WO2012078626A2 - Unscented and low scented malodor control compositions and methods thereof - Google Patents

Unscented and low scented malodor control compositions and methods thereof Download PDF

Info

Publication number
WO2012078626A2
WO2012078626A2 PCT/US2011/063525 US2011063525W WO2012078626A2 WO 2012078626 A2 WO2012078626 A2 WO 2012078626A2 US 2011063525 W US2011063525 W US 2011063525W WO 2012078626 A2 WO2012078626 A2 WO 2012078626A2
Authority
WO
WIPO (PCT)
Prior art keywords
malodor control
control composition
perfume mixture
perfume
methyl
Prior art date
Application number
PCT/US2011/063525
Other languages
French (fr)
Other versions
WO2012078626A3 (en
Inventor
Judith Ann Hollingshead
Steven Anthony Horenziak
Zaiyou Liu
Michael-Vincent Nario Malanyaon
Christine Marie Readnour
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/962,691 external-priority patent/US8357359B2/en
Priority claimed from US13/249,616 external-priority patent/US9399078B2/en
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to EP11802994.1A priority Critical patent/EP2648770A2/en
Priority to JP2013543270A priority patent/JP5711385B2/en
Publication of WO2012078626A2 publication Critical patent/WO2012078626A2/en
Publication of WO2012078626A3 publication Critical patent/WO2012078626A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/0006Flexible refuse receptables, e.g. bags, sacks
    • B65F1/0026Flexible refuse receptables, e.g. bags, sacks with odor controlling substances
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/0007Aliphatic compounds
    • C11B9/0015Aliphatic compounds containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/0007Aliphatic compounds
    • C11B9/0015Aliphatic compounds containing oxygen as the only heteroatom
    • C11B9/0019Aliphatic compounds containing oxygen as the only heteroatom carbocylic acids; Salts or esters thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/0042Essential oils; Perfumes compounds containing condensed hydrocarbon rings
    • C11B9/0046Essential oils; Perfumes compounds containing condensed hydrocarbon rings containing only two condensed rings
    • C11B9/0049Essential oils; Perfumes compounds containing condensed hydrocarbon rings containing only two condensed rings the condensed rings sharing two common C atoms
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/0061Essential oils; Perfumes compounds containing a six-membered aromatic ring not condensed with another ring

Definitions

  • the present invention relates to unscented and low scented malodor control compositions and methods thereof.
  • the malodor control compositions are suitable for use in a variety of applications, including use in air freshening composition and on plastic films for garbage bags.
  • Products for controlling malodors are well known in the art and are widely described in patent literature. These products may be designed to work specifically in air, on fabrics, or with plastic films. See, e.g. , U.S. Patent Publication Nos. 2009/0326093 and 2009/0067760.
  • Unscented or low scented products are desired by consumers as they may be considered more natural and discreet to use than scented products.
  • Manufacturers of unscented or low scented products for controlling malodors rely on malodor control ingredients or other technologies (e.g. filters) to reduce malodors.
  • malodor control ingredients or other technologies e.g. filters
  • effectively controlling both amine-based malodors (e.g fish and urine) and sulfur-based malodors (e.g. garlic and onion) may be difficult, and the time required for a product to noticeably reduce malodors may create consumer doubt as to the product's efficacy on malodors.
  • manufacturers incorporate scented perfumes to help mask these difficult malodors.
  • a malodor control composition comprising a perfume mixture comprising an effective amount of benzophenone, methyl palmitate, farnesol, vetivert acetate, and undecylenic aldehyde for reducing malodors.
  • a malodor control composition comprising a perfume mixture comprising about 30% to about 100%, by weight of said perfume mixture, of benzophenone, methyl palmitate, farnesol, and mixtures thereof.
  • a plastic film comprising a perfume mixture comprising an effective amount of at least 2 perfume ingredients selected from the group consisting of: benzophenone, undecylenic aldehyde, methyl palmitate, vetivert acetate, farnesol, and mixtures thereof, wherein said perfume mixture reduces malodors in the air.
  • a malodor control composition comprising a perfume mixture comprising styrax asphalt and an effective amount of at least one perfume material selected from the group consisting of: benzophenone, undecylenic aldehyde, methyl palmitate, vetivert acetate, farnesol, and mixtures thereof, wherein said perfume mixture reduces malodors.
  • a method of controlling malodors and providing a low scent composition via providing a malodor control composition comprising a perfume mixture comprising an effective amount of benzophenone, methyl palmitate, farnesol, vetivert acetate, and undecylenic aldehyde; and contacting the malodor control composition with a malodor.
  • Fig. 1 is a graph showing butanethiol reduction by thiophene carboxaldehyde in combination with various acid catalysts.
  • Fig. 2 is a graph showing scent intensities of varying loads of a malodor control composition, in accordance with the present invention, in trash bags.
  • Unscented and low scented malodor control compositions of the present invention comprise perfume mixtures that are substantially free of scent yet control malodors through odor neutralization and odor blocking technologies.
  • the perceptible perfume scent intensity and malodor efficacy of a composition can be determined using the tests outlined herein.
  • Malodor refers to compounds generally offensive or unpleasant to most people, such as the complex odors associated with bowel movements.
  • Netralize or “neutralization” refers to the ability of a compound or product to reduce or eliminate malodorous compounds. Odor neutralization may be partial, affecting only some of the malodorous compounds in a given context, or affecting only part of a malodorous compound. A malodorous compound may be neutralized by chemical reaction resulting in a new chemical entity, by sequestration, by chelation, by association, or by any other interaction rendering the malodorous compound less malodorous or non-malodorous. Neutralization is distinguishable from odor masking or odor blocking by a change in the malodorous compound, as opposed to a change in the ability to perceive the malodor without any corresponding change in the condition 12262-JC
  • Malodor neutralization provides a sensory and analytically measurable (e.g. gas chromatograph) malodor reduction.
  • gas chromatograph analytically measurable
  • Oxidor blocking refers to the ability of a compound to dull the human sense of smell.
  • Odor masking refers to the ability of a compound with a non-offensive or pleasant smell that is dosed such that it limits the ability to sense a malodorous compound. Odor-masking may involve the selection of compounds which coordinate with an anticipated malodor to change the perception of the overall scent provided by the combination of odorous compounds.
  • the malodor control compositions of the present invention include an unscented or low scented perfume mixture designed to control malodors by neutralization and blocking and not function merely by covering up or masking odors.
  • the malodor control composition may also include an acid catalyst for more quickly neutralizing malodors and other optional ingredients for particular applications.
  • the malodor control compositions of the present invention may include an unscented or low scented mixture of perfume materials that neutralize and block malodors.
  • the unscented or low scented perfume mixture may include benzophenone, farnesol, undecylenic aldehyde, and mixtures thereof.
  • Suitable perfume materials may have a vapor pressure (VP) in the range of about 0.0001 torr to 100 torr, alternatively about 0.0001 torr to about 10 torr, alternatively about 0.0001 torr to about 0.100 torr, alternatively about 0.001 torr to about 50 torr, alternatively about 0.001 torr to about 20 torr, alternatively about 0.001 torr to about 0.100 torr, alternatively about 0.001 torr to 0.06 torr, alternatively about 0.001 torr to 0.03 torr, alternatively about 0.005 torr to about 20 torr, alternatively about 0.005 torr to about 0.100 torr, alternatively about 0.01 torr to about 20 torr, alternatively about 0.01 torr to about 15 torr, alternatively about 0.01 torr to about 10 torr, alternatively about 0.05 torr to about 10 torr, measured at 25 °C.
  • VP vapor pressure
  • the perfume materials of the present invention may be defined by their boiling point
  • the octanol/water partition coefficient of a perfume material is the ratio between its equilibrium concentrations in octanol and in water.
  • the partition coefficients of the perfume material used in the malodor control composition may more conveniently be given in the form of their logarithm to the base 10, logP.
  • the logP values of many perfume materials have been reported. See, e.g., the Pomona 92 database, available from Daylight Chemical Information Systems, Inc. (Daylight CIS), Irvine, California. However, the logP values are most conveniently calculated by the Biobyte ClogP program contained in Daylight Software version 4.94, also available for license from Daylight CIS. This program also lists experimental logP values when they are available in the Pomona92 database.
  • ClogP The "calculated logP” (ClogP) is determined by the fragment approach of Hansch and Leo (cf., A. Leo, in Comprehensive Medicinal Chemistry, Vol. 4, C. Hansch, P. G. Sammens, J. B. Taylor and C. A. Ramsden, Eds., p. 295, Pergamon Press, 1990).
  • the fragment approach is based on the chemical structure of each perfume material, and takes into account the numbers and types of atoms, the atom connectivity, and chemical bonding.
  • the ClogP values which are the most reliable and widely used estimates for this physicochemical property, are preferably used instead of the experimental logP values in the selection of perfume materials for the malodor control composition.
  • the ClogP values may be defined by four groups and the perfume materials may be selected from one or more of these groups.
  • the first group comprises volatile aldehydes that have a B.P. of about 250 °C or less and ClogP of about 3 or less.
  • the second group comprises volatile aldehydes that have a B.P. of 250°C or less and ClogP of 3.0 or more.
  • the third group comprises volatile aldehydes that have a B.P. of 250°C or more and ClogP of 3.0 or less.
  • the fourth group comprises volatile aldehydes that have a B.P. of 250°C or more and ClogP of 3.0 or more.
  • the malodor control composition may comprise any combination of volatile aldehydes from one or more of the ClogP groups.
  • Suitable perfume materials include Benzophenone, Methyl Palmitate, Farnesol, Vetivert
  • perfume materials may also include Helional (alpha-methyl-3,4-(methylenedioxy)- hydrocinnamaldehyde), Florhydral, Undecylenic Aldehyde, Adoxal (2,6,10-Trimethyl-9- undecenal), Bourgeonal (4-t-butylbenzenepropionaldehyde), Cymal, Florhydral (3-(3-isopropyl- phenyl) -butyraldehyde), Citronellal (3,7-dimethyl 6-octenal), Floralozone (para-ethyl- alpha,alpha-dimethyl hydrocinnamaldehyde), Floral Super, Pino Acetaldehyde, Styrax Coeur.
  • Suitable perfume materials may also include volatile aldehydes or reactive aldehydes (RA) including, but are not limited to, Lilestralis 33 (2-methyl-4-t-butylphenyl)propanal), 12262-JC
  • Suitable volatile aldehydes may also include acetaldehyde (ethanal), pentanal, valeraldehyde, amylaldehyde, Scentenal (octahydro-5-methoxy-4,7-Methano-lH-indene-2- carboxaldehyde), propionaldehyde (propanal), Cyclocitral, beta-cyclocitral, (2,6,6-trimethyl-l- cyclohexene-1 -acetaldehyde), Iso Cyclocitral (2,4,6-trimethyl-3-cyclohexene-l -carboxaldehyde), isobutyraldehyde, butyraldehyde, isovaleraldehyde (3-methyl butyraldehyde), methylbutyraldehyde (2-methyl butyraldehyde, 2-methyl butanal), Dihydrocitronellal (3,7- dimethyl octan
  • the malodor control composition includes fast reacting volatile aldehydes.
  • Fast reacting volatile aldehydes refers to volatile aldehydes that either (1) reduce amine odors by 20% or more in less than 40 seconds; or (2) reduce thiol odors by 20% or more in less than 30 minutes.
  • Fast reacting volatile aldehydes can be identified by the method outlined in the Example outlined herein, titled "Analytical Test - Effect of volatile aldehydes on amine-based and sulfur-based malodors”.
  • the unscented or low scented perfume mixture may comprise from about 30% to about
  • the perfume mixture may comprise about 35% to about 95%, alternatively about 40%, alternatively about 80%, alternatively about 90%, by weight of said perfume mixture, of benzophenone, methyl palmitate, farnesol, and mixtures thereof.
  • Table 1 shows one embodiment of a perfume mixture suitable for the malodor control composition of the present invention.
  • Table 2 shows another embodiment of a perfume mixture suitable for the malodor control composition of the present invention.
  • Table 3 shows yet another embodiment of a perfume mixture suitable for the malodor control composition of the present invention.
  • the malodor control composition includes a mixture of perfume materials identified in Tables 1-3 along with a mixture of two or more volatile aldehydes selected from the group consisting of 2-ethoxy Benzylaldehyde, 2-isopropyl-5-methyl-2-hexenal, 5- methyl Furfural, 5-methyl-thiophene-carboxaldehyde, p-anisaldehyde, Benzylaldehyde,
  • the perfume mixture includes the volatile aldehyde mixture shown in Table 4 and referred to herein as Accord A.
  • the perfume mixture includes the volatile aldehyde mixture showin in Table 5 and referred to herein as Accord B.
  • the perfume mixture includes the volatile aldehyde mixture shown in Table 6 and referred to herein as Accord C.
  • Accords A, B, or C can be formulated in with the perfume mixture outlined in Tables 1 to 3 or with any other unscented or low scented perfume materials in an amount of about 5% to about 50%, alternatively about 5% to about 40%, alternatively about 5% to about 30%, alternatively about 5% to about 20%, alternatively about 5% to about 10%, by weight of the perfume mixture.
  • the unscented or low scented perfume mixture may be present in an amount up to 100%, by weight of the malodor control composition, alternatively from about 5% to about 100%, 12262-JC
  • the present invention may include poly- aldehydes, for example, di-, tri-, tetra-aldehydes.
  • Such embodiments may include laundry detergents, additive, and the like for leave-on, through the wash, and rinse-off type of applications.
  • the malodor control compositions of the present invention may include an effective amount of an acid catalyst to neutralize sulfur-based malodors. It has been found that certain mild acids have an impact on aldehyde reactivity with thiols in the liquid and vapor phase. It has been found that the reaction between thiol and aldehyde is a catalytic reaction that follows the mechanism of hemiacetal and acetal formation path.
  • the present malodor control composition contains an acid catalyst and contacts a sulfur-based malodor, volatile aldehydes react with thiol. This reaction may form a thiol acetal compound, thus, neutralizing the sulfur- based odor. Without an acid catalyst, only hemi-thiol acetal is formed.
  • Suitable acid catalysts have a VP, as reported by Scifinder, in the range of about 0.001 torr to about 38 torr, alternatively about 0.001 torr to about 14 torr, alternatively from about 0.001 to about 1, alternatively from about 0.001 to about 0.020, alternatively about 0.005 to about 0.020, alternatively about 0.010 to about 0.020, measured at 25°C,.
  • the acid catalyst may be a weak acid.
  • a weak acid is characterized by an acid dissociation constant, K a which is an equilibrium constant for the dissociation of a weak acid; the pKa being equal to minus the decimal logarithm of K a.
  • the acid catalyst may have a pKa from about 4.0 to about 6.0, alternatively from about 4.3 and 5.7, alternatively from about 4.5 to about 5, alternatively from about 4.7 to about 4.9.
  • Suitable acid catalysts include those listed in Table 7.
  • an acid catalyst that provides a neutral scent.
  • Such acid catalysts may have a VP of about 0.001 torr to about 0.020 torr, measured at 25°C, alternatively about 0.005 torr to about 0.020 torr, alternatively about 0.010 torr to about 0.020 torr.
  • Non-limiting examples of such acid catalyst include succinic acid and benzoic acid.
  • the malodor control composition may include about 0.05% to about 5%, alternatively about 0.1% to about 1.0%, alternatively about 0.1% to about 0.5%, alternatively about 0.1% to about 0.4%, alternatively about 0.4% to about 1.5%, alternatively about 0.4% of an acid catalyst, by weight of the malodor control composition.
  • the present malodor control composition may include about 0.4% of acetic acid (50:50 thiophene carboxaldehye (TC): dipropylene glycol methyl ether (DPM), 0.4% acetic acid).
  • TC thiophene carboxaldehye
  • DPM dipropylene glycol methyl ether
  • the acid catalyst may increase the efficacy of the volatile aldehyde on malodors in comparison to the malodor efficacy of the volatile aldehyde on its own.
  • 1% volatile aldehyde and 1.5% benzoic acid provides malodor removal benefit equal to or better than 5% volatile aldehyde alone.
  • the malodor control composition may have a pH from about 3 to about 8, alternatively from about 4 to about 7, alternatively from about, alternatively from about 4 to about 6. 12262-JC
  • the malodor control composition may, optionally, include odor masking agents and/or diluents.
  • Water and surfactants may also be present in any amount for the composition to make an aqueous solution.
  • water may be present in an amount of about 85% to 99.5%, alternatively about 90% to about 99.5%, alternatively about 92% to about 99.5%, alternatively about 95%, by weight of said malodor control composition.
  • Water containing a small amount of low molecular weight monohydric alcohols, e.g., ethanol, methanol, and isopropanol, or polyols, such as ethylene glycol and propylene glycol, can also be useful.
  • the malodor control composition may also comprise 100% of an unscented or low scented perfume mixture according to the present invention.
  • Exemplary diluents include DPM, and 3 -methoxy-3 -methyl- 1-butanol, and mixtures thereof. II. Methods of Use
  • the malodor control composition of the present invention may be used in a wide variety of applications that neutralize malodors in the vapor and/or liquid phase.
  • the malodor control composition may be formulated for use in non-energized vapor phase systems.
  • "Non-energized" as used herein refers to a system that emits a targeted active passively or without the need for an electrical energy source. Aerosol sprayers and traditional trigger/pump sprayers are considered non-energized systems.
  • the VP of the volatile aldehydes may be about 0.01 torr to about 20 torr, alternatively about 0.05 torr to about 10 torr, measured at 25°C.
  • Non-limiting examples of a non-energized vapor phase system are passive air freshening diffusers such as those known by the trade name Renuzit® Crystal Elements; and aerosol sprays such as fabric and air freshening sprays and body deodorants.
  • the malodor control composition may be formulated for use in a liquid phase system.
  • the VP may be about 0 torr to about 20 torr, alternatively about 0.0001 torr to about 10 torr, measured at 25°C.
  • Non-limiting examples of a liquid phase system are liquid laundry products, such as laundry detergents and additives; dish detergents; personal hygiene products such as body washes, shampoos, conditioners.
  • the malodor control composition may also be loaded onto or into known substrates according to known methods.
  • Suitable substrates may include wovens and non-wovens (e.g cellulose fibers for paper products, sponges, and the like). Such substrates may be used to 12262-JC
  • diapers manufacture diapers; baby wipes; adult incontinence products; feminine hygiene products such as sanitary napkins and tampons; cleaning wands for toilets; pet food packaging; paper towels; facial tissues; and the like.
  • Suitable substrates may also include commercially available films including low density polyethylene (LDPE), linear LDPE (LLDPE), high density polyethylene, plastomers, elastomers, ethylene vinyl acetate, ethyl methacrylates, polymethylpentene copolymers, polyisobutylenes, polyolefin isomers, cyclic olefin copolymers, polyethylene, polypropylene, poly lactic acid based films, polyhydroxy alcohol based films, polyhydroxy butyrate/valerate, polyesters, thermoplastic starch, and combinations thereof.
  • These plastic films may be used to manufacture non- disposable composting containers, trash bags, storage bags, and the like.
  • the malodor control composition may also be used in connection with commercial or industrial septic tanks or sewage treatment equipment.
  • Malodor standards are prepared by pipeting 1 mL of n-butylamine (amine-based malodor) or 1-butanethiol (sulfur-based malodor) into a 1.2 liter gas sampling bag. The bag is then filled to volume with nitrogen and allowed to sit for at least 12 hours to equilibrate.
  • a 1 ⁇ sample of each volatile aldehyde listed in Table 9 and of each Accord (A, B, and C) listed in Tables 4 to 6 is pipeted into individual 10 mL silanized headspace vials.
  • the vials are sealed and allowed to equilibrate for at least 12 hours. Repeat 4 times for each sample (2 for butylamine analysis and 2 for butanethiol analysis).
  • the target malodor standard is injected into each 10 mL vial.
  • the vials containing a sample +malodor standard are held at room temperature for 30 minutes.
  • a 1 mL headspace syringe is then used to inject 250 ⁇ ⁇ of each sample/thiol malodor into a GC/MS split/splitless inlet.
  • a 1 mL headspace syringe is used to inject 500 ⁇ ⁇ of each sample/amine malodor immediately into the GC/MS split/splitless inlet.
  • a GC pillow is used for the amine analysis to shorten the run times.
  • Samples are then analyzed using a GC/MS with a DB-5, 20 m, 1 ⁇ film thickness column with an MPS-2 autosampler equipment with static headspace function. Data is analyzed by ion extraction on each total ion current (56 for thiol and 30 for amine) and the area is used to calculate the percent reduction from the malodor standard for each sample.
  • Table 9 shows the effect of certain volatile aldehydes on neutralizing amine-based and sulfur based malodors at 40 seconds and 30 minutes, respectively.
  • Table 10 shows the percent reduction of butylamine and butaniethiol at 40 seconds and 30 minutes, respectively, for Accords A, B, and C.
  • Fig. 1 demonstrates that low vapor pressure acid catalysts provide up to 3 times better reduction of sulfur-based malodors in comparison to the control.
  • Tables 11 and 12 show that a perfume mixture having as little as 1% volatile aldehyde along with 1.5% acid catalyst performs better at reducing butylamine and butanethiol than the same perfume mixture having 5% volatile aldehyde.
  • TOA Technical Olfactive Assessments were conducted using passive dispenser devices for the malodor control composition (MCC) perfume oils. Malodors used were either garlic or Ocean Perch fish. Perfume oils tested were "Test MCC” and "Control MCC” as shown in Table 13.
  • the passive dispenser devices were open, circular containers. Different device diameters were used as outlined in Table 14 in order to achieve approximately the same perfume % weight loss rate for the Test and Control MCCs. This is consistent with the molecular diffusion principles outlined on pages 22-34 in the text, Mass Transfer Operations, third edition, by Robert E. Treybal.
  • Test and Control passive dispenser devices with sufficient Test MCC, shown in Table 13, to ensure surface area remains wet throughout test. 5 minutes before cooked garlic is introduced to the test chambers, place each passive dispenser device into individual test chambers on the opposite side of the fan.
  • Each test chamber is 39.25 inches wide, by 25 inches deep, by 21.5 inches high with a volume of 12.2 cubic feet (0.34 cubic meters).
  • the test chamber can be purchased from Electro-Tech Systems, Glenside, PA.
  • Each test chamber is equipped with a fan (Newark catalog #70K9932, 115 VAC, 90CFM) purchased from Newark Electronics, Chicago, IL.
  • trained evaluators open each chamber, smell the chamber for odor intensity, and assign a score for Malodor Intensity, based on the scale in Table 15.
  • the trained evaluator smells the same chamber for perfume scent intensity, and assigns a score for scent intensity, based on the scale in Table 15.
  • the chamber door is closed between sequential evaluators. The scores are tabulated and the average malodor intensity and scent intensity scores for each time interval are recorded.
  • Table 16 demonstrates that the unscented or low scented MCC test mixture according to the present invention provides similar malodor control as the Control MCC perfume mixture but, notably, has less perfume scent intensity.
  • a patty suitable to fit into a 60 x 15 mm Petri dish Repeat 2 more times so there is one fish patty in each of 3 Petri dishes.
  • Test and Control passive dispenser devices with sufficient Test MCC, shown in Table 13, to ensure surface area remains wet throughout test. 5 minutes before cooked ocean perch is introduced to the test chambers, place each passive dispenser device into individual test chambers on the opposite side of the fan.
  • test chamber will not contain a passive dispenser device.
  • the specifications of the test chamber are the same as those in the above sulfur-based (i.e. garlic) malodor test. Remove the lids to expose contents for a dwell time sufficient to provide an initial odor intensity grade of 70-80 (about 2 minutes). Once the initial odor intensity grade has been reached in a test chamber, remove the Petri dish from the test chamber.
  • trained evaluators open each chamber, smell the chamber for odor intensity, and assign a score for malodor intensity, based on the scale in Table 15.
  • the trained evaluator smells the same chamber for scent intensity, and assigns a score for scent intensity, based on the scale in Table 15.
  • the chamber door is closed between sequential evaluators. The scores are tabulated and the average malodor intensity and scent intensity scores for each time interval are recorded.
  • Table 17 demonstrates that the unscented or low scented perfume mixture according to the present invention provides similar malodor control as the Control perfume mixture but, notably, has less perfume scent intensity.
  • the Test MCC formula listed in Table 13 is loaded into plastic trash bag film, according to known methods, at a target loading level.
  • a trained evaluator is given a folded trash bag sample containing the composition at the target loading level.
  • the evaluator grasps the sample with both hands, one hand grabbing each side edge of the bag opening.
  • Evaluator proceeds to open the bag sample by unfolding it, and then shaking it up and down until the bag has been fully opened. Once opened, the evaluator places the opened bag into a clean, appropriate size trash can (e.g. a tall kitchen trash can) and folds the top edge of the open bag over the outer lip of the trash can to secure the bag in place.
  • a clean, appropriate size trash can e.g. a tall kitchen trash can
  • the evaluator bends down over the trash can and places both arms down into the opened sample until their nose is directly above the opening of the bag and can.
  • the evaluator then moves their arms around inside the bag, stirring up the airspace and keeping their nose in the same area above the bag opening (as if the evaluator were trying to get the air out between the side walls of the bag and the sides of the trash can).
  • the evaluator takes one or more sniffs of the bag headspace air while in this position and performing this step.
  • the evaluator stands up and steps away from the can, and evaluates the intensity of the scent of the Test MCC in the bag following the scale on Table 15.
  • Test MCC loading level is to be evaluated.
  • Evaluator is to allow at least 10 minutes between sample evaluations to clear his/her nose of any residual scent from the previous sample.
  • Table 18 and Fig. 2 show that the perfume intensity rating surprisingly increases less than the incremental increase in the Test MCC loading level seen between 5 and 30 mg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Fats And Perfumes (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Unscented and low scented malodor control compositions are provided. The malodor control compositions are suitable for a variety of applications, including use on plastic films or in fabric and air freshening products.

Description

UNSCENTED AND LOW SCENTED MALODOR CONTROL COMPOSITIONS AND
METHODS THEREOF
FIELD OF THE INVENTION
The present invention relates to unscented and low scented malodor control compositions and methods thereof. The malodor control compositions are suitable for use in a variety of applications, including use in air freshening composition and on plastic films for garbage bags.
BACKGROUND OF THE INVENTION
Products for controlling malodors are well known in the art and are widely described in patent literature. These products may be designed to work specifically in air, on fabrics, or with plastic films. See, e.g. , U.S. Patent Publication Nos. 2009/0326093 and 2009/0067760.
Unscented or low scented products are desired by consumers as they may be considered more natural and discreet to use than scented products. Manufacturers of unscented or low scented products for controlling malodors rely on malodor control ingredients or other technologies (e.g. filters) to reduce malodors. However, effectively controlling both amine-based malodors (e.g fish and urine) and sulfur-based malodors (e.g. garlic and onion) may be difficult, and the time required for a product to noticeably reduce malodors may create consumer doubt as to the product's efficacy on malodors. Often times, manufacturers incorporate scented perfumes to help mask these difficult malodors.
There remains a need for unscented and low scent malodor control compositions that controls a broad range of malodors.
SUMMARY OF THE INVENTION
In one embodiment, there is provided a malodor control composition comprising a perfume mixture comprising an effective amount of benzophenone, methyl palmitate, farnesol, vetivert acetate, and undecylenic aldehyde for reducing malodors.
In another embodiment, there is provided a malodor control composition comprising a perfume mixture comprising about 30% to about 100%, by weight of said perfume mixture, of benzophenone, methyl palmitate, farnesol, and mixtures thereof.
In yet another embodiment, there is provided a plastic film comprising a perfume mixture comprising an effective amount of at least 2 perfume ingredients selected from the group consisting of: benzophenone, undecylenic aldehyde, methyl palmitate, vetivert acetate, farnesol, and mixtures thereof, wherein said perfume mixture reduces malodors in the air. 12262-JC
2
In yet another embodiment, there is provided a malodor control composition comprising a perfume mixture comprising styrax coeur and an effective amount of at least one perfume material selected from the group consisting of: benzophenone, undecylenic aldehyde, methyl palmitate, vetivert acetate, farnesol, and mixtures thereof, wherein said perfume mixture reduces malodors.
In yet another embodiment, there is provided a method of controlling malodors and providing a low scent composition via providing a malodor control composition comprising a perfume mixture comprising an effective amount of benzophenone, methyl palmitate, farnesol, vetivert acetate, and undecylenic aldehyde; and contacting the malodor control composition with a malodor.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a graph showing butanethiol reduction by thiophene carboxaldehyde in combination with various acid catalysts.
Fig. 2 is a graph showing scent intensities of varying loads of a malodor control composition, in accordance with the present invention, in trash bags.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to unscented and low scented malodor control composition and methods thereof. Unscented and low scented malodor control compositions of the present invention comprise perfume mixtures that are substantially free of scent yet control malodors through odor neutralization and odor blocking technologies. The perceptible perfume scent intensity and malodor efficacy of a composition can be determined using the tests outlined herein.
"Malodor" refers to compounds generally offensive or unpleasant to most people, such as the complex odors associated with bowel movements.
"Neutralize" or "neutralization" refers to the ability of a compound or product to reduce or eliminate malodorous compounds. Odor neutralization may be partial, affecting only some of the malodorous compounds in a given context, or affecting only part of a malodorous compound. A malodorous compound may be neutralized by chemical reaction resulting in a new chemical entity, by sequestration, by chelation, by association, or by any other interaction rendering the malodorous compound less malodorous or non-malodorous. Neutralization is distinguishable from odor masking or odor blocking by a change in the malodorous compound, as opposed to a change in the ability to perceive the malodor without any corresponding change in the condition 12262-JC
3
of the malodorous compound. Malodor neutralization provides a sensory and analytically measurable (e.g. gas chromatograph) malodor reduction. Thus, if a malodor control composition delivers genuine malodor neutralization, the composition will reduce malodors in the vapor and/or liquid phase.
"Odor blocking" refers to the ability of a compound to dull the human sense of smell.
"Odor masking" refers to the ability of a compound with a non-offensive or pleasant smell that is dosed such that it limits the ability to sense a malodorous compound. Odor-masking may involve the selection of compounds which coordinate with an anticipated malodor to change the perception of the overall scent provided by the combination of odorous compounds.
I. Malodor Control Compositions
The malodor control compositions of the present invention include an unscented or low scented perfume mixture designed to control malodors by neutralization and blocking and not function merely by covering up or masking odors. The malodor control composition may also include an acid catalyst for more quickly neutralizing malodors and other optional ingredients for particular applications.
1. Unscented and Low Scented Perfume Mixture
The malodor control compositions of the present invention may include an unscented or low scented mixture of perfume materials that neutralize and block malodors. In some embodiments, the unscented or low scented perfume mixture may include benzophenone, farnesol, undecylenic aldehyde, and mixtures thereof.
Suitable perfume materials may have a vapor pressure (VP) in the range of about 0.0001 torr to 100 torr, alternatively about 0.0001 torr to about 10 torr, alternatively about 0.0001 torr to about 0.100 torr, alternatively about 0.001 torr to about 50 torr, alternatively about 0.001 torr to about 20 torr, alternatively about 0.001 torr to about 0.100 torr, alternatively about 0.001 torr to 0.06 torr, alternatively about 0.001 torr to 0.03 torr, alternatively about 0.005 torr to about 20 torr, alternatively about 0.005 torr to about 0.100 torr, alternatively about 0.01 torr to about 20 torr, alternatively about 0.01 torr to about 15 torr, alternatively about 0.01 torr to about 10 torr, alternatively about 0.05 torr to about 10 torr, measured at 25 °C.
The perfume materials of the present invention may be defined by their boiling point
(B.P.) and octanol/water partition coefficient (P). The boiling point referred to herein is measured under normal standard pressure of 760 mmHg. The boiling points of many perfume materials, at standard 760 mm Hg, are outlined in "Perfume and Flavor Chemicals (Aroma Chemicals)," written and published by Steffen Arctander, 1969. 12262-JC
4
The octanol/water partition coefficient of a perfume material is the ratio between its equilibrium concentrations in octanol and in water. The partition coefficients of the perfume material used in the malodor control composition may more conveniently be given in the form of their logarithm to the base 10, logP. The logP values of many perfume materials have been reported. See, e.g., the Pomona 92 database, available from Daylight Chemical Information Systems, Inc. (Daylight CIS), Irvine, California. However, the logP values are most conveniently calculated by the Biobyte ClogP program contained in Daylight Software version 4.94, also available for license from Daylight CIS. This program also lists experimental logP values when they are available in the Pomona92 database. The "calculated logP" (ClogP) is determined by the fragment approach of Hansch and Leo (cf., A. Leo, in Comprehensive Medicinal Chemistry, Vol. 4, C. Hansch, P. G. Sammens, J. B. Taylor and C. A. Ramsden, Eds., p. 295, Pergamon Press, 1990). The fragment approach is based on the chemical structure of each perfume material, and takes into account the numbers and types of atoms, the atom connectivity, and chemical bonding. The ClogP values, which are the most reliable and widely used estimates for this physicochemical property, are preferably used instead of the experimental logP values in the selection of perfume materials for the malodor control composition.
The ClogP values may be defined by four groups and the perfume materials may be selected from one or more of these groups. The first group comprises volatile aldehydes that have a B.P. of about 250 °C or less and ClogP of about 3 or less. The second group comprises volatile aldehydes that have a B.P. of 250°C or less and ClogP of 3.0 or more. The third group comprises volatile aldehydes that have a B.P. of 250°C or more and ClogP of 3.0 or less. The fourth group comprises volatile aldehydes that have a B.P. of 250°C or more and ClogP of 3.0 or more. The malodor control composition may comprise any combination of volatile aldehydes from one or more of the ClogP groups.
Suitable perfume materials include Benzophenone, Methyl Palmitate, Farnesol, Vetivert
Acetate, Cedryl Methyl Ether, Vertofix Couer (methyl cedrylone), and mixtures thereof. Suitable perfume materials may also include Helional (alpha-methyl-3,4-(methylenedioxy)- hydrocinnamaldehyde), Florhydral, Undecylenic Aldehyde, Adoxal (2,6,10-Trimethyl-9- undecenal), Bourgeonal (4-t-butylbenzenepropionaldehyde), Cymal, Florhydral (3-(3-isopropyl- phenyl) -butyraldehyde), Citronellal (3,7-dimethyl 6-octenal), Floralozone (para-ethyl- alpha,alpha-dimethyl hydrocinnamaldehyde), Floral Super, Pino Acetaldehyde, Styrax Coeur.
Suitable perfume materials may also include volatile aldehydes or reactive aldehydes (RA) including, but are not limited to, Lilestralis 33 (2-methyl-4-t-butylphenyl)propanal), 12262-JC
5
Cinnamic aldehyde, cinnamaldehyde (phenyl propenal, 3-phenyl-2-propenal), Citral, Geranial, Neral (dimethyloctadienal, 3,7-dimethyl-2,6-octadien-l-al), Cyclal C (2,4-dimethyl-3- cyclohexen-l-carbaldehyde), cyclamen aldehyde, Cyclosal, Lime aldehyde ( Alpha- methyl-p- isopropyl phenyl propyl aldehyde), Methyl Nonyl Acetaldehyde, aldehyde C12 MNA (2-methyl- 1-undecanal), Hydroxycitronellal, citronellal hydrate (7-hydroxy-3,7-dimethyl octan-l-al), hydrocinnamaldehyde (3-phenylpropanal, 3-phenylpropionaldehyde), Intreleven aldehyde (undec-10-en-l-al), Ligustral, Trivertal (2,4-dimethyl-3-cyclohexene-l-carboxaldehyde), Jasmorange, satinaldehyde (2-methyl-3-tolylproionaldehyde, 4-dimethylbenzenepropanal), Lyral (4-(4-hydroxy-4-methyl pentyl)-3-cyclohexene-l-carboxaldehyde), Melonal (2,6-Dimethyl-5- Heptenal), Methoxy Melonal (6-methoxy-2,6-dimethylheptanal), methoxycinnamaldehyde (trans-4-methoxycinnamaldehyde), Myrac aldehyde isohexenyl cyclohexenyl-carboxaldehyde, trifernal ((3-methyl-4-phenyl propanal, 3-phenyl butanal), lilial, P.T. Bucinal, lysmeral, benzenepropanal (4-tert-butyl-alpha-methyl-hydrocinnamaldehyde) , Dupical, tricyclodecylidenebutanal (4-Tricyclo5210-2,6decylidene-8butanal), Melafleur (1,2,3,4,5,6,7,8- octahydro-8,8-dimethyl-2-naphthaldehyde), Methyl Octyl Acetaldehyde, aldehyde C-l l MOA (2-mehtyl deca-l-al), Onicidal (2,6,10-trimethyl-5,9-undecadien-l-al), Muguet aldehyde 50 (3,7- dimethyl-6-octenyl) oxyacetaldehyde), phenylacetaldehyde, Mefranal (3-methyl-5-phenyl pentanal), Triplal, Vertocitral dimethyl tetrahydrobenzene aldehyde (2,4-dimethyl-3- cyclohexene-l-carboxaldehyde), 2-phenylproprionaldehyde, Hydrotropaldehyde, Canthoxal, anisylpropanal 4-methoxy-alpha- methyl benzenepropanal (2-anisylidene propanal), Cylcemone A (1,2, 3,4,5, 6,7, 8-octahydro-8,8-dimethyl-2-naphthaldehyde), and Precylcemone B (1- cyclohexene- 1 -carboxaldehyde) .
Suitable volatile aldehydes may also include acetaldehyde (ethanal), pentanal, valeraldehyde, amylaldehyde, Scentenal (octahydro-5-methoxy-4,7-Methano-lH-indene-2- carboxaldehyde), propionaldehyde (propanal), Cyclocitral, beta-cyclocitral, (2,6,6-trimethyl-l- cyclohexene-1 -acetaldehyde), Iso Cyclocitral (2,4,6-trimethyl-3-cyclohexene-l -carboxaldehyde), isobutyraldehyde, butyraldehyde, isovaleraldehyde (3-methyl butyraldehyde), methylbutyraldehyde (2-methyl butyraldehyde, 2-methyl butanal), Dihydrocitronellal (3,7- dimethyl octan-l-al), 2-Ethylbutyraldehyde, 3-Methyl-2-butenal, 2-Methylpentanal, 2-Methyl Valeraldehyde, Hexenal (2-hexenal, trans-2-hexenal), Heptanal, Octanal, Nonanal, Decanal, Tridecanal, 2-Dodecanal, Methylthiobutanal, Glutaraldehyde, Pentanedial, Glutaric aldehyde, Heptenal, cis or trans-Heptenal, Undecenal (2-, 10-), 2,4-octadienal, Nonenal (2-, 6-), Decenal (2-, 4-), 2,4-hexadienal, 2,4-Decadienal, 2,6-Nonadienal, Octenal, 2,6-dimethyl 5-heptenal, 2- isopropyl-5-methyl-2-hexenal, Trifernal, beta methyl Benzenepropanal, 2,6,6-Trimethyl-l- 12262-JC
6
cyclohexene-l-acetaldehyde, phenyl Butenal (2 -phenyl 2-butenal), 2.Methyl-3(p- isopropylphenyl)-propionaldehyde, 3-(p-isopropylphenyl)-propionaldehyde, p-Tolylacetaldehyde (4-methylphenylacetaldehyde), Anisaldehyde (p-methoxybenzene aldehyde), Benzaldehyde, Vernaldehyde ( 1 -Methyl-4-(4-methylpentyl)-3 -cyclohexenecarbaldehyde) , Heliotropin (piperonal) 3,4-Methylene dioxy benzaldehyde, alpha- Amy lcinnamic aldehyde, 2-pentyl-3- phenylpropenoic aldehyde, Vanillin (4-methoxy 3-hydroxy benzaldehyde), Ethyl vanillin (3- ethoxy 4-hydroxybenzaldehyde), Hexyl Cinnamic aldehyde, Jasmonal H (alpha-n-hexyl- cinnamaldehyde), Acalea (p-methyl-alpha-pentylcinnamaldehyde), methylcinnamaldehyde, alpha-Methylcinnamaldehyde (2-methyl 3-pheny propenal), alpha-hexylcinnamaldehyde (2- hexyl 3-phenyl propenal), Salicylaldehyde (2-hydroxy benzaldehyde), 4-ethyl benzaldehyde, Cuminaldehyde (4-isopropyl benzaldehyde), Ethoxybenzaldehyde, 2,4-dimethylbenzaldehyde, Veratraldehyde (3,4-dimethoxybenzaldehyde), Syringaldehyde (3,5-dimethoxy 4- hydroxybenzaldehyde), Catechaldehyde (3,4-dihydroxybenzaldehyde), Safranal (2,6,6-trimethyl- 1,3-diene methanal), Myrtenal (pin-2-ene-l-carbaldehyde), Perillaldehyde L-4(l-methylethenyl)- 1-cyclohexene-l-carboxaldehyde), 2,4-Dimethyl-3-cyclohexene carboxaldehyde, 2-Methyl-2- pentenal, 2-methylpentenal, pyruvaldehyde, formyl Tricyclodecan, Mandarin aldehyde, Cyclemax, Corps Iris, Maceal, and Corps 4322.
Aldehydes that are partially volatile may be considered a volatile aldehyde as used herein. In some embodiments, the malodor control composition includes fast reacting volatile aldehydes. "Fast reacting volatile aldehydes" refers to volatile aldehydes that either (1) reduce amine odors by 20% or more in less than 40 seconds; or (2) reduce thiol odors by 20% or more in less than 30 minutes. Fast reacting volatile aldehydes can be identified by the method outlined in the Example outlined herein, titled "Analytical Test - Effect of volatile aldehydes on amine-based and sulfur-based malodors".
The unscented or low scented perfume mixture may comprise from about 30% to about
100%, by weight of said perfume mixture, of benzophenone, methyl palmitate, farnesol, and mixtures thereof. Alternatively, the perfume mixture may comprise about 35% to about 95%, alternatively about 40%, alternatively about 80%, alternatively about 90%, by weight of said perfume mixture, of benzophenone, methyl palmitate, farnesol, and mixtures thereof.
Table 1 shows one embodiment of a perfume mixture suitable for the malodor control composition of the present invention.
Table 1 - Low Scent Mixture
Wt.% (by weight of the
Perfume Material CAS Number perfume mixture) 12262-JC
Figure imgf000008_0001
Table 2 shows another embodiment of a perfume mixture suitable for the malodor control composition of the present invention.
Table 2 - Unscented Mixture
Figure imgf000008_0002
Table 3 shows yet another embodiment of a perfume mixture suitable for the malodor control composition of the present invention.
Table 3 - Plastic Low Scented Mixture
Wt. %(by weight of the
Perfume Material CAS_Number perfume mixture)
Undecylenic Aldehyde 112-45-8 0.100
Cedryl Methyl Ether 19870-74-7 0.500
Florhydral 125109-85-5 1.500
Floralozone 67634-14-4 0.400
Bourgeonal 18127-01-0 1.000 12262-JC
Figure imgf000009_0001
In some embodiments, the malodor control composition includes a mixture of perfume materials identified in Tables 1-3 along with a mixture of two or more volatile aldehydes selected from the group consisting of 2-ethoxy Benzylaldehyde, 2-isopropyl-5-methyl-2-hexenal, 5- methyl Furfural, 5-methyl-thiophene-carboxaldehyde, p-anisaldehyde, Benzylaldehyde,
Cinnamic aldehyde, Decyl aldehyde, Ligustral, Lyral, Melonal, o-anisaldehyde, P.T. Bucinal, Thiophene carboxaldehyde (TC), trans-4-Decenal, trans trans 2,4-Nonadienal, Undecyl aldehyde, and mixtures thereof.
In some embodiments, the perfume mixture includes the volatile aldehyde mixture shown in Table 4 and referred to herein as Accord A.
Table 4 - Accord A
Figure imgf000009_0002
In another embodiment, the perfume mixture includes the volatile aldehyde mixture showin in Table 5 and referred to herein as Accord B.
Table 5 - Accord B
Material Wt. % CAS ClogP VP (torr)
(of the volatile Number Group @25°C aldehydes in the
perfume
mixture)
Intreleven Aldehyde 2.000 112-45-8 3 0.060
Florhydral 20.000 125109-85-5 4 0.008 12262-JC
Figure imgf000010_0001
In another embodiment, the perfume mixture includes the volatile aldehyde mixture shown in Table 6 and referred to herein as Accord C.
Table 6 - Accord C
Figure imgf000010_0002
Accords A, B, or C can be formulated in with the perfume mixture outlined in Tables 1 to 3 or with any other unscented or low scented perfume materials in an amount of about 5% to about 50%, alternatively about 5% to about 40%, alternatively about 5% to about 30%, alternatively about 5% to about 20%, alternatively about 5% to about 10%, by weight of the perfume mixture.
The unscented or low scented perfume mixture may be present in an amount up to 100%, by weight of the malodor control composition, alternatively from about 5% to about 100%, 12262-JC
10
alternatively from about 10% to about 100%, alternatively from about 30% to about 100%, alternatively from about 50% to about 100%, alternatively from about 70% to about 100%, alternatively from about 80% to about 100%, alternatively from about 0.001% to about 5%, alternatively from about 0.001% to about 2%, alternatively from about 0.001% to about 0.5%, alternatively from about 0.001% to about 0.3%, alternatively from about 0.001% to about 0.1%, alternatively about 0.001%, by weight of the composition.
In some embodiments where volatility is not important for neutralizing a malodor, the present invention may include poly- aldehydes, for example, di-, tri-, tetra-aldehydes. Such embodiments may include laundry detergents, additive, and the like for leave-on, through the wash, and rinse-off type of applications.
2. Acid Catalyst
The malodor control compositions of the present invention may include an effective amount of an acid catalyst to neutralize sulfur-based malodors. It has been found that certain mild acids have an impact on aldehyde reactivity with thiols in the liquid and vapor phase. It has been found that the reaction between thiol and aldehyde is a catalytic reaction that follows the mechanism of hemiacetal and acetal formation path. When the present malodor control composition contains an acid catalyst and contacts a sulfur-based malodor, volatile aldehydes react with thiol. This reaction may form a thiol acetal compound, thus, neutralizing the sulfur- based odor. Without an acid catalyst, only hemi-thiol acetal is formed.
Suitable acid catalysts have a VP, as reported by Scifinder, in the range of about 0.001 torr to about 38 torr, alternatively about 0.001 torr to about 14 torr, alternatively from about 0.001 to about 1, alternatively from about 0.001 to about 0.020, alternatively about 0.005 to about 0.020, alternatively about 0.010 to about 0.020, measured at 25°C,.
The acid catalyst may be a weak acid. A weak acid is characterized by an acid dissociation constant, Ka which is an equilibrium constant for the dissociation of a weak acid; the pKa being equal to minus the decimal logarithm of Ka. The acid catalyst may have a pKa from about 4.0 to about 6.0, alternatively from about 4.3 and 5.7, alternatively from about 4.5 to about 5, alternatively from about 4.7 to about 4.9. Suitable acid catalysts include those listed in Table 7.
Table 7
Acid VP (torr)
@ 25°C
Formic Acid 36.5
Acetic Acid 13.9 12262-JC
11
Figure imgf000012_0001
In some embodiments, it may be desirable to select an acid catalyst that provides a neutral scent. Such acid catalysts may have a VP of about 0.001 torr to about 0.020 torr, measured at 25°C, alternatively about 0.005 torr to about 0.020 torr, alternatively about 0.010 torr to about 0.020 torr. Non-limiting examples of such acid catalyst include succinic acid and benzoic acid.
The malodor control composition may include about 0.05% to about 5%, alternatively about 0.1% to about 1.0%, alternatively about 0.1% to about 0.5%, alternatively about 0.1% to about 0.4%, alternatively about 0.4% to about 1.5%, alternatively about 0.4% of an acid catalyst, by weight of the malodor control composition.
In an acetic acid system, the present malodor control composition may include about 0.4% of acetic acid (50:50 thiophene carboxaldehye (TC): dipropylene glycol methyl ether (DPM), 0.4% acetic acid). Table 8
Figure imgf000012_0002
When an acid catalyst is present with a volatile aldehyde, the acid catalyst may increase the efficacy of the volatile aldehyde on malodors in comparison to the malodor efficacy of the volatile aldehyde on its own. For example, 1% volatile aldehyde and 1.5% benzoic acid provides malodor removal benefit equal to or better than 5% volatile aldehyde alone.
The malodor control composition may have a pH from about 3 to about 8, alternatively from about 4 to about 7, alternatively from about, alternatively from about 4 to about 6. 12262-JC
12
3. Optional Ingredients
The malodor control composition may, optionally, include odor masking agents and/or diluents.
Water and surfactants may also be present in any amount for the composition to make an aqueous solution. In some embodiments, water may be present in an amount of about 85% to 99.5%, alternatively about 90% to about 99.5%, alternatively about 92% to about 99.5%, alternatively about 95%, by weight of said malodor control composition. Water containing a small amount of low molecular weight monohydric alcohols, e.g., ethanol, methanol, and isopropanol, or polyols, such as ethylene glycol and propylene glycol, can also be useful.
The malodor control composition may also comprise 100% of an unscented or low scented perfume mixture according to the present invention.
Exemplary diluents include DPM, and 3 -methoxy-3 -methyl- 1-butanol, and mixtures thereof. II. Methods of Use
The malodor control composition of the present invention may be used in a wide variety of applications that neutralize malodors in the vapor and/or liquid phase. In some embodiments, the malodor control composition may be formulated for use in non-energized vapor phase systems. "Non-energized" as used herein refers to a system that emits a targeted active passively or without the need for an electrical energy source. Aerosol sprayers and traditional trigger/pump sprayers are considered non-energized systems. For such non-energized systems, the VP of the volatile aldehydes may be about 0.01 torr to about 20 torr, alternatively about 0.05 torr to about 10 torr, measured at 25°C. Non-limiting examples of a non-energized vapor phase system are passive air freshening diffusers such as those known by the trade name Renuzit® Crystal Elements; and aerosol sprays such as fabric and air freshening sprays and body deodorants.
In other embodiments, the malodor control composition may be formulated for use in a liquid phase system. For such systems, the VP may be about 0 torr to about 20 torr, alternatively about 0.0001 torr to about 10 torr, measured at 25°C. Non-limiting examples of a liquid phase system are liquid laundry products, such as laundry detergents and additives; dish detergents; personal hygiene products such as body washes, shampoos, conditioners.
The malodor control composition may also be loaded onto or into known substrates according to known methods. Suitable substrates may include wovens and non-wovens (e.g cellulose fibers for paper products, sponges, and the like). Such substrates may be used to 12262-JC
13
manufacture diapers; baby wipes; adult incontinence products; feminine hygiene products such as sanitary napkins and tampons; cleaning wands for toilets; pet food packaging; paper towels; facial tissues; and the like.
Suitable substrates may also include commercially available films including low density polyethylene (LDPE), linear LDPE (LLDPE), high density polyethylene, plastomers, elastomers, ethylene vinyl acetate, ethyl methacrylates, polymethylpentene copolymers, polyisobutylenes, polyolefin isomers, cyclic olefin copolymers, polyethylene, polypropylene, poly lactic acid based films, polyhydroxy alcohol based films, polyhydroxy butyrate/valerate, polyesters, thermoplastic starch, and combinations thereof. These plastic films may be used to manufacture non- disposable composting containers, trash bags, storage bags, and the like. The malodor control composition may also be used in connection with commercial or industrial septic tanks or sewage treatment equipment.
EXAMPLES
Analytical Test - Effect of volatile aldehydes on amine-based and sulfur-based malodors
Malodor standards are prepared by pipeting 1 mL of n-butylamine (amine-based malodor) or 1-butanethiol (sulfur-based malodor) into a 1.2 liter gas sampling bag. The bag is then filled to volume with nitrogen and allowed to sit for at least 12 hours to equilibrate.
A 1 μΕ sample of each volatile aldehyde listed in Table 9 and of each Accord (A, B, and C) listed in Tables 4 to 6 is pipeted into individual 10 mL silanized headspace vials. The vials are sealed and allowed to equilibrate for at least 12 hours. Repeat 4 times for each sample (2 for butylamine analysis and 2 for butanethiol analysis).
After the equilibration period, 1.5 mL of the target malodor standard is injected into each 10 mL vial. For thiol analysis, the vials containing a sample +malodor standard are held at room temperature for 30 minutes. Then, a 1 mL headspace syringe is then used to inject 250 μΐ^ of each sample/thiol malodor into a GC/MS split/splitless inlet. For amine analysis, a 1 mL headspace syringe is used to inject 500 μΐ^ of each sample/amine malodor immediately into the GC/MS split/splitless inlet. A GC pillow is used for the amine analysis to shorten the run times.
Samples are then analyzed using a GC/MS with a DB-5, 20 m, 1 μηι film thickness column with an MPS-2 autosampler equipment with static headspace function. Data is analyzed by ion extraction on each total ion current (56 for thiol and 30 for amine) and the area is used to calculate the percent reduction from the malodor standard for each sample.
Table 9 shows the effect of certain volatile aldehydes on neutralizing amine-based and sulfur based malodors at 40 seconds and 30 minutes, respectively. 12262-JC
14
Table 9
Figure imgf000015_0001
Table 10 shows the percent reduction of butylamine and butaniethiol at 40 seconds and 30 minutes, respectively, for Accords A, B, and C.
Table 10
Figure imgf000015_0002
Analytical Test - Effect of acid catalysts on sulfur-based malodors
The above analytical test is repeated using samples containing an acid catalyst to test their effect on sulfur-based malodors. Specifically, a 1 μΐ aliquot of each of the following controls and acid catalyst samples are pipeted into individual 10 mL silanized headspace vials in duplicate: TC as a control; a 50/50 mixture of TC and each of the following acid catalysts at 0.04%, 0.10%, 0.43% in DPM, 1.02% in DPM, and 2.04% in DPM: phenol, mesitylenic acid, caprylic acid, succinic acid, pivalic acid, tiglic acid, and benzoic acid.
Fig. 1 demonstrates that low vapor pressure acid catalysts provide up to 3 times better reduction of sulfur-based malodors in comparison to the control.
Analytical Test - Effect of volatile aldehydes and acid catalyst on amine-based and sulfur-based malodors
The above analytical test is repeated using sample formulations containing volatile aldehydes from Accords A, B, and C, in accordance with the present invention, and an acid catalyst, as outlined in Tables 11 and 12. 12262-JC
15
Tables 11 and 12 show that a perfume mixture having as little as 1% volatile aldehyde along with 1.5% acid catalyst performs better at reducing butylamine and butanethiol than the same perfume mixture having 5% volatile aldehyde.
Table 11
Figure imgf000016_0001
Table 12
Figure imgf000016_0002
Sensory Test - Effect On Sulfur-Based Malodors
Technical Olfactive Assessments (TOA) were conducted using passive dispenser devices for the malodor control composition (MCC) perfume oils. Malodors used were either garlic or Ocean Perch fish. Perfume oils tested were "Test MCC" and "Control MCC" as shown in Table 13. The passive dispenser devices were open, circular containers. Different device diameters were used as outlined in Table 14 in order to achieve approximately the same perfume % weight loss rate for the Test and Control MCCs. This is consistent with the molecular diffusion principles outlined on pages 22-34 in the text, Mass Transfer Operations, third edition, by Robert E. Treybal.
Table 13
Test MCC Control MCC
Perfume Wt % (by wt Perfume Materials CAS# Wt % (by wt Materials of perfume of perfume 12262-JC
16
Figure imgf000017_0001
Table 14
Figure imgf000017_0002
Sensory Test - Effect on a sulfur-based malodor, and in-use scent level
Place Presto™ skillet into fume hood and turn on to 250°F. Place 80 grams of Crisco® oil into skillet and cover with skillet lid. Allow 10 minutes for equilibration. Remove skillet lid and check oil temperature with thermometer. Place 50 grams of chopped, commercially prepared garlic in water into skillet. Cover skillet with lid. Cook for 2.5 minutes or until garlic is translucent, with a portion staring to turn brown but not burn. Remove garlic from the skillet. Place 5 grams of garlic in each of 3 Petri dishes. Place covers on each Petri dish.
Fill both Test and Control passive dispenser devices with sufficient Test MCC, shown in Table 13, to ensure surface area remains wet throughout test. 5 minutes before cooked garlic is introduced to the test chambers, place each passive dispenser device into individual test chambers on the opposite side of the fan. Each test chamber is 39.25 inches wide, by 25 inches deep, by 21.5 inches high with a volume of 12.2 cubic feet (0.34 cubic meters). The test chamber can be purchased from Electro-Tech Systems, Glenside, PA. Each test chamber is equipped with a fan (Newark catalog #70K9932, 115 VAC, 90CFM) purchased from Newark Electronics, Chicago, IL.
Place each covered Petri dish, with 5 grams of garlic, into an individual test chamber in front of the fan. Note: One test chamber will not contain a passive dispenser device. Remove 12262-JC
17
the lids of the Petri dishes to expose contents for a dwell time sufficient to provide an initial odor intensity grade of 70-80 (about 2 minutes). Once the initial odor intensity grade has been reached in a test chamber, remove the Petri dish from the test chamber.
At pre-determined time intervals, trained evaluators open each chamber, smell the chamber for odor intensity, and assign a score for Malodor Intensity, based on the scale in Table 15. Immediately following, the trained evaluator smells the same chamber for perfume scent intensity, and assigns a score for scent intensity, based on the scale in Table 15. The chamber door is closed between sequential evaluators. The scores are tabulated and the average malodor intensity and scent intensity scores for each time interval are recorded.
Table 15
Figure imgf000018_0001
Table 16 demonstrates that the unscented or low scented MCC test mixture according to the present invention provides similar malodor control as the Control MCC perfume mixture but, notably, has less perfume scent intensity.
Table 16
Figure imgf000018_0002
Sensory test - Effect on amine-based malodors, and in-use scent level
The above sensory protocol was repeated with an amine- based malodor (i.e. Ocean Perch fish).
Separate fresh Ocean Perch fillets from skin and add to a Magic Bullet™ food chopper. Fish meat is chopped for 35-40 seconds. 25 grams of chopped fish is weighed and fashioned into 12262-JC
18
a patty suitable to fit into a 60 x 15 mm Petri dish. Repeat 2 more times so there is one fish patty in each of 3 Petri dishes. Add 40g of Crisco® oil to Presto™ skillet. Place lid on skillet and turn on to 350°F. Allow 10 minutes for equilibration. Remove lid. Cut a slit in the middle of each patty, place all patties into skillet, and begin frying. Replace lid. After 2.5 minutes, flip fish patties and fry an additional 2.5 minutes. Remove fish patties from skillet and blot briefly onto a paper towel for 10 seconds. Place each fish patty into a 60 x 15mm Petri dish and cover with a lid.
Fill both Test and Control passive dispenser devices with sufficient Test MCC, shown in Table 13, to ensure surface area remains wet throughout test. 5 minutes before cooked ocean perch is introduced to the test chambers, place each passive dispenser device into individual test chambers on the opposite side of the fan.
Introduce each Petri dish containing a fish patty into an individual test chamber in front of the fan. One test chamber will not contain a passive dispenser device. The specifications of the test chamber are the same as those in the above sulfur-based (i.e. garlic) malodor test. Remove the lids to expose contents for a dwell time sufficient to provide an initial odor intensity grade of 70-80 (about 2 minutes). Once the initial odor intensity grade has been reached in a test chamber, remove the Petri dish from the test chamber.
At pre-determined time intervals, trained evaluators open each chamber, smell the chamber for odor intensity, and assign a score for malodor intensity, based on the scale in Table 15. Immediately following, the trained evaluator smells the same chamber for scent intensity, and assigns a score for scent intensity, based on the scale in Table 15. The chamber door is closed between sequential evaluators. The scores are tabulated and the average malodor intensity and scent intensity scores for each time interval are recorded.
Table 17 demonstrates that the unscented or low scented perfume mixture according to the present invention provides similar malodor control as the Control perfume mixture but, notably, has less perfume scent intensity.
Table 17
Figure imgf000019_0001
Sensory test - Initial Scent Intensity of various MCC loading levels in Trash Bags 12262-JC
19
The Test MCC formula listed in Table 13 is loaded into plastic trash bag film, according to known methods, at a target loading level. A trained evaluator is given a folded trash bag sample containing the composition at the target loading level. The evaluator grasps the sample with both hands, one hand grabbing each side edge of the bag opening. Evaluator proceeds to open the bag sample by unfolding it, and then shaking it up and down until the bag has been fully opened. Once opened, the evaluator places the opened bag into a clean, appropriate size trash can (e.g. a tall kitchen trash can) and folds the top edge of the open bag over the outer lip of the trash can to secure the bag in place. Once the bag is secured, the evaluator bends down over the trash can and places both arms down into the opened sample until their nose is directly above the opening of the bag and can. The evaluator then moves their arms around inside the bag, stirring up the airspace and keeping their nose in the same area above the bag opening (as if the evaluator were trying to get the air out between the side walls of the bag and the sides of the trash can). The evaluator takes one or more sniffs of the bag headspace air while in this position and performing this step.
After 10 seconds, the evaluator stands up and steps away from the can, and evaluates the intensity of the scent of the Test MCC in the bag following the scale on Table 15.
The above protocol is repeated for each sample and for Test MCC loading level to be evaluated. Evaluator is to allow at least 10 minutes between sample evaluations to clear his/her nose of any residual scent from the previous sample.
Table 18 and Fig. 2 show that the perfume intensity rating surprisingly increases less than the incremental increase in the Test MCC loading level seen between 5 and 30 mg.
Table 18
Figure imgf000020_0001
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm." 12262-JC
20
Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests, or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is, therefore, intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims

12262-JC 21 CLAIMS What is claimed is:
1. A malodor control composition comprising:
a perfume mixture comprising an effective amount of benzophenone, methyl palmitate, farnesol, vetivert acetate, and undecylenic aldehyde for reducing malodors.
2. The malodor control composition of Claim 1 further comprising cedryl methyl ether, florhydral, helional, vertofix couer, and mixtures thereof.
3. The malodor control composition of Claim 1 wherein said perfume mixture further comprises at least one volatile aldehyde selected from the group consisting of floral super, 2- ethoxy Benzylaldehyde, 2-isopropyl-5-methyl-2-hexenal, 5-methyl Furfural, 5-methyl-thiophene- carboxaldehyde, p-anisaldehyde, Benzylaldehyde, Cinnamic aldehyde, Decyl aldehyde, Ligustral, Lyral, Melonal, o-anisaldehyde, P.T. Bucinal, Thiophene carboxaldehyde, trans-4- Decenal, trans trans 2,4-Nonadienal, Undecyl aldehyde, and mixtures thereof
4. The malodor control composition of Claim 1 wherein said perfume mixture comprises 30% to 100% benzophenone, methyl palmitate, farnesol, vetivert acetate, and undecylenic aldehyde for reducing malodors.
5. The malodor control composition of Claim 1 wherein said perfume mixture further comprises a volatile aldehyde mixture selected from the group consisting of Accord A, Accord B, Accord C, and mixtures thereof.
6. The malodor control composition of Claim 1 wherein said perfume mixture further comprises 1% to 10% of Accord A, by weight of said perfume mixture.
7. The malodor control composition of Claim 1 wherein said perfume mixture is present in an amount from 50% to 100%, by weight of said malodor control composition.
8. The malodor control composition of Claim 1 further comprising an acid catalyst present in an amount of 0.1% to 1.5%, by weight of said malodor control composition. 12262-JC
22
9. The malodor control composition of Claim 8 wherein said acid catalyst has a vapor pressure of 0.01 to 2 torr at 25°C.
10. The malodor control composition of Claim 8 wherein said acid catalyst is a carboxylic acid.
11. The malodor control composition of Claim 10 wherein said acid catalyst is 5-methyl thiophene carboxylic acid.
12. The malodor control composition of Claim 1 wherein said composition has a pH of 4 to 6.5.
13. The malodor control composition of Claim 1 further comprising an ingredient selected from the group consisting of: odor masking agents, odor blocking agents, diluents, and mixtures thereof.
14. A malodor control composition comprising:
a perfume mixture comprising 30% to 100%, by weight of said perfume mixture, of benzophenone, methyl palmitate, farnesol, and mixtures thereof.
15. The malodor control composition of Claim 14 wherein said benzophenone, methyl palmitate, and farnesol are present in an amount of 35% to 95%, by weight of said perfume mixture.
16. The malodor control composition of Claim 14 wherein said benzophenone, methyl palmitate, and farnesol are present in an amount of 40%, by weight of said perfume mixture.
17. The malodor control composition of Claim 14 wherein said benzophenone, methyl palmitate, and farnesol are present in an amount of 85%, by weight of said perfume mixture.
18. The malodor control composition of Claim 14 wherein said benzophenone, methyl palmitate, and farnesol are present in an amount of 90%, by weight of said perfume mixture. 12262-JC
23
19. The malodor control composition of Claim 14 wherein said perfume mixture further comprises cedryl methyl ether, florhydral, helional, undecylenic aldehyde, vetivert acetate, vertofix couer, and mixtures thereof.
20. A plastic film comprising a perfume mixture comprising an effective amount of at least 2 perfume ingredients selected from the group consisting of: benzophenone, undecylenic aldehyde, methyl palmitate, vetivert acetate, farnesol, and mixtures thereof, wherein said perfume mixture reduces malodors in the air.
21. The plastic film of Claim 20 wherein said perfume mixture comprises an effective amount of benzophenone, undecylenic aldehyde, methyl palmitate, vetivert acetate, farnesol, and mixtures thereof.
22. The plastic film of Claim 20 wherein said plastic film is LLDPE.
23. The plastic film of Claim 20 wherein said plastic film comprises 0.5mg to 50 mg of said perfume mixture.
24. The plastic film of Claim 20 wherein said perfume mixture is present in the amount of 5mg to 30mg.
25. The plastic film of Claim 20 wherein said perfume mixture is present in the amount of 5mg to 15mg.
26. A malodor control composition comprising:
A perfume mixture comprising styrax coeur and an effective amount of at least one perfume material selected from the group consisting of: benzophenone, undecylenic aldehyde, methyl palmitate, vetivert acetate, farnesol, and mixtures thereof, wherein said perfume mixture reduces malodors.
27. A method of controlling malodors and providing a low scented composition comprising: providing the composition of claim 1 ; and
contacting said composition with a malodor. 12262-JC
24
28. The method of Claim 27 wherein said contacting step comprises 5 mg to 15 mg of said composition.
PCT/US2011/063525 2010-12-08 2011-12-06 Unscented and low scented malodor control compositions and methods thereof WO2012078626A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11802994.1A EP2648770A2 (en) 2010-12-08 2011-12-06 Unscented and low scented malodor control compositions and methods thereof
JP2013543270A JP5711385B2 (en) 2010-12-08 2011-12-06 Non-fragrance and low-fragrance malodor control composition and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/962,691 US8357359B2 (en) 2009-12-17 2010-12-08 Malodor control composition having an acid catalyst and methods thereof
US12/962,691 2010-12-08
US13/249,616 2011-09-30
US13/249,616 US9399078B2 (en) 2009-12-17 2011-09-30 Unscented and low scented malodor control compositions and methods thereof

Publications (2)

Publication Number Publication Date
WO2012078626A2 true WO2012078626A2 (en) 2012-06-14
WO2012078626A3 WO2012078626A3 (en) 2012-09-07

Family

ID=45440622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/063525 WO2012078626A2 (en) 2010-12-08 2011-12-06 Unscented and low scented malodor control compositions and methods thereof

Country Status (3)

Country Link
EP (1) EP2648770A2 (en)
JP (1) JP5711385B2 (en)
WO (1) WO2012078626A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013154899A3 (en) * 2012-04-10 2014-01-30 The Procter & Gamble Company Malodor reduction compositions
WO2015017603A1 (en) * 2013-08-01 2015-02-05 The Procter & Gamble Company Articles comprising malodor reduction compositions
JP2015526121A (en) * 2012-06-15 2015-09-10 ザ プロクター アンド ギャンブルカンパニー Malodor control composition having activated alkene and method thereof
US9399078B2 (en) 2009-12-17 2016-07-26 The Procter & Gamble Company Unscented and low scented malodor control compositions and methods thereof
EP3088334A2 (en) 2015-04-30 2016-11-02 International Flavors & Fragrances Inc. Nano silver for neutralizing thermoplastic bag and shoe malodors
EP3325707A4 (en) * 2015-07-17 2019-01-09 Agilex Flavors & fragrances, Inc. Compositions for malodor reduction and use thereof
US11938242B2 (en) 2017-11-03 2024-03-26 The Procter & Gamble Plaza Apparatus and method for reducing malodor on surfaces

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3017130B1 (en) * 2014-02-06 2019-10-18 Arkema France COMPOSITION OF AMINES WITH MASKED ODOR
MX2017003970A (en) * 2014-09-26 2017-06-30 Procter & Gamble Substrates comprising malodor reduction compositions.
WO2017165615A1 (en) 2016-03-24 2017-09-28 The Procter & Gamble Company Hair care compositions comprising malodor reduction compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090067760A1 (en) 2007-09-12 2009-03-12 Lindsay Shelley Bags having odor management capabilities
US20090326093A1 (en) 2008-06-30 2009-12-31 Kimberly-Clark Worldwide, Inc. Fragranced Water-Sensitive Film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1212394A2 (en) * 1999-09-02 2002-06-12 The Procter & Gamble Company Method of deodorizing and/or cleaning carpet using a composition comprising odor control agent
WO2001087360A2 (en) * 2000-05-15 2001-11-22 The Procter & Gamble Company Compositions comprising cyclodextrin derivatives
JP2002327193A (en) * 2001-04-27 2002-11-15 Kiyomitsu Kawasaki Compound perfume and washing-softening agent composition containing the compound perfume
JP3947149B2 (en) * 2002-10-28 2007-07-18 高砂香料工業株式会社 Deodorant composition
JP2005029753A (en) * 2003-07-11 2005-02-03 Kao Corp Aqueous liquid composition
DE102005043189A1 (en) * 2005-09-09 2007-03-15 Henkel Kgaa Consumable products with fragrance variety
DE102007021795A1 (en) * 2007-05-07 2008-11-13 Henkel Ag & Co. Kgaa textile scenting
DE102007021796A1 (en) * 2007-05-07 2008-11-13 Henkel Ag & Co. Kgaa Air cleaning system, for operating in closed areas and producing air streams, useful to remove e.g. germs, comprises a photo-catalytic material, which is exposed to the produced air stream and amenable by external electromagnetic radiation
CN101959536A (en) * 2008-02-27 2011-01-26 小林制药株式会社 Aromatic agent composition for openable storage space

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090067760A1 (en) 2007-09-12 2009-03-12 Lindsay Shelley Bags having odor management capabilities
US20090326093A1 (en) 2008-06-30 2009-12-31 Kimberly-Clark Worldwide, Inc. Fragranced Water-Sensitive Film

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Perfume and Flavor Chemicals (Aroma Chemicals", 1969, STEFFEN ARCTANDER
A. LEO: "Comprehensive Medicinal Chemistry", vol. 4, 1990, PERGAMON PRESS, pages: 295
ROBERT E. TREYBAL: "Mass Transfer Operations", pages: 22 - 34

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9399078B2 (en) 2009-12-17 2016-07-26 The Procter & Gamble Company Unscented and low scented malodor control compositions and methods thereof
US9642927B2 (en) 2009-12-17 2017-05-09 The Procter & Gamble Company Unscented and low scented malodor control compositions and methods thereof
WO2013154899A3 (en) * 2012-04-10 2014-01-30 The Procter & Gamble Company Malodor reduction compositions
JP2015526121A (en) * 2012-06-15 2015-09-10 ザ プロクター アンド ギャンブルカンパニー Malodor control composition having activated alkene and method thereof
WO2015017603A1 (en) * 2013-08-01 2015-02-05 The Procter & Gamble Company Articles comprising malodor reduction compositions
CN105579075A (en) * 2013-08-01 2016-05-11 宝洁公司 Articles comprising malodor reduction compositions
US11110196B2 (en) 2013-08-01 2021-09-07 The Procter & Gamble Company Articles comprising malodor reduction compositions
EP3088334A2 (en) 2015-04-30 2016-11-02 International Flavors & Fragrances Inc. Nano silver for neutralizing thermoplastic bag and shoe malodors
EP3325707A4 (en) * 2015-07-17 2019-01-09 Agilex Flavors & fragrances, Inc. Compositions for malodor reduction and use thereof
US11938242B2 (en) 2017-11-03 2024-03-26 The Procter & Gamble Plaza Apparatus and method for reducing malodor on surfaces

Also Published As

Publication number Publication date
EP2648770A2 (en) 2013-10-16
JP5711385B2 (en) 2015-04-30
WO2012078626A3 (en) 2012-09-07
JP2014502519A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
AU2010332067B2 (en) Malodor control composition having an acid catalyst and methods thereof
CA2781722C (en) Malodor control composition having a mixture of volatile aldehydes and methods thereof
AU2013246305B2 (en) Malodor reduction compositions
US9642927B2 (en) Unscented and low scented malodor control compositions and methods thereof
JP5711385B2 (en) Non-fragrance and low-fragrance malodor control composition and method
US20160129145A1 (en) Method of neutralizing malodors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11802994

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013543270

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011802994

Country of ref document: EP