WO2012078068A1 - Procédé de transformation d'hydrocarbures de base par distillation - Google Patents

Procédé de transformation d'hydrocarbures de base par distillation Download PDF

Info

Publication number
WO2012078068A1
WO2012078068A1 PCT/RU2010/000755 RU2010000755W WO2012078068A1 WO 2012078068 A1 WO2012078068 A1 WO 2012078068A1 RU 2010000755 W RU2010000755 W RU 2010000755W WO 2012078068 A1 WO2012078068 A1 WO 2012078068A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed stream
distillation
feedstock
stream
stock
Prior art date
Application number
PCT/RU2010/000755
Other languages
English (en)
Russian (ru)
Inventor
Георгий Рамазанович УМАРОВ
Сергей Иванович БОЙЧЕНКО
Валерий Михайлович ПЕТУХОВ
Шив Викрам КХЕМКА
Original Assignee
Общество С Ограниченной Ответственностью "Лаборатория Карбон"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Лаборатория Карбон" filed Critical Общество С Ограниченной Ответственностью "Лаборатория Карбон"
Publication of WO2012078068A1 publication Critical patent/WO2012078068A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation

Definitions

  • the invention relates to petrochemistry, in particular, to the field of hydrocarbon processing, and can be used in the chemical, petrochemical industry and fuel energy to produce various petroleum products, including high-quality fuel.
  • the method involves the supply of hydrocarbon feed to the reactor with imparting it to the flow in the directional reactor volume. Intensive flow movement allows, first of all, to eliminate stagnant zones in the distillation volume and to ensure active interaction of the processed feed stream with a heat carrier and / or catalyst, which increases the efficiency of the process.
  • internal friction in a jet with a complex trajectory of movement is accompanied by some additional heat.
  • the heat generated is not enough to significantly activate the destructive processes in hydrocarbons, and the reduction in energy costs for the refining process is small.
  • the insufficient degree of destruction of the structure of raw materials does not guarantee a high content of light fractions and their proper quality in processed products.
  • the technical result is to reduce energy consumption by unit of production with an increase in the yield of light fractions and an increase in their quality by creating optimal conditions for phase transitions in the substrate constituting the initial feed stream.
  • the technical result is achieved by the fact that in the method of processing hydrocarbon feedstock, comprising supplying the feedstock to the distillation volume (hereinafter referred to as the reactor) with the formation of a directed feed stream and its distillation with the selection of the target product, the flow is formed with the distribution of density and angular momentum of the feed stream in accordance with the wave function corresponding to the phase transition of part of the feed stream to the positron state of Dirac matter.
  • the mentioned part of the feed stream is not more than 0.01% of its volume.
  • the feed is preheated to temperatures in the range (160..440) ° ⁇ .
  • distillation is carried out in at least two stages, for which the remainder of the raw material after selection of heavy fractions is sent to a subsequent volume for distillation or returned to the existing one.
  • the essence of the proposed method consists in initiating a phase transition of a part of the substrate constituting the feed stream of hydrocarbons, in the fifth state of the substance with the release of a significant amount of energy directed to the implementation destructive transformations of hydrocarbons, which in turn allows to reduce energy costs from an external source, including heat, for processing raw materials.
  • the fifth state of matter is understood to mean the positron state of Dirac matter.
  • n 1, 2, 3 ... - quantum number
  • is the microvolume transition frequency
  • the mechanism of development of the phase transition of the substrate, including the feed stream of hydrocarbons, into the fifth state of matter includes as a necessary condition for degeneracy in the energy spectrum.
  • phase transition is possible and will take place when two different states of the substrate, characterized by two different combinations of quantum numbers, have the same energy.
  • Z is the average charge of atoms making up the considered microvolume dV.
  • This wave function is modeled as follows: n s t s - normalized spherical function that describes the angular part of the wave function
  • R is the modulus of the distance vector
  • N n , mi , N n , i c are normalization factors determined by relations of the form:
  • is the frequency describing
  • is the average charge of atomic nuclei
  • microvolume under consideration dV R is the radius vector module describing the average dipole moment
  • H is the Hamiltonian of the system
  • m is the average mass of the molecule
  • the density of the feed stream p and the momentum M are described as follows:
  • the installation contains a main unit - a reactor (volume for distillation of hydrocarbon feedstocks) 1, a feed system for the feedstock and coolant 2, a device for extracting the target product 3 and 4, a feedstock pretreatment device 5.
  • the reactor itself is a volume with a jet forming device placed in it .
  • the reactor is equipped with an inlet pipe that communicates with the feed system and coolant, and output for communication with devices for the removal of target products: light and heavy fractions.
  • the jet forming device is a set of distributed in the reactor volume and variously oriented pipelines with different flow sections. Each of the pipelines has a specific configuration unique to it, corresponding to the wave function presented above, which describes the state and properties of the feed stream at each point in the volume at any given time.
  • Perforations are made in the walls of the pipelines, communicating the internal cavities of the pipelines with the reactor volume.
  • the shape, size and relative position of the elements of the jet forming device are determined by calculation and experimentally based on the requirements for the target product, nature, physico-chemical properties and composition of the feedstock and a number of its other thermodynamic parameters, as well as requirements for the final product.
  • the feed supply system is a device for pumping the flow of raw materials and controlling its speed, and the selection system is based on the principle of separation of fractions according to their specific gravity. The method is as follows.
  • the feed stream previously heated before it enters the reactor to improve its rheology and desalted and dehydrated by known methods to reduce reactor design requirements, is fed to the latter through the feed system and the inlet pipe and enters the pipelines of the jet forming device. Simultaneously with the feedstock, a coolant is supplied to the reactor. In the said device, the feed stream acquires directional movement through pipelines, breaking up into separate jets. The configuration of the pipelines and their relative orientation provides unidirectional, counter-directional or cross-directional movement of the jets. Penetrating into the reactor volume through perforations in the walls of pipelines, parts of the flow interact with each other. In the process of complex directional movement, part of the feed stream undergoes a change in density and angular momentum.
  • the distribution of the density and angular momentum in accordance with the wave function corresponding to the conditions for the transition of a part of the flow to the fifth state of Dirac matter is guaranteed by the shape and size of the elements of the jet forming device and their relative position. Providing the conditions for the mentioned transition of more than a small (not more than 0.01%) part of the feed stream can cause a significant release of energy, which will lead to uncontrolled process.
  • the thermomechanical effect on the feed stream initiated by the energy released during this process, causes destructive processes and redistribution of the processing components in it: light hydrocarbons, which are removed from the reactor as target products, and heavy oil residue. Target products can be used both independently and sent for re-processing in subsequent reactors or returned to the existing one.
  • the number of stages of distillation is determined by the tasks.
  • the percentage yield of light fractions depends on the physicochemical characteristics of the raw materials, the requirements for the target product, and may be higher than when using already known methods. This figure is determined empirically in the distillation of highly viscous oil in the above device.
  • the table below shows the results of an experiment on the separation of the original oil by the present method in an industrial installation with a capacity of 1,500 tons per year.
  • the proportions of gasoline, diesel and jet fuel can be changed within 20-30% of the mass of gasoline, 40-60% of the mass of diesel fuel, 10-30% of the mass of heavy residues without compromising the quality of the resulting products.
  • the redistribution of components occurs: most of the resins, asphaltenes, heavy metals go into a heavy residue. This greatly facilitates the working conditions of equipment for producing fuels, and also removes the severity of the environmental problems of oil refining.
  • the fraction of light hydrocarbons obtained by the claimed technology exceeds the fraction of distillates produced by traditional technology, and the heavy fraction, into which the bulk of the impurities harmful to light fractions passes, can be used as raw material for production in its physical and technological properties high quality road surfaces.
  • the claimed method of processing hydrocarbon raw materials is characterized by a high ratio of the output of the most valuable target fractions to energy costs, processing costs and losses of raw materials.
  • the method can be used for deep, waste-free, environmentally friendly processing of all types of liquid raw materials, including high-viscosity oil with a high content of sulfur, salts, resins and other impurities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

L'invention concerne la pétrochimie et notamment le domaine de la transformation d'hydrocarbures; ell peut s'utiliser dans les industries chimique et pétrochimique pour obtenir différents hydrocarbures, y compris du carburant haute qualité. Le procédé de transformation de matières premières à base d'hydrocarbures consiste à alimenter en matières premières de base un volume donné, puis à effectuer la sublimation et la formation d'un flux de matières premières ciblé ainsi que la distillation permettant de sélectionner les fractions cibles. La formation d'un flux de matières premières est assurée tout en réalisant une répartition des densités du flux et du couple d'impulsion conformément à la fonction ondulatoire qui correspond au condition de changement de phase d'une partie du flux de matières premières en état positronique de la matière de Dirac.
PCT/RU2010/000755 2010-12-06 2010-12-14 Procédé de transformation d'hydrocarbures de base par distillation WO2012078068A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2010149543 2010-12-06
RU2010149543/04A RU2434050C1 (ru) 2010-12-06 2010-12-06 Способ переработки углеводородного сырья

Publications (1)

Publication Number Publication Date
WO2012078068A1 true WO2012078068A1 (fr) 2012-06-14

Family

ID=44628549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2010/000755 WO2012078068A1 (fr) 2010-12-06 2010-12-14 Procédé de transformation d'hydrocarbures de base par distillation

Country Status (2)

Country Link
RU (1) RU2434050C1 (fr)
WO (1) WO2012078068A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US295968A (en) 1884-04-01 clabk alvobd
US738324A (en) 1902-05-03 1903-09-08 Ernest Hey Delivery attachment for fluid-receptacles.
RU2102435C1 (ru) 1996-09-19 1998-01-20 Открытое акционерное общество "Славнефть-Ярославнефтеоргсинтез" Способ переработки нефтяного сырья и устройство для его осуществления
RU2146525C1 (ru) 1999-05-18 2000-03-20 Тихонов Сергей Николаевич Способ получения ультрадисперсного порошка из пантов для приготовления пищевых добавок или фармацевтических и косметических препаратов
EP1452576A2 (fr) 2001-12-07 2004-09-01 Gamlet Alievich Mirzoev Procede de transformation de dechets de petrole mixtes et installation pour sa mise en oeuvre
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US295968A (en) 1884-04-01 clabk alvobd
US738324A (en) 1902-05-03 1903-09-08 Ernest Hey Delivery attachment for fluid-receptacles.
RU2102435C1 (ru) 1996-09-19 1998-01-20 Открытое акционерное общество "Славнефть-Ярославнефтеоргсинтез" Способ переработки нефтяного сырья и устройство для его осуществления
RU2146525C1 (ru) 1999-05-18 2000-03-20 Тихонов Сергей Николаевич Способ получения ультрадисперсного порошка из пантов для приготовления пищевых добавок или фармацевтических и косметических препаратов
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
EP1452576A2 (fr) 2001-12-07 2004-09-01 Gamlet Alievich Mirzoev Procede de transformation de dechets de petrole mixtes et installation pour sa mise en oeuvre

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "CRUDE DISTILLATION", REFINING PROCESSES 2004, 31 December 2004 (2004-12-31), XP002665113, Retrieved from the Internet <URL:http://www.aimsgt.com/technicalpapers/RefiningProcesses_2004.pdf> [retrieved on 20111205] *
DEGTIAREV V.N.: "On the bank of oil quality", NEFTIANOE HOZIAYSTVO, 1997, pages 62 - 63
G.R. UMAROV: "Melts", vol. 3, 1990, NAUKA, article "Solution of the problems of many bodies and of the mechanism of the melting solid bodies", pages: 25 - 31
P.A.M, DIRAC: "The Principles of Quantum Mechanics", 1935
PIERRE WUITHIER: "LE PÉTROLE, RAFFINAGE ET GÉNIE CHIMIQUE", 31 December 1972, EDITIONS TECHNIP, PARIS, article PIERRE WUITHIER: "DISTILLATION", pages: 532 - 533, XP002665114 *
UMAROV G.R.: "Correlation effects in a two-electron atom", EUR. J.PHIS., vol. 2, 1981, pages 228 - 231, XP020025538, DOI: doi:10.1088/0143-0807/2/4/008

Also Published As

Publication number Publication date
RU2434050C1 (ru) 2011-11-20

Similar Documents

Publication Publication Date Title
EP3592829B1 (fr) Procédé hydrothermique intégré pour la valorisation du pétrole lourd
US10344228B2 (en) Supercritical water upgrading process to produce high grade coke
EP3374470B1 (fr) Procédé pour éliminer des métaux de pétrole
Kaushik et al. Ultrasound cavitation technique for up-gradation of vacuum residue
EP2588569B1 (fr) Élimination de composés soufrés de flux de pétrole
JP5630928B2 (ja) 水素化分解法
CN110291175A (zh) 从石油中去除硫和金属的方法
CN107916128A (zh) 对原油进行集成浆液加氢处理和蒸汽热解来生产石油化学产品
EP3097165B1 (fr) Procédé de réduction du point d&#39;écoulement à efficacité élevée
JP6886480B2 (ja) 超臨界水分離プロセス
Mousavi et al. Energy recovery from high density polyethylene plastic via pyrolysis with upgrading of the product by a novel nano MIL-53 (Cu) derived@ Y zeolite catalyst using response surface methodology
RU88670U1 (ru) Установка и устройства углубленной переработки углеводородного сырья
Benito et al. Visbreaking of an asphaltenic coal residue
Alaseeva et al. Properties and applications of distillate fractions from highly stable dispersions of liquid pyrolysis products
CN104736677A (zh) 焦炭鼓添加剂注入
Sawarkar et al. Use of ultrasound in petroleum residue upgradation
WO2010085168A1 (fr) Procede et ensemble de preparation et de traitement en profondeur de matieres premieres hydrocarbonees
RU114955U1 (ru) Установка и устройства углубленной переработки углеводородного сырья
RU2434050C1 (ru) Способ переработки углеводородного сырья
RU89854U1 (ru) Установка подготовки и глубокой переработки углеводородного сырья
RU2652122C1 (ru) Способ получения суспензии катализатора гидроконверсии тяжелого нефтяного сырья
Kasetsupsin et al. Combined Activated Carbon with Spent Fluid Catalytic Cracking Catalyst and MgO for the Catalytic Conversion of Waste Polyethylene Wax into Diesel-like Hydrocarbon Fuels
CN113462427B (zh) 利用原油直接制备化学品的方法和生产系统以及化学制品
Kadiev et al. Formation of polycondensation products in heavy oil feedstock hydroconversion in the presence of ultrafine catalyst: Physicochemical study
RU2468065C2 (ru) Способ термической переработки высокомолекулярного углеродсодержащего сырья в более легкие соединения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/11/2013).

122 Ep: pct application non-entry in european phase

Ref document number: 10842773

Country of ref document: EP

Kind code of ref document: A1