WO2012077674A1 - Resin composition and uses thereof - Google Patents

Resin composition and uses thereof Download PDF

Info

Publication number
WO2012077674A1
WO2012077674A1 PCT/JP2011/078172 JP2011078172W WO2012077674A1 WO 2012077674 A1 WO2012077674 A1 WO 2012077674A1 JP 2011078172 W JP2011078172 W JP 2011078172W WO 2012077674 A1 WO2012077674 A1 WO 2012077674A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
copper salt
infrared absorber
fine particles
Prior art date
Application number
PCT/JP2011/078172
Other languages
French (fr)
Japanese (ja)
Inventor
留美 佐野
町田 克一
岳志 島
彩 竹内
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2012547869A priority Critical patent/JPWO2012077674A1/en
Publication of WO2012077674A1 publication Critical patent/WO2012077674A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10743Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing acrylate (co)polymers or salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the present invention relates to a resin composition and its use, and more particularly to a resin composition comprising a near infrared absorber and an ionomer resin and its use.
  • laminated glass is used in various applications such as vehicles such as automobiles, buildings, and solar cells.
  • an interlayer film for laminated glass a polyvinyl butyral resin film, an ionomer resin film, and the like are known.
  • ionomer resins have excellent strength and hardness compared to polyvinyl butyral resins, and are excellent in durability, transparency, and adhesiveness, and therefore can be suitably used as an intermediate film for structural materials such as laminated glass. is there.
  • the sun rays include ultraviolet rays, infrared rays and the like in addition to visible rays.
  • infrared rays infrared rays having a wavelength close to visible light are called near infrared rays.
  • Near-infrared rays are also called heat rays and are one of the causes of temperature rise inside vehicles and buildings.
  • Patent Document 1 a copper salt composition containing a phosphonic acid copper salt, a polysiloxane component, a plasticizer, and a dispersant is known (see, for example, Patent Document 1).
  • Patent Document 1 provides an infrared absorption film in which the resin composition containing the copper salt composition and the resin is excellent in visible light transmission and stability even when exposed to high temperatures. It is disclosed that it is possible.
  • Patent Document 1 discloses a polyvinyl acetal resin, an ethylene-vinyl acetate copolymer (EVA), a (meth) acrylic resin, a polyester resin, a polyurethane resin, a vinyl chloride resin, and a polyolefin as a resin mixed with a copper salt composition. Resins, polycarbonate resins, norbornene resins and the like are disclosed.
  • the present invention has been made in view of the above prior art, and an object thereof is to provide a resin composition having a near-infrared absorbing ability, comprising a near-infrared absorber and an ionomer resin, and a use of the composition. To do.
  • the inventors of the present invention have intensively studied in order to achieve the above-mentioned problems.
  • the present inventors have found that when an ionomer resin and a copper salt which is a conventional near infrared absorber are mixed, the resulting resin composition is colored and inferior in near infrared absorption ability.
  • the inventors speculated that this cause is due to ion exchange between the metal ion contained in the ionomer resin and the copper ion contained in the near-infrared absorber.
  • the present inventors have further researched, and as a near-infrared absorber, by using a powder in which a specific copper salt is coated with at least one selected from a resin and a polysiloxane, a resin excellent in near-infrared absorption ability We have found that it is possible to provide a composition and have completed the present invention.
  • the resin composition of the present invention is a resin composition comprising a near-infrared absorber and an ionomer resin, and the near-infrared absorber comprises fine particles comprising a phosphonic acid copper salt represented by the following general formula (1). It is a powder coated with at least one selected from resin (A) and polysiloxane (B).
  • R 1 is a monovalent group represented by —CH 2 CH 2 —R 11
  • R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. Represents -20 fluorinated alkyl groups.
  • at least one selected from the resin (A) and the polysiloxane (B) is the resin (A).
  • the resin (A) is formed using a crosslinking agent as at least a part of the monomer. More preferably, the cross-linking agent is at least one cross-linking agent selected from a polyfunctional aromatic vinyl compound and a polyfunctional (meth) acrylic acid ester.
  • the resin (A) is formed using a monofunctional monomer as at least a part of the monomer.
  • Embodiment B of the resin composition of the present invention at least one selected from the resin (A) and the polysiloxane (B) is polysiloxane (B).
  • the polysiloxane (B) is preferably formed from at least one silicon-based compound selected from alkoxysilanes, hydrolysates of alkoxysilanes, and condensates thereof.
  • the ionomer resin is an ionomer of an ethylene / unsaturated carboxylic acid copolymer.
  • the near-infrared absorber is obtained by dispersing fine particles of a phosphonic acid copper salt represented by the general formula (1) in a monomer to obtain a copper salt-containing monomer, and bulk-polymerizing the copper salt-containing monomer. It is preferable to obtain the polymer and pulverize the polymer. It is preferable that the monomer is 0.01 to 20 parts by mass with respect to 1 part by mass of the fine particles made of phosphonic acid copper salt.
  • the near-infrared absorber is at least one selected from fine particles comprising a copper phosphonate represented by the general formula (1), alkoxysilane, a hydrolyzate of alkoxysilane, and a condensate thereof. It is preferably obtained by mixing a seed silicon compound, obtaining polysiloxane (B) from the silicon compound, and pulverizing the reaction product. It is preferable that the silicon-based compound is 0.3 to 20 parts by mass in terms of SiO 2 with respect to 1 part by mass of copper in fine particles made of a phosphonic acid copper salt.
  • the resin composition of the aspect B is a resin composition comprising a near-infrared absorber and an ionomer resin
  • the near-infrared absorber is a fine particle comprising a phosphonic acid copper salt represented by the following general formula (1)
  • R 1 is a monovalent group represented by —CH 2 CH 2 —R 11
  • R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. Represents -20 fluorinated alkyl groups.
  • the laminated glass of the present invention has the interlayer film for laminated glass.
  • the resin composition of the present invention comprises a near infrared absorber and an ionomer resin, and is excellent in near infrared absorption ability. Moreover, the resin film formed from this resin composition can be suitably used as an interlayer film for laminated glass.
  • the TEM photograph of the resin-coated copper salt powder (2) of Example A2 is shown.
  • seat formed from the resin composition of the comparative example 1 is shown.
  • seat formed from the resin composition of Example A1 is shown.
  • seat formed from the resin composition of Example A2 is shown.
  • seat formed from the resin composition of Example A3 is shown.
  • seat formed from the resin composition of Example A4 is shown.
  • seat formed from the resin composition of the comparative example 1 and Example B1 is shown.
  • seat formed from the resin composition of the comparative example 1 and Example B2 is shown.
  • seat formed from the resin composition of the comparative example 1 and Example B3 is shown.
  • seat formed from the resin composition of the comparative example 1 and Example B4 is shown.
  • the resin composition of the present invention is a resin composition comprising a near-infrared absorber and an ionomer resin, and the near-infrared absorber is a resin comprising fine particles comprising a phosphonic acid copper salt represented by the general formula (1) described later. It is a powder coated with at least one selected from (A) and polysiloxane (B).
  • the phosphonic acid copper salt represented by the general formula (1) is also referred to as a specific phosphonic acid copper salt.
  • the near-infrared absorber may be a powder in which fine particles made of the specific copper phosphonate salt are coated with the resin (A) and the polysiloxane (B), but preferably the resin (A) or the polysiloxane (B). It is a coated powder.
  • an embodiment in which a powder in which fine particles composed of the specific phosphonic acid copper salt are coated with the resin (A) is used as the near infrared absorber is also referred to as an embodiment A.
  • an embodiment in which a powder in which fine particles made of the specific copper phosphonate salt are coated with polysiloxane (B) is used as the near infrared absorber is also referred to as an embodiment B.
  • the near-infrared absorber used in the present invention is a powder in which fine particles comprising a phosphonic acid copper salt represented by the following general formula (1) are coated with at least one selected from a resin (A) and a polysiloxane (B) It is.
  • Examples of the near-infrared absorber include a powder in which fine particles composed of a phosphonic acid copper salt represented by the following general formula (1) are coated with a resin (A), or a phosphonic acid copper salt represented by the following general formula (1).
  • a powder in which the fine particles are coated with polysiloxane (B) is preferable.
  • the fine particles comprising the phosphonic acid copper salt represented by the following general formula (1) constituting the near infrared absorber may be formed only from the phosphonic acid copper salt represented by the following general formula (1), You may form from the phosphonic acid copper salt represented by following General formula (1), and another component.
  • R 1 is a monovalent group represented by —CH 2 CH 2 —R 11
  • R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. Represents -20 fluorinated alkyl groups.
  • R 11 is preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 11 hydrogen atom, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group and the like are preferable.
  • a phosphonic acid copper salt represented by General formula (1) it may be used individually by 1 type, or 2 or more types may be used.
  • phosphonic acid copper salt represented by the general formula (1) is also simply referred to as “phosphonic acid copper salt”.
  • the copper salt containing a fluorine atom is used as the said phosphonic acid copper salt
  • fine-particles which consist of a phosphonic acid copper salt with respect to resin (A) to improve.
  • a group having a fluorine atom is used as R 11 of the phosphonic acid copper salt
  • uneven distribution occurs even when a dispersant described later is not used or when the amount of the dispersant used is small.
  • the fine particles comprising the phosphonic acid copper salt can be dispersed in the resin (A) without any problem.
  • the method for producing fine particles comprising a phosphonic acid copper salt used in the present invention is not particularly limited, and for example, it can be produced by the following method.
  • a phosphonic acid compound represented by the following general formula (2) and a copper salt are preferably mixed in a solvent in a solvent to obtain a reaction mixture.
  • a reaction step a step of obtaining fine particles composed of a phosphonic acid copper salt by removing a solvent in the reaction mixture.
  • R 1 is a monovalent group represented by —CH 2 CH 2 —R 11
  • R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. Represents -20 fluorinated alkyl groups.
  • the phosphonic acid compound represented by the general formula (2) those in which R 11 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms are preferred.
  • Examples of the phosphonic acid compound represented by the general formula (2) include ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, pentylphosphonic acid, hexylphosphonic acid, heptylphosphonic acid, octylphosphonic acid, nonylphosphonic acid, and decylphosphonic acid.
  • Examples thereof include alkylphosphonic acids such as acid, undecylphosphonic acid, dodecylphosphonic acid, tridecylphosphonic acid, tetradecylphosphonic acid, pentadecylphosphonic acid, hexadecylphosphonic acid, heptadecylphosphonic acid, and octadecylphosphonic acid.
  • a phosphonic acid compound represented by General formula (2) it may be used individually by 1 type, or 2 or more types may be used.
  • the copper salt a copper salt capable of supplying divalent copper ions is usually used.
  • the copper salt may be a copper salt other than the phosphonic acid copper salt represented by the general formula (1).
  • Examples of the copper salt include copper of organic acids such as anhydrous copper acetate, anhydrous copper formate, anhydrous copper stearate, anhydrous copper benzoate, anhydrous ethyl acetoacetate copper, anhydrous pyrophosphate, anhydrous naphthenic acid copper, and anhydrous copper citrate.
  • Salt, hydrate or hydrate of copper salt of organic acid copper salt of inorganic acid such as copper oxide, copper chloride, copper sulfate, copper nitrate, basic copper carbonate, hydrate of copper salt of inorganic acid Or a hydrate; copper hydroxide is mentioned.
  • copper salt you may use individually by 1 type, or may use 2 or more types.
  • anhydrous copper acetate and copper acetate monohydrate are preferably used from the viewpoint of solubility and removal of by-products.
  • a dispersant When producing fine particles comprising a phosphonic acid copper salt, a dispersant is preferably used. It is preferable to use a dispersant because the dispersibility of the phosphonic acid copper salt represented by the general formula (1) is improved.
  • the dispersant include at least one phosphate ester compound selected from a phosphate ester compound represented by the general formula (3a) and a phosphate ester compound represented by the general formula (3b), the phosphoric acid
  • the phosphoric acid in an ester compound, ie, the compound which neutralized the hydroxyl group with the base is mentioned.
  • the base used for neutralization include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, magnesium hydroxide, and calcium hydroxide.
  • R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , and n is 4 to 35 R 5 is an integer, and R 5 represents an alkyl group having 6 to 25 carbon atoms or an alkylphenyl group having 6 to 25 carbon atoms. However, R 21 , R 22 and R 23 may be the same or different.
  • the near-infrared absorber used in the present invention is a powder in which fine particles made of the specific copper phosphonate salt are coated with the resin (A)
  • the n is preferably 4 to 25, More preferably, it is 6-15.
  • the near-infrared absorber used in the present invention is a powder in which the fine particles comprising the specific copper phosphonate salt are coated with polysiloxane (B), the n is preferably 6 to 25. .
  • n When n is less than 4, transparency may be insufficient when a laminated glass or the like is produced. Moreover, when n exceeds the said range, the quantity of a phosphoric acid ester compound required in order to obtain the laminated glass etc. which have sufficient transparency will increase, and there exists a tendency which becomes a cause of high cost.
  • R 5 is an alkyl group having 6 to 25 carbon atoms or an alkylphenyl group having 6 to 25 carbon atoms, preferably an alkyl group having 6 to 25 carbon atoms, and preferably an alkyl group having 12 to 20 carbon atoms. Is more preferable.
  • R 5 is a group having less than 6 carbon atoms, transparency may be insufficient when a laminated glass or the like is produced. Further, if R 5 is a group having more than 25 carbon atoms, the amount of the phosphoric acid ester compound required to obtain a laminated glass having sufficient transparency tends to increase, leading to high costs. .
  • the phosphoric acid ester compound represented by the general formula (3a) and the phosphoric acid ester compound represented by the general formula (3b) is used.
  • the phosphate ester compound represented by the general formula (3a) and the phosphate ester compound represented by the general formula (3b) are used, the phosphate ester compound represented by the general formula (3a) And the ratio of the phosphoric acid ester compound represented by the general formula (3b) is not particularly limited, but is usually 10:90 to 90:10 in molar ratio ((3a) :( 3b)).
  • a phosphate ester compound represented by the said general formula (3a) it may be used individually by 1 type, or 2 or more types may be used, and the phosphate ester compound represented by the said General formula (3b) May be used alone or in combination of two or more.
  • phosphate ester compound selected from the phosphate ester compound represented by the general formula (3a) and the phosphate ester compound represented by the general formula (3b) commercially available phosphoric acid Ester compounds such as DLP-8, DLP-10, DDP-8, DDP-10, TDP-8, TDP-10 (above, manufactured by Nikko Chemicals), Prisurf A219B, Prisurf A210B (above, No. 1) Ichikogaku Kagaku Co., Ltd.) can also be used.
  • the phosphoric acid in these phosphate ester compounds, ie, the compound which neutralized the hydroxyl group with the appropriate base can also be used.
  • the base used for neutralization include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide and the like.
  • the dispersant is at least one phosphate ester compound selected from a phosphate ester compound represented by the general formula (3a) and a phosphate ester compound represented by the general formula (3b), and / or
  • phosphoric acid in the phosphoric ester compound that is, a compound obtained by neutralizing a hydroxyl group with a base, it is preferably used in an amount of 0.02 to 0.40 mol per mol of the copper salt.
  • the reaction step is preferably carried out at room temperature to 60 ° C., more preferably 20 to 40 ° C., preferably for 0.5 to 50 hours, more preferably for 1 to 30 hours.
  • the phosphonic acid compound represented by the general formula (2) reacts with the copper salt, and fine phosphonic acid copper salt that does not dissolve in the solvent is generated by the reaction.
  • At least one phosphate ester compound selected from the phosphate ester compound represented by the general formula (3a) and the phosphate ester compound represented by the general formula (3b) acts as a good dispersant during the reaction. Therefore, the phosphonic acid copper salt can maintain high dispersibility and suppress aggregation.
  • the reaction step not only the reaction between the phosphonic acid compound represented by the general formula (2) and the copper salt, but also, for example, the phosphate ester compound represented by the general formula (3a) and the general formula (3b) At least one type of phosphate ester compound selected from the phosphate ester compounds represented by) may react with a part of the copper salt. Further, a part of the raw material may remain without reacting.
  • the fine particles composed of the copper phosphonate are usually obtained by removing at least a part of the solvent from the reaction mixture.
  • the solvent removal step at least a part of the solvent is removed from the reaction mixture.
  • the liquid components in the reaction mixture may be removed together.
  • the solvent removal step at least a part of the solvent is usually removed by heating the reaction mixture, but the heating condition is usually room temperature to 70 ° C., preferably 40 to 60 ° C.
  • the solvent removal step may be performed under normal pressure or under reduced pressure. When the solvent removal step is performed under reduced pressure, heating may not be performed or the heating temperature may be low.
  • the phosphonic acid copper salt fine particles are dispersed in the dispersion medium, and then the dispersion medium is removed.
  • a process may be provided.
  • the near-infrared absorber used in the present invention is a powder in which the fine particles comprising the phosphonic acid copper salt are coated with at least one selected from the resin (A) and the polysiloxane (B) as described above.
  • the near-infrared absorber is preferably a powder in which the fine particles comprising the phosphonic acid copper salt are coated with the resin (A) or the polysiloxane (B) as described above.
  • fine particles comprising the phosphonic acid copper salt constituting the near-infrared absorber used in the present invention fine particles comprising a phosphonic acid copper salt having an average particle diameter of 1 to 1000 nm are usually used.
  • the average particle size is more preferably 5 to 300 nm in order to ensure dispersibility in the monomer and transparency of the resin composition.
  • the near-infrared absorber is a powder in which fine particles made of the copper phosphonate are coated with the resin (A) will be described.
  • the resin (A) constituting the near-infrared absorber is not particularly limited as long as it is a resin that can disperse the fine particles of the phosphonic acid copper salt and can be dispersed with respect to the ionomer resin. Absent.
  • the resin (A) is preferably formed using a crosslinking agent as at least a part of the monomer from the viewpoint of heat resistance when kneaded with the ionomer resin.
  • a cross-linking agent is a compound having at least two functional groups capable of radical polymerization in one molecule, and examples thereof include polyfunctional aromatic vinyl compounds and polyfunctional (meth) acrylic esters. It may be used or two or more kinds may be used.
  • (meth) acrylic acid means “methacrylic acid” and “acrylic acid”.
  • polyfunctional aromatic vinyl compound examples include divinylbenzene, diisopropenylbenzene, and trivinylbenzene.
  • polyfunctional (meth) acrylic acid ester examples include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polyethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 2,2-bis (4-methacryloxyethoxyphenyl) propane, tricyclodecane dimethanol dimethacrylate, trimethylolpropane triacrylate, pentaerythritol trimethacrylate, pentaerythritol tetraacrylate .
  • crosslinking agent ethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate and the like are preferable.
  • the resin (A) is preferably formed using a monofunctional monomer as at least a part of the monomer from the viewpoint of moldability.
  • the monofunctional monomer include a monofunctional aromatic vinyl compound. , Monofunctional (meth) acrylic acid esters, and ⁇ -olefins. These may be used alone or in combination of two or more.
  • Examples of the monofunctional aromatic vinyl compound include styrene, ⁇ -methylstyrene, ethylstyrene, tert-butylstyrene, chlorostyrene, dibromostyrene, methoxystyrene, vinylbenzoic acid, and hydroxymethylstyrene.
  • Examples of the monofunctional (meth) acrylic acid ester include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate.
  • monofunctional (meth) acrylic acid ester methyl methacrylate, n-butyl methacrylate, 2-ethylhexyl
  • an ⁇ -olefin having 4 to 18 carbon atoms is usually used, and examples thereof include 1-butene, 1-propene, 1-hexene, 1-octene and 1-decene.
  • the resin (A) is usually preferably formed using a crosslinking agent and a monofunctional (meth) acrylate as monomers, from the viewpoint of obtaining the effect of suppressing ion exchange.
  • the crosslinking agent is preferably used in an amount of 1 part by mass or more and the monofunctional monomer of 99 parts by mass or less per 100 parts by mass of the monomer used for producing the resin (A), and the crosslinking agent is used in an amount of 5 to 99 parts by mass. It is more preferable to use 1 to 95 parts by mass of the functional monomer, and it is particularly preferable to use 10 to 90 parts by mass of the crosslinking agent and 10 to 90 parts by mass of the monofunctional monomer.
  • the near-infrared absorber is a powder in which the fine particles comprising the phosphonic acid copper salt are coated with the resin (A) as described above, and
  • the production method is not particularly limited.
  • the monomer is polymerized in the presence of the fine particles composed of the aforementioned phosphonic acid copper salt to obtain a polymer composed of the fine particles composed of the phosphonic acid copper salt and the resin (A).
  • the near-infrared absorber can be obtained by pulverizing the polymer.
  • the polymerization method of the monomer is not particularly limited, and the polymerization is performed by a polymerization method such as bulk polymerization, suspension polymerization, emulsion polymerization or the like. Among these, bulk polymerization that allows easy polymerization is preferable. In addition, since the polymer obtained by bulk polymerization is obtained in the form of a bulk (lumb), the near-infrared absorber used for this invention is obtained by grind
  • fine particles comprising a phosphonic acid copper salt represented by the general formula (1) are dispersed in a monomer to obtain a copper salt-containing monomer,
  • the copper salt-containing monomer is bulk polymerized to obtain a polymer, and the polymer is pulverized to obtain a near-infrared absorber, that is, fine particles composed of a phosphonic acid copper salt represented by the general formula (1) are resin ( A method for obtaining the powder coated with A) is mentioned.
  • fine particles composed of copper phosphonate are dispersed in a dispersion medium to obtain a dispersion, and after adding the monomer to the dispersion, the dispersion medium is removed to remove the copper salt.
  • the method of obtaining a containing monomer is mentioned.
  • the dispersion medium those capable of dispersing fine particles made of the phosphonic acid copper salt are used, and usually low-boiling organic substances are used.
  • methylene chloride, acetone, methanol, chloroform and the like are used.
  • the dispersion medium is added to the fine particles composed of the phosphonic acid copper salt, and by a method such as ultrasonic irradiation, homogenizer, stirring, heating and stirring, Examples thereof include a method of dispersing fine particles comprising the phosphonic acid copper salt in a dispersion medium.
  • the monomer is preferably dissolved by adding the aforementioned monomer to the dispersion.
  • the dispersion medium by removing the dispersion medium, it is possible to obtain a copper salt-containing monomer in which fine particles composed of the phosphonic acid copper salt are dispersed.
  • the method for removing the dispersion medium is not particularly limited, and examples thereof include removal of the dispersion medium by reduced pressure and removal by a combination of heating and reduced pressure.
  • the remaining monomer when adding a monomer to a dispersion liquid, after adding a part of monomer to a dispersion liquid and removing a dispersion medium, the remaining monomer may be further added and mixed.
  • the metal ion which ionomer resin has, and the copper ion contained in a near-infrared absorber From the viewpoint of sufficiently suppressing ion exchange, the monomer is preferably used in an amount of 0.01 to 20 parts by mass, and more preferably 0.1 to 15 parts by mass with respect to 1 part by mass of the fine particles made of copper phosphonate.
  • the amount of the monomer is less than 0.01 parts by weight, it may not be possible to coat the fine particles made of phosphonic acid copper salt, ion exchange may not be sufficiently suppressed, and if the amount of monomer is more than 20 parts by weight, When a near infrared absorber is introduced into the ionomer resin, the physical properties such as strength of the ionomer resin may be greatly changed.
  • the method of carrying out bulk polymerization of a copper salt containing monomer as mentioned above is mentioned, but in bulk polymerization, in order to polymerize a monomer suitably, it is usually a radical polymerization initiator. Is preferably added at the same time as or after the monomer is added to the dispersion to obtain a copper salt-containing monomer containing a radical polymerization initiator.
  • the radical polymerization initiator is not particularly limited, and for example, an organic peroxide polymerization initiator or an azo radical polymerization initiator can be used.
  • organic peroxide polymerization initiator include tert-butyl peroctanoate, tert-butyl peroxyneodecanate, tert-butyl peroxypivalate, tert-butyl peroxy-2-ethylhexanoate, Use of non-aromatic peroxyesters such as tert-butylperoxylaurate, diacyl peroxides such as lauroyl peroxide, 3,5,5-trimethylhexanoyl peroxide, etc. It is preferable in that it is less colored.
  • azo radical polymerization initiator 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile) 1,1′-azobis (cyclohexane-2-carbonitrile) ) Etc.
  • the radical polymerization initiator is used in an amount of 0.3 to 5.0 parts by mass with respect to 100 parts by mass of the monomer.
  • the copper salt-containing monomer is injected into a mold, a test tube, or the like, and the polymerization temperature is usually 20 to 200 ° C. and the polymerization time is 1 to 40 hours. Polymerization takes place at
  • the near-infrared absorber used in the present invention can be obtained by pulverizing the polymer obtained by the bulk polymerization.
  • a method for pulverizing the polymer is not particularly limited, and for example, a sand mill, a jet mill, a ball mill, an attritor, a vibration mill or the like can be used.
  • the near-infrared absorber used in the present invention can be produced, for example, by the above-described method, and is a powder in which fine particles comprising a phosphonic acid copper salt represented by the general formula (1) are coated with a resin (A) It is.
  • the average particle size of the obtained near-infrared absorber is preferably 0.05 to 100 ⁇ m, more preferably 0.05 to 50 ⁇ m. Within the said range, since the resin composition of this invention is excellent in transparency, it is preferable.
  • the fine particles made of copper phosphonate are covered with the resin (A) means that at least a part of the surface of the fine particles made of copper phosphonate is covered with the resin (A).
  • a near-infrared absorber it is preferable that the entire surface of fine particles made of phosphonic acid copper salt is covered with the resin (A).
  • the near-infrared absorber is a powder in which fine particles made of the copper phosphonate are coated with polysiloxane (B) will be described.
  • the polysiloxane (B) constituting the near-infrared absorber is not particularly limited as long as it can coat fine particles made of the phosphonic acid copper salt and can be dispersed in the ionomer resin.
  • the polysiloxane (B) is preferably formed from at least one silicon-based compound selected from alkoxysilane, a hydrolyzate of alkoxysilane, and a condensate thereof.
  • the alkoxysilane may be used alone or in combination of two or more.
  • Alkoxysilane generally has a structure in which an alkoxy group is bonded to a silicon atom, but as an alkoxysilane, a quaternary alkoxysilane in which four alkoxy groups are bonded to a silicon atom, or a tertiary in which three alkoxy groups are bonded. Any of these alkoxysilanes and secondary alkoxysilanes in which two alkoxy groups are bonded may be used. Further, primary alkoxysilane bonded with one alkoxy group may be used as a part of alkoxysilane.
  • alkoxysilane examples include tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, butyltriethoxysilane, octyltriethoxysilane.
  • alkoxysilane t
  • alkoxysilane easily undergoes hydrolysis / condensation reaction in the presence of acid or alkali. Further, when the hydrolyzate of alkoxysilane or alkoxysilane is heated, a condensation reaction occurs.
  • the silicon compound alkoxysilane, a hydrolyzate of alkoxysilane, and a mixture of these condensates may be used.
  • a commercially available product may be used as the condensate.
  • Examples of commercially available products include methyl silicate 51, methyl silicate 53A, ethyl silicate 40, ethyl silicate 48 (manufactured by Colcoat Co.), M silicate 51, silicate 40, silicate 45 (manufactured by Tama Chemical Industry Co., Ltd.), and the like. It is done.
  • the near-infrared absorber is a powder in which the fine particles of the phosphonic acid copper salt are coated with the polysiloxane (B) as described above, and the production thereof
  • the method is not particularly limited.
  • the polyphosphoric acid (B) can be obtained by hydrolyzing and condensing the silicon compound in the presence of fine particles comprising the above-described copper phosphonate.
  • a near-infrared absorber can be obtained by obtaining a reaction product comprising the fine particles comprising polysiloxane (B) and pulverizing the reaction product.
  • the reaction conditions for the hydrolysis / condensation are usually 10 to 250 ° C., more preferably room temperature to 100 ° C. for implementation.
  • a catalyst such as an acid or a base may be used.
  • the drying is usually performed at 10 to 250 ° C., preferably 50 to 200 ° C.
  • the method of pulverizing the reaction product is not particularly limited, but the reaction product can be pulverized using an agate mortar, sand mill, jet mill, ball mill, attritor, vibration mill or the like.
  • the silicon compound is 1 part by mass of copper in the fine particles composed of the phosphonic acid copper salt.
  • 0.3 to 20 parts by mass in terms of SiO 2 is preferably used, and more preferably 0.5 to 15 parts by mass. If the amount of the silicon-based compound used is less than the above range, the coating is insufficient and may not be obtained as a solid and may not be suitable for implementation. If it exceeds the above range, it is necessary to obtain a workability reduction and an infrared absorption effect. The amount added may be unsuitable for implementation.
  • the mass part in terms of SiO 2 is obtained.
  • the amount of silicon atoms of the silicon compound is determined, and the silicon compound It is a mass part when it is assumed that it is a silicon dioxide which has a silicon atom.
  • the near-infrared absorber used in the present invention can be produced, for example, by the above-described method, and the fine particles comprising the phosphonic acid copper salt represented by the general formula (1) are coated with the polysiloxane (B). It is a powder.
  • the average particle size of the obtained near infrared absorber is preferably 0.01 to 100 ⁇ m, more preferably 0.03 to 50 ⁇ m, and particularly preferably 0.05 to 1 ⁇ m. Within the said range, since the resin composition of this invention is excellent in transparency, it is preferable.
  • the fine particles made of phosphonic acid copper salt are covered with polysiloxane (B). At least a part of the surface of fine particles made of phosphonic acid copper salt is covered with polysiloxane (B). As a near-infrared absorber, it is preferable that the entire surface of fine particles made of phosphonic acid copper salt is covered with polysiloxane (B).
  • the ionomer resin used in the present invention is not particularly limited, and various ionomer resins can be used.
  • the ionomer resin examples include an ethylene ionomer, a styrene ionomer, a perfluorocarbon ionomer, a telechelic ionomer, a polyurethane ionomer, and the like, and a laminated glass was manufactured using an interlayer film formed from the resin composition of the present invention.
  • an ethylene ionomer that is excellent in strength, hardness, durability, transparency, and adhesiveness.
  • an ionomer of an ethylene / unsaturated carboxylic acid copolymer is preferably used because of its excellent transparency and toughness.
  • the ethylene / unsaturated carboxylic acid copolymer is a copolymer having at least a structural unit derived from ethylene and a structural unit derived from unsaturated carboxylic acid, and may have a structural unit derived from another monomer.
  • Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid and the like. Acrylic acid and methacrylic acid are preferable, and methacrylic acid is particularly preferable.
  • Examples of the other monomers include acrylic acid esters, methacrylic acid esters, and 1-butene.
  • the ethylene / unsaturated carboxylic acid copolymer preferably has 75 to 99 mol% of structural units derived from ethylene, assuming that the total structural units of the copolymer are 100 mol%, and derived from unsaturated carboxylic acid. It is preferable to have 1 to 25 mol% of the structural unit.
  • the ionomer of the ethylene / unsaturated carboxylic acid copolymer is an ionomer resin obtained by neutralizing or crosslinking at least a part of the carboxyl group of the ethylene / unsaturated carboxylic acid copolymer with a metal ion,
  • the neutralization degree of the carboxyl group is usually 1 to 90%, preferably 5 to 85%.
  • Examples of the ion source in the ionomer resin used in the present invention include alkali metals such as lithium, sodium, potassium, rubidium and cesium, and polyvalent metals such as magnesium, calcium and zinc, and sodium and zinc are preferable.
  • the production method of the ionomer resin used in the present invention is not particularly limited, and can be produced by a conventionally known production method.
  • an ionomer of an ethylene / unsaturated carboxylic acid copolymer for example, ethylene and an unsaturated carboxylic acid are subjected to radical copolymerization at a high temperature and high pressure to obtain an ethylene / unsaturated carboxylic acid.
  • An ionomer of an ethylene / unsaturated carboxylic acid copolymer can be produced by producing a copolymer and reacting the ethylene / unsaturated carboxylic acid copolymer with the metal compound containing the ion source. .
  • the resin composition of the present invention is a resin composition comprising the above-mentioned near infrared absorber and ionomer resin.
  • the resin composition of the present invention may be a composition comprising the above-mentioned near-infrared absorber and ionomer resin, but is usually produced by melt-kneading the above-mentioned near-infrared absorber and ionomer resin.
  • the melt kneading can be performed using a known kneader such as a plastograph, a single screw extruder, a twin screw extruder, a Banbury mixer, and the like.
  • the melt-kneading is usually performed in the range of 100 to 230 ° C.
  • the resin composition of the present invention preferably contains 0.05 to 30 parts by mass, more preferably 0.1 to 20 parts by mass of the near infrared absorber per 100 parts by mass of the ionomer resin. If the amount is less than 0.05 parts by mass, sufficient near-infrared absorption characteristics may not be obtained. If the amount is more than 30 parts by mass, the transparency and adhesiveness of the resin may be significantly reduced.
  • the resin composition of the present invention is excellent in near-infrared absorbing ability, and includes an ionomer resin as a resin. Therefore, the resin composition has excellent strength and hardness, and is excellent in durability and adhesiveness. Therefore, it is an intermediate film for structural materials such as laminated glass. Can be suitably used.
  • additives may be contained in the resin composition of the present invention.
  • the additive include a dispersant, an antioxidant, an ultraviolet absorber, and a light stabilizer. These additives may be kneaded together with the near-infrared absorber and the ionomer resin when the above-mentioned melt-kneading is performed, or may be added when the near-infrared absorber is manufactured or the ionomer resin is manufactured. Good.
  • the resin composition of the present invention can be used in various applications in which an ionomer resin is used, but is usually used in applications where it is desired to absorb near infrared rays.
  • the resin film formed from the resin composition of the present invention has excellent near-infrared absorptivity, excellent strength and hardness, and excellent durability and adhesion. It can be suitably used as a film.
  • the laminated glass of the present invention has the interlayer film for laminated glass.
  • glass which comprises the laminated glass of this invention A conventionally well-known thing can be used.
  • Example A1 Synthesis of resin-coated copper salt
  • a reaction vessel 3.49 g of copper acetate monohydrate and 135 g of ethanol were added and stirred to completely dissolve the copper acetate monohydrate.
  • by-products and the solvent were distilled off from the obtained reaction mixture with a rotary evaporator to obtain 4.44 g of a solid content containing ethylphosphonic acid copper salt.
  • Methylene chloride was extracted and removed by adding 4.50 g of methyl methacrylate (MMA) and 4.50 g of ethylene glycol dimethacrylate (EDMA) to the dispersion, and then reducing the pressure with a rotary evaporator. Subsequently, 0.09 g of tert-butyl peroxy-2-ethylhexanoate (Perbutyl O, manufactured by Nippon Oil & Fats Co., Ltd.) was added and mixed as a polymerization initiator to obtain a copper salt-containing monomer A1.
  • MMA methyl methacrylate
  • EDMA ethylene glycol dimethacrylate
  • the copper salt-containing monomer A1 was poured into a test tube, heated in an oven at 50 ° C. for 8 hours, then heated to 70 ° C. over 4 hours, then heated to 110 ° C. over 2 hours and then 110 ° C.
  • the polymerization was carried out by holding for 1 hour.
  • the oven temperature was lowered to 70 ° C. over 1.5 hours, and then removed from the oven to remove the reaction product in the test tube.
  • the reaction product taken out was annealed in an oven at 120 ° C. for 1 hour, and then pulverized for 6 minutes in a small pulverizer sample mill (SK-M2 type, manufactured by Kyoritsu Riko Co., Ltd.) to obtain a gray resin-coated copper salt powder ( 1) was obtained.
  • SK-M2 type manufactured by Kyoritsu Riko Co., Ltd.
  • Example A2 Synthesis of resin-coated copper salt
  • To the reaction vessel 1.05 g of copper acetate monohydrate and 54 g of ethanol were added and stirred to completely dissolve the copper acetate monohydrate.
  • After the reaction by-products and the solvent were distilled off from the obtained reaction mixture with a rotary evaporator to obtain 1.81 g of a solid content containing hexylphosphonic acid copper salt.
  • Methylene chloride was extracted and removed by adding 6.02 g of methyl methacrylate (MMA) and 6.01 g of ethylene glycol dimethacrylate (EDMA) to the dispersion, and then reducing the pressure with a rotary evaporator. Next, 0.12 g of tert-butyl peroxy-2-ethylhexanoate (Perbutyl O, manufactured by NOF Corporation) was added and mixed as a polymerization initiator to obtain a copper salt-containing monomer A2.
  • MMA methyl methacrylate
  • EDMA ethylene glycol dimethacrylate
  • Copper salt-containing monomer A2 was poured into a test tube, heated in an oven at 50 ° C. for 8 hours, then heated to 70 ° C. over 4 hours, then heated to 110 ° C. over 2 hours, and then 110 ° C. The polymerization was carried out by holding for 1 hour.
  • the oven temperature was lowered to 70 ° C. over 1.5 hours, and then removed from the oven to remove the reaction product in the test tube.
  • the reaction product taken out was annealed in an oven at 120 ° C. for 1 hour, then pulverized for 8 minutes in a small pulverizer sample mill (SK-M2 type, manufactured by Kyoritsu Riko Co., Ltd.), and gray resin-coated copper salt powder ( 2) was obtained.
  • SK-M2 type manufactured by Kyoritsu Riko Co., Ltd.
  • the resin-coated copper salt powder (2) was subjected to TEM observation by the following method.
  • Resin-coated copper salt powder (2) was dispersed in methanol to obtain a suspension. A small amount of the obtained suspension was dropped on a mesh (manufactured by Nissin EM Co., Ltd.) on which a microgrid was pasted, dried naturally, and then observed with a transmission electron microscope (JEOL JEM2000EX). The obtained TEM photograph is shown in FIG.
  • Example A3 Manufacture of resin composition
  • Resin-coated copper salt powder (1) 1.40 g similar to Example A1 and ethylene-methacrylic acid copolymer Zn salt (High Milan 1706, manufactured by Mitsui DuPont Polychemical Co., Ltd.) 46.91 g
  • the resin composition (3) containing resin-coated copper salt powder was obtained by melt-kneading for 15 minutes at 190 ° C. and a screw speed of 30 rpm.
  • Example A4 Synthesis of resin-coated copper salt
  • a reaction vessel 13.96 g of copper acetate monohydrate and 800 g of ethanol were added and stirred to completely dissolve the copper acetate monohydrate.
  • by-products and the solvent were distilled off from the obtained reaction mixture with a rotary evaporator to obtain 18.28 g of a solid content containing ethylphosphonic acid copper salt.
  • Methylene chloride was extracted and removed by adding 10.80 g of methyl methacrylate (MMA) and 1.20 g of ethylene glycol dimethacrylate (EDMA) to 52.24 g of the dispersion, and then reducing the pressure with a rotary evaporator. Next, 0.12 g of tert-butyl peroxy-2-ethylhexanoate (Perbutyl O, manufactured by NOF Corporation) was added and mixed as a polymerization initiator to obtain a copper salt-containing monomer A3.
  • MMA methyl methacrylate
  • EDMA ethylene glycol dimethacrylate
  • Copper salt-containing monomer A3 was poured into a test tube, heated in an oven at 50 ° C. for 8 hours, then heated to 70 ° C. over 4 hours, then heated to 110 ° C. over 2 hours and then 110 ° C. The polymerization was carried out by holding for 1 hour.
  • the oven temperature was lowered to 70 ° C. over 1.5 hours, and then removed from the oven to remove the reaction product in the test tube.
  • the reaction product taken out was annealed in an oven at 120 ° C. for 1 hour, then pulverized for 5 minutes with a small pulverizer sample mill (SK-M2 type, manufactured by Kyoritsu Riko Co., Ltd.), and gray resin-coated copper salt powder ( 3) was obtained.
  • SK-M2 type manufactured by Kyoritsu Riko Co., Ltd.
  • Resin-coated copper salt powder (3) (5.00 g) and ethylene-methacrylic acid copolymer Na salt (Himiran 1605, Mitsui DuPont Polychemical Co., Ltd.) (43.30 g) were supplied to Plastograph (Brabender Co., Ltd.)
  • the resin composition (4) containing resin-coated copper salt powder was obtained by melt-kneading for 15 minutes at 190 ° C. and a screw rotation speed of 30 rpm.
  • Example A and Comparative Example were each heated for 1 minute by a press machine at 150 ° C. (“WF-50”, manufactured by Kondo Metal Industry Co., Ltd.), and then pressurized at a pressure of 15 MPa for 5 minutes.
  • the sheet was heated and then cold pressed for 3 minutes with a cooling press (Toyo Seiki Seisakusho No.288) to produce a sheet having a thickness of 0.76 mm.
  • the spectral transmittance of the sheet was measured using a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.). The measurement results of the spectral transmittance are shown in FIGS. 2 shows the spectral transmittance of the sheet formed from the resin composition of Comparative Example 1, FIG. 3 shows the spectral transmittance of the sheet formed from the resin composition of Example A1, and FIG. FIG. 5 shows the spectral transmittance of the sheet formed from the resin composition of Example A2, FIG. 5 shows the spectral transmittance of the sheet formed from the resin composition of Example A3, and FIG. 6 shows the resin composition of Example A4. It is the spectral transmittance of the sheet formed from.
  • a sheet formed from a resin composition using a powder in which fine particles of a phosphonic acid copper salt are coated with a resin as a near-infrared absorber has a near-infrared region of 800 to 1200 nm.
  • a sheet formed from a resin composition containing fine particles of phosphonic acid copper salt that is not coated with a resin has a weak absorption band in the vicinity of 600 to 1200 nm.
  • Example B1 Synthesis of copper salt fine particles
  • 0.91 g of copper acetate monohydrate in terms of copper, 0.29 g
  • 50 g of ethanol was dissolved in 50 g of ethanol.
  • 50 g of toluene was added and subjected to ultrasonic waves to prepare a copper salt fine particle dispersion.
  • the polysiloxane-coated copper salt was ground in an agate mortar to obtain a powder in which the copper salt, which is a near infrared absorber, was coated with polysiloxane.
  • Example B2 Synthesis of polysiloxane-coated copper salt
  • a solution obtained by dissolving 0.72 g (SiO 2 equivalent, 0.38 g) of methyl silicate 53A (manufactured by Colcoat Co., Ltd.) in 0.24 g of ethanol was added. After stirring at room temperature, it was opened in a Teflon bat and dried. This was dried at 100 ° C. for 3 hours to a hardness suitable for the next pulverization step by vacuum drying, and the polysiloxane-coated copper salt was recovered. The yield was 1.89 g.
  • the polysiloxane-coated copper salt was ground in an agate mortar to obtain a powder in which the copper salt, which is a near infrared absorber, was coated with polysiloxane.
  • Example B3 (Synthesis of polysiloxane-coated copper salt)
  • the copper salt fine particle dispersion was prepared in a manner similar to Example B1, (manufactured by Colcoat Co.) methyl silicate 53A 3.60 g (SiO 2 conversion, 1.91 g) and dimethyldimethoxysilane 0.60 g (SiO 2 converted , 0.29 g) in ethanol 1.20 g was added, stirred at room temperature, then placed in a Teflon vat and dried. This was dried by vacuum drying at 100 ° C. for 6 hours to a hardness suitable for the next pulverization step, and the polysiloxane-coated copper salt was recovered. The yield was 3.25 g.
  • the polysiloxane-coated copper salt was ground in an agate mortar to obtain a powder in which the copper salt, which is a near infrared absorber, was coated with polysiloxane.
  • Example B4 Synthesis of polysiloxane-coated copper salt
  • methyl silicate 53A manufactured by Colcoat Co., Ltd.
  • 2-cyanoethyltriethoxysilane A solution obtained by dissolving 1.20 g of ethanol in terms of SiO 2 in 1.20 g of ethanol was added, stirred at room temperature, then opened in a Teflon vat and dried. This was dried by vacuum drying at 100 ° C. for 6 hours to a hardness suitable for the next pulverization step, and the polysiloxane-coated copper salt was recovered. The yield was 3.15 g.
  • the polysiloxane-coated copper salt was ground in an agate mortar to obtain a powder in which the copper salt, which is a near infrared absorber, was coated with polysiloxane.
  • Example B and Comparative Example Each of the resin compositions obtained in Example B and Comparative Example was preheated at a pressure of 3 MPa for 1 minute by a press machine (“WF-50” manufactured by Shindo Metal Industry Co., Ltd.) at 150 ° C., and then 5 at a pressure of 10 MPa.
  • the sheet was pressurized and heated for 3 minutes, and then cold-pressed for 3 minutes with a cooling press (Toyo Seiki Seisakusho No. 288) to produce a sheet having a thickness of 0.76 mm.
  • the spectral transmittance of the sheet was measured using a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.). The measurement results of the spectral transmittance are shown in FIGS. 7 shows the spectral transmittance of the sheet formed from the resin composition of Comparative Example 1 and Example B1, and FIG. 8 shows the spectral transmission of the sheet formed from the resin composition of Comparative Example 1 and Example B2.
  • 9 is the spectral transmittance of the sheet formed from the resin composition of Comparative Example 1 and Example B3
  • FIG. 10 is the sheet of the sheet formed from the resin composition of Comparative Example 1 and Example B4. Spectral transmittance.
  • a sheet formed from a resin composition using a powder in which fine particles of a phosphonic acid copper salt are coated with polysiloxane as a near infrared absorber has a near infrared wavelength of 800 to 1200 nm. It has a broad absorption band in the region (Examples B1 to B4).
  • a sheet formed from a resin composition containing fine particles of phosphonic acid copper salt not coated with polysiloxane has only a weak absorption band in the vicinity of 600 to 1200 nm (Comparative Example 1).
  • the sheet formed from the resin composition of the present invention is excellent in infrared absorption ability, whereas the sheet formed from a resin composition containing fine particles of phosphonic acid copper salt not coated with resin or polysiloxane. Is inferior in near infrared absorption ability.

Abstract

The purpose of the invention is to provide a resin composition of superior near infrared absorption capability obtained from a near infrared absorber and an ionomer resin, and uses of said composition. This resin composition, which is obtained from a near infrared absorber and an ionomer resin, is characterized in that the near infrared absorber is a powder wherein microparticles obtained from a copper phosphonate represented by formula (1) is coated with at least one compound selected from resins (A) and polysiloxanes (B).

Description

樹脂組成物およびその用途Resin composition and use thereof
 本発明は、樹脂組成物およびその用途に関し、詳しくは近赤外線吸収剤とアイオノマー樹脂とからなる樹脂組成物およびその用途に関する。 The present invention relates to a resin composition and its use, and more particularly to a resin composition comprising a near infrared absorber and an ionomer resin and its use.
 従来から、自動車等の車両、建築物、太陽電池等の各種用途で、合わせガラスが用いられている。合わせガラス用中間膜としては、ポリビニルブチラール樹脂膜、アイオノマー樹脂膜等が知られている。 Conventionally, laminated glass is used in various applications such as vehicles such as automobiles, buildings, and solar cells. As an interlayer film for laminated glass, a polyvinyl butyral resin film, an ionomer resin film, and the like are known.
 特にアイオノマー樹脂は、ポリビニルブチラール樹脂と比べて強度、硬度共に優れており、かつ耐久性、透明性、接着性に優れるため合わせガラス等の構造材料用の中間膜として好適に使用することが可能である。 In particular, ionomer resins have excellent strength and hardness compared to polyvinyl butyral resins, and are excellent in durability, transparency, and adhesiveness, and therefore can be suitably used as an intermediate film for structural materials such as laminated glass. is there.
 ところで、太陽光線には、可視光線の他に紫外線、赤外線等が含まれている。赤外線の中でも波長が可視光に近い赤外線は、近赤外線と呼ばれる。近赤外線は熱線とも呼ばれ車両や建築物内部の温度上昇の原因の一つである。 By the way, the sun rays include ultraviolet rays, infrared rays and the like in addition to visible rays. Among infrared rays, infrared rays having a wavelength close to visible light are called near infrared rays. Near-infrared rays are also called heat rays and are one of the causes of temperature rise inside vehicles and buildings.
 該温度上昇を抑制するために、車両や建築物に用いられる合わせガラスに、可視光線の透過性を保持したまま、熱線吸収性を付与することが考えられる。例えば、ホスホン酸銅塩と、ポリシロキサン成分と、可塑剤と、分散剤とを含有する銅塩組成物が知られている(例えば、特許文献1参照)。一般に金属塩を、樹脂と混合して得られた樹脂組成物は高温にさらされた場合には、可視光線の透過性が低下する場合や、黄変する場合があった。しかしながら、特許文献1には、前記銅塩組成物と樹脂とを含有する樹脂組成物は、高温にさらされた場合であっても可視光の透過性および安定性に優れる赤外線吸収膜を提供することが可能である旨が開示されている。また、特許文献1には、銅塩組成物と混合される樹脂としてポリビニルアセタール樹脂、エチレン‐酢酸ビニル共重合体(EVA)、(メタ)アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、塩化ビニル樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、ノルボルネン樹脂等が開示されている。 In order to suppress the temperature rise, it is conceivable to impart heat ray absorptivity to laminated glass used for vehicles and buildings while maintaining visible light transmittance. For example, a copper salt composition containing a phosphonic acid copper salt, a polysiloxane component, a plasticizer, and a dispersant is known (see, for example, Patent Document 1). In general, when a resin composition obtained by mixing a metal salt with a resin is exposed to a high temperature, the visible light transmittance may be reduced or yellowed. However, Patent Document 1 provides an infrared absorption film in which the resin composition containing the copper salt composition and the resin is excellent in visible light transmission and stability even when exposed to high temperatures. It is disclosed that it is possible. Patent Document 1 discloses a polyvinyl acetal resin, an ethylene-vinyl acetate copolymer (EVA), a (meth) acrylic resin, a polyester resin, a polyurethane resin, a vinyl chloride resin, and a polyolefin as a resin mixed with a copper salt composition. Resins, polycarbonate resins, norbornene resins and the like are disclosed.
 しかしながら、合わせガラス用中間膜として好適に用いることが可能な、アイオノマー樹脂に、近赤外線吸収能を付与することは未だ充分に検討されていなかった。 However, it has not yet been sufficiently studied to impart a near-infrared absorbing ability to an ionomer resin that can be suitably used as an interlayer film for laminated glass.
2009-242650号公報2009-242650
 本発明は、上記従来技術を鑑みてされたものであり、近赤外線吸収剤とアイオノマー樹脂とからなる、近赤外線吸収能に優れた樹脂組成物および該組成物の用途を提供することを目的とする。 The present invention has been made in view of the above prior art, and an object thereof is to provide a resin composition having a near-infrared absorbing ability, comprising a near-infrared absorber and an ionomer resin, and a use of the composition. To do.
 本発明者らは、上記課題を達成するために鋭意研究を重ねた。研究の中で本発明者らは、アイオノマー樹脂と、従来の近赤外線吸収剤である銅塩とを混合すると、得られる樹脂組成物は着色し、近赤外線吸収能に劣ることを見出した。発明者らはこの原因が、アイオノマー樹脂が含有する金属イオンと、近赤外線吸収剤中に含有される銅イオンとのイオン交換にあると推測した。 The inventors of the present invention have intensively studied in order to achieve the above-mentioned problems. In the research, the present inventors have found that when an ionomer resin and a copper salt which is a conventional near infrared absorber are mixed, the resulting resin composition is colored and inferior in near infrared absorption ability. The inventors speculated that this cause is due to ion exchange between the metal ion contained in the ionomer resin and the copper ion contained in the near-infrared absorber.
 本発明者らはさらに研究を重ね、近赤外線吸収剤として、特定の銅塩が樹脂およびポリシロキサンから選択される少なくとも1種で被覆された粉末を用いることにより、近赤外線吸収能に優れた樹脂組成物を提供することが可能であることを見出し、本発明を完成させた。 The present inventors have further researched, and as a near-infrared absorber, by using a powder in which a specific copper salt is coated with at least one selected from a resin and a polysiloxane, a resin excellent in near-infrared absorption ability We have found that it is possible to provide a composition and have completed the present invention.
 すなわち、本発明の樹脂組成物は、近赤外線吸収剤とアイオノマー樹脂とからなる樹脂組成物であり、前記近赤外線吸収剤が、下記一般式(1)で表わされるホスホン酸銅塩からなる微粒子が樹脂(A)およびポリシロキサン(B)から選択される少なくとも1種で被覆された粉末であることを特徴とする。 That is, the resin composition of the present invention is a resin composition comprising a near-infrared absorber and an ionomer resin, and the near-infrared absorber comprises fine particles comprising a phosphonic acid copper salt represented by the following general formula (1). It is a powder coated with at least one selected from resin (A) and polysiloxane (B).
Figure JPOXMLDOC01-appb-C000003
[一般式(1)中、R1は、-CH2CH2-R11で表される1価の基であり、R11は水素原子、炭素数1~20のアルキル基、または炭素数1~20のフッ素化アルキル基を示す。]
 本発明の樹脂組成物の態様Aは、前記樹脂(A)およびポリシロキサン(B)から選択される少なくとも1種が、樹脂(A)である。
Figure JPOXMLDOC01-appb-C000003
[In General Formula (1), R 1 is a monovalent group represented by —CH 2 CH 2 —R 11 , and R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. Represents -20 fluorinated alkyl groups. ]
In aspect A of the resin composition of the present invention, at least one selected from the resin (A) and the polysiloxane (B) is the resin (A).
 前記樹脂(A)が、モノマーの少なくとも一部として架橋剤を用いて形成されることが好ましい。前記架橋剤が、多官能芳香族ビニル化合物、および多官能(メタ)アクリル酸エステルから選択される少なくとも1種の架橋剤であることがより好ましい。 It is preferable that the resin (A) is formed using a crosslinking agent as at least a part of the monomer. More preferably, the cross-linking agent is at least one cross-linking agent selected from a polyfunctional aromatic vinyl compound and a polyfunctional (meth) acrylic acid ester.
 前記樹脂(A)が、モノマーの少なくとも一部として単官能性モノマーを用いて形成されることが好ましい。 It is preferable that the resin (A) is formed using a monofunctional monomer as at least a part of the monomer.
 本発明の樹脂組成物の態様Bは、前記樹脂(A)およびポリシロキサン(B)から選択される少なくとも1種が、ポリシロキサン(B)である。 In Embodiment B of the resin composition of the present invention, at least one selected from the resin (A) and the polysiloxane (B) is polysiloxane (B).
 前記ポリシロキサン(B)が、アルコキシシラン、アルコキシシランの加水分解物、およびこれらの縮合物から選択される少なくとも1種のケイ素系化合物から形成されることが好ましい。 The polysiloxane (B) is preferably formed from at least one silicon-based compound selected from alkoxysilanes, hydrolysates of alkoxysilanes, and condensates thereof.
 前記アイオノマー樹脂が、エチレン・不飽和カルボン酸共重合体のアイオノマーであることが好ましい。 It is preferable that the ionomer resin is an ionomer of an ethylene / unsaturated carboxylic acid copolymer.
 前記アイオノマー樹脂100質量部あたり、近赤外線吸収剤を0.05~30質量部含有することが好ましい。 It is preferable to contain 0.05 to 30 parts by mass of a near-infrared absorber per 100 parts by mass of the ionomer resin.
 前記態様Aにおいて前記近赤外線吸収剤が、前記一般式(1)で表わされるホスホン酸銅塩からなる微粒子をモノマーに分散させ、銅塩含有モノマーを得て、前記銅塩含有モノマーを塊状重合し、重合物を得て、前記重合物を粉砕することにより得られることが好ましい。前記モノマーが、ホスホン酸銅塩からなる微粒子1質量部に対して、0.01~20質量部であることが好ましい。 In the aspect A, the near-infrared absorber is obtained by dispersing fine particles of a phosphonic acid copper salt represented by the general formula (1) in a monomer to obtain a copper salt-containing monomer, and bulk-polymerizing the copper salt-containing monomer. It is preferable to obtain the polymer and pulverize the polymer. It is preferable that the monomer is 0.01 to 20 parts by mass with respect to 1 part by mass of the fine particles made of phosphonic acid copper salt.
 前記態様Bにおいて前記近赤外線吸収剤が、前記一般式(1)で表わされるホスホン酸銅塩からなる微粒子と、アルコキシシラン、アルコキシシランの加水分解物、およびこれらの縮合物から選択される少なくとも1種のケイ素系化合物とを混合し、前記ケイ素系化合物からポリシロキサン(B)を得て、反応物を粉砕することにより得られることが好ましい。前記ケイ素系化合物が、ホスホン酸銅塩からなる微粒子中の銅1質量部に対して、SiO2換算で0.3~20質量部であることが好ましい。 In the embodiment B, the near-infrared absorber is at least one selected from fine particles comprising a copper phosphonate represented by the general formula (1), alkoxysilane, a hydrolyzate of alkoxysilane, and a condensate thereof. It is preferably obtained by mixing a seed silicon compound, obtaining polysiloxane (B) from the silicon compound, and pulverizing the reaction product. It is preferable that the silicon-based compound is 0.3 to 20 parts by mass in terms of SiO 2 with respect to 1 part by mass of copper in fine particles made of a phosphonic acid copper salt.
 前記態様Bの樹脂組成物は言い換えると、近赤外線吸収剤とアイオノマー樹脂とからなる樹脂組成物であり、前記近赤外線吸収剤が、下記一般式(1)で表わされるホスホン酸銅塩からなる微粒子と、アルコキシシラン、アルコキシシランの加水分解物、およびこれらの縮合物から選択される少なくとも1種のケイ素系化合物とを混合し、前記ケイ素系化合物からポリシロキサン(B)を得て、反応物を粉砕することにより得られる粉末状の近赤外線吸収剤であることを特徴とする。 In other words, the resin composition of the aspect B is a resin composition comprising a near-infrared absorber and an ionomer resin, and the near-infrared absorber is a fine particle comprising a phosphonic acid copper salt represented by the following general formula (1) And at least one silicon-based compound selected from alkoxysilane, a hydrolyzate of alkoxysilane, and a condensate thereof, to obtain polysiloxane (B) from the silicon-based compound, It is a powdery near-infrared absorber obtained by pulverization.
Figure JPOXMLDOC01-appb-C000004
[一般式(1)中、R1は、-CH2CH2-R11で表される1価の基であり、R11は水素原子、炭素数1~20のアルキル基、または炭素数1~20のフッ素化アルキル基を示す。]
 本発明の樹脂膜、および合わせガラス用中間膜は、前記樹脂組成物から形成される。
Figure JPOXMLDOC01-appb-C000004
[In General Formula (1), R 1 is a monovalent group represented by —CH 2 CH 2 —R 11 , and R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. Represents -20 fluorinated alkyl groups. ]
The resin film of the present invention and the interlayer film for laminated glass are formed from the resin composition.
 本発明の合わせガラスは、前記合わせガラス用中間膜を有する。 The laminated glass of the present invention has the interlayer film for laminated glass.
 本発明の樹脂組成物は、近赤外線吸収剤とアイオノマー樹脂とからなり、近赤外線吸収能に優れる。また、該樹脂組成物から形成される樹脂膜は、合わせガラス用中間膜として好適に用いることが可能である。 The resin composition of the present invention comprises a near infrared absorber and an ionomer resin, and is excellent in near infrared absorption ability. Moreover, the resin film formed from this resin composition can be suitably used as an interlayer film for laminated glass.
実施例A2の樹脂被覆銅塩粉末(2)のTEM写真を示す。The TEM photograph of the resin-coated copper salt powder (2) of Example A2 is shown. 比較例1の樹脂組成物から形成されたシートの分光透過率を示す。The spectral transmittance of the sheet | seat formed from the resin composition of the comparative example 1 is shown. 実施例A1の樹脂組成物から形成されたシートの分光透過率を示す。The spectral transmittance of the sheet | seat formed from the resin composition of Example A1 is shown. 実施例A2の樹脂組成物から形成されたシートの分光透過率を示す。The spectral transmittance of the sheet | seat formed from the resin composition of Example A2 is shown. 実施例A3の樹脂組成物から形成されたシートの分光透過率を示す。The spectral transmittance of the sheet | seat formed from the resin composition of Example A3 is shown. 実施例A4の樹脂組成物から形成されたシートの分光透過率を示す。The spectral transmittance of the sheet | seat formed from the resin composition of Example A4 is shown. 比較例1および実施例B1の樹脂組成物から形成されたシートの分光透過率を示す。The spectral transmittance of the sheet | seat formed from the resin composition of the comparative example 1 and Example B1 is shown. 比較例1および実施例B2の樹脂組成物から形成されたシートの分光透過率を示す。The spectral transmittance of the sheet | seat formed from the resin composition of the comparative example 1 and Example B2 is shown. 比較例1および実施例B3の樹脂組成物から形成されたシートの分光透過率を示す。The spectral transmittance of the sheet | seat formed from the resin composition of the comparative example 1 and Example B3 is shown. 比較例1および実施例B4の樹脂組成物から形成されたシートの分光透過率を示す。The spectral transmittance of the sheet | seat formed from the resin composition of the comparative example 1 and Example B4 is shown.
 次に本発明について具体的に説明する。 Next, the present invention will be specifically described.
 本発明の樹脂組成物は、近赤外線吸収剤とアイオノマー樹脂とからなる樹脂組成物であり、前記近赤外線吸収剤が、後述する一般式(1)で表わされるホスホン酸銅塩からなる微粒子が樹脂(A)およびポリシロキサン(B)から選択される少なくとも1種で被覆された粉末であることを特徴とする。 The resin composition of the present invention is a resin composition comprising a near-infrared absorber and an ionomer resin, and the near-infrared absorber is a resin comprising fine particles comprising a phosphonic acid copper salt represented by the general formula (1) described later. It is a powder coated with at least one selected from (A) and polysiloxane (B).
 なお、一般式(1)で表わされるホスホン酸銅塩を、特定のホスホン酸銅塩とも記す。 The phosphonic acid copper salt represented by the general formula (1) is also referred to as a specific phosphonic acid copper salt.
 前記近赤外線吸収剤は、前記特定のホスホン酸銅塩からなる微粒子が樹脂(A)およびポリシロキサン(B)で被覆された粉末でもよいが、好ましくは樹脂(A)またはポリシロキサン(B)で被覆された粉末である。 The near-infrared absorber may be a powder in which fine particles made of the specific copper phosphonate salt are coated with the resin (A) and the polysiloxane (B), but preferably the resin (A) or the polysiloxane (B). It is a coated powder.
 なお、本発明の樹脂組成物において、前記近赤外線吸収剤として、前記特定のホスホン酸銅塩からなる微粒子が樹脂(A)で被覆された粉末を用いる態様を、態様Aとも記す。また、本発明の樹脂組成物において、前記近赤外線吸収剤として、前記特定のホスホン酸銅塩からなる微粒子がポリシロキサン(B)で被覆された粉末を用いる態様を、態様Bとも記す。 In the resin composition of the present invention, an embodiment in which a powder in which fine particles composed of the specific phosphonic acid copper salt are coated with the resin (A) is used as the near infrared absorber is also referred to as an embodiment A. Further, in the resin composition of the present invention, an embodiment in which a powder in which fine particles made of the specific copper phosphonate salt are coated with polysiloxane (B) is used as the near infrared absorber is also referred to as an embodiment B.
 〔近赤外線吸収剤〕
 本発明に用いられる近赤外線吸収剤は、下記一般式(1)で表わされるホスホン酸銅塩からなる微粒子が樹脂(A)およびポリシロキサン(B)から選択される少なくとも1種で被覆された粉末である。
[Near-infrared absorber]
The near-infrared absorber used in the present invention is a powder in which fine particles comprising a phosphonic acid copper salt represented by the following general formula (1) are coated with at least one selected from a resin (A) and a polysiloxane (B) It is.
 前記近赤外線吸収剤としては、下記一般式(1)で表わされるホスホン酸銅塩からなる微粒子が樹脂(A)で被覆された粉末、または下記一般式(1)で表わされるホスホン酸銅塩からなる微粒子がポリシロキサン(B)で被覆された粉末が好ましい。 Examples of the near-infrared absorber include a powder in which fine particles composed of a phosphonic acid copper salt represented by the following general formula (1) are coated with a resin (A), or a phosphonic acid copper salt represented by the following general formula (1). A powder in which the fine particles are coated with polysiloxane (B) is preferable.
 前記近赤外線吸収剤を構成する、下記一般式(1)で表わされるホスホン酸銅塩からなる微粒子としては、下記一般式(1)で表わされるホスホン酸銅塩のみから形成されていてもよく、下記一般式(1)で表わされるホスホン酸銅塩と、他の成分とから形成されていてもよい。 The fine particles comprising the phosphonic acid copper salt represented by the following general formula (1) constituting the near infrared absorber may be formed only from the phosphonic acid copper salt represented by the following general formula (1), You may form from the phosphonic acid copper salt represented by following General formula (1), and another component.
Figure JPOXMLDOC01-appb-C000005
[一般式(1)中、R1は、-CH2CH2-R11で表される1価の基であり、R11は水素原子、炭素数1~20のアルキル基、または炭素数1~20のフッ素化アルキル基を示す。]
 前記R11としては、水素原子または炭素数1~20のアルキル基であることが好ましい。具体的にはR11としては、水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等が好ましい。なお、一般式(1)で表わされるホスホン酸銅塩としては、一種単独で用いても、二種以上を用いてもよい。
Figure JPOXMLDOC01-appb-C000005
[In General Formula (1), R 1 is a monovalent group represented by —CH 2 CH 2 —R 11 , and R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. Represents -20 fluorinated alkyl groups. ]
R 11 is preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. Specifically, as R 11 , hydrogen atom, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group and the like are preferable. In addition, as a phosphonic acid copper salt represented by General formula (1), it may be used individually by 1 type, or 2 or more types may be used.
 なお、本明細書において、「一般式(1)で表わされるホスホン酸銅塩」を、単に「ホスホン酸銅塩」とも記す。 In the present specification, the “phosphonic acid copper salt represented by the general formula (1)” is also simply referred to as “phosphonic acid copper salt”.
 なお、前記ホスホン酸銅塩として、フッ素原子を含む銅塩を用いると、樹脂(A)に対するホスホン酸銅塩からなる微粒子の分散性が向上する傾向がある。このため、例えば、前記ホスホン酸銅塩のR11として、フッ素原子を有する基を用いると、後述の分散剤を用いない場合や、分散剤の使用量が少ない場合であっても、偏在を起こすことなくホスホン酸銅塩からなる微粒子を樹脂(A)に分散することができる。 In addition, when the copper salt containing a fluorine atom is used as the said phosphonic acid copper salt, there exists a tendency for the dispersibility of the microparticles | fine-particles which consist of a phosphonic acid copper salt with respect to resin (A) to improve. For this reason, for example, when a group having a fluorine atom is used as R 11 of the phosphonic acid copper salt, uneven distribution occurs even when a dispersant described later is not used or when the amount of the dispersant used is small. The fine particles comprising the phosphonic acid copper salt can be dispersed in the resin (A) without any problem.
 本発明に用いる、ホスホン酸銅塩からなる微粒子の製造方法としては、特に限定はないが、例えば以下の方法で製造することができる。 The method for producing fine particles comprising a phosphonic acid copper salt used in the present invention is not particularly limited, and for example, it can be produced by the following method.
 ホスホン酸銅塩からなる微粒子の製造方法としては、溶媒中で、下記一般式(2)で表わされるホスホン酸化合物と、銅塩とを、好ましくは分散剤存在下で混合し、反応混合物を得る工程(以下、反応工程とも記す)、該反応混合物中の溶媒を除去することによりホスホン酸銅塩からなる微粒子を得る工程(以下、溶媒除去工程とも記す)を有する方法が挙げられる。 As a method for producing fine particles comprising a phosphonic acid copper salt, a phosphonic acid compound represented by the following general formula (2) and a copper salt are preferably mixed in a solvent in a solvent to obtain a reaction mixture. Examples thereof include a method having a step (hereinafter also referred to as a reaction step) and a step of obtaining fine particles composed of a phosphonic acid copper salt by removing a solvent in the reaction mixture (hereinafter also referred to as a solvent removal step).
Figure JPOXMLDOC01-appb-C000006
[一般式(2)中、R1は、-CH2CH2-R11で表される1価の基であり、R11は水素原子、炭素数1~20のアルキル基、または炭素数1~20のフッ素化アルキル基を示す。]
 前記一般式(2)で表わされるホスホン酸化合物としては、R11が水素原子または炭素数1~20のアルキル基であるものが好ましい。一般式(2)で表されるホスホン酸化合物としては例えば、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、ペンチルホスホン酸、ヘキシルホスホン酸、ヘプチルホスホン酸、オクチルホスホン酸、ノニルホスホン酸、デシルホスホン酸、ウンデシルホスホン酸、ドデシルホスホン酸、トリデシルホスホン酸、テトラデシルホスホン酸、ペンタデシルホスホン酸、ヘキサデシルホスホン酸、ヘプタデシルホスホン酸、オクタデシルホスホン酸等のアルキルホスホン酸が挙げられる。なお、一般式(2)で表されるホスホン酸化合物としては、一種単独で用いても、二種以上を用いてもよい。
Figure JPOXMLDOC01-appb-C000006
[In General Formula (2), R 1 is a monovalent group represented by —CH 2 CH 2 —R 11 , and R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. Represents -20 fluorinated alkyl groups. ]
As the phosphonic acid compound represented by the general formula (2), those in which R 11 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms are preferred. Examples of the phosphonic acid compound represented by the general formula (2) include ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, pentylphosphonic acid, hexylphosphonic acid, heptylphosphonic acid, octylphosphonic acid, nonylphosphonic acid, and decylphosphonic acid. Examples thereof include alkylphosphonic acids such as acid, undecylphosphonic acid, dodecylphosphonic acid, tridecylphosphonic acid, tetradecylphosphonic acid, pentadecylphosphonic acid, hexadecylphosphonic acid, heptadecylphosphonic acid, and octadecylphosphonic acid. In addition, as a phosphonic acid compound represented by General formula (2), it may be used individually by 1 type, or 2 or more types may be used.
 前記銅塩としては、2価の銅イオンを供給することが可能な銅塩が通常用いられる。前記銅塩としては、前記一般式(1)で表わされるホスホン酸銅塩以外の銅塩であればよい。前記銅塩としては例えば、無水酢酸銅、無水蟻酸銅、無水ステアリン酸銅、無水安息香酸銅、無水エチルアセト酢酸銅、無水ピロリン酸銅、無水ナフテン酸銅、無水クエン酸銅等の有機酸の銅塩、該有機酸の銅塩の水和物もしくは水化物;酸化銅、塩化銅、硫酸銅、硝酸銅、塩基性炭酸銅等の無機酸の銅塩、該無機酸の銅塩の水和物もしくは水化物;水酸化銅が挙げられる。なお、銅塩としては、一種単独で用いても、二種以上を用いてもよい。 As the copper salt, a copper salt capable of supplying divalent copper ions is usually used. The copper salt may be a copper salt other than the phosphonic acid copper salt represented by the general formula (1). Examples of the copper salt include copper of organic acids such as anhydrous copper acetate, anhydrous copper formate, anhydrous copper stearate, anhydrous copper benzoate, anhydrous ethyl acetoacetate copper, anhydrous pyrophosphate, anhydrous naphthenic acid copper, and anhydrous copper citrate. Salt, hydrate or hydrate of copper salt of organic acid; copper salt of inorganic acid such as copper oxide, copper chloride, copper sulfate, copper nitrate, basic copper carbonate, hydrate of copper salt of inorganic acid Or a hydrate; copper hydroxide is mentioned. In addition, as a copper salt, you may use individually by 1 type, or may use 2 or more types.
 銅塩としては、無水酢酸銅、酢酸銅1水和物が、溶解性や副生成物の除去の点から好ましく用いられる。 As the copper salt, anhydrous copper acetate and copper acetate monohydrate are preferably used from the viewpoint of solubility and removal of by-products.
 ホスホン酸銅塩からなる微粒子を製造する際には、好ましくは分散剤が用いられる。分散剤を用いると、一般式(1)で表わされるホスホン酸銅塩の分散性が向上するため好ましい。前記分散剤としては、例えば一般式(3a)で表されるリン酸エステル化合物および一般式(3b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物、該リン酸エステル化合物中のリン酸、すなわち水酸基を塩基で中和した化合物が挙げられる。なお、中和に用いる塩基としては水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム等が挙げられる。 When producing fine particles comprising a phosphonic acid copper salt, a dispersant is preferably used. It is preferable to use a dispersant because the dispersibility of the phosphonic acid copper salt represented by the general formula (1) is improved. Examples of the dispersant include at least one phosphate ester compound selected from a phosphate ester compound represented by the general formula (3a) and a phosphate ester compound represented by the general formula (3b), the phosphoric acid The phosphoric acid in an ester compound, ie, the compound which neutralized the hydroxyl group with the base is mentioned. Examples of the base used for neutralization include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, magnesium hydroxide, and calcium hydroxide.
Figure JPOXMLDOC01-appb-C000007
[一般式(3a)および(3b)中、R21、R22およびR23は、-(CH2CH2O)n5で表される1価の基であり、nは4~35の整数であり、R5は、炭素数6~25のアルキル基または炭素数6~25のアルキルフェニル基を示す。ただし、R21、R22およびR23は、それぞれ同一でも異なっていてもよい。]
 なお、本発明に用いる近赤外線吸収剤が、前記特定のホスホン酸銅塩からなる微粒子が樹脂(A)で被覆された粉末である場合には、前記nは4~25であることが好ましく、6~15であることがより好ましい。
Figure JPOXMLDOC01-appb-C000007
[In the general formulas (3a) and (3b), R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , and n is 4 to 35 R 5 is an integer, and R 5 represents an alkyl group having 6 to 25 carbon atoms or an alkylphenyl group having 6 to 25 carbon atoms. However, R 21 , R 22 and R 23 may be the same or different. ]
When the near-infrared absorber used in the present invention is a powder in which fine particles made of the specific copper phosphonate salt are coated with the resin (A), the n is preferably 4 to 25, More preferably, it is 6-15.
 また、本発明に用いる近赤外線吸収剤が、前記特定のホスホン酸銅塩からなる微粒子がポリシロキサン(B)で被覆された粉末である場合には、前記nは6~25であることが好ましい。 Further, when the near-infrared absorber used in the present invention is a powder in which the fine particles comprising the specific copper phosphonate salt are coated with polysiloxane (B), the n is preferably 6 to 25. .
 nが4未満である場合には、合わせガラス等を製造した際に透明性が不充分となる場合がある。また、nが前記範囲を超えると、充分な透明性を有する合わせガラス等を得るために必要な、リン酸エステル化合物の量が増え、コスト高の原因となる傾向がある。 When n is less than 4, transparency may be insufficient when a laminated glass or the like is produced. Moreover, when n exceeds the said range, the quantity of a phosphoric acid ester compound required in order to obtain the laminated glass etc. which have sufficient transparency will increase, and there exists a tendency which becomes a cause of high cost.
 また、R5は、炭素数6~25のアルキル基または炭素数6~25のアルキルフェニル基であり、炭素数6~25のアルキル基であることが好ましく、12~20のアルキル基であることがより好ましい。R5が、炭素数6未満の基であると、合わせガラス等を製造した際に透明性が不充分となる場合がある。また、R5が、炭素数25を超える基であると、充分な透明性を有する合わせガラス等を得るために必要な、リン酸エステル化合物の量が増え、コスト高の原因となる傾向がある。 R 5 is an alkyl group having 6 to 25 carbon atoms or an alkylphenyl group having 6 to 25 carbon atoms, preferably an alkyl group having 6 to 25 carbon atoms, and preferably an alkyl group having 12 to 20 carbon atoms. Is more preferable. When R 5 is a group having less than 6 carbon atoms, transparency may be insufficient when a laminated glass or the like is produced. Further, if R 5 is a group having more than 25 carbon atoms, the amount of the phosphoric acid ester compound required to obtain a laminated glass having sufficient transparency tends to increase, leading to high costs. .
 前記ホスホン酸銅塩からなる微粒子を得る際には、前記一般式(3a)で表されるリン酸エステル化合物、前記一般式(3b)で表されるリン酸エステル化合物の少なくとも一方が用いられることが好ましいが、前記一般式(3a)で表されるリン酸エステル化合物、前記一般式(3b)で表されるリン酸エステル化合物の両方を用いることがより好ましい。前記一般式(3a)で表されるリン酸エステル化合物および前記一般式(3b)で表されるリン酸エステル化合物を用いると、合わせガラス等の透明性、耐熱性に優れる傾向があり好ましい。前記一般式(3a)で表されるリン酸エステル化合物、前記一般式(3b)で表されるリン酸エステル化合物の両方を用いる場合には、一般式(3a)で表されるリン酸エステル化合物と、一般式(3b)で表されるリン酸エステル化合物との割合は、特に限定されないが、通常はモル比((3a):(3b))で10:90~90:10である。 When obtaining fine particles comprising the phosphonic acid copper salt, at least one of the phosphoric acid ester compound represented by the general formula (3a) and the phosphoric acid ester compound represented by the general formula (3b) is used. However, it is more preferable to use both the phosphoric acid ester compound represented by the general formula (3a) and the phosphoric acid ester compound represented by the general formula (3b). It is preferable to use the phosphate ester compound represented by the general formula (3a) and the phosphate ester compound represented by the general formula (3b) because they tend to be excellent in transparency and heat resistance of laminated glass and the like. When both the phosphate ester compound represented by the general formula (3a) and the phosphate ester compound represented by the general formula (3b) are used, the phosphate ester compound represented by the general formula (3a) And the ratio of the phosphoric acid ester compound represented by the general formula (3b) is not particularly limited, but is usually 10:90 to 90:10 in molar ratio ((3a) :( 3b)).
 また、前記一般式(3a)で表されるリン酸エステル化合物としては、一種単独で用いても、二種以上を用いてもよく、前記一般式(3b)で表されるリン酸エステル化合物としては、一種単独で用いても、二種以上を用いてもよい。 Moreover, as a phosphate ester compound represented by the said general formula (3a), it may be used individually by 1 type, or 2 or more types may be used, and the phosphate ester compound represented by the said General formula (3b) May be used alone or in combination of two or more.
 前記一般式(3a)で表されるリン酸エステル化合物および前記一般式(3b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物としては、市販されているリン酸エステル化合物、例えばDLP-8、DLP-10、DDP-8、DDP-10、TDP-8、TDP-10(以上、日光ケミカルズ(株)製)や、プライサーフA219B、プライサーフA210B(以上、第一工業化学(株)製)等を用いることもできる。また、これらのリン酸エステル化合物中のリン酸、すなわち水酸基を適当な塩基で中和した化合物を用いることもできる。中和に使用する塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム等が挙げられる。 As at least one phosphate ester compound selected from the phosphate ester compound represented by the general formula (3a) and the phosphate ester compound represented by the general formula (3b), commercially available phosphoric acid Ester compounds such as DLP-8, DLP-10, DDP-8, DDP-10, TDP-8, TDP-10 (above, manufactured by Nikko Chemicals), Prisurf A219B, Prisurf A210B (above, No. 1) Ichikogaku Kagaku Co., Ltd.) can also be used. Moreover, the phosphoric acid in these phosphate ester compounds, ie, the compound which neutralized the hydroxyl group with the appropriate base can also be used. Examples of the base used for neutralization include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide and the like.
 なお、ホスホン酸銅塩からなる微粒子を製造する際には、前記銅塩1モルあたり、一般式(2)で表されるホスホン酸化合物を0.5~1.5モル用いることが好ましく、0.8~1.2モル用いることがより好ましい。また、分散剤が、一般式(3a)で表されるリン酸エステル化合物および一般式(3b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物、および/または該リン酸エステル化合物中のリン酸、すなわち水酸基を塩基で中和した化合物である場合には、前記銅塩1モルあたり、0.02~0.40モル用いることが好ましい。 When producing fine particles comprising a phosphonic acid copper salt, it is preferable to use 0.5 to 1.5 mol of the phosphonic acid compound represented by the general formula (2) per mol of the copper salt. It is more preferable to use 8 to 1.2 mol. Further, the dispersant is at least one phosphate ester compound selected from a phosphate ester compound represented by the general formula (3a) and a phosphate ester compound represented by the general formula (3b), and / or In the case of phosphoric acid in the phosphoric ester compound, that is, a compound obtained by neutralizing a hydroxyl group with a base, it is preferably used in an amount of 0.02 to 0.40 mol per mol of the copper salt.
 前記溶媒としては、メタノール、エタノール等のアルコール、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、水等が挙げられ、良好に反応を行う観点から、エタノール、THFまたはDMFが好ましい。また、反応工程は、好ましくは室温~60℃、より好ましくは20~40℃の温度条件で、好ましくは0.5~50時間、より好ましくは1~30時間行われる。 Examples of the solvent include alcohols such as methanol and ethanol, tetrahydrofuran (THF), dimethylformamide (DMF), water and the like, and ethanol, THF or DMF is preferable from the viewpoint of satisfactory reaction. The reaction step is preferably carried out at room temperature to 60 ° C., more preferably 20 to 40 ° C., preferably for 0.5 to 50 hours, more preferably for 1 to 30 hours.
 前記反応工程では、前記一般式(2)で表されるホスホン酸化合物と、前記銅塩とが反応し、該反応によって、前記溶媒に溶解しない微粒子状のホスホン酸銅塩が生成する。前記一般式(3a)で表されるリン酸エステル化合物および一般式(3b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物は、反応時に良好な分散剤として作用することができるため、前記ホスホン酸銅塩は分散性が高く保たれ、凝集を抑制することができる。 In the reaction step, the phosphonic acid compound represented by the general formula (2) reacts with the copper salt, and fine phosphonic acid copper salt that does not dissolve in the solvent is generated by the reaction. At least one phosphate ester compound selected from the phosphate ester compound represented by the general formula (3a) and the phosphate ester compound represented by the general formula (3b) acts as a good dispersant during the reaction. Therefore, the phosphonic acid copper salt can maintain high dispersibility and suppress aggregation.
 なお、前記反応工程では、前記一般式(2)で表されるホスホン酸化合物と銅塩との反応のみではなく、例えば前記一般式(3a)で表されるリン酸エステル化合物および一般式(3b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩の一部とが反応してもよい。また、原料の一部が反応せずに残存していてもよい。 In the reaction step, not only the reaction between the phosphonic acid compound represented by the general formula (2) and the copper salt, but also, for example, the phosphate ester compound represented by the general formula (3a) and the general formula (3b) At least one type of phosphate ester compound selected from the phosphate ester compounds represented by) may react with a part of the copper salt. Further, a part of the raw material may remain without reacting.
 なお、前記ホスホン酸銅塩からなる微粒子の製造方法では、通常、前記反応混合物から、少なくとも前記溶媒の一部を除去することにより、ホスホン酸銅塩からなる微粒子を得る。 In the method for producing fine particles composed of the copper phosphonate, the fine particles composed of the copper phosphonate are usually obtained by removing at least a part of the solvent from the reaction mixture.
 溶媒除去工程では、反応混合物中から、少なくとも前記溶媒の一部を除去する。溶媒除去工程では、溶媒以外にも、反応混合物中の液体成分を合わせて除去してもよい。 In the solvent removal step, at least a part of the solvent is removed from the reaction mixture. In the solvent removal step, in addition to the solvent, the liquid components in the reaction mixture may be removed together.
 溶媒除去工程では、通常反応混合物を加熱することにより、少なくとも前記溶媒の一部を除去するが加熱条件は、通常、室温~70℃であり、好ましくは40~60℃である。また、溶媒除去工程は、常圧下で行ってもよく、減圧下で行ってもよい。減圧下で溶媒除去工程を行う場合には、加熱を行わなくてもよい場合や、加熱温度が低くてもよい場合がある。 In the solvent removal step, at least a part of the solvent is usually removed by heating the reaction mixture, but the heating condition is usually room temperature to 70 ° C., preferably 40 to 60 ° C. The solvent removal step may be performed under normal pressure or under reduced pressure. When the solvent removal step is performed under reduced pressure, heating may not be performed or the heating temperature may be low.
 また、溶媒除去工程を行った後に、ホスホン酸銅塩からなる微粒子中に含まれる不純物の除去を目的として、ホスホン酸銅塩からなる微粒子を、分散媒に分散した後に、該分散媒を除去する工程を設けてもよい。 In addition, after the solvent removal step, for the purpose of removing impurities contained in the phosphonic acid copper salt fine particles, the phosphonic acid copper salt fine particles are dispersed in the dispersion medium, and then the dispersion medium is removed. A process may be provided.
 本発明に用いられる近赤外線吸収剤は、前述のように前記ホスホン酸銅塩からなる微粒子が樹脂(A)およびポリシロキサン(B)から選択される少なくとも1種で被覆された粉末である。また、前記近赤外線吸収剤は前述のように前記ホスホン酸銅塩からなる微粒子が樹脂(A)またはポリシロキサン(B)で被覆された粉末であることが好ましい。 The near-infrared absorber used in the present invention is a powder in which the fine particles comprising the phosphonic acid copper salt are coated with at least one selected from the resin (A) and the polysiloxane (B) as described above. The near-infrared absorber is preferably a powder in which the fine particles comprising the phosphonic acid copper salt are coated with the resin (A) or the polysiloxane (B) as described above.
 本発明に用いられる近赤外線吸収剤を構成する、前記ホスホン酸銅塩からなる微粒子としては通常、平均粒径が1~1000nmのホスホン酸銅塩からなる微粒子が用いられる。平均粒径としては、モノマーへの分散性や樹脂組成物の透明性を確保するため、5~300nmであることがより好ましい。 As the fine particles comprising the phosphonic acid copper salt constituting the near-infrared absorber used in the present invention, fine particles comprising a phosphonic acid copper salt having an average particle diameter of 1 to 1000 nm are usually used. The average particle size is more preferably 5 to 300 nm in order to ensure dispersibility in the monomer and transparency of the resin composition.
 まず、前記近赤外線吸収剤が、前記ホスホン酸銅塩からなる微粒子が樹脂(A)で被覆された粉末である場合について説明する。 First, the case where the near-infrared absorber is a powder in which fine particles made of the copper phosphonate are coated with the resin (A) will be described.
 前記近赤外線吸収剤を構成する、樹脂(A)としては、前記ホスホン酸銅塩からなる微粒子を分散することが可能であり、かつアイオノマー樹脂に対して分散可能な樹脂であればよく特に限定はない。 The resin (A) constituting the near-infrared absorber is not particularly limited as long as it is a resin that can disperse the fine particles of the phosphonic acid copper salt and can be dispersed with respect to the ionomer resin. Absent.
 前記樹脂(A)としては、アイオノマー樹脂と混練する際の耐熱性の観点から、モノマーの少なくとも一部として架橋剤を用いて形成されることが好ましい。 The resin (A) is preferably formed using a crosslinking agent as at least a part of the monomer from the viewpoint of heat resistance when kneaded with the ionomer resin.
 架橋剤とは、一分子中に少なくとも2つ以上、ラジカル重合可能な官能基をもつ化合物であり、例えば多官能芳香族ビニル化合物、多官能(メタ)アクリル酸エステルが挙げられ、これらは一種で用いても、二種以上で用いてもよい。 A cross-linking agent is a compound having at least two functional groups capable of radical polymerization in one molecule, and examples thereof include polyfunctional aromatic vinyl compounds and polyfunctional (meth) acrylic esters. It may be used or two or more kinds may be used.
 なお、本発明において、「(メタ)アクリル酸」とは、「メタクリル酸」および「アクリル酸」を意味する。 In the present invention, “(meth) acrylic acid” means “methacrylic acid” and “acrylic acid”.
 前記多官能芳香族ビニル化合物としては、ジビニルベンゼン、ジイソプロペニルベンゼン、トリビニルベンゼンが挙げられる。 Examples of the polyfunctional aromatic vinyl compound include divinylbenzene, diisopropenylbenzene, and trivinylbenzene.
 前記多官能(メタ)アクリル酸エステルとしては例えば、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、2,2-ビス(4-メタクリロキシエトキシフェニル)プロパン、トリシクロデカンジメタノールジメタクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラアクリレートが挙げられる。 Examples of the polyfunctional (meth) acrylic acid ester include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polyethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 2,2-bis (4-methacryloxyethoxyphenyl) propane, tricyclodecane dimethanol dimethacrylate, trimethylolpropane triacrylate, pentaerythritol trimethacrylate, pentaerythritol tetraacrylate .
 架橋剤としては、エチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート等が好ましい。 As the crosslinking agent, ethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate and the like are preferable.
 また、前記樹脂(A)としては、成形性の観点から、モノマーの少なくとも一部として単官能性モノマーを用いて形成されることが好ましく、単官能性モノマーとしては、例えば単官能芳香族ビニル化合物、単官能(メタ)アクリル酸エステル、α‐オレフィンが挙げられ、これらは一種で用いても、二種以上で用いてもよい。 The resin (A) is preferably formed using a monofunctional monomer as at least a part of the monomer from the viewpoint of moldability. Examples of the monofunctional monomer include a monofunctional aromatic vinyl compound. , Monofunctional (meth) acrylic acid esters, and α-olefins. These may be used alone or in combination of two or more.
 前記単官能芳香族ビニル化合物としては例えば、スチレン、α‐メチルスチレン、エチルスチレン、tert-ブチルスチレン、クロルスチレン、ジブロムスチレン、メトキシスチレン、ビニル安息香酸、ヒドロキシメチルスチレンが挙げられる。 Examples of the monofunctional aromatic vinyl compound include styrene, α-methylstyrene, ethylstyrene, tert-butylstyrene, chlorostyrene, dibromostyrene, methoxystyrene, vinylbenzoic acid, and hydroxymethylstyrene.
 前記単官能(メタ)アクリル酸エステルとしては例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、n-ブチルアクリレート、n-ブチルメタクリレート、イソブチルアクリレート、イソブチルメタクリレート、tert-ブチルアクリレート、tert-ブチルメタクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート、イソデシルアクリレート、イソデシルメタクリレート、n-ラウリルアクリレート、n-ラウリルメタクリレート、トリデシルアクリレート、トリデシルメタクリレート、n-ステアリルアクリレート、n-ステアリルメタクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、ベンジルアクリレート、ベンジルメタクリレート、メトキシエチルアクリレート、メトキシエチルメタクリレート、エトキシエチルアクリレート、エトキシエチルメタクリレート、フェノキシエチルアクリレート、フェノキシエチルメタクリレートが挙げられる。前記単官能(メタ)アクリル酸エステルとしてはメチルメタクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート等が好ましい。 Examples of the monofunctional (meth) acrylic acid ester include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate. 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isodecyl acrylate, isodecyl methacrylate, n-lauryl acrylate, n-lauryl methacrylate, tridecyl acrylate, tridecyl methacrylate, n-stearyl acrylate, n-stearyl methacrylate, isobornyl Acrylate, isobornyl methacrylate, benzyl acrylate, benzyl meta Relate, methoxyethyl acrylate, methoxyethyl methacrylate, ethoxyethyl acrylate, ethoxyethyl methacrylate, phenoxyethyl acrylate, phenoxyethyl methacrylate. As the monofunctional (meth) acrylic acid ester, methyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate and the like are preferable.
 前記α-オレフィンとしては、通常炭素数4~18のα‐オレフィンが用いられ、例えば、1-ブテン、1-プロペン、1-ヘキセン、1-オクテン、1-デセン等が挙げられる。 As the α-olefin, an α-olefin having 4 to 18 carbon atoms is usually used, and examples thereof include 1-butene, 1-propene, 1-hexene, 1-octene and 1-decene.
 前記樹脂(A)としては、イオン交換抑制の効果を得る観点から、通常はモノマーとして架橋剤と、単官能(メタ)アクリル酸エステルとを用いて形成されることが好ましい。 The resin (A) is usually preferably formed using a crosslinking agent and a monofunctional (meth) acrylate as monomers, from the viewpoint of obtaining the effect of suppressing ion exchange.
 前記樹脂(A)を製造する際に用いるモノマー100質量部あたり、架橋剤を1質量部以上、単官能性モノマーを99質量部以下用いることが好ましく、架橋剤を5~99質量部、単官能性モノマーを1~95質量部用いることがより好ましく、架橋剤を10~90質量部、単官能性モノマーを10~90質量部用いることが特に好ましい。 The crosslinking agent is preferably used in an amount of 1 part by mass or more and the monofunctional monomer of 99 parts by mass or less per 100 parts by mass of the monomer used for producing the resin (A), and the crosslinking agent is used in an amount of 5 to 99 parts by mass. It is more preferable to use 1 to 95 parts by mass of the functional monomer, and it is particularly preferable to use 10 to 90 parts by mass of the crosslinking agent and 10 to 90 parts by mass of the monofunctional monomer.
 本発明の樹脂組成物が前記態様Aである場合には、近赤外線吸収剤は、前述のように前記ホスホン酸銅塩からなる微粒子が前述の樹脂(A)で被覆された粉末であり、その製造方法としては、特に限定はないが例えば、前述のホスホン酸銅塩からなる微粒子存在下で、モノマーの重合を行い、ホスホン酸銅塩からなる微粒子および樹脂(A)からなる重合物を得て、必要により重合物を粉砕することにより、近赤外線吸収剤が得られる。 When the resin composition of the present invention is the embodiment A, the near-infrared absorber is a powder in which the fine particles comprising the phosphonic acid copper salt are coated with the resin (A) as described above, and The production method is not particularly limited. For example, the monomer is polymerized in the presence of the fine particles composed of the aforementioned phosphonic acid copper salt to obtain a polymer composed of the fine particles composed of the phosphonic acid copper salt and the resin (A). If necessary, the near-infrared absorber can be obtained by pulverizing the polymer.
 モノマーの重合法としては、特に限定はなく、塊状重合、懸濁重合、乳化重合等の重合法によって行われる。これらの中でも、重合が容易な塊状重合が好ましい。なお、塊状重合では得られる重合物が、バルク(塊)の形で得られるため、該重合物を粉砕することにより、本発明に用いられる近赤外線吸収剤が得られる。 The polymerization method of the monomer is not particularly limited, and the polymerization is performed by a polymerization method such as bulk polymerization, suspension polymerization, emulsion polymerization or the like. Among these, bulk polymerization that allows easy polymerization is preferable. In addition, since the polymer obtained by bulk polymerization is obtained in the form of a bulk (lumb), the near-infrared absorber used for this invention is obtained by grind | pulverizing this polymer.
 本発明に用いられる近赤外線吸収剤を製造する方法との具体例としては、前記一般式(1)で表わされるホスホン酸銅塩からなる微粒子をモノマーに分散させ、銅塩含有モノマーを得て、前記銅塩含有モノマーを塊状重合し、重合物を得て、前記重合物を粉砕することにより近赤外線吸収剤、すなわち、前記一般式(1)で表わされるホスホン酸銅塩からなる微粒子が樹脂(A)で被覆された粉末を得る方法が挙げられる。 As a specific example of the method for producing a near-infrared absorber used in the present invention, fine particles comprising a phosphonic acid copper salt represented by the general formula (1) are dispersed in a monomer to obtain a copper salt-containing monomer, The copper salt-containing monomer is bulk polymerized to obtain a polymer, and the polymer is pulverized to obtain a near-infrared absorber, that is, fine particles composed of a phosphonic acid copper salt represented by the general formula (1) are resin ( A method for obtaining the powder coated with A) is mentioned.
 前記銅塩含有モノマーを得る方法としては、ホスホン酸銅塩からなる微粒子を分散媒に分散し、分散液を得て、該分散液にモノマーを添加した後に、分散媒を除去することにより銅塩含有モノマーを得る方法が挙げられる。 As a method for obtaining the copper salt-containing monomer, fine particles composed of copper phosphonate are dispersed in a dispersion medium to obtain a dispersion, and after adding the monomer to the dispersion, the dispersion medium is removed to remove the copper salt. The method of obtaining a containing monomer is mentioned.
 分散媒としては、前記ホスホン酸銅塩からなる微粒子を分散することが可能なものが用いられ、通常は低沸点の有機物が用いられ、例えば塩化メチレン、アセトン、メタノール、クロロフォルム等が用いられる。 As the dispersion medium, those capable of dispersing fine particles made of the phosphonic acid copper salt are used, and usually low-boiling organic substances are used. For example, methylene chloride, acetone, methanol, chloroform and the like are used.
 前記ホスホン酸銅塩からなる微粒子を分散媒に分散させる方法としては、例えば分散媒を前記ホスホン酸銅塩からなる微粒子に添加し、超音波照射、ホモジナイザー、攪拌、加温攪拌等の方法によって、前記ホスホン酸銅塩からなる微粒子を分散媒中に分散させる方法が挙げられる。 As a method of dispersing the fine particles composed of the phosphonic acid copper salt in a dispersion medium, for example, the dispersion medium is added to the fine particles composed of the phosphonic acid copper salt, and by a method such as ultrasonic irradiation, homogenizer, stirring, heating and stirring, Examples thereof include a method of dispersing fine particles comprising the phosphonic acid copper salt in a dispersion medium.
 次いで分散液に前述のモノマーを添加することにより、モノマーを好ましくは溶解させる。次いで分散媒を除去することにより、前記ホスホン酸銅塩からなる微粒子が分散した、銅塩含有モノマーを得ることができる。 Next, the monomer is preferably dissolved by adding the aforementioned monomer to the dispersion. Next, by removing the dispersion medium, it is possible to obtain a copper salt-containing monomer in which fine particles composed of the phosphonic acid copper salt are dispersed.
 分散媒を除去する方法としては、特に限定はなく、例えば減圧による分散媒の除去、加温と減圧の組み合わせによる除去等が挙げられる。 The method for removing the dispersion medium is not particularly limited, and examples thereof include removal of the dispersion medium by reduced pressure and removal by a combination of heating and reduced pressure.
 なお、分散液にモノマーを添加する場合には、モノマーの一部を分散液に添加し、分散媒の除去を行った後に、残りのモノマーをさらに添加し、混合を行ってもよい。 In addition, when adding a monomer to a dispersion liquid, after adding a part of monomer to a dispersion liquid and removing a dispersion medium, the remaining monomer may be further added and mixed.
 このようにして、ホスホン酸銅塩からなる微粒子がモノマーに分散した銅塩含有モノマーを得ることができる。なお、ホスホン酸銅塩からなる微粒子と、モノマーとの使用量の割合としては、本発明の樹脂組成物において、アイオノマー樹脂が有する金属イオンと、近赤外線吸収剤中に含有される銅イオンとのイオン交換を充分に抑制する観点からホスホン酸銅塩からなる微粒子1質量部に対して、モノマーを0.01~20質量部用いることが好ましく、0.1~15質量部用いることがより好ましい。モノマーの量が0.01質量部より少ないとホスホン酸銅塩からなる微粒子を被覆することができず、充分にイオン交換を抑制できない場合があり、モノマーの量が20質量部よりも多いと、アイオノマー樹脂に近赤外線吸収剤を導入した際にアイオノマー樹脂の強度等の物性を大きく変えてしまう恐れがある。 In this way, a copper salt-containing monomer in which fine particles made of copper phosphonate are dispersed in the monomer can be obtained. In addition, as a ratio of the usage-amount of the microparticles | fine-particles which consist of phosphonic acid copper salt, and a monomer, in the resin composition of this invention, the metal ion which ionomer resin has, and the copper ion contained in a near-infrared absorber From the viewpoint of sufficiently suppressing ion exchange, the monomer is preferably used in an amount of 0.01 to 20 parts by mass, and more preferably 0.1 to 15 parts by mass with respect to 1 part by mass of the fine particles made of copper phosphonate. If the amount of the monomer is less than 0.01 parts by weight, it may not be possible to coat the fine particles made of phosphonic acid copper salt, ion exchange may not be sufficiently suppressed, and if the amount of monomer is more than 20 parts by weight, When a near infrared absorber is introduced into the ionomer resin, the physical properties such as strength of the ionomer resin may be greatly changed.
 なお、近赤外線吸収剤を製造する際には、前述のように銅塩含有モノマーを塊状重合する方法が挙げられるが、塊状重合では、モノマーを好適に重合するために、通常はラジカル重合開始剤を、モノマーを分散液に添加するのと同時、あるいはモノマーを添加した後に添加し、ラジカル重合開始剤を含む銅塩含有モノマーを得ることが好ましい。 In addition, when manufacturing a near-infrared absorber, the method of carrying out bulk polymerization of a copper salt containing monomer as mentioned above is mentioned, but in bulk polymerization, in order to polymerize a monomer suitably, it is usually a radical polymerization initiator. Is preferably added at the same time as or after the monomer is added to the dispersion to obtain a copper salt-containing monomer containing a radical polymerization initiator.
 前記ラジカル重合開始剤としては、特に限定はなく、例えば有機過酸化物系重合開始剤、アゾ系ラジカル重合開始剤を用いることができる。有機過酸化物系重合開始剤としては例えば、tert-ブチルパーオクタノエート、tert-ブチルパーオキシネオデカネート、tert-ブチルパーオキシピバレート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシラウレート等の非芳香族系のパーオキシエステル、ラウロイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド等のジアシルパーオキサイドなどを用いることが、得られる近赤外線吸収剤の着色が少ない点で好ましい。アゾ系ラジカル重合開始剤としては、2,2'-アゾビス(イソブチロニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)1,1'-アゾビス(シクロヘキサン-2-カルボニトリル)等を用いることができる。ラジカル重合開始剤は、モノマー100質量部に対して、0.3~5.0質量部用いられる。 The radical polymerization initiator is not particularly limited, and for example, an organic peroxide polymerization initiator or an azo radical polymerization initiator can be used. Examples of the organic peroxide polymerization initiator include tert-butyl peroctanoate, tert-butyl peroxyneodecanate, tert-butyl peroxypivalate, tert-butyl peroxy-2-ethylhexanoate, Use of non-aromatic peroxyesters such as tert-butylperoxylaurate, diacyl peroxides such as lauroyl peroxide, 3,5,5-trimethylhexanoyl peroxide, etc. It is preferable in that it is less colored. As the azo radical polymerization initiator, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile) 1,1′-azobis (cyclohexane-2-carbonitrile) ) Etc. can be used. The radical polymerization initiator is used in an amount of 0.3 to 5.0 parts by mass with respect to 100 parts by mass of the monomer.
 前記銅塩含有モノマーを塊状重合し重合物を得る際には、例えばモールドや試験管等に前記銅塩含有モノマーを注入し、通常は重合温度20~200℃、重合時間1~40時間の条件で重合が行われる。 When bulk polymerization of the copper salt-containing monomer is performed to obtain a polymer, for example, the copper salt-containing monomer is injected into a mold, a test tube, or the like, and the polymerization temperature is usually 20 to 200 ° C. and the polymerization time is 1 to 40 hours. Polymerization takes place at
 前記塊状重合により得られた重合物を、粉砕することにより、本発明に用いられる近赤外線吸収剤を得ることができる。前記重合物を粉砕する方法としては、特に限定はないが例えば、サンドミル、ジェットミル、ボールミル、アトライター、振動ミル等を用いて行うことができる。 The near-infrared absorber used in the present invention can be obtained by pulverizing the polymer obtained by the bulk polymerization. A method for pulverizing the polymer is not particularly limited, and for example, a sand mill, a jet mill, a ball mill, an attritor, a vibration mill or the like can be used.
 本発明に用いられる近赤外線吸収剤は、例えば前述の方法で製造することが可能であり、前記一般式(1)で表わされるホスホン酸銅塩からなる微粒子が樹脂(A)で被覆された粉末である。得られた近赤外線吸収剤の平均粒径としては、0.05~100μmであることが好ましく、0.05~50μmであることがより好ましい。前記範囲内では、本発明の樹脂組成物は、透明性に優れるため好ましい。 The near-infrared absorber used in the present invention can be produced, for example, by the above-described method, and is a powder in which fine particles comprising a phosphonic acid copper salt represented by the general formula (1) are coated with a resin (A) It is. The average particle size of the obtained near-infrared absorber is preferably 0.05 to 100 μm, more preferably 0.05 to 50 μm. Within the said range, since the resin composition of this invention is excellent in transparency, it is preferable.
 なお、本発明において、ホスホン酸銅塩からなる微粒子が樹脂(A)で被覆されているとは、ホスホン酸銅塩からなる微粒子の表面の少なくとも一部が樹脂(A)で覆われていることを意味し、近赤外線吸収剤としては、ホスホン酸銅塩からなる微粒子の表面全体が樹脂(A)で覆われていることが好ましい。 In the present invention, the fine particles made of copper phosphonate are covered with the resin (A) means that at least a part of the surface of the fine particles made of copper phosphonate is covered with the resin (A). As a near-infrared absorber, it is preferable that the entire surface of fine particles made of phosphonic acid copper salt is covered with the resin (A).
 次に、前記近赤外線吸収剤が、前記ホスホン酸銅塩からなる微粒子がポリシロキサン(B)で被覆された粉末である場合について説明する。 Next, the case where the near-infrared absorber is a powder in which fine particles made of the copper phosphonate are coated with polysiloxane (B) will be described.
 前記近赤外線吸収剤を構成する、ポリシロキサン(B)としては、前記ホスホン酸銅塩からなる微粒子を被覆することが可能であり、前記アイオノマー樹脂に分散可能であればよく、特に限定は無い。 The polysiloxane (B) constituting the near-infrared absorber is not particularly limited as long as it can coat fine particles made of the phosphonic acid copper salt and can be dispersed in the ionomer resin.
 ポリシロキサン(B)としては、アルコキシシラン、アルコキシシランの加水分解物、およびこれらの縮合物から選択される少なくとも1種のケイ素系化合物から形成されることが好ましい。 The polysiloxane (B) is preferably formed from at least one silicon-based compound selected from alkoxysilane, a hydrolyzate of alkoxysilane, and a condensate thereof.
 前記アルコキシシランは、一種単独で用いても、二種以上を用いてもよい。アルコキシシランは一般にケイ素原子にアルコキシ基が結合した構造を有しているが、アルコキシシランとしては、ケイ素原子に四つのアルコキシ基が結合した四級のアルコキシシラン、三つのアルコキシ基が結合した三級のアルコキシシラン、二つのアルコキシ基が結合した二級のアルコキシシランの何れを用いてもよい。また、一つのアルコキシ基が結合した一級のアルコキシシランを、アルコキシシランの一部として用いてもよい。 The alkoxysilane may be used alone or in combination of two or more. Alkoxysilane generally has a structure in which an alkoxy group is bonded to a silicon atom, but as an alkoxysilane, a quaternary alkoxysilane in which four alkoxy groups are bonded to a silicon atom, or a tertiary in which three alkoxy groups are bonded. Any of these alkoxysilanes and secondary alkoxysilanes in which two alkoxy groups are bonded may be used. Further, primary alkoxysilane bonded with one alkoxy group may be used as a part of alkoxysilane.
 前記アルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ブチルトリエトキシシラン、オクチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、2-シアノエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルトリエトキシシラン、γ-アクリロイルオキシプロピルトリメトキシシラン、γ-アクリロイルオキシプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシランなどが挙げられる。アルコキシシランとしては、テトラメトキシシラン等が好ましい。 Specific examples of the alkoxysilane include tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, butyltriethoxysilane, octyltriethoxysilane. , Phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, 2-cyanoethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycid Xylpropyltriethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropyltriethoxysilane, γ-acryloylio Examples include xylpropyltrimethoxysilane, γ-acryloyloxypropyltriethoxysilane, γ-aminopropyltrimethoxysilane, and γ-aminopropyltriethoxysilane. As the alkoxysilane, tetramethoxysilane or the like is preferable.
 一般にアルコキシシランは、酸、アルカリ存在下では容易に加水分解・縮合反応が起こる。またアルコキシシランの加水分解物やアルコキシシランは加熱されると縮合反応が起こる。ケイ素系化合物としては、アルコキシシラン、アルコキシシランの加水分解物、およびこれらの縮合物の混合物を用いてもよい。 Generally, alkoxysilane easily undergoes hydrolysis / condensation reaction in the presence of acid or alkali. Further, when the hydrolyzate of alkoxysilane or alkoxysilane is heated, a condensation reaction occurs. As the silicon compound, alkoxysilane, a hydrolyzate of alkoxysilane, and a mixture of these condensates may be used.
 特に、取り扱いが容易なことから縮合物を用いることが好ましい。 In particular, it is preferable to use a condensate because it is easy to handle.
 前記縮合物としては、市販品を用いてもよい。市販品としては、メチルシリケート51、メチルシリケート53A、エチルシリケート40、エチルシリケート48(コルコート(株)製)、Mシリケート51、シリケート40、シリケート45(多摩化学工業(株)製)、等が挙げられる。 A commercially available product may be used as the condensate. Examples of commercially available products include methyl silicate 51, methyl silicate 53A, ethyl silicate 40, ethyl silicate 48 (manufactured by Colcoat Co.), M silicate 51, silicate 40, silicate 45 (manufactured by Tama Chemical Industry Co., Ltd.), and the like. It is done.
 本発明の樹脂組成物が前記態様Bである場合には、近赤外線吸収剤は、前述のように前記ホスホン酸銅塩からなる微粒子がポリシロキサン(B)で被覆された粉末であり、その製造方法としては特に限定は無いが、例えば、前述のホスホン酸銅塩からなる微粒子存在下で、前記ケイ素系化合物を加水分解・縮合することによりポリシロキサン(B)とすることにより、ホスホン酸銅塩からなる微粒子およびポリシロキサン(B)からなる反応物を得て、該反応物を粉砕することにより、近赤外線吸収剤を得ることができる。 When the resin composition of the present invention is the embodiment B, the near-infrared absorber is a powder in which the fine particles of the phosphonic acid copper salt are coated with the polysiloxane (B) as described above, and the production thereof The method is not particularly limited. For example, the polyphosphoric acid (B) can be obtained by hydrolyzing and condensing the silicon compound in the presence of fine particles comprising the above-described copper phosphonate. A near-infrared absorber can be obtained by obtaining a reaction product comprising the fine particles comprising polysiloxane (B) and pulverizing the reaction product.
 加水分解・縮合するための反応条件としては、通常は10~250℃、より実施に対して好ましいのは室温~100℃である。また、反応を加速させるために、酸、塩基などの触媒を用いてもよい。また、乾燥を行う際には、通常は10~250℃、好ましくは50℃~200℃で行われる。 The reaction conditions for the hydrolysis / condensation are usually 10 to 250 ° C., more preferably room temperature to 100 ° C. for implementation. In order to accelerate the reaction, a catalyst such as an acid or a base may be used. The drying is usually performed at 10 to 250 ° C., preferably 50 to 200 ° C.
 また、反応物を粉砕する方法としては、特に限定は無いが、メノウ乳鉢、サンドミル、ジェットミル、ボールミル、アトライター、振動ミル等を用いて反応物を粉砕することができる。 The method of pulverizing the reaction product is not particularly limited, but the reaction product can be pulverized using an agate mortar, sand mill, jet mill, ball mill, attritor, vibration mill or the like.
 近赤外線吸収剤を得るために用いる、ホスホン酸銅塩からなる微粒子と、ケイ素系化合物との使用量の割合としては、前記ケイ素系化合物が、ホスホン酸銅塩からなる微粒子中の銅1質量部に対して、SiO2換算で0.3~20質量部用いることが好ましく、0.5~15質量部用いることがより好ましい。前記ケイ素系化合物の使用量が前記範囲を下回ると被覆が不充分で固体として得られず実施に適さない恐れがあり、前記範囲を上回ると作業性の低下および赤外線吸収効果を得るために必要な添加量が多くなり実施に適さない恐れがある。 As a ratio of the amount of the fine particles composed of the phosphonic acid copper salt and the silicon compound used for obtaining the near infrared absorber, the silicon compound is 1 part by mass of copper in the fine particles composed of the phosphonic acid copper salt. On the other hand, 0.3 to 20 parts by mass in terms of SiO 2 is preferably used, and more preferably 0.5 to 15 parts by mass. If the amount of the silicon-based compound used is less than the above range, the coating is insufficient and may not be obtained as a solid and may not be suitable for implementation. If it exceeds the above range, it is necessary to obtain a workability reduction and an infrared absorption effect. The amount added may be unsuitable for implementation.
 なお、SiO2換算の質量部とは、前記ケイ素系化合物としては様々な構造の化合物を用いることが可能であるが、ケイ素系化合物が有するケイ素原子の量を求め、ケイ素系化合物が、該量のケイ素原子を有する二酸化ケイ素であると仮定した場合の質量部である。 In addition, although it is possible to use compounds having various structures as the silicon compound, the mass part in terms of SiO 2 is obtained. The amount of silicon atoms of the silicon compound is determined, and the silicon compound It is a mass part when it is assumed that it is a silicon dioxide which has a silicon atom.
 本発明に用いられる近赤外線吸収剤は、例えば前述の方法で製造することが可能であり、前記一般式(1)で表わされるホスホン酸銅塩からなる微粒子がポリシロキサン(B)で被覆された粉末である。得られた近赤外線吸収剤の平均粒径としては、0.01~100μmであることが好ましく、0.03~50μmであることがより好ましく、0.05~1μmが特に好ましい。前記範囲内では、本発明の樹脂組成物は、透明性に優れるため好ましい。 The near-infrared absorber used in the present invention can be produced, for example, by the above-described method, and the fine particles comprising the phosphonic acid copper salt represented by the general formula (1) are coated with the polysiloxane (B). It is a powder. The average particle size of the obtained near infrared absorber is preferably 0.01 to 100 μm, more preferably 0.03 to 50 μm, and particularly preferably 0.05 to 1 μm. Within the said range, since the resin composition of this invention is excellent in transparency, it is preferable.
 なお、本発明において、ホスホン酸銅塩からなる微粒子がポリシロキサン(B)で被覆されているとは、ホスホン酸銅塩からなる微粒子の表面の少なくとも一部がポリシロキサン(B)で覆われていることを意味し、近赤外線吸収剤としては、ホスホン酸銅塩からなる微粒子の表面全体がポリシロキサン(B)で覆われていることが好ましい。 In the present invention, the fine particles made of phosphonic acid copper salt are covered with polysiloxane (B). At least a part of the surface of fine particles made of phosphonic acid copper salt is covered with polysiloxane (B). As a near-infrared absorber, it is preferable that the entire surface of fine particles made of phosphonic acid copper salt is covered with polysiloxane (B).
 〔アイオノマー樹脂〕
 本発明に用いられるアイオノマー樹脂としては、特に限定は無く、様々なアイオノマー樹脂を用いることができる。
[Ionomer resin]
The ionomer resin used in the present invention is not particularly limited, and various ionomer resins can be used.
 アイオノマー樹脂としては、エチレン系アイオノマー、スチレン系アイオノマー、パーフルオロカーボン系アイオノマー、テレケリックアイオノマー、ポリウレタンアイオノマー等が挙げられるが、本発明の樹脂組成物から形成される中間膜を用いて合わせガラスを製造した際に、強度、硬度、耐久性、透明性および接着性に優れるエチレン系アイオノマーを用いることが好ましい。 Examples of the ionomer resin include an ethylene ionomer, a styrene ionomer, a perfluorocarbon ionomer, a telechelic ionomer, a polyurethane ionomer, and the like, and a laminated glass was manufactured using an interlayer film formed from the resin composition of the present invention. In this case, it is preferable to use an ethylene ionomer that is excellent in strength, hardness, durability, transparency, and adhesiveness.
 エチレン系アイオノマーとしては、エチレン・不飽和カルボン酸共重合体のアイオノマーが透明性と強靭性に優れるため好適に用いられる。 As the ethylene ionomer, an ionomer of an ethylene / unsaturated carboxylic acid copolymer is preferably used because of its excellent transparency and toughness.
 前記エチレン・不飽和カルボン酸共重合体は、少なくともエチレン由来の構成単位および不飽和カルボン酸由来の構成単位を有する共重合体であり、他のモノマー由来の構成単位を有していてもよい。 The ethylene / unsaturated carboxylic acid copolymer is a copolymer having at least a structural unit derived from ethylene and a structural unit derived from unsaturated carboxylic acid, and may have a structural unit derived from another monomer.
 前記不飽和カルボン酸としては、アクリル酸、メタクリル酸、マレイン酸等が挙げられ、アクリル酸、メタクリル酸が好ましく、メタクリル酸が特に好ましい。 Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid and the like. Acrylic acid and methacrylic acid are preferable, and methacrylic acid is particularly preferable.
 前記他のモノマーとしては、アクリル酸エステル、メタクリル酸エステル、1-ブテン等が挙げられる。 Examples of the other monomers include acrylic acid esters, methacrylic acid esters, and 1-butene.
 前記エチレン・不飽和カルボン酸共重合体としては、該共重合体が有する全構成単位を100モル%とすると、エチレン由来の構成単位を75~99モル%有することが好ましく、不飽和カルボン酸由来の構成単位を1~25モル%有することが好ましい。 The ethylene / unsaturated carboxylic acid copolymer preferably has 75 to 99 mol% of structural units derived from ethylene, assuming that the total structural units of the copolymer are 100 mol%, and derived from unsaturated carboxylic acid. It is preferable to have 1 to 25 mol% of the structural unit.
 前記エチレン・不飽和カルボン酸共重合体のアイオノマーは、エチレン・不飽和カルボン酸共重合体が有するカルボキシル基の少なくとも一部を金属イオンで中和または架橋することにより得られるアイオノマー樹脂であるが、該カルボキシル基の中和度は、通常は1~90%であり、好ましくは5~85%である。 The ionomer of the ethylene / unsaturated carboxylic acid copolymer is an ionomer resin obtained by neutralizing or crosslinking at least a part of the carboxyl group of the ethylene / unsaturated carboxylic acid copolymer with a metal ion, The neutralization degree of the carboxyl group is usually 1 to 90%, preferably 5 to 85%.
 本発明に用いられるアイオノマー樹脂におけるイオン源としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属、マグネシウム、カルシウム、亜鉛等の多価金属が挙げられ、ナトリウム、亜鉛が好ましい。 Examples of the ion source in the ionomer resin used in the present invention include alkali metals such as lithium, sodium, potassium, rubidium and cesium, and polyvalent metals such as magnesium, calcium and zinc, and sodium and zinc are preferable.
 本発明に用いられるアイオノマー樹脂の製造方法としては特に限定はなく、従来公知の製造方法によって、製造することが可能である。 The production method of the ionomer resin used in the present invention is not particularly limited, and can be produced by a conventionally known production method.
 例えばアイオノマー樹脂として、エチレン・不飽和カルボン酸共重合体のアイオノマーを用いる場合には、例えば、エチレンと不飽和カルボン酸とを、高温、高圧下でラジカル共重合を行い、エチレン・不飽和カルボン酸共重合体を製造し、該エチレン・不飽和カルボン酸共重合体と、前記イオン源を含む金属化合物とを反応させることにより、エチレン・不飽和カルボン酸共重合体のアイオノマーを製造することができる。 For example, when an ionomer of an ethylene / unsaturated carboxylic acid copolymer is used as the ionomer resin, for example, ethylene and an unsaturated carboxylic acid are subjected to radical copolymerization at a high temperature and high pressure to obtain an ethylene / unsaturated carboxylic acid. An ionomer of an ethylene / unsaturated carboxylic acid copolymer can be produced by producing a copolymer and reacting the ethylene / unsaturated carboxylic acid copolymer with the metal compound containing the ion source. .
 〔樹脂組成物〕
 本発明の樹脂組成物は、前述の近赤外線吸収剤とアイオノマー樹脂とからなる樹脂組成物である。
(Resin composition)
The resin composition of the present invention is a resin composition comprising the above-mentioned near infrared absorber and ionomer resin.
 本発明の樹脂組成物は、前述の近赤外線吸収剤とアイオノマー樹脂とからなる組成物であればよいが、通常は、前述の近赤外線吸収剤とアイオノマー樹脂とを溶融混練することにより製造される。溶融混練は、プラストグラフ、一軸押出機、二軸押出機、バンバリーミキサー等の公知の混練機を用いて行うことができる。また、溶融混練は通常100~230℃の範囲で行われる。 The resin composition of the present invention may be a composition comprising the above-mentioned near-infrared absorber and ionomer resin, but is usually produced by melt-kneading the above-mentioned near-infrared absorber and ionomer resin. . The melt kneading can be performed using a known kneader such as a plastograph, a single screw extruder, a twin screw extruder, a Banbury mixer, and the like. The melt-kneading is usually performed in the range of 100 to 230 ° C.
 本発明の樹脂組成物は、アイオノマー樹脂100質量部あたり、前記近赤外線吸収剤を0.05~30質量部含有することが好ましく、0.1~20質量部含有することがより好ましい。0.05質量部より少ないと充分な近赤外線吸収特性が得られない可能性があり、30質量部より多すぎると樹脂の透明性や接着性が大幅に低下するおそれがある。 The resin composition of the present invention preferably contains 0.05 to 30 parts by mass, more preferably 0.1 to 20 parts by mass of the near infrared absorber per 100 parts by mass of the ionomer resin. If the amount is less than 0.05 parts by mass, sufficient near-infrared absorption characteristics may not be obtained. If the amount is more than 30 parts by mass, the transparency and adhesiveness of the resin may be significantly reduced.
 本発明の樹脂組成物は、近赤外線吸収能に優れ、樹脂としてアイオノマー樹脂を含むため、強度、硬度共に優れており、かつ耐久性、接着性に優れるため合わせガラス等の構造材料用の中間膜として好適に使用することが可能である。 The resin composition of the present invention is excellent in near-infrared absorbing ability, and includes an ionomer resin as a resin. Therefore, the resin composition has excellent strength and hardness, and is excellent in durability and adhesiveness. Therefore, it is an intermediate film for structural materials such as laminated glass. Can be suitably used.
 また、本発明の樹脂組成物には、各種添加剤が含有されていてもよい。添加剤としては、例えば分散剤、酸化防止剤、紫外線吸収剤、光安定剤等が挙げられる。これらの添加剤は、前述の溶融混練を行う際に、近赤外線吸収剤およびアイオノマー樹脂と共に混練されてもよく、近赤外線吸収剤を製造する際や、アイオノマー樹脂を製造する際に添加されてもよい。 Moreover, various additives may be contained in the resin composition of the present invention. Examples of the additive include a dispersant, an antioxidant, an ultraviolet absorber, and a light stabilizer. These additives may be kneaded together with the near-infrared absorber and the ionomer resin when the above-mentioned melt-kneading is performed, or may be added when the near-infrared absorber is manufactured or the ionomer resin is manufactured. Good.
 〔樹脂組成物の用途〕
 本発明の樹脂組成物は、アイオノマー樹脂が用いられる各種用途に用いることが可能であるが、近赤外線を吸収することが望まれる用途に通常は用いられる。
[Use of resin composition]
The resin composition of the present invention can be used in various applications in which an ionomer resin is used, but is usually used in applications where it is desired to absorb near infrared rays.
 本発明の樹脂組成物から形成される樹脂膜は、近赤外線吸収能に優れ、強度、硬度共に優れており、かつ耐久性、接着性に優れるため、合わせガラス用中間膜等の構造材料用中間膜として好適に用いることが可能である。 The resin film formed from the resin composition of the present invention has excellent near-infrared absorptivity, excellent strength and hardness, and excellent durability and adhesion. It can be suitably used as a film.
 また、本発明の合わせガラスは、前記合わせガラス用中間膜を有している。本発明の合わせガラスを構成するガラスとしては特に限定はなく、従来公知のものを用いることができる。 Further, the laminated glass of the present invention has the interlayer film for laminated glass. There is no limitation in particular as glass which comprises the laminated glass of this invention, A conventionally well-known thing can be used.
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 〔比較例1〕
 (エチルホスホン酸銅塩の合成)
 反応容器中で、エチルホスホン酸32.34gをメタノール500mlに溶解し、そこに酢酸銅一水和物58.67gを添加し、4時間加熱還流を行い、懸濁液を得た。
[Comparative Example 1]
(Synthesis of copper ethylphosphonate)
In a reaction vessel, 32.34 g of ethylphosphonic acid was dissolved in 500 ml of methanol, and 58.67 g of copper acetate monohydrate was added thereto, followed by heating under reflux for 4 hours to obtain a suspension.
 得られた懸濁液を濾過し、残渣を200℃で2時間乾燥して淡青色の粉末(エチルホスホン酸銅塩)49.79g(収率98%)を得た。 The obtained suspension was filtered, and the residue was dried at 200 ° C. for 2 hours to obtain 49.79 g (yield 98%) of a pale blue powder (ethylphosphonic acid copper salt).
 (樹脂組成物の製造)
 前記エチルホスホン酸銅塩0.69gと、エチレン‐メタクリル酸共重合体Na塩(ハイミラン 1605、三井デュポンポリケミカル社製)47.61gとを、プラストグラフ(ブラベンダー社製)に供給し、190℃、スクリュー回転数30rpmで15分間溶融混練し、エチルホスホン酸銅塩を含む樹脂組成物(c1)を得た。
(Manufacture of resin composition)
0.69 g of the ethylphosphonic acid copper salt and 47.61 g of an ethylene-methacrylic acid copolymer Na salt (Himiran 1605, manufactured by Mitsui DuPont Polychemical Co., Ltd.) were supplied to a plastograph (manufactured by Brabender Co., Ltd.). The resin composition (c1) containing ethylphosphonic acid copper salt was obtained by melt-kneading for 15 minutes at a temperature of 30 ° C. and a screw speed of 30 rpm.
 〔実施例A1〕
 (樹脂被覆銅塩の合成)
 反応容器に酢酸銅一水和物3.49gとエタノール135gとを入れて攪拌し、酢酸銅一水和物を完全に溶解した。そこにエチルホスホン酸1.92gとリン酸エステル系分散剤(プライサーフ A219B、第一工業製薬株式会社製)1.50gとをエタノール15gに溶解した溶液を添加し、室温で4時間攪拌を行い反応させた。反応後、得られた反応混合物から副生成物および溶媒をロータリーエバポレーターで留去し、エチルホスホン酸銅塩を含む固形分4.44gを得た。
[Example A1]
(Synthesis of resin-coated copper salt)
In a reaction vessel, 3.49 g of copper acetate monohydrate and 135 g of ethanol were added and stirred to completely dissolve the copper acetate monohydrate. Thereto was added a solution prepared by dissolving 1.92 g of ethylphosphonic acid and 1.50 g of a phosphate ester dispersant (Pricesurf A219B, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) in 15 g of ethanol, followed by stirring at room temperature for 4 hours. Reacted. After the reaction, by-products and the solvent were distilled off from the obtained reaction mixture with a rotary evaporator to obtain 4.44 g of a solid content containing ethylphosphonic acid copper salt.
 得られた固形分に塩化メチレン100gを添加し、超音波照射を行い、固形分を塩化メチレンへ分散させ、分散液を得た。該分散液中の銅塩の平均粒径は79nmであった。なお、平均粒径はELSZ-2(大塚電子株式会社製)を用いて測定した。 100 g of methylene chloride was added to the obtained solid content, ultrasonic irradiation was performed, and the solid content was dispersed in methylene chloride to obtain a dispersion. The average particle size of the copper salt in the dispersion was 79 nm. The average particle size was measured using ELSZ-2 (manufactured by Otsuka Electronics Co., Ltd.).
 該分散液にメタクリル酸メチル(MMA)4.50g、エチレングリコールジメタクリレート(EDMA)4.50gを加え、次いでロータリーエバポレーターで減圧することにより塩化メチレンを抽出除去した。次いで重合開始剤として、tert‐ブチルパーオキシ‐2‐エチルヘキサノエート(パーブチル O、日本油脂(株)社製)0.09gを添加、混合して銅塩含有モノマーA1を得た。 Methylene chloride was extracted and removed by adding 4.50 g of methyl methacrylate (MMA) and 4.50 g of ethylene glycol dimethacrylate (EDMA) to the dispersion, and then reducing the pressure with a rotary evaporator. Subsequently, 0.09 g of tert-butyl peroxy-2-ethylhexanoate (Perbutyl O, manufactured by Nippon Oil & Fats Co., Ltd.) was added and mixed as a polymerization initiator to obtain a copper salt-containing monomer A1.
 銅塩含有モノマーA1を試験管に注入し、オーブンにて、50℃で8時間加温した後、70℃まで4時間かけて昇温、次いで2時間かけて110℃まで昇温した後に110℃で1時間保持することにより重合を行った。 The copper salt-containing monomer A1 was poured into a test tube, heated in an oven at 50 ° C. for 8 hours, then heated to 70 ° C. over 4 hours, then heated to 110 ° C. over 2 hours and then 110 ° C. The polymerization was carried out by holding for 1 hour.
 重合終了後、オーブン温度を1.5時間かけて70℃まで降温した後に、オーブンから取り出して試験管内の反応物を取り出した。 After completion of the polymerization, the oven temperature was lowered to 70 ° C. over 1.5 hours, and then removed from the oven to remove the reaction product in the test tube.
 取り出した反応物を120℃のオーブンで1時間アニールした後、小型粉砕器サンプルミル(SK-M2型、協立理工(株)社製)で6分間粉砕し、灰色の樹脂被覆銅塩粉末(1)を得た。 The reaction product taken out was annealed in an oven at 120 ° C. for 1 hour, and then pulverized for 6 minutes in a small pulverizer sample mill (SK-M2 type, manufactured by Kyoritsu Riko Co., Ltd.) to obtain a gray resin-coated copper salt powder ( 1) was obtained.
 (樹脂組成物の製造)
 樹脂被覆銅塩粉末(1)2.15gと、エチレン‐メタクリル酸共重合体Na塩(ハイミラン 1605、三井デュポンポリケミカル社製)46.15gとを、プラストグラフ(ブラベンダー社製)に供給し、190℃、スクリュー回転数30rpmで15分間溶融混練し、樹脂被覆銅塩粉末を含む樹脂組成物(1)を得た。
(Manufacture of resin composition)
2.15 g of resin-coated copper salt powder (1) and 46.15 g of ethylene-methacrylic acid copolymer Na salt (Himiran 1605, manufactured by Mitsui DuPont Polychemical Co., Ltd.) were supplied to a plastograph (manufactured by Brabender). The resin composition (1) containing resin-coated copper salt powder was obtained by melt-kneading for 15 minutes at 190 ° C. and a screw rotation speed of 30 rpm.
 〔実施例A2〕
 (樹脂被覆銅塩の合成)
 反応容器に酢酸銅一水和物1.05gとエタノール54gとを入れて攪拌し、酢酸銅一水和物を完全に溶解した。そこにヘキシルホスホン酸0.88gとリン酸エステル系分散剤(プライサーフ A219B、第一工業製薬株式会社製)0.60gとをエタノール6gに溶解した溶液を添加し、室温で7時間攪拌を行い反応させた。反応後、得られた反応混合物から副生成物および溶媒をロータリーエバポレーターで留去し、ヘキシルホスホン酸銅塩を含む固形分1.81gを得た。
[Example A2]
(Synthesis of resin-coated copper salt)
To the reaction vessel, 1.05 g of copper acetate monohydrate and 54 g of ethanol were added and stirred to completely dissolve the copper acetate monohydrate. A solution prepared by dissolving 0.88 g of hexylphosphonic acid and 0.60 g of a phosphate ester dispersant (Pricesurf A219B, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) in 6 g of ethanol was added thereto and stirred at room temperature for 7 hours. Reacted. After the reaction, by-products and the solvent were distilled off from the obtained reaction mixture with a rotary evaporator to obtain 1.81 g of a solid content containing hexylphosphonic acid copper salt.
 得られた固形分に塩化メチレン100gを添加し、超音波照射を行い、固形分を塩化メチレンへ分散させ、分散液を得た。該分散液中の銅塩の平均粒径は75nmであった。なお、平均粒径はELSZ-2(大塚電子株式会社製)を用いて測定した。 100 g of methylene chloride was added to the obtained solid content, ultrasonic irradiation was performed, and the solid content was dispersed in methylene chloride to obtain a dispersion. The average particle size of the copper salt in the dispersion was 75 nm. The average particle size was measured using ELSZ-2 (manufactured by Otsuka Electronics Co., Ltd.).
 該分散液にメタクリル酸メチル(MMA)6.02g、エチレングリコールジメタクリレート(EDMA)6.01gを加え、次いでロータリーエバポレーターで減圧することにより塩化メチレンを抽出除去した。次いで重合開始剤として、tert‐ブチルパーオキシ‐2‐エチルヘキサノエート(パーブチル O、日本油脂(株)社製)0.12gを添加、混合して銅塩含有モノマーA2を得た。 Methylene chloride was extracted and removed by adding 6.02 g of methyl methacrylate (MMA) and 6.01 g of ethylene glycol dimethacrylate (EDMA) to the dispersion, and then reducing the pressure with a rotary evaporator. Next, 0.12 g of tert-butyl peroxy-2-ethylhexanoate (Perbutyl O, manufactured by NOF Corporation) was added and mixed as a polymerization initiator to obtain a copper salt-containing monomer A2.
 銅塩含有モノマーA2を試験管に注入し、オーブンにて、50℃で8時間加温した後、70℃まで4時間かけて昇温、次いで2時間かけて110℃まで昇温した後に110℃で1時間保持することにより重合を行った。 Copper salt-containing monomer A2 was poured into a test tube, heated in an oven at 50 ° C. for 8 hours, then heated to 70 ° C. over 4 hours, then heated to 110 ° C. over 2 hours, and then 110 ° C. The polymerization was carried out by holding for 1 hour.
 重合終了後、オーブン温度を1.5時間かけて70℃まで降温した後に、オーブンから取り出して試験管内の反応物を取り出した。 After completion of the polymerization, the oven temperature was lowered to 70 ° C. over 1.5 hours, and then removed from the oven to remove the reaction product in the test tube.
 取り出した反応物を120℃のオーブンで1時間アニールした後、小型粉砕器サンプルミル(SK-M2型、協立理工(株)社製)で8分間粉砕し、灰色の樹脂被覆銅塩粉末(2)を得た。 The reaction product taken out was annealed in an oven at 120 ° C. for 1 hour, then pulverized for 8 minutes in a small pulverizer sample mill (SK-M2 type, manufactured by Kyoritsu Riko Co., Ltd.), and gray resin-coated copper salt powder ( 2) was obtained.
 樹脂被覆銅塩粉末(2)について、以下の方法でTEM観察を行った。 The resin-coated copper salt powder (2) was subjected to TEM observation by the following method.
 樹脂被覆銅塩粉末(2)をメタノールに分散し、懸濁液を得た。得られた懸濁液を、マイクログリッドを貼り付けたメッシュ(日新EM社製)上に少量滴下し、自然乾燥した後に、透過型電子顕微鏡(日本電子JEM2000EX)にて観察した。得られたTEM写真を図1に示す。 Resin-coated copper salt powder (2) was dispersed in methanol to obtain a suspension. A small amount of the obtained suspension was dropped on a mesh (manufactured by Nissin EM Co., Ltd.) on which a microgrid was pasted, dried naturally, and then observed with a transmission electron microscope (JEOL JEM2000EX). The obtained TEM photograph is shown in FIG.
 TEM観察の結果、樹脂被覆銅塩粉末(2)の粒子内部に、10~40nmの銅塩(黒色部)が観察され、樹脂によって銅塩が被覆されていることが確認された。 As a result of TEM observation, a 10 to 40 nm copper salt (black part) was observed inside the particles of the resin-coated copper salt powder (2), and it was confirmed that the copper salt was coated with the resin.
 (樹脂組成物の製造)
 樹脂被覆銅塩粉末(2)5.00gと、エチレン‐メタクリル酸共重合体Na塩(ハイミラン 1605、三井デュポンポリケミカル社製)43.30gとを、プラストグラフ(ブラベンダー社製)に供給し、190℃、スクリュー回転数30rpmで15分間溶融混練し、樹脂被覆銅塩粉末を含む樹脂組成物(2)を得た。
(Manufacture of resin composition)
5.00 g of resin-coated copper salt powder (2) and 43.30 g of ethylene-methacrylic acid copolymer Na salt (Himiran 1605, manufactured by Mitsui DuPont Polychemical Co., Ltd.) were supplied to a plastograph (manufactured by Brabender). The resin composition (2) containing resin-coated copper salt powder was obtained by melt-kneading for 15 minutes at 190 ° C. and a screw rotation speed of 30 rpm.
 〔実施例A3〕
 (樹脂組成物の製造)
 実施例A1と同様の樹脂被覆銅塩粉末(1)1.40gと、エチレン‐メタクリル酸共重合体Zn塩(ハイミラン 1706、三井デュポンポリケミカル社製)46.91gとを、プラストグラフ(ブラベンダー社製)に供給し、190℃、スクリュー回転数30rpmで15分間溶融混練し、樹脂被覆銅塩粉末を含む樹脂組成物(3)を得た。
[Example A3]
(Manufacture of resin composition)
Resin-coated copper salt powder (1) 1.40 g similar to Example A1 and ethylene-methacrylic acid copolymer Zn salt (High Milan 1706, manufactured by Mitsui DuPont Polychemical Co., Ltd.) 46.91 g The resin composition (3) containing resin-coated copper salt powder was obtained by melt-kneading for 15 minutes at 190 ° C. and a screw speed of 30 rpm.
 〔実施例A4〕
 (樹脂被覆銅塩の合成)
 反応容器に酢酸銅一水和物13.96gとエタノール800gとを入れて攪拌し、酢酸銅一水和物を完全に溶解した。そこにエチルホスホン酸7.71gとリン酸エステル系分散剤(プライサーフ A219B、第一工業製薬株式会社製)6.00gとをエタノール15gに溶解した溶液を添加し、室温で4時間攪拌を行い反応させた。反応後、得られた反応混合物から副生成物および溶媒をロータリーエバポレーターで留去し、エチルホスホン酸銅塩を含む固形分18.28gを得た。
[Example A4]
(Synthesis of resin-coated copper salt)
In a reaction vessel, 13.96 g of copper acetate monohydrate and 800 g of ethanol were added and stirred to completely dissolve the copper acetate monohydrate. Thereto was added a solution prepared by dissolving 7.71 g of ethylphosphonic acid and 6.00 g of a phosphate ester dispersant (Pricesurf A219B, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) in 15 g of ethanol, followed by stirring at room temperature for 4 hours. Reacted. After the reaction, by-products and the solvent were distilled off from the obtained reaction mixture with a rotary evaporator to obtain 18.28 g of a solid content containing ethylphosphonic acid copper salt.
 得られた固形分に塩化メチレン503.67gを添加し、超音波照射を行い、固形分を塩化メチレンへ分散させ、分散液521.95gを得た。該分散液中の銅塩の平均粒径は85nmであった。なお、平均粒径はELSZ-2(大塚電子株式会社製)を用いて測定した。 503.67 g of methylene chloride was added to the obtained solid content, and ultrasonic irradiation was performed to disperse the solid content in methylene chloride to obtain 521.95 g of a dispersion. The average particle size of the copper salt in the dispersion was 85 nm. The average particle size was measured using ELSZ-2 (manufactured by Otsuka Electronics Co., Ltd.).
 該分散液52.24gにメタクリル酸メチル(MMA)10.80g、エチレングリコールジメタクリレート(EDMA)1.20gを加え、次いでロータリーエバポレーターで減圧することにより塩化メチレンを抽出除去した。次いで重合開始剤として、tert‐ブチルパーオキシ‐2‐エチルヘキサノエート(パーブチル O、日本油脂(株)社製)0.12gを添加、混合して銅塩含有モノマーA3を得た。 Methylene chloride was extracted and removed by adding 10.80 g of methyl methacrylate (MMA) and 1.20 g of ethylene glycol dimethacrylate (EDMA) to 52.24 g of the dispersion, and then reducing the pressure with a rotary evaporator. Next, 0.12 g of tert-butyl peroxy-2-ethylhexanoate (Perbutyl O, manufactured by NOF Corporation) was added and mixed as a polymerization initiator to obtain a copper salt-containing monomer A3.
 銅塩含有モノマーA3を試験管に注入し、オーブンにて、50℃で8時間加温した後、70℃まで4時間かけて昇温、次いで2時間かけて110℃まで昇温した後に110℃で1時間保持することにより重合を行った。 Copper salt-containing monomer A3 was poured into a test tube, heated in an oven at 50 ° C. for 8 hours, then heated to 70 ° C. over 4 hours, then heated to 110 ° C. over 2 hours and then 110 ° C. The polymerization was carried out by holding for 1 hour.
 重合終了後、オーブン温度を1.5時間かけて70℃まで降温した後に、オーブンから取り出して試験管内の反応物を取り出した。 After completion of the polymerization, the oven temperature was lowered to 70 ° C. over 1.5 hours, and then removed from the oven to remove the reaction product in the test tube.
 取り出した反応物を120℃のオーブンで1時間アニールした後、小型粉砕器サンプルミル(SK-M2型、協立理工(株)社製)で5分間粉砕し、灰色の樹脂被覆銅塩粉末(3)を得た。 The reaction product taken out was annealed in an oven at 120 ° C. for 1 hour, then pulverized for 5 minutes with a small pulverizer sample mill (SK-M2 type, manufactured by Kyoritsu Riko Co., Ltd.), and gray resin-coated copper salt powder ( 3) was obtained.
 (樹脂組成物の製造)
 樹脂被覆銅塩粉末(3)5.00gと、エチレン‐メタクリル酸共重合体Na塩(ハイミラン 1605、三井デュポンポリケミカル社製)43.30gとを、プラストグラフ(ブラベンダー社製)に供給し、190℃、スクリュー回転数30rpmで15分間溶融混練し、樹脂被覆銅塩粉末を含む樹脂組成物(4)を得た。
(Manufacture of resin composition)
Resin-coated copper salt powder (3) (5.00 g) and ethylene-methacrylic acid copolymer Na salt (Himiran 1605, Mitsui DuPont Polychemical Co., Ltd.) (43.30 g) were supplied to Plastograph (Brabender Co., Ltd.) The resin composition (4) containing resin-coated copper salt powder was obtained by melt-kneading for 15 minutes at 190 ° C. and a screw rotation speed of 30 rpm.
 〔分光特性評価〕
 実施例A、比較例で得られた樹脂組成物の分光透過率を以下の方法で測定した。
[Spectral characteristic evaluation]
The spectral transmittances of the resin compositions obtained in Example A and Comparative Example were measured by the following method.
 実施例A、比較例で得られた樹脂組成物をそれぞれ、150℃のプレス機(「WF-50」、神藤金属工業社製)により1分間加熱し、次いで15MPaの圧力で5分間加圧、加熱し、ついで冷却プレス機((株)東洋精機製作所 No.288)で3分冷プレスを行い、することにより、厚さ0.76mmのシートを作製した。 The resin compositions obtained in Example A and Comparative Example were each heated for 1 minute by a press machine at 150 ° C. (“WF-50”, manufactured by Kondo Metal Industry Co., Ltd.), and then pressurized at a pressure of 15 MPa for 5 minutes. The sheet was heated and then cold pressed for 3 minutes with a cooling press (Toyo Seiki Seisakusho No.288) to produce a sheet having a thickness of 0.76 mm.
 該シートについて、分光光度計(U-4000、(株)日立製作所製)を用いて分光透過率を測定した。分光透過率の測定結果を図2~6に示す。なお、図2は比較例1の樹脂組成物から形成されたシートの分光透過率であり、図3は実施例A1の樹脂組成物から形成されたシートの分光透過率であり、図4は実施例A2の樹脂組成物から形成されたシートの分光透過率であり、図5は実施例A3の樹脂組成物から形成されたシートの分光透過率であり、図6は実施例A4の樹脂組成物から形成されたシートの分光透過率である。 The spectral transmittance of the sheet was measured using a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.). The measurement results of the spectral transmittance are shown in FIGS. 2 shows the spectral transmittance of the sheet formed from the resin composition of Comparative Example 1, FIG. 3 shows the spectral transmittance of the sheet formed from the resin composition of Example A1, and FIG. FIG. 5 shows the spectral transmittance of the sheet formed from the resin composition of Example A2, FIG. 5 shows the spectral transmittance of the sheet formed from the resin composition of Example A3, and FIG. 6 shows the resin composition of Example A4. It is the spectral transmittance of the sheet formed from.
 図2~6から明らかなように、ホスホン酸銅塩からなる微粒子が樹脂で被覆された粉末を近赤外線吸収剤として用いた樹脂組成物から形成されたシートは、800~1200nmの近赤外領域に幅広い吸収帯を有する。一方、樹脂で被覆されていないホスホン酸銅塩の微粒子を含む樹脂組成物から形成されたシートは、600~1200nm付近に弱い吸収帯を有する。 As is apparent from FIGS. 2 to 6, a sheet formed from a resin composition using a powder in which fine particles of a phosphonic acid copper salt are coated with a resin as a near-infrared absorber has a near-infrared region of 800 to 1200 nm. Have a wide absorption band. On the other hand, a sheet formed from a resin composition containing fine particles of phosphonic acid copper salt that is not coated with a resin has a weak absorption band in the vicinity of 600 to 1200 nm.
 〔実施例B1〕
 (銅塩微粒子の合成)
 反応容器中で、酢酸銅一水和物0.91g(銅換算、0.29g)をエタノール50gに溶解した。そこにエチルホスホン酸0.50gと分散剤(プライサーフA219B(第一工業製薬(株)製))0.80gをエタノール30gに溶かしたものを加え、2時間室温で撹拌した。揮発成分をエバポレーターで除去したのち、トルエン50gを加えて超音波にかけて銅塩微粒子分散液を作製した。
[Example B1]
(Synthesis of copper salt fine particles)
In a reaction vessel, 0.91 g of copper acetate monohydrate (in terms of copper, 0.29 g) was dissolved in 50 g of ethanol. A solution prepared by dissolving 0.50 g of ethylphosphonic acid and 0.80 g of a dispersant (Plysurf A219B (Daiichi Kogyo Seiyaku Co., Ltd.)) in 30 g of ethanol was added thereto and stirred at room temperature for 2 hours. After removing volatile components with an evaporator, 50 g of toluene was added and subjected to ultrasonic waves to prepare a copper salt fine particle dispersion.
 (ポリシロキサン被覆銅塩の合成)
 前記銅塩微粒子分散液に、メチルシリケート53A(コルコート(株)製)3.60g(SiO2換算、1.91g)をエタノール1.2gに溶かしたものを加え、室温で撹拌後、テフロンバットにあけて乾燥させた。これを真空乾燥で次の粉砕工程に適した固さまで、100℃で2時間乾燥させ、ポリシロキサン被覆銅塩を回収した。なお、収量は3.36gであった。
(Synthesis of polysiloxane-coated copper salt)
A solution obtained by dissolving 3.60 g of methyl silicate 53A (manufactured by Colcoat Co., Ltd.) (1.21 g in terms of SiO 2 ) in 1.2 g of ethanol was added to the copper salt fine particle dispersion and stirred at room temperature. Opened and dried. This was dried by vacuum drying at 100 ° C. for 2 hours to a hardness suitable for the next pulverization step, and the polysiloxane-coated copper salt was recovered. The yield was 3.36 g.
 (樹脂組成物の製造)
 前記ポリシロキサン被覆銅塩を、メノウ乳鉢ですりつぶし、近赤外線吸収剤である、銅塩がポリシロキサンで被覆された粉末を得た。
(Manufacture of resin composition)
The polysiloxane-coated copper salt was ground in an agate mortar to obtain a powder in which the copper salt, which is a near infrared absorber, was coated with polysiloxane.
 前記粉末2.5g、エチレン-メタクリル酸共重合体Zn塩(ハイミラン1705、三井デュポンポリケミカル社製)45.8gを、プラストグラフ(ブラベンダー社製)に供給し、設定温度170℃、スクリュー回転数30rpmで15分間溶融混練し、近赤外線吸収剤とアイオノマー樹脂とからなる樹脂組成物を得た。 2.5 g of the powder and 45.8 g of ethylene-methacrylic acid copolymer Zn salt (Himiran 1705, manufactured by Mitsui DuPont Polychemical Co., Ltd.) were supplied to a plastograph (manufactured by Brabender Co., Ltd.), set temperature 170 ° C., screw rotation Melting and kneading was performed at several 30 rpm for 15 minutes to obtain a resin composition composed of a near infrared absorber and an ionomer resin.
 〔実施例B2〕
 (ポリシロキサン被覆銅塩の合成)
 実施例B1と同様の方法で合成した銅塩微粒子分散液に、メチルシリケート53A(コルコート(株)製)0.72g(SiO2換算、0.38g)をエタノール0.24gに溶かしたものを加え、室温で撹拌後、テフロンバットにあけて乾燥させた。これを真空乾燥で次の粉砕工程に適した固さまで、100℃で3時間乾燥させ、ポリシロキサン被覆銅塩を回収した。なお、収量は1.89gであった。
[Example B2]
(Synthesis of polysiloxane-coated copper salt)
To a copper salt fine particle dispersion synthesized in the same manner as in Example B1, a solution obtained by dissolving 0.72 g (SiO 2 equivalent, 0.38 g) of methyl silicate 53A (manufactured by Colcoat Co., Ltd.) in 0.24 g of ethanol was added. After stirring at room temperature, it was opened in a Teflon bat and dried. This was dried at 100 ° C. for 3 hours to a hardness suitable for the next pulverization step by vacuum drying, and the polysiloxane-coated copper salt was recovered. The yield was 1.89 g.
 (樹脂組成物の製造)
 前記ポリシロキサン被覆銅塩を、メノウ乳鉢ですりつぶし、近赤外線吸収剤である、銅塩がポリシロキサンで被覆された粉末を得た。
(Manufacture of resin composition)
The polysiloxane-coated copper salt was ground in an agate mortar to obtain a powder in which the copper salt, which is a near infrared absorber, was coated with polysiloxane.
 前記粉末1.42g、エチレン-メタクリル酸共重合体Na塩(ハイミラン1707、三井デュポンポリケミカル社製)47.0gを、プラストグラフ(ブラベンダー社製)に供給し、設定温度170℃、スクリュー回転数30rpmで15分間溶融混練し、近赤外線吸収剤とアイオノマー樹脂とからなる樹脂組成物を得た。 1.42 g of the powder and 47.0 g of ethylene-methacrylic acid copolymer Na salt (Himiran 1707, manufactured by Mitsui DuPont Polychemical Co., Ltd.) are supplied to a plastograph (manufactured by Brabender Co.), set temperature is 170 ° C., screw rotation Melting and kneading was performed at several 30 rpm for 15 minutes to obtain a resin composition composed of a near infrared absorber and an ionomer resin.
 〔実施例B3〕
 (ポリシロキサン被覆銅塩の合成)
 実施例B1と同様の方法で合成した銅塩微粒子分散液に、メチルシリケート53A(コルコート(株)製)3.60g(SiO2換算、1.91g)とジメチルジメトキシシラン0.60g(SiO2換算、0.29g)とをエタノール1.20gに溶かしたものを加え、室温で撹拌後、テフロンバットにあけて乾燥させた。これを真空乾燥で次の粉砕工程に適した固さまで、100℃で6時間乾燥させ、ポリシロキサン被覆銅塩を回収した。なお、収量は3.25gであった。
[Example B3]
(Synthesis of polysiloxane-coated copper salt)
The copper salt fine particle dispersion was prepared in a manner similar to Example B1, (manufactured by Colcoat Co.) methyl silicate 53A 3.60 g (SiO 2 conversion, 1.91 g) and dimethyldimethoxysilane 0.60 g (SiO 2 converted , 0.29 g) in ethanol 1.20 g was added, stirred at room temperature, then placed in a Teflon vat and dried. This was dried by vacuum drying at 100 ° C. for 6 hours to a hardness suitable for the next pulverization step, and the polysiloxane-coated copper salt was recovered. The yield was 3.25 g.
 (樹脂組成物の製造)
 前記ポリシロキサン被覆銅塩を、メノウ乳鉢ですりつぶし、近赤外線吸収剤である、銅塩がポリシロキサンで被覆された粉末を得た。
(Manufacture of resin composition)
The polysiloxane-coated copper salt was ground in an agate mortar to obtain a powder in which the copper salt, which is a near infrared absorber, was coated with polysiloxane.
 前記粉末2.43g、エチレン-メタクリル酸共重合体Na塩(ハイミラン1707、三井デュポンポリケミカル社製)53.2gを、プラストグラフ(ブラベンダー社製)に供給し、設定温度170℃、スクリュー回転数30rpmで15分間溶融混練し、近赤外線吸収剤とアイオノマー樹脂とからなる樹脂組成物を得た。 2.43 g of the powder and 53.2 g of ethylene-methacrylic acid copolymer Na salt (Himiran 1707, manufactured by Mitsui DuPont Polychemical Co., Ltd.) are supplied to a plastograph (manufactured by Brabender Co.), set temperature is 170 ° C., screw rotation Melting and kneading was performed at several 30 rpm for 15 minutes to obtain a resin composition composed of a near infrared absorber and an ionomer resin.
 〔実施例B4〕
 (ポリシロキサン被覆銅塩の合成)
 実施例B1と同様の方法で合成した銅塩微粒子分散液に、メチルシリケート53A(コルコート(株)製)3.60g(SiO2換算、1.91g)と2-シアノエチルトリエトキシシラン0.21g(SiO2換算、0.05g)とをエタノール1.20gに溶かしたものを加え、室温で撹拌後、テフロンバットにあけて乾燥させた。これを真空乾燥で次の粉砕工程に適した固さまで、100℃で6時間乾燥させ、ポリシロキサン被覆銅塩を回収した。なお、収量は3.15gであった。
[Example B4]
(Synthesis of polysiloxane-coated copper salt)
To a copper salt fine particle dispersion synthesized in the same manner as in Example B1, 3.60 g of methyl silicate 53A (manufactured by Colcoat Co., Ltd.) (1.91 g in terms of SiO 2 ) and 0.21 g of 2-cyanoethyltriethoxysilane ( A solution obtained by dissolving 1.20 g of ethanol in terms of SiO 2 in 1.20 g of ethanol was added, stirred at room temperature, then opened in a Teflon vat and dried. This was dried by vacuum drying at 100 ° C. for 6 hours to a hardness suitable for the next pulverization step, and the polysiloxane-coated copper salt was recovered. The yield was 3.15 g.
 (樹脂組成物の製造)
 前記ポリシロキサン被覆銅塩を、メノウ乳鉢ですりつぶし、近赤外線吸収剤である、銅塩がポリシロキサンで被覆された粉末を得た。
(Manufacture of resin composition)
The polysiloxane-coated copper salt was ground in an agate mortar to obtain a powder in which the copper salt, which is a near infrared absorber, was coated with polysiloxane.
 前記粉末2.36g、エチレン-メタクリル酸共重合体Na塩(ハイミラン1707、三井デュポンポリケミカル社製)53.3gを、プラストグラフ(ブラベンダー社製)に供給し、設定温度170℃、スクリュー回転数30rpmで15分間溶融混練し、近赤外線吸収剤とアイオノマー樹脂とからなる樹脂組成物を得た。 2.36 g of the powder and 53.3 g of an ethylene-methacrylic acid copolymer Na salt (Himiran 1707, manufactured by Mitsui DuPont Polychemical Co., Ltd.) are supplied to a plastograph (manufactured by Brabender Co.), a set temperature of 170 ° C., screw rotation Melting and kneading was performed at several 30 rpm for 15 minutes to obtain a resin composition composed of a near infrared absorber and an ionomer resin.
 〔分光特性評価〕
 実施例B、比較例で得られた樹脂組成物の分光透過率を以下の方法で測定した。
[Spectral characteristic evaluation]
The spectral transmittances of the resin compositions obtained in Example B and Comparative Example were measured by the following method.
 実施例B、比較例で得られた樹脂組成物をそれぞれ、150℃のプレス機(「WF-50」、神藤金属工業社製)により3MPaの圧力で1分間予熱し、次いで10MPaの圧力で5分加圧、加熱し、ついで冷却プレス機((株)東洋精機製作所 No.288)で3分冷プレスを行い、厚さ0.76mmのシートを作製した。 Each of the resin compositions obtained in Example B and Comparative Example was preheated at a pressure of 3 MPa for 1 minute by a press machine (“WF-50” manufactured by Shindo Metal Industry Co., Ltd.) at 150 ° C., and then 5 at a pressure of 10 MPa. The sheet was pressurized and heated for 3 minutes, and then cold-pressed for 3 minutes with a cooling press (Toyo Seiki Seisakusho No. 288) to produce a sheet having a thickness of 0.76 mm.
 該シートについて、分光光度計(U-4000、(株)日立製作所製)を用いて分光透過率を測定した。分光透過率の測定結果を図7~10に示す。なお、図7は比較例1および実施例B1の樹脂組成物から形成されたシートの分光透過率であり、図8は比較例1および実施例B2の樹脂組成物から形成されたシートの分光透過率であり、図9は比較例1および実施例B3の樹脂組成物から形成されたシートの分光透過率であり、図10は比較例1および実施例B4の樹脂組成物から形成されたシートの分光透過率である。 The spectral transmittance of the sheet was measured using a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.). The measurement results of the spectral transmittance are shown in FIGS. 7 shows the spectral transmittance of the sheet formed from the resin composition of Comparative Example 1 and Example B1, and FIG. 8 shows the spectral transmission of the sheet formed from the resin composition of Comparative Example 1 and Example B2. 9 is the spectral transmittance of the sheet formed from the resin composition of Comparative Example 1 and Example B3, and FIG. 10 is the sheet of the sheet formed from the resin composition of Comparative Example 1 and Example B4. Spectral transmittance.
 図7~10から明らかなように、ホスホン酸銅塩からなる微粒子がポリシロキサンで被覆された粉末を近赤外線吸収剤として用いた樹脂組成物から形成されたシートは、800~1200nmの近赤外領域に幅広い吸収帯を有する(実施例B1~4)。一方、ポリシロキサンで被覆されていないホスホン酸銅塩の微粒子を含む樹脂組成物から形成されたシートは、600~1200nm付近に弱い吸収帯を有するに過ぎない(比較例1)。 As is apparent from FIGS. 7 to 10, a sheet formed from a resin composition using a powder in which fine particles of a phosphonic acid copper salt are coated with polysiloxane as a near infrared absorber has a near infrared wavelength of 800 to 1200 nm. It has a broad absorption band in the region (Examples B1 to B4). On the other hand, a sheet formed from a resin composition containing fine particles of phosphonic acid copper salt not coated with polysiloxane has only a weak absorption band in the vicinity of 600 to 1200 nm (Comparative Example 1).
 すなわち、本発明の樹脂組成物から形成されたシートは、赤外線の吸収能に優れるのに対し、樹脂やポリシロキサンで被覆されていないホスホン酸銅塩の微粒子を含む樹脂組成物から形成されたシートは、近赤外線の吸収能に劣る。 That is, the sheet formed from the resin composition of the present invention is excellent in infrared absorption ability, whereas the sheet formed from a resin composition containing fine particles of phosphonic acid copper salt not coated with resin or polysiloxane. Is inferior in near infrared absorption ability.

Claims (17)

  1.  近赤外線吸収剤とアイオノマー樹脂とからなる樹脂組成物であり、
     前記近赤外線吸収剤が、下記一般式(1)で表わされるホスホン酸銅塩からなる微粒子が樹脂(A)およびポリシロキサン(B)から選択される少なくとも1種で被覆された粉末であることを特徴とする樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、R1は、-CH2CH2-R11で表される1価の基であり、R11は水素原子、炭素数1~20のアルキル基、または炭素数1~20のフッ素化アルキル基を示す。]
    A resin composition comprising a near-infrared absorber and an ionomer resin;
    The near-infrared absorber is a powder in which fine particles comprising a phosphonic acid copper salt represented by the following general formula (1) are coated with at least one selected from a resin (A) and a polysiloxane (B). A resin composition characterized.
    Figure JPOXMLDOC01-appb-C000001
    [In General Formula (1), R 1 is a monovalent group represented by —CH 2 CH 2 —R 11 , and R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. Represents -20 fluorinated alkyl groups. ]
  2.  前記樹脂(A)およびポリシロキサン(B)から選択される少なくとも1種が、樹脂(A)である請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein at least one selected from the resin (A) and the polysiloxane (B) is a resin (A).
  3.  前記樹脂(A)が、モノマーの少なくとも一部として架橋剤を用いて形成されることを特徴とする請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the resin (A) is formed using a crosslinking agent as at least a part of the monomer.
  4.  前記架橋剤が、多官能芳香族ビニル化合物、および多官能(メタ)アクリル酸エステルから選択される少なくとも1種の架橋剤である請求項3に記載の樹脂組成物。 The resin composition according to claim 3, wherein the cross-linking agent is at least one cross-linking agent selected from a polyfunctional aromatic vinyl compound and a polyfunctional (meth) acrylic acid ester.
  5.  前記樹脂(A)が、モノマーの少なくとも一部として単官能性モノマーを用いて形成されることを特徴とする請求項1~4のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the resin (A) is formed using a monofunctional monomer as at least a part of the monomer.
  6.  前記樹脂(A)およびポリシロキサン(B)から選択される少なくとも1種が、ポリシロキサン(B)である請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein at least one selected from the resin (A) and the polysiloxane (B) is a polysiloxane (B).
  7.  前記ポリシロキサン(B)が、アルコキシシラン、アルコキシシランの加水分解物、およびこれらの縮合物から選択される少なくとも1種のケイ素系化合物から形成される請求項1または6に記載の樹脂組成物。 The resin composition according to claim 1 or 6, wherein the polysiloxane (B) is formed from at least one silicon-based compound selected from alkoxysilane, a hydrolyzate of alkoxysilane, and a condensate thereof.
  8.  前記アイオノマー樹脂が、エチレン・不飽和カルボン酸共重合体のアイオノマーである請求項1~7のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the ionomer resin is an ionomer of an ethylene / unsaturated carboxylic acid copolymer.
  9.  前記アイオノマー樹脂100質量部あたり、近赤外線吸収剤を0.05~30質量部含有する請求項1~8のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, comprising 0.05 to 30 parts by mass of a near-infrared absorber per 100 parts by mass of the ionomer resin.
  10.  前記近赤外線吸収剤が、前記一般式(1)で表わされるホスホン酸銅塩からなる微粒子をモノマーに分散させ、銅塩含有モノマーを得て、前記銅塩含有モノマーを塊状重合し、重合物を得て、前記重合物を粉砕することにより得られることを特徴とする請求項2~5のいずれか一項に記載の樹脂組成物。 The near-infrared absorber is obtained by dispersing fine particles of a phosphonic acid copper salt represented by the general formula (1) in a monomer, obtaining a copper salt-containing monomer, bulk polymerizing the copper salt-containing monomer, 6. The resin composition according to claim 2, wherein the resin composition is obtained by pulverizing the polymer.
  11.  前記モノマーが、ホスホン酸銅塩からなる微粒子1質量部に対して、0.01~20質量部である請求項10に記載の樹脂組成物。 The resin composition according to claim 10, wherein the monomer is 0.01 to 20 parts by mass with respect to 1 part by mass of fine particles made of copper phosphonate.
  12.  前記近赤外線吸収剤が、前記一般式(1)で表わされるホスホン酸銅塩からなる微粒子と、アルコキシシラン、アルコキシシランの加水分解物、およびこれらの縮合物から選択される少なくとも1種のケイ素系化合物とを混合し、
     前記ケイ素系化合物からポリシロキサン(B)を得て、反応物を粉砕することにより得られることを特徴とする請求項6または7に記載の樹脂組成物。
    The near-infrared absorber is at least one silicon type selected from fine particles comprising a copper phosphonate represented by the general formula (1), alkoxysilane, a hydrolyzate of alkoxysilane, and a condensate thereof. Mixing with the compound,
    8. The resin composition according to claim 6, wherein the resin composition is obtained by obtaining polysiloxane (B) from the silicon-based compound and pulverizing the reaction product.
  13.  前記ケイ素系化合物が、ホスホン酸銅塩からなる微粒子中の銅1質量部に対して、SiO2換算で0.3~20質量部である請求項12に記載の樹脂組成物。 13. The resin composition according to claim 12, wherein the silicon-based compound is 0.3 to 20 parts by mass in terms of SiO 2 with respect to 1 part by mass of copper in fine particles made of a copper salt of phosphonic acid.
  14.  近赤外線吸収剤とアイオノマー樹脂とからなる樹脂組成物であり、
     前記近赤外線吸収剤が、下記一般式(1)で表わされるホスホン酸銅塩からなる微粒子と、アルコキシシラン、アルコキシシランの加水分解物、およびこれらの縮合物から選択される少なくとも1種のケイ素系化合物とを混合し、
     前記ケイ素系化合物からポリシロキサン(B)を得て、反応物を粉砕することにより得られる粉末状の近赤外線吸収剤であることを特徴とする樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(1)中、R1は、-CH2CH2-R11で表される1価の基であり、R11は水素原子、炭素数1~20のアルキル基、または炭素数1~20のフッ素化アルキル基を示す。]
    A resin composition comprising a near-infrared absorber and an ionomer resin;
    The near-infrared absorber is at least one silicon type selected from fine particles comprising a phosphonic acid copper salt represented by the following general formula (1), alkoxysilane, a hydrolyzate of alkoxysilane, and a condensate thereof. Mixing with the compound,
    A resin composition, which is a powdered near-infrared absorber obtained by obtaining polysiloxane (B) from the silicon-based compound and pulverizing the reaction product.
    Figure JPOXMLDOC01-appb-C000002
    [In General Formula (1), R 1 is a monovalent group represented by —CH 2 CH 2 —R 11 , and R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. Represents -20 fluorinated alkyl groups. ]
  15.  前記請求項1~14のいずれか一項に記載の樹脂組成物から形成される樹脂膜。 A resin film formed from the resin composition according to any one of claims 1 to 14.
  16.  前記請求項1~14のいずれか一項に記載の樹脂組成物から形成される合わせガラス用中間膜。 An interlayer film for laminated glass formed from the resin composition according to any one of claims 1 to 14.
  17.  前記請求項16に記載の合わせガラス用中間膜を有する合わせガラス。 Laminated glass having the interlayer film for laminated glass according to claim 16.
PCT/JP2011/078172 2010-12-07 2011-12-06 Resin composition and uses thereof WO2012077674A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012547869A JPWO2012077674A1 (en) 2010-12-07 2011-12-06 Resin composition and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010272588 2010-12-07
JP2010-272588 2010-12-07
JP2011-185811 2011-08-29
JP2011185811 2011-08-29

Publications (1)

Publication Number Publication Date
WO2012077674A1 true WO2012077674A1 (en) 2012-06-14

Family

ID=46207162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078172 WO2012077674A1 (en) 2010-12-07 2011-12-06 Resin composition and uses thereof

Country Status (2)

Country Link
JP (1) JPWO2012077674A1 (en)
WO (1) WO2012077674A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171215A1 (en) * 2013-04-16 2014-10-23 株式会社クレハ Resin composition and use thereof
WO2015002117A1 (en) * 2013-07-01 2015-01-08 富士フイルム株式会社 Near infrared radiation-absorbing composition, near infrared radiation cut-off filter and production method therefor, and camera module and production method therefor
JP5766218B2 (en) * 2011-02-02 2015-08-19 株式会社クレハ Resin composition and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114243A (en) * 1984-06-29 1986-01-22 Yokohama Rubber Co Ltd:The Resin composition for interlayer of laminated glass
JP2002069305A (en) * 2000-08-25 2002-03-08 Kureha Chem Ind Co Ltd Optical material and method of preparing the same
WO2005012454A1 (en) * 2003-07-31 2005-02-10 Kureha Corporation Infrared absorbing composition, resin composition, interlayer film for laminated glass, laminate, laminated glass, and building material
WO2009123016A1 (en) * 2008-03-31 2009-10-08 株式会社クレハ Copper phosphonate compound, and infrared absorption material and laminate containing the copper phosphonate compound
WO2009123020A1 (en) * 2008-03-31 2009-10-08 株式会社クレハ Copper salt composition, resin composition using the same, infrared absorbing film, and optical member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684393B2 (en) * 2000-06-27 2011-05-18 株式会社クレハ Optical material
JP2002071941A (en) * 2000-08-25 2002-03-12 Kureha Chem Ind Co Ltd Optical material
JP5738014B2 (en) * 2011-03-07 2015-06-17 株式会社クレハ Manufacturing method of near-infrared absorber dispersion
JP5738031B2 (en) * 2011-03-28 2015-06-17 株式会社クレハ Method for producing copper salt fine particle dispersed resin, and copper salt fine particle dispersed resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114243A (en) * 1984-06-29 1986-01-22 Yokohama Rubber Co Ltd:The Resin composition for interlayer of laminated glass
JP2002069305A (en) * 2000-08-25 2002-03-08 Kureha Chem Ind Co Ltd Optical material and method of preparing the same
WO2005012454A1 (en) * 2003-07-31 2005-02-10 Kureha Corporation Infrared absorbing composition, resin composition, interlayer film for laminated glass, laminate, laminated glass, and building material
WO2009123016A1 (en) * 2008-03-31 2009-10-08 株式会社クレハ Copper phosphonate compound, and infrared absorption material and laminate containing the copper phosphonate compound
WO2009123020A1 (en) * 2008-03-31 2009-10-08 株式会社クレハ Copper salt composition, resin composition using the same, infrared absorbing film, and optical member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5766218B2 (en) * 2011-02-02 2015-08-19 株式会社クレハ Resin composition and use thereof
WO2014171215A1 (en) * 2013-04-16 2014-10-23 株式会社クレハ Resin composition and use thereof
WO2015002117A1 (en) * 2013-07-01 2015-01-08 富士フイルム株式会社 Near infrared radiation-absorbing composition, near infrared radiation cut-off filter and production method therefor, and camera module and production method therefor

Also Published As

Publication number Publication date
JPWO2012077674A1 (en) 2014-05-19

Similar Documents

Publication Publication Date Title
Sugimoto et al. Preparation and properties of poly (methylmethacrylate)–silica hybrid materials incorporating reactive silica nanoparticles
JP5167582B2 (en) Zirconia transparent dispersion, transparent composite, and method for producing transparent composite
JP5158078B2 (en) Method for producing hydrophobized silicon oxide-coated metal oxide particles
EP2970682B1 (en) Coating compositions formed from hybrid latex emulsions
JP2015527430A (en) Method for producing a polymer adhesive composition comprising inorganic particles
CN102985174A (en) Dispersant for inorganic microparticles and inorganic microparticle dispersion using same
CN110461768A (en) Silicon dioxide granule
CN107001814A (en) The granules of pigments of polymer overmold
WO2012077674A1 (en) Resin composition and uses thereof
JP5766218B2 (en) Resin composition and use thereof
TW201217442A (en) Water-based liquid colorant preparations comprising thermally stable dispersing additives for the colouring of poly(meth)acrylates
RU2687075C2 (en) Method of producing resin systems of acrylic powder coatings
JP2008297396A (en) Resin composition
TW202014465A (en) Transparent elastomeric nanocomposite blends
US20140329935A1 (en) Method for improving the effectiveness of titanium dioxide-containing coatings
TWI825069B (en) Near-infrared absorbing material fine particle dispersion body, near-infrared absorbing body, near-infrared absorbing substance laminated body and combined structure for near infrared absorption
JP2006299239A (en) Pigment preparation and coating composition containing it
JP2016188316A (en) Resin composition and application thereof
JP2021169574A (en) Resin composition, gas barrier material, coating agent, and laminate
JP2022034316A (en) Carbon nanotube dispersion, and coating including the same
WO2020218124A1 (en) Coating agent and laminate
JP6560136B2 (en) Hydroxide mineral dispersion and method for producing the same
JP2007246799A (en) Resin composition for ultraviolet shielding aqueous coating
TWI665219B (en) Process for making acrylic powder coating resin systems
TR201811840T4 (en) Process for the preparation of acrylic powder coating resin systems.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847393

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847393

Country of ref document: EP

Kind code of ref document: A1