WO2012081139A1 - Solid-state image pickup device - Google Patents

Solid-state image pickup device Download PDF

Info

Publication number
WO2012081139A1
WO2012081139A1 PCT/JP2011/004107 JP2011004107W WO2012081139A1 WO 2012081139 A1 WO2012081139 A1 WO 2012081139A1 JP 2011004107 W JP2011004107 W JP 2011004107W WO 2012081139 A1 WO2012081139 A1 WO 2012081139A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
photoelectric conversion
solid
adjacent
region
Prior art date
Application number
PCT/JP2011/004107
Other languages
French (fr)
Japanese (ja)
Inventor
郁夫 水野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012081139A1 publication Critical patent/WO2012081139A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Definitions

  • the present invention relates to a solid-state imaging device, and more particularly to a 1-pixel 1-electrode type CCD (Charge Coupled Device) type solid-state imaging device.
  • CCD Charge Coupled Device
  • Solid-state imaging devices typified by CCD image sensors are widely used in digital still cameras, digital video cameras, and the like, and their demand is increasing. With the recent demand for a large number of pixels and a reduction in size of a solid-state imaging device, the pixels are arranged with high density and the pixel size tends to be reduced.
  • Patent Document 1 a technique for increasing the amount of signal charges handled in the transfer channel while reducing the width of the transfer channel is disclosed.
  • FIG. 12 is a diagram schematically showing the arrangement relationship of the components related to the solid-state imaging device described in Patent Document 1.
  • the solid-state imaging device described in Patent Document 1 includes a plurality of photodiodes (photoelectric conversion units) 902 for converting incident light into signal charges in the XY plane direction in the semiconductor substrate. Arranged in a matrix. A plurality of photodiodes 902 are arranged in the Y direction (column direction) to form a column of photodiodes 902, and signal charges corresponding to one column of photodiodes are transferred between adjacent photodiode columns. For this purpose, a vertical CCD (transfer channel) 903 is formed.
  • photodiodes photoelectric conversion units
  • a transfer electrode 904 that reads the signal charge from the corresponding photodiode 902 in a one-to-one correspondence with the photodiode 902 and transfers the signal in the vertical CCD 903 from the upstream side to the downstream side in the transfer direction. Is formed.
  • the transfer electrodes 904 adjacent in the X direction are connected to each other by a connection portion 905.
  • an element isolation region is provided in a region in the semiconductor substrate corresponding to the connection portion 905. Is formed.
  • Patent Document 1 is a so-called one-pixel one-electrode type in which one transfer electrode 904 is arranged for one photodiode 902. Therefore, for example, the amount of signal charges handled by the vertical CCD 903 can be doubled as compared with a case where two transfer electrodes are arranged for one photodiode (a so-called one-pixel two-electrode type).
  • an object of the present invention is to provide a solid-state imaging device having a charge transfer rate that can withstand an increase in transfer frequency.
  • a solid-state imaging device is formed in a matrix in a semiconductor substrate, and is adjacent to a plurality of photoelectric conversion units that convert incident light into signal charges, in the semiconductor substrate.
  • a plurality of transfer channels formed between columns of photoelectric conversion units and a region corresponding to the transfer channel on the semiconductor substrate are formed in the column direction in a one-to-one correspondence with the photoelectric conversion units.
  • a transfer electrode that reads the signal charge from the photoelectric conversion unit and transfers the signal in the transfer channel from the upstream side to the downstream side in the transfer direction, and is adjacent in the column direction when the plurality of transfer electrodes are viewed in plan view
  • the upstream end of the transfer electrode is formed to be inclined with respect to the row direction, and the downstream side of the transfer electrode adjacent to the upstream end in the column direction corresponding to the inclination of the upstream end. of Parts is characterized in that it is formed to be inclined with respect to the row direction.
  • the upstream end and the downstream end of the transfer electrodes adjacent in the column direction are formed to be inclined with respect to the row direction.
  • the most upstream portion of the end of the transfer electrode facing in the column direction at the upstream end To the most downstream portion at the downstream end becomes longer.
  • the region affected by both transfer voltages in the transfer channel expands in the column direction, so that the potential gradient of the transfer channel becomes gentle.
  • a section in which a potential gradient for charge transfer is formed becomes long when signal charges are transferred in the transfer channel.
  • the section in which the potential gradient is formed becomes longer, the section in which signal charges are transferred by diffusion can be shortened, and the section in which signal charges are transferred by drift can be lengthened.
  • the charge transfer rate due to drift is faster than that due to diffusion, and therefore the charge transfer rate in the transfer channel can be increased.
  • the solid-state imaging device further includes, in the semiconductor substrate, an element isolation region that separates the photoelectric conversion units adjacent in the column direction, and the upstream end of the transfer electrode adjacent in the column direction and the A region sandwiched between the downstream end portions may exist in the row direction of the element isolation region.
  • the center of the region sandwiched between the upstream end and the downstream end of the transfer electrode adjacent in the column direction may be present in the row direction of the element isolation region.
  • a region adjacent to the element isolation region in the row direction is affected by the element isolation region and has a low potential.
  • the region corresponding to the region sandwiched between the upstream end and the downstream end of the transfer electrode adjacent in the column direction in the transfer channel is a region where the gradient of the potential gradient increases during charge transfer. is there.
  • there is a region where the potential is low in the transfer channel because the region where the potential is low and the region where the gradient of the potential gradient increases during charge transfer are adjacent in the row direction. It is possible to prevent signal charges from being left behind.
  • the region corresponding to the center of the region sandwiched between the upstream end and the downstream end of the transfer electrode adjacent in the column direction has the maximum potential gradient during charge transfer. It is an area. Therefore, the region where the gradient of the potential gradient is maximum and the element isolation region are adjacent to each other in the row direction. Can be prevented.
  • the solid-state imaging device further includes a metal wiring provided above the plurality of transfer electrodes, arranged in each row and extending in the row direction, and having a lower resistance than the plurality of transfer electrodes, The transfer electrode of each row may be electrically connected to the metal wiring of the corresponding row through a contact.
  • transfer electrodes adjacent in the row direction may be separated from each other.
  • the rise and fall of the rectangular-wave-shaped transfer voltage is achieved by using metal wiring having a resistance lower than that of the transfer electrodes.
  • the charge transfer rate can be improved.
  • the connection portion (wiring) for connecting the transfer electrodes to each other in the same layer as the transfer electrode is not formed, the ground capacitance can be reduced. Therefore, further improvement in charge transfer speed and reduction in power consumption are expected.
  • the width of the metal wiring is larger than the width of the photoelectric conversion unit in the column direction, and an opening is provided in a region facing the photoelectric conversion unit in the metal wiring.
  • a region corresponding to between adjacent metal wirings in the direction may exist between the photoelectric conversion units adjacent in the column direction.
  • the metal wiring can be made to function as a light shielding film for a portion excluding the photoelectric conversion portion. Thereby, it can prevent that photoelectric conversion arises in area
  • the inclination of the end portions of the plurality of transfer electrodes with respect to the row direction may be the same for each transfer electrode.
  • each transfer electrode can be manufactured with a uniform layout, the charge transfer rate can be made uniform among the pixels. Moreover, since manufacturing variations can be suppressed, the yield is also improved.
  • the solid-state imaging device further includes, in the semiconductor substrate, an element isolation region that separates adjacent photoelectric conversion units in the column direction, and the upstream of the transfer electrodes adjacent in the column direction.
  • An imaginary line connecting the center of the region sandwiched between the end on the side and the downstream end in the tilt direction is adjacent to the imaginary line connecting the center of the transfer channel in the column direction in the column direction. It may be possible to intersect an imaginary line connecting the centers of the regions in the row direction.
  • the region corresponding to the point where the virtual line connecting the centers of the element isolation regions adjacent in the column direction in the row direction and the virtual line connecting the centers of the transfer channels in the column direction has a low potential.
  • a region passing through an imaginary line that connects the center of the region sandwiched between the upstream end and the downstream end of the adjacent transfer electrode in the column direction in the tilt direction has a potential gradient during charge transfer. This is a region where the slope of the is large.
  • FIG. 6 is an enlarged view of a portion indicated by (c)
  • FIG. 6 A cross-sectional view showing a configuration of the solid-state imaging device according to the first embodiment (AA ′ cross-sectional view of FIG.
  • FIG. 2 is a cross-sectional view taken along the line BB ′ of FIG.
  • FIG. 2 is a cross-sectional view (cross-sectional view taken along the line C-C ′ in FIG. 1) illustrating the configuration of the solid-state imaging device according to the first embodiment. It is a figure which shows typically the arrangement
  • FIG. 6 is a diagram corresponding to the position of a transfer electrode 104. It is a figure which shows typically the arrangement
  • FIG. (A) a diagram showing the shape of the transfer electrodes 904A to 904D in a plan view and the potential contour lines of the transfer channel 903 in a plan view, and (b) a two-dot chain line in FIG. 13
  • FIG. 14 is an enlarged view of a portion indicated by (c)
  • (c) is a diagram showing a potential cross section of a portion indicated by an arrow in FIG.
  • FIG. 1 is a diagram schematically illustrating an arrangement relationship of components of the solid-state imaging device according to the first embodiment.
  • components formed in the semiconductor substrate are indicated by broken lines, and components formed above the semiconductor substrate are indicated by solid lines.
  • the solid-state imaging device according to this embodiment includes a photoelectric conversion unit 102, a transfer channel 103, and a transfer electrode 104 as main components.
  • a plurality of photoelectric conversion units 102 that photoelectrically convert incident light from the outside and generate signal charges corresponding to the amount of light are formed in a matrix in the XY plane direction in the semiconductor substrate.
  • a transfer channel 103 serving as a transfer path for transferring signal charges for one column of the photoelectric conversion unit is formed between the photoelectric conversion unit columns formed of the photoelectric conversion units 102 arranged in the Y direction (column direction). ing.
  • the width of the transfer channel 103 in the X direction (row direction) is, for example, about 250 to 400 [nm].
  • a plurality of transfer electrodes 104 are formed above the transfer channel 103 in a form corresponding to the photoelectric conversion unit 102 on a one-to-one basis.
  • Each transfer electrode 104 reads the signal charge from the corresponding photoelectric conversion unit 102 and transfers the signal charge in the transfer channel 103 from the upstream side to the downstream side in the transfer direction (Y direction).
  • the potential gradient of the transfer channel 103 changes according to the transfer voltage applied to the transfer electrode 104.
  • the width of the transfer electrode 104 in the X direction is, for example, about 400 to 700 [nm].
  • “reading signal charges” means moving signal charges from the photoelectric conversion unit 102 to the transfer channel 103
  • transferring signal charges means transferring signal charges in the transfer direction in the transfer channel 103. Say to move.
  • the upstream end 104a of the transfer electrode 104 adjacent in the column direction is formed with an inclination of ⁇ with respect to the X direction, and the upstream end 104a is inclined.
  • the downstream end 104b of the transfer electrode 104 adjacent thereto in the column direction is formed with an inclination of ⁇ with respect to the X direction.
  • the length in the column direction of the region sandwiched between adjacent transfer electrodes in the Y direction is the electrode. It corresponds to the distance between the two and is indicated by len9.
  • the end of the transfer electrode 104 is inclined with respect to the X direction as in the present embodiment (FIG.
  • the length in the column direction of the region sandwiched between adjacent transfer electrodes in the Y direction is: This corresponds to the length from the most upstream portion of the upstream end portion 14a to the most downstream portion of the downstream end portion 14b, and is denoted by len1.
  • len1 and len9 the length in the column direction of the region sandwiched between adjacent transfer electrodes 104 in the Y direction is longer in len1 in the present embodiment.
  • the region of the transfer channel 103 that is affected by the transfer voltage applied to the transfer electrode 104 is expanded in the column direction.
  • the potential gradient formed in the transfer channel 103 becomes gentle, and accordingly, the section in which the potential gradient is formed becomes longer.
  • the section in which the potential gradient is formed becomes longer, the section in which signal charges are transferred by diffusion can be shortened, and the section in which signal charges are transferred by drift can be lengthened.
  • the charge transfer rate due to drift is faster than that due to diffusion, and therefore the charge transfer rate in the transfer channel 103 can be increased.
  • the inclination ⁇ of the end 104a on the upstream side and the inclination ⁇ of the end 104b on the downstream are equal, and the inclination ⁇ of the ends 104a and 104b of the transfer electrode 104 with respect to the X direction is all
  • the transfer electrodes 104 are equal to each other.
  • each transfer electrode 104 can be manufactured with a uniform layout, so that the charge transfer rate can be made uniform among the pixels.
  • the yield is also improved.
  • the width gap1 between the transfer electrodes 104 adjacent in the Y direction is preferably set to, for example, about 50 to 200 [nm] so as not to cause a potential dip between the adjacent transfer electrodes 104. Is about 80 [nm].
  • a region sandwiched between the upstream end 104a and the downstream end 104b of the transfer electrode 104 adjacent in the column direction is present in the row direction of the photoelectric conversion unit 102. Is formed.
  • transfer electrodes 104 adjacent in the X direction can be connected by the wiring 105 formed integrally with the transfer electrode 104.
  • a voltage having the same potential can be simultaneously applied to the transfer electrode 104.
  • the width of the wiring 105 in the Y direction is, for example, about 200 to 400 [nm].
  • FIG. 2A is an enlarged view of a region a in FIG.
  • the width in the X direction of the transfer channel 103 is W1
  • the distance from the upstream end 104a of the transfer electrode 104 to the upstream end 104a of the transfer electrode 104 adjacent in the column direction is L1.
  • the distance in the Y direction of the wiring 105 is L2.
  • L1-L2 corresponds to the length in the column direction between the upstream end portion and the downstream end portion of the adjacent wirings 105 in the column direction.
  • the setting range of the inclination ⁇ of the end portion 104a on the upstream side and the inclination ⁇ of the end portion 104b on the downstream side satisfy 0 ⁇ tan ⁇ ⁇ (L1-L2) / W1.
  • FIG. 2B is an example of an enlarged view of the region a in FIG. 1 when ⁇ is ⁇ max. As shown in FIG. 2B, the inclination of the virtual line I1 indicated by the two-dot chain line with respect to the row direction is ⁇ max, and the end portions 104a and 104b are formed to be parallel to the virtual line I1.
  • len1 ′ in FIG. 2B having a larger ⁇ is longer than len1 in FIG. 2A. Therefore, it is desirable that ⁇ be as large as possible within the above setting range. As ⁇ is larger, the region where the potential gradient is formed becomes longer and the charge transfer rate is improved.
  • is desirably as large as possible within the above setting range
  • exceeds ⁇ max
  • one transfer electrode 104 is formed over two or more pixels in the column direction, and therefore adjacent in the row direction.
  • the wiring 105 is connected between the photoelectric conversion unit 102 and another photoelectric conversion unit 102 adjacent in the Y direction (described later) in order to prevent the electric field due to the wiring 105 from affecting the photoelectric conversion unit 102 as much as possible. It corresponds to the element isolation region 106).
  • an element isolation region 106 for separating the photoelectric conversion units 102 adjacent in the column direction is formed in a region in the semiconductor substrate corresponding to the wiring 105.
  • the width of the element isolation region 106 in the Y direction is formed to be wider than the width of the wiring 105 in the Y direction.
  • FIG. 13A is a diagram showing the shape of the transfer electrodes 904A to 904D in plan view and the potential contour lines of the transfer channel 903 in plan view.
  • the transfer electrodes 904A and 904D are transfer electrodes to which a middle level transfer voltage (VM) is applied, and the transfer electrodes 904B and 904C are low level transfer voltages (VL) having a voltage value lower than the middle level. Is a transfer electrode to which is applied.
  • VM middle level transfer voltage
  • VL low level transfer voltages
  • the signal charge accumulated in the photoelectric conversion unit (photodiode) 902 is transferred in the transfer direction through the transfer channel (vertical CCD) 903 .
  • description will be given focusing on the photoelectric conversion unit 902 corresponding to the transfer electrode 904B, the transfer electrodes 904A and 904B, and the transfer channel 903 corresponding to the transfer electrodes 904A and 904B.
  • the signal charge accumulated in the photoelectric conversion unit 902 corresponding to the transfer electrode 904B is applied to a transfer voltage corresponding to the transfer electrode 904B by applying a read voltage (for example, a voltage higher than VM) to the transfer electrode 904B. Read to 903.
  • a read voltage for example, a voltage higher than VM
  • the transfer electrode 904B is applied to the transfer electrode 904B, and the potential of the transfer channel 903 corresponding to the transfer electrode 904B is lowered, thereby forming a potential gradient for charge transfer in the transfer channel 903.
  • the read signal charges are transferred from the transfer channel 903 corresponding to the transfer electrode 904B to the transfer channel 903 corresponding to the transfer electrode 904A, that is, the transfer channel 903 is transferred from the upstream side to the downstream side in the transfer direction. .
  • FIG. 13A corresponds to a potential contour line in a state where the above-described potential gradient for charge transfer is formed in the transfer channel 903.
  • FIG. 13B is an enlarged view of a region surrounded by a two-dot chain line in FIG. In the potential contour map of FIG. 13B, the points connecting the points with high potential are indicated by arrows.
  • FIG. 13C is a potential cross-sectional view of the transfer channel 903 shown corresponding to the position of the arrow in FIG.
  • FIG. 13C shows a potential cross-sectional view when the voltage applied to the transfer electrode 904B is changed from 0 [V] to ⁇ 6 [V], and the length of the potential gradient is indicated by D2. .
  • FIG. 3A is a diagram showing the shape of the transfer electrodes 104A to 104D in a plan view and the potential contour lines of the transfer channel 103 in a plan view.
  • the simulation experiment in the present embodiment is based on the shape of the transfer electrode 104 when ⁇ is ⁇ max. I went.
  • the lower side of FIG. 3A is a potential contour diagram of the transfer channel 103, and a portion surrounded by a two-dot chain line is a region where a potential gradient for charge transfer is formed in the transfer channel 103.
  • An enlarged view of the region indicated by the two-dot chain line is shown in FIG. 3 (b), and as in FIG. 13 (b), a point connecting points having high potential is indicated by an arrow.
  • FIG. 3C shows a potential cross section of the transfer channel 103 corresponding to the position of the arrow in FIG. Similarly to FIG. 13C, FIG. 3C also shows a potential cross-sectional view when the voltage applied to the transfer electrode 104B is changed from 0 [V] to ⁇ 6 [V], and the potential gradient is shown. The length of was indicated by D1.
  • the potential gradient length D1 of the present embodiment is the length of the potential gradient in Patent Document 1. It can be seen that it is longer than D2. That is, it was shown that the length of the potential gradient for signal charge transfer can be increased by forming the end portion of the transfer electrode 104 adjacent in the Y direction so as to be inclined with respect to the X direction. In addition, this is because the distance between the contour lines in FIG. 3 (b) is wider than the distance between the contour lines in FIG. 13 (b) when comparing the potential contour maps in FIG. 3 (b) and FIG. 13 (b). Can also be seen.
  • FIG. 4A is a cross-sectional view taken along line AA ′ in FIG. 1
  • FIG. 5 is a cross-sectional view taken along the line BB ′ of FIG.
  • a gate insulating film 117 made of a silicon oxide film is formed on the main surface in the Z direction of the semiconductor substrate 101a.
  • a transfer electrode 104 and a wiring 105 made of polysilicon are selectively formed on the gate insulating film 117.
  • An interlayer insulating film 118 and a light shielding film 119 are stacked on the transfer electrode 104 and the wiring 105 so as to cover them.
  • a BPSG film (Boron Phosphorous Silicate Glass) 120 for flattening a step between a region where the transfer electrode 104 and the wiring 105 are formed and a region where the transfer electrode 104 and the wiring 105 are not formed is formed, and the color filter 121 is formed on the BPSG film 120. Is formed.
  • a top lens 122 is formed on the color filter 121.
  • the semiconductor substrate 101a is an n-type silicon substrate, and a p-type well region 101b made of p-type impurities is formed on the main surface side of the semiconductor substrate 101a. Is formed.
  • the p-type well region 101b will be described in detail with reference to FIGS.
  • the p-type well region 101b includes a first n-type semiconductor well region 111 and a high-concentration first p formed on the first n-type semiconductor well region 111. And a high-concentration first p-type element isolation region 123 formed near the interface between the first n-type semiconductor well region 111 and the first p-type semiconductor well region 112.
  • the first p-type element isolation region 123 forms the element isolation region 106 (FIG. 1), and the width of the first p-type element isolation region 123 in the Y direction is the same as that of the wiring 105 in the Y direction.
  • the range is preferably equal to or greater than the width, for example, in the range of 100 to 400 [nm].
  • the first p-type element isolation region 123 exists in the well region 101 b in the semiconductor substrate 101 a corresponding to the wiring 105.
  • the p-type well region 101 b further includes a second high-concentration second region formed near the interface between the first n-type semiconductor well region 111 and the first p-type semiconductor well region 112.
  • P-type element isolation region 116 is
  • the second n-type semiconductor well region 114 forms the transfer channel 103 (FIG. 1).
  • the width of the second n-type semiconductor well region 114 in the X direction is, for example, 250 to 400 [nm].
  • the depth is, for example, 50 to 100 [nm].
  • the second n-type semiconductor well region 114 is formed, for example, by implanting arsenic or the like, and the impurity concentration of the implanted arsenic is, for example, 4.0 to 6.0E17 [cm ⁇ 3 ].
  • the transfer electrode 104 exists in a region on the gate insulating film 117 corresponding to the second n-type semiconductor well region 114.
  • the width in the X direction between the first p-type element isolation region 123 (element isolation region 106) and the second n-type semiconductor well region 114 (transfer channel 103) is, for example, 25 to 100 [ nm].
  • the downstream end of the photoelectric conversion unit 902 is aligned with the downstream end of the transfer electrode 904 as indicated by a virtual line I9.
  • the other downstream end of the transfer electrode 104 is shifted upstream by the shift width len2 from the other downstream end of the photoelectric conversion unit 102. This can also be seen from FIGS. 4A and 4B.
  • the D-D ′ cross section in the solid-state imaging device (FIG. 12) according to Patent Document 1 corresponds to the C-C ′ cross section in the solid-state imaging device (FIG. 1) according to the present embodiment.
  • the DD ′ cross section relating to the solid-state imaging device according to Patent Document 1 is not particularly illustrated, but in this DD ′ cross section, the region where the transfer electrode 104 is divided as shown in the region b of FIG. 5 does not appear. .
  • the direction of inclination of the end of the transfer electrode is not particularly limited. As shown in FIG. 6A, the end of the transfer electrode 104 may be inclined in a direction opposite to the direction of inclination of the end of the transfer electrode 104 shown in FIGS. Similar effects can be obtained.
  • the upstream end (or downstream end) of the adjacent transfer electrode in the Y direction (column direction) is inclined with respect to the X direction (row direction) means that in the Y direction A line segment connecting the most upstream part and the most downstream part at the upstream end of the adjacent transfer electrode (or a line connecting the most upstream part and the most downstream part at the downstream end. ")" Is inclined with respect to the X direction, and the case where the end of the transfer electrode 104 is not formed in a straight line is also included. For example, as shown in FIG. 6B, even when the end portion of the transfer electrode 104 is formed in a stepped shape, the “upstream end portion (or the downstream end portion of the transfer electrode adjacent in the Y direction” described above.
  • the “end portion” is inclined with respect to the row direction.
  • the number of steps at the end formed in a staircase shape is not particularly limited. Although not particularly illustrated, even if the end portion of the transfer electrode 104 is V-shaped, the same effect as described above can be obtained.
  • FIG. 7 is a diagram schematically illustrating the arrangement relationship of the components of the solid-state imaging device according to the second embodiment.
  • the differences from the first embodiment are the position of the region sandwiched between the upstream end portion 204a and the downstream end portion 204b of the transfer electrode 204 adjacent in the Y direction, and the transfer adjacent in the X direction.
  • the electrode is connected by the metal wiring 205.
  • the region sandwiched between the end portions 104 a and 104 b of the transfer electrode 104 is located in the row direction of the photoelectric conversion unit 102.
  • the region sandwiched between the end portions 204 a and 204 b of the transfer electrode 204 exists in the row direction of the element isolation region 206.
  • the metal wiring 205 is made of, for example, a metal material such as tungsten, aluminum, or copper.
  • the diameter of the contact 208 is set smaller than the width of the transfer electrode 204 in the X direction, and is, for example, 200 [nm] to 350 [nm].
  • the width len3 in the Y direction of the metal wiring 205 in the region located between adjacent photoelectric conversion units 202 in the Y direction is, for example, 100 [nm] to 400 [nm].
  • the above metal material has a lower resistance than the polysilicon constituting the transfer electrode 204, the rising and falling of the rectangular wave shape are steeper with respect to the transfer electrode 204 than in the case of the first embodiment.
  • a transfer voltage can be applied, and therefore the charge transfer rate can be improved.
  • FIG. 8A is a diagram showing a potential cross-sectional view of the transfer channel 203 according to the second embodiment in correspondence with the position of the transfer electrode 204.
  • FIG. 8B is a diagram showing a potential cross-sectional view related to the transfer channel 103 according to the first embodiment in association with the position of the transfer electrode 104.
  • FIG. 8 there are components that are not shown for the sake of simplicity.
  • the element isolation region 106 is for isolating adjacent photoelectric conversion units 102, and thus has a low potential.
  • the influence of the potential of the element isolation region 106 may affect the potential of the transfer channel 103 as well. That is, as indicated by a broken line in the potential cross-sectional view, there is a portion where the potential is locally lowered in the region corresponding to the element isolation region 106 and the X direction in the transfer channel 103. Therefore, at the time of signal charge transfer, as shown by the solid line in the potential cross-sectional view, there is a portion where the potential is locally lowered in the bottom region where the gradient of the potential gradient becomes small due to the influence of the element isolation region 106. Therefore, the part where the potential is locally lowered may cause the signal charge to be left behind. Further, the part where the potential is locally lowered becomes more remarkable as the pixel size becomes particularly small.
  • the transfer channel 203 in this embodiment has a portion where the potential is locally lowered due to the influence of the element isolation region 206 that separates the photoelectric conversion unit 202.
  • the part where the potential is locally lowered due to the influence of the element isolation region 206 is located near the middle where the gradient of the potential gradient is maximum. Yes. Therefore, in the present embodiment, the above problem does not occur.
  • a virtual line I2 connecting the center of the transfer channel 203 in the Y direction intersects with a virtual line I4 connecting the center of the element isolation region 206 adjacent in the Y direction in the X direction.
  • the region corresponding to the point (o) is a region where the manufacturing potential tends to be low.
  • a region passing through a virtual line I3 that connects the center of the region sandwiched between the upstream end portion 204a and the downstream end portion 204b of the transfer electrode 204 adjacent in the Y direction in the inclination direction is This is a region where the gradient of the potential gradient becomes large during charge transfer.
  • the region sandwiched between the end portions 204a and 204b of the transfer electrode 204 exists in the row direction of the element isolation region 206. More preferably, the center of the region sandwiched between the end portions 204a and 204b of the transfer electrode 204 is the center. If the element isolation region 206 exists in the row direction, the above effect can be obtained.
  • the inclination angle of the end portions 204a and 204b of the transfer electrode 204 with respect to the X direction need not be within the setting range as in the first embodiment, and the upper limit of the inclination angle depends on the configuration of the transfer electrode 204. It will never be decided.
  • the transfer electrode 204 may be formed over two or more pixels in the Y direction. In FIG. 9, illustration of the metal wirings 205 and 205c is omitted.
  • FIG. 10 is a diagram schematically illustrating the arrangement relationship of the components of the solid-state imaging device according to the third embodiment. The difference from the second embodiment is that the shape of the metal wiring 305 is different. In FIG. 10, the element isolation region is not shown.
  • the width of the metal wiring 305 in the present embodiment in the Y direction is larger than the width of the photoelectric conversion unit 302 in the column direction.
  • an opening is provided in a region of the metal wiring 305 facing the photoelectric conversion unit 302 so that light is not blocked from entering the photoelectric conversion unit 302.
  • a region corresponding to an area between adjacent metal wirings 305 in the Y direction exists between the photoelectric conversion units 302 adjacent in the Y direction.
  • the transfer electrodes 304c in the last row are also connected to each other by a metal wiring 305c. Further, the metal wiring 305 (or the metal wiring 305 c) and the transfer electrode 304 (or the transfer electrode 304 c) are electrically connected through the contact 308.
  • the width len4 (distance between adjacent metal wirings 305) in the Y direction of the region corresponding to the space between adjacent metal wirings 305 in the Y direction is, for example, 150 [nm] to 300 [nm]. Further, the width len5 in the Y direction of the metal wiring 305 in the region between the photoelectric conversion units 302 adjacent in the Y direction is, for example, 100 [nm] to 200 [nm].
  • the width of the metal wiring 305 in the Y direction can be increased, and the cross-sectional area of the metal wiring 305 can be expanded. Since the resistance of the metal wiring 305 is inversely proportional to the cross-sectional area, the resistance of the metal wiring 305 can be further reduced as the cross-sectional area of the metal wiring 305 is expanded. Therefore, a transfer voltage with a steep rising and falling of a rectangular wave shape can be applied to the transfer electrode 304, which can contribute to an improvement in charge transfer speed.
  • the metal wiring 305 is also formed on the corresponding region between the photoelectric conversion unit 302 and the transfer channel 303, the read voltage is applied to the metal wiring 305 on this region in addition to the transfer electrode 304. Is applied. Therefore, compared to the first and second embodiments, signal charges can be easily read from the photoelectric conversion unit 302 to the transfer channel 303, and thus the width of the transfer electrode 304 in the row direction can be reduced. As a result, the opening area of the photoelectric conversion unit 302 can be increased, and the sensitivity of the solid-state imaging device can be increased.
  • the metal wiring 305 can be made to function as a light-shielding film for the portion excluding the photoelectric conversion portion 302. As a result, it is possible to prevent photoelectric conversion from occurring in a region other than the photoelectric conversion unit 302 in the semiconductor substrate, and as a result, it is possible to contribute to reducing smear noise.
  • the transfer electrode is formed so that the slope of the upstream end and the slope of the downstream end are equal, but the present invention is not limited to this. It is sufficient that the upstream end is inclined with respect to the row direction, and the downstream end is inclined with respect to the row direction corresponding to this inclination. The upstream end and the downstream end are inclined. The inclination may be different. However, the end on the downstream side needs to be inclined corresponding to the inclination of the upstream end, and the downstream end is inclined in a direction opposite to the inclination direction of the upstream end. Cases shall not be included.
  • FIG. 11 is a diagram schematically showing the arrangement relationship of the components of the solid-state imaging device according to this modification.
  • the signal charge accumulated in the photoelectric conversion unit 402 is read out to the transfer channel 403 when a read voltage is applied to the transfer electrode 404.
  • the signal charge transferred to the transfer channel 403 at the downstream end in the transfer direction is transferred to the horizontal transfer channel 407 by applying a predetermined voltage to the transfer electrode 404c in the last row.
  • the signal charge transferred to the horizontal transfer channel 407 is transferred from the upstream side to the downstream side in the transfer direction by applying a horizontal transfer voltage to the corresponding horizontal transfer electrode 409. At this time, the end of the horizontal transfer electrode 409 is formed to be inclined with respect to the Y direction.
  • the horizontal transfer channel 407 is also a one-pixel one-electrode type in which one horizontal transfer electrode 409 is arranged for one photoelectric conversion unit row formed of the photoelectric conversion units 402.
  • the width of the horizontal transfer channel 407 in the Y direction is larger than the width of the transfer channel 403 in the X direction, for example, several [ ⁇ m] to several tens [ ⁇ m]. Therefore, in the horizontal transfer channel 407, signal charges are easily left behind as compared with the transfer channel 403. Further, in the horizontal transfer channel 407, signal charges are normally transferred at a transfer frequency as high as, for example, about 30 to 50 [MHz], and the problem of remaining signal charges becomes significant. Therefore, the effect of increasing the charge transfer rate by tilting the end of the horizontal transfer electrode 409 is significant.
  • the present invention can be suitably used for electronic devices such as digital still cameras and digital video cameras that require high image quality, for example.

Abstract

Provided is a solid-state image pickup device that has a charge transfer rate that can withstand a transfer frequency becoming more high-speed. The solid-state image pickup device is provided with: a plurality of photoelectric conversion units (102) that are formed matrix-like, and that are for converting incident light into signal charges; transfer channels (103) that are formed between columns of adjacent photoelectric conversion units (102); and a plurality of transfer electrodes (104) that are formed in the column direction with a pattern corresponding one-to-one to the photoelectric conversion units (102), and that are for reading signal charges from the corresponding photoelectric conversion units (102), and transferring the signal charges from the upstream side to the downstream side in the transfer direction within the transfer channels (103). Upstream-side end sections (104a) of transfer electrodes (104), which are adjacent to each other in the column direction, are formed to be inclined with respect to the row direction, and downstream-side end sections (104b) of the transfer electrodes (104), which are adjacent to the upstream-side end sections (104a) in the column direction, are formed to be inclined with respect to the row direction in accordance with the inclination of the upstream-side end sections (104a).

Description

固体撮像装置Solid-state imaging device
 本発明は固体撮像装置に関し、特に1画素1電極型のCCD(Charge Coupled Device)型固体撮像装置に関する。 The present invention relates to a solid-state imaging device, and more particularly to a 1-pixel 1-electrode type CCD (Charge Coupled Device) type solid-state imaging device.
 CCDイメージセンサに代表される固体撮像装置は、デジタルスチルカメラやデジタルビデオカメラ等に広く利用されており、その需要は益々増加している。近年の固体撮像装置の多画素化、小型化の要請に伴い、画素は高密度に配列され、画素サイズは縮小される傾向にある。 Solid-state imaging devices typified by CCD image sensors are widely used in digital still cameras, digital video cameras, and the like, and their demand is increasing. With the recent demand for a large number of pixels and a reduction in size of a solid-state imaging device, the pixels are arranged with high density and the pixel size tends to be reduced.
 ところが、画素サイズを縮小した場合、単位画素の開口面積が減少し、各画素の光電変換部の感度特性が低下するという不具合が生じてしまう。そこで、光電変換部で発生した信号電荷を転送方向に転送するための転送チャネルの幅を縮小することにより、開口面積を維持するという方法を採ることが考えられる。しかしながら、転送チャネルの幅を縮小すると、転送チャネルの取り扱い信号電荷量が低下してしまうという別の問題が発生する。 However, when the pixel size is reduced, the opening area of the unit pixel is reduced, and the sensitivity characteristic of the photoelectric conversion unit of each pixel is deteriorated. Therefore, it is conceivable to adopt a method of maintaining the opening area by reducing the width of the transfer channel for transferring the signal charge generated in the photoelectric conversion unit in the transfer direction. However, if the width of the transfer channel is reduced, another problem arises that the amount of signal charge handled by the transfer channel decreases.
 上記問題を解決するため、転送チャネルの幅を縮小しつつ、転送チャネルの取り扱い信号電荷量を増加させる技術が開示されている(特許文献1)。 In order to solve the above problem, a technique for increasing the amount of signal charges handled in the transfer channel while reducing the width of the transfer channel is disclosed (Patent Document 1).
 図12は、特許文献1に記載の固体撮像装置に係る構成要素の配置関係を模式的に示す図である。 FIG. 12 is a diagram schematically showing the arrangement relationship of the components related to the solid-state imaging device described in Patent Document 1.
 図12に示すように、特許文献1に記載の固体撮像装置では、半導体基板内のX-Y面方向に、入射光を信号電荷に変換するための複数のフォトダイオード(光電変換部)902が行列状に配置されている。複数のフォトダイオード902がY方向(列方向)に配置されることでフォトダイオード902の列をなしており、隣接するフォトダイオードの列の間には、当該フォトダイオード1列分の信号電荷を転送するための垂直CCD(転送チャネル)903が形成されている。 As shown in FIG. 12, the solid-state imaging device described in Patent Document 1 includes a plurality of photodiodes (photoelectric conversion units) 902 for converting incident light into signal charges in the XY plane direction in the semiconductor substrate. Arranged in a matrix. A plurality of photodiodes 902 are arranged in the Y direction (column direction) to form a column of photodiodes 902, and signal charges corresponding to one column of photodiodes are transferred between adjacent photodiode columns. For this purpose, a vertical CCD (transfer channel) 903 is formed.
 垂直CCD903の上方には、フォトダイオード902と1対1に対応する形態で、対応するフォトダイオード902から信号電荷を読み出して垂直CCD903内を転送方向の上流側から下流側へ転送させる転送電極904が形成されている。X方向において隣接する転送電極904同士は、接続部905により接続されており、Y方向において隣接するフォトダイオード902を分離するために、接続部905に対応する半導体基板内の領域には素子分離領域が形成されている。 Above the vertical CCD 903, there is a transfer electrode 904 that reads the signal charge from the corresponding photodiode 902 in a one-to-one correspondence with the photodiode 902 and transfers the signal in the vertical CCD 903 from the upstream side to the downstream side in the transfer direction. Is formed. The transfer electrodes 904 adjacent in the X direction are connected to each other by a connection portion 905. In order to isolate the photodiode 902 adjacent in the Y direction, an element isolation region is provided in a region in the semiconductor substrate corresponding to the connection portion 905. Is formed.
 特許文献1に記載の構成では、1つのフォトダイオード902に対して1つの転送電極904を配置した、いわゆる1画素1電極型となっている。したがって、例えば1つのフォトダイオードに対して2つの転送電極を配置した場合(いわゆる1画素2電極型の場合)と比較して、垂直CCD903の取り扱い信号電荷量を2倍とすることができる。 The configuration described in Patent Document 1 is a so-called one-pixel one-electrode type in which one transfer electrode 904 is arranged for one photodiode 902. Therefore, for example, the amount of signal charges handled by the vertical CCD 903 can be doubled as compared with a case where two transfer electrodes are arranged for one photodiode (a so-called one-pixel two-electrode type).
特開平3-97381号公報Japanese Patent Laid-Open No. 3-97381
 ところで、最近では、テレビ等に代表される表示装置の高精細化が進行しており、それに追従して、固体撮像装置の高精細な動画像への対応が要求されている。この要求に対しては、転送周波数の高速化により対応することが可能である。しかしながら、転送周波数の高速化は、換言すると信号電荷の転送が行える期間の短縮化である。電荷転送を行える時間が短縮されると、転送電極から次行の転送電極へ信号電荷を転送させるのに必要な時間が十分に確保されないことによる信号電荷の取り残しが発生し、その結果、画質劣化の問題が招来する。この信号電荷の取り残しを抑制するには、転送電極から次行の転送電極への電荷転送に必要な時間の短縮化、すなわち、電荷転送速度の高速化が有効である。 By the way, in recent years, display devices represented by televisions and the like have been improved in definition, and accordingly, it is required to deal with high-definition moving images of solid-state imaging devices. This requirement can be met by increasing the transfer frequency. However, increasing the transfer frequency is, in other words, reducing the period during which signal charges can be transferred. If the time during which charge transfer can be performed is shortened, signal charge may be left behind due to insufficient time required to transfer signal charge from the transfer electrode to the transfer electrode in the next row, resulting in image quality degradation. The problem of inviting. In order to suppress the remaining of the signal charge, it is effective to shorten the time required for charge transfer from the transfer electrode to the transfer electrode of the next row, that is, to increase the charge transfer rate.
 本発明は、上記した問題に鑑み、転送周波数の高速化に耐え得る電荷転送速度を有する固体撮像装置の提供をその目的とする。 In view of the above problems, an object of the present invention is to provide a solid-state imaging device having a charge transfer rate that can withstand an increase in transfer frequency.
 上記課題を解決するために、本発明に係る固体撮像装置は、半導体基板内に行列状に形成され、入射光を信号電荷に変換する複数の光電変換部と、前記半導体基板内における、隣接する光電変換部の列の間に形成された転送チャネルと、前記半導体基板上における前記転送チャネルに対応する領域に、前記光電変換部と1対1に対応する形態で列方向に複数形成され、対応する光電変換部から信号電荷を読み出して前記転送チャネル内を転送方向の上流側から下流側へ転送させる転送電極と、を備え、前記複数の転送電極を平面視した場合に、列方向において隣接する転送電極の端部のうち上流側の端部が行方向に対して傾斜して形成されるとともに、前記上流側の端部の傾斜に対応してこれと列方向において隣接する転送電極の下流側の端部が行方向に対して傾斜して形成されていることを特徴とする。 In order to solve the above problems, a solid-state imaging device according to the present invention is formed in a matrix in a semiconductor substrate, and is adjacent to a plurality of photoelectric conversion units that convert incident light into signal charges, in the semiconductor substrate. A plurality of transfer channels formed between columns of photoelectric conversion units and a region corresponding to the transfer channel on the semiconductor substrate are formed in the column direction in a one-to-one correspondence with the photoelectric conversion units. And a transfer electrode that reads the signal charge from the photoelectric conversion unit and transfers the signal in the transfer channel from the upstream side to the downstream side in the transfer direction, and is adjacent in the column direction when the plurality of transfer electrodes are viewed in plan view The upstream end of the transfer electrode is formed to be inclined with respect to the row direction, and the downstream side of the transfer electrode adjacent to the upstream end in the column direction corresponding to the inclination of the upstream end. of Parts is characterized in that it is formed to be inclined with respect to the row direction.
 隣接する転送電極に異なる転送電圧を印加した場合、転送チャネルにおける各転送電極に相当する領域では、それぞれの転送電圧の影響を受けてポテンシャルが異なることとなる。また、両領域の境界付近では、両方の転送電圧の影響を受けて電荷転送用のポテンシャル勾配が形成される。信号電荷の転送は、このポテンシャル勾配を利用して行われる。 When different transfer voltages are applied to adjacent transfer electrodes, potentials in regions corresponding to the transfer electrodes in the transfer channel are affected by the transfer voltages. In the vicinity of the boundary between both regions, a potential gradient for charge transfer is formed under the influence of both transfer voltages. The signal charge is transferred using this potential gradient.
 上記の構成によれば、列方向において隣接する転送電極の上流側の端部と下流側の端部が行方向に対して傾斜して形成されている。このようにすることで、転送電極の端部が行方向に対して平行である場合と比較して、列方向に向かい合う転送電極の端部のうち、上流側の端部における最も上流側の部分から下流側の端部における最も下流側の部分までの長さが長くなる。このようにすることで、転送チャネルにおける両方の転送電圧の影響を受ける領域が列方向に広がるので、転送チャネルのポテンシャル勾配が緩やかになる。これに伴って、転送チャネルでの信号電荷の転送時において、電荷転送用のポテンシャル勾配が形成される区間が長くなる。ポテンシャル勾配が形成される区間が長くなる分、拡散により信号電荷が転送される区間を短くするとともに、ドリフトにより信号電荷が転送される区間を長くすることができる。ドリフトによる電荷転送速度は拡散による場合に比して速く、したがって、転送チャネルにおける電荷転送速度を高速化することが可能となる。 According to the above configuration, the upstream end and the downstream end of the transfer electrodes adjacent in the column direction are formed to be inclined with respect to the row direction. By doing in this way, compared with the case where the end of the transfer electrode is parallel to the row direction, the most upstream portion of the end of the transfer electrode facing in the column direction at the upstream end To the most downstream portion at the downstream end becomes longer. By doing so, the region affected by both transfer voltages in the transfer channel expands in the column direction, so that the potential gradient of the transfer channel becomes gentle. Along with this, a section in which a potential gradient for charge transfer is formed becomes long when signal charges are transferred in the transfer channel. As the section in which the potential gradient is formed becomes longer, the section in which signal charges are transferred by diffusion can be shortened, and the section in which signal charges are transferred by drift can be lengthened. The charge transfer rate due to drift is faster than that due to diffusion, and therefore the charge transfer rate in the transfer channel can be increased.
 以上説明したように、転送周波数の高速化に耐え得る電荷転送速度を有する固体撮像装置を提供することができる。 As described above, it is possible to provide a solid-state imaging device having a charge transfer rate that can withstand a higher transfer frequency.
 本発明に係る固体撮像装置は、さらに、前記半導体基板内に、列方向において隣接する光電変換部を分離する素子分離領域を備え、列方向において隣接する転送電極の前記上流側の端部と前記下流側の端部とで挟まれた領域が、前記素子分離領域の行方向に存在することとしてもよい。 The solid-state imaging device according to the present invention further includes, in the semiconductor substrate, an element isolation region that separates the photoelectric conversion units adjacent in the column direction, and the upstream end of the transfer electrode adjacent in the column direction and the A region sandwiched between the downstream end portions may exist in the row direction of the element isolation region.
 さらに、列方向において隣接する転送電極の前記上流側の端部と前記下流側の端部とで挟まれた領域の中心が、前記素子分離領域の行方向に存在することとしてもよい。 Furthermore, the center of the region sandwiched between the upstream end and the downstream end of the transfer electrode adjacent in the column direction may be present in the row direction of the element isolation region.
 転送チャネルにおける、素子分離領域の行方向において隣接する領域は、素子分離領域の影響を受けて、ポテンシャルが低くなっている。一方、転送チャネルにおける、列方向において隣接する転送電極の上流側の端部と下流側の端部とで挟まれた領域に対応する領域は、電荷転送時においてポテンシャル勾配の傾きが大きくなる領域である。上記の構成によれば、ポテンシャルが低くなっている領域と電荷転送時においてポテンシャル勾配の傾きが大きくなる領域が行方向に隣接していることにより、転送チャネルにおいてポテンシャルが低くなっている領域があることによる信号電荷の取り残しを防ぐことができる。 In the transfer channel, a region adjacent to the element isolation region in the row direction is affected by the element isolation region and has a low potential. On the other hand, the region corresponding to the region sandwiched between the upstream end and the downstream end of the transfer electrode adjacent in the column direction in the transfer channel is a region where the gradient of the potential gradient increases during charge transfer. is there. According to the above configuration, there is a region where the potential is low in the transfer channel because the region where the potential is low and the region where the gradient of the potential gradient increases during charge transfer are adjacent in the row direction. It is possible to prevent signal charges from being left behind.
 さらに、転送チャネルにおける、列方向において隣接する転送電極の上流側の端部と下流側の端部とで挟まれた領域の中心に対応する領域は、電荷転送時においてポテンシャル勾配の傾きが最大となる領域である。したがって、ポテンシャル勾配の傾きが最大となる領域と素子分離領域が行方向に隣接していることで、転送チャネルにおいてポテンシャルが低くなっている領域があることによる信号電荷の取り残しを、より効果的に防ぐことができる。 Further, in the transfer channel, the region corresponding to the center of the region sandwiched between the upstream end and the downstream end of the transfer electrode adjacent in the column direction has the maximum potential gradient during charge transfer. It is an area. Therefore, the region where the gradient of the potential gradient is maximum and the element isolation region are adjacent to each other in the row direction. Can be prevented.
 本発明に係る固体撮像装置は、さらに、前記複数の転送電極の上方に設けられ、各行に配置されるとともに行方向に延び、かつ、前記複数の転送電極よりも低抵抗な金属配線を備え、前記各行の転送電極は、対応する行の金属配線とコンタクトを介して電気的に接続されていることとしてもよい。 The solid-state imaging device according to the present invention further includes a metal wiring provided above the plurality of transfer electrodes, arranged in each row and extending in the row direction, and having a lower resistance than the plurality of transfer electrodes, The transfer electrode of each row may be electrically connected to the metal wiring of the corresponding row through a contact.
 さらに、行方向において隣接する転送電極同士が分離されていることとしてもよい。 Furthermore, transfer electrodes adjacent in the row direction may be separated from each other.
 転送電極よりも低抵抗な金属配線を用いることにより、転送電極と同じ材料からなる配線で同じ行の転送電極を電気的に接続する場合と比較して、矩形波状の転送電圧の立ち上がりおよび立ち下がりを急峻にすることができ、電荷転送速度の向上を図ることができる。また、転送電極と同じ層に転送電極同士を接続する接続部(配線)を形成しない分、接地容量を低減することができる。したがって、さらなる電荷転送速度の向上、ならびに消費電力の低減が期待される。 Compared to the case where the transfer electrodes in the same row are electrically connected by the wiring made of the same material as that of the transfer electrodes, the rise and fall of the rectangular-wave-shaped transfer voltage is achieved by using metal wiring having a resistance lower than that of the transfer electrodes. The charge transfer rate can be improved. In addition, since the connection portion (wiring) for connecting the transfer electrodes to each other in the same layer as the transfer electrode is not formed, the ground capacitance can be reduced. Therefore, further improvement in charge transfer speed and reduction in power consumption are expected.
 本発明に係る固体撮像装置は、前記金属配線の幅が、前記光電変換部の列方向の幅よりも大きく、前記金属配線における前記光電変換部と対向する領域に開口が設けられており、列方向において隣接する金属配線の間に相当する領域が、列方向において隣接する光電変換部の間に存在することとしてもよい。 In the solid-state imaging device according to the present invention, the width of the metal wiring is larger than the width of the photoelectric conversion unit in the column direction, and an opening is provided in a region facing the photoelectric conversion unit in the metal wiring. A region corresponding to between adjacent metal wirings in the direction may exist between the photoelectric conversion units adjacent in the column direction.
 上記のような構成にすることで、金属配線を光電変換部を除く部分に対する遮光膜として機能させることが可能となる。これにより、半導体基板のうち光電変換部以外の領域で光電変換が起こることを防止し、スミアノイズ低減に貢献できる。また、金属配線の列方向の幅が広くなる、すなわち、金属配線の断面積が大きくなる分、さらなる低抵抗化を図ることが可能となり、より電荷転送速度を向上させることができる。さらに、光電変換部と転送チャネルの間に対応する領域上にも金属配線が形成されているため、転送電極に加えて、この領域上にある金属配線に対しても読み出し電圧が印加される。そうすると、光電変換部と転送チャネルの間に対応する領域上に金属配線が形成されていない場合と比較して、光電変換部から転送チャネルへ電荷が読み出しやすくなるため、転送電極の行方向の幅を縮小できる。その結果、光電変換部の開口面積が拡大でき、固体撮像装置の高感度化を図ることができる。 With the above configuration, the metal wiring can be made to function as a light shielding film for a portion excluding the photoelectric conversion portion. Thereby, it can prevent that photoelectric conversion arises in area | regions other than a photoelectric conversion part among semiconductor substrates, and can contribute to a smear noise reduction. Further, since the width of the metal wiring in the column direction is increased, that is, the cross-sectional area of the metal wiring is increased, the resistance can be further reduced and the charge transfer rate can be further improved. Furthermore, since the metal wiring is also formed on the corresponding region between the photoelectric conversion unit and the transfer channel, the read voltage is applied to the metal wiring on this region in addition to the transfer electrode. This makes it easier to read charges from the photoelectric conversion unit to the transfer channel than when no metal wiring is formed on the corresponding region between the photoelectric conversion unit and the transfer channel. Can be reduced. As a result, the opening area of the photoelectric conversion unit can be increased, and the sensitivity of the solid-state imaging device can be increased.
 本発明に係る固体撮像装置は、前記複数の転送電極における端部の行方向に対する傾斜は、各転送電極で等しいこととしてもよい。 In the solid-state imaging device according to the present invention, the inclination of the end portions of the plurality of transfer electrodes with respect to the row direction may be the same for each transfer electrode.
 このようにすることで、各転送電極を均一なレイアウトで製造できるために、各画素間で電荷転送速度を均一化できる。また、製造バラツキも抑制できるため、歩留も向上する。 In this way, since each transfer electrode can be manufactured with a uniform layout, the charge transfer rate can be made uniform among the pixels. Moreover, since manufacturing variations can be suppressed, the yield is also improved.
 本発明に係る固体撮像装置は、前記固体撮像装置は、さらに、前記半導体基板内に、列方向において隣接する光電変換部を分離する素子分離領域を備え、列方向において隣接する転送電極の前記上流側の端部と前記下流側の端部とで挟まれた領域の中心を前記傾斜方向に結ぶ仮想線が、前記転送チャネルの中心を列方向に結ぶ仮想線と、列方向において隣接する素子分離領域の中心を行方向に結んだ仮想線と交差するとしてもよい。 In the solid-state imaging device according to the present invention, the solid-state imaging device further includes, in the semiconductor substrate, an element isolation region that separates adjacent photoelectric conversion units in the column direction, and the upstream of the transfer electrodes adjacent in the column direction. An imaginary line connecting the center of the region sandwiched between the end on the side and the downstream end in the tilt direction is adjacent to the imaginary line connecting the center of the transfer channel in the column direction in the column direction. It may be possible to intersect an imaginary line connecting the centers of the regions in the row direction.
 転送チャネルにおける、列方向において隣接する素子分離領域の中心を行方向に結んだ仮想線と前記転送チャネルの中心を列方向に結ぶ仮想線とが交差する点に対応する領域は、ポテンシャルが低くなりやすい。一方、列方向において隣接する転送電極の前記上流側の端部と前記下流側の端部とで挟まれた領域の中心を前記傾斜方向に結ぶ仮想線を通る領域は、電荷転送時においてポテンシャル勾配の傾きが大きくなる領域である。これら三本の仮想線が交差することにより、ポテンシャルが低くなりやすい領域と電荷転送時においてポテンシャル勾配の傾きが最も大きくなる領域とが重なるようになる。したがって、転送チャネルにおいてポテンシャルが低くなっている領域があることによる信号電荷の取り残しを、効率的に防ぐことができる。 In the transfer channel, the region corresponding to the point where the virtual line connecting the centers of the element isolation regions adjacent in the column direction in the row direction and the virtual line connecting the centers of the transfer channels in the column direction has a low potential. Cheap. On the other hand, a region passing through an imaginary line that connects the center of the region sandwiched between the upstream end and the downstream end of the adjacent transfer electrode in the column direction in the tilt direction has a potential gradient during charge transfer. This is a region where the slope of the is large. When these three virtual lines intersect, a region where the potential is likely to be low and a region where the gradient of the potential gradient is the largest during charge transfer overlap. Therefore, it is possible to efficiently prevent the signal charges from being left due to the presence of a region having a low potential in the transfer channel.
第1の実施形態に係る固体撮像装置の構成要素の配置関係を模式的に示す図である。It is a figure which shows typically the arrangement | positioning relationship of the component of the solid-state imaging device which concerns on 1st Embodiment. 図1における領域aの拡大図である。It is an enlarged view of the area | region a in FIG. (a)平面視した場合の転送電極104A~104Dの形状と、平面視した場合の転送チャネル103のポテンシャルの等高線とを対応させて示す図と、(b)図5(a)における二点鎖線で示す部分の拡大図と、(c)図5(b)における矢印で示す部分のポテンシャル断面を示す図である。(A) A diagram showing the shape of the transfer electrodes 104A to 104D in plan view and the contour lines of the potential of the transfer channel 103 in plan view, and (b) a two-dot chain line in FIG. 5 (a) FIG. 6 is an enlarged view of a portion indicated by (c), and (c) is a diagram showing a potential cross section of a portion indicated by an arrow in FIG. (a)第1の実施形態に係る固体撮像装置の構成を示す断面図(図1のA-A’断面図)と、(b)第1の実施形態に係る固体撮像装置の構成を示す断面図(図1のB-B’断面図)である。(A) A cross-sectional view showing a configuration of the solid-state imaging device according to the first embodiment (AA ′ cross-sectional view of FIG. 1), and (b) a cross-section showing a configuration of the solid-state imaging device according to the first embodiment. FIG. 2 is a cross-sectional view taken along the line BB ′ of FIG. 第1の実施形態に係る固体撮像装置の構成を示す断面図(図1のC-C’断面図)である。FIG. 2 is a cross-sectional view (cross-sectional view taken along the line C-C ′ in FIG. 1) illustrating the configuration of the solid-state imaging device according to the first embodiment. 第1の実施形態の変形例に係る固体撮像装置の構成要素の配置関係を模式的に示す図である。It is a figure which shows typically the arrangement | positioning relationship of the component of the solid-state imaging device which concerns on the modification of 1st Embodiment. 第2の実施形態に係る固体撮像装置の構成要素の配置関係を模式的に示す図である。It is a figure which shows typically the arrangement | positioning relationship of the component of the solid-state imaging device which concerns on 2nd Embodiment. (a)第2の実施形態に係る転送チャネル203のポテンシャル断面図を転送電極204の位置に対応させて示す図と、(b)第1の実施形態に係る転送チャネル103に係るポテンシャル断面図を転送電極104の位置に対応させて示す図である。(A) The figure which shows the potential sectional drawing of the transfer channel 203 concerning 2nd Embodiment corresponding to the position of the transfer electrode 204, (b) The potential sectional view concerning the transfer channel 103 concerning 1st Embodiment FIG. 6 is a diagram corresponding to the position of a transfer electrode 104. 第2の実施形態の別の形態に係る固体撮像装置の構成要素の配置関係を模式的に示す図である。It is a figure which shows typically the arrangement | positioning relationship of the component of the solid-state imaging device which concerns on another form of 2nd Embodiment. 第3の実施形態に係る固体撮像装置の構成要素の配置関係を模式的に示す図である。It is a figure which shows typically the arrangement | positioning relationship of the component of the solid-state imaging device which concerns on 3rd Embodiment. 変形例(2)に係る固体撮像装置の構成要素の配置関係を模式的に示す図である。It is a figure which shows typically the arrangement | positioning relationship of the component of the solid-state imaging device which concerns on a modification (2). 特許文献1に係る固体撮像装置の構成要素の配置関係を模式的に示す図である。It is a figure which shows typically the arrangement | positioning relationship of the component of the solid-state imaging device which concerns on patent document 1. FIG. (a)平面視した場合の転送電極904A~904Dの形状と、平面視した場合の転送チャネル903のポテンシャルの等高線とを対応させて示す図と、(b)図13(a)における二点鎖線で示す部分の拡大図と、(c)図13(b)における矢印で示す部分のポテンシャル断面を示す図である。(A) a diagram showing the shape of the transfer electrodes 904A to 904D in a plan view and the potential contour lines of the transfer channel 903 in a plan view, and (b) a two-dot chain line in FIG. 13 (a) FIG. 14 is an enlarged view of a portion indicated by (c), and (c) is a diagram showing a potential cross section of a portion indicated by an arrow in FIG.
 以下、本発明を実施するための形態を、図面を参照しながら説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 [第1の実施形態]
 〈固体撮像装置の構成要素の配置関係〉
 図1は、第1の実施形態に係る固体撮像装置の構成要素の配置関係を模式的に示す図である。本図において半導体基板内に形成された構成要素については破線で、半導体基板上方に形成された構成要素については実線で示している。本実施形態に係る固体撮像装置は、主な構成として光電変換部102,転送チャネル103,転送電極104を備える。
[First Embodiment]
<Relationship of components of solid-state imaging device>
FIG. 1 is a diagram schematically illustrating an arrangement relationship of components of the solid-state imaging device according to the first embodiment. In the figure, components formed in the semiconductor substrate are indicated by broken lines, and components formed above the semiconductor substrate are indicated by solid lines. The solid-state imaging device according to this embodiment includes a photoelectric conversion unit 102, a transfer channel 103, and a transfer electrode 104 as main components.
 図1に示すように、半導体基板内のX-Y面方向に、外部からの入射光を光電変換し光量に応じた信号電荷を発生させる複数の光電変換部102が行列状に形成されている。Y方向(列方向)に配置された光電変換部102からなる光電変換部列の間には、当該光電変換部1列分の信号電荷を転送する際の転送経路となる転送チャネル103が形成されている。転送チャネル103のX方向(行方向)の幅は、例えば、250~400[nm]程度である。 As shown in FIG. 1, a plurality of photoelectric conversion units 102 that photoelectrically convert incident light from the outside and generate signal charges corresponding to the amount of light are formed in a matrix in the XY plane direction in the semiconductor substrate. . A transfer channel 103 serving as a transfer path for transferring signal charges for one column of the photoelectric conversion unit is formed between the photoelectric conversion unit columns formed of the photoelectric conversion units 102 arranged in the Y direction (column direction). ing. The width of the transfer channel 103 in the X direction (row direction) is, for example, about 250 to 400 [nm].
 転送チャネル103の上方には、光電変換部102と1対1に対応する形態で、複数の転送電極104が形成されている。各転送電極104は、対応する光電変換部102から信号電荷を読み出し、転送チャネル103内を転送方向(Y方向)の上流側から下流側へ転送させる。具体的には、転送電極104に印加される転送電圧に応じて、転送チャネル103のポテンシャル勾配が変化する。これにより、転送チャネル103において、光電変換部102から読み出された信号電荷を転送方向へ転送することができる。転送電極104のX方向の幅は、例えば、400~700[nm]程度である。ここで、「信号電荷を読み出す」とは、光電変換部102から転送チャネル103へ信号電荷を移動させることを言い、「信号電荷を転送する」とは、転送チャネル103において信号電荷を転送方向に移動させることを言う。 A plurality of transfer electrodes 104 are formed above the transfer channel 103 in a form corresponding to the photoelectric conversion unit 102 on a one-to-one basis. Each transfer electrode 104 reads the signal charge from the corresponding photoelectric conversion unit 102 and transfers the signal charge in the transfer channel 103 from the upstream side to the downstream side in the transfer direction (Y direction). Specifically, the potential gradient of the transfer channel 103 changes according to the transfer voltage applied to the transfer electrode 104. Thereby, in the transfer channel 103, the signal charge read from the photoelectric conversion unit 102 can be transferred in the transfer direction. The width of the transfer electrode 104 in the X direction is, for example, about 400 to 700 [nm]. Here, “reading signal charges” means moving signal charges from the photoelectric conversion unit 102 to the transfer channel 103, and “transferring signal charges” means transferring signal charges in the transfer direction in the transfer channel 103. Say to move.
 また、転送方向の下流側終端の転送チャネル103上に形成されている、最終行の転送電極104cに所定電圧が印加されることにより、転送チャネル103の転送方向の下流側終端に転送された信号電荷が、転送チャネル103から水平転送チャネル107へ送られる。 In addition, a signal transferred to the downstream end in the transfer direction of the transfer channel 103 by applying a predetermined voltage to the transfer electrode 104c in the last row formed on the transfer channel 103 at the downstream end in the transfer direction. Charge is transferred from the transfer channel 103 to the horizontal transfer channel 107.
 次に、転送電極104の形状に着目すると、列方向において隣接する転送電極104の上流側の端部104aがX方向に対してθ傾斜して形成されるとともに、上流側の端部104aの傾斜θに対応してこれと列方向において隣接する転送電極104の下流側の端部104bがX方向に対してθ傾斜して形成されている。 Next, focusing on the shape of the transfer electrode 104, the upstream end 104a of the transfer electrode 104 adjacent in the column direction is formed with an inclination of θ with respect to the X direction, and the upstream end 104a is inclined. Corresponding to θ, the downstream end 104b of the transfer electrode 104 adjacent thereto in the column direction is formed with an inclination of θ with respect to the X direction.
 ここで、Y方向において隣接する転送電極で挟まれた領域の列方向の長さに注目する。先ず、特許文献1のように転送電極904の端部がX方向に対して平行である場合(図12)、Y方向において隣接する転送電極904で挟まれた領域の列方向の長さは電極間距離に相当し、len9で示される。一方、本実施形態のように転送電極104の端部がX方向に対して傾斜している場合(図1)、Y方向において隣接する転送電極で挟まれた領域の列方向の長さは、上流側の端部14aにおける最も上流側の部分から下流側の端部14bにおける最も下流側の部分までの長さに対応し、len1で示される。len1とlen9を比較すると、本実施形態のlen1の方が、Y方向において隣接する転送電極104で挟まれた領域の列方向の長さが長くなる。 Note here the length in the column direction of the region sandwiched between adjacent transfer electrodes in the Y direction. First, when the end of the transfer electrode 904 is parallel to the X direction as in Patent Document 1 (FIG. 12), the length in the column direction of the region sandwiched between adjacent transfer electrodes 904 in the Y direction is the electrode. It corresponds to the distance between the two and is indicated by len9. On the other hand, when the end of the transfer electrode 104 is inclined with respect to the X direction as in the present embodiment (FIG. 1), the length in the column direction of the region sandwiched between adjacent transfer electrodes in the Y direction is: This corresponds to the length from the most upstream portion of the upstream end portion 14a to the most downstream portion of the downstream end portion 14b, and is denoted by len1. When comparing len1 and len9, the length in the column direction of the region sandwiched between adjacent transfer electrodes 104 in the Y direction is longer in len1 in the present embodiment.
 転送電極104で挟まれた領域の長さが長くなることで、転送チャネル103における、転送電極104に印加される転送電圧の影響を受ける領域が列方向に広がる。そうすると、転送チャネル103に形成されるポテンシャル勾配が緩やかになり、これに伴って、ポテンシャル勾配が形成される区間が長くなる。ポテンシャル勾配が形成される区間が長くなる分、拡散により信号電荷が転送される区間を短くするとともに、ドリフトにより信号電荷が転送される区間を長くすることができる。ドリフトによる電荷転送速度は拡散による場合に比して速く、したがって、転送チャネル103における電荷転送速度を高速化することが可能となる。この原理の検証については、後ほど図3を用いて詳細に説明する。 By increasing the length of the region sandwiched between the transfer electrodes 104, the region of the transfer channel 103 that is affected by the transfer voltage applied to the transfer electrode 104 is expanded in the column direction. As a result, the potential gradient formed in the transfer channel 103 becomes gentle, and accordingly, the section in which the potential gradient is formed becomes longer. As the section in which the potential gradient is formed becomes longer, the section in which signal charges are transferred by diffusion can be shortened, and the section in which signal charges are transferred by drift can be lengthened. The charge transfer rate due to drift is faster than that due to diffusion, and therefore the charge transfer rate in the transfer channel 103 can be increased. The verification of this principle will be described later in detail with reference to FIG.
 また、本実施形態においては、上流側における端部104aの傾斜θと下流側における端部104bの傾斜θは等しく、かつ、転送電極104における端部104a,104bのX方向に対する傾斜θは、全ての転送電極104で等しくなるように形成されている。X方向に対する傾斜θを全ての転送電極104で等しくすることによって、各転送電極104を均一なレイアウトで製造できるために、各画素間で電荷転送速度を均一化できる。また、製造バラツキも抑制できるため、歩留も向上する。また、Y方向において隣接する転送電極104の間の幅gap1は、隣接する転送電極104の間でポテンシャルディップが発生しないように、例えば、50~200[nm]程度とするのが好ましく、より好ましくは80[nm]程度である。 In the present embodiment, the inclination θ of the end 104a on the upstream side and the inclination θ of the end 104b on the downstream are equal, and the inclination θ of the ends 104a and 104b of the transfer electrode 104 with respect to the X direction is all The transfer electrodes 104 are equal to each other. By making the inclination θ with respect to the X direction equal for all the transfer electrodes 104, each transfer electrode 104 can be manufactured with a uniform layout, so that the charge transfer rate can be made uniform among the pixels. Moreover, since manufacturing variations can be suppressed, the yield is also improved. Further, the width gap1 between the transfer electrodes 104 adjacent in the Y direction is preferably set to, for example, about 50 to 200 [nm] so as not to cause a potential dip between the adjacent transfer electrodes 104. Is about 80 [nm].
 さらに、本実施形態においては、列方向において隣接する転送電極104の上流側の端部104aと下流側の端部104bとで挟まれた領域が、光電変換部102の行方向に存在するように形成されている。このような構成とすることで、各行の転送電極104において、X方向において隣接する転送電極104同士を、転送電極104と一体的に形成された配線105により接続することができるので、同じ行の転送電極104に同電位の電圧を同時に印加することができる。配線105のY方向の幅は、例えば、200~400[nm]程度である。 Further, in the present embodiment, a region sandwiched between the upstream end 104a and the downstream end 104b of the transfer electrode 104 adjacent in the column direction is present in the row direction of the photoelectric conversion unit 102. Is formed. With such a configuration, in the transfer electrodes 104 of each row, transfer electrodes 104 adjacent in the X direction can be connected by the wiring 105 formed integrally with the transfer electrode 104. A voltage having the same potential can be simultaneously applied to the transfer electrode 104. The width of the wiring 105 in the Y direction is, for example, about 200 to 400 [nm].
 ここで、X方向において隣接する転送電極104同士を配線105により接続するためには、傾斜θが所定の範囲内でなければならない。このことについて、図2を用いて説明する。図2(a)は,図1における領域aの拡大図である。 Here, in order to connect the transfer electrodes 104 adjacent in the X direction by the wiring 105, the inclination θ must be within a predetermined range. This will be described with reference to FIG. FIG. 2A is an enlarged view of a region a in FIG.
 図2(a)において、転送チャネル103のX方向の幅をW1、転送電極104の上流側の端部104aから、列方向において隣接する転送電極104の上流側の端部104aまでの距離をL1、配線105のY方向の距離をL2とする。また、L1-L2は、列方向において隣接する配線105の上流側における端部と下流側における端部の間の、列方向の長さに相当する。 In FIG. 2A, the width in the X direction of the transfer channel 103 is W1, and the distance from the upstream end 104a of the transfer electrode 104 to the upstream end 104a of the transfer electrode 104 adjacent in the column direction is L1. The distance in the Y direction of the wiring 105 is L2. L1-L2 corresponds to the length in the column direction between the upstream end portion and the downstream end portion of the adjacent wirings 105 in the column direction.
 上流側における端部104aの傾斜θ、ならびに、下流側における端部104bの傾斜θの設定範囲は、0<tanθ≦(L1-L2)/W1を満たすことが望ましい。以下、tanθ=(L1-L2)/W1を満たす場合のθをθmaxとする。 It is desirable that the setting range of the inclination θ of the end portion 104a on the upstream side and the inclination θ of the end portion 104b on the downstream side satisfy 0 <tan θ ≦ (L1-L2) / W1. Hereinafter, θ satisfying tan θ = (L1−L2) / W1 is defined as θmax.
 図2(b)は、θがθmaxである場合の図1における領域aの拡大図の一例である。図2(b)に示すように、行方向に対する二点鎖線で示す仮想線I1の傾斜がθmaxであり、端部104a,104bはこの仮想線I1と平行になるように形成されている。 FIG. 2B is an example of an enlarged view of the region a in FIG. 1 when θ is θmax. As shown in FIG. 2B, the inclination of the virtual line I1 indicated by the two-dot chain line with respect to the row direction is θmax, and the end portions 104a and 104b are formed to be parallel to the virtual line I1.
 図2(a),(b)の比較から分かるように、図2(a)におけるlen1よりも、θがより大きい図2(b)の場合におけるlen1’の方が長くなる。したがって、上記の設定範囲内であればθは可能な限り大きい方が望ましく、θが大きい程、よりポテンシャル勾配が形成される領域が長くなり、電荷転送速度は向上する。 As can be seen from the comparison between FIGS. 2A and 2B, len1 ′ in FIG. 2B having a larger θ is longer than len1 in FIG. 2A. Therefore, it is desirable that θ be as large as possible within the above setting range. As θ is larger, the region where the potential gradient is formed becomes longer and the charge transfer rate is improved.
 θは上記の設定範囲内で可能な限り大きい方が望ましいものの、θがθmaxを超えると、1つの転送電極104が列方向に2画素以上にわたって形成されることとなるので、行方向において隣接する転送電極104同士を配線105で接続できなくなる。すなわち、上記の式で規定されるθの設定範囲は、転送電極104同士を配線105で接続するための要件である。なお、例えば、W1=350nm、L1=1600nm、L2=300nmとした場合、θmaxはおよそ75[deg]となる。 Although θ is desirably as large as possible within the above setting range, when θ exceeds θmax, one transfer electrode 104 is formed over two or more pixels in the column direction, and therefore adjacent in the row direction. The transfer electrodes 104 cannot be connected to each other by the wiring 105. That is, the setting range of θ defined by the above formula is a requirement for connecting the transfer electrodes 104 with the wiring 105. For example, when W1 = 350 nm, L1 = 1600 nm, and L2 = 300 nm, θmax is approximately 75 [deg].
 図1に戻り、固体撮像装置の構成要素の配置関係について説明を続ける。図1において、配線105による電界の影響をできるだけ光電変換部102に及ぼさないようにするために、配線105は光電変換部102とY方向において隣接する他の光電変換部102との間(後述する素子分離領域106に相当する。)の上方を通るように形成されている。 Referring back to FIG. 1, the description of the arrangement relationship of the components of the solid-state imaging device is continued. In FIG. 1, the wiring 105 is connected between the photoelectric conversion unit 102 and another photoelectric conversion unit 102 adjacent in the Y direction (described later) in order to prevent the electric field due to the wiring 105 from affecting the photoelectric conversion unit 102 as much as possible. It corresponds to the element isolation region 106).
 配線105に対応する半導体基板内の領域には、列方向において隣接する光電変換部102を分離するための素子分離領域106が形成されている。素子分離領域106のY方向の幅は、配線105のY方向の幅より広くなるように形成されている。このようにすることで、配線105による電界が、光電変換部102に及ぼす影響を低減することができる。 In a region in the semiconductor substrate corresponding to the wiring 105, an element isolation region 106 for separating the photoelectric conversion units 102 adjacent in the column direction is formed. The width of the element isolation region 106 in the Y direction is formed to be wider than the width of the wiring 105 in the Y direction. Thus, the influence of the electric field generated by the wiring 105 on the photoelectric conversion unit 102 can be reduced.
 〈シミュレーション実験〉
 転送電極104の端部104a,104bを行方向に対して傾斜させることによって、転送チャネル103におけるポテンシャル勾配が長くなることを実際に確認するために、シミュレーション実験を行った。その結果について、図3,13を用いて説明する。
<Simulation experiment>
In order to actually confirm that the potential gradient in the transfer channel 103 becomes longer by inclining the end portions 104a and 104b of the transfer electrode 104 with respect to the row direction, a simulation experiment was performed. The result will be described with reference to FIGS.
 先ず、図13を用いて、特許文献1の場合のシミュレーション結果について説明する。 First, a simulation result in the case of Patent Document 1 will be described with reference to FIG.
 図13(a)は、平面視した場合の転送電極904A~904Dの形状と、平面視した場合の転送チャネル903のポテンシャルの等高線とを対応させて示す図である。 FIG. 13A is a diagram showing the shape of the transfer electrodes 904A to 904D in plan view and the potential contour lines of the transfer channel 903 in plan view.
 また、転送電極904A,904Dはミドルレベルの転送電圧(VM)が印加されている転送電極であり、転送電極904B,904Cは、ミドルレベルよりも低い電圧値であるローレベルの転送電圧(VL)が印加されている転送電極である。 The transfer electrodes 904A and 904D are transfer electrodes to which a middle level transfer voltage (VM) is applied, and the transfer electrodes 904B and 904C are low level transfer voltages (VL) having a voltage value lower than the middle level. Is a transfer electrode to which is applied.
 ここで、光電変換部(フォトダイオード)902で蓄積された信号電荷が、転送チャネル(垂直CCD)903を転送方向に転送されるまでの流れについて説明する。ここでは、転送電極904Bに対応する光電変換部902、転送電極904A,904B、ならびに転送電極904A,904Bに対応する転送チャネル903に着目して説明する。先ず、転送電極904Bに対応する光電変換部902で蓄積された信号電荷は、転送電極904Bに読み出し電圧(例えば、VMよりも高い電圧)が印加されることにより、転送電極904Bに対応する転送チャネル903に読み出される。そして、転送電極904BにVLの転送電圧を印加し、転送電極904Bに対応する転送チャネル903のポテンシャルを低くすることで、転送チャネル903に電荷転送用のポテンシャル勾配を形成する。これにより、読み出された信号電荷は、転送電極904Bに対応する転送チャネル903から転送電極904Aに対応する転送チャネル903に、すなわち、転送チャネル903を転送方向の上流側から下流側へ転送される。 Here, a flow until the signal charge accumulated in the photoelectric conversion unit (photodiode) 902 is transferred in the transfer direction through the transfer channel (vertical CCD) 903 will be described. Here, description will be given focusing on the photoelectric conversion unit 902 corresponding to the transfer electrode 904B, the transfer electrodes 904A and 904B, and the transfer channel 903 corresponding to the transfer electrodes 904A and 904B. First, the signal charge accumulated in the photoelectric conversion unit 902 corresponding to the transfer electrode 904B is applied to a transfer voltage corresponding to the transfer electrode 904B by applying a read voltage (for example, a voltage higher than VM) to the transfer electrode 904B. Read to 903. Then, a VL transfer voltage is applied to the transfer electrode 904B, and the potential of the transfer channel 903 corresponding to the transfer electrode 904B is lowered, thereby forming a potential gradient for charge transfer in the transfer channel 903. Thus, the read signal charges are transferred from the transfer channel 903 corresponding to the transfer electrode 904B to the transfer channel 903 corresponding to the transfer electrode 904A, that is, the transfer channel 903 is transferred from the upstream side to the downstream side in the transfer direction. .
 図13(a)における二点鎖線で囲った部分が、転送チャネル903に上記の電荷転送用のポテンシャル勾配が形成されている状態のポテンシャル等高線に対応する。図13(b)は、図13(a)における二点鎖線で囲った領域の拡大図である。図13(b)のポテンシャル等高線図における、ポテンシャルが高い地点を結んだものを矢印で示した。そして、図13(c)は、図13(b)における矢印の位置に対応させて示す、転送チャネル903のポテンシャル断面図である。図13(c)では、転送電極904Bに印加される電圧を0[V]から-6[V]に変化させた場合のポテンシャル断面図を示しており、ポテンシャル勾配の長さをD2で示した。 13A corresponds to a potential contour line in a state where the above-described potential gradient for charge transfer is formed in the transfer channel 903. FIG. 13B is an enlarged view of a region surrounded by a two-dot chain line in FIG. In the potential contour map of FIG. 13B, the points connecting the points with high potential are indicated by arrows. FIG. 13C is a potential cross-sectional view of the transfer channel 903 shown corresponding to the position of the arrow in FIG. FIG. 13C shows a potential cross-sectional view when the voltage applied to the transfer electrode 904B is changed from 0 [V] to −6 [V], and the length of the potential gradient is indicated by D2. .
 ここまで、特許文献1の場合のシミュレーション結果について説明した。続いて、図3を用いて、本実施形態の場合のシミュレーション結果について説明する。図3(a)~(c)の各図は、図13の(a)~(c)とそれぞれ対応している。 So far, the simulation results in the case of Patent Document 1 have been described. Subsequently, a simulation result in the case of the present embodiment will be described with reference to FIG. 3A to 3C correspond to FIGS. 13A to 13C, respectively.
 図3(a)は、平面視した場合の転送電極104A~104Dの形状と、平面視した場合の転送チャネル103のポテンシャルの等高線とを対応させて示す図である。図3(a)の上側に転送電極904A~904DのXY平面における概略形状を示しているように、本実施形態の場合におけるシミュレーション実験は、θがθmaxである場合の転送電極104の形状に基づいて行った。図3(a)の下側が転送チャネル103のポテンシャル等高線図であり、二点鎖線で囲っている部分は転送チャネル103において電荷転送用のポテンシャル勾配が形成されている領域である。この二点鎖線で示す領域の拡大図を図3(b)に示し、図13(b)と同じく、ポテンシャルが高い地点を結んだものを矢印で示している。 FIG. 3A is a diagram showing the shape of the transfer electrodes 104A to 104D in a plan view and the potential contour lines of the transfer channel 103 in a plan view. As shown in FIG. 3A on the upper side of the schematic shape of the transfer electrodes 904A to 904D in the XY plane, the simulation experiment in the present embodiment is based on the shape of the transfer electrode 104 when θ is θmax. I went. The lower side of FIG. 3A is a potential contour diagram of the transfer channel 103, and a portion surrounded by a two-dot chain line is a region where a potential gradient for charge transfer is formed in the transfer channel 103. An enlarged view of the region indicated by the two-dot chain line is shown in FIG. 3 (b), and as in FIG. 13 (b), a point connecting points having high potential is indicated by an arrow.
 そして、図3(c)は、転送チャネル103のポテンシャル断面を、図3(b)における矢印の位置に対応させて示す図である。図13(c)と同じく、図3(c)においても転送電極104Bに印加される電圧を0[V]から-6[V]に変化させた場合のポテンシャル断面図を示しており、ポテンシャル勾配の長さをD1で示した。 FIG. 3C shows a potential cross section of the transfer channel 103 corresponding to the position of the arrow in FIG. Similarly to FIG. 13C, FIG. 3C also shows a potential cross-sectional view when the voltage applied to the transfer electrode 104B is changed from 0 [V] to −6 [V], and the potential gradient is shown. The length of was indicated by D1.
 図3(c)におけるポテンシャル勾配の長さD1と図13(c)におけるポテンシャル勾配の長さD2とを比較すると、本実施形態のポテンシャル勾配の長さD1は、特許文献1におけるポテンシャル勾配の長さD2よりも長いことが分かる。すなわち、Y方向において隣接する転送電極104の端部をX方向に対して傾斜して形成することで、信号電荷転送用のポテンシャル勾配の長さを長くすることができることが示された。また、このことは、図3(b)と図13(b)のポテンシャル等高線図を比較において、図3(b)等高線の間隔が、図13(b)の等高線の間隔に比して広いことからも見て取れる。 Comparing the potential gradient length D1 in FIG. 3C with the potential gradient length D2 in FIG. 13C, the potential gradient length D1 of the present embodiment is the length of the potential gradient in Patent Document 1. It can be seen that it is longer than D2. That is, it was shown that the length of the potential gradient for signal charge transfer can be increased by forming the end portion of the transfer electrode 104 adjacent in the Y direction so as to be inclined with respect to the X direction. In addition, this is because the distance between the contour lines in FIG. 3 (b) is wider than the distance between the contour lines in FIG. 13 (b) when comparing the potential contour maps in FIG. 3 (b) and FIG. 13 (b). Can also be seen.
 〈固体撮像装置の断面図〉
 続いて、固体撮像装置の構成について説明する。図4,図5(a)は、本実施形態の固体撮像装置の構成を示す断面図であり、図4(a)は図1のA-A’断面図、図4(b)は図1のB-B’断面図、図5は図1のC-C’断面図である。
<Cross-sectional view of solid-state imaging device>
Next, the configuration of the solid-state imaging device will be described. 4 and 5A are cross-sectional views showing the configuration of the solid-state imaging device according to the present embodiment. FIG. 4A is a cross-sectional view taken along line AA ′ in FIG. 1, and FIG. FIG. 5 is a cross-sectional view taken along the line BB ′ of FIG.
 図4(a),(b)に示すように、本実施形態の固体撮像装置では、半導体基板101aにおけるZ方向の主面上にシリコン酸化膜からなるゲート絶縁膜117が形成されている。ゲート絶縁膜117上には、ポリシリコンからなる転送電極104,配線105が選択的に形成されている。転送電極104,配線105上には、これらを覆うように層間絶縁膜118及び遮光膜119が積層されている。さらに、転送電極104,配線105が形成された領域と形成されていない領域との段差を平坦化するためのBPSG膜(Boron Phosphorous Silicate Glass)120が形成され、BPSG膜120上にカラーフィルタ121が形成されている。カラーフィルタ121上にはトップレンズ122が形成されている。 As shown in FIGS. 4A and 4B, in the solid-state imaging device of this embodiment, a gate insulating film 117 made of a silicon oxide film is formed on the main surface in the Z direction of the semiconductor substrate 101a. On the gate insulating film 117, a transfer electrode 104 and a wiring 105 made of polysilicon are selectively formed. An interlayer insulating film 118 and a light shielding film 119 are stacked on the transfer electrode 104 and the wiring 105 so as to cover them. Further, a BPSG film (Boron Phosphorous Silicate Glass) 120 for flattening a step between a region where the transfer electrode 104 and the wiring 105 are formed and a region where the transfer electrode 104 and the wiring 105 are not formed is formed, and the color filter 121 is formed on the BPSG film 120. Is formed. A top lens 122 is formed on the color filter 121.
 図4(a),(b),図5に示すように、半導体基板101aはn型のシリコン基板であり、半導体基板101aの主面側にはp型の不純物からなるp型のウェル領域101bが形成されている。このp型のウェル領域101bについて、図4(a)及び図5を用いて詳細に説明する。 As shown in FIGS. 4A, 4B, and 5, the semiconductor substrate 101a is an n-type silicon substrate, and a p-type well region 101b made of p-type impurities is formed on the main surface side of the semiconductor substrate 101a. Is formed. The p-type well region 101b will be described in detail with reference to FIGS.
 p型のウェル領域101bは、図4(a)に示すように、第1のn型半導体ウェル領域111と、第1のn型半導体ウェル領域111上に形成された高濃度の第1のp型半導体ウェル領域112と、第1のn型半導体ウェル領域111と第1のp型半導体ウェル領域112との界面付近に形成された高濃度の第1のp型素子分離領域123とを有する。 As shown in FIG. 4A, the p-type well region 101b includes a first n-type semiconductor well region 111 and a high-concentration first p formed on the first n-type semiconductor well region 111. And a high-concentration first p-type element isolation region 123 formed near the interface between the first n-type semiconductor well region 111 and the first p-type semiconductor well region 112.
 図4において、第1のp型素子分離領域123が素子分離領域106(図1)を構成しており、第1のp型素子分離領域123のY方向の幅は、配線105のY方向の幅と同等、又はそれ以上の範囲であるのが好ましく、例えば、100~400[nm]の範囲である。また、配線105に対応する半導体基板101aにおけるウェル領域101b内に第1のp型素子分離領域123が存在している。 In FIG. 4, the first p-type element isolation region 123 forms the element isolation region 106 (FIG. 1), and the width of the first p-type element isolation region 123 in the Y direction is the same as that of the wiring 105 in the Y direction. The range is preferably equal to or greater than the width, for example, in the range of 100 to 400 [nm]. In addition, the first p-type element isolation region 123 exists in the well region 101 b in the semiconductor substrate 101 a corresponding to the wiring 105.
 図5に示すように、p型のウェル領域101bは、さらに、第1のn型半導体ウェル領域111と第1のp型半導体ウェル領域112との界面付近に形成された高濃度の第2のp型素子分離領域115と、第1のn型半導体ウェル領域111及び第1のp型半導体ウェル領域112から離れた領域に形成された第2のp型半導体ウェル領域113と、第2のp型半導体ウェル領域113上に形成された第2のn型半導体ウェル領域114と、第2のp型半導体ウェル領域113と第2のn型半導体ウェル領域114との界面付近に形成された第3のp型素子分離領域116とを有する。 As shown in FIG. 5, the p-type well region 101 b further includes a second high-concentration second region formed near the interface between the first n-type semiconductor well region 111 and the first p-type semiconductor well region 112. a p-type element isolation region 115; a second p-type semiconductor well region 113 formed in a region away from the first n-type semiconductor well region 111 and the first p-type semiconductor well region 112; and a second p-type A second n-type semiconductor well region 114 formed on the p-type semiconductor well region 113 and a third n-type formed near the interface between the second p-type semiconductor well region 113 and the second n-type semiconductor well region 114. P-type element isolation region 116.
 図5において、第2のn型半導体ウェル領域114が転送チャネル103(図1)を構成しており、第2のn型半導体ウェル領域114のX方向の幅は、例えば、250~400[nm]の範囲であり、深さは例えば、50~100[nm]である。第2のn型半導体ウェル領域114は、例えば、ヒ素等を注入することで形成され、注入されるヒ素の不純物濃度は、例えば、4.0~6.0E17[cm-3]である。図4(b),図5に示すように、第2のn型半導体ウェル領域114に相当するゲート絶縁膜117上の領域に転送電極104が存在している。 In FIG. 5, the second n-type semiconductor well region 114 forms the transfer channel 103 (FIG. 1). The width of the second n-type semiconductor well region 114 in the X direction is, for example, 250 to 400 [nm]. The depth is, for example, 50 to 100 [nm]. The second n-type semiconductor well region 114 is formed, for example, by implanting arsenic or the like, and the impurity concentration of the implanted arsenic is, for example, 4.0 to 6.0E17 [cm −3 ]. As shown in FIGS. 4B and 5, the transfer electrode 104 exists in a region on the gate insulating film 117 corresponding to the second n-type semiconductor well region 114.
 図5において、第1のp型素子分離領域123(素子分離領域106)と第2のn型半導体ウェル領域114(転送チャネル103)との間のX方向の幅は、例えば、25~100[nm]程度である。 In FIG. 5, the width in the X direction between the first p-type element isolation region 123 (element isolation region 106) and the second n-type semiconductor well region 114 (transfer channel 103) is, for example, 25 to 100 [ nm].
 なお、特許文献1に係る固体撮像装置(図12)においては、仮想線I9に示すように、光電変換部902の下流側の端部が転送電極904の下流側の端部と揃っている。一方、本実施形態に係る固体撮像素子(図1)においては、転送電極104の下流側他端が光電変換部102の下流側他端よりも、ずれ幅len2だけ上流側へずれている。このことは、図4(a),(b)からも同様に見て取れる。 In the solid-state imaging device according to Patent Document 1 (FIG. 12), the downstream end of the photoelectric conversion unit 902 is aligned with the downstream end of the transfer electrode 904 as indicated by a virtual line I9. On the other hand, in the solid-state imaging device according to the present embodiment (FIG. 1), the other downstream end of the transfer electrode 104 is shifted upstream by the shift width len2 from the other downstream end of the photoelectric conversion unit 102. This can also be seen from FIGS. 4A and 4B.
 さらに、特許文献1に係る固体撮像装置(図12)におけるD-D’断面は、本実施形態に係る固体撮像素子(図1)におけるC-C’断面に対応する。特許文献1に係る固体撮像装置に係るD-D’断面は特に図示しないが、このD-D’断面においては、図5の領域bに示すような転送電極104が分断された領域は現れない。 Further, the D-D ′ cross section in the solid-state imaging device (FIG. 12) according to Patent Document 1 corresponds to the C-C ′ cross section in the solid-state imaging device (FIG. 1) according to the present embodiment. The DD ′ cross section relating to the solid-state imaging device according to Patent Document 1 is not particularly illustrated, but in this DD ′ cross section, the region where the transfer electrode 104 is divided as shown in the region b of FIG. 5 does not appear. .
 [第1の実施形態の変形例]
 転送電極における端部の傾斜方向は特に限定されない。図6(a)に示すように、図1~3に図示した転送電極104における端部の傾斜方向とは逆の方向に、転送電極104の端部が傾斜していることとしても、上記と同様の効果が得られる。
[Modification of First Embodiment]
The direction of inclination of the end of the transfer electrode is not particularly limited. As shown in FIG. 6A, the end of the transfer electrode 104 may be inclined in a direction opposite to the direction of inclination of the end of the transfer electrode 104 shown in FIGS. Similar effects can be obtained.
 ここで、「Y方向(列方向)において隣接する転送電極の上流側の端部(または下流側の端部)がX方向(行方向)に対して傾斜」しているとは、Y方向において隣接する転送電極の上流側の端部において最も上流側の部分と最も下流側の部分を結んだ線分(または下流側の端部において最も上流側の部分と最も下流側の部分を結んだ線分)がX方向に対して傾斜していることを指し、転送電極104の端部が直線状に形成されていない場合も含まれるものとする。例えば、図6(b)に示すような、転送電極104の端部が階段状に形成されている場合も、上記の「Y方向において隣接する転送電極の上流側の端部(または下流側の端部)が行方向に対して傾斜」していることに含まれる。なお、言うまでもなく、階段状に形成されている端部の段数は特に限定されない。また、特に図示しないが、転送電極104の端部がV字状であっても、上記で説明した効果と同様の効果を得ることが可能である。 Here, “the upstream end (or downstream end) of the adjacent transfer electrode in the Y direction (column direction) is inclined with respect to the X direction (row direction)” means that in the Y direction A line segment connecting the most upstream part and the most downstream part at the upstream end of the adjacent transfer electrode (or a line connecting the most upstream part and the most downstream part at the downstream end. ")" Is inclined with respect to the X direction, and the case where the end of the transfer electrode 104 is not formed in a straight line is also included. For example, as shown in FIG. 6B, even when the end portion of the transfer electrode 104 is formed in a stepped shape, the “upstream end portion (or the downstream end portion of the transfer electrode adjacent in the Y direction” described above. It is included that the “end portion” is inclined with respect to the row direction. Needless to say, the number of steps at the end formed in a staircase shape is not particularly limited. Although not particularly illustrated, even if the end portion of the transfer electrode 104 is V-shaped, the same effect as described above can be obtained.
 [第2の実施形態]
 〈固体撮像装置の構成要素の配置関係〉
 図7は、第2の実施形態に係る固体撮像装置の構成要素の配置関係を模式的に示す図である。第1の実施形態と相違する点は、Y方向において隣接する転送電極204の上流側の端部204aと下流側の端部204bとで挟まれた領域の位置、ならびに、X方向において隣接する転送電極が金属配線205により接続されている点である。
[Second Embodiment]
<Relationship of components of solid-state imaging device>
FIG. 7 is a diagram schematically illustrating the arrangement relationship of the components of the solid-state imaging device according to the second embodiment. The differences from the first embodiment are the position of the region sandwiched between the upstream end portion 204a and the downstream end portion 204b of the transfer electrode 204 adjacent in the Y direction, and the transfer adjacent in the X direction. The electrode is connected by the metal wiring 205.
 図1に示すように、第1の実施形態では、転送電極104の端部104a,104bで挟まれた領域が、光電変換部102の行方向に位置している。一方、本実施形態では、図7に示すように、転送電極204の端部204a,204bで挟まれた領域が、素子分離領域206の行方向に存在する。このような構成にすることで、素子分離領域206のポテンシャルが転送チャネル203に影響することによる、信号電荷の取り残しを抑制することができる。この詳細については後ほど図8を用いて詳細に説明する。 As shown in FIG. 1, in the first embodiment, the region sandwiched between the end portions 104 a and 104 b of the transfer electrode 104 is located in the row direction of the photoelectric conversion unit 102. On the other hand, in the present embodiment, as shown in FIG. 7, the region sandwiched between the end portions 204 a and 204 b of the transfer electrode 204 exists in the row direction of the element isolation region 206. With such a configuration, it is possible to suppress the remaining of signal charges due to the potential of the element isolation region 206 affecting the transfer channel 203. This will be described in detail later with reference to FIG.
 金属配線205は、例えば、タングステン、アルミニウム、銅等の金属材料で形成されている。コンタクト208の径は、転送電極204のX方向の幅よりも小さく設定されており、例えば、200[nm]~350[nm]である。また、Y方向において隣接する光電変換部202の間に位置する領域における、金属配線205のY方向の幅len3は、例えば、100[nm]~400[nm]である。 The metal wiring 205 is made of, for example, a metal material such as tungsten, aluminum, or copper. The diameter of the contact 208 is set smaller than the width of the transfer electrode 204 in the X direction, and is, for example, 200 [nm] to 350 [nm]. In addition, the width len3 in the Y direction of the metal wiring 205 in the region located between adjacent photoelectric conversion units 202 in the Y direction is, for example, 100 [nm] to 400 [nm].
 上記の金属材料は転送電極204を構成するポリシリコンより低抵抗であるため、第1の実施形態の場合と比較して、転送電極204に対して、矩形波状の立ち上がりおよび立ち下がりがより急峻な転送電圧を与えることができ、したがって、電荷転送速度を向上させることが可能である。 Since the above metal material has a lower resistance than the polysilicon constituting the transfer electrode 204, the rising and falling of the rectangular wave shape are steeper with respect to the transfer electrode 204 than in the case of the first embodiment. A transfer voltage can be applied, and therefore the charge transfer rate can be improved.
 〈転送チャネルにおけるポテンシャル勾配〉
 次に、転送電極204の端部204a,204bで挟まれた領域が、素子分離領域206の行方向に存在するようにしたことで得られる効果について、図8を用いて説明する。
<Potential gradient in transfer channel>
Next, an effect obtained by causing the region sandwiched between the end portions 204a and 204b of the transfer electrode 204 to exist in the row direction of the element isolation region 206 will be described with reference to FIG.
 図8(a)は、第2の実施形態に係る転送チャネル203のポテンシャル断面図を転送電極204の位置に対応させて示す図である。図8(b)は、第1の実施形態に係る転送チャネル103に係るポテンシャル断面図を転送電極104の位置に対応させて示す図である。なお、図8各図において、簡略化するために図示を省略した構成要素がある。 FIG. 8A is a diagram showing a potential cross-sectional view of the transfer channel 203 according to the second embodiment in correspondence with the position of the transfer electrode 204. FIG. 8B is a diagram showing a potential cross-sectional view related to the transfer channel 103 according to the first embodiment in association with the position of the transfer electrode 104. In each drawing of FIG. 8, there are components that are not shown for the sake of simplicity.
 先ず、図8(b)を用いて、第1の実施形態に係る場合について説明する。素子分離領域106は、隣接する光電変換部102を分離するためのものであるため、ポテンシャルは低い。また、この素子分離領域106のポテンシャルの影響は、少なからず転送チャネル103のポテンシャルにも影響を及ぼすおそれがある。すなわち、ポテンシャル断面図に破線で示したように、転送チャネル103における素子分離領域106とX方向に対応する領域には局部的にポテンシャルが低くなる部分ができてしまう。したがって、信号電荷の転送時には、ポテンシャル断面図に実線で示したように、素子分離領域106の影響を受けて、ポテンシャル勾配の傾きが小さくなる裾の領域に局部的にポテンシャルが低くなる部分ができてしまうこととなり、この局部的にポテンシャルが低くなる部分が信号電荷の取り残しを招く恐れがある。また、この局部的にポテンシャルが低くなる部分は、特に微細な画素サイズになるほど顕著になる。 First, the case according to the first embodiment will be described with reference to FIG. The element isolation region 106 is for isolating adjacent photoelectric conversion units 102, and thus has a low potential. In addition, the influence of the potential of the element isolation region 106 may affect the potential of the transfer channel 103 as well. That is, as indicated by a broken line in the potential cross-sectional view, there is a portion where the potential is locally lowered in the region corresponding to the element isolation region 106 and the X direction in the transfer channel 103. Therefore, at the time of signal charge transfer, as shown by the solid line in the potential cross-sectional view, there is a portion where the potential is locally lowered in the bottom region where the gradient of the potential gradient becomes small due to the influence of the element isolation region 106. Therefore, the part where the potential is locally lowered may cause the signal charge to be left behind. Further, the part where the potential is locally lowered becomes more remarkable as the pixel size becomes particularly small.
 次に、図8(a)を用いて、本実施形態に係る場合について説明する。第1の実施形態と同様に、光電変換部202を分離する素子分離領域206の影響を受けて、本実施形態における転送チャネル203にも局部的にポテンシャルが低くなる部分ができる。しかしながら、信号電荷の転送時には、ポテンシャル断面図に実線で示したように、素子分離領域206の影響による局部的にポテンシャルが低くなる部分が、ポテンシャル勾配の傾きが最大になる中腹付近に位置している。したがって、本実施形態においては、上記の問題は招来しない。 Next, the case according to this embodiment will be described with reference to FIG. Similar to the first embodiment, the transfer channel 203 in this embodiment has a portion where the potential is locally lowered due to the influence of the element isolation region 206 that separates the photoelectric conversion unit 202. However, at the time of signal charge transfer, as indicated by the solid line in the potential cross-sectional view, the part where the potential is locally lowered due to the influence of the element isolation region 206 is located near the middle where the gradient of the potential gradient is maximum. Yes. Therefore, in the present embodiment, the above problem does not occur.
 〈転送電極の端部と他の構成要素との配置関係〉
 次に、上記効果をより効果的に得るための転送電極204の端部の位置について、図7を用いて説明する。
<Relationship between transfer electrode end and other components>
Next, the position of the end of the transfer electrode 204 for obtaining the above effect more effectively will be described with reference to FIG.
 図7に示すように、転送チャネル203における、転送チャネル203の中心をY方向に結ぶ仮想線I2とY方向において隣接する素子分離領域206の中心をX方向に結んだ仮想線I4とが交差する点(o)に対応する領域は、製造上ポテンシャルが低くなりやすい領域である。一方、転送チャネル203における、Y方向において隣接する転送電極204の上流側の端部204aと下流側の端部204bとで挟まれた領域の中心を傾斜方向に結ぶ仮想線I3を通る領域は、電荷転送時においてポテンシャル勾配の傾きが大きくなる領域である。本実施形態においては、これら三本の全ての仮想線が点(o)で交差するように形成されている。これにより、ポテンシャルが低くなりやすい領域と電荷転送時においてポテンシャル勾配の傾きが最も大きくなる領域とが重なるようになるので、転送チャネルにおいてポテンシャルが低くなっている領域があることによる信号電荷の取り残しを、効率的に防ぐことができる。 As shown in FIG. 7, in the transfer channel 203, a virtual line I2 connecting the center of the transfer channel 203 in the Y direction intersects with a virtual line I4 connecting the center of the element isolation region 206 adjacent in the Y direction in the X direction. The region corresponding to the point (o) is a region where the manufacturing potential tends to be low. On the other hand, in the transfer channel 203, a region passing through a virtual line I3 that connects the center of the region sandwiched between the upstream end portion 204a and the downstream end portion 204b of the transfer electrode 204 adjacent in the Y direction in the inclination direction is This is a region where the gradient of the potential gradient becomes large during charge transfer. In the present embodiment, all three imaginary lines intersect with each other at the point (o). As a result, the region where the potential tends to decrease overlaps with the region where the gradient of the potential gradient becomes the largest during charge transfer, so there is no signal charge left over due to the region where the potential is low in the transfer channel. Can be efficiently prevented.
 なお、上記効果を得るためには、厳密に上記の要件を満たしている必要はない。転送電極204の端部204a,204bで挟まれた領域が、素子分離領域206の行方向に存在している、より好ましくは、転送電極204の端部204a,204bで挟まれた領域の中心が素子分離領域206の行方向に存在していれば、上記の効果を得ることが可能である。 In order to obtain the above effect, it is not necessary to strictly satisfy the above requirements. The region sandwiched between the end portions 204a and 204b of the transfer electrode 204 exists in the row direction of the element isolation region 206. More preferably, the center of the region sandwiched between the end portions 204a and 204b of the transfer electrode 204 is the center. If the element isolation region 206 exists in the row direction, the above effect can be obtained.
 〈転送電極の端部のX方向に対する傾斜の角度〉
 転送電極204の端部204a,204bのX方向に対する傾斜角度については、第1の実施形態のような設定範囲内にある必要はなく、傾斜角度の上限は、転送電極204の構成に依存して決定されることはない。例えば、図9に示すように、転送電極204がY方向に2画素以上にわたって形成されていることとしてもよい。なお、図9においては金属配線205,205cの図示は省略した。
<Inclination angle with respect to X direction of end of transfer electrode>
The inclination angle of the end portions 204a and 204b of the transfer electrode 204 with respect to the X direction need not be within the setting range as in the first embodiment, and the upper limit of the inclination angle depends on the configuration of the transfer electrode 204. It will never be decided. For example, as shown in FIG. 9, the transfer electrode 204 may be formed over two or more pixels in the Y direction. In FIG. 9, illustration of the metal wirings 205 and 205c is omitted.
 また、第1の実施形態に係る変形例(図6)を、第2の実施形態およびその変形例に適用することも可能である。 Further, the modification (FIG. 6) according to the first embodiment can be applied to the second embodiment and the modification.
 [第3の実施形態]
 図10は、第3の実施形態に係る固体撮像装置の構成要素の配置関係を模式的に示す図である。第2の実施形態と相違する点は、金属配線305の形状が異なる点である。なお、図10においては素子分離領域の図示は省略した。
[Third Embodiment]
FIG. 10 is a diagram schematically illustrating the arrangement relationship of the components of the solid-state imaging device according to the third embodiment. The difference from the second embodiment is that the shape of the metal wiring 305 is different. In FIG. 10, the element isolation region is not shown.
 本実施形態における金属配線305は、そのY方向の幅が光電変換部302の列方向の幅よりも大きい。また、金属配線305における光電変換部302と対向する領域には開口が設けられており、光電変換部302への光の入射を遮らないような構成になっている。Y方向において隣接する金属配線305の間に相当する領域(隣接する金属配線305の間の領域)が、Y方向において隣接する光電変換部302の間に存在する。同様に、最終行の転送電極304cも、金属配線305cにより互いに接続されている。また、金属配線305(または金属配線305c)と転送電極304(または転送電極304c)はコンタクト308を介して導通している。 The width of the metal wiring 305 in the present embodiment in the Y direction is larger than the width of the photoelectric conversion unit 302 in the column direction. In addition, an opening is provided in a region of the metal wiring 305 facing the photoelectric conversion unit 302 so that light is not blocked from entering the photoelectric conversion unit 302. A region corresponding to an area between adjacent metal wirings 305 in the Y direction (an area between adjacent metal wirings 305) exists between the photoelectric conversion units 302 adjacent in the Y direction. Similarly, the transfer electrodes 304c in the last row are also connected to each other by a metal wiring 305c. Further, the metal wiring 305 (or the metal wiring 305 c) and the transfer electrode 304 (or the transfer electrode 304 c) are electrically connected through the contact 308.
 Y方向において隣接する金属配線305の間に相当する領域のY方向の幅len4(隣接する金属配線305の間の距離)は、例えば、150[nm]~300[nm]である。また、Y方向において隣接する光電変換部302の間の領域における、金属配線305のY方向の幅len5は、例えば、100[nm]~200[nm]である。 The width len4 (distance between adjacent metal wirings 305) in the Y direction of the region corresponding to the space between adjacent metal wirings 305 in the Y direction is, for example, 150 [nm] to 300 [nm]. Further, the width len5 in the Y direction of the metal wiring 305 in the region between the photoelectric conversion units 302 adjacent in the Y direction is, for example, 100 [nm] to 200 [nm].
 上記のような構成にすることで、金属配線305のY方向の幅を大きくし、金属配線305の断面積を拡張することができる。金属配線305の抵抗は断面積に反比例するので、金属配線305の断面積が拡張した分、金属配線305のさらなる低抵抗化が図られる。したがって、転送電極304に対して、矩形波状の立ち上がりおよび立ち下がりが急峻な転送電圧を与えることができ、電荷転送速度の向上に貢献できる。 With the above configuration, the width of the metal wiring 305 in the Y direction can be increased, and the cross-sectional area of the metal wiring 305 can be expanded. Since the resistance of the metal wiring 305 is inversely proportional to the cross-sectional area, the resistance of the metal wiring 305 can be further reduced as the cross-sectional area of the metal wiring 305 is expanded. Therefore, a transfer voltage with a steep rising and falling of a rectangular wave shape can be applied to the transfer electrode 304, which can contribute to an improvement in charge transfer speed.
 また、光電変換部302と転送チャネル303の間に対応する領域上にも金属配線305が形成されているため、転送電極304に加えて、この領域上にある金属配線305に対しても読み出し電圧が印加される。したがって、第1および第2の実施形態と比較して、光電変換部302から転送チャネル303へ信号電荷が読み出しやすくなるため、転送電極304の行方向の幅を縮小できる。その結果、光電変換部302の開口面積が拡大でき、固体撮像装置の高感度化を図ることができる。 Further, since the metal wiring 305 is also formed on the corresponding region between the photoelectric conversion unit 302 and the transfer channel 303, the read voltage is applied to the metal wiring 305 on this region in addition to the transfer electrode 304. Is applied. Therefore, compared to the first and second embodiments, signal charges can be easily read from the photoelectric conversion unit 302 to the transfer channel 303, and thus the width of the transfer electrode 304 in the row direction can be reduced. As a result, the opening area of the photoelectric conversion unit 302 can be increased, and the sensitivity of the solid-state imaging device can be increased.
 さらに、金属配線305を光電変換部302を除く部分に対する遮光膜として機能させることが可能である。これにより、半導体基板における光電変換部302以外の領域で光電変換が起こることを防止できるので、その結果、スミアノイズ低減に貢献できる。 Furthermore, the metal wiring 305 can be made to function as a light-shielding film for the portion excluding the photoelectric conversion portion 302. As a result, it is possible to prevent photoelectric conversion from occurring in a region other than the photoelectric conversion unit 302 in the semiconductor substrate, and as a result, it is possible to contribute to reducing smear noise.
 なお、第1の実施形態に係る変形例(図6)を、第3の実施形態に適用することも可能である。 Note that the modification (FIG. 6) according to the first embodiment can also be applied to the third embodiment.
 以上、第1乃至第3の実施形態および変形例について説明したが、本発明はこれらの例に限られない。例えば、下記のような変形例が考えられる。以下、第1の実施形態を例に挙げて説明するが、他の実施形態ならびに変形例でも同様に適用できることは言うまでもない。 As mentioned above, although 1st thru | or 3rd embodiment and the modification were demonstrated, this invention is not limited to these examples. For example, the following modifications can be considered. Hereinafter, the first embodiment will be described as an example, but it goes without saying that other embodiments and modifications can be similarly applied.
 [その他の変形例]
 (1)上記の実施形態においては、転送電極の上流側端部の傾斜と下流側端部の傾斜が等しくなるように形成されていることとしたが、本発明はこれに限られない。上流側の端部が行方向に対して傾斜し、この傾斜に対応して下流側の端部が行方向に対して傾斜していればよく、上流側端部の傾斜と下流側端部の傾斜は異なっていることとしてもよい。しかしながら、上流側端部の傾斜に対応して下流側の端部が傾斜している必要があり、上流側端部の傾斜方向に対して逆の方向に下流側の端部が傾斜している場合は含まないものとする。
[Other variations]
(1) In the above embodiment, the transfer electrode is formed so that the slope of the upstream end and the slope of the downstream end are equal, but the present invention is not limited to this. It is sufficient that the upstream end is inclined with respect to the row direction, and the downstream end is inclined with respect to the row direction corresponding to this inclination. The upstream end and the downstream end are inclined. The inclination may be different. However, the end on the downstream side needs to be inclined corresponding to the inclination of the upstream end, and the downstream end is inclined in a direction opposite to the inclination direction of the upstream end. Cases shall not be included.
 (2)上記の実施形態では、垂直転送チャネルにおける垂直転送電極の端部を傾斜させる例について説明したが、図11に示すように、水平転送チャネルにおける水平転送電極の端部を傾斜させることしてもよい。 (2) In the above embodiment, the example in which the end of the vertical transfer electrode in the vertical transfer channel is inclined has been described. However, as shown in FIG. 11, the end of the horizontal transfer electrode in the horizontal transfer channel is inclined. Also good.
 図11は、本変形例に係る固体撮像装置の構成要素の配置関係を模式的に示す図である。光電変換部402に蓄積された信号電荷は、転送電極404に読み出し電圧が印加されることにより転送チャネル403に読み出される。転送方向の下流側終端の転送チャネル403まで転送された信号電荷は、最終行の転送電極404cに所定電圧が印加されることで水平転送チャネル407に転送される。水平転送チャネル407に転送された信号電荷は、対応する水平転送電極409に水平転送用の電圧が印加されることで、水平転送チャネル407を転送方向の上流側から下流側へ転送される。このとき、水平転送電極409の端部をY方向に対して傾斜して形成されている。なお、水平転送チャネル407においても、光電変換部402からなる光電変換部列一つに対し、一つの水平転送電極409を配置した1画素1電極型となっている。 FIG. 11 is a diagram schematically showing the arrangement relationship of the components of the solid-state imaging device according to this modification. The signal charge accumulated in the photoelectric conversion unit 402 is read out to the transfer channel 403 when a read voltage is applied to the transfer electrode 404. The signal charge transferred to the transfer channel 403 at the downstream end in the transfer direction is transferred to the horizontal transfer channel 407 by applying a predetermined voltage to the transfer electrode 404c in the last row. The signal charge transferred to the horizontal transfer channel 407 is transferred from the upstream side to the downstream side in the transfer direction by applying a horizontal transfer voltage to the corresponding horizontal transfer electrode 409. At this time, the end of the horizontal transfer electrode 409 is formed to be inclined with respect to the Y direction. Note that the horizontal transfer channel 407 is also a one-pixel one-electrode type in which one horizontal transfer electrode 409 is arranged for one photoelectric conversion unit row formed of the photoelectric conversion units 402.
 図11に示すように、転送チャネル403のX方向の幅と比較すると、水平転送チャネル407のY方向の幅は大きく、例えば、数[μm]~数十[μm]である。そのため、水平転送チャネル407においては転送チャネル403と比較して、信号電荷の取り残しが発生しやすい。さらに、水平転送チャネル407においては、通常、例えば30~50[MHz]程度の高い転送周波数で信号電荷の転送が行われており、信号電荷の取り残しの問題が顕著になる。したがって、水平転送電極409の端部を傾斜させることによる電荷転送速度の高速化の効果は大きい。 As shown in FIG. 11, the width of the horizontal transfer channel 407 in the Y direction is larger than the width of the transfer channel 403 in the X direction, for example, several [μm] to several tens [μm]. Therefore, in the horizontal transfer channel 407, signal charges are easily left behind as compared with the transfer channel 403. Further, in the horizontal transfer channel 407, signal charges are normally transferred at a transfer frequency as high as, for example, about 30 to 50 [MHz], and the problem of remaining signal charges becomes significant. Therefore, the effect of increasing the charge transfer rate by tilting the end of the horizontal transfer electrode 409 is significant.
 (3)各図は、本発明が理解できる程度に配置関係を概略的に示してあるに過ぎず、従って、本発明は図示例に限定されるものではない。また、図を分かり易くするために、一部省略した部分がある。 (3) Each drawing only schematically shows the arrangement relationship to the extent that the present invention can be understood, and therefore the present invention is not limited to the illustrated examples. In addition, some parts are omitted for easy understanding of the drawing.
 (4)上記の実施形態における「X方向に対する傾斜は全ての転送電極で等しい」には、製造誤差等の範囲内での誤差は当然許容されるものとする。 (4) In the above embodiment, “inclination with respect to the X direction is the same for all transfer electrodes”, an error within a range such as a manufacturing error is naturally allowed.
 (5)上記の実施形態においては、信号電荷が電子である場合について説明したが、信号電荷がホールである場合についても、上記実施形態のn型とp型を入れ替えることで同様の原理で説明できる。 (5) In the above embodiment, the case where the signal charge is an electron has been described. However, the case where the signal charge is a hole is also described by replacing the n-type and the p-type in the above-described embodiment on the same principle. it can.
 (6)ハイレベル,ミドルレベル,ローレベルにより表される論理レベルは、本発明を具体的に説明するために例示するものであり、例示された論理レベルの異なる組み合わせにより、同等の結果を得ることも可能である。 (6) The logical levels represented by the high level, the middle level, and the low level are exemplified to specifically describe the present invention, and equivalent results are obtained by different combinations of the illustrated logical levels. It is also possible.
 (7)上記の実施形態および変形例は単なる好適例に過ぎず、本発明は何らこれに限定されない。本発明の要旨を逸脱しない範囲で、上記実施形態および変形例に挙げた構成を適宜好適に組み合わせたり、上記実施形態等に対して当業者が思いつく範囲内の変更を施した様々な構成がとり得る。また、上記実施形態で挙げた数値や材料等は一例であり、これらに限定されるものではない。 (7) The above embodiments and modifications are merely suitable examples, and the present invention is not limited to these. Without departing from the scope of the present invention, the configurations described in the above embodiments and modifications may be appropriately combined as appropriate, or various configurations may be applied to the above embodiments and the like within the scope conceived by those skilled in the art. obtain. In addition, the numerical values, materials, and the like given in the above embodiment are examples, and the invention is not limited to these.
 本発明は、例えば、高画質が要求されるデジタルスチルカメラおよびデジタルビデオカメラ等の電子機器に好適に利用可能である。 The present invention can be suitably used for electronic devices such as digital still cameras and digital video cameras that require high image quality, for example.
  101a 半導体基板
  101b p型のウェル領域
  102、202、302、402 光電変換部
  103、203、303、403 転送チャネル
  104、204、304、404 転送電極
  104a、204a 転送電極の上流側の端部
  104b、204b 転送電極の下流側の端部
  104c、204c、304c、404c 最終行の転送電極
  105 配線
  205、305 金属配線
  205c、305c 最終行の金属配線
  106、206 素子分離領域
  107、407 水平転送チャネル
  208、308 コンタクト
  409 水平転送電極
  111 第1のn型半導体ウェル領域
  112 第1のp型半導体ウェル領域
  113 第2のp型半導体ウェル領域
  114 第2のn型半導体ウェル領域
  115 第2のp型素子分離領域
  116 第3のp型素子分離領域
  117 ゲート絶縁膜
  118 層間絶縁膜
  119 遮光膜
  120 BPSG膜
  121 カラーフィルタ
  122 トップレンズ
  123 第1のp型素子分離領域
  902 フォトダイオード(光電変換部)
  903 垂直CCD(転送チャネル)
  904 転送電極
  905 接続部
101a semiconductor substrate 101b p- type well region 102, 202, 302, 402 photoelectric conversion unit 103, 203, 303, 403 transfer channel 104, 204, 304, 404 transfer electrode 104a, 204a upstream end 104b of transfer electrode, 204b Transfer electrode downstream end 104c, 204c, 304c, 404c Last row transfer electrode 105 Wiring 205, 305 Metal wiring 205c, 305c Last row metal wiring 106, 206 Element isolation region 107, 407 Horizontal transfer channel 208, 308 Contact 409 Horizontal transfer electrode 111 First n-type semiconductor well region 112 First p-type semiconductor well region 113 Second p-type semiconductor well region 114 Second n-type semiconductor well region 115 Second p-type element isolation Region 116 3rd P-type element isolation region 117 Gate insulating film 118 Interlayer insulating film 119 Light-shielding film 120 BPSG film 121 Color filter 122 Top lens 123 First p-type element isolation region 902 Photodiode (photoelectric conversion unit)
903 Vertical CCD (transfer channel)
904 Transfer electrode 905 Connection part

Claims (8)

  1.  半導体基板内に行列状に形成され、入射光を信号電荷に変換する複数の光電変換部と、
     前記半導体基板内における、隣接する光電変換部の列の間に形成された転送チャネルと、
     前記半導体基板上における前記転送チャネルに対応する領域に、前記光電変換部と1対1に対応する形態で列方向に複数形成され、対応する光電変換部から信号電荷を読み出して前記転送チャネル内を転送方向の上流側から下流側へ転送させる転送電極と、
     を備え、
     前記複数の転送電極を平面視した場合に、列方向において隣接する転送電極の端部のうち上流側の端部が行方向に対して傾斜して形成されるとともに、前記上流側の端部の傾斜に対応してこれと列方向において隣接する転送電極の下流側の端部が行方向に対して傾斜して形成されている
     ことを特徴とする固体撮像装置。
    A plurality of photoelectric conversion units formed in a matrix in a semiconductor substrate and converting incident light into signal charges;
    A transfer channel formed between adjacent rows of photoelectric conversion units in the semiconductor substrate;
    In the region corresponding to the transfer channel on the semiconductor substrate, a plurality of one-to-one forms corresponding to the photoelectric conversion units are formed in the column direction, and signal charges are read from the corresponding photoelectric conversion units to pass through the transfer channel. A transfer electrode for transferring from the upstream side to the downstream side in the transfer direction;
    With
    When the plurality of transfer electrodes are viewed in plan, an end on the upstream side among the ends of the transfer electrodes adjacent in the column direction is formed to be inclined with respect to the row direction, and the end of the upstream side is formed. Corresponding to the inclination, the downstream end of the transfer electrode adjacent in the column direction is formed to be inclined with respect to the row direction.
  2.  前記固体撮像装置は、さらに、前記半導体基板内に、列方向において隣接する光電変換部を分離する素子分離領域を備え、
     列方向において隣接する転送電極の前記上流側の端部と前記下流側の端部とで挟まれた領域が、前記素子分離領域の行方向に存在する
     ことを特徴とする請求項1に記載の固体撮像装置。
    The solid-state imaging device further includes, in the semiconductor substrate, an element isolation region that separates adjacent photoelectric conversion units in the column direction,
    The region sandwiched between the upstream end portion and the downstream end portion of the transfer electrodes adjacent in the column direction exists in the row direction of the element isolation region. Solid-state imaging device.
  3.  列方向において隣接する転送電極の前記上流側の端部と前記下流側の端部とで挟まれた領域の中心が、前記素子分離領域の行方向に存在する
     ことを特徴とする請求項2に記載の固体撮像装置。
    The center of a region sandwiched between the upstream end and the downstream end of the transfer electrodes adjacent in the column direction exists in the row direction of the element isolation region. The solid-state imaging device described.
  4.  前記固体撮像装置は、さらに、
     前記複数の転送電極の上方に設けられ、各行に配置されるとともに行方向に延び、かつ、前記複数の転送電極よりも低抵抗な金属配線を備え、
     前記各行の転送電極は、対応する行の金属配線とコンタクトを介して電気的に接続されている
     ことを特徴とする請求項1~3のいずれか一項に記載の固体撮像装置。
    The solid-state imaging device further includes:
    Provided above the plurality of transfer electrodes, provided in each row and extending in the row direction, and comprising a metal wiring having a lower resistance than the plurality of transfer electrodes,
    The solid-state imaging device according to any one of claims 1 to 3, wherein the transfer electrode of each row is electrically connected to the metal wiring of the corresponding row via a contact.
  5.  行方向において隣接する転送電極同士が分離されている
     ことを特徴とする請求項4に記載の固体撮像装置。
    The solid-state imaging device according to claim 4, wherein transfer electrodes adjacent in the row direction are separated from each other.
  6.  前記金属配線の幅が、前記光電変換部の列方向の幅よりも大きく、
     前記金属配線における前記光電変換部と対向する領域に開口が設けられており、
     列方向において隣接する金属配線の間に相当する領域が、列方向において隣接する光電変換部の間に存在する
     ことを特徴とする請求項4または5のいずれか一項に記載の固体撮像装置。
    The width of the metal wiring is larger than the width in the column direction of the photoelectric conversion unit,
    An opening is provided in a region facing the photoelectric conversion unit in the metal wiring,
    6. The solid-state imaging device according to claim 4, wherein a region corresponding to between the metal wirings adjacent in the column direction exists between the photoelectric conversion units adjacent in the column direction.
  7.  前記複数の転送電極における端部の行方向に対する傾斜は、各転送電極で等しい
     ことを特徴とする請求項1に記載の固体撮像装置。
    2. The solid-state imaging device according to claim 1, wherein inclinations of the end portions of the plurality of transfer electrodes with respect to the row direction are the same for each transfer electrode.
  8.  前記固体撮像装置は、さらに、前記半導体基板内に、列方向において隣接する光電変換部を分離する素子分離領域を備え、
     列方向において隣接する転送電極の前記上流側の端部と前記下流側の端部とで挟まれた領域の中心を前記傾斜方向に結ぶ仮想線が、
     前記転送チャネルの中心を列方向に結ぶ仮想線と、列方向において隣接する素子分離領域の中心を行方向に結んだ仮想線と交差する
     ことを特徴とする請求項7に記載の固体撮像装置。
    The solid-state imaging device further includes, in the semiconductor substrate, an element isolation region that separates adjacent photoelectric conversion units in the column direction,
    An imaginary line connecting the center of the region sandwiched between the upstream end and the downstream end of the transfer electrodes adjacent in the column direction in the tilt direction,
    The solid-state imaging device according to claim 7, wherein a virtual line connecting the centers of the transfer channels in the column direction and a virtual line connecting the centers of element isolation regions adjacent in the column direction in the row direction.
PCT/JP2011/004107 2010-12-17 2011-07-21 Solid-state image pickup device WO2012081139A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-281776 2010-12-17
JP2010281776 2010-12-17

Publications (1)

Publication Number Publication Date
WO2012081139A1 true WO2012081139A1 (en) 2012-06-21

Family

ID=46244260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004107 WO2012081139A1 (en) 2010-12-17 2011-07-21 Solid-state image pickup device

Country Status (1)

Country Link
WO (1) WO2012081139A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159063A (en) * 1988-12-13 1990-06-19 Toshiba Corp Solid-state image-sensing device
JPH0774344A (en) * 1993-09-03 1995-03-17 Sony Corp Charge transfer device
JP2001053266A (en) * 1999-08-13 2001-02-23 Sony Corp Solid-state image pickup element and drive thereof
JP2006319184A (en) * 2005-05-13 2006-11-24 Sony Corp Solid-state imaging device and camera
JP2008053304A (en) * 2006-08-22 2008-03-06 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus
JP2010183107A (en) * 2010-05-10 2010-08-19 Sony Corp Solid-state imaging device and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159063A (en) * 1988-12-13 1990-06-19 Toshiba Corp Solid-state image-sensing device
JPH0774344A (en) * 1993-09-03 1995-03-17 Sony Corp Charge transfer device
JP2001053266A (en) * 1999-08-13 2001-02-23 Sony Corp Solid-state image pickup element and drive thereof
JP2006319184A (en) * 2005-05-13 2006-11-24 Sony Corp Solid-state imaging device and camera
JP2008053304A (en) * 2006-08-22 2008-03-06 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus
JP2010183107A (en) * 2010-05-10 2010-08-19 Sony Corp Solid-state imaging device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7800191B2 (en) Solid-state imaging device and method for driving the same
US9929193B2 (en) Solid-state imaging apparatus and electronic device
KR101159032B1 (en) Solid-state imaging device
JP2007243093A (en) Solid-state imaging device, imaging device and signal processing method
US7847848B2 (en) Solid-state imaging device having a plurality of lines formed in at least two layers on semiconductor substrate
JP2007299840A (en) Ccd solid imaging element, and method for manufacturing same
US20110031573A1 (en) Solid-state imaging device, imaging apparatus, and manufacturing method of solid-state imaging device
CN104347658B (en) Imaging device, electronic equipment and the method for manufacturing imaging device
JP2017183580A (en) Solid-state imaging apparatus
US20130069119A1 (en) Solid-state imaging device
JP5037922B2 (en) Solid-state imaging device
WO2012081139A1 (en) Solid-state image pickup device
JP6813971B2 (en) Photoelectric conversion device and imaging system
JP2008053304A (en) Solid-state imaging apparatus
JP5145866B2 (en) Solid-state image sensor
WO2010103814A1 (en) Solid-state imaging device
JP2894235B2 (en) Solid-state imaging device
US10341590B2 (en) Methods and apparatus for a CCD image sensor
JP2012023205A (en) Solid-state imaging apparatus
JP2009064982A (en) Solid-state imaging element
US20090244349A1 (en) Solid state image pickup device
JP2009004651A (en) Solid-state imaging device and manufacturing method therefor
JP2007189022A (en) Ccd-type solid-state image sensing device and manufacturing method therefor
JP3092156B2 (en) Solid-state imaging device
JP2006086232A (en) Mos type solid-state image pickup device, and camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP