WO2012079336A1 - 微波带通滤波器及设计微波带通滤波器的方法 - Google Patents

微波带通滤波器及设计微波带通滤波器的方法 Download PDF

Info

Publication number
WO2012079336A1
WO2012079336A1 PCT/CN2011/074155 CN2011074155W WO2012079336A1 WO 2012079336 A1 WO2012079336 A1 WO 2012079336A1 CN 2011074155 W CN2011074155 W CN 2011074155W WO 2012079336 A1 WO2012079336 A1 WO 2012079336A1
Authority
WO
WIPO (PCT)
Prior art keywords
rows
integrated waveguide
open resonant
resonant ring
bandpass filter
Prior art date
Application number
PCT/CN2011/074155
Other languages
English (en)
French (fr)
Inventor
李超
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012079336A1 publication Critical patent/WO2012079336A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2088Integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate

Definitions

  • Microwave bandpass filter and method for designing microwave bandpass filter are described.
  • the invention relates to a microwave filter in a microwave millimeter wave hybrid integrated circuit (MMIC, Microwave and Millimeter-wave Integrated Circuits) or a millimeter wave integrated circuit (MIC), in particular to a microwave band pass filter and a method for designing a microwave band pass filter .
  • MMIC microwave millimeter wave hybrid integrated circuit
  • MIC millimeter wave integrated circuit
  • Microwave filters are important microwave devices in microwave engineering. They are widely used in microwave systems to release the microwave band that is allowed to pass, and to cut off the microwave band that is not allowed to pass.
  • microwave filters are implemented with rectangular waveguides or microstrip lines.
  • traditional design thinking often makes the size of the filter device a bottleneck for development.
  • the rectangular waveguide has the advantages of small loss, large power capacity, and high Q factor.
  • the strip line has the advantages of small size, light weight, and easy integration, its power capacity is small and the Q value is low, so the application in some aspects is limited.
  • CSRRs Complementary Split-Ring Resonators
  • This structure has been widely used in the design of some novel devices, such as "Effective negative-stop-band microstrip lines based on complementary split ring resonators", IEEE Microwave Wireless Comp. Lett., Vol.14, 2004. , pp280 282.), describes in detail the structure of the open resonant ring and the design of the passive components used in conjunction with the open resonant ring and the microstrip line.
  • the traditional balancing technology mainly utilizes a microstrip line (MSL) or a co-planar waveguide (CPW) transmission line, so a balan structure is generally required, which not only increases the circuit area, but also increases the circuit area. Additional losses are introduced.
  • the Double-sided Parallel-strip Line (DSPSL) structure is easy to implement low-impedance characteristics and has an equal amplitude inverse phase. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a microwave band pass filter and a method for designing a microwave band pass filter, which can further increase the power capacity of the filter and reduce its volume.
  • the present invention provides a microwave band pass filter, comprising: a substrate integrated waveguide composed of two rows of metal members fixed on a dielectric substrate; and a microstrip feed line connected to each end of the substrate integrated waveguide;
  • the surface of the microstrip feed line and the substrate integrated waveguide are both metal media; an m*n open resonant ring array etched between the two rows of metal members on an upper surface of the substrate integrated waveguide;
  • the lower surface of the substrate-integrated waveguide is located between the two rows of metal members and corresponds to a row of dumbbell shapes or deformations of the dumbbell shape eroded by each column of open resonant rings.
  • the dielectric substrate has a dielectric constant of 2.2 and the dielectric substrate has a thickness of 0.508 mm ⁇ 0.020 mm;
  • the microstrip feed line is composed of a bilateral parallel strip line and a conical transformation, and the line width of the bilateral parallel strip line is 1.65 mm ⁇ 0.15 mm
  • the length of the bilateral parallel strip line is 3 mm ⁇ 7 mm
  • the cone width of the cone transformation is 2.45 mm ⁇ 0.15 mm
  • the cone length of the cone transformation is 2 mm ⁇ 6 mm;
  • the distance between an input port and an output port is 38.0 ⁇ 0.2 mm.
  • the two rows of metal members are two rows of metal columns, the diameter of the metal columns is less than 0.2 /1, the spacing between two adjacent metal columns in each row is not more than twice the diameter of the metal columns, between the two rows of metal columns
  • the row spacing is 0.64 /1 ⁇ 0.96 /1; it is the working wavelength of the bandpass filter.
  • the open resonant ring etched on the upper surface of the substrate integrated waveguide is a square open resonant ring, and the slot open width of the square open resonant ring is equal to the etched ring, both 0.15 mm ⁇ 0.5 mm,
  • the inner side of the square open resonant ring has a side length of 0.5 mm to 2 mm; or the open resonant ring etched on the upper surface of the substrate integrated waveguide is a circular open resonant ring, and the circular open resonant ring
  • the slot width is equal to the etched ring, both 0.15 mm ⁇ 0.5 mm, and the circular open resonant ring has a circular diameter of 0.5 mm ⁇ 2 mm.
  • the number m of rows of the open resonant ring array depends on the coupling strength requirement for improving the in-band reflection
  • the number of columns n of the open resonant ring array depends on the steepness requirements of the sideband frequency and the lower sideband of the bandpass filter, wherein the open resonance
  • the line spacing of the center of the ring is 2mm ⁇ 4mm
  • the center distance of the center of the open resonant ring is 6mm ⁇ 10mm.
  • the deformation of the bell shaped includes a T-shaped deformation
  • the bell width of the dumbbell is 0.5 mm - lmm
  • the bell length is 0.9 mm ⁇ 3 mm
  • the length of the Xuan Xuan is 4.2 mm ⁇ 6 mm.
  • the present invention provides a method for designing a microwave band pass filter, including:
  • the two rows of metal members are two rows of metal pillars; the characteristic parameters of the dielectric substrate are selected according to the waveguide mode, and the parameters of the metal components constituting the substrate integrated waveguide are determined, including:
  • the diameter of the metal pillar is less than 0.2A, and the spacing between two adjacent metal pillars in each row is not more than twice the diameter of the metal pillar, the two The row spacing between the rows of metal columns is 0.64 /1 ⁇ 0.96 /1; the operating wavelength is the band pass filter.
  • the parameters of the microstrip feed line include: a line width of the bilateral parallel strip line is 1.65 ⁇ 0.15 mm, a line length of the bilateral parallel strip line is 3-7 mm, and a cone width of the cone transform is 2.45 ⁇ 0.15 mm, a cone transformation
  • the taper length is 2 mm ⁇ 6 mm; the distance between an input port and an output port formed by the two microstrip feeders is 38.0 ⁇ 0.2 ⁇ ;
  • the parameters of the open resonant ring array include the inner side length or inner diameter of the open resonant ring, the slot width, and the number of rows m and the number of columns n of the open resonant ring; wherein, the inner side length is the side length of the inner square of the square open resonant ring, and the inner diameter
  • the circular diameter of the circular open resonant ring, the width of the slot is the width between the two nested open resonant rings, and the width of the open resonant ring is equal to the width of the slot, both 0.15mm ⁇ 0.5mm;
  • the inner side length or the inner diameter is 0.5 mm ⁇ 2 mm; the number of rows m depends on the coupling strength requirement for improving the in-band reflection, and the number of columns n depends on the steepness requirement of the side frequency and the lower side frequency of the band pass filter;
  • the deformation of the bell shape includes a T-shaped deformation
  • the p-bell shape or the T deformation parameter includes: a bell width of the p -bell is 0.5 mm to l mm, a bell length is 0.9 mm to 3 mm, and a rod of the connecting rod The length is 4.2mm ⁇ 6mm.
  • the method further comprises: implementing a microwave band pass filter
  • the implementing the microwave band pass filter comprises:
  • Two rows of metal members are fixed on the dielectric substrate to form a substrate integrated waveguide, and the substrate integrated waveguide determines a high pass filter;
  • a microstrip feed line is connected to each end of the substrate integrated waveguide, and the surface of the microstrip feed line and the substrate integrated waveguide are metal media;
  • An m*n open resonant ring array is etched between the two rows of metal members on an upper surface of the substrate integrated waveguide, the open resonant ring array determining a lower sideband of the band rejection filter;
  • the lower surface of the waveguide is located between the two rows of metal members and corresponds to each row of open resonant rings to erode a row of dumbbells or deformations of the dumbbell shape, the area of the dumbbell or dumbbell shaped deformation determining the band stop filter bandwidth.
  • the microwave band pass filter provided by the invention designs the open resonant ring structure on the upper surface of the substrate integrated waveguide, and designs the hollow dumbbell shape and the deformed area on the lower surface of the substrate integrated waveguide, and the double parallel line structure As an input; the bandpass filter thus designed has steep out-of-band attenuation, small size, light weight and large power capacity, and is easy to integrate with other planar microwave and millimeter wave circuits, so it is expected to be fully applied in microwave millimeter wave mixing. In integrated circuits or millimeter wave integrated circuits.
  • FIG. 1 is a schematic structural view showing an embodiment of an open-surface resonant ring on a substrate integrated waveguide in a microwave band pass filter of the present invention
  • FIG. 2 is a schematic view showing the structure of a dumbbell-shaped embodiment in which the lower surface of the substrate integrated waveguide is hollowed out in the microwave band pass filter of the present invention
  • FIG. 3 is a schematic structural view of the embodiment of the bilateral parallel feeder on the double surface shown in FIG. 1 and FIG. 2;
  • FIG. 4 is a schematic diagram showing the structure of the square or circular open resonant ring on the upper surface of the substrate integrated waveguide shown in FIG.
  • Fig. 5 is a view showing the structure of a dumbbell shape in which the lower surface of the substrate integrated waveguide shown in Fig. 2 is hollowed out and a modified embodiment thereof.
  • the invention provides a microwave band pass filter, comprising:
  • the substrate is integrated with the waveguide; the microstrip feed line is connected to both ends of the substrate integrated waveguide, and the surface of the microstrip feed line and the substrate integrated waveguide are metal media; An m*n open resonant ring array etched between the two rows of metal members on an upper surface of the substrate integrated waveguide; a lower surface of the substrate integrated waveguide between the two rows of metal members and corresponding to Each row of open resonant rings erodes a row of dumbbells or the dumbbell shaped deformation.
  • an embodiment of a microwave bandpass filter based on a substrate integrated waveguide open resonant ring includes: Two rows of metal pillars (5) are fixed on the dielectric substrate (1), and each row of metal pillars (5) is horizontally arranged at equal intervals to form a substrate integrated waveguide (2); the two ends of the substrate integrated waveguide (2) are connected a microstrip feed line (4), (6), the surface of the microstrip feed line (4), (6) and the substrate integrated waveguide (2) are metallic medium; the upper surface of the substrate integrated waveguide (2) is located Two rows of open resonant ring structures (3) are etched between the two rows of metal columns; the lower surface of the substrate integrated waveguide (2) is located between the two rows of metal columns and corrodes one corresponding to each column of open resonant rings (3) Row dumbbell shape (7), as shown in Figure 2.
  • the dielectric substrate (1) has a thickness of 0.32A - 0.49/1 and a dielectric constant ranging from 2 to 15; the metal columns of the two rows of metal columns have a diameter of less than 0.2 ⁇ , and the adjacent two metal pillars
  • the spacing between the two columns is not more than twice the diameter of the metal column, and the spacing between the two rows of metal columns is 0.64/1 ⁇ 0.96/1; ⁇ is the operating wavelength of the bandpass filter.
  • the open resonant ring (3) is two or three columns or more, and specifically how many columns, depending on the steepness requirements of the upper and lower side frequencies of the band pass filter.
  • the open resonant ring (3) is two rows, which is set in consideration of the coupling strength for improving the in-band reflection. Actually, three or more rows are also feasible, and the number of specific rows depends on the improvement of the in-band reflection. Whether the coupling strength meets the requirements.
  • the two rows and three columns of the array consisting of the open resonant ring (3) have a longitudinal spacing of 2 mm to 4 mm in the center of the two rows of open resonant rings, and the left and right columns are respectively centered in the three rows of open resonant rings.
  • the column distance is the same, both 6mm ⁇ l 0mm.
  • microwave band pass filter embodiment In order to more clearly show the structure of the above-described microwave band pass filter embodiment of the present invention, the structure of each portion will be described in detail below by splitting the microwave band pass filter embodiment.
  • FIG. 3 the structure of the parallel strip line embodiment on the double surface of the substrate integrated waveguide shown in FIG. 1 and FIG. 2 is shown, and two rows of metal pillars (5) disposed on the dielectric substrate (1) are formed.
  • the dielectric substrate (1) having a dielectric constant of 2.2 has a thickness of 0.508 ⁇ 0.020 mm
  • the bilateral parallel strip line (9) has a line width of 1.65 ⁇ 0.15 mm
  • the line length is 3 to 7 mm.
  • the cone width (10) has a cone width of 2.45 ⁇ 0.15 ⁇ and a cone length of 2 ⁇ ⁇ 6 ⁇ .
  • the input end consisting of the bilateral parallel strip line (9) and the cone transform (10)
  • the distance between the port (4) and the output port (6) i.e., the distance from the left end to the right end of Fig. 1) is 38.0 ⁇ 0.2 mm.
  • the two rows of metal pillars (5) in the above embodiment may also be replaced by two metal plates embedded in the dielectric substrate (1) and having the same height as the dielectric substrate, as the same metal component as the metal pillars (5). It is also possible to form the substrate-integrated waveguide (8), which is only slightly less effective than the metal pillar (5).
  • FIG. 4 the structure of the embodiment of the substrate-integrated waveguide upper surface open resonant ring shown in FIG. 1 is shown, wherein FIG. 4(A) is a square open resonant ring, and FIG. 4(B) is a circular open resonant ring. .
  • the slot width (16, 17) of the open resonant ring (15) is 0.15 mm to 0.5 mm, and the width of the ring (13, 14) which is eroded away Equal to the slot width (14, 15), the square inner opening (11) of the open resonant ring has a side length of 0.5 to 2 mm.
  • the size of the circular open resonant ring embodiment shown in Fig. 4(B) is similar in size to the above-described square open resonant ring embodiment.
  • FIG. 5 the dumbbell shape of the lower surface of the substrate integrated waveguide shown in FIG. 1 and the structure of the modified embodiment thereof are shown, wherein FIG. 5(A) is a dumbbell-shaped (ie, I-shaped) structure, FIG. 5 ( B) is a bell-shaped (i.e., 1-shaped) structure, and Figure 5 (C) is a single bell-shaped (i.e., T-shaped) structure.
  • FIG. 5(A) is a dumbbell-shaped (ie, I-shaped) structure
  • FIG. 5 ( B) is a bell-shaped (i.e., 1-shaped) structure
  • Figure 5 (C) is a single bell-shaped (i.e., T-shaped) structure.
  • the bell width of the dumbbell (18) is 0.5 mm to l mm
  • the length of the bell is 0.9 mm to 3 mm
  • the length of the ⁇ : dry (19) is : dry length is 4.2mm ⁇ 6mm.
  • the size of the 1-shaped structure shown in Fig. 5 (B) and the T-shaped structure shown in Fig. 5 (C) are similar to those of the dumbbell-shaped (I-shaped) structure shown in Fig. 5 (A).
  • the test results show that the center frequency of the microwave bandpass filter is 9.5G, the width of the passband is 2G; the return loss in the passband is less than 17dB, and the insertion loss of the two output ports is less than 0.2dB;
  • the total volume of the device (including parallel strip line conversion) is 37.8mm*20mm*0.508mm.
  • the present invention is directed to the above embodiments, and accordingly, a method for designing a microwave bandpass filter based on a substrate integrated waveguide open resonant ring, including: Step 1. Select a characteristic parameter of the dielectric substrate according to the waveguide mode, and determine a diameter of the metal pillar constituting the substrate integrated waveguide and a pitch of the adjacent metal pillars;
  • the characteristic parameters of the dielectric substrate are selected, including the dielectric constant and the thickness of the substrate (dielectric substrate).
  • the diameter of the metal pillar, the spacing of adjacent metal pillars, and the spacing between the two rows of metal pillars are determined.
  • Step 2 determining the parameters of the microstrip feeder according to the operating frequency of the band passband; determining the parameters of the open resonant ring according to the upper sideband of the bandpass band (or the lower sideband of the bandstop filter); according to the bandwidth of the bandpass filter stopband Determine the dumbbell shape parameter;
  • the parameters of the microstrip feeder include: the line width of the bilateral parallel strip line, the line length, the cone width of the cone transformation, the length of the cone, the distance between an input port and an output port formed by the two microstrip feeders.
  • the open resonant ring has two parameters: the inner length (or inner diameter) and the slot width.
  • the inner side length is the square side length of the square open resonant ring, and the inner diameter is the circular diameter inside the circular open resonant ring.
  • the slot width is the width between two nested rings, and the width of the ring is equal to the slot width. Determining these two parameters of the open resonant ring determines the resonant frequency of the resonant ring.
  • the bottom dumbbell shape parameter consisting of the length of the bell, the width of the bell, and the length of the rod, determines the bandwidth of the stop band of the microwave bandpass filter of the present invention.
  • the dumbbell-shaped 1-shaped deformation parameters are rod length and rod width; the dumbbell-shaped T-shaped deformation parameters are similar to the dumbbell-shaped parameters.
  • Step 3 Implement a microwave bandpass filter.
  • the high pass filter is determined by the substrate integrated waveguide; the open resonant ring determines the lower side frequency of the band stop filter, and the dumbbell shape and its deformation determine the width of the stop band.
  • the open resonant ring is coupled with two rows and three columns of cascades to improve the in-band reflection and improve the out-of-band attenuation steepness of the upper side frequency.
  • the three-row dumbbell-shaped structure on the bottom is used to cooperate with the open resonant ring.
  • the bandwidth of the blocking filter is used to improve the in-band reflection and improve the out-of-band attenuation steepness of the upper side frequency.
  • the invention is designed to adapt to the application of the microwave millimeter wave hybrid integrated circuit and the millimeter wave integrated circuit, and can be directly transitioned from the double parallel line structure to the microstrip line structure by a simple transition, or can be directly integrated into the substrate by the coaxial joint.
  • the waveguide is excited to better mix with other microwave millimeter waves Connected to a circuit or a millimeter wave integrated circuit.
  • microstrip and substrate-integrated waveguides are designed on the same dielectric substrate to form a monolithic structure that eliminates the need for additional assembly and debug attachments, making them ideal for integration and mass production.
  • the invention is based on the design of the microwave bandpass filter of the substrate integrated waveguide open resonant ring, combined with the advantages of the open resonant ring and the substrate integrated waveguide, not only the power capacity is large, the Q value is high and the upper side frequency is steep, and the out-of-band clutter suppression capability Strong, low profile, and connection to planar circuits or systems such as microstrips and coplanar waveguides through a simple tapered structure.
  • the size of the underside dumbbell structure and the proper adjustment of the position between the open resonant rings can improve the return loss in the passband to less than 20 dB and extend the stopband bandwidth, with an insertion loss of less than 1.5 dB at the output port.
  • the filter of the present invention has a simple structure, is easy to manufacture, and has low cost.
  • the microwave band pass filter and the design method thereof provided by the invention combine the advantages of the open resonant ring and the substrate integrated waveguide, not only have large power capacity, high Q value and steep upper side frequency, strong out-of-band clutter suppression capability, low profile,
  • the connection to a planar circuit or system such as a microstrip and a coplanar waveguide is achieved by a simple tapered structure.
  • the size of the underside dumbbell structure and the proper adjustment of the position between the open resonant rings can improve the return loss in the passband to less than 20 dB and extend the stopband bandwidth, with an insertion loss of less than 1.5 dB at the output port.
  • the filter of the present invention has a simple structure, is convenient to manufacture, and has low cost.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

微波带通滤波器及设计微波带通滤波器的方法 技术领域
本发明涉及微波毫米波混合集成电路 ( MMIC , Microwave and Millimeter-wave Integrated Circuits )或毫米波集成电路 ( MIC ) 中的微波滤波 器, 尤其涉及微波带通滤波器及设计微波带通滤波器的方法。
背景技术
微波滤波器是微波工程中重要的微波器件, 它被广泛地运用于微波系统 中, 用来放行允许通过的微波频带, 而截止不允许通过的微波频带。
常用的微波滤波器用矩形波导或者微带线来实现。 但是, 传统的设计思 路常使得滤波器器件的体积大小成为发展的瓶颈。 特别是在一些要求比较高 的设计中, 如果运用传统的设计思路实现起来会比较困难。 其中, 矩形波导 具有损耗小、承受功率容量大以及品质因数 Q值高等优点,但由于其体积大, 难以与平面电路集成, 因而难以满足现代技术发展所需具备的小型化和集成 化要求; 微带线虽具有体积小、 重量轻以及易于集成等优点, 但是其功率容 量小及 Q值低, 因而在某些方面的应用受到一定的局限。
近年来, 有学者提出一种新型的波导, 即衬底集成矩形波导, 通过加工 在微带衬底上的两排金属柱, 把矩形波导制作到微带衬底上。 这种新型传输 线融合了矩形波导和微带线各自的优点, 不仅体积小、 重量轻以及可承受较 高的功率门限, 而且其 Q值也较高。 目前, 已经有一些微波毫米波的无源器 件或有源器件被设计在这种新型平台上, 并且理论和实验均表明这些器件具 有非常突出的特点, 兼具矩形波导器件和微带器件的双重优点。 例如, 在文 献 1 ( "Integrated micro-strip and rectangular waveguide in planar form, " IEEE Microwave Wireless Compon Lett. , vol. 11 , no. 2, Feb. 2001 , pp. 68 70 ) 以及文献 2 ( " Low cost microwave oscillator using substrate integrated waveguide cavity" , IEEE Microwave and Wireless Comp. Lett. , Vol.13 , No. 2, 2003 , pp.48-50 )中, 都比较详细地介绍了用衬底集成波导这种新技术来设计 新型的微波毫米波有源和无源器件。
近年来, 随着对左手材料的研究不断深入, 又有学者提出了一种新型的 结构, 即互补开口谐振环(CSRR, Complementary Split-Ring Resonators, 也 称镂空开口谐振环)。 这种新型结构的左手特性十分灵活, 具有很好的应用 前景。 目前这个结构已经被广泛地运用于一些新颖器件的设计, 如在文献 3 ( "Effective negative- stop-band microstrip lines based on complementary split ring resonators" , IEEE Microwave Wireless Comp.Lett. , Vol.14, 2004, pp280 282. ) 中, 详细地介绍了开口谐振环的结构以及开口谐振环与微带线结合 使用的无源器件的设计。
传统的平衡技术主要利用微带线(MSL, Micro-strip Line )或者共面波导 ( CPW, Co-planar Waveguide )传输线, 因此一般需要巴伦(balan )结构, 这样不仅增大了电路面积,而且会引入额外的损耗。而双面平行带线(DSPSL, Double-sided Parallel-strip Line )结构, 容易实现低阻抗特性, 且具有等幅反 相的作用。 发明内容
本发明所要解决的技术问题是提供一种微波带通滤波器及设计微波带通 滤波器的方法, 能够进一步增加滤波器的功率容量及缩小其体积。
为了解决上述技术问题, 本发明提供了一种微波带通滤波器, 包括: 在介质基板固定两排金属构件组成的衬底集成波导; 该衬底集成波导的 两端各连有一微带馈线, 所述微带馈线和所述衬底集成波导的表面均为金属 介质; 在所述衬底集成波导的上表面位于所述两排金属构件之间腐蚀出的 m*n开口谐振环阵列; 在所述衬底集成波导的下表面位于两排金属构件之间 且对应于每列开口谐振环腐蚀出的一排哑铃形或所述哑铃形的变形。
优选地, 介质基板的介电常数为 2.2 , 介质基板的厚度为 0.508 mm±0.020mm; 微带馈线由双边平行带线和锥形变换组成, 双边平行带线的 线宽为 1.65 mm±0.15mm, 双边平行带线的线长为 3 mm ~7mm, 锥形变换的 锥宽为 2.45 mm±0.15mm, 锥形变换的锥长为 2mm ~ 6mm; 两个微带馈线构 成的一输入端口和一输出端口之间的距离为 38.0±0.2mm。
优选地, 两排金属构件为两排金属柱, 金属柱的直径小于 0.2 /1 , 每排相 邻两个金属柱之间的间距不大于两倍金属柱的直径, 两排金属柱之间的排距 为 0.64 /1 ~ 0.96 /1 ; 为带通滤波器的工作波长。
优选地, 所述衬底集成波导上表面上腐蚀的所述开口谐振环是方形开口 谐振环, 所述方形开口谐振环的开槽宽度等于被腐蚀掉的环形, 均为 0.15mm ~ 0.5mm, 所述方形开口谐振环内部方形的边长为 0.5 mm ~ 2mm; 或者, 所述衬底集成波导上表面上腐蚀的所述开口谐振环是圓形开口谐 振环, 所述圓形开口谐振环的开槽宽度等于被腐蚀掉的环形, 均为 0.15mm ~ 0.5mm, 所述圓形开口谐振环内部圓形的直径为 0.5 mm ~ 2mm。
优选地,开口谐振环阵列的行数 m取决于改善带内反射的耦合力度要求, 开口谐振环阵列的列数 n取决于带通滤波器上边频和下边频的陡峭度要求, 其中, 开口谐振环中心的行距为 2mm ~ 4mm , 开口谐振环中心的列距为 6mm~10mm。
优选地, 所述亚铃形的变形包括 T形变形;
所述衬底集成波导下表面上腐蚀的哑铃形或 T形变形中, 哑铃的铃宽为 0.5mm - lmm, 铃长为 0.9mm~3mm, 连軒的軒长为 4.2mm~6mm。
为了解决上述技术问题,本发明提供了一种设计微波带通滤波器的方法, 包括:
根据波导模式选定介质基板的特性参数, 并确定构成衬底集成波导的金 属构件的参数; 以及
根据带通通带的工作频率确定微带馈线的参数; 根据带阻滤波器的下边 频确定开口谐振环阵列的参量; 根据带通滤波器阻带的带宽确定哑铃形或所 述哑铃形的变形参数。
优选地, 所述两排金属构件为两排金属柱; 所述根据波导模式选定介质 基板的特性参数, 并确定构成衬底集成波导的金属构件的参数, 包括:
根据确定两种波导模式的截止频率选定介质基板的特性参数, 包括介电 常数为 2.2和所述介质基板的厚度为 0.508 mm士 0.020mm; 以及
根据衬底集成波导等效宽度的理论分析公式确定: 所述金属柱的直径小 于 0.2A , 每排相邻两个金属柱之间的间距不大于两倍所述金属柱的直径, 所 述两排金属柱之间的排距为 0.64 /1 ~ 0.96 /1 ;所述 为带通滤波器的工作波长。
优选地, 微带馈线的参数包括: 双边平行带线的线宽为 1.65±0.15mm, 双边平行带线的线长为 3~7mm, 锥形变换的锥宽为 2.45±0.15mm,锥形变换 的锥长为 2mm ~ 6mm; 两个微带馈线构成的一输入端口和一输出端口之间的 距离为 38.0±0.2匪;
开口谐振环阵列的参量包括开口谐振环的内边长或内径、 开槽宽度以及 开口谐振环的行数 m和列数 n; 其中, 内边长是方形开口谐振环内部方形的 边长, 内径则是圓形开口谐振环内部圓形的直径, 开槽宽度是两个嵌套的开 口谐振环之间的宽度, 并且开口谐振环的宽度与开槽宽度相等, 均为 0.15mm ~ 0.5mm; 内边长或所述内径为 0.5 mm ~ 2mm; 行数 m取决于改善带 内反射的耦合力度要求, 列数 n取决于带通滤波器上边频和下边频的陡峭度 要求;
所述亚铃形的变形包括 T形变形, 所述 p亚铃形或所述 T变形参数包括: p亚铃的铃宽为 0.5mm ~ lmm,铃长为 0.9mm~3mm,连杆的杆长为 4.2mm~6mm。
优选地, 该方法还包括: 实现微波带通滤波器;
所述实现所述微波带通滤波器包括:
在介质基板固定两排金属构件, 组成衬底集成波导, 所述衬底集成波导 决定高通滤波器;
该衬底集成波导两端各连有一微带馈线, 所述微带馈线和所述衬底集成 波导的表面均为金属介质; 以及
在所述衬底集成波导的上表面位于所述两排金属构件之间腐蚀出 m*n开 口谐振环阵列, 所述开口谐振环阵列决定带阻滤波器的下边频; 在所述衬底 集成波导的下表面位于两排金属构件之间且对应于每列开口谐振环腐蚀出一 排哑铃形或所述哑铃形的变形, 所述哑铃形或哑铃形的变形的面积决定带阻 滤波器的带宽。 本发明提供的微波带通滤波器, 将开口谐振环结构设计在衬底集成波导 的上表面, 将镂空的哑铃形及其变形面积设计在衬底集成波导的下表面, 由 双面平行线结构作为输入端; 由此设计出的带通滤波器具有带外衰减陡峭、 体积小、 重量轻且功率容量大, 易于和其它的平面微波毫米波电路集成, 因 而有望充分地应用在微波毫米波混合集成电路或者毫米波集成电路中。
附图概述
图 1是本发明的微波带通滤波器中衬底集成波导上表面开口谐振环实施 例结构示意图;
图 2是本发明的微波带通滤波器中衬底集成波导下表面镂空的哑铃形实 施例结构示意图;
图 3是图 1、 图 2所示的在双表面上双边平行馈线实施例结构示意图; 图 4是图 1所示的衬底集成波导上表面方形或圓形开口谐振环实施例结 构示意图;
图 5是图 2所示的衬底集成波导下表面镂空的哑铃形及其变形实施例结 构示意图。
本发明的较佳实施方式
下面结合附图和优选实施例对本发明的技术方案进行详细地说明。 以下 列举的实施例仅用于说明和解释本发明,而不构成对本发明技术方案的限制。
本发明提供了一种微波带通滤波器, 包括:
在介质基板固定两排金属构件, 组成的衬底集成波导; 该衬底集成波导 的两端各连有一微带馈线, 所述微带馈线和所述衬底集成波导的表面均为金 属介质; 在所述衬底集成波导的上表面位于所述两排金属构件之间腐蚀出的 m*n开口谐振环阵列; 在所述衬底集成波导的下表面位于两排金属构件之间 且对应于每列开口谐振环腐蚀出的一排哑铃形或所述哑铃形的变形。
如图 1所示, 是本发明提供的基于衬底集成波导开口谐振环的微波带通 滤波器的一实施例, 包括: 在介质基板( 1 ) 固定两排金属柱( 5 ) , 每排金属柱( 5 )以等间距横行 排开, 组成衬底集成波导 (2) ; 衬底集成波导(2) 的两端各连有一微带馈 线(4) 、 (6) , 该微带馈线(4) 、 (6)和衬底集成波导(2) 的表面均为 金属介质; 在衬底集成波导(2)的上表面位于两排金属柱之间腐蚀出两行开 口谐振环结构 (3) ; 在衬底集成波导(2) 的下表面位于两排金属柱之间且 对应于每列开口谐振环(3)腐蚀出一排哑铃形 (7) , 如图 2所示。
在上述实施例中, 介质基板( 1 )的厚度为 0.32A -0.49/1, 其介电常数范 围为 2 ~ 15; 两排金属柱的金属柱的直径小于 0.2Α , 相邻两金属柱之间的间 距不大于金属柱直径的两倍, 两排金属柱之间的间距为 0.64/1 ~ 0.96/1; λ为 带通滤波器的工作波长。
开口谐振环(3)为两列或三列或者更多列, 具体是多少列, 取决于带通 滤波器的上边频和下边频的陡峭度要求。 上述实施例中开口谐振环(3)为 2 行, 是考虑到改善带内反射的耦合力度而设置的, 实际上 3行或更多行也是 可行的, 具体行数取决于改善带内反射的耦合力度是否满足要求。
譬如在上述实施例中, 由开口谐振环( 3 )组成的两行三列阵列, 两行开 口谐振环中心的纵向间距均为 2mm ~ 4mm, 三列开口谐振环中, 左右两列分 别到中心列距离相同, 均为 6mm~l 0mm。
为了更清晰地表示出本发明的上述微波带通滤波器实施例结构, 以下通 过将该微波带通滤波器实施例进行拆分, 分别详细地描述各部分的结构。
如图 3所示, 表示了图 1、 图 2所示的衬底集成波导双表面上平行带线 实施例的结构, 介质基板(1 )上设置的两排金属柱(5) , 由此形成了衬底 集成波导(8);该两排金属柱连接微带馈线,该微带馈线由双边平行带线(9) 和锥形变换(10)组成。
在上述实施例中, 介电常数为 2.2的介质基板 ( 1 )的厚度为 0.508±0.020 mm,双边平行带线( 9 )线宽为 1.65±0.15mm,线长为 3~7mm。锥形变换( 10 ) 的锥宽为 2.45±0.15匪,锥长为 2匪 ~6匪。
在上述实施例中, 由双边平行带线( 9 )和锥形变换( 10 )构成的输入端 口 (4 ) 和输出端口 (6)之间的距离 (即图 1 的左端到右端的距离) 为 38.0士 0.2mm。
当然, 上述实施例中两排金属柱(5)也可以用两块嵌入在介质基板(1 ) 中且与该介质基板同高的金属板材替换, 作为与金属柱(5)作用相同的金属 构件也可构成衬底集成波导(8) , 只是在效果上略逊金属柱(5) 。
如图 4所示, 表示了图 1所示的衬底集成波导上表面开口谐振环实施例 的结构, 其中图 4 (A)是方形开口谐振环, 图 4 (B)是圓形开口谐振环。
在图 4 (A)所示的方形开口谐振环实施例中, 开口谐振环(15)的开槽 宽度(16、 17)为 0.15mm ~ 0.5mm, 被腐蚀掉的环形 (13、 14) 宽度与开槽 宽度(14、 15)相等, 方形的开口谐振环内部方形(11 )的边长为 0.5 ~2mm。
图 4 (B)所示的圓形开口谐振环实施例的尺寸与上述方形开口谐振环实 施例的尺寸类似。
如图 5所示, 表示了图 1所示的衬底集成波导下表面镂空的哑铃形及其 变形实施例的结构, 其中图 5 (A)是哑铃形 (即 I形)结构, 图 5 (B)是无 铃形 (即 1形)结构, 图 5 ( C )是单铃形 (即 T形)结构。
在图 5 (A)所示的哑铃形实施例结构中, 哑铃( 18)的铃宽为 0.5mm ~ lmm, 铃长为 0.9mm~3mm, 连^ :干 ( 19 ) 的^ :干长为 4.2mm~6mm。
图 5 (B)所示的 1形结构和图 5 (C)所示的 T形结构的尺寸与图 5 (A) 所示的哑铃形 ( I形)结构尺寸类似。
测试的结果表明, 该微波带通滤波器的中心频率为 9.5G, 通带的宽度为 2G; 在其通带内的回波损耗低于 17dB, 两输出端口的插入损耗低于 0.2dB; 滤波 器的总体积(含平行带线转换)为 37.8mm*20mm*0.508mm。
本发明针对上述实施例, 相应地还提供了基于衬底集成波导开口谐振环 的微波带通滤波器的设计方法, 包括: 步骤 1、 根据波导模式选定介质基板的特性参数, 并确定构成衬底集成 波导的金属柱的直径以及相邻金属柱的间距;
在此, 根据确定 TE10和 TE20两种波导模式的截止频率, 选定介质基板 的特性参数, 包括介电常数和衬底(介质基板)厚度。
根据衬底集成波导等效宽度的理论分析公式, 确定金属柱的直径、 相邻 金属柱的间距以及两排金属柱之间的排距。
步骤 2、 根据带通通带的工作频率确定微带馈线的参数; 根据带通通带 的上边频 (或带阻滤波器的下边频)确定开口谐振环的参量; 根据带通滤波 器阻带的带宽确定哑铃形参数;
微带馈线的参数包括: 双边平行带线的线宽、 线长, 锥形变换的锥宽、 锥长, 两个微带馈线构成的一输入端口和一输出端口之间的距离。 开口谐振环有两个参量: 内边长(或内径)和开槽宽度。 内边长是方形 开口谐振环内部方形的边长, 内径则是圓形开口谐振环内部圓形的直径。 开 槽宽度是两个嵌套的环之间的宽度, 并且环的宽度与开槽宽度相等。 确定开 口谐振环的上述这两个参量就能够确定谐振环的谐振频率。
底面哑铃形参数, 由铃长、 铃宽以及杆长组成, 决定本发明的微波带通 滤波器阻带的带宽。 哑铃形的 1形变形参数则有杆长和杆宽; 哑铃形的 T形 变形参数类似哑铃形参数。
步骤 3、 实现微波带通滤波器。
根据带通滤波器 = 高通滤波器 +带阻滤波器, 由衬底集成波导决定高通 滤波器; 开口谐振环决定带阻滤波器的下边频, 哑铃形及其变形决定了阻带 的宽度。
开口谐振环釆用两行三列级联的结构, 彼此耦合, 用于改善带内反射, 提高上边频的带外衰减陡度; 底面三排的哑铃型结构用于跟开口谐振环配合 拓展带阻滤波器的带宽。
本发明是为适应微波毫米波混合集成电路与毫米波集成电路的应用而设 计的, 可以通过简单的过渡由双平行线结构过渡到微带线结构, 也可以由同 轴接头直接对衬底集成波导进行激励, 以便更好地和其他微波毫米波混合集 成电路或者毫米波集成电路相连接。
微带变换和衬底集成波导设计在同一介质衬底板上,成为一个整体结构, 无需额外的组装以及调试附件, 因此非常适合集成化以及批量生产的要求。
本发明基于衬底集成波导开口谐振环的微波带通滤波器的设计, 结合开 口谐振环和衬底集成波导的优点,不但功率容量大, Q值高且上边频陡峭, 带 外杂波抑制能力强, 低剖面, 并通过简单的锥形结构实现和微带及共面波导 等平面电路或系统的连接。 底面哑铃型结构的尺寸以及开口谐振环之间位置 的适当调整能够改善其通带内的回波损耗, 使其低于 20dB, 并拓展其阻带带 宽, 输出端口的插入损耗低于 1.5dB。 另外, 本发明的滤波器结构简单, 制作 方便, 且成本低。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性
本发明提供的微波带通滤波器及其设计方法, 结合开口谐振环和衬底集 成波导的优点, 不但功率容量大, Q值高且上边频陡峭, 带外杂波抑制能力 强, 低剖面, 并通过简单的锥形结构实现和微带及共面波导等平面电路或系 统的连接。 底面哑铃型结构的尺寸以及开口谐振环之间位置的适当调整能够 改善其通带内的回波损耗, 使其低于 20dB, 并拓展其阻带带宽, 输出端口的 插入损耗低于 1.5dB。另夕卜,本发明的滤波器结构简单,制作方便,且成本低。

Claims

权 利 要 求 书
1、 一种微波带通滤波器, 包括:
在介质基板固定两排金属构件组成的衬底集成波导; 该衬底集成波导的 两端各连有一微带馈线, 所述微带馈线和所述衬底集成波导的表面均为金属 介质; 在所述衬底集成波导的上表面位于所述两排金属构件之间腐蚀出的 m*n开口谐振环阵列; 在所述衬底集成波导的下表面位于两排金属构件之间 且对应于每列开口谐振环腐蚀出的一排哑铃形或所述哑铃形的变形。
2、 按照权利要求 1所述的微波带通滤波器, 其中:
所述介质基板的介电常数为 2.2 , 所述介质基板的厚度为 0.508 mm±0.020mm; 所述微带馈线由双边平行带线和锥形变换组成, 所述双边平 行带线的线宽为 1.65 mm±0.15mm, 所述双边平行带线的线长为 3 mm ~7mm, 所述锥形变换的锥宽为 2.45 mm±0.15mm, 所述锥形变换的锥长为 2mm ~ 6mm ; 两个微带馈线构成的一输入端口和一输出端口之间的距离为 38.0士 0.2mm。
3、 按照权利要求 1或 2所述的微波带通滤波器, 其中:
所述两排金属构件为两排金属柱, 所述金属柱的直径小于 0.2 , 每排相 邻两个金属柱之间的间距不大于两倍所述金属柱的直径, 所述两排金属柱之 间的排距为 0.64 /1 ~ 0.96 /1 ; 所述 为带通滤波器的工作波长。
4、 按照权利要求 3所述的微波带通滤波器, 其中:
所述衬底集成波导上表面上腐蚀的所述开口谐振环是方形开口谐振环, 所述方形开口谐振环的开槽宽度等于被腐蚀掉的环形,均为 0.15mm ~ 0.5mm, 所述方形开口谐振环内部方形的边长为 0.5 mm ~ 2mm;
或者, 所述衬底集成波导上表面上腐蚀的所述开口谐振环是圓形开口谐 振环, 所述圓形开口谐振环的开槽宽度等于被腐蚀掉的环形, 均为 0.15mm ~ 0.5mm, 所述圓形开口谐振环内部圓形的直径为 0.5 mm ~ 2mm。
5、 按照权利要求 1至 4任一项所述的微波带通滤波器, 其中:
所述开口谐振环阵列的行数 m取决于改善带内反射的耦合力度要求, 所 述开口谐振环阵列的列数 n取决于所述带通滤波器上边频和下边频的陡峭度 要求, 其中, 所述开口谐振环中心的行距为 2mm ~ 4mm, 所述开口谐振环中 心的歹1 J距为 6mm~10mm。
6、 按照权利要求 3所述的微波带通滤波器, 其中:
所述亚铃形的变形包括 T形变形;
所述村底集成波导下表面上腐蚀的哑铃形或 T形变形中, 哑铃的铃宽为 0.5mm ~ lmm, 铃长为 0.9mm〜3mm, 连杆的杆长为 4.2mm~6mm。
7、 一种设计微波带通滤波器的方法, 包括:
根据波导模式选定介质基板的特性参数, 并确定构成衬底集成波导的金 属构件的参数; 以及
根据带通通带的工作频率确定微带馈线的参数; 根据带阻滤波器的下边 频确定开口谐振环阵列的参量; 根据带通滤波器阻带的带宽确定哑铃形或所 述哑铃形的变形参数。
8、按照权利要求 7所述的方法,其中,所述两排金属构件为两排金属柱; 所述根据波导模式选定介质基板的特性参数, 并确定构成衬底集成波导的金 属构件的参数, 包括:
根据确定两种波导模式的截止频率选定介质基板的特性参数, 包括介电 常数为 2.2和所述介质基板的厚度为 0.508 mm±0.020mm; 以及
根据衬底集成波导等效宽度的理论分析公式确定: 所述金属柱的直径小 于 0.2 A , 每排相邻两个金属柱之间的间距不大于两倍所述金属柱的直径, 所 述两排金属柱之间的排距为 0.64 /1 - 0.96 /1 ;所述 为带通滤波器的工作波长。
9、 按照权利要求 7所述的方法, 其中:
所述微带馈线的参数包括: 所述双边平行带线的线宽为 1.65±0.15mm, 所述双边平行带线的线长为 3~7mm, 所述锥形变换的锥宽为 2.45±0.15mm, 所述锥形变换的锥长为 2mm ~ 6mm; 两个微带馈线构成的一输入端口和一输 出端口之间的距离为 38.0±0.2匪;
所述开口谐振环阵列的参量包括所述开口谐振环的内边长或内径、 开槽 宽度以及所述开口谐振环的行数 m和列数 n; 其中, 所述内边长是方形开口 谐振环内部方形的边长, 所述内径则是圓形开口谐振环内部圓形的直径, 所 述开槽宽度是两个嵌套的开口谐振环之间的宽度, 并且所述开口谐振环的宽 度与所述开槽宽度相等,均为 0.15mm ~ 0.5mm; 所述内边长或所述内径为 0.5 mm ~ 2mm; 所述行数 m取决于改善带内反射的耦合力度要求, 所述列数 n 取决于所述带通滤波器上边频和下边频的陡峭度要求;
所述亚铃形的变形包括 T形变形, 所述 p亚铃形或所述 T变形参数包括: p亚铃的铃宽为 0.5mm ~ lmm,铃长为 0.9mm~3mm,连杆的杆长为 4.2mm~6mm。
10、 按照权利要求 9所述的方法, 所述方法还包括: 实现所述微波带通 滤波器;
所述实现所述微波带通滤波器包括:
在介质基板固定两排金属构件, 组成衬底集成波导, 所述衬底集成波导 决定高通滤波器;
该衬底集成波导两端各连有一微带馈线, 所述微带馈线和所述衬底集成 波导的表面均为金属介质; 以及
在所述衬底集成波导的上表面位于所述两排金属构件之间腐蚀出 m*n开 口谐振环阵列, 所述开口谐振环阵列决定带阻滤波器的下边频; 在所述衬底 集成波导的下表面位于两排金属构件之间且对应于每列开口谐振环腐蚀出一 排哑铃形或所述哑铃形的变形, 所述哑铃形或哑铃形的变形的面积决定带阻 滤波器的带宽。
PCT/CN2011/074155 2010-12-13 2011-05-17 微波带通滤波器及设计微波带通滤波器的方法 WO2012079336A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010586893.4A CN102013537B (zh) 2010-12-13 2010-12-13 基于衬底集成波导开口谐振环的微波带通滤波器
CN201010586893.4 2010-12-13

Publications (1)

Publication Number Publication Date
WO2012079336A1 true WO2012079336A1 (zh) 2012-06-21

Family

ID=43843615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074155 WO2012079336A1 (zh) 2010-12-13 2011-05-17 微波带通滤波器及设计微波带通滤波器的方法

Country Status (2)

Country Link
CN (1) CN102013537B (zh)
WO (1) WO2012079336A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013537B (zh) * 2010-12-13 2014-03-19 中兴通讯股份有限公司 基于衬底集成波导开口谐振环的微波带通滤波器
CN102522962B (zh) * 2011-11-14 2015-01-14 上海交通大学 高速电路系统中的电源分配网络
CN103367911A (zh) * 2012-04-01 2013-10-23 深圳光启创新技术有限公司 超材料基站天线罩和天线系统
GB201209246D0 (en) * 2012-05-25 2012-07-04 Imp Innovations Ltd Structures and materials
WO2015017353A1 (en) 2013-07-29 2015-02-05 Multi-Fineline Electronix, Inc. Thin, flexible transmission line for band-pass signals
CN103682534B (zh) * 2013-12-26 2016-05-04 航天恒星科技有限公司 一种缺陷地加载磁耦合结构的介质波导滤波器
CN103730709B (zh) * 2014-01-08 2015-12-09 西南大学 基于基片集成波导复合左右手和互补开口谐振环缺陷地的双带滤波器
CN103956542B (zh) * 2014-04-18 2016-08-17 华南理工大学 一种采用u型槽线的宽带基片集成波导滤波器
CN104393381B (zh) * 2014-11-21 2017-04-19 南京理工大学 一种微波毫米波双通带滤波器
CN105789786B (zh) * 2016-03-29 2018-05-04 西南大学 基于基片集成波导互补开口谐振环的低插损宽带滤波器
CN105720337B (zh) * 2016-05-06 2018-05-01 西南大学 基片集成波导互补开口谐振环和带状线结构的双带滤波器
CN110838610B (zh) * 2018-08-17 2022-04-08 中国电子科技集团公司第五十五研究所 一维滤波阵列介质波导带通滤波器及其设计方法
CN109742496B (zh) * 2019-01-08 2020-06-30 西安电子科技大学 基于嵌套环形与缝隙线谐振器的宽带差分带通滤波器
CN110389259B (zh) * 2019-07-30 2021-06-04 重庆邮电大学 一种基于siw-csrr结构的固体材料介电常数传感器
CN111613861A (zh) * 2020-05-20 2020-09-01 江南大学 具有宽阻带抑制的双模siw滤波器
CN114927841B (zh) * 2022-05-20 2023-09-08 重庆邮电大学 一种基于互补开口环与siw结构的可重构滤波器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170817A1 (en) * 2000-07-04 2002-01-09 Dal Ahn Transmission line resonator with dielectric substrate having an etched structure on the ground plane
CN2798332Y (zh) * 2005-06-08 2006-07-19 东南大学 破损地结构基片集成波导腔体滤波器
CN201196972Y (zh) * 2008-01-25 2009-02-18 南京理工大学 基于衬底集成波导的开口谐振环带通滤波器
CN101752636A (zh) * 2008-12-17 2010-06-23 华为技术有限公司 一种信号传输模块
CN102013537A (zh) * 2010-12-13 2011-04-13 中兴通讯股份有限公司 基于衬底集成波导开口谐振环的微波带通滤波器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2629035A1 (en) * 2008-03-27 2009-09-27 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Waveguide filter with broad stopband based on sugstrate integrated waveguide scheme

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170817A1 (en) * 2000-07-04 2002-01-09 Dal Ahn Transmission line resonator with dielectric substrate having an etched structure on the ground plane
CN2798332Y (zh) * 2005-06-08 2006-07-19 东南大学 破损地结构基片集成波导腔体滤波器
CN201196972Y (zh) * 2008-01-25 2009-02-18 南京理工大学 基于衬底集成波导的开口谐振环带通滤波器
CN101752636A (zh) * 2008-12-17 2010-06-23 华为技术有限公司 一种信号传输模块
CN102013537A (zh) * 2010-12-13 2011-04-13 中兴通讯股份有限公司 基于衬底集成波导开口谐振环的微波带通滤波器

Also Published As

Publication number Publication date
CN102013537B (zh) 2014-03-19
CN102013537A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2012079336A1 (zh) 微波带通滤波器及设计微波带通滤波器的方法
CN110380164B (zh) 陶瓷介质波导滤波器
CN201196972Y (zh) 基于衬底集成波导的开口谐振环带通滤波器
CN109462000B (zh) 一种多层基片集成波导三阶滤波功分器
CN108550511B (zh) 一种双频双模回旋行波管输入耦合器
CN104733817A (zh) 层叠级联两腔基片集成波导双模带通滤波器
US6566977B2 (en) Filter, duplexer, and communication device
CN105720337B (zh) 基片集成波导互补开口谐振环和带状线结构的双带滤波器
US11158924B2 (en) LTCC wide stopband filtering balun based on discriminating coupling
CN110350273B (zh) 一种双通带毫米波基片集成波导滤波器
CN115425375B (zh) 一种带通滤波器及其小型化cq拓扑结构
CN106099278A (zh) 谐振单元和滤波器
CN104577349A (zh) 高带外抑制腔体滤波天线阵列
CN108550510A (zh) 一种具有高电子束流通率的回旋行波管输入耦合器
CN109273806A (zh) 基于六角t型谐振器的小型化低通滤波器
KR100541068B1 (ko) 유전체필터를 갖춘 중계기
US7532918B2 (en) Superconductive filter having U-type microstrip resonators with longer and shorter parallel sides
US11637354B2 (en) Method and system of fabricating and tuning surface integrated waveguide filter
CN210200922U (zh) 陶瓷介质波导滤波器
US6249195B1 (en) Dielectric filter, dielectric duplexer, and transceiver having circular and polygonal electrode openings
CN104269593A (zh) 一种基于过耦合技术的谐波混频器
CN109755706B (zh) 高带外抑制的电磁分路耦合滤波器
US9755290B2 (en) Electromagnetic wave mode transducer
KR100661881B1 (ko) 스트립 라인 공진기를 구비한 중계기
Chen et al. All-planar dual-mode asymmetric filters at Ka-band

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848564

Country of ref document: EP

Kind code of ref document: A1