WO2012077798A1 - Method for dissolving cellulose and method for measuring molecular weight distribution of cellulose - Google Patents

Method for dissolving cellulose and method for measuring molecular weight distribution of cellulose Download PDF

Info

Publication number
WO2012077798A1
WO2012077798A1 PCT/JP2011/078601 JP2011078601W WO2012077798A1 WO 2012077798 A1 WO2012077798 A1 WO 2012077798A1 JP 2011078601 W JP2011078601 W JP 2011078601W WO 2012077798 A1 WO2012077798 A1 WO 2012077798A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
solution
lithium
ionic liquid
molecular weight
Prior art date
Application number
PCT/JP2011/078601
Other languages
French (fr)
Japanese (ja)
Inventor
芳孝 伊藤
真也 武野
暁 奥村
エーエス カルモカ
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2012077798A1 publication Critical patent/WO2012077798A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/096Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/003Preparation of cellulose solutions, i.e. dopes, with different possible solvents, e.g. ionic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • G01N2030/885Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds involving polymers

Definitions

  • the present invention relates to a method for dissolving cellulose and a method for measuring molecular weight distribution of cellulose, and more specifically, a cellulose dissolving method and cellulose having a shorter working time, versatility, and cost-effectiveness than conventional methods.
  • the present invention relates to a method for measuring the molecular weight distribution.
  • cellulose Since cellulose has a strong hydrogen bond in its structure, it is not melted or dissolved by a general method, and therefore various dissolution methods and dilute solution preparation methods have been proposed.
  • Examples of the method for dissolving cellulose include a method in which cellulose is derivatized with carbon disulfide and dissolved.
  • a method of complexing and dissolving cellulose using a copper ethylenediamine aqueous solution or a dimethylacetamide solution of lithium halide is also known.
  • Patent Documents 1 and 2 methods for hydrating and dissolving cellulose using an ionic liquid such as an imidazolium salt have been reported (for example, Patent Documents 1 and 2).
  • the cellulose dissolution method using an ionic liquid is easy to dissolve cellulose, has a short preparation time of the cellulose solution, and is excellent in process.
  • the method for dissolving cellulose using an ionic liquid has a drawback that the viscosity of the ionic liquid is very high and the versatility is poor.
  • the ionic liquid is expensive, there has been a problem in using it for a wide range of uses, including application to analysis such as measurement of molecular weight distribution of cellulose.
  • an object of the present invention is to provide a cellulose dissolution method and a cellulose molecular weight distribution measurement method that have a shorter working time than conventional ones, are versatile, and are superior in cost.
  • the cellulose dissolution method of the present invention is a cellulose dissolution method including a step of dissolving cellulose in an ionic liquid.
  • the anion of the ionic liquid is a halogen ion, and the obtained cellulose solution is diluted with a lithium complex salt solution.
  • the halogen ion is preferably a chloride ion.
  • the lithium complex salt is preferably lithium halide.
  • the solvent of the lithium complex salt solution is preferably a solvent having an acetamide group.
  • the lithium halide is preferably lithium chloride.
  • the solvent having an acetamide group is preferably dimethylacetamide.
  • the cation of the ionic liquid preferably has an imidazolium skeleton, and the imidazolium skeleton is preferably 1-n-butyl-3-methylimidazolium. Furthermore, in the present invention, it is preferable to add dimethylacetamide to the ionic liquid.
  • the method for measuring the molecular weight distribution of cellulose of the present invention is characterized by subjecting the cellulose solution prepared by the cellulose dissolution method of the present invention to a size exclusion chromatograph using a dimethylacetamide solution of lithium halide as a mobile phase. It is what.
  • a cellulose dissolution method and a cellulose molecular weight distribution measurement method that have a shorter working time than conventional ones, are versatile, and are superior in cost.
  • the cellulose dissolution method of the present invention is a cellulose dissolution method including a step of dissolving cellulose in an ionic solution.
  • the anion of the ionic liquid is a halogen ion, and it is important to dilute the obtained cellulose solution with a lithium complex salt solution.
  • the ionic liquid can dissolve most cellulose species, and a cellulose solution can be prepared regardless of the cellulose species. In order to dissolve cellulose in the ionic liquid, it may be contacted at 80 to 110 ° C. for about 2 to 8 hours. More preferably, it is 80 to 90 ° C. for about 3 to 5 hours.
  • the obtained cellulose solution is diluted with a lithium complex salt solution.
  • the cellulose hydrated by the ionic liquid forms a complex with lithium and becomes soluble in the solvent.
  • the work is simplified and shortened.
  • the amount of ionic liquid used can be reduced to 1/100 or less of the conventional one, which is excellent in terms of cost.
  • the cellulose dissolution method of the present invention can be applied to many cellulose species, and a dilute solution can be prepared in a short time and easily under the same conditions. Furthermore, by using an ionic liquid whose anion is halogen as an ionic liquid and a lithium complex salt dilute solution, it can be diluted to any magnification, so it is suitable for sample preparation for measuring the molecular weight distribution of cellulose. Can be used.
  • the viscosity of a diluted solution obtained by diluting a cellulose solution with a lithium complex salt solution is approximately the same as that of a lithium complex salt solution used in the mobile phase of the method for measuring the molecular weight distribution of cellulose of the present invention described later. Therefore, the measurement of the molecular weight distribution of cellulose also has an advantage that it can be analyzed under the same conditions as those of the conventional molecular weight distribution measurement using a lithium complex salt solution.
  • the cation of the ionic liquid used in the present invention preferably has an imidazolium skeleton.
  • Specific examples of the cation having an imidazolium skeleton include 1-ethyl-3-methylimidazolium ion, 1-n-propyl-3-methylimidazolium ion, 1-n-butyl-3-methylimidazolium ion, 1 -N-pentyl-3-methylimidazolium ion, 1-n-hexyl-3-methylimidazolium ion, 1-n-octyl-3-methylimidazolium ion, 1-ethyl-2,3-dimethylimidazolium ion
  • An ionic liquid cation having a methylimidazolium skeleton such as 1-n-butyl-2,3-dimethylimidazolium ion, 1-allyl-3-methylimidazolium, or the like is preferable.
  • the anion of the ionic liquid is a halogen ion such as fluoride ion, chloride ion, bromide ion or iodide ion, and preferably chloride ion.
  • a halogen ion such as fluoride ion, chloride ion, bromide ion or iodide ion, and preferably chloride ion.
  • anions other than these for example, inorganic anions such as HSO 4 ⁇ , CH 3 SO 3 — and carboxylic acid anions, for example, carboxylic acid anions such as formate anion, acetate anion, propionate anion will be described later. This is not preferable because precipitation occurs when diluted with a lithium complex salt.
  • 1-n-butyl-3-methylimidazolium chloride which is a suitable combination of anion and cation
  • the ionic liquid the ionic liquid may be used alone, but it is also preferable to use dimethylacetamide in combination. Thereby, the viscosity of an ionic liquid can be reduced and solubility can be improved.
  • dimethylacetamide is suitable as a mixed solvent because it is used in the mobile phase of the method for measuring the molecular weight distribution of cellulose described later. In consideration of the solubility of cellulose in the ionic liquid, the amount of dimethylacetamide in the mixed solution is preferably about 25 to 50% by mass.
  • lithium halides such as lithium fluoride, lithium chloride, lithium bromide, and lithium iodide can be suitably used as the lithium complex salt in the lithium complex salt solution used for diluting the cellulose solution. .
  • the ionic liquid in which the cellulose is dissolved is replaced by the lithium complex salt and dissolved by the lithium ion-cellulose hydroxyl group interaction.
  • Particularly preferred is lithium chloride.
  • the lithium complex salt concentration of the lithium complex salt solution can be about 0.5 to 10% by mass.
  • the method for measuring the molecular weight distribution of cellulose of the present invention is to measure the molecular weight distribution of cellulose by size exclusion chromatography using a solution prepared by the method of dissolving cellulose of the present invention.
  • the molecular weight distribution of cellulose is usually analyzed by size exclusion chromatography using dimethylacetamide added with lithium chloride or lithium bromide as a mobile phase. Since the viscosity of the solution obtained by the cellulose dissolution method of the present invention is almost the same as that of the above mobile phase, molecular weight distribution using a conventional lithium complex salt solution is also used for measuring the molecular weight distribution of cellulose. Analysis can be performed under the same conditions as in the measurement method.
  • the concentration of lithium halide in dimethylacetamide as the mobile phase can be about 0.5 to 10% by mass, but is preferably the same as the solvent composition of the cellulose solution.
  • a separation column used in the size exclusion chromatograph a column using a packing material based on a methacrylate polymer can be used, and as a detector, for example, a differential bending rate detector (RI) is used. Can do.
  • Example 1-1 A 1-n-butyl-3-methylimidazolium chloride / dimethylacetamide 75/25 (mass ratio) solvent was added to a pulp for papermaking having a polymerization degree of 1000 to 1500 dehydrated by drying at 110 ° C. for 8 hours. The mixture was stirred at 80 ° C. for 4 hours to obtain a 10% by mass pulp solution. Add 8 wt% lithium chloride / dimethylacetamide solution to 12.5 times equivalent to the obtained 10 wt% pulp solution, infiltrate lightly, let stand for half a day, and further increase 8 times with dimethylacetamide. By diluting, a cellulose solution (0.1% by mass solution) was obtained. The obtained cellulose solution was filtered through a filter, and the molecular weight distribution was measured under the following conditions. The obtained results are shown in Table 1.
  • Example 1-2 A cellulose solution was obtained in the same manner as in Example 1-1 except that papermaking pulp having a polymerization degree of 300 to 800 was used. The obtained cellulose solution was filtered through a filter, and the molecular weight distribution was measured under the following conditions. The obtained results are shown in Table 1.
  • Paper pulp with a polymerization degree of 1000 to 1500 was washed with distilled water, acetone and dimethylacetamide solvents, stirred and immersed (1 day), desolvated, and vacuum dried at 60 ° C for 40 hours to prepare a sample. did. A few drops of 8% by mass lithium chloride / dimethylacetamide solution were added to the obtained sample and stirred for several days to obtain a 0.8% by mass cellulose solution. The obtained 0.8 mass% pulp solution was diluted 8 times with a dimethylacetamide solution to obtain a 0.1 mass% cellulose solution, and the molecular weight distribution was measured in the same manner as in Example 1. The obtained results are shown in Table 1.
  • Example 1-2 A cellulose solution was obtained in the same manner as in Example 1-1 except that papermaking pulp having a polymerization degree of 300 to 800 was used. The obtained cellulose solution was filtered through a filter, and the molecular weight distribution was measured under the following conditions. The obtained results are shown in Table 1.
  • Example 2-1 1-n-Butyl-3-methylimidazolium chloride
  • Example 2-2 1-allyl-3-methylimidazolium chloride
  • Example 2-3 1-ethyl-3-methylimidazolium chloride
  • Example 2-4 1-n-butyl-3-methylimidazolium chloride / dimethylacetamide (75/25: mass ratio)
  • Example 2-5 1-allyl-3-methylimidazolium chloride / dimethylacetamide (75/25: mass ratio)
  • Example 2-6 1-ethyl-3-methylimidazolium chloride / dimethylacetamide (75/25: mass ratio)
  • Comparative Example 2-1 1-n-butyl-3-methylimidazolium acetate / dimethylacetamide (75/25: mass ratio)
  • Comparative Example 2-2 1-n-butyl-3-methylimidazolium diethyl phosphate / dimethylacetamide (75/25: mass ratio)
  • Comparative Example 2-3 Methyltribut
  • a cellulose solution can be prepared in one day.
  • a high-polymerization degree pulp could not produce a cellulose solution by the same technique as a low-polymerization degree pulp (Table 1).
  • the cellulose dissolution method of the present invention since the cellulose solution is prepared through a solvent using an ionic liquid, the cellulose solution can be prepared using either a high polymerization degree pulp or a low polymerization degree pulp. It was. Thereby, it turns out that the dissolution method of the cellulose of this invention is applicable regardless of pulp kind.
  • the cellulose dissolution method of the present invention can prepare a cellulose solution easily and in a short time compared to the conventional method, and can be applied to the measurement of molecular weight distribution of cellulose. I know that there is.
  • Table 2 also shows that in the cellulose dissolution method of the present invention, the combination of an ionic liquid halogen salt having a methylimidazolium skeleton and a lithium halide is excellent as a combination of an ionic liquid and a lithium complex salt. .

Abstract

Provided are a method for dissolving cellulose and a method for measuring the molecular weight distribution of cellulose, having a shorter work time, greater versatility, and superior cost-efficiency compared to the prior art. The method for dissolving cellulose comprises a step of dissolving cellulose in an ionic liquid. The anions of the ionic liquid are halogen ions, and the resulting dissolved cellulose solution is diluted with a lithium complex salt solution. The halogen ions are preferably chloride ions, and the lithium complex salt is preferably a lithium halide.

Description

セルロースの溶解方法およびセルロースの分子量分布の測定方法Method for dissolving cellulose and measuring molecular weight distribution of cellulose
 本発明は、セルロースの溶解方法およびセルロースの分子量分布の測定方法に関し、詳しくは、従来よりも作業時間が短時間で、汎用性があり、かつ、コスト的にも優れたセルロースの溶解方法およびセルロースの分子量分布の測定方法に関する。 The present invention relates to a method for dissolving cellulose and a method for measuring molecular weight distribution of cellulose, and more specifically, a cellulose dissolving method and cellulose having a shorter working time, versatility, and cost-effectiveness than conventional methods. The present invention relates to a method for measuring the molecular weight distribution.
 セルロースは構造中に強固な水素結合をもつため、一般的な手法では溶融も溶解もしないことから、様々な溶解方法や希薄溶液の調製方法が提案されている。セルロースの溶解方法としては、例えば、二硫化炭素によってセルロースを誘導体化して溶解する方法が挙げられる。また、銅エチレンジアミン水溶液やハロゲン化リチウムのジメチルアセトアミド溶液を用いてセルロースを錯体化して溶解させる方法も知られている。 Since cellulose has a strong hydrogen bond in its structure, it is not melted or dissolved by a general method, and therefore various dissolution methods and dilute solution preparation methods have been proposed. Examples of the method for dissolving cellulose include a method in which cellulose is derivatized with carbon disulfide and dissolved. In addition, a method of complexing and dissolving cellulose using a copper ethylenediamine aqueous solution or a dimethylacetamide solution of lithium halide is also known.
 しかしながら、二硫化炭素を用いてセルロースを誘導体化すると、セルロースの分子構造が変化したり、分子量が低下したりと問題が生じる。また、銅エチレンジアミン水溶液やハロゲン化リチウムのジメチルアセトアミド溶液を用いて錯体化する方法においては、セルロースの種類によって最適な溶解方法が異なり、溶解条件の選定、管理が難しく、溶解に要する時間も長い。さらに、一部のセルロースでは溶解が不可能である場合や、溶解中に分子量の低下を伴うなどの問題が生じる場合がある。 However, when cellulose is derivatized with carbon disulfide, there are problems that the molecular structure of cellulose changes or the molecular weight decreases. In addition, in the method of complexing using an aqueous solution of copper ethylenediamine or a dimethylacetamide solution of lithium halide, the optimal dissolution method differs depending on the type of cellulose, and it is difficult to select and manage the dissolution conditions, and the time required for dissolution is long. Furthermore, there are cases where some cellulose cannot be dissolved or problems such as a decrease in molecular weight occur during dissolution.
 これら以外にも、近年、イミダゾリウム塩等のイオン液体を用いてセルロースを水和し、溶解させる手法が報告されている(例えば、特許文献1および2)。イオン液体を用いたセルロースの溶解方法は、セルロースの溶解が容易であり、セルロース溶液の調製時間が短く、プロセス的に優れている。 Besides these, in recent years, methods for hydrating and dissolving cellulose using an ionic liquid such as an imidazolium salt have been reported (for example, Patent Documents 1 and 2). The cellulose dissolution method using an ionic liquid is easy to dissolve cellulose, has a short preparation time of the cellulose solution, and is excellent in process.
特表2005-506401号公報JP 2005-506401 A 特開2008-50595号公報JP 2008-50595 A
 しかしながら、イオン液体を用いたセルロースの溶解方法は、イオン液体の粘度が非常に高いため汎用性に乏しいという欠点を有している。また、イオン液体は高価であることから、セルロースの分子量分布の測定等の分析への応用も含め、広範な用途に用いるには課題があった。 However, the method for dissolving cellulose using an ionic liquid has a drawback that the viscosity of the ionic liquid is very high and the versatility is poor. Moreover, since the ionic liquid is expensive, there has been a problem in using it for a wide range of uses, including application to analysis such as measurement of molecular weight distribution of cellulose.
 そこで、本発明の目的は、従来よりも作業時間が短時間で、汎用性があり、かつ、コスト的にも優れたセルロースの溶解方法およびセルロースの分子量分布の測定方法を提供することにある。 Therefore, an object of the present invention is to provide a cellulose dissolution method and a cellulose molecular weight distribution measurement method that have a shorter working time than conventional ones, are versatile, and are superior in cost.
 本発明者は、上記課題を解消するために鋭意検討した結果、下記構成とすることにより、上記課題を解決することができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that the above-described problems can be solved by adopting the following configuration, and has completed the present invention.
 すなわち、本発明のセルロースの溶解方法は、セルロースをイオン液体に溶解させる工程を含むセルロースの溶解方法において、
 前記イオン液体のアニオンがハロゲンイオンであり、得られたセルロース溶解液をリチウム錯塩溶液で希釈することを特徴とするものである。
That is, the cellulose dissolution method of the present invention is a cellulose dissolution method including a step of dissolving cellulose in an ionic liquid.
The anion of the ionic liquid is a halogen ion, and the obtained cellulose solution is diluted with a lithium complex salt solution.
 本発明においては、前記ハロゲンイオンは塩化物イオンであることが好ましい。また、本発明においては、前記リチウム錯塩はハロゲン化リチウムであることが好ましい。さらに、本発明においては、前記リチウム錯塩溶液の溶媒はアセトアミド基を有する溶媒であることが好ましい。さらにまた、本発明においては、前記ハロゲン化リチウムは塩化リチウムであることが好ましい。また、本発明においては、前記アセトアミド基を有する溶媒はジメチルアセトアミドであることが好ましい。また、本発明においては、前記イオン液体のカチオンはイミダゾリウム骨格を有することが好ましく、さらに、前記イミダゾリウム骨格は1-n-ブチル-3-メチルイミダゾリウムであることが好ましい。さらにまた、本発明においては、前記イオン液体にジメチルアセトアミドを添加することが好ましい。 In the present invention, the halogen ion is preferably a chloride ion. In the present invention, the lithium complex salt is preferably lithium halide. Furthermore, in the present invention, the solvent of the lithium complex salt solution is preferably a solvent having an acetamide group. Furthermore, in the present invention, the lithium halide is preferably lithium chloride. In the present invention, the solvent having an acetamide group is preferably dimethylacetamide. In the present invention, the cation of the ionic liquid preferably has an imidazolium skeleton, and the imidazolium skeleton is preferably 1-n-butyl-3-methylimidazolium. Furthermore, in the present invention, it is preferable to add dimethylacetamide to the ionic liquid.
 本発明のセルロースの分子量分布の測定方法は、本発明のセルロースの溶解方法により調製されたセルロース溶解液を、ハロゲン化リチウムのジメチルアセトアミド溶液を移動相とするサイズ排除クロマトグラフに付することを特徴とするものである。 The method for measuring the molecular weight distribution of cellulose of the present invention is characterized by subjecting the cellulose solution prepared by the cellulose dissolution method of the present invention to a size exclusion chromatograph using a dimethylacetamide solution of lithium halide as a mobile phase. It is what.
 本発明によれば、従来よりも作業時間が短時間で、汎用性があり、かつ、コスト的にも優れたセルロースの溶解方法およびセルロースの分子量分布の測定方法を提供することができる。 According to the present invention, it is possible to provide a cellulose dissolution method and a cellulose molecular weight distribution measurement method that have a shorter working time than conventional ones, are versatile, and are superior in cost.
 以下、本発明の実施の形態を詳細に説明する。
 本発明のセルロースの溶解方法は、セルロースをイオン溶液に溶解させる工程を含むセルロースの溶解方法である。本発明においては、イオン液体のアニオンがハロゲンイオンであり、得られたセルロース溶解液をリチウム錯塩溶液で希釈することが重要である。イオン液体は、ほとんどのセルロース種を溶解することが可能であり、セルロース種を問わずにセルロース溶解液を調製することができる。セルロースをイオン液体に溶解させるには、80~110℃で2~8時間程度接触させればよい。より好ましくは、80~90℃で3~5時間程度である。
Hereinafter, embodiments of the present invention will be described in detail.
The cellulose dissolution method of the present invention is a cellulose dissolution method including a step of dissolving cellulose in an ionic solution. In the present invention, the anion of the ionic liquid is a halogen ion, and it is important to dilute the obtained cellulose solution with a lithium complex salt solution. The ionic liquid can dissolve most cellulose species, and a cellulose solution can be prepared regardless of the cellulose species. In order to dissolve cellulose in the ionic liquid, it may be contacted at 80 to 110 ° C. for about 2 to 8 hours. More preferably, it is 80 to 90 ° C. for about 3 to 5 hours.
 次いで、得られたセルロース溶解液を、リチウム錯塩溶液を用いて希釈させる。これにより、イオン液体により水和されたセルロースが、リチウムと錯体を形成し、溶媒に可溶となる。その結果、静置、振とうのみで希釈が可能となるため、作業が簡易化、短縮化される。また、本発明のセルロースの溶解方法によれば、イオン液体の使用量を従来の1/100以下に減らすことができるため、コスト的に優れている。 Next, the obtained cellulose solution is diluted with a lithium complex salt solution. Thereby, the cellulose hydrated by the ionic liquid forms a complex with lithium and becomes soluble in the solvent. As a result, since dilution is possible only by standing and shaking, the work is simplified and shortened. Moreover, according to the cellulose dissolution method of the present invention, the amount of ionic liquid used can be reduced to 1/100 or less of the conventional one, which is excellent in terms of cost.
 さらに、本発明のセルロースの溶解方法は、多くのセルロース種に対して適用可能であり、同一の条件で短時間かつ簡易に、希薄溶液を調製することができる。さらにまた、イオン液体としてアニオンがハロゲンであるイオン液体と、リチウム錯塩希釈溶液と、を用いることで、任意の倍率に希釈することが可能であるため、セルロースの分子量分布の測定の試料調製に好適に用いることができる。また、セルロースの溶解液をリチウム錯塩溶液で希釈した希薄溶液の粘度は、後述する本発明のセルロースの分子量分布の測定方法の移動相に用いるリチウム錯塩溶液とほぼ同程度である。そのため、セルロースの分子量分布の測定においても、従来から行われている、リチウム錯塩溶液を用いた分子量分布測定と同等の条件で分析することが可能であるという利点も有している。 Further, the cellulose dissolution method of the present invention can be applied to many cellulose species, and a dilute solution can be prepared in a short time and easily under the same conditions. Furthermore, by using an ionic liquid whose anion is halogen as an ionic liquid and a lithium complex salt dilute solution, it can be diluted to any magnification, so it is suitable for sample preparation for measuring the molecular weight distribution of cellulose. Can be used. The viscosity of a diluted solution obtained by diluting a cellulose solution with a lithium complex salt solution is approximately the same as that of a lithium complex salt solution used in the mobile phase of the method for measuring the molecular weight distribution of cellulose of the present invention described later. Therefore, the measurement of the molecular weight distribution of cellulose also has an advantage that it can be analyzed under the same conditions as those of the conventional molecular weight distribution measurement using a lithium complex salt solution.
 本発明に用いるイオン液体のカチオンとしては、イミダゾリウム骨格を有していることが好ましい。イミダゾリウム骨格を有するカチオンの具体例としては、1-エチル-3-メチルイミダゾリウムイオン、1-n-プロピル-3-メチルイミダゾリウムイオン、1-n-ブチル-3-メチルイミダゾリウムイオン、1-n-ペンチル-3-メチルイミダゾリウムイオン、1-n-ヘキシル-3-メチルイミダゾリウムイオン、1-n-オクチル-3-メチルイミダゾリウムイオン、1-エチル-2,3-ジメチルイミダゾリウムイオン、1-n-ブチル-2,3-ジメチルイミダゾリウムイオン、1-アリル-3-メチルイミダゾリウム等のメチルイミダゾリウム骨格を有しているイオン液体のカチオンが好ましい。なかでも、特に、1-n-ブチル-3-メチルイミダゾリウムイオンが好ましい。 The cation of the ionic liquid used in the present invention preferably has an imidazolium skeleton. Specific examples of the cation having an imidazolium skeleton include 1-ethyl-3-methylimidazolium ion, 1-n-propyl-3-methylimidazolium ion, 1-n-butyl-3-methylimidazolium ion, 1 -N-pentyl-3-methylimidazolium ion, 1-n-hexyl-3-methylimidazolium ion, 1-n-octyl-3-methylimidazolium ion, 1-ethyl-2,3-dimethylimidazolium ion An ionic liquid cation having a methylimidazolium skeleton such as 1-n-butyl-2,3-dimethylimidazolium ion, 1-allyl-3-methylimidazolium, or the like is preferable. Of these, 1-n-butyl-3-methylimidazolium ion is particularly preferable.
 また、イオン液体のアニオンとしては、ふっ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲンイオンであるが、好ましくは、塩化物イオンである。なお、これら以外のアニオン、例えば、HSO 、CHSO 等の無機アニオンやカルボン酸系アニオン、例えば、ギ酸アニオン、酢酸アニオン、プロピオン酸アニオン等のカルボン酸系アニオンの使用は、後述するリチウム錯塩による希釈時に析出が生じる関係上、好ましくない。 The anion of the ionic liquid is a halogen ion such as fluoride ion, chloride ion, bromide ion or iodide ion, and preferably chloride ion. The use of anions other than these, for example, inorganic anions such as HSO 4 , CH 3 SO 3 and carboxylic acid anions, for example, carboxylic acid anions such as formate anion, acetate anion, propionate anion will be described later. This is not preferable because precipitation occurs when diluted with a lithium complex salt.
 本発明においては、イオン液体としては、好適なアニオンとカチオンの組み合わせである、1-n-ブチル-3-メチルイミダゾリウムクロライドを好適に用いることができる。イオン液体は、上記イオン液体を単独で用いてもよいが、ジメチルアセトアミドを混合して用いることも好ましい。これにより、イオン液体の粘度を減少させて、溶解性を向上させることができる。さらに、ジメチルアセトアミドは、後述のセルロースの分子量分布の測定方法の移動相に用いられているため、混合溶媒として好適である。なお、セルロースのイオン液体への溶解性を考慮すると、混合液中のジメチルアセトアミドの量は、25~50質量%程度とすることが好ましい。 In the present invention, 1-n-butyl-3-methylimidazolium chloride, which is a suitable combination of anion and cation, can be preferably used as the ionic liquid. As the ionic liquid, the ionic liquid may be used alone, but it is also preferable to use dimethylacetamide in combination. Thereby, the viscosity of an ionic liquid can be reduced and solubility can be improved. Furthermore, dimethylacetamide is suitable as a mixed solvent because it is used in the mobile phase of the method for measuring the molecular weight distribution of cellulose described later. In consideration of the solubility of cellulose in the ionic liquid, the amount of dimethylacetamide in the mixed solution is preferably about 25 to 50% by mass.
 また、本発明においては、セルロース溶解液の希釈に用いるリチウム錯塩溶液中のリチウム錯塩としては、ふっ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム等のハロゲン化リチウムを好適に用いることができる。これは、セルロースを溶解しているイオン液体が、リチウム錯塩によって置換され、リチウムイオン-セルロース水酸基の相互作用により溶解するためである。特に好適には塩化リチウムである。 In the present invention, lithium halides such as lithium fluoride, lithium chloride, lithium bromide, and lithium iodide can be suitably used as the lithium complex salt in the lithium complex salt solution used for diluting the cellulose solution. . This is because the ionic liquid in which the cellulose is dissolved is replaced by the lithium complex salt and dissolved by the lithium ion-cellulose hydroxyl group interaction. Particularly preferred is lithium chloride.
 本発明においては、リチウム錯塩溶液の溶媒としては、リチウムイオンと錯体を形成し、セルロース水酸基との相互作用によりセルロースを溶解可能とする溶媒を用いることができるが、好適にはジメチルアセトアミドである。本発明においては、リチウム錯塩溶液のリチウム錯塩濃度は、0.5~10質量%程度とすることができる。 In the present invention, as a solvent for the lithium complex salt solution, a solvent that forms a complex with lithium ions and that can dissolve cellulose by interaction with a cellulose hydroxyl group can be used, and dimethylacetamide is preferred. In the present invention, the lithium complex salt concentration of the lithium complex salt solution can be about 0.5 to 10% by mass.
 次に、本発明のセルロースの分子量分布の測定方法について説明する。
 本発明のセルロースの分子量分布の測定方法は、本発明のセルロースの溶解方法により製造された溶解液を用いて、サイズ排除クロマトグラフによりセルロースの分子量分布を測定するものである。セルロースの分子量分布の測定は、通常、塩化リチウムまたは臭化リチウムを添加したジメチルアセトアミドを移動相として、サイズ排除クロマトグラフにより分析する。本発明のセルロ-スの溶解方法により得られた溶解液の粘度は、上記移動相とほぼ同程度であるため、セルロースの分子量分布の測定においても、従来からのリチウム錯塩溶液を用いた分子量分布の測定方法と同様の条件で分析が可能である。
Next, a method for measuring the molecular weight distribution of cellulose of the present invention will be described.
The method for measuring the molecular weight distribution of cellulose of the present invention is to measure the molecular weight distribution of cellulose by size exclusion chromatography using a solution prepared by the method of dissolving cellulose of the present invention. The molecular weight distribution of cellulose is usually analyzed by size exclusion chromatography using dimethylacetamide added with lithium chloride or lithium bromide as a mobile phase. Since the viscosity of the solution obtained by the cellulose dissolution method of the present invention is almost the same as that of the above mobile phase, molecular weight distribution using a conventional lithium complex salt solution is also used for measuring the molecular weight distribution of cellulose. Analysis can be performed under the same conditions as in the measurement method.
 例えば、移動相のジメチルアセトアミド中のハロゲン化リチウムの濃度は0.5~10質量%程度とすることができるが、セルロース溶解液の溶媒組成と同じとすることが好ましい。また、サイズ排除クロマトグラフで用いる分離カラムとしては、メタクリレートポリマーを基材とした充てん剤を用いたカラムが使用可能であり、検出器としては、例えば、示差屈曲率検出器(RI)を用いることができる。 For example, the concentration of lithium halide in dimethylacetamide as the mobile phase can be about 0.5 to 10% by mass, but is preferably the same as the solvent composition of the cellulose solution. In addition, as a separation column used in the size exclusion chromatograph, a column using a packing material based on a methacrylate polymer can be used, and as a detector, for example, a differential bending rate detector (RI) is used. Can do.
 以下、本発明を、実施例を用いてより詳細に説明する。
<実施例1-1>
 110℃で8時間乾燥することにより脱水した、重合度が1000~1500の製紙用パルプに対し、1-n-ブチル-3-メチルイミダゾリウムクロライド/ジメチルアセトアミド75/25(質量比)溶媒を加え、80℃/4時間攪拌して、10質量%パルプ溶液を得た。得られた10質量%パルプ溶液に対し、8質量%塩化リチウム/ジメチルアセトアミド溶液を12.5倍等量になるように加え、軽く浸透した後、半日静置し、さらにジメチルアセトアミドで8倍に希釈することでセルロース溶解液(0.1質量%溶液)を得た。得られたセルロース溶解液をフィルターにてろ過後、下記条件にて分子量分布の測定を行った。得られた結果を表1に示す。
Hereinafter, the present invention will be described in more detail with reference to examples.
<Example 1-1>
A 1-n-butyl-3-methylimidazolium chloride / dimethylacetamide 75/25 (mass ratio) solvent was added to a pulp for papermaking having a polymerization degree of 1000 to 1500 dehydrated by drying at 110 ° C. for 8 hours. The mixture was stirred at 80 ° C. for 4 hours to obtain a 10% by mass pulp solution. Add 8 wt% lithium chloride / dimethylacetamide solution to 12.5 times equivalent to the obtained 10 wt% pulp solution, infiltrate lightly, let stand for half a day, and further increase 8 times with dimethylacetamide. By diluting, a cellulose solution (0.1% by mass solution) was obtained. The obtained cellulose solution was filtered through a filter, and the molecular weight distribution was measured under the following conditions. The obtained results are shown in Table 1.
分析方法:サイズ排除クロマトグラフ
装置:HLC-8020(東ソー株式会社製)
カラム:TSKgel SuperAWM-H(東ソー株式会社製:6.0mmI.D.×15cm)×2
移動相:1質量%塩化リチウム/ジメチルアセトアミド溶液
流速:0.4mL/min.
温度:40℃
検出器:RI
Analysis method: Size exclusion chromatograph apparatus: HLC-8020 (manufactured by Tosoh Corporation)
Column: TSKgel SuperAWM-H (manufactured by Tosoh Corporation: 6.0 mm ID × 15 cm) × 2
Mobile phase: 1 mass% lithium chloride / dimethylacetamide solution flow rate: 0.4 mL / min.
Temperature: 40 ° C
Detector: RI
<実施例1-2>
 重合度が300~800である製紙用パルプを用いた以外は、実施例1-1と同様の手法でセルロース溶解液を得た。得られたセルロース溶解液をフィルターにてろ過後、下記条件にて分子量分布の測定を行った。得られた結果を表1に示す。
<Example 1-2>
A cellulose solution was obtained in the same manner as in Example 1-1 except that papermaking pulp having a polymerization degree of 300 to 800 was used. The obtained cellulose solution was filtered through a filter, and the molecular weight distribution was measured under the following conditions. The obtained results are shown in Table 1.
<従来例1-1>
 重合度が1000~1500の製紙用パルプに対し、蒸留水、アセトンおよびジメチルアセトアミドの各溶媒で洗浄、攪拌浸漬(1日)、脱溶媒を行い、60℃/40時間真空乾燥して試料を作製した。得られた試料に8質量%塩化リチウム/ジメチルアセトアミド溶液を数滴加え、数日攪拌することで、0.8質量%セルロース溶解液を得た。得られた0.8質量%パルプ溶液をジメチルアセトアミド溶液で8倍に希釈することで、0.1質量%セルロース溶解液とし、実施例1と同様の手法で分子量分布の測定を行った。得られた結果を表1に示す。
<Conventional example 1-1>
Paper pulp with a polymerization degree of 1000 to 1500 was washed with distilled water, acetone and dimethylacetamide solvents, stirred and immersed (1 day), desolvated, and vacuum dried at 60 ° C for 40 hours to prepare a sample. did. A few drops of 8% by mass lithium chloride / dimethylacetamide solution were added to the obtained sample and stirred for several days to obtain a 0.8% by mass cellulose solution. The obtained 0.8 mass% pulp solution was diluted 8 times with a dimethylacetamide solution to obtain a 0.1 mass% cellulose solution, and the molecular weight distribution was measured in the same manner as in Example 1. The obtained results are shown in Table 1.
<従来例1-2>
 重合度が300~800である製紙用パルプを用いた以外は、従来例1-1と同様の手法でセルロース溶解液を得た。得られたセルロース溶解液をフィルターにてろ過後、下記条件にて分子量分布の測定を行った。得られた結果を表1に示す。
<Conventional example 1-2>
A cellulose solution was obtained in the same manner as in Example 1-1 except that papermaking pulp having a polymerization degree of 300 to 800 was used. The obtained cellulose solution was filtered through a filter, and the molecular weight distribution was measured under the following conditions. The obtained results are shown in Table 1.
<実施例2-1~2-6および比較例2-1~2-3>
 以下の9種類のイオン液体を用いて、5質量%パルプ溶液を作製した。得られた5質量%パルプ溶液を1質量%塩化リチウム/ジメチルアセトアミド溶液(A液)および1質量%臭化リチウム/ジメチルアセトアミド溶液(B液)を用いて50倍に希釈し、目視にてパルプの溶解性を判断した。評価は、溶解している場合を○、溶解していない場合を×とした。結果を表2に示す。
<Examples 2-1 to 2-6 and Comparative Examples 2-1 to 2-3>
A 5 mass% pulp solution was prepared using the following nine types of ionic liquids. The obtained 5 mass% pulp solution was diluted 50 times with 1 mass% lithium chloride / dimethylacetamide solution (liquid A) and 1 mass% lithium bromide / dimethylacetamide solution (liquid B), and the pulp was visually observed. The solubility of was determined. In the evaluation, the case where it was dissolved was indicated as ◯, and the case where it was not dissolved was indicated as ×. The results are shown in Table 2.
実施例2-1:1-n-ブチル-3-メチルイミダゾリウムクロライド
実施例2-2:1-アリル-3-メチルイミダゾリウムクロライド
実施例2-3:1-エチル-3-メチルイミダゾリウムクロライド
実施例2-4:1-n-ブチル-3-メチルイミダゾリウムクロライド/ジメチルアセトアミド(75/25:質量比)
実施例2-5:1-アリル-3-メチルイミダゾリウムクロライド/ジメチルアセトアミド(75/25:質量比)
実施例2-6:1-エチル-3-メチルイミダゾリウムクロライド/ジメチルアセトアミド(75/25:質量比)
比較例2-1:1-n-ブチル-3-メチルイミダゾリウムアセテート/ジメチルアセトアミド(75/25:質量比)
比較例2-2:1-n-ブチル-3-メチルイミダゾリウムジエチルホスフェート/ジメチルアセトアミド(75/25:質量比)
比較例2-3:メチルトリブチルホスホニウムジメチルホスフェート/ジメチルアセトアミド(75/25:質量比)
Example 2-1: 1-n-Butyl-3-methylimidazolium chloride Example 2-2: 1-allyl-3-methylimidazolium chloride Example 2-3: 1-ethyl-3-methylimidazolium chloride Example 2-4: 1-n-butyl-3-methylimidazolium chloride / dimethylacetamide (75/25: mass ratio)
Example 2-5: 1-allyl-3-methylimidazolium chloride / dimethylacetamide (75/25: mass ratio)
Example 2-6: 1-ethyl-3-methylimidazolium chloride / dimethylacetamide (75/25: mass ratio)
Comparative Example 2-1: 1-n-butyl-3-methylimidazolium acetate / dimethylacetamide (75/25: mass ratio)
Comparative Example 2-2: 1-n-butyl-3-methylimidazolium diethyl phosphate / dimethylacetamide (75/25: mass ratio)
Comparative Example 2-3: Methyltributylphosphonium dimethyl phosphate / dimethylacetamide (75/25: mass ratio)
Figure JPOXMLDOC01-appb-T000001
 ※1:数平均分子量
 ※2:重量平均分子量
Figure JPOXMLDOC01-appb-T000001
* 1: Number average molecular weight * 2: Weight average molecular weight
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 従来技術によれば、セルロース溶解液を調製するためには、1週間程度が必要であったが、本発明のセルロースの溶解方法によれば、1日でセルロース溶解液を調製することができる。また、従来例においては、高重合度のパルプは、低重合度のパルプと同じ手法ではセルロース溶解液を作製することができなかった(表1)。一方、本発明のセルロースの溶解方法では、イオン液体を用いた溶媒を介してセルロース溶解液を調製するため、高重合度のパルプおよび低重合度のパルプいずれでもセルロース溶解液を調製することができた。これにより、本発明のセルロースの溶解方法は、パルプ種を問わずに適用できることがわかる。 According to the prior art, it took about one week to prepare a cellulose solution, but according to the cellulose dissolution method of the present invention, a cellulose solution can be prepared in one day. Further, in the conventional example, a high-polymerization degree pulp could not produce a cellulose solution by the same technique as a low-polymerization degree pulp (Table 1). On the other hand, in the cellulose dissolution method of the present invention, since the cellulose solution is prepared through a solvent using an ionic liquid, the cellulose solution can be prepared using either a high polymerization degree pulp or a low polymerization degree pulp. It was. Thereby, it turns out that the dissolution method of the cellulose of this invention is applicable regardless of pulp kind.
 さらに、表1からわかるように、高重合度のパルプの分子量分布と、低重合度のパルプの分子量分布の差を区別することができる。さらにまた、低重合度のパルプの分子量分布は従来技術と本発明の分子量分布の測定方法とほぼ同じ値を示した。このことから、本発明のセルロースの溶解方法は、従来の方法と比較して、容易かつ短時間でセルロース溶解液を調製することができ、かつ、セルロースの分子量分布の測定への応用が可能であることがわかる。 Furthermore, as can be seen from Table 1, it is possible to distinguish the difference between the molecular weight distribution of the high polymerization degree pulp and the molecular weight distribution of the low polymerization degree pulp. Furthermore, the molecular weight distribution of the low-polymerization degree pulp showed almost the same value as the conventional technique and the molecular weight distribution measuring method of the present invention. Therefore, the cellulose dissolution method of the present invention can prepare a cellulose solution easily and in a short time compared to the conventional method, and can be applied to the measurement of molecular weight distribution of cellulose. I know that there is.
 また、表2より、本発明のセルロースの溶解方法においては、イオン液体とリチウム錯塩との組み合わせとして、メチルイミダゾリウム骨格を有するイオン液体のハロゲン塩とハロゲン化リチウムの組み合わせが優れていることがわかる。 Table 2 also shows that in the cellulose dissolution method of the present invention, the combination of an ionic liquid halogen salt having a methylimidazolium skeleton and a lithium halide is excellent as a combination of an ionic liquid and a lithium complex salt. .

Claims (10)

  1.  セルロースをイオン液体に溶解させる工程を含むセルロースの溶解方法において、
     前記イオン液体のアニオンがハロゲンイオンであり、得られたセルロース溶解液をリチウム錯塩溶液で希釈することを特徴とするセルロースの溶解方法。
    In the method for dissolving cellulose comprising the step of dissolving cellulose in an ionic liquid,
    A method for dissolving cellulose, wherein the anion of the ionic liquid is a halogen ion, and the obtained cellulose solution is diluted with a lithium complex salt solution.
  2.  前記ハロゲンイオンが塩化物イオンである請求項1記載のセルロースの溶解方法。 The method for dissolving cellulose according to claim 1, wherein the halogen ion is a chloride ion.
  3.  前記リチウム錯塩がハロゲン化リチウムである請求項1記載のセルロースの溶解方法。 The method for dissolving cellulose according to claim 1, wherein the lithium complex salt is lithium halide.
  4.  前記リチウム錯塩溶液の溶媒がアセトアミド基を有する溶媒である請求項1記載のセルロースの溶解方法。 The method for dissolving cellulose according to claim 1, wherein the solvent of the lithium complex salt solution is a solvent having an acetamide group.
  5.  前記ハロゲン化リチウムが塩化リチウムである請求項3記載のセルロースの溶解方法。 The method for dissolving cellulose according to claim 3, wherein the lithium halide is lithium chloride.
  6.  前記アセトアミド基を有する溶媒がジメチルアセトアミドである請求項4記載のセルロースの溶解方法。 The method for dissolving cellulose according to claim 4, wherein the solvent having an acetamide group is dimethylacetamide.
  7.  前記イオン液体のカチオンがイミダゾリウム骨格を有する請求項1記載のセルロースの溶解方法。 The method for dissolving cellulose according to claim 1, wherein the cation of the ionic liquid has an imidazolium skeleton.
  8.  前記イミダゾリウム骨格が1-n-ブチル-3-メチルイミダゾリウムである請求項7記載のセルロースの溶解方法。 The method for dissolving cellulose according to claim 7, wherein the imidazolium skeleton is 1-n-butyl-3-methylimidazolium.
  9.  前記イオン液体にジメチルアセトアミドを添加した請求項1記載のセルロースの溶解方法。 The method for dissolving cellulose according to claim 1, wherein dimethylacetamide is added to the ionic liquid.
  10.  請求項1記載のセルロースの溶解方法により調製されたセルロース溶解液を、ハロゲン化リチウムのジメチルアセトアミド溶液を移動相とするサイズ排除クロマトグラフに付することを特徴とするセルロースの分子量分布の測定方法。 A method for measuring the molecular weight distribution of cellulose, comprising subjecting the cellulose solution prepared by the cellulose dissolution method according to claim 1 to a size exclusion chromatograph using a dimethylacetamide solution of lithium halide as a mobile phase.
PCT/JP2011/078601 2010-12-10 2011-12-09 Method for dissolving cellulose and method for measuring molecular weight distribution of cellulose WO2012077798A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010276424A JP2012126755A (en) 2010-12-10 2010-12-10 Method for dissolving cellulose and method for measuring molecular weight distribution of cellulose
JP2010-276424 2010-12-10

Publications (1)

Publication Number Publication Date
WO2012077798A1 true WO2012077798A1 (en) 2012-06-14

Family

ID=46207280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078601 WO2012077798A1 (en) 2010-12-10 2011-12-09 Method for dissolving cellulose and method for measuring molecular weight distribution of cellulose

Country Status (2)

Country Link
JP (1) JP2012126755A (en)
WO (1) WO2012077798A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108276591A (en) * 2018-03-01 2018-07-13 南京林业大学 A kind of cellulose solution and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520477A (en) * 2012-08-07 2015-04-15 日东纺绩株式会社 Method for producing cellulose fibers
TWI580829B (en) * 2012-08-28 2017-05-01 Nitto Boseki Co Ltd Manufacture of Cellulose Fibers
JP6550727B2 (en) * 2014-11-21 2019-07-31 セイコーエプソン株式会社 Liquid composition, shaped article and method for producing shaped article
JP2016098313A (en) 2014-11-21 2016-05-30 セイコーエプソン株式会社 Cellulose-based material, liquid composition, molded object, and method for manufacturing molded object
JP6582485B2 (en) 2015-03-27 2019-10-02 セイコーエプソン株式会社 Composition, method for producing shaped article, and shaped article
JP2016188283A (en) 2015-03-30 2016-11-04 セイコーエプソン株式会社 Composition set, method for manufacturing molded object and molded object

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109715A (en) * 1992-09-30 1994-04-22 Shimadzu Corp Molecular weight distribution analyzing method for polymer material
JPH09255701A (en) * 1996-03-22 1997-09-30 Daicel Chem Ind Ltd Production of cellulose ester
JP2008050595A (en) * 2006-07-27 2008-03-06 Sanyo Chem Ind Ltd Dissolution solvent for cellulose compounds and method for dissolving cellulose compounds
JP2009203467A (en) * 2008-01-31 2009-09-10 Kri Inc Solvent for dissolving cellulose and molded article from cellulose solution
JP2010510405A (en) * 2006-11-24 2010-04-02 コンバテック・テクノロジーズ・インコーポレイテッド Cellulose dissolution and processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109715A (en) * 1992-09-30 1994-04-22 Shimadzu Corp Molecular weight distribution analyzing method for polymer material
JPH09255701A (en) * 1996-03-22 1997-09-30 Daicel Chem Ind Ltd Production of cellulose ester
JP2008050595A (en) * 2006-07-27 2008-03-06 Sanyo Chem Ind Ltd Dissolution solvent for cellulose compounds and method for dissolving cellulose compounds
JP2010510405A (en) * 2006-11-24 2010-04-02 コンバテック・テクノロジーズ・インコーポレイテッド Cellulose dissolution and processing
JP2009203467A (en) * 2008-01-31 2009-09-10 Kri Inc Solvent for dissolving cellulose and molded article from cellulose solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108276591A (en) * 2018-03-01 2018-07-13 南京林业大学 A kind of cellulose solution and preparation method thereof
CN108276591B (en) * 2018-03-01 2021-05-11 南京林业大学 Cellulose solution and preparation method thereof

Also Published As

Publication number Publication date
JP2012126755A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
WO2012077798A1 (en) Method for dissolving cellulose and method for measuring molecular weight distribution of cellulose
Li et al. The electrochemical stability of ionic liquids and deep eutectic solvents
Casson et al. Solution properties of novel polyelectrolytes
Baghdadi et al. In situ solvent formation microextraction based on ionic liquids: a novel sample preparation technique for determination of inorganic species in saline solutions
Stark et al. Purity specification methods for ionic liquids
Dinarès et al. Imidazolium ionic liquids: A simple anion exchange protocol
Minamisawa et al. Adsorption behavior of cobalt (II) on chitosan and its determination by tungsten metal furnace atomic absorption spectrometry
WO2017057326A1 (en) Method for producing metal nanowire
Hawkins et al. Evaluation of solid-supported room-temperature ionic liquids containing crown ethers as media for metal ion separation and preconcentration
Baumy et al. Determination of β-cyclodextrin inclusion complex constants for 3, 4-dihydro-2-H-1-benzopyran enantiomers by capillary electrophoresis
Pei et al. Phase behaviour and microstructure of the micro-emulsions composed of cholinium-based ionic liquid, Triton X-100 and water
Ong et al. Synthesis and application of single‐isomer 6‐mono (alkylimidazolium)‐β‐cyclodextrins as chiral selectors in chiral capillary electrophoresis
Zorin et al. Novel surfactant-selective membrane electrode based on polyelectrolyte–surfactant complex
Kenjo et al. Hydration of the halide ions in certain organic solvents
Fan et al. Determination of alkyl ammonium ionic liquid cations by hydrophilic interaction liquid chromatography and its application in analysis of environmental water
Dilip et al. Effect of temperature on salt–salt aqueous biphasic systems: manifestations of upper critical solution temperature
Pal et al. Effect of ionic liquids on surface and aggregation properties of non-ionic surfactant Triton™ x-100 in aqueous media
Flockhart et al. Study of dilute aqueous solutions of sodium oleate
Reijenga et al. Use of cyclofructan as a potential complexing agent in capillary electrophoresis
Yang et al. GPC characterization of emeraldine base in NMP containing ionic liquids
Shekaari et al. Conductometric analysis of some ionic liquids, 1-alkyl-3-methylimidazolium bromide with aspirin in acetonitrile solutions
Moghaddam et al. Hofmeister effect on thermo-responsive poly (propylene oxide) in H 2 O and D 2 O
CN103954614A (en) Method for rapidly measuring concentration of sodium persulfate in aqueous solution
Mehrdad et al. Viscometric behavior of hydroxyethyl cellulose in aqueous solutions of some imidazolium ionic liquids
JP6460410B2 (en) Moisture content measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846077

Country of ref document: EP

Kind code of ref document: A1