WO2012077718A1 - Glass welding device and glass welding method - Google Patents

Glass welding device and glass welding method Download PDF

Info

Publication number
WO2012077718A1
WO2012077718A1 PCT/JP2011/078319 JP2011078319W WO2012077718A1 WO 2012077718 A1 WO2012077718 A1 WO 2012077718A1 JP 2011078319 W JP2011078319 W JP 2011078319W WO 2012077718 A1 WO2012077718 A1 WO 2012077718A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
line
irradiation region
laser beam
along
Prior art date
Application number
PCT/JP2011/078319
Other languages
French (fr)
Japanese (ja)
Inventor
敏光 和久田
松本 聡
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010273510A external-priority patent/JP2012121758A/en
Priority claimed from JP2010273514A external-priority patent/JP5745262B2/en
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2012077718A1 publication Critical patent/WO2012077718A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts

Definitions

  • the present invention relates to a glass welding apparatus and a glass welding method for welding glass members together.
  • Patent Document 1 describes a technique for welding glass substrates together by irradiating a glass layer disposed between glass substrates with laser light and moving a linear irradiation region along the longitudinal direction thereof. Has been. Further, in Patent Document 2, a plate-like workpiece is irradiated with laser light, and an elongated elliptical irradiation region is positioned on the workpiece along a predetermined line. Techniques for bending workpieces are described.
  • the line includes not only a straight line part but also a curved part, the moving speed of the laser light irradiation area along the line is slow at the curved part. Therefore, there is a possibility that damage such as cracks may occur in the glass layer or the glass member due to excessive heat input in the curved portion.
  • a plurality of planned welding regions are set in a matrix between the stacked glass substrates, and glass is formed along each planned welding region. After the substrates are welded together, the glass substrate may be cut for each planned welding region.
  • the area to be welded includes an intersecting portion where the extending portions intersect with each other, excessive heat input may occur at the intersecting portion, and damage such as cracks may occur in the glass layer or the glass substrate.
  • the present invention provides a glass welding apparatus capable of welding glass members along the line while preventing damage to the glass layer and the glass member even if the predetermined line includes a curved portion. And it aims at providing the glass welding method.
  • the present invention prevents the glass layer and the glass member from being damaged while the planned welding region includes an intersecting portion where the extending portions intersect with each other, and the glass member along the planned welding region. It aims at providing the glass welding apparatus and the glass welding method which can weld each other.
  • the glass welding apparatus of the 1st viewpoint of this invention is a glass welding apparatus which welds the 1st glass member and the 2nd glass member along a predetermined line, Comprising: A 1st glass member and a 2nd glass member A glass member support portion that supports the first glass member and the second glass member in a state in which a glass layer including a laser light absorbing material is disposed between the glass member and the glass member, and the glass member.
  • a shaping optical system that shapes the laser beam so that the width in the first direction is larger than the width in the second direction perpendicular to the first direction in the glass layer on the support, and the laser beam
  • a rotary drive that rotates the shaping optical system around the optical axis of the laser, and a laser beam irradiation unit that irradiates the glass layer on the glass member support unit with a laser beam, and the irradiation area relatively moves along the line Glass member support
  • the first direction coincides with the direction parallel to the straight line portion in the straight line portion of the line, and the first direction in the direction parallel to the tangent line of the curved portion.
  • a control unit that controls the rotary drive body so that the directions of the first and second directions coincide with each other.
  • laser light shaped so as to be an elongated irradiation region by a shaping optical system is irradiated onto a glass layer disposed between glass members, and the irradiation region of the laser light is a predetermined line. Is moved relatively. At this time, the glass layer is arranged along the line. And, by a simple configuration in which the rotational driving body rotates the shaping optical system, the longitudinal direction of the irradiation region is made to coincide with the direction parallel to the straight line part in the straight line part of the line, and the tangent line of the curved part in the curved part of the line The longitudinal direction of the irradiation region is matched with the parallel direction.
  • the shaping optical system shapes the laser beam so that the width of the irradiation region in the first direction is 1.5 to 4 when the width of the irradiation region in the second direction is 1. Also good. According to this, it can prevent more reliably that damage arises in a glass layer or a glass member.
  • control unit is configured so that the width of the irradiation region in the first direction is constant between the straight portion and the curved portion, and the width of the irradiation region in the second direction is larger at the curved portion than the straight portion.
  • the glass welding method of the first aspect of the present invention is a glass welding method for manufacturing a glass welded body by welding a first glass member and a second glass member along a predetermined line, A first step of disposing a glass layer containing a laser light absorbing material along the line between the first glass member and the second glass member; irradiating the glass layer with laser light; A second step of welding the first glass member and the second glass member along the line by relatively moving the irradiation region along the line, and in the second step In the straight part of the line, the laser beam is shaped so that the width of the irradiation region in the direction parallel to the straight part is larger than the width of the irradiation region in the direction perpendicular to the straight part. Irradiation area in a direction parallel to the tangent line Width to shape the laser beam to be larger than the width of the irradiation region in a direction perpendicular to the tangent.
  • the laser beam is shaped so as to be an elongated irradiation region whose longitudinal direction is parallel to the straight line portion in the straight line portion of the line, and in the curved line portion of the line, the direction parallel to the tangent line of the curved portion is set.
  • the laser beam is shaped so as to be a long irradiation region in the longitudinal direction.
  • the predetermined line includes a curved portion, the line is prevented while the glass layer and the glass member are prevented from being damaged. It becomes possible to weld glass members along.
  • the glass welding apparatus includes a first glass member and a second glass member along a planned welding region including a crossing portion where the first extending portion and the second extending portion intersect.
  • a glass welding apparatus for welding a glass member wherein the first glass substrate including a plurality of first glass members and a second glass substrate including a plurality of second glass members are parallel to each other.
  • a glass substrate support unit that supports the first glass substrate and the second glass substrate in a state in which a glass layer including a laser light absorbing material is disposed along each of the plurality of welding planned regions set to be along And in the first direction on the glass layer on the glass substrate support.
  • Has a shaping optical system that shapes the laser beam so that the width is larger than the width in the second direction perpendicular to the first direction, and irradiates the glass layer on the glass substrate support with the laser beam
  • the glass substrate support portion is arranged so that the first direction matches the direction parallel to the first line in the first line and the first direction matches the direction parallel to the second line in the second line.
  • a control unit that controls at least one of the laser beam irradiation unit.
  • the laser light shaped so as to be an elongated irradiation region by the shaping optical system is irradiated to the glass layer disposed between the glass substrates, and the irradiation region of the laser light is the first region.
  • the second line are moved relative to each other.
  • a plurality of planned welding areas are set so that the first extending part is along the first line and the second extending part is along the second line, and the glass is formed along each welding planned area. Layers are arranged.
  • the longitudinal direction of the irradiation region is made to coincide with the direction parallel to the first line
  • the longitudinal direction of the irradiation region is made to coincide with the direction parallel to the second line.
  • the glass members are welded to each other while the temperature of the glass layer is moderately increased / decreased compared to the case where the laser light irradiation area is spot-like.
  • a sufficient amount of heat can be applied to the glass layer.
  • stress is likely to be concentrated at the time of laser light irradiation, but the generated stress can be relaxed for the following reason.
  • the laser beam is irradiated twice at the intersection of the planned welding region.
  • the temperature of the glass layer is less likely to rise during the second laser light irradiation than during the first laser light irradiation.
  • the stress relaxation process is important at the intersection, but when the temperature of the glass layer is difficult to rise, for example, if the laser light irradiation area is spot-like, the stress is relaxed at the second laser light irradiation. I don't have enough time to On the other hand, if the laser light irradiation area is long, the glass layer is heated even around the intersection (that is, the amount of heat applied increases), and stress is applied during the second laser light irradiation. Sufficient time can be taken to relax.
  • this glass welding apparatus even if the planned welding region includes an intersecting portion where the extending portions intersect with each other, it is possible to prevent the glass layer or the glass member from being damaged while the planned welding region. It becomes possible to weld glass members along.
  • a 1st extension part and a 2nd extension part are the parts arrange
  • the first line and the second line include not only a straight line but also a curved line.
  • the plurality of lines parallel to each other means that the interval between adjacent lines is substantially constant, and the direction parallel to the line means the line It means the direction parallel to the tangent line.
  • control unit controls at least one of the glass substrate support unit and the laser beam irradiation unit so that the irradiation region relatively moves along each of the first lines, and then the irradiation region is the second region.
  • You may control at least one of a glass substrate support part and a laser beam irradiation part so that it may move relatively along each of these lines. According to this, since the number of times of changing the longitudinal direction of the irradiation region from the direction parallel to the first line to the direction parallel to the second line is only one, the tact time can be shortened.
  • the laser beam irradiation unit further includes a rotation driving body that rotates the shaping optical system around the optical axis of the laser beam, and the control unit includes a first line in a direction parallel to the first line in the first line.
  • the rotation driving body may be controlled so that the first direction coincides with the direction parallel to the second line in the second line. According to this, the longitudinal direction of the irradiation region is made to coincide with each of the direction parallel to the first line and the direction parallel to the second line by a simple configuration in which the rotary driving body rotates the shaping optical system. Can do.
  • control unit controlled at least one of the glass substrate support unit and the laser beam irradiation unit so that the moving speed of the irradiation region relatively along each of the first line and the second line increases.
  • the laser beam irradiation unit may be controlled so that the ratio of the width of the irradiation region in the first direction with respect to the width of the irradiation region in the second direction is increased. According to this, it can suppress that the time which a laser beam irradiates with respect to the predetermined part of a glass layer can be shortened, and can give a glass layer sufficient calorie
  • the glass welding method of the 2nd viewpoint of this invention is a 1st glass member and 2nd along a welding plan area
  • a plurality of first extending portions extend along each of the plurality of first lines parallel to each other between the glass substrate and each of the plurality of second lines parallel to each other intersecting the first line.
  • the laser light irradiation area is set on each of the first line and the second line.
  • a third step of obtaining a plurality of glass weldments by cutting each predetermined region, and in the second step, the width of the irradiation region in the direction parallel to the first line is the first line.
  • the laser light is shaped so as to be larger than the width of the irradiation region in the direction perpendicular to the first line, and in the second line, the width of the irradiation region in the direction parallel to the second line is the second line.
  • the laser beam is shaped so as to be larger than the width of the irradiation region in the vertical direction.
  • a laser beam shaped so as to be an elongated irradiation region is irradiated onto a glass layer disposed between the glass substrates, and the irradiation region of the laser light includes the first line and the first line. Relatively moved along each of the two lines.
  • a plurality of planned welding areas are set so that the first extending part is along the first line and the second extending part is along the second line, and the glass is formed along each welding planned area. Layers are arranged.
  • the longitudinal direction of the irradiation region is made to coincide with the direction parallel to the first line
  • the longitudinal direction of the irradiation region is made to coincide with the direction parallel to the second line. Therefore, for the same reason as the glass welding apparatus described above, according to this glass welding method, the glass layer and the glass member are damaged even if the planned welding region includes an intersection where the extending portions intersect each other. It is possible to weld the glass members along the planned welding region while preventing this.
  • a predetermined line includes a curved portion, it is possible to weld glass members along the line while preventing damage to the glass layer and the glass member.
  • the glass layer and the glass member are prevented from being damaged, and along the planned welding region. Glass members can be welded together.
  • FIG. 1 is a perspective view of a glass welded body manufactured by the glass welding method of the first embodiment of the present invention.
  • the glass welded body 1 is formed by welding a glass member 4 and a glass member 5 through a glass layer 3 arranged along a predetermined line 10.
  • the glass welded body 1 is, for example, an organic EL display, and the light emitting element region formed inside the line 10 is sealed from the external atmosphere by the glass members 4 and 5 and the glass layer 3.
  • the glass members 4 and 5 are rectangular plate-shaped members having a thickness of 0.7 mm made of non-alkali glass, for example.
  • the line 10 is set in a rectangular ring shape along the outer edges of the glass members 4 and 5, and the corners of the line 10 are rounded.
  • the line 10 includes a straight line portion 10a corresponding to the long side, a straight line portion 10b corresponding to the short side, and a curved line portion 10c corresponding to the corner portion.
  • the glass layer 3 is a layer made of, for example, low-melting glass (vanadium phosphate glass, lead borate glass, etc.).
  • the glass layer 3 is disposed between the glass members 4 and 5 so as to be positioned on the line 10 along the line 10.
  • a shape of the glass members 4 and 5 it is not limited to rectangular plate shape, Various shapes can be applied.
  • the shape of the line 10 is not limited to a rectangular ring shape, and various shapes can be applied.
  • FIG. 2 is a perspective view of the glass welding apparatus according to the first embodiment of the present invention.
  • the glass welding apparatus 11 includes a support stage (glass member support unit) 12, a laser head (laser light irradiation unit) 13, and a control unit 14.
  • the glass welding apparatus 11 is an apparatus for welding the glass member 4 and the glass member 5 along the line 10.
  • the support stage 12 is a mounting table on which the glass members 4 and 5 are mounted, and supports the glass members 4 and 5 in a state where the glass layer 3 is disposed between the glass members 4 and 5.
  • the glass layer 3 contains a laser light absorbing pigment (laser light absorbing material) and is disposed along the line 10.
  • the laser head 13 irradiates the glass layer 3 on the support stage 12 with the laser light L.
  • the laser head 13 includes a laser beam emitting unit 15, a collimating lens 16, a cylindrical lens (shaping optical system) 17, and a rotating stage (rotating drive body) 18.
  • the laser beam emitting unit 15, the collimating lens 16, and the cylindrical lens 17 are disposed on the optical axis OA of the laser beam L.
  • the laser beam emitting unit 15 emits the laser beam L toward the glass layer 3 on the support stage 12.
  • the collimating lens 16 collimates the laser light L emitted from the laser light emitting unit 15.
  • the cylindrical lens 17 shapes the laser light L collimated by the collimating lens 16 so that the irradiation region IR in the glass layer 3 on the support stage 12 has an elliptical shape.
  • the rotary stage 18 is a cylindrical driving body that holds the cylindrical lens 17 inside, and rotates the cylindrical lens 17 around the optical axis OA of the laser light L.
  • the cylindrical lens 17 in the glass layer 3 on the support stage 12 has an irradiation region IR whose width in the first direction D1 is larger than the width in the second direction D2 perpendicular to the first direction D1.
  • the laser beam L is shaped so that
  • the light incident surface 17a of the cylindrical lens 17 is a convex surface (for example, a focal length of 100 mm) for converging the laser light L only in the second direction D2, and the light emitting surface 17b of the cylindrical lens 17 is the first surface.
  • This is a convex surface (for example, a focal length of 300 mm) for converging the laser light L only in the direction D1.
  • the control unit 14 controls the support stage 12 so that the irradiation region IR relatively moves along the line 10. Further, the control unit 14 matches the first direction D1 in the direction parallel to the straight line portions 10a and 10b in the straight line portions 10a and 10b of the line 10 and the curved line portions 10c in the curved line portions 10c of the line 10. The rotary stage 18 is controlled so that the first direction D1 coincides with the direction parallel to the tangent line. Note that the control unit 14 may control the laser head 13 so that the irradiation region IR relatively moves along the line 10, or may control both the support stage 12 and the laser head 13. .
  • a glass welding method for manufacturing the glass welded body 1 using the glass welding apparatus 11 will be described.
  • a glass substrate 40 including a plurality of glass members 4 arranged in a matrix (here, 3 rows and 5 columns) is prepared.
  • a line 10 is set for each glass member 4.
  • the paste layer 6 is disposed on the surface 40a of the glass substrate 40 along the line 10 for each glass member 4 by applying a frit paste by a dispenser, screen printing or the like.
  • the frit paste is, for example, a powdery glass frit (glass powder) 2 made of low melting glass, a laser light absorbing pigment (laser light absorbing material) that is an inorganic pigment such as iron oxide, an organic solvent such as amyl acetate, In addition, a binder which is a resin component such as acrylic is kneaded.
  • the paste layer 6 is dried to remove the organic solvent, and the paste layer 6 is heated to remove the binder, thereby fixing the glass layer 3 to the surface 40 a of the glass substrate 40. Further, the glass layer 3 containing the laser light-absorbing pigment is fixed on the surface 40 a of the glass substrate 40 by heating the glass layer 3 to melt and resolidify the glass frit 2.
  • a glass substrate 50 including a plurality of glass members 5 arranged in a matrix (here, 3 rows and 5 columns) is prepared. Then, the glass substrate 40 and the glass substrate 50 are overlapped so that each of the glass members 4 and each of the glass members 5 are opposed to each other with the glass layer 3 interposed therebetween. Placed on the support stage 12. Thereby, between the glass member 4 and the glass member 5, the glass layer 3 containing a laser beam absorptive pigment is arrange
  • the laser beam L is output to the laser head 13 and the support stage 12 is driven to irradiate the glass layer 3 with the laser beam L for each of the opposing glass members 4 and 5 as shown in FIG.
  • the irradiation region IR of the laser beam L is relatively moved along the line 10.
  • the glass layer 3 and its peripheral part (surface 40a, 50a part of the glass substrates 40 and 50) fuse
  • the glass layer 3 may melt and at least one of the glass substrates 40 and 50 may not melt.
  • the linear portion 10a of the line 10 has a longitudinal direction of the irradiation region IR in a direction parallel to the linear portion 10a.
  • 1 direction D1 is made to coincide
  • the first direction D1 that is the longitudinal direction of the irradiation region IR is made to coincide with the direction parallel to the straight portion 10b. That is, in each straight line part 10a, 10b of the line 10, the width of the irradiation area IR in the direction parallel to each straight line part 10a, 10b is larger than the width of the irradiation area IR in the direction perpendicular to each straight line part 10a, 10b.
  • the laser beam L is shaped.
  • the width of the irradiation region IR in the direction perpendicular to each straight line portion 10a, 10b is larger than the width of the glass layer 3 in the direction perpendicular to each straight line portion 10a, 10b.
  • the laser beam L is shaped.
  • the longitudinal direction of the irradiation region IR is parallel to the tangent line T of the curved portion 10c.
  • the first direction D1 is matched. That is, in each curved portion 10c of the line 10, the width of the irradiation region IR in the direction parallel to the tangent T of each curved portion 10c is larger than the width of the irradiation region IR in the direction perpendicular to the tangent T of each curved portion 10c.
  • the laser beam L is shaped.
  • each curved portion 10c of the line 10 the width of the irradiation region IR in the direction perpendicular to the tangent T of each curved portion 10c is larger than the width of the glass layer 3 in the direction perpendicular to the tangent T of each curved portion 10c.
  • the laser beam L is shaped.
  • the welded glass members 4 and 5 are cut out from the glass substrates 40 and 50 to obtain a plurality (here, 15 sets) of glass welded bodies 1.
  • the laser light L shaped by the cylindrical lens 17 so as to be the elongated irradiation region IR is the glass members 4 and 5.
  • the glass layer 3 disposed therebetween is irradiated, and the irradiation region IR of the laser light L is relatively moved along the line 10.
  • the glass layer 3 is disposed along the line 10.
  • the longitudinal direction of the irradiation region IR is made to coincide with the direction parallel to the tangent line T of each curved portion 10c.
  • the irradiation region IR of the laser light L is in a spot shape such as a circular shape. A sufficient amount of heat can be applied to the glass layer 3 to weld the glass members 4 and 5 to each other while gradually increasing and decreasing the temperature.
  • the glass welding apparatus 11 and the glass welding method using the same even if the line 10 includes the curved portion 10c, the glass layer 3 and the glass members 4 and 5 are prevented from being damaged such as cracks. However, the glass members 4 and 5 can be welded along the line 10.
  • the speed of moving the irradiation region IR of the laser light L along the line 10 is slower than that of the straight portions 10a and 10b of the line 10, and excessive heat input is caused.
  • the glass layer 3 and the glass members 4 and 5 are easily damaged, such as cracks.
  • the irradiation stage IR is in a direction parallel to the tangent line T of each curved portion 10c by a simple configuration in which the rotary stage 18 rotates the cylindrical lens 17. Longitudinal directions are made to coincide with each other accurately, thereby reliably preventing damage such as cracks in the glass layer 3 and the glass members 4 and 5 at each curved portion 10c.
  • the cylindrical lens 17 emits the laser light L so that the width of the irradiation region IR in the first direction D1 is 1.5 to 4. If it shapes, it can prevent more reliably that damage, such as a crack, arises in the glass layer 3 or the glass members 4 and 5.
  • FIG. 8 is a graph showing the temperature of the glass layer in each of the case where the irradiation region of the laser beam has a spot shape and a long shape.
  • the irradiation region IR of the laser beam L is spot-shaped (for example, a perfect circle having a diameter of 1.6 mm)
  • the temperature of the glass layer 3 rises and falls. Since it becomes abrupt, the glass layer 3 is rapidly heated and cooled rapidly.
  • the irradiation time of the laser beam L is shortened, the amount of heat sufficient to weld the glass members 4 and 5 to each other (corresponding to the hatched area in FIG. 8) unless the maximum temperature reached by the glass layer 3 is increased. ) Cannot be applied to the glass layer 3.
  • the irradiation region IR of the laser beam L is spot-like, damage such as cracks is likely to occur in the glass layer 3 and the glass members 4 and 5.
  • the irradiation region IR of the laser beam L has a long shape (for example, an ellipse having a long diameter of 6 mm and a short diameter of 1.6 mm)
  • the temperature of the glass layer 3 rises and falls slowly. Therefore, it is possible to prevent the glass layer 3 from being rapidly heated or rapidly cooled.
  • the irradiation time of the laser beam L becomes longer, the amount of heat sufficient to weld the glass members 4 and 5 to each other without increasing the maximum temperature reached by the glass layer 3 (in the dot hatching region in FIG. 8). Can be applied to the glass layer 3.
  • the irradiation region IR of the laser beam L has a long shape, it is possible to prevent the glass layer 3 and the glass members 4 and 5 from being damaged such as cracks. Furthermore, since the irradiation time of the laser beam L is longer than that in the case where the irradiation region IR of the laser beam L is spot-like, the speed at which the irradiation region IR is relatively moved along the line 10 can be increased. In that case, the tact time can be shortened.
  • the laser head 13 may include a laser light emitting unit 15, a collimating lens 16, a condenser lens 21, a cylindrical lens (shaping optical system) 22, and a rotary stage 18.
  • the light incident surface 22a of the cylindrical lens 22 is a flat surface
  • the light emitting surface 22b of the cylindrical lens 22 is a concave surface that converges the laser light L only in the second direction D2.
  • the laser light L collimated by the collimating lens 16 is condensed by the condensing lens 21, and then the cylindrical lens 22 makes the irradiation region IR in the glass layer 3 on the support stage 12 have an elliptical shape. It is shaped.
  • the laser head 13 may include a laser beam emitting unit 15, a collimating lens 16, a condenser lens 21, an axicon lens (shaping optical system) 23, and a rotary stage 18.
  • the light incident surface 23a of the axicon lens 23 is a flat surface
  • the light exit surface 23b of the axicon lens 23 is a flat surface that is mountain-folded so that the peak extends in the first direction D1. It has become.
  • the irradiation region IR in the glass layer 3 on the support stage 12 has a long shape (a shape composed of an arc and a string). Is shaped by the axicon lens 23 so that the arc and the string are in contact with each other.
  • the control unit 14 makes the width of the irradiation region IR in the first direction D1 constant between the straight portions 10a and 10b and the curved portions 10c, and in the second direction D2.
  • the laser head 13 may be controlled so that the width of the irradiation region IR is larger at each curved portion 10c than at each straight portion 10a, 10b. According to this, it is possible to reduce the light intensity per unit area of the irradiation region IR in each of the curved portions 10c as compared to the straight portions 10a and 10b.
  • the adjustment of the shape of the irradiation region IR may be performed by changing the distance between the condensing lens 21 and the cylindrical lens 22 in the laser head 13 of FIG. 9 or by adjusting the condensing lens 21 in the laser head 13 of FIG. This can be realized by changing the distance between the lens and the axicon lens 23.
  • the glass layer 3 containing the laser light-absorbing pigment is fixed to the surface 40a of the glass substrate 40 by heating the glass layer 3 to melt and resolidify the glass frit 2.
  • the arrangement of the glass layer 3 with respect to the glass substrate 40 is not limited to this.
  • the glass layer 3 is disposed on the glass substrate 40 by drying the paste layer 6 to remove the organic solvent, and heating the paste layer 6 to remove the binder, thereby removing the glass layer on the surface 40a of the glass substrate 40. 3 may be fixed.
  • the laser beam L may be irradiated from the glass substrate 40 side.
  • FIG. 12 is a perspective view of a glass welded body manufactured by the glass welding method of the second embodiment of the present invention.
  • the glass welded body 1 is formed by welding a glass member 4 and a glass member 5 through a glass layer 3 disposed along the planned welding region R.
  • the glass welded body 1 is, for example, an organic EL display, and the light emitting element region formed inside the planned welding region R is sealed from the outside atmosphere by the glass members 4 and 5 and the glass layer 3.
  • the glass members 4 and 5 are rectangular plate-shaped members having a thickness of 0.7 mm made of non-alkali glass, for example.
  • the welding planned region R is set in a rectangular ring shape along the outer edges of the glass members 4 and 5.
  • the planned welding region R extends with an extending portion (first extending portion) Ra corresponding to the long side, an extending portion (second extending portion) Rb corresponding to the short side, and the extending portion Ra.
  • the intersection part Rc where the part Rb intersects is included.
  • the glass layer 3 is a layer made of, for example, low-melting glass (vanadium phosphate glass, lead borate glass, etc.).
  • a shape of the glass members 4 and 5 it is not limited to rectangular plate shape, Various shapes can be applied.
  • the shape of the planned welding region R is not limited to a rectangular ring shape, and various shapes can be applied.
  • FIG. 13 is a perspective view of a glass welding apparatus according to the second embodiment of the present invention.
  • the glass welding apparatus 11 includes a support stage (glass substrate support unit) 12, a laser head (laser light irradiation unit) 13, and a control unit 14.
  • the glass welding apparatus 11 is an apparatus for welding the glass member 4 and the glass member 5 along the planned welding region R.
  • the support stage 12 is a mounting table on which a glass substrate 40 including a plurality of glass members 4 and a glass substrate 50 including a plurality of glass members 5 are mounted, and the glass layer 3 is disposed between the glass substrates 40 and 50. In this state, the glass substrates 40 and 50 are supported.
  • the glass layer 3 includes a laser light absorbing pigment (laser light absorbing material), and is disposed along the planned welding region R for each of the opposing glass members 4 and 5.
  • the laser head 13 irradiates the glass layer 3 on the support stage 12 with the laser light L.
  • the laser head 13 includes a laser beam emitting unit 15, a collimating lens 16, a cylindrical lens (shaping optical system) 17, and a rotating stage (rotating drive body) 18.
  • the laser beam emitting unit 15, the collimating lens 16, and the cylindrical lens 17 are disposed on the optical axis OA of the laser beam L.
  • the laser beam emitting unit 15 emits the laser beam L toward the glass layer 3 on the support stage 12.
  • the collimating lens 16 collimates the laser light L emitted from the laser light emitting unit 15.
  • the cylindrical lens 17 shapes the laser light L collimated by the collimating lens 16 so that the irradiation region IR in the glass layer 3 on the support stage 12 has an elliptical shape.
  • the rotary stage 18 is a cylindrical driving body that holds the cylindrical lens 17 inside, and rotates the cylindrical lens 17 around the optical axis OA of the laser light L.
  • the cylindrical lens 17 in the glass layer 3 on the support stage 12 has an irradiation region IR whose width in the first direction D1 is larger than the width in the second direction D2 perpendicular to the first direction D1.
  • the laser beam L is shaped so that
  • the light incident surface 17a of the cylindrical lens 17 is a convex surface (for example, a focal length of 100 mm) for converging the laser light L only in the second direction D2, and the light emitting surface 17b of the cylindrical lens 17 is the first surface.
  • This is a convex surface (for example, a focal length of 300 mm) for converging the laser light L only in the direction D1.
  • the control unit 14 has a line (first line) 10A along which the extended portion Ra of the planned welding region R is along and a line (second line) 10B along which the extended portion Rb of the planned welding region R is along, respectively.
  • the support stage 12 is controlled so that the irradiation region IR moves relatively.
  • the control unit 14 rotates the rotation stage so that the first direction D1 coincides with the direction parallel to the line 10A in the line 10A and the first direction D1 coincides with the direction parallel to the line 10B in the line 10B. 18 is controlled.
  • the control unit 14 may control the laser head 13 so that the irradiation region IR relatively moves along the lines 10A and 10B, or controls both the support stage 12 and the laser head 13. May be.
  • the control unit 14 may control the support stage 12 so that the first direction D1 coincides with the direction parallel to the lines 10A and 10B, or controls both the support stage 12 and the laser head 13. May be.
  • the welding planned region R includes a plurality of (here, three) extending portions Ra along each of a plurality (here, ten) of lines 10A that are parallel to each other and a plurality of parallel (
  • a plurality (15 in this case) are set so that a plurality (here, 5) of extending portions Rb are along each of the 6 lines 10B.
  • the paste layer 6 is disposed on the surface 40a of the glass substrate 40 along the planned welding region R for each glass member 4 by applying a frit paste by a dispenser, screen printing, or the like.
  • the frit paste is, for example, a powdery glass frit (glass powder) 2 made of low melting glass, a laser light absorbing pigment (laser light absorbing material) that is an inorganic pigment such as iron oxide, an organic solvent such as amyl acetate, In addition, a binder which is a resin component such as acrylic is kneaded.
  • the paste layer 6 is dried to remove the organic solvent, and the paste layer 6 is heated to remove the binder, thereby fixing the glass layer 3 to the surface 40 a of the glass substrate 40. Further, the glass layer 3 containing the laser light-absorbing pigment is fixed on the surface 40 a of the glass substrate 40 by heating the glass layer 3 to melt and resolidify the glass frit 2.
  • a glass substrate 50 including a plurality of glass members 5 arranged in a matrix (here, 3 rows and 5 columns) is prepared. Then, the glass substrate 40 and the glass substrate 50 are overlapped so that each of the glass members 4 and each of the glass members 5 are opposed to each other with the glass layer 3 interposed therebetween. Placed on the support stage 12. Accordingly, the plurality of extending portions Ra are set along each of the plurality of parallel lines 10A, and the plurality of extending portions Rb are set along each of the plurality of parallel lines 10B intersecting with the line 10A.
  • the glass layer 3 containing the laser light absorbing pigment is disposed between the glass substrate 40 and the glass substrate 50 along each of the plurality of welding planned regions R (first step).
  • a light emitting element region is formed for each glass member 5 on the surface 50 a facing the surface 40 a of the glass substrate 40.
  • the laser beam L is output to the laser head 13 and the support stage 12 is driven to irradiate the glass layer 3 with the laser beam L as shown in FIG. It moves relatively along each line 10A.
  • the first direction D1 which is the longitudinal direction of the irradiation region IR
  • the laser beam L is shaped so that the width of the irradiation region IR in the direction parallel to the line 10A is larger than the width of the irradiation region IR in the direction perpendicular to the line 10A.
  • the laser beam L is shaped so that the width of the irradiation region IR in the direction perpendicular to the line 10A is larger than the width of the glass layer 3 in the direction perpendicular to the line 10A.
  • the glass layer 3 and its peripheral part (surface 40a, 50a part of the glass substrates 40 and 50) fuse
  • region R Are welded (second step).
  • the glass layer 3 may melt and at least one of the glass substrates 40 and 50 may not melt.
  • the laser light L is output to the laser head 13 and the support stage 12 is driven to irradiate the glass layer 3 with the laser light L, and the irradiation region IR of the laser light L is relatively set along each line 10B.
  • the first direction D1 which is the longitudinal direction of the irradiation region IR
  • the laser beam L is shaped so that the width of the irradiation region IR in the direction parallel to the line 10B is larger than the width of the irradiation region IR in the direction perpendicular to the line 10B.
  • the laser beam L is shaped so that the width of the irradiation region IR in the direction perpendicular to the line 10B is larger than the width of the glass layer 3 in the direction perpendicular to the line 10B.
  • the glass layer 3 and its peripheral part (surface 40a, 50a part of the glass substrates 40 and 50) fuse
  • the glass layer 3 may melt and at least one of the glass substrates 40 and 50 may not melt.
  • the control unit 14 controls the support stage 12 so that the irradiation region IR moves in a zigzag manner along each line 10A, and then the irradiation region IR moves in a zigzag manner along each line 10B.
  • the support stage 12 is controlled.
  • the control part 14 remove
  • the rotary stage 18 is controlled so that the first direction D1 coincides with the direction parallel to the line 10B from the state where the first direction D1 coincides with the direction parallel to the line 10A.
  • the glass members 4 and 5 that have been welded are cut out from the glass substrates 40 and 50 (that is, the glass substrates 40 and 50 are cut for each region to be welded R), and a plurality (here Then, 15 sets) of glass welded bodies 1 are obtained (third step).
  • the laser light L shaped by the cylindrical lens 17 so as to be the elongated irradiation region IR is the glass substrates 40, 50.
  • the glass layer 3 disposed therebetween is irradiated, and the irradiation region IR of the laser light L is relatively moved along the lines 10A and 10B.
  • a plurality of planned welding regions R are set so that a plurality of extending portions Ra are along each line 10A and a plurality of extending portions Rb are along each line 10B, and a glass is formed along each planned welding region R.
  • Layer 3 is arranged.
  • each line 10A the longitudinal direction of the irradiation region IR (that is, the first direction D1) is made to coincide with the direction parallel to the line 10A, and in each line 10B, the longitudinal direction of the irradiation region is parallel to the line 10B. Matched.
  • the glass members 4 and 5 are connected to each other while the temperature of the glass layer 3 is moderately increased and decreased. A sufficient amount of heat can be applied to the glass layer 3 for welding.
  • the laser beam L is irradiated twice on the intersection Rc of the planned welding region R.
  • the glass layer 3 is crystallized at the intersection Rc, for example, at the first irradiation with the laser beam L, the crystal The light absorptivity of the converted part is lowered. Therefore, at the intersection Rc, the temperature of the glass layer 3 is less likely to rise when the second laser beam L is irradiated than when the first laser beam L is irradiated.
  • the stress relaxation process is important at the intersection Rc, if the irradiation region IR of the laser beam L is spot-like, for example, in a situation where the temperature of the glass layer 3 is difficult to rise, the second laser beam L is irradiated. Cannot take enough time to relieve stress.
  • the irradiation region IR of the laser beam L has a long shape, the glass layer 3 is heated even around the intersection Rc (that is, the amount of heat applied increases), and the second laser beam L The generated stress can be relieved by taking a sufficient time to relieve the stress during irradiation.
  • the glass welding apparatus 11 and the glass welding method using the same even if the welding planned region R includes the intersection Rc where the extending portions Ra and Rb intersect each other, the glass layer 3 and the glass It becomes possible to weld the glass members 4 and 5 along the planned welding region R while preventing the members 4 and 5 from being damaged such as cracks.
  • control unit 14 controls the support stage 12 so that the irradiation region IR relatively moves along each line 10A, and then the irradiation region IR relatively moves along each line 10B.
  • the support stage 12 is controlled. Therefore, since the number of times of changing the longitudinal direction of the irradiation region IR from the direction parallel to the line 10A to the direction parallel to the line 10B is only one, the tact time can be shortened.
  • control unit 14 causes the first direction D1 to coincide with the direction parallel to the line 10A in each line 10A, and the first direction D1 to coincide with the direction parallel to the line 10B in each line 10B.
  • the rotary stage 18 is controlled. Thereby, with the simple configuration in which the rotary stage 18 rotates the cylindrical lens 17, the longitudinal direction of the irradiation region IR can be made to coincide with the direction parallel to the line 10A and the direction parallel to the line 10B.
  • the cylindrical lens 17 emits the laser light L so that the width of the irradiation region IR in the first direction D1 is 1.5 to 4. If it shapes, it can prevent more reliably that damage, such as a crack, arises in the glass layer 3 or the glass members 4 and 5.
  • FIG. 1 When the width of the irradiation region IR in the second direction D2 is 1, the cylindrical lens 17 emits the laser light L so that the width of the irradiation region IR in the first direction D1 is 1.5 to 4. If it shapes, it can prevent more reliably that damage, such as a crack, arises in the glass layer 3 or the glass members 4 and 5.
  • FIG. 18 is a graph showing the temperature of the glass layer in each of the case where the laser light irradiation region has a spot shape and a long shape.
  • the irradiation region IR of the laser beam L is spot-like (for example, a perfect circle having a diameter of 1.6 mm)
  • the temperature of the glass layer 3 rises and falls. Since it becomes abrupt, the glass layer 3 is rapidly heated and cooled rapidly.
  • the irradiation time of the laser beam L is shortened, the amount of heat sufficient to weld the glass members 4 and 5 to each other (corresponding to the hatched area in FIG. 18) unless the maximum temperature reached by the glass layer 3 is increased. ) Cannot be applied to the glass layer 3.
  • damage such as cracks is likely to occur in the glass layer 3 and the glass members 4 and 5.
  • the irradiation region IR of the laser beam L has a long shape (for example, an ellipse having a long diameter of 6 mm and a short diameter of 1.6 mm)
  • the temperature of the glass layer 3 rises and falls slowly. Therefore, it is possible to prevent the glass layer 3 from being rapidly heated or rapidly cooled.
  • the irradiation time of the laser beam L becomes longer, the amount of heat sufficient to weld the glass members 4 and 5 to each other without increasing the maximum temperature reached by the glass layer 3 (in the dot hatching region in FIG. 18). Can be applied to the glass layer 3.
  • the irradiation region IR of the laser beam L has a long shape, it is possible to prevent the glass layer 3 and the glass members 4 and 5 from being damaged such as cracks. Furthermore, since the irradiation time of the laser beam L is longer than that in the case where the irradiation region IR of the laser beam L is spot-like, the speed at which the irradiation region IR is relatively moved along the line 10 can be increased. In that case, the tact time can be shortened.
  • the laser head 13 may include a laser light emitting unit 15, a collimating lens 16, a condenser lens 21, a cylindrical lens (shaping optical system) 22, and a rotary stage 18.
  • the light incident surface 22a of the cylindrical lens 22 is a flat surface
  • the light emitting surface 22b of the cylindrical lens 22 is a concave surface that converges the laser light L only in the second direction D2.
  • the laser light L collimated by the collimating lens 16 is condensed by the condensing lens 21, and then the cylindrical lens 22 makes the irradiation region IR in the glass layer 3 on the support stage 12 have an elliptical shape. It is shaped.
  • the laser head 13 may include a laser beam emitting portion 15, a collimating lens 16, a condenser lens 21, an axicon lens (shaping optical system) 23, and a rotary stage 18.
  • the light incident surface 23a of the axicon lens 23 is a flat surface
  • the light exit surface 23b of the axicon lens 23 is a flat surface that is mountain-folded so that the peak extends in the first direction D1. It has become.
  • the irradiation region IR in the glass layer 3 on the support stage 12 has a long shape (a shape composed of an arc and a string). Is shaped by the axicon lens 23 so that the arc and the string are in contact with each other.
  • control unit 14 controls the first stage when at least one of the support stage 12 and the laser head 13 is controlled so that the speed at which the irradiation region IR relatively moves along the lines 10A and 10B is increased.
  • the laser head 13 may be controlled so that the ratio of the width of the irradiation region IR in the direction D1 with respect to the width of the irradiation region IR in the second direction D2 is increased.
  • the control unit 14 controls at least one of the support stage 12 and the laser head 13 so as to increase the speed at which the irradiation region IR relatively moves along the lines 10A and 10B
  • the laser head 13 may be controlled so that the width of the irradiation region IR in the first direction D1 is increased while the width of the irradiation region IR in the direction D2 is constant. According to this, the amount of heat sufficient to weld the glass members 4 and 5 to each other is suppressed while suppressing the time during which the laser beam L is applied to a predetermined portion of the glass layer 3 from being shortened. Can be given to.
  • the adjustment of the shape of the irradiation region IR may be performed by changing the distance between the condensing lens 21 and the cylindrical lens 22 in the laser head 13 of FIG. 19 or by the condensing lens 21 in the laser head 13 of FIG. This can be realized by changing the distance between the lens and the axicon lens 23.
  • the line 10A and the line 10B are not limited to being orthogonal to each other, but include a case where they intersect at an angle other than 90 °. Further, the lines 10A and 10B are not limited to a straight line, but include a case of a curved line.
  • the longitudinal direction of the irradiation region IR may be made to coincide with the direction parallel to the tangent to the line 10A.
  • the longitudinal direction of the irradiation region IR may be made to coincide with the direction parallel to the tangent to the line 10B.
  • the glass layer 3 containing the laser light-absorbing pigment is fixed to the surface 40a of the glass substrate 40 by heating the glass layer 3 to melt and resolidify the glass frit 2.
  • the arrangement of the glass layer 3 with respect to the glass substrate 40 is not limited to this.
  • the glass layer 3 is disposed on the glass substrate 40 by drying the paste layer 6 to remove the organic solvent, and heating the paste layer 6 to remove the binder, thereby removing the glass layer on the surface 40a of the glass substrate 40. 3 may be fixed. Further, the laser beam L may be irradiated from the glass substrate 40 side.
  • a predetermined line includes a curved portion, it is possible to weld glass members along the line while preventing damage to the glass layer and the glass member.
  • the glass layer and the glass member are prevented from being damaged, and along the planned welding region. Glass members can be welded together.
  • SYMBOLS 1 Glass welded body, 3 ... Glass layer, 4 ... Glass member (1st glass member), 5 ... Glass member (2nd glass member), 10 ... Line, 10a, 10b ... Linear part, 10c ... Curve part DESCRIPTION OF SYMBOLS 11 ... Glass welding apparatus, 12 ... Support stage (glass member support part), 13 ... Laser head (laser beam irradiation part), 14 ... Control part, 17, 22 ... Cylindrical lens (shaping optical system), 18 ... Rotation stage (Rotary drive), 23 ... axicon lens (shaping optical system), 10A ... line (first line), 10B ... line (second line), 40 ...
  • first glass substrate 50 ... glass substrate (second glass substrate), R ... planned welding region, Ra ... extension part (first extension part), Rb ... extension part (second extension part), Rc ... intersection part, L: Laser light, IR: Irradiation area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

A glass welding device (11) is provided with: a support stage (12) for supporting glass members (4, 5); a laser head (13) for applying a laser beam (L) to a glass layer (3) between the glass members (4, 5); and a control unit (14). The glass layer (3) is disposed so as to lie along a line (10). The laser head (13) has: a cylindrical lens (17) for shaping the laser beam (L) so that the longitudinal direction of the application region (IR) of the laser beam (L) is aligned with a direction (D1); and a rotation stage (18) for rotating the lens (17). The control unit (14) controls the support stage (12) so that the application region (IR) moves along the line (10), and also controls the rotation stage (18) so that the direction (D1) coincides with the direction parallel to each of the rectilinear sections (10a, 10b) of the line (10) and also with the direction parallel to a line tangent to each of the curved line sections (10c) of the line (10).

Description

ガラス溶着装置及びガラス溶着方法Glass welding apparatus and glass welding method
 本発明は、ガラス部材同士を溶着するガラス溶着装置及びガラス溶着方法に関する。 The present invention relates to a glass welding apparatus and a glass welding method for welding glass members together.
 レーザ光を利用した加工技術においては、レーザ光の照射領域の形状として長尺形状の形状を採用する場合がある。例えば、特許文献1には、ガラス基板間に配置されたガラス層にレーザ光を照射し、線状の照射領域をその長手方向に沿って移動させることにより、ガラス基板同士を溶着する技術が記載されている。また、特許文献2には、板状の被加工物にレーザ光を照射し、細長い楕円状の照射領域を所定のラインに沿って被加工物上に位置させることにより、そのラインに沿って被加工物を曲げる技術が記載されている。 In a processing technique using laser light, a long shape may be adopted as the shape of the laser light irradiation region. For example, Patent Document 1 describes a technique for welding glass substrates together by irradiating a glass layer disposed between glass substrates with laser light and moving a linear irradiation region along the longitudinal direction thereof. Has been. Further, in Patent Document 2, a plate-like workpiece is irradiated with laser light, and an elongated elliptical irradiation region is positioned on the workpiece along a predetermined line. Techniques for bending workpieces are described.
特開2009-104841号公報JP 2009-104841 A 国際公開2004/050292号International Publication No. 2004/050292
 ところで、所定のラインに沿ってガラス部材同士を溶着する場合、そのラインが直線部だけでなく曲線部を含んでいると、レーザ光の照射領域をラインに沿って移動させる速度が曲線部で遅くなり、曲線部で入熱過多の状態となってガラス層やガラス部材にクラック等の損傷が生じるおそれがある。 By the way, when glass members are welded along a predetermined line, if the line includes not only a straight line part but also a curved part, the moving speed of the laser light irradiation area along the line is slow at the curved part. Therefore, there is a possibility that damage such as cracks may occur in the glass layer or the glass member due to excessive heat input in the curved portion.
 また、溶着予定領域に沿ってガラス部材同士が溶着されたガラス溶着体を得るために、重ね合わされたガラス基板間に複数の溶着予定領域をマトリックス状に設定し、各溶着予定領域に沿ってガラス基板同士を溶着した後、溶着予定領域ごとにガラス基板を切断する場合がある。そのような場合において、溶着予定領域が、延在部同士が交差する交差部を含んでいると、交差部で入熱過多の状態となってガラス層やガラス基板にクラック等の損傷が生じるおそれがある。 Further, in order to obtain a glass welded body in which glass members are welded along the planned welding region, a plurality of planned welding regions are set in a matrix between the stacked glass substrates, and glass is formed along each planned welding region. After the substrates are welded together, the glass substrate may be cut for each planned welding region. In such a case, if the area to be welded includes an intersecting portion where the extending portions intersect with each other, excessive heat input may occur at the intersecting portion, and damage such as cracks may occur in the glass layer or the glass substrate. There is.
 そこで、本発明は、所定のラインが曲線部を含んでいても、ガラス層やガラス部材に損傷が生じるのを防止しつつ、そのラインに沿ってガラス部材同士を溶着することができるガラス溶着装置及びガラス溶着方法を提供することを目的とする。 Therefore, the present invention provides a glass welding apparatus capable of welding glass members along the line while preventing damage to the glass layer and the glass member even if the predetermined line includes a curved portion. And it aims at providing the glass welding method.
 また、本発明は、溶着予定領域が、延在部同士が交差する交差部を含んでいても、ガラス層やガラス部材に損傷が生じるのを防止しつつ、その溶着予定領域に沿ってガラス部材同士を溶着することができるガラス溶着装置及びガラス溶着方法を提供することを目的とする。 In addition, the present invention prevents the glass layer and the glass member from being damaged while the planned welding region includes an intersecting portion where the extending portions intersect with each other, and the glass member along the planned welding region. It aims at providing the glass welding apparatus and the glass welding method which can weld each other.
 本発明の第1の観点のガラス溶着装置は、所定のラインに沿って第1のガラス部材と第2のガラス部材とを溶着するガラス溶着装置であって、第1のガラス部材と第2のガラス部材との間に、ラインに沿うように、レーザ光吸収材を含むガラス層が配置された状態で、第1のガラス部材及び第2のガラス部材を支持するガラス部材支持部と、ガラス部材支持部上のガラス層において、第1の方向における幅が第1の方向に垂直な第2の方向における幅よりも大きい照射領域となるように、レーザ光を整形する整形光学系、及びレーザ光の光軸を中心として整形光学系を回転させる回転駆動体を有し、ガラス部材支持部上のガラス層にレーザ光を照射するレーザ光照射部と、照射領域がラインに沿って相対的に移動するように、ガラス部材支持部及びレーザ光照射部の少なくとも一方を制御すると共に、ラインの直線部では直線部に平行な方向に第1の方向が一致し、かつラインの曲線部では曲線部の接線に平行な方向に第1の方向が一致するように、回転駆動体を制御する制御部と、を備える。 The glass welding apparatus of the 1st viewpoint of this invention is a glass welding apparatus which welds the 1st glass member and the 2nd glass member along a predetermined line, Comprising: A 1st glass member and a 2nd glass member A glass member support portion that supports the first glass member and the second glass member in a state in which a glass layer including a laser light absorbing material is disposed between the glass member and the glass member, and the glass member. A shaping optical system that shapes the laser beam so that the width in the first direction is larger than the width in the second direction perpendicular to the first direction in the glass layer on the support, and the laser beam With a rotary drive that rotates the shaping optical system around the optical axis of the laser, and a laser beam irradiation unit that irradiates the glass layer on the glass member support unit with a laser beam, and the irradiation area relatively moves along the line Glass member support The first direction coincides with the direction parallel to the straight line portion in the straight line portion of the line, and the first direction in the direction parallel to the tangent line of the curved portion. And a control unit that controls the rotary drive body so that the directions of the first and second directions coincide with each other.
 このガラス溶着装置では、整形光学系によって長尺形状の照射領域となるように整形されたレーザ光が、ガラス部材間に配置されたガラス層に照射され、そのレーザ光の照射領域が所定のラインに沿って相対的に移動させられる。このとき、ガラス層は、そのラインに沿うように配置されている。そして、回転駆動体が整形光学系を回転させるという簡易な構成によって、ラインの直線部では直線部に平行な方向に照射領域の長手方向が一致させられ、ラインの曲線部では曲線部の接線に平行な方向に照射領域の長手方向が一致させられる。これにより、ラインの直線部においては勿論、ラインの曲線部においても、レーザ光の照射領域がスポット状である場合に比べ、ガラス層の温度の上昇・下降を緩やかにしつつ、ガラス部材同士を溶着するのに十分な熱量をガラス層に与えることができる。よって、このガラス溶着装置によれば、所定のラインが曲線部を含んでいても、ガラス層やガラス部材に損傷が生じるのを防止しつつ、そのラインに沿ってガラス部材同士を溶着することが可能となる。 In this glass welding apparatus, laser light shaped so as to be an elongated irradiation region by a shaping optical system is irradiated onto a glass layer disposed between glass members, and the irradiation region of the laser light is a predetermined line. Is moved relatively. At this time, the glass layer is arranged along the line. And, by a simple configuration in which the rotational driving body rotates the shaping optical system, the longitudinal direction of the irradiation region is made to coincide with the direction parallel to the straight line part in the straight line part of the line, and the tangent line of the curved part in the curved part of the line The longitudinal direction of the irradiation region is matched with the parallel direction. As a result, glass members are welded to each other while the temperature rise and fall of the glass layer is moderated not only in the linear part of the line but also in the curved part of the line, compared with the case where the irradiation region of the laser beam is spot-like. A sufficient amount of heat can be applied to the glass layer. Therefore, according to this glass welding apparatus, even if the predetermined line includes a curved portion, it is possible to weld the glass members along the line while preventing the glass layer and the glass member from being damaged. It becomes possible.
 ここで、整形光学系は、第2の方向における照射領域の幅を1としたときに、第1の方向における照射領域の幅が1.5~4となるように、レーザ光を整形してもよい。これによれば、ガラス層やガラス部材に損傷が生じるのをより確実に防止することができる。 Here, the shaping optical system shapes the laser beam so that the width of the irradiation region in the first direction is 1.5 to 4 when the width of the irradiation region in the second direction is 1. Also good. According to this, it can prevent more reliably that damage arises in a glass layer or a glass member.
 また、制御部は、第1の方向における照射領域の幅が直線部と曲線部とで一定となり、かつ第2の方向における照射領域の幅が直線部に比べ曲線部で大きくなるように、レーザ光照射部を制御してもよい。これによれば、直線部に比べ曲線部において、照射領域の単位面積当たりの光強度を低くすることができる。従って、直線部に比べ曲線部において、レーザ光の照射領域をラインに沿って相対的に移動させる速度が遅くなったとしても、曲線部で入熱過多の状態となってガラス層やガラス部材に損傷が生じるのをより確実に防止することができる。 Further, the control unit is configured so that the width of the irradiation region in the first direction is constant between the straight portion and the curved portion, and the width of the irradiation region in the second direction is larger at the curved portion than the straight portion. You may control a light irradiation part. According to this, the light intensity per unit area of the irradiation region can be lowered in the curved portion as compared with the straight portion. Therefore, even if the speed of moving the irradiation region of the laser light relatively along the line is slower in the curved portion than in the straight portion, the curved portion becomes overheated and the glass layer or the glass member Damage can be prevented more reliably.
 また、本発明の第1の観点のガラス溶着方法は、所定のラインに沿って第1のガラス部材と第2のガラス部材とを溶着し、ガラス溶着体を製造するガラス溶着方法であって、第1のガラス部材と第2のガラス部材との間に、ラインに沿うように、レーザ光吸収材を含むガラス層を配置する第1の工程と、ガラス層にレーザ光を照射し、レーザ光の照射領域をラインに沿って相対的に移動させることにより、ラインに沿って第1のガラス部材と第2のガラス部材とを溶着する第2の工程と、を備え、第2の工程においては、ラインの直線部では、直線部に平行な方向における照射領域の幅が直線部に垂直な方向における照射領域の幅よりも大きくなるようにレーザ光を整形し、ラインの曲線部では、曲線部の接線に平行な方向における照射領域の幅が接線に垂直な方向における照射領域の幅よりも大きくなるようにレーザ光を整形する。 The glass welding method of the first aspect of the present invention is a glass welding method for manufacturing a glass welded body by welding a first glass member and a second glass member along a predetermined line, A first step of disposing a glass layer containing a laser light absorbing material along the line between the first glass member and the second glass member; irradiating the glass layer with laser light; A second step of welding the first glass member and the second glass member along the line by relatively moving the irradiation region along the line, and in the second step In the straight part of the line, the laser beam is shaped so that the width of the irradiation region in the direction parallel to the straight part is larger than the width of the irradiation region in the direction perpendicular to the straight part. Irradiation area in a direction parallel to the tangent line Width to shape the laser beam to be larger than the width of the irradiation region in a direction perpendicular to the tangent.
 このガラス溶着方法では、レーザ光が、ガラス部材間に配置されたガラス層に照射され、そのレーザ光の照射領域が所定のラインに沿って相対的に移動させられる。このとき、ガラス層は、そのラインに沿うように配置されている。そして、ラインの直線部では、直線部に平行な方向を長手方向とする長尺形状の照射領域となるようにレーザ光が整形され、ラインの曲線部では、曲線部の接線に平行な方向を長手方向とする長尺形状の照射領域となるようにレーザ光が整形される。従って、上述したガラス溶着装置と同様の理由から、このガラス溶着方法によれば、所定のラインが曲線部を含んでいても、ガラス層やガラス部材に損傷が生じるのを防止しつつ、そのラインに沿ってガラス部材同士を溶着することが可能となる。 In this glass welding method, laser light is irradiated onto a glass layer disposed between glass members, and the irradiation region of the laser light is relatively moved along a predetermined line. At this time, the glass layer is arranged along the line. Then, the laser beam is shaped so as to be an elongated irradiation region whose longitudinal direction is parallel to the straight line portion in the straight line portion of the line, and in the curved line portion of the line, the direction parallel to the tangent line of the curved portion is set. The laser beam is shaped so as to be a long irradiation region in the longitudinal direction. Therefore, for the same reason as the glass welding apparatus described above, according to this glass welding method, even if the predetermined line includes a curved portion, the line is prevented while the glass layer and the glass member are prevented from being damaged. It becomes possible to weld glass members along.
 本発明の第2の観点のガラス溶着装置は、第1の延在部と第2の延在部とが交差する交差部を含む溶着予定領域に沿って、第1のガラス部材と第2のガラス部材とを溶着するガラス溶着装置であって、複数の第1のガラス部材を含む第1のガラス基板と、複数の第2のガラス部材を含む第2のガラス基板との間に、互いに平行な複数の第1のラインのそれぞれに複数の第1の延在部が沿い、かつ第1のラインと交差する互いに平行な複数の第2のラインのそれぞれに複数の第2の延在部が沿うように設定された複数の溶着予定領域のそれぞれに沿って、レーザ光吸収材を含むガラス層が配置された状態で、第1のガラス基板及び第2のガラス基板を支持するガラス基板支持部と、ガラス基板支持部上のガラス層において、第1の方向における幅が第1の方向に垂直な第2の方向における幅よりも大きい照射領域となるように、レーザ光を整形する整形光学系を有し、ガラス基板支持部上のガラス層にレーザ光を照射するレーザ光照射部と、照射領域が第1のライン及び第2のラインのそれぞれに沿って相対的に移動するように、ガラス基板支持部及びレーザ光照射部の少なくとも一方を制御すると共に、第1のラインでは第1のラインに平行な方向に第1の方向が一致し、かつ第2のラインでは第2のラインに平行な方向に第1の方向が一致するように、ガラス基板支持部及びレーザ光照射部の少なくとも一方を制御する制御部と、を備える。 The glass welding apparatus according to the second aspect of the present invention includes a first glass member and a second glass member along a planned welding region including a crossing portion where the first extending portion and the second extending portion intersect. A glass welding apparatus for welding a glass member, wherein the first glass substrate including a plurality of first glass members and a second glass substrate including a plurality of second glass members are parallel to each other. A plurality of first extensions along each of the plurality of first lines, and a plurality of second extensions on each of the plurality of second lines parallel to each other intersecting the first line. A glass substrate support unit that supports the first glass substrate and the second glass substrate in a state in which a glass layer including a laser light absorbing material is disposed along each of the plurality of welding planned regions set to be along And in the first direction on the glass layer on the glass substrate support. Has a shaping optical system that shapes the laser beam so that the width is larger than the width in the second direction perpendicular to the first direction, and irradiates the glass layer on the glass substrate support with the laser beam And controlling at least one of the glass substrate support unit and the laser beam irradiation unit so that the irradiation region relatively moves along each of the first line and the second line. The glass substrate support portion is arranged so that the first direction matches the direction parallel to the first line in the first line and the first direction matches the direction parallel to the second line in the second line. And a control unit that controls at least one of the laser beam irradiation unit.
 このガラス溶着装置では、整形光学系によって長尺形状の照射領域となるように整形されたレーザ光が、ガラス基板間に配置されたガラス層に照射され、そのレーザ光の照射領域が、第1のライン及び第2のラインのそれぞれに沿って相対的に移動させられる。このとき、第1のラインに第1の延在部が沿い、かつ第2のラインに第2の延在部が沿うように複数の溶着予定領域が設定され、各溶着予定領域に沿ってガラス層が配置されている。そして、第1のラインでは第1のラインに平行な方向に照射領域の長手方向が一致させられ、第2のラインでは第2のラインに平行な方向に照射領域の長手方向が一致させられる。これにより、第1のライン及び第2のラインのそれぞれにおいて、レーザ光の照射領域がスポット状である場合に比べ、ガラス層の温度の上昇・下降を緩やかにしつつ、ガラス部材同士を溶着するのに十分な熱量をガラス層に与えることができる。しかも、溶着予定領域において延在部同士が交差する交差部では、レーザ光の照射時に応力が集中し易いが、次の理由により、発生した応力を緩和させることができる。すなわち、溶着予定領域の交差部にはレーザ光が2回照射されることになるが、1回目のレーザ光の照射時に、例えば交差部においてガラス層が結晶化すると、結晶化した部分の光吸収率が低下する。そのため、交差部では、2回目のレーザ光の照射時に、1回目のレーザ光の照射時に比べガラス層の温度が上昇し難くなる。交差部では応力緩和過程が重要になるが、ガラス層の温度が上昇し難い状況下で、例えばレーザ光の照射領域がスポット状であると、2回目のレーザ光の照射時に、応力を緩和させるのに十分な時間をとることができない。それに対し、レーザ光の照射領域が長尺形状であると、交差部の周囲でもガラス層が加熱されるので(つまり、与えられる熱量が大きくなるので)、2回目のレーザ光の照射時に、応力を緩和させるのに十分な時間をとることができる。以上により、このガラス溶着装置によれば、溶着予定領域が、延在部同士が交差する交差部を含んでいても、ガラス層やガラス部材に損傷が生じるのを防止しつつ、その溶着予定領域に沿ってガラス部材同士を溶着することが可能となる。 In this glass welding apparatus, the laser light shaped so as to be an elongated irradiation region by the shaping optical system is irradiated to the glass layer disposed between the glass substrates, and the irradiation region of the laser light is the first region. And the second line are moved relative to each other. At this time, a plurality of planned welding areas are set so that the first extending part is along the first line and the second extending part is along the second line, and the glass is formed along each welding planned area. Layers are arranged. In the first line, the longitudinal direction of the irradiation region is made to coincide with the direction parallel to the first line, and in the second line, the longitudinal direction of the irradiation region is made to coincide with the direction parallel to the second line. Thereby, in each of the first line and the second line, the glass members are welded to each other while the temperature of the glass layer is moderately increased / decreased compared to the case where the laser light irradiation area is spot-like. A sufficient amount of heat can be applied to the glass layer. In addition, at the intersection where the extending portions intersect in the planned welding region, stress is likely to be concentrated at the time of laser light irradiation, but the generated stress can be relaxed for the following reason. In other words, the laser beam is irradiated twice at the intersection of the planned welding region. When the glass layer crystallizes at the first laser beam irradiation, for example, when the glass layer is crystallized at the intersection, the light absorption of the crystallized portion is performed. The rate drops. Therefore, at the intersection, the temperature of the glass layer is less likely to rise during the second laser light irradiation than during the first laser light irradiation. The stress relaxation process is important at the intersection, but when the temperature of the glass layer is difficult to rise, for example, if the laser light irradiation area is spot-like, the stress is relaxed at the second laser light irradiation. I don't have enough time to On the other hand, if the laser light irradiation area is long, the glass layer is heated even around the intersection (that is, the amount of heat applied increases), and stress is applied during the second laser light irradiation. Sufficient time can be taken to relax. As described above, according to this glass welding apparatus, even if the planned welding region includes an intersecting portion where the extending portions intersect with each other, it is possible to prevent the glass layer or the glass member from being damaged while the planned welding region. It becomes possible to weld glass members along.
 なお、第1の延在部及び第2の延在部とは、溶着予定領域のうち、交差する2本のラインのそれぞれに沿うように配置された部分であり、交差部とは、溶着予定領域のうち、その2本のラインの交点上に位置する部分である。また、第1のライン及び第2のラインは、直線である場合だけでなく、曲線である場合を含む。第1のライン及び第2のラインが曲線である場合、互いに平行な複数のラインとは、隣り合うライン間の間隔が略一定であることを意味し、ラインに平行な方向とは、ラインの接線に平行な方向を意味する。 In addition, a 1st extension part and a 2nd extension part are the parts arrange | positioned along each of two lines which cross | intersect among a welding planned area | region, and a crossing part is a welding plan. This is a portion of the region located on the intersection of the two lines. The first line and the second line include not only a straight line but also a curved line. When the first line and the second line are curved lines, the plurality of lines parallel to each other means that the interval between adjacent lines is substantially constant, and the direction parallel to the line means the line It means the direction parallel to the tangent line.
 ここで、制御部は、照射領域が第1のラインのそれぞれに沿って相対的に移動するように、ガラス基板支持部及びレーザ光照射部の少なくとも一方を制御し、その後、照射領域が第2のラインのそれぞれに沿って相対的に移動するように、ガラス基板支持部及びレーザ光照射部の少なくとも一方を制御してもよい。これによれば、照射領域の長手方向を第1のラインに平行な方向から第2のラインに平行な方向に変更する回数が1回で済むため、タクトタイムを短縮化することができる。 Here, the control unit controls at least one of the glass substrate support unit and the laser beam irradiation unit so that the irradiation region relatively moves along each of the first lines, and then the irradiation region is the second region. You may control at least one of a glass substrate support part and a laser beam irradiation part so that it may move relatively along each of these lines. According to this, since the number of times of changing the longitudinal direction of the irradiation region from the direction parallel to the first line to the direction parallel to the second line is only one, the tact time can be shortened.
 また、レーザ光照射部は、レーザ光の光軸を中心として整形光学系を回転させる回転駆動体を更に有し、制御部は、第1のラインでは第1のラインに平行な方向に第1の方向が一致し、かつ第2のラインでは第2のラインに平行な方向に第1の方向が一致するように、回転駆動体を制御してもよい。これによれば、回転駆動体が整形光学系を回転させるという簡易な構成によって、第1のラインに平行な方向及び第2のラインに平行な方向のそれぞれに照射領域の長手方向を一致させることができる。 In addition, the laser beam irradiation unit further includes a rotation driving body that rotates the shaping optical system around the optical axis of the laser beam, and the control unit includes a first line in a direction parallel to the first line in the first line. The rotation driving body may be controlled so that the first direction coincides with the direction parallel to the second line in the second line. According to this, the longitudinal direction of the irradiation region is made to coincide with each of the direction parallel to the first line and the direction parallel to the second line by a simple configuration in which the rotary driving body rotates the shaping optical system. Can do.
 また、制御部は、照射領域が第1のライン及び第2のラインのそれぞれに沿って相対的に移動する速度が大きくなるように、ガラス基板支持部及びレーザ光照射部の少なくとも一方を制御した場合に、第1の方向における照射領域の幅の、第2の方向における照射領域の幅を基準とする比が大きくなるように、レーザ光照射部を制御してもよい。これによれば、ガラス層の所定の部分に対してレーザ光が照射される時間が短くなるのを抑制することができ、ガラス部材同士を溶着するのに十分な熱量をガラス層に与えることが可能となる。 In addition, the control unit controlled at least one of the glass substrate support unit and the laser beam irradiation unit so that the moving speed of the irradiation region relatively along each of the first line and the second line increases. In this case, the laser beam irradiation unit may be controlled so that the ratio of the width of the irradiation region in the first direction with respect to the width of the irradiation region in the second direction is increased. According to this, it can suppress that the time which a laser beam irradiates with respect to the predetermined part of a glass layer can be shortened, and can give a glass layer sufficient calorie | heat amount for welding glass members. It becomes possible.
 また、本発明の第2の観点のガラス溶着方法は、第1の延在部と第2の延在部とが交差する交差部を含む溶着予定領域に沿って、第1のガラス部材と第2のガラス部材とを溶着し、ガラス溶着体を製造するガラス溶着方法であって、複数の第1のガラス部材を含む第1のガラス基板と、複数の第2のガラス部材を含む第2のガラス基板との間に、互いに平行な複数の第1のラインのそれぞれに複数の第1の延在部が沿い、かつ第1のラインと交差する互いに平行な複数の第2のラインのそれぞれに複数の第2の延在部が沿うように設定された複数の溶着予定領域のそれぞれに沿って、レーザ光吸収材を含むガラス層を配置する第1の工程と、ガラス層にレーザ光を照射し、レーザ光の照射領域を第1のライン及び第2のラインのそれぞれに沿って相対的に移動させることにより、溶着予定領域に沿って第1のガラス部材と第2のガラス部材とを溶着する第2の工程と、第1のガラス基板及び第2のガラス基板を溶着予定領域ごとに切断し、複数のガラス溶着体を得る第3の工程と、を備え、第2の工程においては、第1のラインでは、第1のラインに平行な方向における照射領域の幅が第1のラインに垂直な方向における照射領域の幅よりも大きくなるようにレーザ光を整形し、第2のラインでは、第2のラインに平行な方向における照射領域の幅が第2のラインに垂直な方向における照射領域の幅よりも大きくなるようにレーザ光を整形する。 Moreover, the glass welding method of the 2nd viewpoint of this invention is a 1st glass member and 2nd along a welding plan area | region including the cross | intersection part which a 1st extension part and a 2nd extension part cross | intersect. A glass welding method for producing a glass welded body by welding two glass members, and a second glass member including a plurality of first glass members and a second glass member. A plurality of first extending portions extend along each of the plurality of first lines parallel to each other between the glass substrate and each of the plurality of second lines parallel to each other intersecting the first line. A first step of arranging a glass layer including a laser light absorbing material along each of a plurality of planned welding regions set so that a plurality of second extending portions are along, and irradiating the glass layer with laser light The laser light irradiation area is set on each of the first line and the second line. The second step of welding the first glass member and the second glass member along the planned welding region, and welding the first glass substrate and the second glass substrate. A third step of obtaining a plurality of glass weldments by cutting each predetermined region, and in the second step, the width of the irradiation region in the direction parallel to the first line is the first line. The laser light is shaped so as to be larger than the width of the irradiation region in the direction perpendicular to the first line, and in the second line, the width of the irradiation region in the direction parallel to the second line is the second line. The laser beam is shaped so as to be larger than the width of the irradiation region in the vertical direction.
 このガラス溶着方法では、長尺形状の照射領域となるように整形されたレーザ光が、ガラス基板間に配置されたガラス層に照射され、そのレーザ光の照射領域が、第1のライン及び第2のラインのそれぞれに沿って相対的に移動させられる。このとき、第1のラインに第1の延在部が沿い、かつ第2のラインに第2の延在部が沿うように複数の溶着予定領域が設定され、各溶着予定領域に沿ってガラス層が配置されている。そして、第1のラインでは第1のラインに平行な方向に照射領域の長手方向が一致させられ、第2のラインでは第2のラインに平行な方向に照射領域の長手方向が一致させられる。従って、上述したガラス溶着装置と同様の理由から、このガラス溶着方法によれば、溶着予定領域が、延在部同士が交差する交差部を含んでいても、ガラス層やガラス部材に損傷が生じるのを防止しつつ、その溶着予定領域に沿ってガラス部材同士を溶着することが可能となる。 In this glass welding method, a laser beam shaped so as to be an elongated irradiation region is irradiated onto a glass layer disposed between the glass substrates, and the irradiation region of the laser light includes the first line and the first line. Relatively moved along each of the two lines. At this time, a plurality of planned welding areas are set so that the first extending part is along the first line and the second extending part is along the second line, and the glass is formed along each welding planned area. Layers are arranged. In the first line, the longitudinal direction of the irradiation region is made to coincide with the direction parallel to the first line, and in the second line, the longitudinal direction of the irradiation region is made to coincide with the direction parallel to the second line. Therefore, for the same reason as the glass welding apparatus described above, according to this glass welding method, the glass layer and the glass member are damaged even if the planned welding region includes an intersection where the extending portions intersect each other. It is possible to weld the glass members along the planned welding region while preventing this.
 本発明によれば、所定のラインが曲線部を含んでいても、ガラス層やガラス部材に損傷が生じるのを防止しつつ、そのラインに沿ってガラス部材同士を溶着することができる。 According to the present invention, even if a predetermined line includes a curved portion, it is possible to weld glass members along the line while preventing damage to the glass layer and the glass member.
 また、本発明によれば、溶着予定領域が、延在部同士が交差する交差部を含んでいても、ガラス層やガラス部材に損傷が生じるのを防止しつつ、その溶着予定領域に沿ってガラス部材同士を溶着することができる。 Further, according to the present invention, even if the planned welding region includes an intersection where the extending portions intersect, the glass layer and the glass member are prevented from being damaged, and along the planned welding region. Glass members can be welded together.
本発明の第1の実施形態のガラス溶着方法によって製造されたガラス溶着体の斜視図である。It is a perspective view of the glass welded body manufactured by the glass welding method of the 1st Embodiment of this invention. 本発明の第1の実施形態のガラス溶着装置の斜視図である。It is a perspective view of the glass welding apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態のガラス溶着方法を説明するための斜視図である。It is a perspective view for demonstrating the glass welding method of the 1st Embodiment of this invention. 本発明の第1の実施形態のガラス溶着方法を説明するための斜視図である。It is a perspective view for demonstrating the glass welding method of the 1st Embodiment of this invention. 本発明の第1の実施形態のガラス溶着方法を説明するための斜視図である。It is a perspective view for demonstrating the glass welding method of the 1st Embodiment of this invention. 本発明の第1の実施形態のガラス溶着方法におけるラインとレーザ光の照射領域との関係を示す平面図である。It is a top view which shows the relationship between the line and laser beam irradiation area | region in the glass welding method of the 1st Embodiment of this invention. 本発明の第1の実施形態のガラス溶着方法を説明するための斜視図である。It is a perspective view for demonstrating the glass welding method of the 1st Embodiment of this invention. レーザ光の照射領域がスポット状である場合及び長尺形状である場合のそれぞれにおけるガラス層の温度を示すグラフである。It is a graph which shows the temperature of the glass layer in each of the case where the irradiation area | region of a laser beam is a spot shape, and a long shape. 本発明の第1の実施形態の他のガラス溶着装置の斜視図である。It is a perspective view of the other glass welding apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態の他のガラス溶着装置の斜視図である。It is a perspective view of the other glass welding apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態の他のガラス溶着方法におけるラインとレーザ光の照射領域との関係を示す平面図である。It is a top view which shows the relationship between the line and laser beam irradiation area | region in the other glass welding method of the 1st Embodiment of this invention. 本発明の第2の実施形態のガラス溶着方法によって製造されたガラス溶着体の斜視図である。It is a perspective view of the glass welded body manufactured by the glass welding method of the 2nd Embodiment of this invention. 本発明の第2の実施形態のガラス溶着装置の斜視図である。It is a perspective view of the glass welding apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施形態のガラス溶着方法を説明するための斜視図である。It is a perspective view for demonstrating the glass welding method of the 2nd Embodiment of this invention. 本発明の第2の実施形態のガラス溶着方法を説明するための斜視図である。It is a perspective view for demonstrating the glass welding method of the 2nd Embodiment of this invention. 本発明の第2の実施形態のガラス溶着方法を説明するための斜視図である。It is a perspective view for demonstrating the glass welding method of the 2nd Embodiment of this invention. 本発明の第2の実施形態のガラス溶着方法を説明するための斜視図である。It is a perspective view for demonstrating the glass welding method of the 2nd Embodiment of this invention. レーザ光の照射領域がスポット状である場合及び長尺形状である場合のそれぞれにおけるガラス層の温度を示すグラフである。It is a graph which shows the temperature of the glass layer in each of the case where the irradiation area | region of a laser beam is a spot shape, and a long shape. 本発明の第2の実施形態の他のガラス溶着装置の斜視図である。It is a perspective view of the other glass welding apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施形態の他のガラス溶着装置の斜視図である。It is a perspective view of the other glass welding apparatus of the 2nd Embodiment of this invention.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1の実施形態]
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or equivalent part, and the overlapping description is abbreviate | omitted.
[First Embodiment]
 図1は、本発明の第1の実施形態のガラス溶着方法によって製造されたガラス溶着体の斜視図である。図1に示されるように、ガラス溶着体1は、所定のライン10に沿うように配置されたガラス層3を介して、ガラス部材4とガラス部材5とが溶着されたものである。このガラス溶着体1は、例えば有機ELディスプレイであり、ライン10の内側に形成された発光素子領域がガラス部材4,5及びガラス層3によって外部雰囲気から封止されている。 FIG. 1 is a perspective view of a glass welded body manufactured by the glass welding method of the first embodiment of the present invention. As shown in FIG. 1, the glass welded body 1 is formed by welding a glass member 4 and a glass member 5 through a glass layer 3 arranged along a predetermined line 10. The glass welded body 1 is, for example, an organic EL display, and the light emitting element region formed inside the line 10 is sealed from the external atmosphere by the glass members 4 and 5 and the glass layer 3.
 ガラス部材4,5は、例えば無アルカリガラスからなる厚さ0.7mmの矩形板状の部材である。ライン10は、ガラス部材4,5の外縁に沿うように矩形環状に設定されており、ライン10の角部は、R面取りされている。ライン10は、長辺に対応する直線部10a、短辺に対応する直線部10b、及び角部に対応する曲線部10cを含んでいる。ガラス層3は、例えば低融点ガラス(バナジウムリン酸系ガラス、鉛ホウ酸ガラス等)からなる層である。ガラス層3は、ライン10に沿ってライン10上に位置するように、ガラス部材4,5間に配置されている。なお、ガラス部材4,5の形状としては、矩形板状に限定されず、様々な形状を適用することができる。また、ライン10の形状としては、矩形環状に限定されず、様々な形状を適用することができる。 The glass members 4 and 5 are rectangular plate-shaped members having a thickness of 0.7 mm made of non-alkali glass, for example. The line 10 is set in a rectangular ring shape along the outer edges of the glass members 4 and 5, and the corners of the line 10 are rounded. The line 10 includes a straight line portion 10a corresponding to the long side, a straight line portion 10b corresponding to the short side, and a curved line portion 10c corresponding to the corner portion. The glass layer 3 is a layer made of, for example, low-melting glass (vanadium phosphate glass, lead borate glass, etc.). The glass layer 3 is disposed between the glass members 4 and 5 so as to be positioned on the line 10 along the line 10. In addition, as a shape of the glass members 4 and 5, it is not limited to rectangular plate shape, Various shapes can be applied. Moreover, the shape of the line 10 is not limited to a rectangular ring shape, and various shapes can be applied.
 図2は、本発明の第1の実施形態のガラス溶着装置の斜視図である。図2に示されるように、ガラス溶着装置11は、支持ステージ(ガラス部材支持部)12と、レーザヘッド(レーザ光照射部)13と、制御部14と、を備えている。このガラス溶着装置11は、ライン10に沿ってガラス部材4とガラス部材5とを溶着するための装置である。 FIG. 2 is a perspective view of the glass welding apparatus according to the first embodiment of the present invention. As shown in FIG. 2, the glass welding apparatus 11 includes a support stage (glass member support unit) 12, a laser head (laser light irradiation unit) 13, and a control unit 14. The glass welding apparatus 11 is an apparatus for welding the glass member 4 and the glass member 5 along the line 10.
 支持ステージ12は、ガラス部材4,5が載置される載置台であって、ガラス部材4,5間にガラス層3が配置された状態でガラス部材4,5を支持する。ガラス層3は、レーザ光吸収性顔料(レーザ光吸収材)を含んでおり、ライン10に沿うように配置されている。 The support stage 12 is a mounting table on which the glass members 4 and 5 are mounted, and supports the glass members 4 and 5 in a state where the glass layer 3 is disposed between the glass members 4 and 5. The glass layer 3 contains a laser light absorbing pigment (laser light absorbing material) and is disposed along the line 10.
 レーザヘッド13は、支持ステージ12上のガラス層3にレーザ光Lを照射する。レーザヘッド13は、レーザ光出射部15、コリメートレンズ16、シリンドリカルレンズ(整形光学系)17及び回転ステージ(回転駆動体)18を有している。レーザ光出射部15、コリメートレンズ16及びシリンドリカルレンズ17は、レーザ光Lの光軸OA上に配置されている。 The laser head 13 irradiates the glass layer 3 on the support stage 12 with the laser light L. The laser head 13 includes a laser beam emitting unit 15, a collimating lens 16, a cylindrical lens (shaping optical system) 17, and a rotating stage (rotating drive body) 18. The laser beam emitting unit 15, the collimating lens 16, and the cylindrical lens 17 are disposed on the optical axis OA of the laser beam L.
 レーザ光出射部15は、支持ステージ12上のガラス層3に向けてレーザ光Lを出射する。コリメートレンズ16は、レーザ光出射部15から出射されたレーザ光Lをコリメートする。シリンドリカルレンズ17は、支持ステージ12上のガラス層3における照射領域IRが楕円形状となるように、コリメートレンズ16によってコリメートされたレーザ光Lを整形する。回転ステージ18は、シリンドリカルレンズ17を内側に保持する円筒状の駆動体であって、レーザ光Lの光軸OAを中心としてシリンドリカルレンズ17を回転させる。 The laser beam emitting unit 15 emits the laser beam L toward the glass layer 3 on the support stage 12. The collimating lens 16 collimates the laser light L emitted from the laser light emitting unit 15. The cylindrical lens 17 shapes the laser light L collimated by the collimating lens 16 so that the irradiation region IR in the glass layer 3 on the support stage 12 has an elliptical shape. The rotary stage 18 is a cylindrical driving body that holds the cylindrical lens 17 inside, and rotates the cylindrical lens 17 around the optical axis OA of the laser light L.
 シリンドリカルレンズ17は、より具体的には、支持ステージ12上のガラス層3において、第1の方向D1における幅が第1の方向D1に垂直な第2の方向D2における幅よりも大きい照射領域IRとなるように、レーザ光Lを整形する。ここでは、シリンドリカルレンズ17の光入射面17aは、第2の方向D2のみにレーザ光Lを収束させる凸面(例えば焦点距離100mm)となっており、シリンドリカルレンズ17の光出射面17bは、第1の方向D1のみにレーザ光Lを収束させる凸面(例えば焦点距離300mm)となっている。 More specifically, the cylindrical lens 17 in the glass layer 3 on the support stage 12 has an irradiation region IR whose width in the first direction D1 is larger than the width in the second direction D2 perpendicular to the first direction D1. The laser beam L is shaped so that Here, the light incident surface 17a of the cylindrical lens 17 is a convex surface (for example, a focal length of 100 mm) for converging the laser light L only in the second direction D2, and the light emitting surface 17b of the cylindrical lens 17 is the first surface. This is a convex surface (for example, a focal length of 300 mm) for converging the laser light L only in the direction D1.
 制御部14は、照射領域IRがライン10に沿って相対的に移動するように、支持ステージ12を制御する。また、制御部14は、ライン10の各直線部10a,10bでは各直線部10a,10bに平行な方向に第1の方向D1が一致し、かつライン10の各曲線部10cでは各曲線部10cの接線に平行な方向に第1の方向D1が一致するように、回転ステージ18を制御する。なお、制御部14は、照射領域IRがライン10に沿って相対的に移動するように、レーザヘッド13を制御してもよいし、支持ステージ12及びレーザヘッド13の両方を制御してもよい。 The control unit 14 controls the support stage 12 so that the irradiation region IR relatively moves along the line 10. Further, the control unit 14 matches the first direction D1 in the direction parallel to the straight line portions 10a and 10b in the straight line portions 10a and 10b of the line 10 and the curved line portions 10c in the curved line portions 10c of the line 10. The rotary stage 18 is controlled so that the first direction D1 coincides with the direction parallel to the tangent line. Note that the control unit 14 may control the laser head 13 so that the irradiation region IR relatively moves along the line 10, or may control both the support stage 12 and the laser head 13. .
 次に、ガラス溶着装置11を用いてガラス溶着体1を製造するためのガラス溶着方法について説明する。まず、図3に示されるように、マトリックス状(ここでは3行5列)に配置された複数のガラス部材4を含むガラス基板40を準備する。そして、ガラス部材4ごとにライン10を設定する。 Next, a glass welding method for manufacturing the glass welded body 1 using the glass welding apparatus 11 will be described. First, as shown in FIG. 3, a glass substrate 40 including a plurality of glass members 4 arranged in a matrix (here, 3 rows and 5 columns) is prepared. A line 10 is set for each glass member 4.
 続いて、ディスペンサやスクリーン印刷等によってフリットペーストを塗布することにより、ガラス部材4ごとにライン10に沿うようにガラス基板40の表面40aにペースト層6を配置する。フリットペーストは、例えば、低融点ガラスからなる粉末状のガラスフリット(ガラス粉)2、酸化鉄等の無機顔料であるレーザ光吸収性顔料(レーザ光吸収材)、酢酸アミル等である有機溶剤、及びアクリル等の樹脂成分であるバインダが混練されたものである。続いて、ペースト層6を乾燥させて有機溶剤を除去し、ペースト層6を加熱してバインダを除去することにより、ガラス基板40の表面40aにガラス層3を固着させる。更に、ガラス層3を加熱してガラスフリット2を溶融・再固化させることにより、ガラス基板40の表面40aに、レーザ光吸収性顔料を含むガラス層3を定着させる。 Subsequently, the paste layer 6 is disposed on the surface 40a of the glass substrate 40 along the line 10 for each glass member 4 by applying a frit paste by a dispenser, screen printing or the like. The frit paste is, for example, a powdery glass frit (glass powder) 2 made of low melting glass, a laser light absorbing pigment (laser light absorbing material) that is an inorganic pigment such as iron oxide, an organic solvent such as amyl acetate, In addition, a binder which is a resin component such as acrylic is kneaded. Subsequently, the paste layer 6 is dried to remove the organic solvent, and the paste layer 6 is heated to remove the binder, thereby fixing the glass layer 3 to the surface 40 a of the glass substrate 40. Further, the glass layer 3 containing the laser light-absorbing pigment is fixed on the surface 40 a of the glass substrate 40 by heating the glass layer 3 to melt and resolidify the glass frit 2.
 続いて、図4に示されるように、マトリックス状(ここでは3行5列)に配置された複数のガラス部材5を含むガラス基板50を準備する。そして、ガラス部材4のそれぞれとガラス部材5のそれぞれとがガラス層3を介して対向するようにガラス基板40とガラス基板50とを重ね合わせ、この状態でガラス基板40,50をガラス溶着装置11の支持ステージ12上に載置する。これにより、ガラス部材4とガラス部材5との間に、ライン10に沿うように、レーザ光吸収性顔料を含むガラス層3が配置されることになる(第1の工程)。なお、ガラス基板50においてガラス基板40の表面40aに対向する表面50aには、ガラス部材5ごとに発光素子領域が形成されている。 Subsequently, as shown in FIG. 4, a glass substrate 50 including a plurality of glass members 5 arranged in a matrix (here, 3 rows and 5 columns) is prepared. Then, the glass substrate 40 and the glass substrate 50 are overlapped so that each of the glass members 4 and each of the glass members 5 are opposed to each other with the glass layer 3 interposed therebetween. Placed on the support stage 12. Thereby, between the glass member 4 and the glass member 5, the glass layer 3 containing a laser beam absorptive pigment is arrange | positioned along the line 10 (1st process). In the glass substrate 50, a light emitting element region is formed for each glass member 5 on the surface 50 a facing the surface 40 a of the glass substrate 40.
 続いて、レーザヘッド13にレーザ光Lを出力させると共に支持ステージ12を駆動させることにより、図5に示されるように、対向するガラス部材4,5ごとに、ガラス層3にレーザ光Lを照射し、レーザ光Lの照射領域IRをライン10に沿って相対的に移動させる。これにより、ガラス層3及びその周辺部分(ガラス基板40,50の表面40a,50a部分)が溶融・再固化し、ライン10に沿ってガラス部材4とガラス部材5とが溶着される(第2の工程)。なお、溶着においては、ガラス層3が溶融し、ガラス基板40,50の少なくとも一方が溶融しない場合もある。 Subsequently, the laser beam L is output to the laser head 13 and the support stage 12 is driven to irradiate the glass layer 3 with the laser beam L for each of the opposing glass members 4 and 5 as shown in FIG. Then, the irradiation region IR of the laser beam L is relatively moved along the line 10. Thereby, the glass layer 3 and its peripheral part ( surface 40a, 50a part of the glass substrates 40 and 50) fuse | melt and resolidify, and the glass member 4 and the glass member 5 are welded along the line 10 (2nd Process). In the welding, the glass layer 3 may melt and at least one of the glass substrates 40 and 50 may not melt.
 このとき、回転ステージ18にシリンドリカルレンズ17を回転させることにより、図6に示されるように、ライン10の直線部10aでは、直線部10aに平行な方向に、照射領域IRの長手方向である第1の方向D1が一致させられ、ライン10の直線部10bでは、直線部10bに平行な方向に、照射領域IRの長手方向である第1の方向D1が一致させられる。つまり、ライン10の各直線部10a,10bでは、各直線部10a,10bに平行な方向における照射領域IRの幅が各直線部10a,10bに垂直な方向における照射領域IRの幅よりも大きくなるようにレーザ光Lが整形される。なお、ライン10の各直線部10a,10bでは、各直線部10a,10bに垂直な方向における照射領域IRの幅が各直線部10a,10bに垂直な方向におけるガラス層3の幅よりも大きくなるようにレーザ光Lが整形される。 At this time, by rotating the cylindrical lens 17 on the rotary stage 18, as shown in FIG. 6, the linear portion 10a of the line 10 has a longitudinal direction of the irradiation region IR in a direction parallel to the linear portion 10a. 1 direction D1 is made to coincide, and in the straight portion 10b of the line 10, the first direction D1 that is the longitudinal direction of the irradiation region IR is made to coincide with the direction parallel to the straight portion 10b. That is, in each straight line part 10a, 10b of the line 10, the width of the irradiation area IR in the direction parallel to each straight line part 10a, 10b is larger than the width of the irradiation area IR in the direction perpendicular to each straight line part 10a, 10b. Thus, the laser beam L is shaped. In each straight line portion 10a, 10b of the line 10, the width of the irradiation region IR in the direction perpendicular to each straight line portion 10a, 10b is larger than the width of the glass layer 3 in the direction perpendicular to each straight line portion 10a, 10b. Thus, the laser beam L is shaped.
 同様に、回転ステージ18にシリンドリカルレンズ17を回転させることにより、図6に示されるように、ライン10の曲線部10cでは、曲線部10cの接線Tに平行な方向に、照射領域IRの長手方向である第1の方向D1が一致させられる。つまり、ライン10の各曲線部10cでは、各曲線部10cの接線Tに平行な方向における照射領域IRの幅が各曲線部10cの接線Tに垂直な方向における照射領域IRの幅よりも大きくなるようにレーザ光Lが整形される。なお、ライン10の各曲線部10cでは、各曲線部10cの接線Tに垂直な方向における照射領域IRの幅が各曲線部10cの接線Tに垂直な方向におけるガラス層3の幅よりも大きくなるようにレーザ光Lが整形される。 Similarly, by rotating the cylindrical lens 17 on the rotary stage 18, as shown in FIG. 6, in the curved portion 10c of the line 10, the longitudinal direction of the irradiation region IR is parallel to the tangent line T of the curved portion 10c. The first direction D1 is matched. That is, in each curved portion 10c of the line 10, the width of the irradiation region IR in the direction parallel to the tangent T of each curved portion 10c is larger than the width of the irradiation region IR in the direction perpendicular to the tangent T of each curved portion 10c. Thus, the laser beam L is shaped. In each curved portion 10c of the line 10, the width of the irradiation region IR in the direction perpendicular to the tangent T of each curved portion 10c is larger than the width of the glass layer 3 in the direction perpendicular to the tangent T of each curved portion 10c. Thus, the laser beam L is shaped.
 続いて、図7に示されるように、ガラス基板40,50から、溶着されたガラス部材4,5を切り出し、複数(ここでは15セット)のガラス溶着体1を得る。 Subsequently, as shown in FIG. 7, the welded glass members 4 and 5 are cut out from the glass substrates 40 and 50 to obtain a plurality (here, 15 sets) of glass welded bodies 1.
 以上説明したように、ガラス溶着装置11、及びそれを用いたガラス溶着方法においては、シリンドリカルレンズ17によって長尺形状の照射領域IRとなるように整形されたレーザ光Lが、ガラス部材4,5間に配置されたガラス層3に照射され、そのレーザ光Lの照射領域IRがライン10に沿って相対的に移動させられる。このとき、ガラス層3は、ライン10に沿うように配置されている。そして、回転ステージ18がシリンドリカルレンズ17を回転させるという簡易な構成によって、ライン10の各直線部10a,10bでは各直線部10a,10bに平行な方向に照射領域IRの長手方向(すなわち、第1の方向D1)が一致させられ、ライン10の各曲線部10cでは各曲線部10cの接線Tに平行な方向に照射領域IRの長手方向が一致させられる。これにより、ライン10の各直線部10a,10bにおいては勿論、ライン10の各曲線部10cにおいても、レーザ光Lの照射領域IRが円形状等のスポット状である場合に比べ、ガラス層3の温度の上昇・下降を緩やかにしつつ、ガラス部材4,5同士を溶着するのに十分な熱量をガラス層3に与えることができる。よって、ガラス溶着装置11、及びそれを用いたガラス溶着方法によれば、ライン10が曲線部10cを含んでいても、ガラス層3やガラス部材4,5にクラック等の損傷が生じるのを防止しつつ、そのライン10に沿ってガラス部材4,5同士を溶着することが可能となる。 As described above, in the glass welding apparatus 11 and the glass welding method using the same, the laser light L shaped by the cylindrical lens 17 so as to be the elongated irradiation region IR is the glass members 4 and 5. The glass layer 3 disposed therebetween is irradiated, and the irradiation region IR of the laser light L is relatively moved along the line 10. At this time, the glass layer 3 is disposed along the line 10. Then, with a simple configuration in which the rotary stage 18 rotates the cylindrical lens 17, the longitudinal direction of the irradiation region IR (that is, the first direction) is parallel to the straight portions 10a and 10b in the straight portions 10a and 10b of the line 10. Direction D1), and in each curved portion 10c of the line 10, the longitudinal direction of the irradiation region IR is made to coincide with the direction parallel to the tangent line T of each curved portion 10c. As a result, not only in the straight line portions 10a and 10b of the line 10 but also in the curved line portions 10c of the line 10, the irradiation region IR of the laser light L is in a spot shape such as a circular shape. A sufficient amount of heat can be applied to the glass layer 3 to weld the glass members 4 and 5 to each other while gradually increasing and decreasing the temperature. Therefore, according to the glass welding apparatus 11 and the glass welding method using the same, even if the line 10 includes the curved portion 10c, the glass layer 3 and the glass members 4 and 5 are prevented from being damaged such as cracks. However, the glass members 4 and 5 can be welded along the line 10.
 特に、ライン10の各曲線部10cでは、ライン10の各直線部10a,10bに比べ、レーザ光Lの照射領域IRをライン10に沿って相対的に移動させる速度が遅くなり、入熱過多の状態となってガラス層3やガラス部材4,5にクラック等の損傷が生じ易い。しかしながら、ガラス溶着装置11、及びそれを用いたガラス溶着方法においては、回転ステージ18がシリンドリカルレンズ17を回転させるという簡易な構成によって、各曲線部10cの接線Tに平行な方向に照射領域IRの長手方向が精度良く一致させられ、それにより、各曲線部10cでガラス層3やガラス部材4,5にクラック等の損傷が生じることが確実に防止される。 In particular, in each curved portion 10c of the line 10, the speed of moving the irradiation region IR of the laser light L along the line 10 is slower than that of the straight portions 10a and 10b of the line 10, and excessive heat input is caused. The glass layer 3 and the glass members 4 and 5 are easily damaged, such as cracks. However, in the glass welding apparatus 11 and the glass welding method using the same, the irradiation stage IR is in a direction parallel to the tangent line T of each curved portion 10c by a simple configuration in which the rotary stage 18 rotates the cylindrical lens 17. Longitudinal directions are made to coincide with each other accurately, thereby reliably preventing damage such as cracks in the glass layer 3 and the glass members 4 and 5 at each curved portion 10c.
 また、第2の方向D2における照射領域IRの幅を1としたときに、第1の方向D1における照射領域IRの幅が1.5~4となるように、シリンドリカルレンズ17がレーザ光Lを整形すれば、ガラス層3やガラス部材4,5にクラック等の損傷が生じるのをより確実に防止することができる。 Further, when the width of the irradiation region IR in the second direction D2 is 1, the cylindrical lens 17 emits the laser light L so that the width of the irradiation region IR in the first direction D1 is 1.5 to 4. If it shapes, it can prevent more reliably that damage, such as a crack, arises in the glass layer 3 or the glass members 4 and 5. FIG.
 図8は、レーザ光の照射領域がスポット状である場合及び長尺形状である場合のそれぞれにおけるガラス層の温度を示すグラフである。図8に示されるように、レーザ光Lの照射領域IRがスポット状(例えば直径1.6mmの真円状)であると、ガラス層3(例えば幅0.8mm)の温度の上昇・下降が急になるので、ガラス層3が急加熱・急冷却されることになる。しかも、レーザ光Lの照射時間が短くなるので、ガラス層3が到達する最高温度を高くしないと、ガラス部材4,5同士を溶着するのに十分な熱量(図8における斜線ハッチング領域に相当する)をガラス層3に与えることができない。これらにより、レーザ光Lの照射領域IRがスポット状である場合には、ガラス層3やガラス部材4,5にクラック等の損傷が生じ易くなる。 FIG. 8 is a graph showing the temperature of the glass layer in each of the case where the irradiation region of the laser beam has a spot shape and a long shape. As shown in FIG. 8, when the irradiation region IR of the laser beam L is spot-shaped (for example, a perfect circle having a diameter of 1.6 mm), the temperature of the glass layer 3 (for example, 0.8 mm in width) rises and falls. Since it becomes abrupt, the glass layer 3 is rapidly heated and cooled rapidly. Moreover, since the irradiation time of the laser beam L is shortened, the amount of heat sufficient to weld the glass members 4 and 5 to each other (corresponding to the hatched area in FIG. 8) unless the maximum temperature reached by the glass layer 3 is increased. ) Cannot be applied to the glass layer 3. As a result, when the irradiation region IR of the laser beam L is spot-like, damage such as cracks is likely to occur in the glass layer 3 and the glass members 4 and 5.
 それに対し、レーザ光Lの照射領域IRが長尺形状(例えば長径6mm、短径1.6mmの楕円状)であると、ガラス層3(例えば幅0.8mm)の温度の上昇・下降が緩やかになるので、ガラス層3が急加熱・急冷却されるのを防止することができる。しかも、レーザ光Lの照射時間が長くなるので、ガラス層3が到達する最高温度を高くしなくても、ガラス部材4,5同士を溶着するのに十分な熱量(図8におけるドットハッチング領域に相当する)をガラス層3に与えることができる。これらにより、レーザ光Lの照射領域IRが長尺形状である場合には、ガラス層3やガラス部材4,5にクラック等の損傷が生じるのを防止することが可能となる。更に、レーザ光Lの照射領域IRがスポット状である場合に比べレーザ光Lの照射時間が長くなる分、照射領域IRをライン10に沿って相対的に移動させる速度を速くすることもできるので、その場合には、タクトタイムを短縮化することが可能となる。 On the other hand, if the irradiation region IR of the laser beam L has a long shape (for example, an ellipse having a long diameter of 6 mm and a short diameter of 1.6 mm), the temperature of the glass layer 3 (for example, width 0.8 mm) rises and falls slowly. Therefore, it is possible to prevent the glass layer 3 from being rapidly heated or rapidly cooled. In addition, since the irradiation time of the laser beam L becomes longer, the amount of heat sufficient to weld the glass members 4 and 5 to each other without increasing the maximum temperature reached by the glass layer 3 (in the dot hatching region in FIG. 8). Can be applied to the glass layer 3. As a result, when the irradiation region IR of the laser beam L has a long shape, it is possible to prevent the glass layer 3 and the glass members 4 and 5 from being damaged such as cracks. Furthermore, since the irradiation time of the laser beam L is longer than that in the case where the irradiation region IR of the laser beam L is spot-like, the speed at which the irradiation region IR is relatively moved along the line 10 can be increased. In that case, the tact time can be shortened.
 以上、本発明の第1の実施形態について説明したが、本発明は、上記第1の実施形態に限定されるものではない。例えば、図9に示されるように、レーザヘッド13は、レーザ光出射部15、コリメートレンズ16、集光レンズ21、シリンドリカルレンズ(整形光学系)22及び回転ステージ18を有するものであってもよい。ここでは、シリンドリカルレンズ22の光入射面22aは、平面となっており、シリンドリカルレンズ22の光出射面22bは、第2の方向D2のみにレーザ光Lを収束させる凹面となっている。これにより、コリメートレンズ16によってコリメートされたレーザ光Lは、集光レンズ21によって集光された後、支持ステージ12上のガラス層3における照射領域IRが楕円形状となるように、シリンドリカルレンズ22によって整形される。 As mentioned above, although 1st Embodiment of this invention was described, this invention is not limited to the said 1st Embodiment. For example, as shown in FIG. 9, the laser head 13 may include a laser light emitting unit 15, a collimating lens 16, a condenser lens 21, a cylindrical lens (shaping optical system) 22, and a rotary stage 18. . Here, the light incident surface 22a of the cylindrical lens 22 is a flat surface, and the light emitting surface 22b of the cylindrical lens 22 is a concave surface that converges the laser light L only in the second direction D2. Thereby, the laser light L collimated by the collimating lens 16 is condensed by the condensing lens 21, and then the cylindrical lens 22 makes the irradiation region IR in the glass layer 3 on the support stage 12 have an elliptical shape. It is shaped.
 また、図10に示されるように、レーザヘッド13は、レーザ光出射部15、コリメートレンズ16、集光レンズ21、アキシコンレンズ(整形光学系)23及び回転ステージ18を有するものであってもよい。ここでは、アキシコンレンズ23の光入射面23aは、平面となっており、アキシコンレンズ23の光出射面23bは、峰が第1の方向D1に延在するように山折りされた平面となっている。これにより、コリメートレンズ16によってコリメートされたレーザ光Lは、集光レンズ21によって集光された後、支持ステージ12上のガラス層3における照射領域IRが長尺形状(弧と弦とからなる形状が互いの弧と弦とが接するように重ね合わされた形状)となるように、アキシコンレンズ23によって整形される。 Further, as shown in FIG. 10, the laser head 13 may include a laser beam emitting unit 15, a collimating lens 16, a condenser lens 21, an axicon lens (shaping optical system) 23, and a rotary stage 18. Good. Here, the light incident surface 23a of the axicon lens 23 is a flat surface, and the light exit surface 23b of the axicon lens 23 is a flat surface that is mountain-folded so that the peak extends in the first direction D1. It has become. Thereby, after the laser beam L collimated by the collimating lens 16 is collected by the condenser lens 21, the irradiation region IR in the glass layer 3 on the support stage 12 has a long shape (a shape composed of an arc and a string). Is shaped by the axicon lens 23 so that the arc and the string are in contact with each other.
 また、図11に示されるように、制御部14は、第1の方向D1における照射領域IRの幅が各直線部10a,10bと各曲線部10cとで一定となり、かつ第2の方向D2における照射領域IRの幅が各直線部10a,10bに比べ各曲線部10cで大きくなるように、レーザヘッド13を制御してもよい。これによれば、各直線部10a,10bに比べ各曲線部10cにおいて、照射領域IRの単位面積当たりの光強度を低くすることができる。従って、各直線部10a,10bに比べ各曲線部10cにおいて、レーザ光Lの照射領域IRをライン10に沿って相対的に移動させる速度が遅くなったとしても、各曲線部10cで入熱過多の状態となってガラス層3やガラス部材4,5にクラック等の損傷が生じるのをより確実に防止することができる。なお、このような照射領域IRの形状の調整は、例えば、図9のレーザヘッド13において集光レンズ21とシリンドリカルレンズ22との距離を変更したり、図10のレーザヘッド13において集光レンズ21とアキシコンレンズ23との距離を変更したりすることで、実現可能である。 Further, as shown in FIG. 11, the control unit 14 makes the width of the irradiation region IR in the first direction D1 constant between the straight portions 10a and 10b and the curved portions 10c, and in the second direction D2. The laser head 13 may be controlled so that the width of the irradiation region IR is larger at each curved portion 10c than at each straight portion 10a, 10b. According to this, it is possible to reduce the light intensity per unit area of the irradiation region IR in each of the curved portions 10c as compared to the straight portions 10a and 10b. Therefore, even if the speed of moving the irradiation region IR of the laser beam L relatively along the line 10 is slower in each curved portion 10c than in the straight portions 10a and 10b, excessive heat input is caused in each curved portion 10c. It is possible to more reliably prevent the glass layer 3 and the glass members 4 and 5 from being damaged such as cracks. For example, the adjustment of the shape of the irradiation region IR may be performed by changing the distance between the condensing lens 21 and the cylindrical lens 22 in the laser head 13 of FIG. 9 or by adjusting the condensing lens 21 in the laser head 13 of FIG. This can be realized by changing the distance between the lens and the axicon lens 23.
 また、上記第1の実施形態では、ガラス層3を加熱してガラスフリット2を溶融・再固化させることにより、ガラス基板40の表面40aに、レーザ光吸収性顔料を含むガラス層3を定着させたが、ガラス基板40に対するガラス層3の配置は、これに限定されない。一例として、ガラス基板40に対するガラス層3の配置は、ペースト層6を乾燥させて有機溶剤を除去し、ペースト層6を加熱してバインダを除去することにより、ガラス基板40の表面40aにガラス層3を固着させるだけでもよい。また、レーザ光Lの照射は、ガラス基板40側から実施してもよい。
[第2の実施形態]
In the first embodiment, the glass layer 3 containing the laser light-absorbing pigment is fixed to the surface 40a of the glass substrate 40 by heating the glass layer 3 to melt and resolidify the glass frit 2. However, the arrangement of the glass layer 3 with respect to the glass substrate 40 is not limited to this. As an example, the glass layer 3 is disposed on the glass substrate 40 by drying the paste layer 6 to remove the organic solvent, and heating the paste layer 6 to remove the binder, thereby removing the glass layer on the surface 40a of the glass substrate 40. 3 may be fixed. Further, the laser beam L may be irradiated from the glass substrate 40 side.
[Second Embodiment]
 図12は、本発明の第2の実施形態のガラス溶着方法によって製造されたガラス溶着体の斜視図である。図12に示されるように、ガラス溶着体1は、溶着予定領域Rに沿うように配置されたガラス層3を介して、ガラス部材4とガラス部材5とが溶着されたものである。このガラス溶着体1は、例えば有機ELディスプレイであり、溶着予定領域Rの内側に形成された発光素子領域がガラス部材4,5及びガラス層3によって外部雰囲気から封止されている。 FIG. 12 is a perspective view of a glass welded body manufactured by the glass welding method of the second embodiment of the present invention. As shown in FIG. 12, the glass welded body 1 is formed by welding a glass member 4 and a glass member 5 through a glass layer 3 disposed along the planned welding region R. The glass welded body 1 is, for example, an organic EL display, and the light emitting element region formed inside the planned welding region R is sealed from the outside atmosphere by the glass members 4 and 5 and the glass layer 3.
 ガラス部材4,5は、例えば無アルカリガラスからなる厚さ0.7mmの矩形板状の部材である。溶着予定領域Rは、ガラス部材4,5の外縁に沿うように矩形環状に設定されている。溶着予定領域Rは、長辺に対応する延在部(第1の延在部)Ra、短辺に対応する延在部(第2の延在部)Rb、及び延在部Raと延在部Rbとが交差する交差部Rcを含んでいる。ガラス層3は、例えば低融点ガラス(バナジウムリン酸系ガラス、鉛ホウ酸ガラス等)からなる層である。なお、ガラス部材4,5の形状としては、矩形板状に限定されず、様々な形状を適用することができる。また、溶着予定領域Rの形状としては、矩形環状に限定されず、様々な形状を適用することができる。 The glass members 4 and 5 are rectangular plate-shaped members having a thickness of 0.7 mm made of non-alkali glass, for example. The welding planned region R is set in a rectangular ring shape along the outer edges of the glass members 4 and 5. The planned welding region R extends with an extending portion (first extending portion) Ra corresponding to the long side, an extending portion (second extending portion) Rb corresponding to the short side, and the extending portion Ra. The intersection part Rc where the part Rb intersects is included. The glass layer 3 is a layer made of, for example, low-melting glass (vanadium phosphate glass, lead borate glass, etc.). In addition, as a shape of the glass members 4 and 5, it is not limited to rectangular plate shape, Various shapes can be applied. In addition, the shape of the planned welding region R is not limited to a rectangular ring shape, and various shapes can be applied.
 図13は、本発明の第2の実施形態のガラス溶着装置の斜視図である。図13に示されるように、ガラス溶着装置11は、支持ステージ(ガラス基板支持部)12と、レーザヘッド(レーザ光照射部)13と、制御部14と、を備えている。このガラス溶着装置11は、溶着予定領域Rに沿ってガラス部材4とガラス部材5とを溶着するための装置である。 FIG. 13 is a perspective view of a glass welding apparatus according to the second embodiment of the present invention. As shown in FIG. 13, the glass welding apparatus 11 includes a support stage (glass substrate support unit) 12, a laser head (laser light irradiation unit) 13, and a control unit 14. The glass welding apparatus 11 is an apparatus for welding the glass member 4 and the glass member 5 along the planned welding region R.
 支持ステージ12は、複数のガラス部材4を含むガラス基板40及び複数のガラス部材5を含むガラス基板50が載置される載置台であって、ガラス基板40,50間にガラス層3が配置された状態でガラス基板40,50を支持する。ガラス層3は、レーザ光吸収性顔料(レーザ光吸収材)を含んでおり、対向するガラス部材4,5ごとに、溶着予定領域Rに沿うように配置されている。 The support stage 12 is a mounting table on which a glass substrate 40 including a plurality of glass members 4 and a glass substrate 50 including a plurality of glass members 5 are mounted, and the glass layer 3 is disposed between the glass substrates 40 and 50. In this state, the glass substrates 40 and 50 are supported. The glass layer 3 includes a laser light absorbing pigment (laser light absorbing material), and is disposed along the planned welding region R for each of the opposing glass members 4 and 5.
 レーザヘッド13は、支持ステージ12上のガラス層3にレーザ光Lを照射する。レーザヘッド13は、レーザ光出射部15、コリメートレンズ16、シリンドリカルレンズ(整形光学系)17及び回転ステージ(回転駆動体)18を有している。レーザ光出射部15、コリメートレンズ16及びシリンドリカルレンズ17は、レーザ光Lの光軸OA上に配置されている。 The laser head 13 irradiates the glass layer 3 on the support stage 12 with the laser light L. The laser head 13 includes a laser beam emitting unit 15, a collimating lens 16, a cylindrical lens (shaping optical system) 17, and a rotating stage (rotating drive body) 18. The laser beam emitting unit 15, the collimating lens 16, and the cylindrical lens 17 are disposed on the optical axis OA of the laser beam L.
 レーザ光出射部15は、支持ステージ12上のガラス層3に向けてレーザ光Lを出射する。コリメートレンズ16は、レーザ光出射部15から出射されたレーザ光Lをコリメートする。シリンドリカルレンズ17は、支持ステージ12上のガラス層3における照射領域IRが楕円形状となるように、コリメートレンズ16によってコリメートされたレーザ光Lを整形する。回転ステージ18は、シリンドリカルレンズ17を内側に保持する円筒状の駆動体であって、レーザ光Lの光軸OAを中心としてシリンドリカルレンズ17を回転させる。 The laser beam emitting unit 15 emits the laser beam L toward the glass layer 3 on the support stage 12. The collimating lens 16 collimates the laser light L emitted from the laser light emitting unit 15. The cylindrical lens 17 shapes the laser light L collimated by the collimating lens 16 so that the irradiation region IR in the glass layer 3 on the support stage 12 has an elliptical shape. The rotary stage 18 is a cylindrical driving body that holds the cylindrical lens 17 inside, and rotates the cylindrical lens 17 around the optical axis OA of the laser light L.
 シリンドリカルレンズ17は、より具体的には、支持ステージ12上のガラス層3において、第1の方向D1における幅が第1の方向D1に垂直な第2の方向D2における幅よりも大きい照射領域IRとなるように、レーザ光Lを整形する。ここでは、シリンドリカルレンズ17の光入射面17aは、第2の方向D2のみにレーザ光Lを収束させる凸面(例えば焦点距離100mm)となっており、シリンドリカルレンズ17の光出射面17bは、第1の方向D1のみにレーザ光Lを収束させる凸面(例えば焦点距離300mm)となっている。 More specifically, the cylindrical lens 17 in the glass layer 3 on the support stage 12 has an irradiation region IR whose width in the first direction D1 is larger than the width in the second direction D2 perpendicular to the first direction D1. The laser beam L is shaped so that Here, the light incident surface 17a of the cylindrical lens 17 is a convex surface (for example, a focal length of 100 mm) for converging the laser light L only in the second direction D2, and the light emitting surface 17b of the cylindrical lens 17 is the first surface. This is a convex surface (for example, a focal length of 300 mm) for converging the laser light L only in the direction D1.
 制御部14は、溶着予定領域Rの延在部Raが沿うライン(第1のライン)10A及び溶着予定領域Rの延在部Rbが沿うライン(第2のライン)10Bのそれぞれに沿って、照射領域IRが相対的に移動するように、支持ステージ12を制御する。また、制御部14は、ライン10Aではライン10Aに平行な方向に第1の方向D1が一致し、かつライン10Bではライン10Bに平行な方向に第1の方向D1が一致するように、回転ステージ18を制御する。なお、制御部14は、照射領域IRが各ライン10A,10Bに沿って相対的に移動するように、レーザヘッド13を制御してもよいし、支持ステージ12及びレーザヘッド13の両方を制御してもよい。また、制御部14は、各ライン10A,10Bに平行な方向に第1の方向D1が一致するように、支持ステージ12を制御してもよいし、支持ステージ12及びレーザヘッド13の両方を制御してもよい。 The control unit 14 has a line (first line) 10A along which the extended portion Ra of the planned welding region R is along and a line (second line) 10B along which the extended portion Rb of the planned welding region R is along, respectively. The support stage 12 is controlled so that the irradiation region IR moves relatively. In addition, the control unit 14 rotates the rotation stage so that the first direction D1 coincides with the direction parallel to the line 10A in the line 10A and the first direction D1 coincides with the direction parallel to the line 10B in the line 10B. 18 is controlled. The control unit 14 may control the laser head 13 so that the irradiation region IR relatively moves along the lines 10A and 10B, or controls both the support stage 12 and the laser head 13. May be. Further, the control unit 14 may control the support stage 12 so that the first direction D1 coincides with the direction parallel to the lines 10A and 10B, or controls both the support stage 12 and the laser head 13. May be.
 次に、ガラス溶着装置11を用いてガラス溶着体1を製造するためのガラス溶着方法について説明する。まず、図14に示されるように、マトリックス状(ここでは3行5列)に配置された複数のガラス部材4を含むガラス基板40を準備する。そして、ガラス部材4ごとに溶着予定領域Rを設定する。つまり、溶着予定領域Rは、互いに平行な複数(ここでは10本)のライン10Aのそれぞれに複数(ここでは3本)の延在部Raが沿い、かつライン10Aと交差する互いに平行な複数(ここでは6本)のライン10Bのそれぞれに複数(ここでは5本)の延在部Rbが沿うように、複数(ここでは15本)設定される。 Next, a glass welding method for manufacturing the glass welded body 1 using the glass welding apparatus 11 will be described. First, as shown in FIG. 14, a glass substrate 40 including a plurality of glass members 4 arranged in a matrix (here, 3 rows and 5 columns) is prepared. And the welding plan area | region R is set for every glass member 4. FIG. In other words, the welding planned region R includes a plurality of (here, three) extending portions Ra along each of a plurality (here, ten) of lines 10A that are parallel to each other and a plurality of parallel ( Here, a plurality (15 in this case) are set so that a plurality (here, 5) of extending portions Rb are along each of the 6 lines 10B.
 続いて、ディスペンサやスクリーン印刷等によってフリットペーストを塗布することにより、ガラス部材4ごとに溶着予定領域Rに沿うようにガラス基板40の表面40aにペースト層6を配置する。フリットペーストは、例えば、低融点ガラスからなる粉末状のガラスフリット(ガラス粉)2、酸化鉄等の無機顔料であるレーザ光吸収性顔料(レーザ光吸収材)、酢酸アミル等である有機溶剤、及びアクリル等の樹脂成分であるバインダが混練されたものである。続いて、ペースト層6を乾燥させて有機溶剤を除去し、ペースト層6を加熱してバインダを除去することにより、ガラス基板40の表面40aにガラス層3を固着させる。更に、ガラス層3を加熱してガラスフリット2を溶融・再固化させることにより、ガラス基板40の表面40aに、レーザ光吸収性顔料を含むガラス層3を定着させる。 Subsequently, the paste layer 6 is disposed on the surface 40a of the glass substrate 40 along the planned welding region R for each glass member 4 by applying a frit paste by a dispenser, screen printing, or the like. The frit paste is, for example, a powdery glass frit (glass powder) 2 made of low melting glass, a laser light absorbing pigment (laser light absorbing material) that is an inorganic pigment such as iron oxide, an organic solvent such as amyl acetate, In addition, a binder which is a resin component such as acrylic is kneaded. Subsequently, the paste layer 6 is dried to remove the organic solvent, and the paste layer 6 is heated to remove the binder, thereby fixing the glass layer 3 to the surface 40 a of the glass substrate 40. Further, the glass layer 3 containing the laser light-absorbing pigment is fixed on the surface 40 a of the glass substrate 40 by heating the glass layer 3 to melt and resolidify the glass frit 2.
 続いて、図15に示されるように、マトリックス状(ここでは3行5列)に配置された複数のガラス部材5を含むガラス基板50を準備する。そして、ガラス部材4のそれぞれとガラス部材5のそれぞれとがガラス層3を介して対向するようにガラス基板40とガラス基板50とを重ね合わせ、この状態でガラス基板40,50をガラス溶着装置11の支持ステージ12上に載置する。これにより、互いに平行な複数のライン10Aのそれぞれに複数の延在部Raが沿い、かつライン10Aと交差する互いに平行な複数のライン10Bのそれぞれに複数の延在部Rbが沿うように設定された複数の溶着予定領域Rのそれぞれに沿って、ガラス基板40とガラス基板50との間に、レーザ光吸収性顔料を含むガラス層3が配置されることになる(第1の工程)。なお、ガラス基板50においてガラス基板40の表面40aに対向する表面50aには、ガラス部材5ごとに発光素子領域が形成されている。 Subsequently, as shown in FIG. 15, a glass substrate 50 including a plurality of glass members 5 arranged in a matrix (here, 3 rows and 5 columns) is prepared. Then, the glass substrate 40 and the glass substrate 50 are overlapped so that each of the glass members 4 and each of the glass members 5 are opposed to each other with the glass layer 3 interposed therebetween. Placed on the support stage 12. Accordingly, the plurality of extending portions Ra are set along each of the plurality of parallel lines 10A, and the plurality of extending portions Rb are set along each of the plurality of parallel lines 10B intersecting with the line 10A. In addition, the glass layer 3 containing the laser light absorbing pigment is disposed between the glass substrate 40 and the glass substrate 50 along each of the plurality of welding planned regions R (first step). In the glass substrate 50, a light emitting element region is formed for each glass member 5 on the surface 50 a facing the surface 40 a of the glass substrate 40.
 続いて、レーザヘッド13にレーザ光Lを出力させると共に支持ステージ12を駆動させることにより、図16に示されるように、ガラス層3にレーザ光Lを照射し、レーザ光Lの照射領域IRを各ライン10Aに沿って相対的に移動させる。このとき、ライン10Aに平行な方向に、照射領域IRの長手方向である第1の方向D1が一致させられる。つまり、各ライン10Aでは、ライン10Aに平行な方向における照射領域IRの幅がライン10Aに垂直な方向における照射領域IRの幅よりも大きくなるようにレーザ光Lが整形される。なお、各ライン10Aでは、ライン10Aに垂直な方向における照射領域IRの幅がライン10Aに垂直な方向におけるガラス層3の幅よりも大きくなるようにレーザ光Lが整形される。これにより、ガラス層3及びその周辺部分(ガラス基板40,50の表面40a,50a部分)が溶融・再固化し、溶着予定領域Rの延在部Raに沿ってガラス部材4とガラス部材5とが溶着される(第2の工程)。なお、溶着においては、ガラス層3が溶融し、ガラス基板40,50の少なくとも一方が溶融しない場合もある。 Subsequently, the laser beam L is output to the laser head 13 and the support stage 12 is driven to irradiate the glass layer 3 with the laser beam L as shown in FIG. It moves relatively along each line 10A. At this time, the first direction D1, which is the longitudinal direction of the irradiation region IR, is matched with the direction parallel to the line 10A. That is, in each line 10A, the laser beam L is shaped so that the width of the irradiation region IR in the direction parallel to the line 10A is larger than the width of the irradiation region IR in the direction perpendicular to the line 10A. In each line 10A, the laser beam L is shaped so that the width of the irradiation region IR in the direction perpendicular to the line 10A is larger than the width of the glass layer 3 in the direction perpendicular to the line 10A. Thereby, the glass layer 3 and its peripheral part ( surface 40a, 50a part of the glass substrates 40 and 50) fuse | melt and resolidify, and the glass member 4 and the glass member 5 along the extension part Ra of the welding plan area | region R Are welded (second step). In the welding, the glass layer 3 may melt and at least one of the glass substrates 40 and 50 may not melt.
 続いて、レーザヘッド13にレーザ光Lを出力させると共に支持ステージ12を駆動させることにより、ガラス層3にレーザ光Lを照射し、レーザ光Lの照射領域IRを各ライン10Bに沿って相対的に移動させる。このとき、ライン10Bに平行な方向に、照射領域IRの長手方向である第1の方向D1が一致させられる。つまり、各ライン10Bでは、ライン10Bに平行な方向における照射領域IRの幅がライン10Bに垂直な方向における照射領域IRの幅よりも大きくなるようにレーザ光Lが整形される。なお、各ライン10Bでは、ライン10Bに垂直な方向における照射領域IRの幅がライン10Bに垂直な方向におけるガラス層3の幅よりも大きくなるようにレーザ光Lが整形される。これにより、ガラス層3及びその周辺部分(ガラス基板40,50の表面40a,50a部分)が溶融・再固化し、溶着予定領域Rの延在部Rbに沿ってガラス部材4とガラス部材5とが溶着される(第2の工程)。なお、溶着においては、ガラス層3が溶融し、ガラス基板40,50の少なくとも一方が溶融しない場合もある。 Subsequently, the laser light L is output to the laser head 13 and the support stage 12 is driven to irradiate the glass layer 3 with the laser light L, and the irradiation region IR of the laser light L is relatively set along each line 10B. Move to. At this time, the first direction D1, which is the longitudinal direction of the irradiation region IR, is matched with the direction parallel to the line 10B. That is, in each line 10B, the laser beam L is shaped so that the width of the irradiation region IR in the direction parallel to the line 10B is larger than the width of the irradiation region IR in the direction perpendicular to the line 10B. In each line 10B, the laser beam L is shaped so that the width of the irradiation region IR in the direction perpendicular to the line 10B is larger than the width of the glass layer 3 in the direction perpendicular to the line 10B. Thereby, the glass layer 3 and its peripheral part ( surface 40a, 50a part of the glass substrates 40 and 50) fuse | melt and resolidify, and the glass member 4 and the glass member 5 along the extension part Rb of the welding plan area | region R Are welded (second step). In the welding, the glass layer 3 may melt and at least one of the glass substrates 40 and 50 may not melt.
 このように、制御部14は、照射領域IRが各ライン10Aに沿ってジグザグ状に移動するように支持ステージ12を制御し、その後、照射領域IRが各ライン10Bに沿ってジグザグ状に移動するように支持ステージ12を制御する。そして、制御部14は、各ライン10Aに沿った照射領域IRのジグザグ状の移動と、各ライン10Bに沿った照射領域IRのジグザグ状の移動との間に、ガラス基板40,50上から外れた位置において、ライン10Aに平行な方向に第1の方向D1が一致した状態から、ライン10Bに平行な方向に第1の方向D1が一致した状態になるように、回転ステージ18を制御する。 In this way, the control unit 14 controls the support stage 12 so that the irradiation region IR moves in a zigzag manner along each line 10A, and then the irradiation region IR moves in a zigzag manner along each line 10B. Thus, the support stage 12 is controlled. And the control part 14 remove | deviates from glass substrate 40,50 between the zigzag movement of the irradiation area | region IR along each line 10A, and the zigzag movement of the irradiation area | region IR along each line 10B. In this position, the rotary stage 18 is controlled so that the first direction D1 coincides with the direction parallel to the line 10B from the state where the first direction D1 coincides with the direction parallel to the line 10A.
 続いて、図17に示されるように、ガラス基板40,50から、溶着されたガラス部材4,5を切り出し(つまり、ガラス基板40,50を溶着予定領域Rごとに切断し)、複数(ここでは15セット)のガラス溶着体1を得る(第3の工程)。 Subsequently, as shown in FIG. 17, the glass members 4 and 5 that have been welded are cut out from the glass substrates 40 and 50 (that is, the glass substrates 40 and 50 are cut for each region to be welded R), and a plurality (here Then, 15 sets) of glass welded bodies 1 are obtained (third step).
 以上説明したように、ガラス溶着装置11、及びそれを用いたガラス溶着方法においては、シリンドリカルレンズ17によって長尺形状の照射領域IRとなるように整形されたレーザ光Lが、ガラス基板40,50間に配置されたガラス層3に照射され、そのレーザ光Lの照射領域IRが各ライン10A,10Bに沿って相対的に移動させられる。このとき、各ライン10Aに複数の延在部Raが沿い、かつ各ライン10Bに複数の延在部Rbが沿うように複数の溶着予定領域Rが設定され、各溶着予定領域Rに沿ってガラス層3が配置されている。そして、各ライン10Aではライン10Aに平行な方向に照射領域IRの長手方向(すなわち、第1の方向D1)が一致させられ、各ライン10Bではライン10Bに平行な方向に照射領域の長手方向が一致させられる。これにより、各ライン10A,10Bにおいて、レーザ光Lの照射領域IRが円形状等のスポット状である場合に比べ、ガラス層3の温度の上昇・下降を緩やかにしつつ、ガラス部材4,5同士を溶着するのに十分な熱量をガラス層3に与えることができる。 As described above, in the glass welding apparatus 11 and the glass welding method using the same, the laser light L shaped by the cylindrical lens 17 so as to be the elongated irradiation region IR is the glass substrates 40, 50. The glass layer 3 disposed therebetween is irradiated, and the irradiation region IR of the laser light L is relatively moved along the lines 10A and 10B. At this time, a plurality of planned welding regions R are set so that a plurality of extending portions Ra are along each line 10A and a plurality of extending portions Rb are along each line 10B, and a glass is formed along each planned welding region R. Layer 3 is arranged. In each line 10A, the longitudinal direction of the irradiation region IR (that is, the first direction D1) is made to coincide with the direction parallel to the line 10A, and in each line 10B, the longitudinal direction of the irradiation region is parallel to the line 10B. Matched. Thereby, in each line 10A, 10B, compared with the case where the irradiation region IR of the laser beam L is a spot shape such as a circular shape, the glass members 4 and 5 are connected to each other while the temperature of the glass layer 3 is moderately increased and decreased. A sufficient amount of heat can be applied to the glass layer 3 for welding.
 しかも、溶着予定領域Rにおいて延在部Ra,Rb同士が交差する交差部Rcでは、レーザ光Lの照射時に応力が集中し易いが、次の理由により、発生した応力を緩和させることができる。すなわち、溶着予定領域Rの交差部Rcにはレーザ光Lが2回照射されることになるが、1回目のレーザ光Lの照射時に、例えば交差部Rcにおいてガラス層3が結晶化すると、結晶化した部分の光吸収率が低下する。そのため、交差部Rcでは、2回目のレーザ光Lの照射時に、1回目のレーザ光Lの照射時に比べガラス層3の温度が上昇し難くなる。交差部Rcでは応力緩和過程が重要になるが、ガラス層3の温度が上昇し難い状況下で、例えばレーザ光Lの照射領域IRがスポット状であると、2回目のレーザ光Lの照射時に、応力を緩和させるのに十分な時間をとることができない。それに対し、レーザ光Lの照射領域IRが長尺形状であると、交差部Rcの周囲でもガラス層3が加熱されるので(つまり、与えられる熱量が大きくなるので)、2回目のレーザ光Lの照射時に、応力を緩和させるのに十分な時間をとって、発生した応力を緩和させることができる。 Moreover, at the intersection Rc where the extending portions Ra and Rb intersect in the planned welding region R, stress is likely to be concentrated when irradiated with the laser beam L, but the generated stress can be relaxed for the following reason. That is, the laser beam L is irradiated twice on the intersection Rc of the planned welding region R. When the glass layer 3 is crystallized at the intersection Rc, for example, at the first irradiation with the laser beam L, the crystal The light absorptivity of the converted part is lowered. Therefore, at the intersection Rc, the temperature of the glass layer 3 is less likely to rise when the second laser beam L is irradiated than when the first laser beam L is irradiated. Although the stress relaxation process is important at the intersection Rc, if the irradiation region IR of the laser beam L is spot-like, for example, in a situation where the temperature of the glass layer 3 is difficult to rise, the second laser beam L is irradiated. Cannot take enough time to relieve stress. On the other hand, if the irradiation region IR of the laser beam L has a long shape, the glass layer 3 is heated even around the intersection Rc (that is, the amount of heat applied increases), and the second laser beam L The generated stress can be relieved by taking a sufficient time to relieve the stress during irradiation.
 以上により、ガラス溶着装置11、及びそれを用いたガラス溶着方法によれば、溶着予定領域Rが、延在部Ra,Rb同士が交差する交差部Rcを含んでいても、ガラス層3やガラス部材4,5にクラック等の損傷が生じるのを防止しつつ、その溶着予定領域Rに沿ってガラス部材4,5同士を溶着することが可能となる。 According to the above, according to the glass welding apparatus 11 and the glass welding method using the same, even if the welding planned region R includes the intersection Rc where the extending portions Ra and Rb intersect each other, the glass layer 3 and the glass It becomes possible to weld the glass members 4 and 5 along the planned welding region R while preventing the members 4 and 5 from being damaged such as cracks.
 また、制御部14は、照射領域IRが各ライン10Aに沿って相対的に移動するように支持ステージ12を制御し、その後、照射領域IRが各ライン10Bに沿って相対的に移動するように支持ステージ12を制御する。これにより、照射領域IRの長手方向をライン10Aに平行な方向からライン10Bに平行な方向に変更する回数が1回で済むため、タクトタイムを短縮化することができる。 In addition, the control unit 14 controls the support stage 12 so that the irradiation region IR relatively moves along each line 10A, and then the irradiation region IR relatively moves along each line 10B. The support stage 12 is controlled. Thereby, since the number of times of changing the longitudinal direction of the irradiation region IR from the direction parallel to the line 10A to the direction parallel to the line 10B is only one, the tact time can be shortened.
 また、制御部14は、各ライン10Aではライン10Aに平行な方向に第1の方向D1が一致し、かつ各ライン10Bではライン10Bに平行な方向に第1の方向D1が一致するように、回転ステージ18を制御する。これにより、回転ステージ18がシリンドリカルレンズ17を回転させるという簡易な構成によって、ライン10Aに平行な方向及びライン10Bに平行な方向のそれぞれに照射領域IRの長手方向を一致させることができる。 In addition, the control unit 14 causes the first direction D1 to coincide with the direction parallel to the line 10A in each line 10A, and the first direction D1 to coincide with the direction parallel to the line 10B in each line 10B. The rotary stage 18 is controlled. Thereby, with the simple configuration in which the rotary stage 18 rotates the cylindrical lens 17, the longitudinal direction of the irradiation region IR can be made to coincide with the direction parallel to the line 10A and the direction parallel to the line 10B.
 なお、第2の方向D2における照射領域IRの幅を1としたときに、第1の方向D1における照射領域IRの幅が1.5~4となるように、シリンドリカルレンズ17がレーザ光Lを整形すれば、ガラス層3やガラス部材4,5にクラック等の損傷が生じるのをより確実に防止することができる。 When the width of the irradiation region IR in the second direction D2 is 1, the cylindrical lens 17 emits the laser light L so that the width of the irradiation region IR in the first direction D1 is 1.5 to 4. If it shapes, it can prevent more reliably that damage, such as a crack, arises in the glass layer 3 or the glass members 4 and 5. FIG.
 図18は、レーザ光の照射領域がスポット状である場合及び長尺形状である場合のそれぞれにおけるガラス層の温度を示すグラフである。図18に示されるように、レーザ光Lの照射領域IRがスポット状(例えば直径1.6mmの真円状)であると、ガラス層3(例えば幅0.8mm)の温度の上昇・下降が急になるので、ガラス層3が急加熱・急冷却されることになる。しかも、レーザ光Lの照射時間が短くなるので、ガラス層3が到達する最高温度を高くしないと、ガラス部材4,5同士を溶着するのに十分な熱量(図18における斜線ハッチング領域に相当する)をガラス層3に与えることができない。これらにより、レーザ光Lの照射領域IRがスポット状である場合には、ガラス層3やガラス部材4,5にクラック等の損傷が生じ易くなる。 FIG. 18 is a graph showing the temperature of the glass layer in each of the case where the laser light irradiation region has a spot shape and a long shape. As shown in FIG. 18, when the irradiation region IR of the laser beam L is spot-like (for example, a perfect circle having a diameter of 1.6 mm), the temperature of the glass layer 3 (for example, 0.8 mm in width) rises and falls. Since it becomes abrupt, the glass layer 3 is rapidly heated and cooled rapidly. Moreover, since the irradiation time of the laser beam L is shortened, the amount of heat sufficient to weld the glass members 4 and 5 to each other (corresponding to the hatched area in FIG. 18) unless the maximum temperature reached by the glass layer 3 is increased. ) Cannot be applied to the glass layer 3. As a result, when the irradiation region IR of the laser beam L is spot-like, damage such as cracks is likely to occur in the glass layer 3 and the glass members 4 and 5.
 それに対し、レーザ光Lの照射領域IRが長尺形状(例えば長径6mm、短径1.6mmの楕円状)であると、ガラス層3(例えば幅0.8mm)の温度の上昇・下降が緩やかになるので、ガラス層3が急加熱・急冷却されるのを防止することができる。しかも、レーザ光Lの照射時間が長くなるので、ガラス層3が到達する最高温度を高くしなくても、ガラス部材4,5同士を溶着するのに十分な熱量(図18におけるドットハッチング領域に相当する)をガラス層3に与えることができる。これらにより、レーザ光Lの照射領域IRが長尺形状である場合には、ガラス層3やガラス部材4,5にクラック等の損傷が生じるのを防止することが可能となる。更に、レーザ光Lの照射領域IRがスポット状である場合に比べレーザ光Lの照射時間が長くなる分、照射領域IRをライン10に沿って相対的に移動させる速度を速くすることもできるので、その場合には、タクトタイムを短縮化することが可能となる。 On the other hand, if the irradiation region IR of the laser beam L has a long shape (for example, an ellipse having a long diameter of 6 mm and a short diameter of 1.6 mm), the temperature of the glass layer 3 (for example, width 0.8 mm) rises and falls slowly. Therefore, it is possible to prevent the glass layer 3 from being rapidly heated or rapidly cooled. In addition, since the irradiation time of the laser beam L becomes longer, the amount of heat sufficient to weld the glass members 4 and 5 to each other without increasing the maximum temperature reached by the glass layer 3 (in the dot hatching region in FIG. 18). Can be applied to the glass layer 3. As a result, when the irradiation region IR of the laser beam L has a long shape, it is possible to prevent the glass layer 3 and the glass members 4 and 5 from being damaged such as cracks. Furthermore, since the irradiation time of the laser beam L is longer than that in the case where the irradiation region IR of the laser beam L is spot-like, the speed at which the irradiation region IR is relatively moved along the line 10 can be increased. In that case, the tact time can be shortened.
 以上、本発明の第2の実施形態について説明したが、本発明は、上記第2の実施形態に限定されるものではない。例えば、図19に示されるように、レーザヘッド13は、レーザ光出射部15、コリメートレンズ16、集光レンズ21、シリンドリカルレンズ(整形光学系)22及び回転ステージ18を有するものであってもよい。ここでは、シリンドリカルレンズ22の光入射面22aは、平面となっており、シリンドリカルレンズ22の光出射面22bは、第2の方向D2のみにレーザ光Lを収束させる凹面となっている。これにより、コリメートレンズ16によってコリメートされたレーザ光Lは、集光レンズ21によって集光された後、支持ステージ12上のガラス層3における照射領域IRが楕円形状となるように、シリンドリカルレンズ22によって整形される。 Although the second embodiment of the present invention has been described above, the present invention is not limited to the second embodiment. For example, as shown in FIG. 19, the laser head 13 may include a laser light emitting unit 15, a collimating lens 16, a condenser lens 21, a cylindrical lens (shaping optical system) 22, and a rotary stage 18. . Here, the light incident surface 22a of the cylindrical lens 22 is a flat surface, and the light emitting surface 22b of the cylindrical lens 22 is a concave surface that converges the laser light L only in the second direction D2. Thereby, the laser light L collimated by the collimating lens 16 is condensed by the condensing lens 21, and then the cylindrical lens 22 makes the irradiation region IR in the glass layer 3 on the support stage 12 have an elliptical shape. It is shaped.
 また、図20に示されるように、レーザヘッド13は、レーザ光出射部15、コリメートレンズ16、集光レンズ21、アキシコンレンズ(整形光学系)23及び回転ステージ18を有するものであってもよい。ここでは、アキシコンレンズ23の光入射面23aは、平面となっており、アキシコンレンズ23の光出射面23bは、峰が第1の方向D1に延在するように山折りされた平面となっている。これにより、コリメートレンズ16によってコリメートされたレーザ光Lは、集光レンズ21によって集光された後、支持ステージ12上のガラス層3における照射領域IRが長尺形状(弧と弦とからなる形状が互いの弧と弦とが接するように重ね合わされた形状)となるように、アキシコンレンズ23によって整形される。 Further, as shown in FIG. 20, the laser head 13 may include a laser beam emitting portion 15, a collimating lens 16, a condenser lens 21, an axicon lens (shaping optical system) 23, and a rotary stage 18. Good. Here, the light incident surface 23a of the axicon lens 23 is a flat surface, and the light exit surface 23b of the axicon lens 23 is a flat surface that is mountain-folded so that the peak extends in the first direction D1. It has become. Thereby, after the laser beam L collimated by the collimating lens 16 is collected by the condenser lens 21, the irradiation region IR in the glass layer 3 on the support stage 12 has a long shape (a shape composed of an arc and a string). Is shaped by the axicon lens 23 so that the arc and the string are in contact with each other.
 また、制御部14は、照射領域IRが各ライン10A,10Bに沿って相対的に移動する速度が大きくなるように、支持ステージ12及びレーザヘッド13の少なくとも一方を制御した場合に、第1の方向D1における照射領域IRの幅の、第2の方向D2における照射領域IRの幅を基準とする比が大きくなるように、レーザヘッド13を制御してもよい。例えば、制御部14は、照射領域IRが各ライン10A,10Bに沿って相対的に移動する速度が大きくなるように、支持ステージ12及びレーザヘッド13の少なくとも一方を制御した場合に、第2の方向D2における照射領域IRの幅を一定として、第1の方向D1における照射領域IRの幅が大きくなるように、レーザヘッド13を制御してもよい。これによれば、ガラス層3の所定の部分に対してレーザ光Lが照射される時間が短くなるのを抑制して、ガラス部材4,5同士を溶着するのに十分な熱量をガラス層3に与えることができる。なお、このような照射領域IRの形状の調整は、例えば、図19のレーザヘッド13において集光レンズ21とシリンドリカルレンズ22との距離を変更したり、図20のレーザヘッド13において集光レンズ21とアキシコンレンズ23との距離を変更したりすることで、実現可能である。 Further, the control unit 14 controls the first stage when at least one of the support stage 12 and the laser head 13 is controlled so that the speed at which the irradiation region IR relatively moves along the lines 10A and 10B is increased. The laser head 13 may be controlled so that the ratio of the width of the irradiation region IR in the direction D1 with respect to the width of the irradiation region IR in the second direction D2 is increased. For example, when the control unit 14 controls at least one of the support stage 12 and the laser head 13 so as to increase the speed at which the irradiation region IR relatively moves along the lines 10A and 10B, The laser head 13 may be controlled so that the width of the irradiation region IR in the first direction D1 is increased while the width of the irradiation region IR in the direction D2 is constant. According to this, the amount of heat sufficient to weld the glass members 4 and 5 to each other is suppressed while suppressing the time during which the laser beam L is applied to a predetermined portion of the glass layer 3 from being shortened. Can be given to. For example, the adjustment of the shape of the irradiation region IR may be performed by changing the distance between the condensing lens 21 and the cylindrical lens 22 in the laser head 13 of FIG. 19 or by the condensing lens 21 in the laser head 13 of FIG. This can be realized by changing the distance between the lens and the axicon lens 23.
 また、ライン10Aとライン10Bとは、直交する場合に限定されず、90°以外の角度で交差する場合を含む。更に、ライン10A,10Bは、直線である場合に限定されず、曲線である場合を含む。ライン10Aが曲線である場合、ライン10Aの接線に平行な方向に照射領域IRの長手方向を一致させればよい。同様に、ライン10Bが曲線である場合、ライン10Bの接線に平行な方向に照射領域IRの長手方向を一致させればよい。 Further, the line 10A and the line 10B are not limited to being orthogonal to each other, but include a case where they intersect at an angle other than 90 °. Further, the lines 10A and 10B are not limited to a straight line, but include a case of a curved line. When the line 10A is a curved line, the longitudinal direction of the irradiation region IR may be made to coincide with the direction parallel to the tangent to the line 10A. Similarly, when the line 10B is a curve, the longitudinal direction of the irradiation region IR may be made to coincide with the direction parallel to the tangent to the line 10B.
 また、上記第2の実施形態では、ガラス層3を加熱してガラスフリット2を溶融・再固化させることにより、ガラス基板40の表面40aに、レーザ光吸収性顔料を含むガラス層3を定着させたが、ガラス基板40に対するガラス層3の配置は、これに限定されない。一例として、ガラス基板40に対するガラス層3の配置は、ペースト層6を乾燥させて有機溶剤を除去し、ペースト層6を加熱してバインダを除去することにより、ガラス基板40の表面40aにガラス層3を固着させるだけでもよい。また、レーザ光Lの照射は、ガラス基板40側から実施してもよい。 In the second embodiment, the glass layer 3 containing the laser light-absorbing pigment is fixed to the surface 40a of the glass substrate 40 by heating the glass layer 3 to melt and resolidify the glass frit 2. However, the arrangement of the glass layer 3 with respect to the glass substrate 40 is not limited to this. As an example, the glass layer 3 is disposed on the glass substrate 40 by drying the paste layer 6 to remove the organic solvent, and heating the paste layer 6 to remove the binder, thereby removing the glass layer on the surface 40a of the glass substrate 40. 3 may be fixed. Further, the laser beam L may be irradiated from the glass substrate 40 side.
 本発明によれば、所定のラインが曲線部を含んでいても、ガラス層やガラス部材に損傷が生じるのを防止しつつ、そのラインに沿ってガラス部材同士を溶着することができる。 According to the present invention, even if a predetermined line includes a curved portion, it is possible to weld glass members along the line while preventing damage to the glass layer and the glass member.
 また、本発明によれば、溶着予定領域が、延在部同士が交差する交差部を含んでいても、ガラス層やガラス部材に損傷が生じるのを防止しつつ、その溶着予定領域に沿ってガラス部材同士を溶着することができる。 Further, according to the present invention, even if the planned welding region includes an intersection where the extending portions intersect, the glass layer and the glass member are prevented from being damaged, and along the planned welding region. Glass members can be welded together.
 1…ガラス溶着体、3…ガラス層、4…ガラス部材(第1のガラス部材)、5…ガラス部材(第2のガラス部材)、10…ライン、10a,10b…直線部、10c…曲線部、11…ガラス溶着装置、12…支持ステージ(ガラス部材支持部)、13…レーザヘッド(レーザ光照射部)、14…制御部、17,22…シリンドリカルレンズ(整形光学系)、18…回転ステージ(回転駆動体)、23…アキシコンレンズ(整形光学系)、10A…ライン(第1のライン)、10B…ライン(第2のライン)、40…ガラス基板(第1のガラス基板)、50…ガラス基板(第2のガラス基板)、R…溶着予定領域、Ra…延在部(第1の延在部)、Rb…延在部(第2の延在部)、Rc…交差部、L…レーザ光、IR…照射領域。 DESCRIPTION OF SYMBOLS 1 ... Glass welded body, 3 ... Glass layer, 4 ... Glass member (1st glass member), 5 ... Glass member (2nd glass member), 10 ... Line, 10a, 10b ... Linear part, 10c ... Curve part DESCRIPTION OF SYMBOLS 11 ... Glass welding apparatus, 12 ... Support stage (glass member support part), 13 ... Laser head (laser beam irradiation part), 14 ... Control part, 17, 22 ... Cylindrical lens (shaping optical system), 18 ... Rotation stage (Rotary drive), 23 ... axicon lens (shaping optical system), 10A ... line (first line), 10B ... line (second line), 40 ... glass substrate (first glass substrate), 50 ... glass substrate (second glass substrate), R ... planned welding region, Ra ... extension part (first extension part), Rb ... extension part (second extension part), Rc ... intersection part, L: Laser light, IR: Irradiation area.

Claims (9)

  1.  所定のラインに沿って第1のガラス部材と第2のガラス部材とを溶着するガラス溶着装置であって、
     前記第1のガラス部材と前記第2のガラス部材との間に、前記ラインに沿うように、レーザ光吸収材を含むガラス層が配置された状態で、前記第1のガラス部材及び前記第2のガラス部材を支持するガラス部材支持部と、
     前記ガラス部材支持部上の前記ガラス層において、第1の方向における幅が前記第1の方向に垂直な第2の方向における幅よりも大きい照射領域となるように、レーザ光を整形する整形光学系、及び前記レーザ光の光軸を中心として前記整形光学系を回転させる回転駆動体を有し、前記ガラス部材支持部上の前記ガラス層に前記レーザ光を照射するレーザ光照射部と、
     前記照射領域が前記ラインに沿って相対的に移動するように、前記ガラス部材支持部及び前記レーザ光照射部の少なくとも一方を制御すると共に、前記ラインの直線部では前記直線部に平行な方向に前記第1の方向が一致し、かつ前記ラインの曲線部では前記曲線部の接線に平行な方向に前記第1の方向が一致するように、前記回転駆動体を制御する制御部と、を備える、ガラス溶着装置。
    A glass welding apparatus for welding a first glass member and a second glass member along a predetermined line,
    Between the first glass member and the second glass member, the first glass member and the second glass member are disposed in a state where a glass layer including a laser light absorbing material is disposed along the line. A glass member support part for supporting the glass member;
    Shaping optics for shaping the laser light so that the glass layer on the glass member supporting portion has an irradiation region whose width in the first direction is larger than the width in the second direction perpendicular to the first direction. A laser driving unit for rotating the shaping optical system around the optical axis of the system and the laser beam, and irradiating the glass layer on the glass member support unit with the laser beam;
    At least one of the glass member support part and the laser light irradiation part is controlled so that the irradiation area relatively moves along the line, and the linear part of the line is in a direction parallel to the linear part. A control unit that controls the rotary drive body so that the first direction is coincident and the first direction coincides with a direction parallel to a tangent to the curvilinear part in the curved portion of the line. , Glass welding equipment.
  2.  前記整形光学系は、前記第2の方向における前記照射領域の幅を1としたときに、前記第1の方向における前記照射領域の幅が1.5~4となるように、前記レーザ光を整形する、請求項1記載のガラス溶着装置。 The shaping optical system emits the laser beam so that the width of the irradiation region in the first direction is 1.5 to 4 when the width of the irradiation region in the second direction is 1. The glass welding apparatus according to claim 1, wherein the glass welding apparatus is shaped.
  3.  前記制御部は、前記第1の方向における前記照射領域の幅が前記直線部と前記曲線部とで一定となり、かつ前記第2の方向における前記照射領域の幅が前記直線部に比べ前記曲線部で大きくなるように、前記レーザ光照射部を制御する、請求項1又は2記載のガラス溶着装置。 The control unit is configured such that the width of the irradiation region in the first direction is constant between the linear portion and the curved portion, and the width of the irradiation region in the second direction is the curved portion compared to the linear portion. The glass welding apparatus according to claim 1, wherein the laser beam irradiation unit is controlled to be large.
  4.  所定のラインに沿って第1のガラス部材と第2のガラス部材とを溶着し、ガラス溶着体を製造するガラス溶着方法であって、
     前記第1のガラス部材と前記第2のガラス部材との間に、前記ラインに沿うように、レーザ光吸収材を含むガラス層を配置する第1の工程と、
     前記ガラス層にレーザ光を照射し、前記レーザ光の照射領域を前記ラインに沿って相対的に移動させることにより、前記ラインに沿って前記第1のガラス部材と前記第2のガラス部材とを溶着する第2の工程と、を備え、
     前記第2の工程においては、前記ラインの直線部では、前記直線部に平行な方向における前記照射領域の幅が前記直線部に垂直な方向における前記照射領域の幅よりも大きくなるように前記レーザ光を整形し、前記ラインの曲線部では、前記曲線部の接線に平行な方向における前記照射領域の幅が前記接線に垂直な方向における前記照射領域の幅よりも大きくなるように前記レーザ光を整形する、ガラス溶着方法。
    A glass welding method for producing a glass welded body by welding a first glass member and a second glass member along a predetermined line,
    Between the first glass member and the second glass member, a first step of arranging a glass layer containing a laser light absorbing material along the line;
    By irradiating the glass layer with laser light and relatively moving the irradiation region of the laser light along the line, the first glass member and the second glass member are moved along the line. A second step of welding,
    In the second step, in the straight line portion of the line, the laser is set such that the width of the irradiation region in a direction parallel to the straight line portion is larger than the width of the irradiation region in a direction perpendicular to the straight line portion. The laser beam is shaped so that the width of the irradiation region in the direction parallel to the tangent of the curve portion is larger than the width of the irradiation region in the direction perpendicular to the tangent at the curved portion of the line. Glass welding method to shape.
  5.  第1の延在部と第2の延在部とが交差する交差部を含む溶着予定領域に沿って、第1のガラス部材と第2のガラス部材とを溶着するガラス溶着装置であって、
     複数の前記第1のガラス部材を含む第1のガラス基板と、複数の前記第2のガラス部材を含む第2のガラス基板との間に、互いに平行な複数の第1のラインのそれぞれに複数の前記第1の延在部が沿い、かつ前記第1のラインと交差する互いに平行な複数の第2のラインのそれぞれに複数の前記第2の延在部が沿うように設定された複数の前記溶着予定領域のそれぞれに沿って、レーザ光吸収材を含むガラス層が配置された状態で、前記第1のガラス基板及び前記第2のガラス基板を支持するガラス基板支持部と、
     前記ガラス基板支持部上の前記ガラス層において、第1の方向における幅が前記第1の方向に垂直な第2の方向における幅よりも大きい照射領域となるように、レーザ光を整形する整形光学系を有し、前記ガラス基板支持部上の前記ガラス層に前記レーザ光を照射するレーザ光照射部と、
     前記照射領域が前記第1のライン及び前記第2のラインのそれぞれに沿って相対的に移動するように、前記ガラス基板支持部及び前記レーザ光照射部の少なくとも一方を制御すると共に、前記第1のラインでは前記第1のラインに平行な方向に前記第1の方向が一致し、かつ前記第2のラインでは前記第2のラインに平行な方向に前記第1の方向が一致するように、前記ガラス基板支持部及び前記レーザ光照射部の少なくとも一方を制御する制御部と、を備える、ガラス溶着装置。
    A glass welding apparatus that welds the first glass member and the second glass member along a planned welding region including an intersection where the first extending portion and the second extending portion intersect,
    A plurality of first lines parallel to each other between a first glass substrate including a plurality of first glass members and a second glass substrate including a plurality of second glass members. A plurality of second extending portions are set along each of a plurality of second lines parallel to each other along the first extending portion and intersecting the first line. A glass substrate support part that supports the first glass substrate and the second glass substrate in a state in which a glass layer containing a laser light absorbing material is disposed along each of the planned welding regions,
    Shaping optics for shaping the laser light so that the glass layer on the glass substrate support part has an irradiation region whose width in the first direction is larger than the width in the second direction perpendicular to the first direction. A laser beam irradiating unit for irradiating the glass layer on the glass substrate supporting unit with the laser beam,
    At least one of the glass substrate support part and the laser light irradiation part is controlled so that the irradiation area relatively moves along each of the first line and the second line, and the first In the line, the first direction coincides with a direction parallel to the first line, and in the second line, the first direction coincides with a direction parallel to the second line, A glass welding apparatus comprising: a control unit that controls at least one of the glass substrate support unit and the laser beam irradiation unit.
  6.  前記制御部は、前記照射領域が前記第1のラインのそれぞれに沿って相対的に移動するように、前記ガラス基板支持部及び前記レーザ光照射部の少なくとも一方を制御し、その後、前記照射領域が前記第2のラインのそれぞれに沿って相対的に移動するように、前記ガラス基板支持部及び前記レーザ光照射部の少なくとも一方を制御する、請求項5記載のガラス溶着装置。 The control unit controls at least one of the glass substrate support unit and the laser beam irradiation unit so that the irradiation region relatively moves along each of the first lines, and then the irradiation region. The glass welding apparatus according to claim 5, wherein at least one of the glass substrate support part and the laser beam irradiation part is controlled so that the relative movement moves along each of the second lines.
  7.  前記レーザ光照射部は、前記レーザ光の光軸を中心として前記整形光学系を回転させる回転駆動体を更に有し、
     前記制御部は、前記第1のラインでは前記第1のラインに平行な方向に前記第1の方向が一致し、かつ前記第2のラインでは前記第2のラインに平行な方向に前記第1の方向が一致するように、前記回転駆動体を制御する、請求項5又は6記載のガラス溶着装置。
    The laser beam irradiation unit further includes a rotation driving body that rotates the shaping optical system around the optical axis of the laser beam,
    In the first line, the control unit matches the first direction in a direction parallel to the first line, and in the second line, the first direction is parallel to the second line. The glass welding apparatus according to claim 5, wherein the rotary driving body is controlled so that the directions of the two coincide with each other.
  8.  前記制御部は、前記照射領域が前記第1のライン及び前記第2のラインのそれぞれに沿って相対的に移動する速度が大きくなるように、前記ガラス基板支持部及び前記レーザ光照射部の少なくとも一方を制御した場合に、前記第1の方向における前記照射領域の幅の、前記第2の方向における前記照射領域の幅を基準とする比が大きくなるように、前記レーザ光照射部を制御する、請求項5~7のいずれか一項記載のガラス溶着装置。 The control unit includes at least the glass substrate support unit and the laser beam irradiation unit so that a speed at which the irradiation region relatively moves along each of the first line and the second line is increased. When one is controlled, the laser light irradiation unit is controlled so that a ratio of the width of the irradiation region in the first direction with respect to the width of the irradiation region in the second direction is increased. The glass welding apparatus according to any one of claims 5 to 7.
  9.  第1の延在部と第2の延在部とが交差する交差部を含む溶着予定領域に沿って、第1のガラス部材と第2のガラス部材とを溶着し、ガラス溶着体を製造するガラス溶着方法であって、
     複数の前記第1のガラス部材を含む第1のガラス基板と、複数の前記第2のガラス部材を含む第2のガラス基板との間に、互いに平行な複数の第1のラインのそれぞれに複数の前記第1の延在部が沿い、かつ前記第1のラインと交差する互いに平行な複数の第2のラインのそれぞれに複数の前記第2の延在部が沿うように設定された複数の前記溶着予定領域のそれぞれに沿って、レーザ光吸収材を含むガラス層を配置する第1の工程と、
     前記ガラス層にレーザ光を照射し、前記レーザ光の照射領域を前記第1のライン及び前記第2のラインのそれぞれに沿って相対的に移動させることにより、前記溶着予定領域に沿って前記第1のガラス部材と前記第2のガラス部材とを溶着する第2の工程と、
     前記第1のガラス基板及び前記第2のガラス基板を前記溶着予定領域ごとに切断し、複数の前記ガラス溶着体を得る第3の工程と、を備え、
     前記第2の工程においては、前記第1のラインでは、前記第1のラインに平行な方向における前記照射領域の幅が前記第1のラインに垂直な方向における前記照射領域の幅よりも大きくなるように前記レーザ光を整形し、前記第2のラインでは、前記第2のラインに平行な方向における前記照射領域の幅が前記第2のラインに垂直な方向における前記照射領域の幅よりも大きくなるように前記レーザ光を整形する、ガラス溶着方法。
    A first glass member and a second glass member are welded along a planned welding region including an intersecting portion where the first extending portion and the second extending portion intersect to produce a glass welded body. A glass welding method,
    A plurality of first lines parallel to each other between a first glass substrate including a plurality of first glass members and a second glass substrate including a plurality of second glass members. A plurality of second extending portions are set along each of a plurality of second lines parallel to each other along the first extending portion and intersecting the first line. A first step of disposing a glass layer containing a laser light absorbing material along each of the planned welding regions;
    The glass layer is irradiated with a laser beam, and the irradiation region of the laser beam is relatively moved along each of the first line and the second line, so that the first layer is formed along the planned welding region. A second step of welding the first glass member and the second glass member;
    Cutting the first glass substrate and the second glass substrate for each of the planned welding regions, and obtaining a plurality of the glass welded bodies, and a third step,
    In the second step, in the first line, the width of the irradiation region in a direction parallel to the first line is larger than the width of the irradiation region in a direction perpendicular to the first line. In the second line, the width of the irradiation region in the direction parallel to the second line is larger than the width of the irradiation region in the direction perpendicular to the second line. A glass welding method for shaping the laser beam so as to be.
PCT/JP2011/078319 2010-12-08 2011-12-07 Glass welding device and glass welding method WO2012077718A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010273510A JP2012121758A (en) 2010-12-08 2010-12-08 Glass welding device and glass welding method
JP2010-273510 2010-12-08
JP2010-273514 2010-12-08
JP2010273514A JP5745262B2 (en) 2010-12-08 2010-12-08 Glass welding apparatus and glass welding method

Publications (1)

Publication Number Publication Date
WO2012077718A1 true WO2012077718A1 (en) 2012-06-14

Family

ID=46207204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078319 WO2012077718A1 (en) 2010-12-08 2011-12-07 Glass welding device and glass welding method

Country Status (2)

Country Link
TW (1) TW201228763A (en)
WO (1) WO2012077718A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121733A (en) * 2012-12-21 2014-07-03 Primoceler Oy Method for welding components including base layer together using condensed laser beam
US20200156987A1 (en) * 2017-07-05 2020-05-21 University Of Southampton Method for fabricating an optical fibre preform

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517446A (en) * 2004-10-20 2008-05-22 コーニング インコーポレイテッド Optimization of parameters for sealing organic light emitting diode (OLED) displays
JP2008532207A (en) * 2005-12-06 2008-08-14 コーニング インコーポレイテッド Method for manufacturing a glass envelope
WO2009131144A1 (en) * 2008-04-25 2009-10-29 浜松ホトニクス株式会社 Process for fusing glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517446A (en) * 2004-10-20 2008-05-22 コーニング インコーポレイテッド Optimization of parameters for sealing organic light emitting diode (OLED) displays
JP2008532207A (en) * 2005-12-06 2008-08-14 コーニング インコーポレイテッド Method for manufacturing a glass envelope
WO2009131144A1 (en) * 2008-04-25 2009-10-29 浜松ホトニクス株式会社 Process for fusing glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121733A (en) * 2012-12-21 2014-07-03 Primoceler Oy Method for welding components including base layer together using condensed laser beam
TWI551385B (en) * 2012-12-21 2016-10-01 普里莫席勒公司 A method to weld together pieces that contain substratum using a focused laser beam
US20200156987A1 (en) * 2017-07-05 2020-05-21 University Of Southampton Method for fabricating an optical fibre preform
US11964899B2 (en) * 2017-07-05 2024-04-23 University Of Southampton Method for fabricating an optical fibre preform

Also Published As

Publication number Publication date
TW201228763A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
JP5567319B2 (en) Glass welding method and glass layer fixing method
JP5535653B2 (en) Glass welding method
KR101747463B1 (en) Glass welding method
JP5481172B2 (en) Glass welding method and glass layer fixing method
JP5530233B2 (en) Sealing device
TWI490072B (en) Glass welding method and glass layer fixation method
JP5535592B2 (en) Glass layer fixing method and glass layer fixing device
WO2009131144A1 (en) Process for fusing glass
JP2011063499A (en) Method for fixing glass layer
WO2012077718A1 (en) Glass welding device and glass welding method
KR102240325B1 (en) Work separation device and work separation method
KR100910047B1 (en) A Sealing Method of FPD using Flexible Irradiating Area of Laser
JP2012121758A (en) Glass welding device and glass welding method
JP5745262B2 (en) Glass welding apparatus and glass welding method
JP5869946B2 (en) Glass welding method
JP6166587B2 (en) Cutting method of resin plate attached to glass substrate
JP5264266B2 (en) Glass welding method
JP2014048432A (en) Processing method of cell substrate
JP5498310B2 (en) Glass welding method
WO2014155846A1 (en) Machining device
WO2011065104A1 (en) Glass welding method
JP5264267B2 (en) Glass welding method
JP2013216540A (en) Glass welding method
WO2011065107A1 (en) Glass welding method
KR20240109935A (en) The Laser Irradiating Apparatus consisting of Beam Rearrangement Part which control the Irradiation Area of the light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846276

Country of ref document: EP

Kind code of ref document: A1