分離器600で分離された液体を気液分離器100に戻すことにより、より正確な液流量を計測することができる。
 バッチ式多相流量測定装置5は、配管610に設けられ、液滴分離器600から短管620への経路が開いた状態と閉じた状態とを切り替える第5開閉手段135を有していてもよい。第5開閉手段135としては、種々の公知のバルブを採用することができる。図14に示すフローチャートにおいては、ステップS100の状態からステップS102、及びS104の状態では、第5開閉手段135を閉じた状態とし、ステップS104を終了した後、第5開閉手段135を開いた状態とし、液滴分離器600で分離した液体を気液分離器100に戻し、さらにステップS104を実行した後、第5開閉手段135を閉じた状態とした後又は閉じた状態とすると同時にステップS106に移行する。これにより、液滴分離器600で分離された液体を気液分離器100に戻し、液飛散率の確認ができる。短管620は、短管203と同じ高さ、もしくは、短管203よりも上方に位置することが望ましい。また、配管610が、短管620の高さよりも下方を経由しないことが望ましい。これにより、液滴分離器600に溜まった液体を、気液分離器100にスムーズに排出できる。
 2-12.第6実施形態に係るバッチ式多相流量測定装置
 図24は、第6実施形態に係るバッチ式多相流量測定装置6の子午線断面の模式図の一例、図25は、第6実施形態に係るバッチ式多相流量測定装置6の流路切替手段130付近を平面的に見た模式図の一例である。なお、第1実施形態に係るバッチ式多相流量測定装置1と同一の構成には同一の符号を付し、詳細な説明を省略する。第6実施形態に係るバッチ式多相流量測定装置6の流路切替手段130は、気液分離器100の入口部20との高低差が小さい位置に設けられている。
 図26は、スラグ流について説明するための模式図である。図26は、配管の垂直断面を表しており、配管内の液体を斜線で、気体を白で表している。図26に示す例において、白抜き矢印方向に供給された気液多相流体は、水平配管、垂直配管、水平配管の順に流れる。図26の(1)で垂直配管に液体が満たされるスラグの形成が始まり、図26の(2)でスラグの形成が完了する。図26の(3)で垂直配管に気体の侵入が始まり、図26の(4)で気体が垂直配管を貫通する。
 図26に示すようなスラグ流が発生すると、液流量の測定精度が低下する。第6実施形態に係るバッチ式多相流量測定装置6は、流路切替手段130が気液分離器100の入口部20との高低差が小さい位置に設けられているため、スラグ流の発生を抑制できる。したがって、測定精度が高いバッチ式多相流量測定装置を実現できる。
 なお、上述した実施形態及び変形例は一例であって、これらに限定されるわけではない。例えば各実施形態及び各変形例は、複数を適宜組み合わせることが可能である。
 本発明は、上述した実施形態に限定されるものではなく、さらに種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
1,2,3,4,5,6 バッチ式多相流量測定装置、10 容器、11 頂部、12底部、13,13a 胴部、20 入口部、21 液体出口部、22 気体出口部、30 内筒、40 ガイド板、41 ガイド板側部、41a,41b 第1ガイド板、42 ガイド板下部、42a 第2ガイド板、70,70a 側部漏れ防止板、72 下部漏れ防止板、90 空隙、100,100a,100b,100c,100d 気液分離器、110 主配管、111 気液多相流入口部、112 気液多相流出口部、113 分岐部、114 合流部、114a 第1合流部、114b 第2合流部、120 入口配管、121 液体出口配管、122 気体出口配管、130 流路切替手段、131 第1開閉手段、132 第2開閉手段、133 第3開閉手段、134 第4開閉手段、135 第5開閉手段、200 圧力計測部、201,202,203,204,205 短管、210,211,212,213,214,215,220 差圧発信器、300 制御部、400 液流量計算部、500 気体流量計、600 液滴分離器、610 配管、620 短管

Claims (9)

  1.  頂部、底部及びその間を連結する中空型の胴部を有する容器と、前記胴部の側面から気液多相流体を供給する入口部と、前記底部から液体を排出する液体出口部と、前記頂部から気体を排出する気体出口部と、上端が前記頂部に連結され、下端が前記入口部の下端よりも低い位置で開口した中空型の内筒と、前記内筒の外側面及び前記胴部の内側面の少なくとも一方に設けられたガイド板と、を備えた気液分離器と、
     前記気液多相流体が供給される気液多相流入口部と、前記気液多相流体が排出される気液多相流出口部と、前記気液多相流入口部から前記気液多相流出口部までの間に分岐部及び合流部を有する主配管と、
     前記分岐部と前記入口部とを接続し、平面視において、前記入口部を介して前記胴部の中心軸に向かって設けられる入口配管と、
     前記合流部と前記液体出口部とを接続する液体出口配管と、
     前記合流部と前記気体出口部とを接続する気体出口配管と、
     前記気液多相流体の流路が、前記気液分離器を介さない第1経路と、前記気液分離器を介する第2経路とのいずれか一方となるように切り替える流路切替手段と、
     前記液体出口配管に設けられ、前記液体出口部から前記合流部への経路が開いた状態と閉じた状態とを切り替える第1開閉手段と、
     前記気体出口配管に設けられ、前記気体出口部から前記合流部への経路が開いた状態と閉じた状態とを切り替える第2開閉手段と、
     前記気液分離器及び前記液体出口配管のうち少なくとも一方の内部において、高さの異なる2つ以上の測定箇所で圧力を計測する圧力計測部と、
     前記気体出口配管に設けられ、前記気体出口部から排出される気体の流量、温度及び圧力を計測する気体流量計と、を有し、
     前記気液分離器は、
     平面視において、前記胴部の内側面と、前記内筒の外側面とは同心円状となっており、
     前記ガイド板は、非水平方向を長手方向とするガイド板側部と、非鉛直方向を長手方向とし、前記ガイド板側部と連続して設けられたガイド板下部とを有し、
     前記ガイド板側部は、少なくとも、前記胴部の内側面のうち前記入口部の一方の側方となる位置、又は、前記内筒の外側面のうち前記入口部と対向する領域の一方の側方となる位置に設けられ、
     前記ガイド板下部は、少なくとも、前記内筒の外側面のうち前記入口部と対向する領域の真下となる位置に設けられ、かつ、平面視において、前記内筒の外側面の一部に沿って設けられ、
     前記ガイド板下部と、前記胴部との間の少なくとも一部に空隙を有する、バッチ式多相流量測定装置。
  2.  請求項1に記載のバッチ式多相流量測定装置において、
     前記流路切替手段、前記第1開閉手段、前記第2開閉手段及び前記圧力計測部を制御する制御部を有し、
     前記制御部は、
     前記気液多相流体の流路を、前記第1経路から前記第2経路へと切り替えるように前記流路切替手段を制御するとともに、前記気体出口部から前記合流部への経路を閉じた状態から開いた状態へと切り替えるように前記第2開閉手段を制御する第1処理と、
     前記気液多相流体の流路を、前記第2経路から前記第1経路へと切り替えるように前記流路切替手段を制御するとともに、前記気体出口部から前記合流部への経路を開いた状態から閉じた状態へと切り替えるように前記第2開閉手段を制御する第2処理と、
     前記気液分離器及び前記液体出口配管のうち少なくとも一方の内部において、高さの異なる2つ以上の測定箇所で圧力を計測するように前記圧力計測部を制御する第3処理と、
     前記液体出口部から前記合流部への経路を閉じた状態から開いた状態へと切り替えるように前記第1開閉手段を制御する第4処理と、
     前記液体出口部から前記合流部への経路を開いた状態から閉じた状態へと切り替えるように前記第1開閉手段を制御する第5処理と、
     を行う、バッチ式多相流量測定装置。
  3.  請求項1及び2のいずれか1項に記載のバッチ式多相流量測定装置において、
     前記流路切替手段は、
     前記主配管に設けられ、前記分岐部から前記合流部への経路が開いた状態と閉じた状態とを切り替える第3開閉手段と、
     前記入口配管に設けられ、前記分岐部から前記入口部への経路が開いた状態と閉じた状態とを切り替える第4開閉手段と、を含む、バッチ式多相流量測定装置。
  4.  請求項2に従属する請求項3に記載のバッチ式多相流量測定装置において、
     前記制御部は、前記第1処理において、
     前記分岐部から前記入口部への経路を閉じた状態から開いた状態へと切り替えるように前記第4開閉手段を制御し、かつ、前記気体出口部から前記合流部への経路を閉じた状態から開いた状態へと切り替えるように前記第2開閉手段を制御した後に、前記分岐部から前記合流部への経路を開いた状態から閉じた状態へと切り替えるように前記第3開閉手段を制御する、バッチ式多相流量測定装置。
  5.  請求項2に従属する請求項3、及び請求項4のいずれか1項に記載のバッチ式多相流量測定装置において、
     前記制御部は、前記第2処理において、
     前記分岐部から前記合流部への経路を閉じた状態から開いた状態へと切り替えるように前記第3開閉手段を制御した後に、前記分岐部から前記入口部への経路を開いた状態から閉じた状態へと切り替えるように前記第4開閉手段を制御する、バッチ式多相流量測定装置。
  6.  請求項1ないし5のいずれか1項に記載のバッチ式多相流量測定装置において、
     液流量を計算する液流量計算部を有し、
     前記液流量計算部は、前記圧力計測部により高さの異なる2つ以上の測定箇所で計測される圧力と、前記流路切替手段により前記気液多相流体の流路が第2経路となる時間とに基づいて前記液流量を計算する、バッチ式多相流量測定装置。
  7.  請求項1ないし6のいずれか1項に記載のバッチ式多相流量測定装置において、
     前記第1開閉手段は、前記合流部の水平高さよりも上方に設けられている、バッチ式多相流量測定装置。
  8.  請求項1ないし7のいずれか1項に記載のバッチ式多相流量測定装置において、
     前記気体出口配管に設けられ、前記気体出口部から排出される気体から液滴を分離する液滴分離器を有する、バッチ式多相流量測定装置。
  9.  請求項1ないし8のいずれか1項に記載のバッチ式多相流量測定装置を用いるバッチ式多相流量計測方法であって、
     前記流路切替手段により、前記気液多相流体の流路を、前記第1経路から前記第2経路へと切り替えるとともに、前記第2開閉手段により、前記気体出口部から前記合流部への経路を閉じた状態から開いた状態へと切り替える第1工程と、
     前記流路切替手段により、前記気液多相流体の流路を、前記第2経路から前記第1経路へと切り替えるとともに、前記第2開閉手段により、前記気体出口部から前記合流部への経路を開いた状態から閉じた状態へと切り替える第2工程と、
     前記圧力計測部により、前記気液分離器及び前記液体出口配管のうち少なくとも一方の内部において、高さの異なる2つ以上の測定箇所で圧力を計測する第3工程と、
     前記第1開閉手段により、前記液体出口部から前記合流部への経路を閉じた状態から開いた状態へと切り替える第4工程と、
     前記第1開閉手段により、前記液体出口部から前記合流部への経路を開いた状態から閉じた状態へと切り替える第5工程と、
     を含む、バッチ式多相流量計測方法。
PCT/JP2011/068449 2010-12-13 2011-08-12 バッチ式多相流量測定装置及び流量計測方法 WO2012081279A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11849470A EP2546617A1 (en) 2010-12-13 2011-08-12 Batch-type multiphase flow measurement device and flow measurement method
AU2011342529A AU2011342529A1 (en) 2010-12-13 2011-08-12 Batch-type multiphase flow measurement device and flow measurement method
US13/636,088 US20130247684A1 (en) 2010-12-13 2011-08-12 Batch-type multiphase flow rate measurement device and flow rate measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-276733 2010-12-13
JP2010276733A JP4688974B1 (ja) 2010-12-13 2010-12-13 バッチ式多相流量測定装置及び流量計測方法

Publications (1)

Publication Number Publication Date
WO2012081279A1 true WO2012081279A1 (ja) 2012-06-21

Family

ID=44193907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068449 WO2012081279A1 (ja) 2010-12-13 2011-08-12 バッチ式多相流量測定装置及び流量計測方法

Country Status (5)

Country Link
US (1) US20130247684A1 (ja)
EP (1) EP2546617A1 (ja)
JP (1) JP4688974B1 (ja)
AU (1) AU2011342529A1 (ja)
WO (1) WO2012081279A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398267A (zh) * 2019-07-23 2019-11-01 上海一诺仪表有限公司 一种实现逻辑控制的三相计量系统和计量方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITCO20120067A1 (it) * 2012-12-20 2014-06-21 Nuovo Pignone Srl Misura della pressione totale e della temperatura totale in condizione di gas umido
US20140196537A1 (en) 2013-01-14 2014-07-17 Auto Industrial Co., Ltd. Integrated measuring apparatus for measuring vapor pressure and liquid level of liquid tank
US10041672B2 (en) * 2013-12-17 2018-08-07 Schlumberger Technology Corporation Real-time burner efficiency control and monitoring
EP3347683A1 (en) * 2015-09-08 2018-07-18 Saudi Arabian Oil Company Systems and methods for accurate measurement of gas from wet gas wells
US10920982B2 (en) 2015-09-28 2021-02-16 Schlumberger Technology Corporation Burner monitoring and control systems
CN106731164A (zh) * 2017-01-12 2017-05-31 郑州盈嘉石油工程技术有限公司 一种消气过滤器
JP7005994B2 (ja) 2017-08-03 2022-01-24 株式会社リコー 距離測定装置及び距離測定方法
WO2019204590A1 (en) * 2018-04-18 2019-10-24 Elite Holding Solutions, Llc Method for processing a fluid
CN111207230A (zh) * 2020-02-25 2020-05-29 小熊电器股份有限公司 一种应用于气液两相泵上的多流道控制装置
JP7362122B2 (ja) 2020-03-03 2023-10-17 株式会社テージーケー 検出ユニット
CN111693559B (zh) * 2020-06-22 2022-04-01 中国核动力研究设计院 气相混合物的蒸汽液滴质量流量分离测量装置及测量方法
CN113567297B (zh) * 2021-07-23 2023-06-27 四川速荣科技有限公司 一种高精度原油含水率测量仪
CN115199258A (zh) * 2022-09-15 2022-10-18 四川凯创机电设备有限公司 一种计量选井混输撬及其控制计量方法
CN116796666B (zh) * 2023-08-21 2023-11-07 中国航发上海商用航空发动机制造有限责任公司 轴流压气机测点布置方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187088A (en) 1979-01-18 1980-02-05 Maloney-Crawford Corporation Down flow centrifugal separator
US4596586A (en) 1979-04-11 1986-06-24 The British Petroleum Company P.L.C. Separator for oil and gas, and separation process
US5526684A (en) 1992-08-05 1996-06-18 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Method and apparatus for measuring multiphase flows
JPH08290028A (ja) * 1995-04-20 1996-11-05 Tsutomu Kamata 圧縮空気の除湿装置
JP2000317212A (ja) 1999-05-11 2000-11-21 Toyota Auto Body Co Ltd 気液分離装置
JP2001165741A (ja) 1999-12-06 2001-06-22 Japan National Oil Corp 多相流体流量計及び多相流体流量演算方法
JP2001246216A (ja) 1999-12-28 2001-09-11 Denso Corp 気液分離装置
JP2001269524A (ja) * 2000-03-24 2001-10-02 Kamata Tecnas:Kk 気液分離装置
JP2003513234A (ja) * 1999-10-28 2003-04-08 マイクロ・モーション・インコーポレーテッド 多相流れ測定システム
JP2008107298A (ja) * 2006-10-27 2008-05-08 Oval Corp 多相流量計

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010028A1 (en) * 1993-10-05 1995-04-13 Atlantic Richfield Company Multiphase flowmeter for measuring flow rates and densities
US6257070B1 (en) * 1999-01-13 2001-07-10 Intevep, S.A. Method and apparatus for determining real time liquid and gas phase flow rates
IT1395937B1 (it) * 2009-09-29 2012-11-02 Eni Spa Apparato e metodo per la misura della portata di una corrente fluida multifase
EP2612140B1 (en) * 2010-09-03 2017-05-17 Los Alamos National Security LLC Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187088A (en) 1979-01-18 1980-02-05 Maloney-Crawford Corporation Down flow centrifugal separator
JPS55501092A (ja) * 1979-01-18 1980-12-11
US4596586A (en) 1979-04-11 1986-06-24 The British Petroleum Company P.L.C. Separator for oil and gas, and separation process
US5526684A (en) 1992-08-05 1996-06-18 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Method and apparatus for measuring multiphase flows
JPH08290028A (ja) * 1995-04-20 1996-11-05 Tsutomu Kamata 圧縮空気の除湿装置
JP2000317212A (ja) 1999-05-11 2000-11-21 Toyota Auto Body Co Ltd 気液分離装置
JP2003513234A (ja) * 1999-10-28 2003-04-08 マイクロ・モーション・インコーポレーテッド 多相流れ測定システム
JP2001165741A (ja) 1999-12-06 2001-06-22 Japan National Oil Corp 多相流体流量計及び多相流体流量演算方法
JP2001246216A (ja) 1999-12-28 2001-09-11 Denso Corp 気液分離装置
JP2001269524A (ja) * 2000-03-24 2001-10-02 Kamata Tecnas:Kk 気液分離装置
JP2008107298A (ja) * 2006-10-27 2008-05-08 Oval Corp 多相流量計

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WATANABE T; IKEDA K; ICHIKAWA M.; KAWAI M; YAMADA M; FUJIWARA K: "Proceedings of Lectures at 2009 Spring Meeting", JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOG, article "Development of Multiphase Flow Measuring System", pages: 85 - 86
WATANABE T; IKEDA T; OKATSU H: "Annual Report 2007", 2007, GAS AND METALS NATIONAL CORPORATION, article "Development of Multiphase Flow Measuring System", pages: 85 - 88

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398267A (zh) * 2019-07-23 2019-11-01 上海一诺仪表有限公司 一种实现逻辑控制的三相计量系统和计量方法
CN110398267B (zh) * 2019-07-23 2021-05-11 上海一诺仪表有限公司 一种实现逻辑控制的油水气三相计量系统和计量方法

Also Published As

Publication number Publication date
JP2012127671A (ja) 2012-07-05
EP2546617A1 (en) 2013-01-16
AU2011342529A1 (en) 2012-09-06
JP4688974B1 (ja) 2011-05-25
US20130247684A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP4688974B1 (ja) バッチ式多相流量測定装置及び流量計測方法
JP4695215B1 (ja) 気液分離器及び流量計測装置
JP4137153B2 (ja) 多相流量計
US7987733B2 (en) Determination of density for metering a fluid flow
US9114332B1 (en) Multiphase flow measurement apparatus utilizing phase separation
US8087293B2 (en) Oil-gas-water multi-phase flow adjusting apparatus and oil-gas-water multi-phase flow rate measuring apparatus and measuring method
Rosa et al. The cyclone gas–liquid separator: operation and mechanistic modeling
US10345212B2 (en) Carry over meter
BR112015023630B1 (pt) Aparelhos para separar gás de líquido em um fluxo de gás-líquido e para abastecimento de combustível, e, sistema de poço para separar componentes de um fluxo multifásico de um furo de poço perfurado a partir de um equipamento de perfuração
CN105840169A (zh) 一种撬装式油气分离单井计量装置及其计量方法
CN103868560B (zh) 一种三相混输的定容管活塞式油气水三相流量计的测量方法
CN205778806U (zh) 一种撬装式油气分离单井计量装置
US10641635B2 (en) Measuring arrangement
US10670575B2 (en) Multiphase flow meters and related methods having asymmetrical flow therethrough
CN107355208B (zh) 一种三相分离器和油气井测试计量系统及其燃烧控制方法
CN103993872B (zh) 原油容积式计量撬
JP4305876B2 (ja) 混合液体抽出装置及び混合液体密度計測装置
US20110139902A1 (en) System and method for swirl generation
Liu et al. Application of a mass flowmeter for allocation measurement of crude oil production
CN102430354B (zh) 用于多相流体的均质化的装置及方法
CN101576464B (zh) 用于测量多组分流中的一个组分密度的方法和设备
Barbosa et al. Investigation of gas separation in inverted-shroud gravitational separators of different geometries
Wang et al. Calculation Model for Headloss in Inclined Pipes Based on Energy Hypothesis
Qazi Modelling of an axial flow compact separator using neural network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849470

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011342529

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2011342529

Country of ref document: AU

Date of ref document: 20110812

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011849470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13636088

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE