WO2012079528A1 - 载波聚合场景下的r-pdcch传输方法和设备 - Google Patents

载波聚合场景下的r-pdcch传输方法和设备 Download PDF

Info

Publication number
WO2012079528A1
WO2012079528A1 PCT/CN2011/084076 CN2011084076W WO2012079528A1 WO 2012079528 A1 WO2012079528 A1 WO 2012079528A1 CN 2011084076 W CN2011084076 W CN 2011084076W WO 2012079528 A1 WO2012079528 A1 WO 2012079528A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
component carrier
relay node
component
carriers
Prior art date
Application number
PCT/CN2011/084076
Other languages
English (en)
French (fr)
Inventor
潘学明
沈祖康
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP11848211.6A priority Critical patent/EP2677824A4/en
Priority to US13/994,477 priority patent/US9955464B2/en
Publication of WO2012079528A1 publication Critical patent/WO2012079528A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an R-PDCCH transmission method and device in a carrier aggregation scenario.
  • Background technique
  • the relay node (RN) technology is introduced in the LTE (Long Term Evolution) Rel-10 system.
  • the main purpose is to extend the coverage of the eNB (evolved Node B, evolved Node B, ie base station).
  • the relay node acts as an eNB for the UE (User Equipment) that communicates with it.
  • FIG. 1 a schematic diagram of the network architecture of the Rel-10 is shown in FIG. 1
  • relay nodes has three wireless links for mobile-based mobile communication systems:
  • the eNB a direct link between the eNB and the macro UE (the macro UE, the UE directly served by the eNB);
  • An access link (or Uu link) between the RN and the relay UE (R-UE, the UE served by the relay node).
  • the three links need to use orthogonal radio resources.
  • relay nodes In the same frequency band, in order to avoid self-interference, the relay node cannot receive and receive data at the same time.
  • relay nodes can pass MBSFN (Multicast)
  • the broadcast single frequency network (Multicast/Multicast Single Frequency Network) sub-frame receives downlink backhaul data from its donor eNB (donor base station).
  • the receiving scenario is shown in Figure 2.
  • the relay node transmits a PDCCH (Physical Downlink) on one or two OFDM (Orthogonal Frequency Division Multiplexing) symbols to the user terminal (referred to as R-UE) serving in the MBSFN subframe.
  • Control Channel physical downlink control channel.
  • R-PDCCH Relay-Physical Downlink Control Channel
  • R -PDSCH Data
  • the RN receives the R-PDCCH and the R-PDSCH (Physical Downlink Shared Channel) transmitted by the donor eNB, and the eNB starts transmitting the R-PDCCH from the fourth symbol.
  • the downlink scheduling signaling (DL grant) is sent in the first time slot
  • the uplink scheduling signaling (UL grant) is sent in the second time slot.
  • the PDSCH (R-PDSCH) for the RN is transmitted in the uncontrolled area of the MBSFN, and can occupy both the first and second slots (slots); it can also occupy the second slot after the DL grant.
  • a schematic diagram of a multiplexing method of R-PDSCH, R-PDCCH, PDSCH, and PDCCH is shown in FIG.
  • LTE-Advanced Evolved LTE
  • LTE-Advanced LTE-Advanced
  • Manner 1 A plurality of consecutive LTE carriers are aggregated to provide a larger transmission bandwidth for LTE-A;
  • Manner 2 Aggregating multiple discontinuous LTE carriers to provide greater transmission bandwidth for LTE-A
  • FIG. 4 a schematic diagram of a scenario of discontinuous carrier aggregation is given.
  • the research orientation of the standardization organization is that the consensus on the design of the carrier aggregation system is that the design on each carrier remains as consistent as possible with LTE Release 8, thus ensuring LTE.
  • the R8 terminal can work normally on each member carrier.
  • the PDCCH control scheme in the LTE-A system mainly has the following two modes:
  • Each carrier is independently scheduled and does not support cross-carrier scheduling.
  • the definition of the PDCCH search space of each carrier is consistent with that in LTE R8.
  • the schematic diagram is shown in Figure 5.
  • the embodiments of the present invention provide an R-PDCCH transmission method and device in a carrier aggregation scenario, which solves the problem that an existing base station and a relay node cannot perform information transmission by using a carrier aggregation technology.
  • an embodiment of the present invention provides an R-PDCCH transmission method in a carrier aggregation scenario, including:
  • the relay node receives a plurality of aggregated component carriers sent by the base station, where one or more of the component carriers carry an R-PDCCH, and each of the component carriers corresponds to R-PDCCH is separately coded and transmitted;
  • the relay node performs blind detection on the component carrier carrying the R-PDCCH, and acquires an R-PDCCH for scheduling each component carrier;
  • an embodiment of the present invention further provides a relay node, including: a receiving module, configured to receive multiple aggregated component carriers sent by a base station, where one or more of the component carriers carry an R-PDCCH And the R-PDCCH corresponding to each of the component carriers is separately coded and sent;
  • An acquiring module configured to perform blind detection on a member carrier that carries the R-PDCCH received by the receiving module, and acquire an R-PDCCH that schedules each component carrier;
  • a scheduling module configured to acquire physical resources on the corresponding component carrier according to the R-PDCCH acquired by the acquiring module, and perform information transmission with the base station by using the physical resource.
  • the embodiment of the present invention further provides an R-PDCCH transmission method in a carrier aggregation scenario, including:
  • the base station separately codes the R-PDCCH corresponding to the multiple aggregated component carriers sent to the relay node;
  • the base station sends a plurality of aggregated component carriers to the relay node, where the one or more of the component carriers carry the separately coded R-PDCCH;
  • the base station performs information transmission with the relay node, and the resource applied by the information transmission is obtained by the relay node according to the separately encoded R-PDCCH in a corresponding member carrier.
  • an embodiment of the present invention further provides a base station, including:
  • a configuration module configured to separately code the R-PDCCH corresponding to the multiple aggregated component carriers sent to the relay node;
  • a communication module configured to send, by the relay node, a plurality of aggregated component carriers, where one or more of the component carriers carry the configuration module separately encoded
  • the R-PDCCH performs information transmission with the relay node, and the resource applied by the information transmission is obtained by the relay node according to the separately encoded R-PDCCH in a corresponding member carrier.
  • the embodiment of the invention has the following advantages:
  • the multi-carrier aggregation transmission is supported between the relay node and the base station, and the base station sends the component carrier carrying the R-PDCCH to the relay node, and the component carriers are carried by the R-PDCCH carried in the component carrier.
  • the resources are scheduled, so that the base station communicates with the relay node by using the aggregated multiple component carriers, so that the link transmission resource between the base station and the relay node supports multi-carrier PDCCH scheduling, and the base station and the relay node are improved.
  • the transmission capability between the links improves system performance.
  • FIG. 1 is a schematic diagram of a network architecture of an Rd-10 after being introduced into a relay node in the prior art
  • FIG. 3 is a schematic diagram of channel multiplexing in a relay link in the prior art
  • FIG. 4 is a schematic diagram of a scenario of discontinuous carrier aggregation in the prior art in the prior art
  • FIG. 5 is a schematic diagram of a scenario of carrier independent scheduling in the prior art
  • FIG. 6 is a schematic diagram of a scenario of cross-carrier scheduling in the prior art
  • FIG. 7 is a schematic flowchart of a method for transmitting an R-PDCCH in a carrier aggregation scenario according to an embodiment of the present disclosure
  • FIG. 8 is a schematic flowchart of a R-PDCCH transmission method in a carrier aggregation scenario on a base station side according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a network structure of a multi-carrier relay deployment solution according to an embodiment of the present invention.
  • FIG. 10 is a separately scheduled component carrier of an Un link according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of an application scenario of cross-carrier scheduling of each component carrier on an Unlink according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a scenario of an independent search space according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a scenario of a shared search space according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a relay node according to an embodiment of the present invention
  • FIG. 15 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the prior art can only perform data transmission between a base station and a relay node through a single carrier, which poses a bottleneck to system performance, and the existing technical solutions cannot support such an application scenario.
  • the carrier aggregation technology is applied to perform multi-carrier transmission. Therefore, it is urgent to design a scheme for applying the carrier aggregation technology for such an application scenario, and establish a corresponding control channel and resource scheduling mechanism.
  • the embodiment of the present invention provides an R-PDCCH transmission method in a carrier aggregation scenario, and the main technical idea of the technical solution is: applying a carrier aggregation technology to a chain between a base station and a relay node In the communication, the corresponding R-PDCCH is carried in each component carrier, so that the scheduling of the corresponding resources in each component carrier is implemented, and the information communication between the base station and the relay node is completed through the corresponding resources, that is, Information transmission over multiple carriers in the backhaul link.
  • FIG. 7 is a schematic flowchart of a method for transmitting an R-PDCCH in a carrier aggregation scenario according to an embodiment of the present disclosure, which specifically includes the following steps:
  • Step S701 The relay node receives multiple aggregated component carriers sent by the base station. Wherein one or more component carriers carry an R-PDCCH, and each component carrier is paired The R-PDCCH should be coded separately.
  • Step S702 The relay node performs blind detection on the component carrier carrying the R-PDCCH, and obtains an R-PDCCH for scheduling each component carrier.
  • Step S703 The relay node acquires the physical resource on the corresponding component carrier according to the R-PDCCH, and performs information transmission with the base station by using the acquired physical resource.
  • the relay node acquires a PDSCH (Physical Downlink Shared Channel) and/or a PUSCH on the corresponding component carrier according to the R-PDCCH, and obtains the PDSCH and/or the PUSCH. Information transmission with the base station.
  • a PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Downlink Shared Channel
  • control scheme of the R-PDCCH carried by the component carriers in the step S701 may include the following two types:
  • the relay node receives a plurality of aggregated component carriers that are respectively carried by the base station and carries the R-PDCCHs corresponding to the base stations, and the R-PDCCHs carried by the component carriers independently schedule resources on the component carriers.
  • step S702 is specifically as follows:
  • the relay node performs blind detection on each component carrier, acquires R-PDCCH information, and directly determines the R-PDCCH information obtained by blind detection on each component carrier as the R-PDCCH for scheduling the carrier's own resources.
  • the blind detection process is implemented by performing blind detection on the search space in each component carrier.
  • the R-PDCCH carried in each component carrier independently schedules the resources of the component carrier itself. Therefore, each search space directly
  • the R-PDCCH information is carried, and no other carrier identification information is needed.
  • the relay node directly acquires the R-PDCCH information in the search space, and performs resource scheduling on the component carrier according to the R-PDCCH information.
  • the relay node receives a plurality of aggregated component carriers sent by the base station, where one of the component carriers carries the R-PDCCH corresponding to itself and other component carriers, where the R-PDCCH
  • the component carriers and resources on other component carriers are scheduled across carriers.
  • the component carriers received by the relay node include two types:
  • the first type is a component carrier carrying the R-PDCCH, and the R-PDCCH carried by the R-PDCCH can not only schedule resources of the member carrier but also resources in other member carriers.
  • the R-PDCCHs carried by the component carriers include not only the R-PDCCH information of the resources of the component carriers and the other component carriers, but also the R-PDCCH information.
  • the identification information of the component carrier where the resource to be scheduled is located.
  • the relay node can determine which component carrier is specifically scheduled by each R-PDCCH.
  • the second type is a component carrier that does not carry the R-PDCCH.
  • the resources in the component carrier need to be cross-carrier scheduled by the R-PDCCH carried in the first type of component carrier.
  • the base station needs to pre-configure the identification information of the component carrier in which the R-PDCCH of the component carrier is scheduled, so that the relay node can reversely search for the component carrier when receiving the component carrier.
  • the location of the R-PDCCH of the resource is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to the identification information of the component carrier in which the R-PDCCH of the component carrier is scheduled, so that the relay node can reversely search for the component carrier when receiving the component carrier.
  • the location of the R-PDCCH of the resource is not limited to be used to the resource.
  • the relay node acquires a correspondence between a component carrier in which each resource to be scheduled configured by the base station is located and a component carrier in which the R-PDCCH carrying the resource to be scheduled is scheduled to be scheduled.
  • step S702 specifically includes:
  • the relay node performs blind detection on the component carrier carrying the R-PDCCH, acquires multiple R-PDCCH information and the identification information of the component carrier where the scheduled resource is located, and determines the corresponding R-PDCCH information according to the identification information.
  • the search space blind detection process in the above step S702 can be divided into the following two cases:
  • Case 1 When the R-PDCCH is carried in multiple independent search spaces in the component carrier, the relay node performs blind detection on each search space, and obtains R-PDCCH information carried in each search space and its scheduled Identification information of the component carrier where the resource is located.
  • Case 2 When the R-PDCCH is carried in the shared search space in the component carrier, the relay node performs blind detection in the shared search space, and obtains multiple R-PDCCH information carried in the search space and the resources of the scheduled resources. Identification information of the component carrier.
  • the relay node in the component carrier carrying the R-PDCCH, the R-PDCCH is carried by the information in the search space, and the search is performed on each component carrier received. Space, the relay node can be determined by:
  • the relay node acquires a transmission mode and an aggregation level of the R-PDCCH carried in the component carrier, where the transmission mode includes an interleaving mode and a non-interleaving mode;
  • the relay node determines the start position of the search space in each slot included in each subframe on the component carrier according to the transmission mode and aggregation level of the R-PDCCH.
  • the relay node is based on the following
  • n S is the slot number in the current radio frame.
  • the relay node determines the starting position of the search space according to the following formula:
  • L is the aggregation level of the R-PDCCH
  • the foregoing process is the implementation flow of the R-PDCCH transmission method in the carrier aggregation scenario on the relay node side, and the following is another embodiment of the present invention.
  • the implementation process of the PDCCH transmission method on the base station side is as shown in FIG. 8 , and specifically includes the following steps:
  • Step S801 The base station separately codes the R-PDCCH corresponding to the plurality of aggregated component carriers that are sent to the relay node.
  • Step S802 The base station sends multiple aggregated component carriers to the relay node.
  • the one or more component carriers carry the separately encoded R-PDCCH.
  • Step S803 The base station and the relay node perform information transmission, and the resource applied by the information transmission is obtained by the relay node according to the separately encoded R-PDCCH in the corresponding component carrier.
  • control scheme of the R-PDCCH carried by the plurality of component carriers transmitted by the base station to the relay node also includes the following two types:
  • Control scheme I independent scheduling
  • the base station sends a plurality of aggregated component carriers that respectively carry the R-PDCCH corresponding to the relay node, and the R-PDCCH carried by each component carrier independently schedules resources on each component carrier.
  • the base station carries the R-PDCCH through the search space in each of the transmitted component carriers.
  • the base station sends a plurality of aggregated component carriers to the relay node, where one component carrier carries the R-PDCCH corresponding to itself and other component carriers, and the R-PDCCH cross-carriers the component carriers and resources on other component carriers.
  • the component carriers sent by the base station also include the following two types:
  • the first type is a component carrier carrying the R-PDCCH, and the R-PDCCH carried by the R-PDCCH can not only schedule resources of the member carrier but also resources in other member carriers.
  • the R-PDCCH carried by the component carrier includes not only the multiple R-PDCCH information of the component carrier and the resources on the other component carriers, but also the scheduling of each R-PDCCH information.
  • the second type is a component carrier that does not carry the R-PDCCH.
  • the resources in the component carrier need to be cross-carrier scheduled by the R-PDCCH carried in the first type of component carrier.
  • the base station needs to pre-configure the identification information of the component carrier in which the R-PDCCH of the component carrier is scheduled, so that the relay node can reversely search for the component carrier when receiving the component carrier.
  • the location of the R-PDCCH of the resource is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to the identification information of the component carrier in which the R-PDCCH of the component carrier is scheduled, so that the relay node can reversely search for the component carrier when receiving the component carrier.
  • the location of the R-PDCCH of the resource is not limited to be used to the resource.
  • the base station configures, for the relay node, a correspondence between a component carrier in which each resource to be scheduled is located and a component carrier in which the R-PDCCH in which the resource to be scheduled is scheduled to be scheduled is located. Further, since the corresponding configuration of the search space in each component carrier received by the relay node is configured by the base station in each component carrier between the transmitting component carriers, the relay node is only equivalent to performing one The reverse parsing process, therefore, in order to ensure the smooth resolution of the relay node, the configuration strategy of the search space applied by the base station side should be consistent with the strategy applied by the relay node side.
  • the embodiment of the invention has the following advantages:
  • the multi-carrier aggregation transmission is supported between the relay node and the base station, and the base station sends the component carrier carrying the R-PDCCH to the relay node, and the component carriers are carried by the R-PDCCH carried in the component carrier.
  • the resources are scheduled, so that the base station communicates with the relay node by using the aggregated multiple component carriers, so that the link transmission resource between the base station and the relay node supports multi-carrier PDCCH scheduling, and the base station and the relay node are improved.
  • the transmission capability between the links improves system performance.
  • An embodiment of the present invention provides an R-PDCCH design scheme for supporting multi-carrier transmission on a backhaul link between a base station and a relay node in a scenario where a relay node exists.
  • the embodiment of the present invention provides a multi-carrier relay deployment scheme, in which both Un link (backhaul link) and Uu link (access link) are transmitted by two carriers, that is, as shown in the figure.
  • CC1 Component Carrier, member carrier
  • CC2 Component Carrier, member carrier
  • each component carrier on the Unlink is separately scheduled (ie, the foregoing Control scheme 1)
  • the application scenario diagram is shown in FIG. 10
  • the R-PDCCH in the downlink subframe of each Unlink is only used to schedule the Un PDSCH resource of the component carrier, and similarly, the PUSCH on the component carrier
  • the same scheme is also used for scheduling.
  • the RN performs the same R-PDCCH blind detection with the Rel-10 in the DL backhaul subframe, and the blind-checked R-PDCCH
  • the information format does not include carrier number indication information.
  • the cross-carrier scheduling mode is adopted on the Unlink (that is, the foregoing control scheme 2), and the R-PDCCH on one component carrier can schedule the Un PDSCH or PUSCH resources of other component carriers, as shown in FIG.
  • the R-PDCCH information needs to include the number of the carrier where the Un-PDSCH/PUSCH is to be scheduled, that is, the CIF (Carrier Indication Field).
  • the RN learns the link relationship between the Un-PDSCH/PUSCH CC and the component carrier in which the corresponding R-PDCCH is located from the base station in advance, and performs blind detection of the R-PDCCH in the corresponding R-PDCCH carrier. .
  • the corresponding R-PDCCHs of multiple Un PDSCH CCs are located on the same component carrier.
  • these R-PDCCHs may be carried through multiple independent search spaces, or may be shared by one.
  • the search space carries these R-PDCCHs, and the R-PDCCH carrying two component carriers is taken as an example.
  • the scenario diagrams of the independent and shared search spaces are respectively shown in FIG. 12 and FIG.
  • the RN sees multiple different search spaces for each R-PDCCH aggregation level in the R-PDCCH VRB set of one DL backhaul subframe, and the RN performs blind detection behavior in each search space. Similar to the single carrier case of Rd-10, only one R-PDCCH is blindly checked, the difference being that the R-PDCCH information content of the blind check includes the carrier number indication information (ie, the aforementioned CIF).
  • the RN sees only one search space for each R-PDCCH aggregation level in the R-PDCCH VRB set of the DL backhaul subframe, and the RN performs blind detection behavior in the search space with Rel-10.
  • the difference between the single carrier case is that the RN needs to blindly check multiple R-PDCCHs, which respectively correspond to different Un PDSCH/PUSCH CCs.
  • the R-PDCCH information format of the RN blind detection includes the carrier number indication information (ie, the aforementioned CIF).
  • n CI the carrier number of the CC where the scheduled PDSC H/PUSCH is located, that is, CIF.
  • NccE , j is the number of logical CCEs contained in the pre-configured R-PDCCH VRB set, which is the Hashing function, specifically:
  • (AY k _ 1 ) modD
  • n RNTi ⁇ 0 n RNTi is the RNTI of the relay node
  • A 39827 ,
  • the embodiment of the invention has the following advantages:
  • the multi-carrier aggregation transmission is supported between the relay node and the base station, and the base station sends the component carrier carrying the R-PDCCH to the relay node, and the component carriers are carried by the R-PDCCH carried in the component carrier.
  • the resources are scheduled, so that the base station communicates with the relay node by using the aggregated multiple component carriers, so that the link transmission resource between the base station and the relay node supports multi-carrier PDCCH scheduling, and the base station and the relay node are improved.
  • the transmission capability between the links improves system performance.
  • an embodiment of the present invention further provides a relay node, and a schematic structural diagram thereof is shown in FIG.
  • the receiving module 141 is configured to receive, by the base station, a plurality of aggregated component carriers, where one or more component carriers carry an R-PDCCH, and the R-PDCCH corresponding to each component carrier is separately coded and sent;
  • the obtaining module 142 is configured to perform blind detection on the component carrier that carries the R-PDCCH received by the receiving module 141, and obtain an R-PDCCH that schedules each component carrier.
  • the scheduling module 143 is configured to acquire physical resources on the corresponding component carriers according to the R-PDCCH acquired by the obtaining module 142, and perform information transmission with the base station by using the acquired physical resources.
  • the receiving module 141 is specifically configured to:
  • the base station And receiving, by the base station, a plurality of aggregated component carriers, where one component carrier carries an R-PDCCH corresponding to itself and other component carriers, and the R-PDCCH cross-carriers the component carrier and resources on other component carriers.
  • the acquiring module 142 is specifically used. In:
  • the R-PDCCH information carried in each search space is obtained by blindly detecting the search space in each component carrier, and the R-PDCCH information obtained by blind detection on each component carrier is directly determined as the R of each component carrier itself. -PDCCH.
  • the acquiring module 142 is further configured to:
  • the R-PDCCH carried by the component carrier received by the receiving module 141 cross-carriers the component carrier and the resources of other component carriers
  • the R-PDCCH specifically includes the resources of the component carrier and other component carriers respectively. a plurality of R-PDCCH information, where each R-PDCCH information includes identification information of a component carrier where the scheduled resource is located.
  • the ear block 142 is used for:
  • the search space is blindly detected, and the R-PDCCH information carried in each search space and the scheduled information are obtained.
  • an embodiment of the present invention further provides a base station, and a schematic structural diagram thereof is shown in FIG.
  • the configuration module 151 is configured to separately code the R-PDCCH corresponding to the multiple aggregated component carriers that are sent to the relay node, respectively.
  • the communication module 152 is configured to send a plurality of aggregated component carriers to the relay node, where the one or more component carriers carry the R-PDCCH separately coded by the configuration module 151, and perform information transmission with the relay node, and the information transmission station
  • the applied resources are obtained by the relay node according to the separately encoded R-PDCCH in the corresponding component carrier.
  • the communication module 152 is specifically configured to:
  • a plurality of aggregated component carriers are sent to the relay node, where one component carrier carries the R-PDCCH corresponding to itself and other component carriers, and the R-PDCCH cross-carriers the component carrier and resources on other component carriers.
  • the configuration module 151 is further configured to: configure, by the relay node, a member of each resource to be scheduled, when the R-PDCCH carried in the component carrier that is sent by the communication module 152 cross-carriers the component carrier and the resources on the other component carriers.
  • the correspondence between the carrier and the component carrier in which the R-PDCCH for scheduling the resource to be scheduled is located.
  • the R-PDCCH carried in the component carrier that is transmitted by the communication module 152 is used to transmit the component carrier and the resources on the other component carriers
  • the R-PDCCH carried by the component carrier that is sent by the communication module 152 to the relay node includes: :
  • configuration module 151 is further configured to:
  • the transmission mode includes an interleaving mode and a non-interleaving mode
  • the starting position of the search space in each slot included in each subframe on each component carrier is determined according to the transmission mode and the aggregation level of the R-PDCCH.
  • the embodiment of the invention has the following advantages:
  • the support between the relay node and the base station is increased.
  • the base station sends a component carrier carrying the R-PDCCH to the relay node, and the resources in each component carrier are scheduled by using the R-PDCCH carried in the component carrier, thereby implementing the aggregation of multiple component carriers in the base station.
  • the link transmission resource between the base station and the relay node supports multi-carrier PDCCH scheduling, improves the transmission capability of the link between the base station and the relay node, and improves system performance.
  • the embodiments of the present invention may be implemented by hardware, or may be implemented by means of software plus a necessary general hardware platform.
  • the technical solution of the embodiment of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.).
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various implementations of the embodiments of the present invention.
  • modules in the apparatus in the implementation scenario may be distributed in the apparatus for implementing the scenario according to the implementation scenario description, or may be correspondingly changed in one or more devices different from the implementation scenario.
  • the modules of the above implementation scenarios may be combined into one module, or may be further split into multiple sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

载波聚合场景下的 R-PDCCH传输方法和设备 本申请要求于 2010年 12月 15 日提交中国专利局, 申请号为 201010606125.0, 发明名称为 "载波聚合场景下的 R-PDCCH传输方 法和设备"的中国专利申请的优先权, 其全部内容通过引用结合在本 申请中。 技术领域
本发明涉及通信技术领域, 特别涉及一种载波聚合场景下的 R-PDCCH传输方法和设备。 背景技术
在 LTE ( Long Term Evolution, 长期演进) Rel-10系统中引入了 中继节点( Relay Node, RN )技术,主要目的是扩展 eNB( evolved Node B, 演进的 B节点, 即基站) 小区的覆盖范围, 其中, Relay节点对 与其通信的 UE ( User Equipment, 终端设备 )表现为一个 eNB。
在现有技术中, 在引入 Relay节点后, Rel-10的网络架构示意图 如图 1所示。
中继节点的引入, 使得基于 Relay的移动通信系统的无线链路有 三条:
eNB与 macro UE (宏 UE, eNB直接服务的 UE )之间的直射链 路( direct link );
eNB与 RN之间的回程链路( backhaul link, 或称 Un link );
RN与 relay UE ( R-UE, 中继节点服务的 UE )之间的接入链路 ( access link, 或称 Uu link )。
考虑到无线通信的信号干扰限制, 因此, 三条链路需要使用正交 的无线资源。
在同一个频段上, 为了避免自干扰, 中继节点不能同时收送和接 收数据。 在 LTE Rel-10 中, 中继节点可以通过 MBSFN ( Multicast Broadcast Single Frequency Network, 多播 /组播单频网络)子帧的方 式, 从其 donor eNB (施主基站)接收下行 backhaul数据, 其接收场 景示意图如图 2所示。
中继节点在一个 MBSFN子帧中, 向其服务的用户终端 (称为 R-UE ) 在一个或者两个 OFDM ( Orthogonal Frequency Division Multiplexing , 正交频分复用技术)符号上发送 PDCCH ( Physical Downlink Control Channel, 物理下行控制信道)。 在本 MBSFN子帧 的后几个 OFDM符号上, 中继节点接收来自 donor eNB的控制 (称 为 R-PDCCH ( Relay-Physical Downlink Control Channel, 中继物理下 行控制信道 ) )和数据 (称为 R-PDSCH )。
在配置为下行 backhauK回程)的 MBSFN子帧中, RN接收 donor eNB 发送的 R-PDCCH 和 R-PDSCH ( Physical Downlink Shared Channel,物理下行共享信道), eNB从第 4个符号开始发送 R-PDCCH, 其中下行调度信令 ( Downlink grant, DL grant )在第一个时隙发送, 上行调度信令 ( Uplink grant, UL grant )在第二个时隙发送。 针对 RN 的 PDSCH ( R-PDSCH )在 MBSFN的非控制区域发送, 可以同时占 用第一个和第二个 slot (时隙); 也可以占用 DL grant之后的第二个 slot。 R-PDSCH, R-PDCCH, PDSCH, PDCCH的复用方式的示意图 如图 3所示。
对于 LTE- Advanced (演进的 LTE ) 系统, 为支持比 LTE系统更 宽的系统带宽, 比如 100MHz, 需要通过将多个 LTE载波(又称成员 载波) 的资源连接起来使用, 具体有两种方式:
方式一、 将多个连续的 LTE载波进行聚合, 为 LTE-A提供更大 的传输带宽;
方式二、 将多个不连续的 LTE载波进行聚合, 为 LTE-A提供更 大的传输带宽
如图 4所示, 给出了不连续载波聚合的场景的示意图。
目前, 标准化组织的研究倾向为, 对于载波聚合系统设计的共识 是每个载波上的设计保持与 LTE Release 8尽量一致, 从而保证 LTE R8的终端能够在每一个成员载波上正常工作。
另一方面, LTE-A系统中的 PDCCH的控制方案主要有以下两种 模式:
模式一、 独立调度
各个载波独立调度, 不支持跨载波调度, 在这种种情况下, 各个 载波的 PDCCH搜索空间的定义与 LTE R8中的是一致的。 其示意图 如图 5所示。
模式二、 跨载波调度
可以通过一个载波调度其他载波, 其示意图如图 6所示。
在实现本发明实施例的过程中,申请人发现现有技术至少存在以 下问题:
在 Rd-10中, 由于 RN仅作为扩展覆盖应用, 因此, 在 Un link 上仅支持一个载波, R-PDCCH 和 PDSCH 的调度仅在一个 CC ( Component Carrier, 成员载波)上进行, 而 Rd-10设计的 Relay方 案中, Un link的吞吐量制约了系统性能, 成为提升网络整体性能的 瓶颈。 为了解决 Un link的传输瓶颈, 一种可能的方式是在 Un link上 引入多载波传输,类似于 Rd-10中基站和 UE之间传输高速数据速率 所采用的载波聚合(Carrier aggregation, CA )技术。 而现有技术和 标准中并不支持这种功能。 发明内容
本发明实施例提供一种载波聚合场景下的 R-PDCCH传输方法和 设备,解决现有的基站和中继节点之间不能通过载波聚合技术进行信 息传输的问题。
为达到上述目的,本发明实施例一方面提供了一种载波聚合场景 下的 R-PDCCH传输方法, 包括:
中继节点接收基站发送的多个聚合的成员载波, 其中, 一个或多 个所述成员载波中携带 R-PDCCH , 各所述成员载波所对应的 R-PDCCH单独编码发送;
所述中继节点对携带 R-PDCCH的成员载波进行盲检, 获取调度 各成员载波的 R-PDCCH;
所述中继节点根据所述 R-PDCCH获取相应的成员载波上的物理 资源, 并通过所述物理资源与所述基站进行信息传输。 另一方面, 本发明实施例还提供了一种中继节点, 包括: 接收模块, 用于接收基站发送的多个聚合的成员载波, 其中, 一 个或多个所述成员载波中携带 R-PDCCH, 各所述成员载波所对应的 R-PDCCH单独编码发送;
获取模块, 用于对所述接收模块所接收到的携带 R-PDCCH的成 员载波进行盲检, 获取调度各成员载波的 R-PDCCH;
调度模块, 用于根据所述获取模块所获取的 R-PDCCH获取相应 的成员载波上的物理资源,并通过所述物理资源与所述基站进行信息 传输。 另一方面, 本发明实施例还提供了一种载波聚合场景下的 R-PDCCH传输方法, 包括:
基站分别为向中继节点发送的多个聚合的成员载波所对应的 R-PDCCH进行单独编码;
所述基站向所述中继节点发送多个聚合的成员载波, 其中, 一个 或多个所述成员载波中携带所述单独编码的 R-PDCCH;
所述基站与所述中继节点进行信息传输,所述信息传输所应用的 资源由所述中继节点根据所述单独编码的 R-PDCCH在相应的成员载 波中得到。 另一方面, 本发明实施例还提供了一种基站, 包括:
配置模块,用于分别为向中继节点发送的多个聚合的成员载波所 对应的 R-PDCCH进行单独编码; 通信模块,用于向所述中继节点发送多个聚合的成员载波,其中, 一个或多个所述成员载波中携带所述配置模块单独编码的
R-PDCCH, 并与所述中继节点进行信息传输, 所述信息传输所应用 的资源由所述中继节点根据所述单独编码的 R-PDCCH在相应的成员 载波中得到。
与现有技术相比, 本发明实施例具有以下优点:
通过应用本发明实施例的技术方案,中继节点和基站之间支持多 载波聚合传输, 基站向中继节点发送携带 R-PDCCH的成员载波, 通 过成员载波中携带的 R-PDCCH对各成员载波中的资源进行调度, 从 而, 实现基站通过聚合的多个成员载波与中继节点进行通信, 使基站 与中继节点之间的链路传输资源支持多载波 PDCCH调度, 提高了基 站与中继节点之间链路的传输能力, 改善了系统性能。
附图说明
图 1为现有技术中在引入 Relay节点后的 Rd- 10的网络架构示意 图; 收场景示意图;
图 3为现有技术中的中继链路中的信道复用示意图;
图 4 为现有技术中为现有技术中的不连续载波聚合的场景的示 意图;
图 5为现有技术中的载波独立调度的场景示意图;
图 6为现有技术中的跨载波调度的场景示意图;
图 7为本发明实施例所提出的一种载波聚合场景下的 R-PDCCH 传输方法的流程示意图;
图 8为本发明实施例提出的一种载波聚合场景下的 R-PDCCH传 输方法在基站侧的流程示意图;
图 9为本发明实施例提出的一种多载波 Relay的部署方案的网络 结构示意图;
图 10为本发明实施例提出的 Un link上各个成员载波单独调度的 应用场景示意图;
图 11为本发明实施例提出的 Un link上各个成员载波跨载波调度 的应用场景示意图;
图 12 为本发明实施例所提出的一种独立搜索空间的场景示意 图;
图 13 为本发明实施例所提出的一种共享搜索空间的场景示意 图;
图 14为本发明实施例所提出的一种中继节点的结构示意图; 图 15为本发明实施例所提出的一种基站的结构示意图。 具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细 描述:
如背景技术所述,由于现有技术在基站和中继节点之间只能通过 单载波进行数据传输, 所以, 对系统性能形成了瓶颈, 而现有的技术 方案又不能支持在这样的应用场景下应用载波聚合技术进行多载波 传输, 因此, 迫切的需要为这样的应用场景设计应用载波聚合技术的 方案, 并建立相应的控制信道及资源调度机制。
为了解决上述的问题,本发明实施例给出了一种载波聚合场景下 的 R-PDCCH传输方法, 该技术方案的主要技术思想在于: 将载波聚 合技术应用于基站和中继节点之间的链路通信上,并在各成员载波中 携带相应的 R-PDCCH, 从而, 实现对于各成员载波中相应的资源的 调度, 并通过相应的资源完成基站与中继节点之间的信息通信, 即在 回程链路中通过多载波进行信息传输。
如图 7 所示, 为本发明实施例所提出的一种载波聚合场景下的 R-PDCCH传输方法的流程示意图, 具体包括以下步骤:
步骤 S701、 中继节点接收基站发送的多个聚合的成员载波。 其中, 一个或多个成员载波中携带 R-PDCCH, 各成员载波所对 应的 R-PDCCH单独编码发送。
步骤 S702、 中继节点对携带 R-PDCCH的成员载波进行盲检,获 取调度各成员载波的 R-PDCCH。
步骤 S703、中继节点根据 R-PDCCH获取相应的成员载波上的物 理资源, 并通过获取到的物理资源与基站进行信息传输。
其中, 在具体的实施场景中, 中继节点根据 R-PDCCH获取相应 的成员载波上的 PDSCH ( Physical Downlink Shared Channel, 物理下 行共享信道)和 /或 PUSCH, 并通过获取到的 PDSCH和 /或 PUSCH 与基站进行信息传输。
在实际的应用场景中, 对于步骤 S701 中的各成员载波, 其所携 带的 R-PDCCH的控制方案可以包括以下两种:
控制方案一、 独立调度
中继节点接收基站发送的分别携带自身所对应的 R-PDCCH的多 个聚合的成员载波, 各成员载波所携带的 R-PDCCH独立调度各成员 载波上的资源。
在应用此控制方案的场景下, 上述的步骤 S702的处理过程具体 为:
中继节点对各成员载波分别进行盲检, 获取 R-PDCCH信息, 并 直接将各成员载波上盲检得到的 R-PDCCH信息确定为调度各成员载 波自身资源的 R-PDCCH 。
而其中的盲检过程,具体通过分别对各成员载波中的搜索空间进 行盲检来实现, 由于各成员载波中携带的 R-PDCCH独立调度该成员 载波自身的资源, 因此, 各搜索空间中直接携带 R-PDCCH信息, 而 不需要有其他的载波标识信息, 中继节点直接获取搜索空间中的 R-PDCCH信息, 并根据该 R-PDCCH信息对本成员载波进行资源调 度。
控制方案二、 跨载波调度
中继节点接收基站发送的多个聚合的成员载波,其中一个成员载 波中携带自身和其他成员载波所对应的 R-PDCCH,其中的 R-PDCCH 跨载波调度成员载波以及其他成员载波上的资源。
在应用此控制方案的应用场景中, 中继节点所接收到的成员载波 包括两种类型:
第一类是携带了 R-PDCCH 的成员载波, 并且其所携带的 R-PDCCH不仅可以调度本成员载波的资源, 还可以调度其他成员载 波中的资源。
为了实现准确的跨载波调度, 该类成员载波所携带的 R-PDCCH 不仅包括分别调度成员载波以及其他成员载波上的资源的多个 R-PDCCH信息, 进一步的, 各 R-PDCCH信息中还包括其所调度的 资源所在的成员载波的标识信息。
通过这样的标识信息, 中继节点能够确定各 R-PDCCH具体调度 了哪个成员载波中的资源。
第二类是没有携带 R-PDCCH的成员载波, 这样的成员载波中的 资源需要通过第一类成员载波中所携带的 R-PDCCH进行跨载波调 度。
对于此类成员载波, 基站需要预先配置调度该成员载波的 R-PDCCH所在的成员载波的标识信息, 以便中继节点在接收到此类 成员载波时, 可以反向的去查找调度该成员载波的资源的 R-PDCCH 的位置。
因此, 对于此种跨载波调度控制方案的应用场景, 在步骤 S701 执行之前, 还包括以下处理流程:
中继节点获取基站配置的各待调度的资源所在的成员载波与携 带调度待调度的资源的 R-PDCCH所在的成员载波之间的对应关系。
进一步的, 对于应用此种跨载波调度控制方案的应用场景, 上述 的步骤 S702的处理过程, 具体包括:
中继节点对携带 R-PDCCH 的成员载波进行盲检, 获取多个 R-PDCCH信息及其所调度的资源所在的成员载波的标识信息, 并按 照标识信息, 将相对应的 R-PDCCH信息确定为调度该成员载波以及 其他成员载波的 R-PDCCH。 在实际的应用场景中,基于搜索空间是否共享,上述的步骤 S702 中的搜索空间盲检过程可以分为以下两种情况:
情况一、 当成员载波中分别通过多个独立的搜索空间携带 R-PDCCH时, 中继节点分别对各搜索空间进行盲检, 获取各搜索空 间中所携带的 R-PDCCH信息及其所调度的资源所在的成员载波的标 识信息。
情况二、 当成员载波中通过共享的搜索空间携带 R-PDCCH时, 中继节点在共享的搜索空间进行盲检, 获取搜索空间中携带的多个 R-PDCCH信息及其所调度的资源所在的成员载波的标识信息。
需要进一步指出的是, 无论应用上述的哪种控制方案, 在携带 R-PDCCH的成员载波中, R-PDCCH均是通过搜索空间中的信息来携 带, 而对于接收到的各成员载波中的搜索空间, 中继节点可以通过以 下方式确定:
中继节点获取成员载波中所携带的 R-PDCCH的传输模式和聚合 等级, 其中, 传输模式包括交织模式和非交织模式;
中继节点根据 R-PDCCH的传输模式和聚合等级, 确定成员载波 上的各子帧所包括的各时隙中的搜索空间的起始位置。
下面, 根据传输模式的差异, 对上述的搜索空间的起始位置的确 定方法进行说明如下:
( 1 ) 当 R-PDCCH的传输模式为交织模式时, 中继节点根据以 下公
Figure imgf000011_0001
的逻辑 CCE个数, k为当前子帧的编号, j 为在当前子帧内的当前 时隙的序号
当各成员载波所携带的 R-PDCCH独立调度各成员载波上的资源 时, m' = m, 当 R-PDCCH跨载波调度成员载波以及其他成员载波 上的资源时, m^ m+ M ^ ' na , m为当前所进行盲检的次数, ¾ 为 R-PDCCH所调度的资源所在的成员载波的标识信息;
¾ = ( A-
Figure imgf000012_0001
) m0d D , i = nRNTI ≠ 0 , nRNTI 为中继节点的 RNTI,
A= 39827 , D = 65537 , k = Lns/2J, n S为在当前无线帧内的时隙 编号。
( 2 ) 当 R-PDCCH的传输模式为非交织模式时, 中继节点根据 以下公式确定搜索空间的起始位置:
(L- m'+i)modN¾B PDCCH ? i = 0,1,..., L-1
其中, L为 R-PDCCH的聚合等级;
R-PDCCH
i vRB 为 R-PDCCH可能的传输资源集合内包含的 VRB个数; 当各成员载波所携带的 R-PDCCH独立调度各成员载波上的资源 时, m' = m, 当 R-PDCCH跨载波调度成员载波以及其他成员载波 上的资源时, m^ m+ M ^ ' na , m为当前所进行盲检的次数, nCI 为 R-PDCCH所调度的资源所在的成员载波的标识信息。 上述过程为本发明实施例所提出的一种载波聚合场景下的 R-PDCCH传输方法在中继节点侧的实现流程, 下面, 本发明实施例 进一步给出了一种载波聚合场景下的 R-PDCCH传输方法在基站侧的 实现流程, 其流程示意图如图 8所示, 具体包括以下步骤:
步骤 S801、 基站分别为向中继节点发送的多个聚合的成员载波 所对应的 R-PDCCH进行单独编码。
步骤 S802、 基站向中继节点发送多个聚合的成员载波。
其中, 一个或多个成员载波中携带单独编码的 R-PDCCH。
步骤 S803、 基站与中继节点进行信息传输, 信息传输所应用的 资源由中继节点根据单独编码的 R-PDCCH在相应的成员载波中得 到。
与前述的步骤 S701中的说明内容相对应,在步骤 S802中,基站 向中继节点所发送的多个成员载波中所携带的 R-PDCCH的控制方案 同样包括以下两种:
控制方案一、 独立调度 基站向中继节点发送分别携带自身所对应的 R-PDCCH的多个聚 合的成员载波, 各成员载波所携带的 R-PDCCH独立调度各成员载波 上的资源。
在此种控制方案下,基站在发送的各成员载波中分别通过搜索空 间携带 R-PDCCH。
控制方案二、 跨载波调度
基站向中继节点发送多个聚合的成员载波,其中一个成员载波中 携带自身和其他成员载波所对应的 R-PDCCH, R-PDCCH跨载波调度 成员载波以及其他成员载波上的资源。
在应用此控制方案的应用场景中,基站所发送的成员载波同样包 括以下两种类型:
第一类是携带了 R-PDCCH 的成员载波, 并且其所携带的 R-PDCCH不仅可以调度本成员载波的资源, 还可以调度其他成员载 波中的资源。
为了实现准确的跨载波调度, 该类成员载波所携带的 R-PDCCH 不仅包括分别调度成员载波以及其他成员载波上的资源的多个 R-PDCCH信息, 各 R-PDCCH信息中还包括其所调度的资源所在的 成员载波的标识信息。
第二类是没有携带 R-PDCCH的成员载波, 这样的成员载波中的 资源需要通过第一类成员载波中所携带的 R-PDCCH进行跨载波调 度。
对于此类成员载波, 基站需要预先配置调度该成员载波的 R-PDCCH所在的成员载波的标识信息, 以便中继节点在接收到此类 成员载波时, 可以反向的去查找调度该成员载波的资源的 R-PDCCH 的位置。
因此, 对于此种跨载波调度控制方案的应用场景, 在步骤 S802 执行之前, 还包括以下处理流程:
基站为中继节点配置各待调度的资源所在的成员载波与携带调 度待调度的资源的 R-PDCCH所在的成员载波之间的对应关系。 进一步的,由于中继节点所接收到的各成员载波中的搜索空间的 相应配置都是由基站在发送成员载波之间就在各成员载波中配置好 的, 中继节点只是相当于进行了一个反向的解析过程, 因此, 为了保 证中继节点的顺利解析,基站侧所应用的搜索空间的配置策略应与中 继节点侧所应用的策略相一致。
综上, 基站侧所应用的搜索空间共享策略, 以及搜索空间的起始 位置的确定方式请参看前述的步骤 S701至步骤 S703中相关内容的说 明, 在此不再重复说明。
与现有技术相比, 本发明实施例具有以下优点:
通过应用本发明实施例的技术方案,中继节点和基站之间支持多 载波聚合传输, 基站向中继节点发送携带 R-PDCCH的成员载波, 通 过成员载波中携带的 R-PDCCH对各成员载波中的资源进行调度, 从 而, 实现基站通过聚合的多个成员载波与中继节点进行通信, 使基站 与中继节点之间的链路传输资源支持多载波 PDCCH调度, 提高了基 站与中继节点之间链路的传输能力, 改善了系统性能。 下面, 结合具体的应用场景, 对本发明实施例所提出的技术方案 进行说明。
本发明实施例给出了一种 R-PDCCH设计方案, 用于在存在中继 节点的场景中, 支持基站与中继节点之间的回程(backhaul )链路上 采用多载波传输。
如图 9所示,本发明实施例提出了一种多载波 Relay的部署方案, 其中 Un link (回程链路 )和 Uu link (接入链路 )都采用两载波传输, 即如图中所示的 CC1 ( Component Carrier, 成员载波)和 CC2。
在上述的应用场景中, 对于 R-PDCCH的调度, 存在两种可能的 技术方案, 为描述方便, 本发明实施例分别以下两种应用场景进行说 明:
应用场景一
在该应用场景中, Un link上各个成员载波单独调度(即前述的 控制方案一), 其应用场景示意图如图 10所示, 每个 Un link的下行 子帧中的 R-PDCCH只用来调度本成员载波的 Un PDSCH资源,类似 的, 该成员载波上的 PUSCH的调度也采用相同的方案。
具体地, 在 RN未被配置为跨载波调度情况下, 在每个成员载波 上, RN在 DL backhaul子帧中进行与 Rel-10完全相同的 R-PDCCH 盲检, 且盲检的 R-PDCCH信息格式是不包含载波编号指示信息的。
应用场景二
在该应用场景中, Un link上采用跨载波的调度方式(即前述的 控制方案二), 一个成员载波上的 R-PDCCH可以调度其他成员载波 的 Un PDSCH或者 PUSCH资源, 如图 11所示。
在这种应用场景下, R-PDCCH 信息中需要包含待调度的 Un PDSCH/PUSCH所在载波的编号, 即 CIF ( Carrier Indication Field, 载波指示域)。 在跨载波调度情况下, RN 预先从基站获知 Un PDSCH/PUSCH CC及其对应的 R-PDCCH所在的成员载波之间的链 接关系, 并在相应的 R-PDCCH载波内进行 R-PDCCH的盲检。
在跨载波调度情况下, 多个 Un PDSCH CC相应的 R-PDCCH位 于同一个成员载波上, 在这个成员载波上, 可以通过多个独立的搜索 空间携带这些 R-PDCCH, 也可以通过一个共享的搜索空间携带这些 R-PDCCH, 以携带两个成员载波的 R-PDCCH为例,独立和共享搜索 空间的场景示意图分别如图 12和图 13所示。
在独立搜索空间情况下, RN 在一个 DL backhaul 子帧的 R-PDCCH VRB set内,对于每个 R-PDCCH聚合等级看到多个不同的 搜索空间, RN在每个搜索空间内的盲检行为与 Rd-10的单载波情况 类似, 仅盲检一条 R-PDCCH, 其差别在于盲检的 R-PDCCH信息内 容是包含载波编号指示信息(即前述的 CIF ) 的。
在共享搜索空间情况下, RN在 DL backhaul子帧的 R-PDCCH VRB set内, 对于每个 R-PDCCH聚合等级仅看到一个搜索空间, RN 在该搜索空间内的盲检行为与 Rel-10的单载波情况的差别在于 RN需 要盲检多条 R-PDCCH, 分别对应于不同的 Un PDSCH/PUSCH CC, 同时, RN盲检的 R-PDCCH信息格式是包含载波编号指示信息(即 前述的 CIF ) 的。 具体的,对于前述的多载波情况下的 R-PDCCH搜索空间的确定, 针对独立的搜索空间, 本发明实施例给出具体的设计如下:
( 1 )如果 R-PDCCH采用交织模式, 那么, 在 DL backhaul子帧 k内, 对于每个 slot ( J =0 或 1 ), 在每个 R-PDCCH 聚合等级 Le {l,2,4,8} , RN需要进行 m= 0,l,...,M(L)— 1次 RPDCCH盲检, 对于每次盲检的 R-PDCCH起始位置由如下公式决定:
L.{(Yk +m')觸 dLNc R c- E7CCH/L」}+i , i = 0,l,..., L-l ,
当 RN未被配置为为在该 R-PDCCH载波上进行跨载波调度, 则 m' = m; 当 RN被配置为在该 R—PDCCH载波上进行跨载波调度, 则 m' = m+ M (L) · nCI , 其中, nCI为所调度的 PDSCH/PUSCH所在 CC的载波编号, 即 CIF。
rR-PDCCH
在上面的公式中, NccE,j 为在预先配置的 R-PDCCH VRB set 内包含的逻辑 CCE个数, 为 Hashing function, 具体的:
\ = (A-Yk_1)modD 其中 = nRNTi≠ 0 , nRNTi 为中继节点的 RNTI) , A= 39827 ,
D = 65537 , k = Lns /2」, 为在当前无线帧内的时隙编号。
( 2 )如果 R-PDCCH采用非交织模式,那么,在一个 DL backhaul 子帧内, 对于每个 slot, 在每个 R-PDCCH聚合等级1^ ^248) , RN 需要进行 m = 01,〜,M(L) -1次 R—PDCCH 盲检, 对于每次盲检的 R-PDCCH起始位置由如下公式决定:
(L- m'+i)modN¾B PDCCH ? i = 0,1,..., L-1
当 RN 未被配置为在该 R-PDCCH载波上进行跨载波调度, 则 m' = m; 当 RN被配置为在该 R—PDCCH载波上进行跨载波调度, 则 m' = m+ M (L) · 1 , 其中, 1为所调度的 PDSCH/PUSCH所在 CC的载波编号, 即 CIF。
R-PDCCH
其中, VRB 为 R-PDCCH VRB set内包含的 VRB个数, 公式 中其他参数的含义与前述的交织模式中是相同的, 在此不再重复说 明。
与现有技术相比, 本发明实施例具有以下优点:
通过应用本发明实施例的技术方案,中继节点和基站之间支持多 载波聚合传输, 基站向中继节点发送携带 R-PDCCH的成员载波, 通 过成员载波中携带的 R-PDCCH对各成员载波中的资源进行调度, 从 而, 实现基站通过聚合的多个成员载波与中继节点进行通信, 使基站 与中继节点之间的链路传输资源支持多载波 PDCCH调度, 提高了基 站与中继节点之间链路的传输能力, 改善了系统性能。 为了实现本发明实施例的技术方案,本发明实施例还提出了一种 中继节点, 其结构示意图如图 14所示, 具体包括:
接收模块 141 ,用于接收基站发送的多个聚合的成员载波,其中, 一个或多个成员载波中携带 R-PDCCH , 各成员载波所对应的 R-PDCCH单独编码发送;
获取模块 142, 用于对接收模块 141所接收到的携带 R-PDCCH 的成员载波进行盲检, 获取调度各成员载波的 R-PDCCH;
调度模块 143, 用于根据获取模块 142所获取的 R-PDCCH获取 相应的成员载波上的物理资源,并通过获取到的物理资源与所述基站 进行信息传输。
其中, 接收模块 141 , 具体用于:
接收基站发送的分别携带自身所对应的 R-PDCCH的多个聚合的 成员载波, 各成员载波所携带的 R-PDCCH独立调度各成员载波上的 资源; 或,
接收基站发送的多个聚合的成员载波,其中一个成员载波中携带 自身和其他成员载波所对应的 R-PDCCH, R-PDCCH跨载波调度成员 载波以及其他成员载波上的资源。
进一步的, 当接收模块 141 所接收的各成员载波所携带的 R-PDCCH独立调度各成员载波上的资源时, 获取模块 142, 具体用 于:
分别对各成员载波中的搜索空间进行盲检,获取各搜索空间中所 携带的 R-PDCCH信息,并直接将各成员载波上盲检得到的 R-PDCCH 信息确定为调度各成员载波自身的 R-PDCCH 。
另一方面, 当接收模块 141 所接收的成员载波所携带的 R-PDCCH跨载波调度成员载波以及其他成员载波上的资源时, 获取 模块 142, 还用于:
获取基站配置的各待调度的资源所在的成员载波与携带调度待 调度的资源的 R-PDCCH所在的成员载波之间的对应关系。
进一步的, 当接收模块 141 所接收的成员载波所携带的 R-PDCCH 跨载波调度成员载波以及其他成员载波上的资源时, R-PDCCH中具体包括分别调度成员载波以及其他成员载波上的资源 的多个 R-PDCCH信息, 其中, 各 R-PDCCH信息中包含所调度的资 源所在的成员载波的标识信息。
其中, 当接收模块 141所接收的成员载波所携带的 R-PDCCH跨 载波调度成员载波以及其他成员载波上的资源时, 获耳 ^莫块 142, 具 体用于:
当接收模块 141 所接收的成员载波中分别通过多个独立的搜索 空间携带 R-PDCCH时, 分别对各搜索空间进行盲检, 获取各搜索空 间中所携带的 R-PDCCH信息及其所调度的资源所在的成员载波的标 识信息;
当接收模块 141 所接收的成员载波中通过共享的搜索空间携带 R-PDCCH时, 在共享的搜索空间进行盲检, 获取搜索空间中携带的 多个 R-PDCCH信息及其所调度的资源所在的成员载波的标识信息。 另一方面, 本发明实施例还提供了一种基站, 其结构示意图如图 15所示, 包括:
配置模块 151 , 用于分别为向中继节点发送的多个聚合的成员载 波所对应的 R-PDCCH进行单独编码; 通信模块 152,用于向中继节点发送多个聚合的成员载波,其中, 一个或多个成员载波中携带配置模块 151单独编码的 R-PDCCH, 并 与中继节点进行信息传输,信息传输所应用的资源由中继节点根据单 独编码的 R-PDCCH在相应的成员载波中得到。
其中, 通信模块 152, 具体用于:
向中继节点发送分别携带自身所对应的 R-PDCCH的多个聚合的 成员载波, 各成员载波所携带的 R-PDCCH独立调度各成员载波上的 资源; 或,
向中继节点发送多个聚合的成员载波,其中一个成员载波中携带 自身和其他成员载波所对应的 R-PDCCH, R-PDCCH跨载波调度成员 载波以及其他成员载波上的资源。
当通信模块 152所发送的成员载波中携带的 R-PDCCH跨载波调 度成员载波以及其他成员载波上的资源时, 配置模块 151 , 还用于: 为中继节点配置各待调度的资源所在的成员载波与携带调度待 调度的资源的 R-PDCCH所在的成员载波之间的对应关系。
当通信模块 152所发送的成员载波中携带的 R-PDCCH跨载波调 度成员载波以及其他成员载波上的资源时,通信模块 152向中继节点 发送的成员载波所携带的 R-PDCCH中, 具体包括:
分别调度成员载波以及其他成员载波上的资源的多个 PDCCH信 其中, 各 R-PDCCH信息中包含所调度的资源所在的成员载波的 标识信息。
进一步的, 配置模块 151 , 还用于:
获取各成员载波中所携带的 R-PDCCH的传输模式和聚合等级, 其中, 传输模式包括交织模式和非交织模式;
根据 R-PDCCH的传输模式和聚合等级, 确定各成员载波上的各 子帧所包括的各时隙中的搜索空间的起始位置。
与现有技术相比, 本发明实施例具有以下优点:
通过应用本发明实施例的技术方案,中继节点和基站之间支持多 载波聚合传输, 基站向中继节点发送携带 R-PDCCH的成员载波, 通 过成员载波中携带的 R-PDCCH对各成员载波中的资源进行调度, 从 而, 实现基站通过聚合的多个成员载波与中继节点进行通信, 使基站 与中继节点之间的链路传输资源支持多载波 PDCCH调度, 提高了基 站与中继节点之间链路的传输能力, 改善了系统性能。 通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明实施例可以通过硬件实现,也可以借助软件加必要的通用硬 件平台的方式来实现。基于这样的理解, 本发明实施例的技术方案可 以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性 存储介质 (可以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络 设备等)执行本发明实施例各个实施场景所述的方法。
本领域技术人员可以理解附图只是一个优选实施场景的示意图, 附图中的模块或流程并不一定是实施本发明实施例所必须的。
本领域技术人员可以理解实施场景中的装置中的模块可以按照 实施场景描述进行分布于实施场景的装置中,也可以进行相应变化位 于不同于本实施场景的一个或多个装置中。上述实施场景的模块可以 合并为一个模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施场景的优劣。 明实施例并非局限于此,任何本领域的技术人员能思之的变化都应落 入本发明实施例的业务限制范围。

Claims

权利要求
1、 一种载波聚合场景下的 R-PDCCH传输方法, 其特征在于, 包括以下步骤:
中继节点接收基站发送的多个聚合的成员载波, 其中, 一个或多 个所述成员载波中携带来自基站物理下行控制信道 R-PDCCH, 各所 述成员载波所对应的 R-PDCCH单独编码发送;
所述中继节点对携带 R-PDCCH的成员载波进行盲检, 获取调度 各成员载波的 R-PDCCH;
所述中继节点根据所述 R-PDCCH获取相应的成员载波上的物理 资源, 并通过所述物理资源与所述基站进行信息传输。
2、 如权利要求 1所述的方法, 其特征在于, 所述中继节点接收 基站发送的多个聚合的成员载波, 其中, 一个或多个所述成员载波中 携带 R-PDCCH,各所述成员载波所对应的 R-PDCCH单独编码发送, 具体包括:
所述中继节点接收所述基站发送的分别携带自身所对应的 R-PDCCH 的多个聚合的成员载波, 各所述成员载波所携带的 R-PDCCH独立调度各所述成员载波上的资源; 或,
所述中继节点接收基站发送的多个聚合的成员载波,其中一个成 员载波中携带自身和其他成员载波所对应的 R-PDCCH , 所述 R-PDCCH跨载波调度所述成员载波以及其他成员载波上的资源。
3、 如权利要求 2所述的方法, 其特征在于, 当各所述成员载波 所携带的 R-PDCCH独立调度各所述成员载波上的资源时, 所述中继 节点对携带 R-PDCCH的成员载波进行盲检, 获取调度各成员载波的 R-PDCCH, 具体包括:
所述中继节点对各成员载波分别进行盲检,获取 R-PDCCH信息, 并直接将各成员载波上盲检得到的 R-PDCCH信息确定为调度各成员 载波自身的 R-PDCCH 。
4、 如权利要求 3所述的方法, 其特征在于, 所述中继节点对各 成员载波分别进行盲检, 获取 R-PDCCH信息, 具体为:
所述中继节点分别对各成员载波中的搜索空间进行盲检,获取各 搜索空间中所携带的 R-PDCCH信息。
5、 如权利要求 2所述的方法, 其特征在于, 当所述 R-PDCCH 跨载波调度所述成员载波以及其他成员载波上的资源时,所述中继节 点接收所述基站发送的多个聚合的成员载波之前, 还包括:
所述中继节点获取所述基站配置的各待调度的资源所在的成员 载波与携带调度所述待调度的资源的 R-PDCCH所在的成员载波之间 的对应关系。
6、 如权利要求 2所述的方法, 其特征在于, 当所述 R-PDCCH 跨载波调度所述成员载波以及其他成员载波上的资源时, 所述 R-PDCCH中, 具体包括:
分别调度所述成员载波以及其他成员载波上的资源的多个 R-PDCCH信息;
其中, 各所述 R-PDCCH信息中包含所调度的资源所在的成员载 波的标识信息。
7、 如权利要求 6所述的方法, 其特征在于, 当所述 R-PDCCH 跨载波调度所述成员载波以及其他成员载波上的资源时,所述中继节 点对携带 R-PDCCH 的成员载波进行盲检, 获取调度各成员载波的 R-PDCCH, 具体包括:
所述中继节点对携带 R-PDCCH的成员载波进行盲检, 获取多个 R-PDCCH信息及其所调度的资源所在的成员载波的标识信息, 并按 照所述标识信息, 将相对应的 R-PDCCH信息确定为调度所述成员载 波以及其他成员载波的 PDCCH。
8、 如权利要求 7所述的方法, 其特征在于, 所述中继节点对携 带 R-PDCCH的成员载波进行盲检, 获取多个 R-PDCCH信息及其所 调度的资源所在的成员载波的标识信息, 具体包括:
当所述成员载波中分别通过多个独立的搜索空间携带所述 R-PDCCH时, 所述中继节点分别对各搜索空间进行盲检, 获取各搜 索空间中所携带的 R-PDCCH信息及其所调度的资源所在的成员载波 的标识信息;
当所述成员载波中通过共享的搜索空间携带所述 R-PDCCH时, 所述中继节点在所述共享的搜索空间进行盲检,获取所述搜索空间中 携带的多个 R-PDCCH信息及其所调度的资源所在的成员载波的标识 信息。
9、 如权利要求 4或 8所述的方法, 其特征在于, 所述成员载波 中的搜索空间, 通过以下方式确定:
所述中继节点获取所述成员载波中所携带的 R-PDCCH的传输模 式和聚合等级, 其中, 所述传输模式包括交织模式和非交织模式; 所述中继节点根据所述 R-PDCCH的传输模式和聚合等级, 确定 所述成员载波上的各子帧所包括的各时隙中的搜索空间的起始位置。
10、 如权利要求 9所述的方法, 其特征在于, 当所述 R-PDCCH 的传输模式为交织模式时, 所述中继节点根据所述 R-PDCCH的传输 模式和聚合等级,确定所述成员载波上的各子帧所包括的各时隙中的 搜索空间的起始位置, 具体为:
述中继节点根据以下公式确定所述搜索空间的起始位置:
Figure imgf000023_0001
其中, L为所述 R—PDCCH的聚合等级; ccE'J 为在预先配置的所述 R-PDCCH可能的传输资源集合内 包含的逻辑 CCE个数, k为当前子帧的编号, j 为在当前子帧内的 当前时隙的序号 j ^0'1};
当各所述成员载波所携带的 R-PDCCH独立调度各所述成员载波 上的资源时, m' = m, 当所述 R-PDCCH跨载波调度所述成员载波 以及其他成员载波上的资源时, m' m+ M ^ 'n^ , m为当前所进 行盲检的次数, ¾为所述 R-PDCCH所调度的资源所在的成员载波 的标识信息;
¾ = ( A-
Figure imgf000024_0001
) m°d D , i = nRNTI ≠ 0 , nRNTI 为中继节点的 R TI,
A= 39827 , D = 65537 , k = Lns/2J, n S为在当前无线帧内的时隙 编号。
11、 如权利要求 9所述的方法, 其特征在于, 当所述 R-PDCCH 的传输模式为非交织模式时, 所述中继节点根据所述 R-PDCCH的传 输模式和聚合等级,确定所述成员载波上的各子帧所包括的各时隙中 的搜索空间的起始位置, 具体为:
所述中继节点根据以下公式确定所述搜索空间的起始位置: (L-m'+i)modN¾B PDCCH ? i = 0,1,...,L-1 其中, L为所述 R-PDCCH的聚合等级;
R-PDCCH
i vRB 为所述 R-PDCCH可能的传输资源集合内包含的 VRB 个数;
当各所述成员载波所携带的 R-PDCCH独立调度各所述成员载波 上的资源时, m' = m, 当所述 R-PDCCH跨载波调度所述成员载波 以及其他成员载波上的资源时, m' m+ MO^ 'n^ , m为当前所进 行盲检的次数, ¾为所述 R-PDCCH所调度的资源所在的成员载波 的标识信息。
12、 如权利要求 1所述的方法, 其特征在于, 所述中继节点根据 所述 R-PDCCH获取相应的成员载波上的物理资源, 并通过所述物理 资源与所述基站进行信息传输, 具体为:
所述中继节点根据所述 R-PDCCH 获取相应的成员载波上的 PDSCH和 /或 PUSCH,并通过所述 PDSCH和 /或 PUSCH与所述基站 进行信息传输。
13、 一种中继节点, 其特征在于, 包括:
接收模块, 用于接收基站发送的多个聚合的成员载波, 其中, 一 个或多个所述成员载波中携带 R-PDCCH, 各所述成员载波所对应的 R-PDCCH单独编码发送;
获取模块, 用于对所述接收模块所接收到的携带 R-PDCCH的成 员载波进行盲检, 获取调度各成员载波的 R-PDCCH;
调度模块, 用于根据所述获取模块所获取的 R-PDCCH获取相应 的成员载波上的物理资源,并通过所述物理资源与所述基站进行信息 传输。
14、 如权利要求 13所述的中继节点, 其特征在于, 所述接收模 块, 具体用于:
接收所述基站发送的分别携带自身所对应的 R-PDCCH的多个聚 合的成员载波, 各所述成员载波所携带的 R-PDCCH独立调度各所述 成员载波上的资源; 或,
接收基站发送的多个聚合的成员载波,其中一个成员载波中携带 自身和其他成员载波所对应的 R-PDCCH, 所述 R-PDCCH跨载波调 度所述成员载波以及其他成员载波上的资源。
15、 如权利要求 14所述的中继节点, 其特征在于, 当所述接收 模块所接收的各所述成员载波所携带的 R-PDCCH独立调度各所述成 员载波上的资源时, 所述获取模块, 具体用于:
分别对各成员载波中的搜索空间进行盲检,获取各搜索空间中所 携带的 R-PDCCH信息,并直接将各成员载波上盲检得到的 R-PDCCH 信息确定为调度各成员载波自身的 R-PDCCH 。
16、 如权利要求 14所述的中继节点, 其特征在于, 当所述接收 模块所接收的所述成员载波所携带的 R-PDCCH跨载波调度所述成员 载波以及其他成员载波上的资源时, 所述获取模块, 还用于:
获取所述基站配置的各待调度的资源所在的成员载波与携带调 度所述待调度的资源的 R-PDCCH所在的成员载波之间的对应关系。
17、 如权利要求 14所述的中继节点, 其特征在于, 当所述接收 模块所接收的所述成员载波所携带的 R-PDCCH跨载波调度所述成员 载波以及其他成员载波上的资源时, 所述 R-PDCCH中具体包括分别 调度所述成员载波以及其他成员载波上的资源的多个 R-PDCCH信 息, 其中, 各所述 R-PDCCH信息中包含所调度的资源所在的成员载 波的标识信息。
18、 如权利要求 14所述的中继节点, 其特征在于, 当所述接收 模块所接收的所述成员载波所携带的 R-PDCCH跨载波调度所述成员 载波以及其他成员载波上的资源时, 所述获取模块, 具体用于: 当所述接收模块所接收的成员载波中分别通过多个独立的搜索 空间携带所述 R-PDCCH时, 分别对各搜索空间进行盲检, 获取各搜 索空间中所携带的 R-PDCCH信息及其所调度的资源所在的成员载波 的标识信息; 当所述接收模块所接收的成员载波中通过共享的搜索空间携带 所述 R-PDCCH时, 在所述共享的搜索空间进行盲检, 获取所述搜索 空间中携带的多个 R-PDCCH信息及其所调度的资源所在的成员载波 的标识信息。
19、 一种载波聚合场景下的 R-PDCCH传输方法, 其特征在于, 包括以下步骤:
基站分别为向中继节点发送的多个聚合的成员载波所对应的 R-PDCCH进行单独编码;
所述基站向所述中继节点发送多个聚合的成员载波, 其中, 一个 或多个所述成员载波中携带所述单独编码的 R-PDCCH;
所述基站与所述中继节点进行信息传输,所述信息传输所应用的 资源由所述中继节点根据所述单独编码的 R-PDCCH在相应的成员载 波中得到。
20、 如权利要求 19所述的方法, 其特征在于, 所述基站向所述 中继节点发送多个聚合的成员载波, 其中, 一个或多个所述成员载波 中携带所述单独编码的 R-PDCCH, 具体包括:
所述基站向所述中继节点发送分别携带自身所对应的 R-PDCCH 的多个聚合的成员载波, 各所述成员载波所携带的 R-PDCCH独立调 度各所述成员载波上的资源; 或,
所述基站向所述中继节点发送多个聚合的成员载波,其中一个成 员载波中携带自身和其他成员载波所对应的 R-PDCCH , 所述 R-PDCCH跨载波调度所述成员载波以及其他成员载波上的资源。
21、 如权利要求 20所述的方法, 其特征在于, 所述基站向所述 中继节点发送分别携带自身所对应的 R-PDCCH的多个聚合的成员载 波, 各所述成员载波所携带的 R-PDCCH独立调度各所述成员载波上 的资源, 具体包括:
所述基站在发送的各所述成员载波中分别通过搜索空间携带所 述 R-PDCCH。
22、 如权利要求 20所述的方法, 其特征在于, 当所述 R-PDCCH 跨载波调度所述成员载波以及其他成员载波上的资源时,所述基站向 所述中继节点发送多个聚合的成员载波之前, 还包括:
所述基站为所述中继节点配置各待调度的资源所在的成员载波 与携带调度所述待调度的资源的 R-PDCCH所在的成员载波之间的对 应关系。
23、 如权利要求 20所述的方法, 其特征在于, 当所述 R-PDCCH 跨载波调度所述成员载波以及其他成员载波上的资源时,所述基站向 所述中继节点发送的成员载波所携带的 R-PDCCH中, 具体包括: 分别调度所述成员载波以及其他成员载波上的资源的多个 R-PDCCH信息;
其中, 各所述 R-PDCCH信息中包含所调度的资源所在的成员载 波的标识信息。
24、 如权利要求 23所述的方法, 其特征在于, 所述基站向所述 中继节点发送多个聚合的成员载波,其中一个成员载波中携带自身和 其他成员载波所对应的 R-PDCCH, 所述 R-PDCCH跨载波调度所述 成员载波以及其他成员载波上的资源, 具体包括:
所述基站在发送的所述成员载波中分别通过多个独立的搜索空 间携带所述 R-PDCCH, 各搜索空间中携带 R-PDCCH信息及其所调 度的资源所在的成员载波的标识信息; 或,
所述基站在发送的所述成员载波中通过共享的搜索空间携带所 述 R-PDCCH, 所述搜索空间中携带多个 R-PDCCH信息及其所调度 的资源所在的成员载波的标识信息。
25、 如权利要求 21或 24所述的方法, 其特征在于, 所述成员载 波中的搜索空间, 通过以下方式确定:
所述基站获取各所述成员载波中所携带的 R-PDCCH的传输模式 和聚合等级, 其中, 所述传输模式包括交织模式和非交织模式; 所述基站根据所述 R-PDCCH的传输模式和聚合等级, 确定各所 述成员载波上的各子帧所包括的各时隙中的搜索空间的起始位置。
26、 如权利要求 25所述的方法, 其特征在于, 当所述 R-PDCCH 的传输模式为交织模式时, 所述基站根据所述 R-PDCCH的传输模式 和聚合等级,确定各所述成员载波上的各子帧所包括的各时隙中的搜 索空间的起始位置, 具体为:
所述基站根据以下公式确定所述搜索空间的起始位置:
L. {(Yk + m')觸 dLNc R c- E7CCH/L」} +i , i = 0, l, ..., L-l , 其中, L为所述 R-PDCCH的聚合等级;
Figure imgf000029_0001
为在预先配置的所述 R-PDCCH可能的传输资源集合内 包含的逻辑 CCE个数, k为当前子帧编号, j 为在当前子帧内的当 前时隙的序号, { ;
当各所述成员载波所携带的 R-PDCCH独立调度各所述成员载波 上的资源时, m' = m, 当所述 R-PDCCH跨载波调度所述成员载波 以及其他成员载波上的资源时,
Figure imgf000030_0001
, m为当前所进 行盲检的次数, ¾为所述 R-PDCCH所调度的资源所在的成员载波 的标识信息;
¾ =
Figure imgf000030_0002
D , i = nRNTI ≠ 0 , nRNTI 为中继节点的 R TI,
A= 39827 , D = 65537 , k = Lns/2J, n S为在当前无线帧内的时隙 编号。
27、 如权利要求 25所述的方法, 其特征在于, 当所述 R-PDCCH 的传输模式为非交织模式时, 所述基站根据所述 R-PDCCH的传输模 式和聚合等级,确定各所述成员载波上的各子帧所包括的各时隙中的 搜索空间的起始位置, 具体为:
所述基站根据以下公式确定所述搜索空间的起始位置:
(L-m'+i)modN¾B PDCCH ? i = 0,1,...,L-1 其中, L为所述 R-PDCCH的聚合等级;
R-PDCCH
i vRB 为所述 R-PDCCH可能的传输资源集合内包含的 VRB 个数;
当各所述成员载波所携带的 R-PDCCH独立调度各所述成员载波 上的资源时, m' = m, 当所述 R-PDCCH跨载波调度所述成员载波 以及其他成员载波上的资源时,
Figure imgf000030_0003
, m为当前所进 行盲检的次数, ¾为所述 R-PDCCH所调度的资源所在的成员载波 的标识信息。
28、 一种基站, 其特征在于, 包括:
配置模块,用于分别为向中继节点发送的多个聚合的成员载波所 对应的 R-PDCCH进行单独编码;
通信模块,用于向所述中继节点发送多个聚合的成员载波,其中, 一个或多个所述成员载波中携带所述配置模块单独编码的 R-PDCCH, 并与所述中继节点进行信息传输, 所述信息传输所应用 的资源由所述中继节点根据所述单独编码的 R-PDCCH在相应的成员 载波中得到。
29、 如权利要求 28所述的基站, 其特征在于, 所述通信模块, 具体用于:
向所述中继节点发送分别携带自身所对应的 R-PDCCH的多个聚 合的成员载波, 各所述成员载波所携带的 R-PDCCH独立调度各所述 成员载波上的资源; 或,
向所述中继节点发送多个聚合的成员载波,其中一个成员载波中 携带自身和其他成员载波所对应的 R-PDCCH, 所述 R-PDCCH跨载 波调度所述成员载波以及其他成员载波上的资源。
30、 如权利要求 29所述的基站, 其特征在于, 当所述通信模块 所发送的成员载波中携带的 R-PDCCH跨载波调度所述成员载波以及 其他成员载波上的资源时, 所述配置模块, 还用于: 为所述中继节点配置各待调度的资源所在的成员载波与携带调 度所述待调度的资源的 R-PDCCH所在的成员载波之间的对应关系。
31、 如权利要求 29所述的基站, 其特征在于, 当所述通信模块 所发送的成员载波中携带的 R-PDCCH跨载波调度所述成员载波以及 其他成员载波上的资源时,所述通信模块向所述中继节点发送的成员 载波所携带的 R-PDCCH中, 具体包括: 分别调度所述成员载波以及其他成员载波上的资源的多个 R-PDCCH信息; 其中, 各所述 R-PDCCH信息中包含所调度的资源所在的成员载 波的标识信息。
32、 如权利要求 29所述的基站, 其特征在于, 所述配置模块, 还用于: 获取各所述成员载波中所携带的 R-PDCCH的传输模式和聚合等 级, 其中, 所述传输模式包括交织模式和非交织模式;
根据所述 R-PDCCH的传输模式和聚合等级, 确定各所述成员载 波上的各子帧所包括的各时隙中的搜索空间的起始位置。
PCT/CN2011/084076 2010-12-15 2011-12-15 载波聚合场景下的r-pdcch传输方法和设备 WO2012079528A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11848211.6A EP2677824A4 (en) 2010-12-15 2011-12-15 METHOD AND DEVICE FOR R-PDCCH TRANSMISSION IN A CARRIER AGGREGATION SCENARIUM
US13/994,477 US9955464B2 (en) 2010-12-15 2011-12-15 Method and device for R-PDCCH transmission in scenario of carrier aggregation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010606125.0 2010-12-15
CN201010606125.0A CN102111884B (zh) 2010-12-15 2010-12-15 载波聚合场景下的r-pdcch传输方法和设备

Publications (1)

Publication Number Publication Date
WO2012079528A1 true WO2012079528A1 (zh) 2012-06-21

Family

ID=44175868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084076 WO2012079528A1 (zh) 2010-12-15 2011-12-15 载波聚合场景下的r-pdcch传输方法和设备

Country Status (4)

Country Link
US (1) US9955464B2 (zh)
EP (1) EP2677824A4 (zh)
CN (1) CN102111884B (zh)
WO (1) WO2012079528A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108400A (zh) * 2013-01-29 2013-05-15 大唐移动通信设备有限公司 无线帧处理方法与装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024792B (zh) 2010-07-21 2018-09-11 太阳专利信托公司 通信装置和通信方法
CN102111884B (zh) * 2010-12-15 2014-04-02 大唐移动通信设备有限公司 载波聚合场景下的r-pdcch传输方法和设备
CN103108392B (zh) * 2011-11-10 2017-12-15 中兴通讯股份有限公司 中继节点物理下行控制信道的资源分配方法及装置
CN103124248A (zh) * 2011-11-18 2013-05-29 中兴通讯股份有限公司 中继节点物理下行共享信道的配置方法及装置
CN103139926B (zh) * 2011-11-28 2016-05-18 华为技术有限公司 跨载波调度的方法、基站和用户设备
WO2014077654A1 (ko) * 2012-11-19 2014-05-22 엘지전자 주식회사 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2015131407A1 (zh) * 2014-03-07 2015-09-11 华为技术有限公司 一种中继节点RN、宿主基站DeNB及一种通信方法
JP6404453B2 (ja) * 2014-09-15 2018-10-10 インテル アイピー コーポレーション ミリ波キャリアアグリゲーションを用いる中継バックホーリングの装置、システムおよび方法
CN105871527A (zh) * 2015-01-20 2016-08-17 上海交通大学 增强载波聚合下共享的搜索空间方法以及基站和用户设备
CN107623948B (zh) * 2016-07-15 2020-07-28 普天信息技术有限公司 一种pdcch聚合等级下cce候选位置选择方法和装置
CN108631934B (zh) 2017-03-24 2021-04-09 华为技术有限公司 一种数据传输方法、终端设备及基站系统
US20200029317A1 (en) * 2018-07-20 2020-01-23 Qualcomm Incorporated Multi-carrier scheduling and search space activation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111884A (zh) * 2010-12-15 2011-06-29 大唐移动通信设备有限公司 载波聚合场景下的r-pdcch传输方法和设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7961700B2 (en) * 2005-04-28 2011-06-14 Qualcomm Incorporated Multi-carrier operation in data transmission systems
US20080232341A1 (en) * 2007-03-19 2008-09-25 Lucent Technologies Inc. Scheduling for multi-carrier wireless data systems
DK2665192T3 (en) * 2007-10-29 2017-08-07 Panasonic Corp Assignment of control channels
US8238475B2 (en) * 2007-10-30 2012-08-07 Qualcomm Incorporated Methods and systems for PDCCH blind decoding in mobile communications
US20100215011A1 (en) * 2009-02-26 2010-08-26 Interdigital Patent Holdings, Inc. Method and apparatus for switching a resource assignment mode for a plurality of component carriers
KR101697782B1 (ko) * 2009-05-14 2017-01-19 엘지전자 주식회사 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
US8644210B2 (en) * 2009-05-19 2014-02-04 Lg Electronics Inc. Method and apparatus of transmitting and receiving backhaul downlink control information in a wireless communication system
US8665775B2 (en) * 2009-05-24 2014-03-04 Lg Electronics Inc. Method and apparatus in which a relay station makes a hybrid automatic repeat request in a multi-carrier system
WO2011008013A2 (ko) * 2009-07-13 2011-01-20 엘지전자 주식회사 백홀 링크 전송을 위한 전송 모드 구성 방법 및 장치
WO2011013962A2 (ko) * 2009-07-26 2011-02-03 엘지전자 주식회사 중계기를 위한 제어 정보 및 시스템 정보를 송수신하는 장치 및 그 방법
US8948077B2 (en) * 2009-08-14 2015-02-03 Nokia Corporation Method and apparatus for managing interference handling overhead
US8848597B2 (en) * 2009-09-07 2014-09-30 Lg Electronics Inc. Channel status information feedback method and apparatus in wireless communication system with relay station
CN102036262A (zh) * 2009-09-25 2011-04-27 中兴通讯股份有限公司 一种下行控制信息的检测方法和装置
WO2011049368A2 (ko) * 2009-10-20 2011-04-28 엘지전자 주식회사 무선 통신 시스템에서 수신 확인 전송 방법 및 장치
KR101763596B1 (ko) * 2010-01-06 2017-08-01 엘지전자 주식회사 복수의 컴포넌트 캐리어를 지원하는 무선통신 시스템에서 크로스-캐리어 스케쥴링을 통한 데이터 전송 방법 및 장치
KR101819501B1 (ko) * 2010-02-04 2018-01-17 엘지전자 주식회사 복수의 컴포넌트 캐리어를 지원하는 무선통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치
US8848520B2 (en) * 2010-02-10 2014-09-30 Qualcomm Incorporated Aperiodic sounding reference signal transmission method and apparatus
WO2011115463A2 (ko) * 2010-03-19 2011-09-22 엘지전자 주식회사 캐리어 집합을 지원하는 무선통신 시스템에서 제어 정보를 송신/수신하는 장치 및 그 방법
US9215705B2 (en) * 2010-03-30 2015-12-15 Lg Electronics Inc. Method and apparatus for monitoring control channel in wireless communication system
US9276722B2 (en) * 2010-05-05 2016-03-01 Qualcomm Incorporated Expanded search space for R-PDCCH in LTE-A
AU2011255792B2 (en) * 2010-05-17 2013-09-19 Lg Electronics Inc. Method and apparatus for transmitting and receiving downlink control information for repeater
US20130315109A1 (en) * 2010-06-21 2013-11-28 Nokia Corporation Outband/Inband or Full-Duplex/Half-Duplex Mixture Backhaul Signaling in Relay Enhanced Networks
AU2011308292B2 (en) * 2010-09-30 2014-11-27 Lg Electronics Inc. Method for reporting a channel quality indicator by a relay node in a wireless communication system, and apparatus for same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111884A (zh) * 2010-12-15 2011-06-29 大唐移动通信设备有限公司 载波聚合场景下的r-pdcch传输方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Feasibility study for Further Advancements for E-UTRA (LTE-Advanced) (Release 9)", 3GPP TR 36.912 V9.1.0, December 2009 (2009-12-01), XP050400838 *
See also references of EP2677824A4 *
WANG, YINGMIN ET AL.: "TD-LTE Principles and System Design.", TD-LTE, June 2010 (2010-06-01), pages 438, 443 - 453, XP008171204 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108400A (zh) * 2013-01-29 2013-05-15 大唐移动通信设备有限公司 无线帧处理方法与装置
CN103108400B (zh) * 2013-01-29 2015-09-09 大唐移动通信设备有限公司 无线帧处理方法与装置

Also Published As

Publication number Publication date
CN102111884A (zh) 2011-06-29
US20130279400A1 (en) 2013-10-24
EP2677824A4 (en) 2016-07-13
US9955464B2 (en) 2018-04-24
EP2677824A1 (en) 2013-12-25
CN102111884B (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
WO2012079528A1 (zh) 载波聚合场景下的r-pdcch传输方法和设备
US11924849B2 (en) Method and apparatus for transmitting control and data information in wireless cellular communication system
JP5736446B2 (ja) ダウンリンク信号を受信する方法及びダウンリンク信号を受信する装置
US8477675B2 (en) Multicast/broadcast single frequency network subframe physical downlink control channel design
US8885575B2 (en) Relay link control channel design
TWI494015B (zh) 中繼之dl回載控制頻道設計
CN107689860B (zh) 用于传送控制数据到用户设备的方法和装置
EP3500014B1 (en) Communication device, communication method, and program
US8755326B2 (en) Repeater apparatus for simultaneously transceiving signals in a wireless communication system, and method for same
JP2019533360A (ja) 柔軟な無線サービスのための5g nrデータ送達
US20140348057A1 (en) Method and apparatus for allocating resources in a wireless communication system
US20130039297A1 (en) Method for data transmission and base station and user equipment using the same
JP2015501612A (ja) Pdcch領域と重複する拡張pdcch
WO2018029993A1 (ja) 通信装置、通信方法、及びプログラム
TW201711417A (zh) 用於彈性雙工通訊之演進節點b、使用者設備及方法
CN115315916B (zh) 用于多分量载波调度的搜索空间配置
CN116783945A (zh) 用于全双工反馈的发射功率调整
CN115004594A (zh) 同时的反馈信息和上行链路共享信道传输
JP6030694B2 (ja) ダウンリンク信号を受信する方法及びダウンリンク信号を受信する装置
CN116325642A (zh) 动态全双工通信
US20230007504A1 (en) Method and apparatus for selection of radio link monitoring reference resource in network cooperative communications
CN116134942A (zh) 侧链路通信抢占
TWI841783B (zh) 存取網路和副鏈路聯合排程
US20230345498A1 (en) Method and apparatus for transmission and reception of control information in wireless communication system
JP2024503808A (ja) フィードバックコードブックを生成すること

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13994477

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011848211

Country of ref document: EP