WO2012075858A1 - 用于喷墨打印机的墨盒及其控制方法 - Google Patents

用于喷墨打印机的墨盒及其控制方法 Download PDF

Info

Publication number
WO2012075858A1
WO2012075858A1 PCT/CN2011/081156 CN2011081156W WO2012075858A1 WO 2012075858 A1 WO2012075858 A1 WO 2012075858A1 CN 2011081156 W CN2011081156 W CN 2011081156W WO 2012075858 A1 WO2012075858 A1 WO 2012075858A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
voltage
ink cartridge
power supply
inkjet printer
Prior art date
Application number
PCT/CN2011/081156
Other languages
English (en)
French (fr)
Inventor
陈博
梁思通
韩双
邓迅升
Original Assignee
深圳市晟碟半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44407461&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012075858(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 深圳市晟碟半导体有限公司 filed Critical 深圳市晟碟半导体有限公司
Publication of WO2012075858A1 publication Critical patent/WO2012075858A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17543Cartridge presence detection or type identification
    • B41J2/17546Cartridge presence detection or type identification electronically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2966Acoustic waves making use of acoustical resonance or standing waves

Definitions

  • the present invention relates to the field of ink jet printers, and more particularly to an ink cartridge sensor circuit for use in an ink jet printer.
  • BACKGROUND OF THE INVENTION In order to realize the monopoly on the sales of ink cartridges, inkjet printer manufacturers utilize the specific resonant frequency characteristics and charge and discharge impedance characteristics of piezoelectric sensors in ink cartridges. When it is necessary to detect the ink remaining amount of the ink cartridges, the inkjet printers will be directed to the ink cartridges.
  • the piezoelectric sensor transmits a high voltage direct current pulse signal, and the high voltage direct current pulse signal causes the piezoelectric ceramic vibration unit of the piezoelectric sensor and the medium (such as ink and air) in contact with the vibration unit to resonate, when the inkjet printer cancels the high voltage direct current
  • the specific resonant frequency characteristics and charge and discharge impedance characteristics of the resonant state response can be detected by the ink jet printer.
  • the inkjet printer can know the current ink capacity of the ink cartridge according to different resonance frequency characteristics and charge and discharge impedance characteristics, thereby prompting the user to replace the ink cartridge in time when the ink remaining amount is insufficient.
  • the user in the process of using the inkjet printer, the user must use the special ink cartridge provided by the inkjet printer manufacturer, which brings a lot of inconvenience to the user's use, and the used ink cartridge cannot be recycled, which is not in accordance with the state.
  • Advocate environmental protection and reuse policies In recent years, in order to break the monopoly of inkjet printer manufacturers on the supply of ink cartridges, some compatible ink cartridges have begun to appear on the market. Most of the compatible ink cartridge products are implemented by peripheral discrete components to form a hardware circuit for simulating matching sprays. The ink printer needs to recognize the specific resonant frequency characteristics and charge and discharge impedance characteristics of the resonant state response.
  • the disadvantage of the implementation of such a compatible ink cartridge product is that excessive peripheral separation components increase the implementation complexity of the compatible ink cartridge product, which is not conducive to centralized management, and increases the area of the printed circuit board, which is also disadvantageous for cost saving.
  • the present invention provides a novel type of inkjet printer.
  • the ink cartridge and the control matching method of the ink cartridge, the ink cartridge adopts an integrated chip type sensing circuit to avoid excessive separation components, and the high-pressure DC pulse signal provided by the inkjet printer is skillfully utilized without a fixed external power supply voltage.
  • the circuit of the invention effectively reduces the use of external components, and effectively reduces the area of the printed circuit board, and solves the technology of high complexity and unfavorable centralized management caused by the peripherally separated components which are compatible with the excessive ink cartridges in the prior art. problem.
  • An ink cartridge for an ink jet printer comprises an ink cartridge body and an integrated chip type sensing circuit disposed on the ink cartridge body, the sensing circuit connecting the two printers Communication ports A1 and A2,
  • the integrated chip-type sensing circuit includes a low-voltage linear regulator, a reference voltage generator, a programmable oscillator, a sine wave generator, and a low-frequency isolation module, where: a low-voltage linear regulator connection
  • the printer's two communication ports A1 and A2 the reference voltage generator, the programmable oscillator and the sine wave generator are respectively connected to the low-voltage linear regulator, and the programmable oscillator and the low-frequency isolation module are respectively connected to the sine wave generator
  • the low frequency isolation module low voltage linear regulator is connected to two communication ports A1 and A2 of the printer, and the low voltage linear regulator comprises a single conduction unit, a single conduction unit B, an operational amplifier C, a resistor R1, and a resistor
  • a capacitor C1 wherein the one-way unit A receives a high-voltage DC pulse of the inkjet printer through the communication port A1, the one-way The conduction unit B receives the high-voltage DC pulse of the inkjet printer through the communication port A2, and the internal low-voltage DC power supply VDD of the low-voltage linear regulator is connected to the negative direction of the operational amplifier C via the signal VFB divided by the resistor R1 and the resistor R2.
  • the reference voltage signal VREF is connected to the forward input terminal of the operational amplifier C, and the output signal VCTL of the operational amplifier C is connected to the gate terminal of the P-type MOSFET, and the single guide in the low voltage linear regulator
  • the output signal HVDD of the pass unit A and the unidirectional pass unit B is connected to the drain terminal of the P-type MOSFET, and the source terminal of the P-type MOSFET outputs the internal low-voltage DC power source VDD
  • the single The conduction unit A and the unidirectional conduction unit B comprise a diode or a metal semiconductor field effect transistor
  • the sensing circuit further includes an internal adjustment circuit
  • the programmable oscillator is connected to the internal adjustment circuit
  • the low frequency isolation module Includes capacitors and resistors in parallel or in series.
  • the low voltage linear regulator in the ink cartridge sensor circuit of the present invention starts to work, and converts the high voltage DC pulses of the A1 and A2 ports into a low voltage DC power supply VDD, the low voltage direct current.
  • the power supply VDD is used as a power supply for the internal reference voltage generator, programmable oscillator, and sine wave generator.
  • the low-voltage DC power supply VDD can still ensure that the reference voltage generator, the programmable oscillator, and the sine wave generator work normally for a certain period of time.
  • the circuit of the present invention intelligently utilizes the characteristic that the ink jet printer sends the high-voltage DC pulse signal to the ink cartridge through the excitation communication port A1 and the A2 port in an irregular manner, and converts the high-voltage DC pulse signal through the low-voltage linear regulator. It becomes a low-voltage DC power supply VDD, which solves the problem that the ink cartridge sensor circuit has no external power supply, and provides a basis for achieving high integration of the ink cartridge sensor circuit.
  • the reference voltage generator, the programmable oscillator, and the sine wave generator start normal operation, wherein the reference voltage generator generates a reference voltage VREF, and the reference voltage VREF output is fed back to the low voltage.
  • the linear regulator ensures that the low-voltage DC power supply VDD of the low-voltage linear regulator output is stable within the voltage range in which the cartridge sensor circuit can operate normally.
  • the programmable oscillator outputs a periodic signal VCLK of a specific frequency that can be recognized by the inkjet printer, and the periodic signal VCLK of the specific frequency is sent to the sine wave generator to be converted into a periodic signal of a specific voltage swing.
  • the periodic signal VS of the particular voltage swing is coupled to the excitation communication ports A1 and A2 of the inkjet printer through a low frequency isolation module to precisely match the particular resonant frequency characteristics and charge and discharge impedance characteristics that the ink jet printer needs to recognize.
  • the circuit of the present invention automatically converts it into a periodicity of a specific resonant frequency characteristic and a charge and discharge impedance characteristic that the ink jet printer can recognize.
  • the signal VS and after the ink jet printer cancels the high voltage DC pulse signal, is automatically coupled to the excitation communication ports A1 and A2 and is recognized by the ink jet printer.
  • the novel ink cartridge sensor circuit provided by the present invention can accurately simulate the specific resonant frequency characteristics and charge and discharge impedance characteristics that the ink jet printer needs to recognize, and automatically achieve matching, thereby realizing the continuous printing operation of the ink jet printer. In this way, when using the inkjet printer, the user does not have to use the special ink cartridge provided by the inkjet printer manufacturer. Great convenience for the user's use and effective cost savings t
  • Figure 1 is a schematic diagram of communication between the disclosed ink jet printer and the ink cartridge
  • FIG. 2 is a schematic structural view of a sensor circuit of an ink cartridge provided by the present invention.
  • FIG. 3 is a schematic diagram of excitation transmission and detection between an inkjet printer and an ink cartridge sensor circuit
  • FIG. 4 is a schematic structural view of a low voltage linear regulator in an ink cartridge sensor circuit.
  • BEST MODE FOR CARRYING OUT THE INVENTION In order to better embody the advantages of the technical solutions of the present invention, the present invention will be further described in detail below with reference to the accompanying drawings.
  • the conventional inkjet printer detects the remaining ink capacity of the ink cartridge as shown in FIG. 1, that is, the inkjet printer sequentially sends a high-voltage DC pulse signal to the ink cartridge through the ports A1 and A2, thereby vibrating the piezoelectric ceramic located in the piezoelectric sensor inside the ink cartridge.
  • the unit is mechanically deformed and resonates with the medium (such as ink and air) in the ink cartridge.
  • the medium such as ink and air
  • the ink jet printer cancels the high-voltage DC pulse signal
  • the specific resonant frequency characteristic and the charge-discharge impedance characteristic of the piezoelectric sensor in the ink cartridge can be ink-jetted.
  • the printer detects the ink cartridge's remaining ink capacity, so a normal print job cannot be performed without the ink cartridge with the built-in piezoelectric sensor.
  • the novel ink cartridge sensor circuit disclosed by the invention can effectively simulate the specific resonant frequency characteristic and the charge and discharge impedance characteristic of the piezoelectric sensor, and achieve matching with the inkjet printer test excitation.
  • the specific embodiment of the present invention is as follows:
  • the structure of the novel ink cartridge sensor circuit shown in FIG. 2 is composed of five parts, including a low voltage linear regulator 1, a reference voltage generator 2, a programmable oscillator 3, and a sine wave generation. 4 and low frequency isolation module 5.
  • the following describes the specific functions and implementation methods of each part of the ink cartridge sensor in detail.
  • the low voltage linear regulator 1 is the core module of the ink cartridge sensor of the present invention, and its internal structure is as shown in FIG. 4, which is composed of a single conduction unit A (401), a unidirectional conduction unit B (402), and an operational amplifier C ( 403), the resistor R1, the resistor R2 and the capacitor C1. Due to inkjet The printer does not provide a fixed power supply to the ink cartridge, and only sends a high-voltage DC pulse signal to the ink cartridge when it is necessary to detect the remaining ink capacity of the ink cartridge. Therefore, the low-voltage linear regulator 1 is different from the conventional low-voltage linear regulator.
  • the inkjet printer is connected to the one-way cell A (401) in the low-voltage linear regulator 1 through the A1 port, and to the one-way cell B (402) through the A2 port, the one-way cells A and B have
  • the one-way conduction characteristic can be composed of a diode or an N-type (or P-type) metal semiconductor field effect transistor.
  • the high-voltage DC pulse signal passes through the one-way conduction unit 1 (401 Transfer to the drain terminal HVDD of the P-type metal semiconductor field effect transistor (P-FET), and then generate the output of the internal low-voltage DC power supply VDD via the source terminal of the P-type metal semiconductor field effect transistor (P-FET).
  • the internal low-voltage DC power supply VDD is connected to the negative input terminal of the operational amplifier C (403) via the resistor V1 and the resistor V2, and a reference voltage signal VREF is connected to the positive input of the operational amplifier C (403).
  • the output VCTL of the operational amplifier C (403) is connected to the gate terminal of the P-type metal semiconductor field effect transistor (P-FET), so that the above circuit forms a negative feedback loop through the operational amplifier C (403).
  • P-FET P-type metal semiconductor field effect transistor
  • the one-way conduction performance of the one-way conduction unit A (401) can be isolated, thereby ensuring the low-voltage linearity after the inkjet printer cancels the high-voltage DC pulse.
  • Regulator 1 can still achieve a stable output of the internal low-voltage DC power supply VDD.
  • the inkjet printer sends a high voltage DC pulse to the A2 port
  • the high voltage DC pulse signal is transmitted through the unidirectional conduction unit B (402) to the drain terminal HVDD of the P-type metal semiconductor field effect transistor (P-FET), and then
  • the output of the internal DC power supply VDD is generated after the source end of the P-type metal semiconductor field effect transistor (P-FET), and the low voltage linear regulator 1 can still achieve internal DC after the ink jet printer cancels the high voltage DC pulse.
  • a stable output of the power supply VDD is generated after the source end of the P-type metal semiconductor field effect transistor (P-FET).
  • the low voltage linear regulator 1 realizes the conversion from the high voltage direct current pulse signal to the internal low voltage direct current power supply VDD, and solves the ink jet printer. There is no fixed input power supply after the high-voltage DC pulse is cancelled.
  • the detailed signal conversion timing diagram is shown in Figure 3.
  • the reference voltage generator 2 uses the above internal low-voltage DC power supply VDD as the power supply for the module.
  • the reference voltage generator 2 automatically starts operating and generates a non-temperature-dependent And power supply changes And the output of the varying reference voltage VREF. Since the reference voltage VREF is simultaneously used as an input reference for the low-voltage linear regulator 1, the loop formed by the reference voltage generator 2 and the low-voltage linear regulator 1 further ensures a stable output of the internal low-voltage DC power supply VDD.
  • the programmable oscillator 3 uses the above internal low-voltage DC power supply VDD as the power supply for this module.
  • the programmable oscillator 3 also automatically starts to work and produces a stable The output of the periodic signal VCLK of a particular frequency that is accurately matched to the resonant frequency characteristic of the resonant state response that the inkjet printer needs to recognize.
  • the output frequency of the programmable oscillator 3 can be adjusted by an internal circuit for matching the resonant frequency characteristics of the resonance state response that need to be recognized by different types of inkjet printers, thereby achieving great application flexibility, and also having It is advantageous for increasing the production rate of the ink cartridge sensor circuit of the present invention in mass production.
  • the sine wave generator 4 uses the above internal low-voltage DC power supply VDD as the power supply for the module.
  • the sine wave generator 4 also automatically starts operating and programmable oscillation.
  • the periodic signal VCLK output from the device 3 is connected to the input of the sine wave generator 4, so that the sine wave generator 4 generates a sine wave output signal VS having the same frequency as the periodic signal VCLK, and the sine wave output signal
  • the specific swing of the VS can be precisely matched to the charge and discharge impedance characteristics that the inkjet printer needs to recognize.
  • a detailed signal conversion timing diagram is shown in Figure 3.
  • the low frequency isolation module 5 has the function of isolating the low frequency signal and coupling the high frequency signal. It can be composed of internal capacitance and internal resistance in parallel or series. When the sine wave generator 4 starts working, the low frequency isolation module 5 can sine wave. The particular frequency produced by generator 4 and the sinusoidal output signal VS of a particular swing are coupled to port A1 and port A2 of the inkjet printer.
  • the sine wave output signal VS of the specific frequency and the specific swing described above can be accurately matched to the resonance frequency characteristic and the charge and discharge impedance characteristic of the resonance state response that the inkjet printer needs to recognize, when the inkjet printer cancels the high voltage DC pulse signal,
  • the sine wave output signal VS of the specific frequency and the specific swing can be transmitted to the port A1 and the port A2 through the low frequency isolation module 5, and can be detected by the inkjet printer when it is in response to the preset resonance state response signal of the inkjet printer.
  • State 301 and state 302 shown in Figure 3 show that the inkjet printer detects a total of ink cartridges.
  • the novel ink cartridge for an inkjet printer disclosed by the present invention passes through an internal low voltage linear regulator 1, a reference voltage generator 2, a programmable oscillator 3, a sine wave generator 4, and a low frequency isolation module 5.
  • a reference voltage generator 2 a programmable oscillator 3
  • a sine wave generator 4 a programmable oscillator 4
  • a low frequency isolation module 5 a programmable oscillator 3.
  • the inkjet printer can periodically transmit high-voltage DC pulse signals through the A1 and A2 ports in a non-fixed external power supply voltage, and finally convert it into a specific one that can be recognized by the inkjet printer.
  • the frequency and the specific swing sine wave output signal VS, and the specific frequency and the specific swing sine wave output signal VS are coupled to port A1 and port A2, ultimately achieving the process of the ink jet printer detecting the remaining ink capacity of the ink cartridge.
  • a complete detailed signal conversion timing diagram is shown in Figure 3. Therefore, the novel ink cartridge sensor circuit provided by the present invention can accurately simulate a specific resonance frequency characteristic and a charge and discharge impedance characteristic that an inkjet printer needs to recognize, and automatically achieve matching, thereby realizing a continuous printing operation of the inkjet printer.
  • the user does not have to use the special ink cartridge provided by the inkjet printer manufacturer, which greatly facilitates the user's use, effectively reduces the use of external components and effectively reduces the area of the printed circuit board, thereby effectively Save costs.
  • the used ink cartridges can also be recycled by the method provided by the circuit of the present invention, in line with the national environmental protection and reuse policy.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Ink Jet (AREA)

Description

用于喷墨打印机的墨盒及其控制方法 技术领域 本发明涉及喷墨打印机领域,特别涉及一种应用于喷墨打印机中 的墨盒传感器电路。 背景技术 喷墨打印机厂商为实现对墨盒销售的垄断,利用了墨盒中压电传 感器的特定谐振频率特性和充放电阻抗特性,当需要检测墨盒的墨水 余量时, 喷墨打印机会向墨盒中的压电传感器发送高压直流脉冲信 号,该高压直流脉冲信号会使压电传感器的压电陶瓷振动单元和与该 振动单元接触的介质(比如墨水和空气)处于共振状态, 当喷墨打印 机撤销高压直流脉冲信号后,此共振状态响应的特定谐振频率特性和 充放电阻抗特性又可以被喷墨打印机所检测到。喷墨打印机根据不同 的谐振频率特性和充放电阻抗特性就可以知道当前的墨盒剩余墨水 容量, 从而在墨水余量不足时提醒用户及时更换墨盒。 因此, 用户在 使用喷墨打印机的过程中,就必须使用喷墨打印机厂商提供的专用墨 盒, 这给用户的使用带来了诸多的不方便, 而已经使用过的墨盒也无 法回收, 不符合国家提倡的环保和再利用的政策。 近年来, 为打破喷墨打印机厂商对墨盒供应的垄断, 市场上开始 出现一些兼容墨盒的销售,大部分兼容墨盒产品的实现方式都是通过 外围的分离元器件组成硬件电路,用于模拟匹配喷墨打印机需要识别 的共振状态响应的特定谐振频率特性和充放电阻抗特性。但是, 这种 兼容墨盒产品实现方式的不足在于,过多的外围分离元器件增加了兼 容墨盒产品的实现复杂度, 不利于集中管理, 并且会增加印刷电路板 的面积, 也不利于节约成本。 发明内容 为了解决上述问题,本发明提供了一种新型的用于喷墨打印机的 墨盒以及该墨盒的控制匹配方法, 该墨盒采用集成芯片式的传感电 路, 避免过多的分离元件, 巧妙利用的喷墨打印机提供的高压直流脉 冲信号, 在无固定的外部电源电压的条件下, 通过内部电路将该高压 直流脉冲信号转换成为特定摆幅和特定频率的周期性电压信号,该信 号能够精确匹配于喷墨打印机需要识别的共振状态响应的谐振频率 特性和充放电阻抗特性, 使喷墨打印机能够正常工作。本发明电路有 效的减少了外部元器件的使用, 并有效减少了印刷电路板的面积, 解 决现有技术中兼容墨盒过多的外围分离元器件而造成的复杂度高、不 利于集中管理的技术问题。 根据以上目的, 本发明电路的技术方案是这样实现的: 一种用于喷墨打印机的墨盒包括墨盒体以及设置在该墨盒体上 集成芯片式的传感电路, 该传感电路连接打印机的两个通讯端口 A1 和 A2,所述集成芯片式的传感电路包括低压线性稳压器、 基准电压产 生器、 可编程振荡器、 正弦波发生器和低频隔离模块, 其中: 低压线 性稳压器连接打印机的两个通讯端口 A1和 A2 ,所述基准电压产生器、 可编程振荡器和正弦波发生器分别连接低压线性稳压器,所述可编程 振荡器和低频隔离模块分别连接正弦波发生器,所述低频隔离模块低 压线性稳压器连接打印机的两个通讯端口 A1和 A2 , 所述低压线性稳 压器包括单向导通单元 、 单向导通单元 B、 运算放大器 C、 电阻 Rl、 电阻 R2和电容 C1 , 其中所述单向导通单元 A通过通讯端口 A1接收 喷墨打印机的高压直流脉冲, 所述单向导通单元 B通过通讯端口 A2 接收喷墨打印机的高压直流脉冲,所述低压线性稳压器中内部低压直 流电源 VDD经由电阻 R1和电阻 R2分压后的信号 VFB接到运算放大器 C的负向输入端, 所述基准电压信号 VREF接到运算放大器 C的正向 输入端, 所述运算放大器 C的输出信号 VCTL接到 P型金属半导体场 效应管的栅端, 低压线性稳压器中单向导通单元 A和单向导通单元 B 的输出信号 HVDD接到 P型金属半导体场效应管的漏端, P型金属半 导体场效应管的源端输出所述内部低压直流电源 VDD, 所述所述单向 导通单元 A和所述单向导通单元 B包括二极管或者金属半导体场效应 管, 所述传感电路还包括有内部调节电路, 所述可编程振荡器连接该 内部调节电路, 所述低频隔离模块包括并联或串联的电容和电阻。 当喷墨打印机开始工作时, 会依次不定时的通过激励通信端口
A1和 A2向墨盒发送高压直流脉冲信号, 此时, 本发明的墨盒传感器 电路中的低压线性稳压器开始工作,将 A1和 A2端口的高压直流脉冲 转换成为一低压直流电源 VDD, 该低压直流电源 VDD用作内部的基准 电压产生器、 可编程振荡器、 正弦波发生器的供电电源。 当喷墨打印 机撤销高压直流脉冲信号后,该低压直流电源 VDD仍然能够保证基准 电压产生器、 可编程振荡器、 正弦波发生器在一定时间内正常工作。 也就是说,本发明电路巧妙利用了喷墨打印机依次不定时的通过激励 通信端口 A1和 A2端口向墨盒发送高压直流脉冲信号这一特性,并通 过低压线性稳压器将该高压直流脉冲信号转换成为一低压直流电源 VDD, 从而解决了墨盒传感器电路无外部供电电源的问题, 为实现墨 盒传感器电路的高度集成提供了基础。 进一步的, 当内部低压直流电源 VDD转换完成后, 基准电压产生 器、 可编程振荡器、 正弦波发生器开始正常工作, 其中基准电压产生 器产生一基准电压 VREF, 该基准电压 VREF输出反馈给低压线性稳压 器,以保证低压线性稳压器输出的低压直流电源 VDD稳定在墨盒传感 器电路能够正常工作的电压范围内。 同时的, 可编程振荡器输出喷墨 打印机能够识别的特定频率的周期性信号 VCLK, 该特定频率的周期 性信号 VCLK又被送到正弦波发生器, 转换成为特定电压摆幅的周期 性信号 VS, 该特定电压摆幅的周期性信号 VS再通过低频隔离模块耦 合到喷墨打印机的激励通信端口 A1和 A2, 用以精确匹配喷墨打印机 需要识别的特定谐振频率特性和充放电阻抗特性。换句话说, 每当喷 墨打印机通过激励通信端口 A1和 A2向墨盒发送高压直流脉冲信号, 本发明电路自动将其转换成为喷墨打印机能够识别的特定谐振频率 特性和充放电阻抗特性的周期性信号 VS, 并在喷墨打印机撤销高压 直流脉冲信号后, 又自动耦合到激励通信端口 A1和 A2上, 并能够被 喷墨打印机所识别。 从上述方案可以看出,本发明提供的新型墨盒传感器电路可以精 确模拟喷墨打印机需要识别的特定谐振频率特性和充放电阻抗特性, 并自动实现匹配, 从而实现喷墨打印机的继续打印作业。 这样, 用户 在使用喷墨打印机时, 不必使用喷墨打印机厂商提供的专用墨盒, 大 大方便了用户的使用并有效节约了成本 t 附图说明
图 1为已公开的喷墨打印机和墨盒之间的通信示意图;
图 2为本发明提供的墨盒传感器电路的结构示意图;
图 3为喷墨打印机和墨盒传感器电路之间激励发送与检测的示意图; 图 4为墨盒传感器电路中的低压线性稳压器结构示意图。 具体实施方式 为了更好地体现本发明技术方案的优点,以下参考附图举出具体 实施方式, 对本发明进行进一步的详细说明。 传统的喷墨打印机检测墨盒剩余墨水容量的方法如图 1所示,即 喷墨打印机通过端口 A1和 A2依次向墨盒发送高压直流脉冲信号,从 而使位于墨盒内部压电传感器中的压电陶瓷振动单元发生机械形变, 并与墨盒中的介质(比如墨水和空气)产生共振, 当喷墨打印机撤销 高压直流脉冲信号后,墨盒中压电传感器的特定谐振频率特性和充放 电阻抗特性可以被喷墨打印机检测到,从而实现了墨盒剩余墨水容量 的检测, 因此, 没有预先内置压电传感器的墨盒就无法实现正常的打 印作业。 本发明公开的新型墨盒传感器电路可以有效模拟压电传感器的 特定谐振频率特性和充放电阻抗特性,实现与喷墨打印机测试激励相 匹配。 具体实施方式如下: 本发明公开的新型墨盒传感器电路结构如图 2所示,其由 5部分 模块组成, 包括低压线性稳压器 1、 基准电压产生器 2、 可编程振荡 器 3、 正弦波发生器 4和低频隔离模块 5。 以下分别对墨盒传感器中 每部分模块的具体功能和实现方式逐一展开详细介绍。
1. 低压线性稳压器 1是本发明的墨盒传感器的核心模块, 其内 部结构如图 4所示,由单向导通单元 A (401 ),单向导通单元 B (402 )、 运算放大器 C (403 )、 电阻 Rl、 电阻 R2和电容 C1组成。 由于喷墨打 印机不向墨盒提供固定的供电电源,只在需要检测墨盒剩余墨水容量 时才向墨盒发送高压直流脉冲信号, 因此, 该低压线性稳压器 1区别 于传统的低压线性稳压器。 首先, 喷墨打印机通过 A1端口接到低压 线性稳压器 1中的单向导通单元 A (401 ), 通过 A2端口接到单向导 通单元 B (402 ), 该单向导通单元 A和 B具有单向导通特性, 可以由 二极管或者 N型(或 P型)金属半导体场效应管构成, 当喷墨打印机 通过 A1端口发送高压直流脉冲信号时, 该高压直流脉冲信号通过单 向导通单元 1 (401 ) 传输到 P型金属半导体场效应管 (P-FET ) 的漏 端 HVDD, 再经由 P型金属半导体场效应管 (P-FET ) 的源端后产生内 部低压直流电源 VDD的输出, 另一方面, 内部低压直流电源 VDD经由 电阻 R1和电阻 R2分压后的信号 VFB接到运算放大器 C (403 ) 的负 向输入端, 而且一基准电压信号 VREF接到运算放大器 C (403 ) 的正 向输入端, 同时, 运算放大器 C ( 403 ) 的输出 VCTL接到 P型金属半 导体场效应管 (P-FET ) 的栅端, 这样, 上述电路通过运算放大器 C (403 ) 形成一个负反馈环路, 从而实现了内部低压直流电源 VDD的 输出, 并通过电容 C1实现稳压。 接着, 当喷墨打印机撤销高压直流 脉冲信号后,由于单向导通单元 A (401)具有的单向导通性能能够起到 隔离的作用,从而保证了在喷墨打印机撤销高压直流脉冲后该低压线 性稳压器 1仍然能实现内部低压直流电源 VDD的稳定输出。 同样的, 当喷墨打印机向 A2端口发送高压直流脉冲时, 该高压直流脉冲信号 通过单向导通单元 B (402 )传输到 P型金属半导体场效应管(P-FET ) 的漏端 HVDD, 再经由 P型金属半导体场效应管 (P-FET ) 的源端后产 生内部直流电源 VDD的输出,同时也能保证在喷墨打印机撤销高压直 流脉冲后该低压线性稳压器 1仍然能实现内部直流电源 VDD的稳定输 出。 因此, 当喷墨打印机周期性的依次通过 A1和 A2端口发送高压直 流脉冲信号时,该低压线性稳压器 1实现从高压直流脉冲信号到内部 低压直流电源 VDD的转换,并解决了喷墨打印机撤销高压直流脉冲后 无固定输入电源的问题, 其详细的信号转换时序示意图如图 3所示。
2. 基准电压产生器 2使用上述内部低压直流电源 VDD作为本模 块的供电电源, 当低压线性稳压器 1产生内部低压直流电源 VDD后, 基准电压产生器 2自动开始工作,并产生一不随温度和供电电源变化 而变化的基准电压 VREF的输出。由于基准电压 VREF同时作为低压线 性稳压器 1的输入参考基准, 因此, 基准电压产生器 2和低压线性稳 压器 1形成的环路进一步保证了内部低压直流电源 VDD的稳定输出。
3. 可编程振荡器 3使用上述内部低压直流电源 VDD作为本模块 的供电电源, 当低压线性稳压器 1产生内部低压直流电源 VDD后, 可 编程振荡器 3也自动开始工作,并产生一稳定的特定频率的周期性信 号 VCLK的输出,该特定频率的周期性信号 VCLK能够精确匹配于喷墨 打印机需要识别的共振状态响应的谐振频率特性。进一步的, 该可编 程振荡器 3的输出频率可通过内部电路调节,用于匹配不同类型的喷 墨打印机需要识别的共振状态响应的谐振频率特性,实现了很大的应 用灵活性,同时也有利于大规模生产时提高本发明的墨盒传感器电路 的生产量率。
4. 正弦波发生器 4使用上述内部低压直流电源 VDD作为本模块 的供电电源, 当低压线性稳压器 1产生内部低压直流电源 VDD后, 正 弦波发生器 4也自动开始工作,同时可编程振荡器 3输出的周期性信 号 VCLK接到正弦波发生器 4的输入, 因此, 正弦波发生器 4就产生 了一与周期性信号 VCLK相同频率的正弦波输出信号 VS , 同时, 该正 弦波输出信号 VS的特定摆幅能够精确匹配于喷墨打印机需要识别的 充放电阻抗特性。 详细的信号转换时序示意图如图 3所示 。
5. 低频隔离模块 5具有隔离低频信号和耦合高频信号的功能, 它可以由内部电容和内部电阻并联或串联构成,当正弦波发生器 4开 始工作后,该低频隔离模块 5可以将正弦波发生器 4产生的特定频率 和特定摆幅的正弦波输出信号 VS耦合到喷墨打印机的端口 A1和端口 A2。 由于上述特定频率和特定摆幅的正弦波输出信号 VS能够精确匹 配于喷墨打印机需要识别的共振状态响应的谐振频率特性和充放电 阻抗特性, 因此, 当喷墨打印机撤销高压直流脉冲信号后, 该特定频 率和特定摆幅的正弦波输出信号 VS能够通过低频隔离模块 5传输到 端口 A1和端口 A2 , 并能够被喷墨打印机检测到, 当其与喷墨打印机 预设的共振状态响应信号相匹配时, 就可以继续开始打印作业的操 作。图 3中所示的状态 301和状态 302显示了喷墨打印机检测墨盒共 振状态响应的谐振频率特性和充放电阻抗特性的过程。 综上所述,本发明公开的新型的用于喷墨打印机的墨盒通过内部 低压线性稳压器 1、 基准电压产生器 2、 可编程振荡器 3、 正弦波发 生器 4和低频隔离模块 5的相互配合工作, 自动实现了在无固定的外 部电源电压的条件下, 巧妙地将喷墨打印机周期性的依次通过 A1和 A2 端口发送高压直流脉冲信号最终转换成为能够被喷墨打印机所识 别的特定频率和特定摆幅的正弦波输出信号 VS , 并将该特定频率和 特定摆幅的正弦波输出信号 VS耦合到端口 A1和端口 A2 , 最终实现 了喷墨打印机检测墨盒剩余墨水容量的过程。完整的详细的信号转换 时序示意图如图 3所示。 因此,本发明提供的新型墨盒传感器电路可以精确模拟喷墨打印 机需要识别的特定谐振频率特性和充放电阻抗特性, 并自动实现匹 配, 从而实现喷墨打印机的继续打印作业。 这样, 用户在使用喷墨打 印机时, 不必使用喷墨打印机厂商提供的专用墨盒, 大大方便了用户 的使用,并有效的减少了外部元器件的使用和有效减少了印刷电路板 的面积, 从而有效节省了成本。 另外, 已经使用过的墨盒还可以通过 本发明电路提供的方法回收利用,符合国家提倡的环保和再利用的政 策。 以上所述仅为本发明的实施例子而已, 并不用以限制本发明, 凡 在本发明的方法、 思想和原则之内所做的任何修改、 替换和改进, 均 应包含在本发明的保护范围内。

Claims

权利要求书 、 一种用于喷墨打印机的墨盒, 其特征在于: 该墨盒包括墨盒体以 及设置在该墨盒体上集成芯片式的传感电路, 该传感电路连接打 印机的两个通讯端口 A1和 A2。 、 根据权利要求 1所述用于喷墨打印机的墨盒, 其特征在于: 所述 集成芯片式的传感电路包括低压线性稳压器、 基准电压产生器、 可编程振荡器、 正弦波发生器和低频隔离模块, 其中: 低压线性 稳压器连接打印机的两个通讯端口 A1和 A2 , 所述基准电压产生 器、 可编程振荡器和正弦波发生器分别连接低压线性稳压器, 所 述可编程振荡器和低频隔离模块分别连接正弦波发生器, 所述低 频隔离模块连接打印机的两个通讯端口 A1和 A2。 、 根据权利要求 2所述用于喷墨打印机的墨盒, 其特征在于: 所述 低压线性稳压器包括单向导通单元 A、单向导通单元 B、运算放大 器(、 电阻 Rl、 电阻 R2和电容 Cl, 其中所述单向导通单元 A通 过通讯端口 A1接收喷墨打印机的高压直流脉冲,所述单向导通单 元 B 通过通讯端口 A2接收喷墨打印机的高压直流脉冲。 、 根据权利要求 3所述用于喷墨打印机的墨盒, 其特征在于, 所述 低压线性稳压器中内部低压直流电源 VDD经由电阻 R1和电阻 R2 分压后的信号 VFB接到运算放大器 C的负向输入端, 所述基准电 压信号 VREF接到运算放大器 C的正向输入端, 所述运算放大器 C 的输出信号 VCTL接到 P型金属半导体场效应管的栅端,低压线性 稳压器中单向导通单元 A和单向导通单元 B的输出信号 HVDD接到 P型金属半导体场效应管的漏端, P型金属半导体场效应管的源 端输出所述内部低压直流电源 VDD。 、 根据权利要求 3所述用于喷墨打印机的墨盒, 其特征在于, 所述 所述单向导通单元 A和所述单向导通单元 B包括二极管或者金属 半导体场效应管。 、 根据权利要求 2至 5中任一项所述用于喷墨打印机的墨盒, 其特 征在于: 所述传感电路还包括有内部调节电路, 所述可编程振荡 器连接该内部调节电路。
7、 根据权利要求 2至 5中任一项所述用于喷墨打印机的墨盒, 其特 征在于, 所述低频隔离模块包括并联或串联的电容和电阻。 一种喷墨打印机墨盒传感电路的控制方法, 其特征在于: 该方法 包括以下步骤:
A.首先构建墨盒传感电路, 该墨盒传感电路是集成芯片, 包括低压线 性稳压器、 基准电压产生器、 可编程振荡器、 正弦波发生器和低频隔 离模块;
B.所述低压线性稳压器从端口 A1和端口 A2接收喷墨打印机的高压直 流脉冲, 并将所述高压直流脉冲转换成为一内部低压直流电源 VDD , 供内部电路模块使用;
C.所述基准电压产生器使用所述内部低压直流电源 VDD 作为本电路 模块的供电电源,产生一不随温度和供电电源变化而变化的基准电压 信号 VREF, 并输出到所述低压线性稳压器;
D.所述可编程振荡器使用所述内部低压直流电源 VDD 作为本电路模 块的供电电源, 并产生一特定频率的周期性信号 VCLK , 所述特定频 率的周期性信号 VCLK能够精确匹配于喷墨打印机需要识别的共振状 态响应的谐振频率特性;
E.所述正弦波发生器使用所述内部低压直流电源 VDD 作为本电路模 块的供电电源,同时使用所述特定频率的周期性信号 VCLK作为输入, 并产生一与所述特定频率的周期性信号 VCLK有相同频率的特定摆幅 的正弦波输出信号 VS , 所述特定摆幅的正弦波输出信号 VS能够精确 匹配于喷墨打印机需要识别的充放电阻抗特性;
F.低频隔离模块接收所述特定摆幅的正弦波输出信号 VS作为输入, 并将所述特定摆幅的正弦波输出信号 VS耦合到喷墨打印机的端口 A1 和端口 A2 , 在喷墨打印机撤销高压直流脉冲信号后, 所述特定摆幅 的正弦波输出信号 VS能够被喷墨打印机检测到。 的可编程振荡器 3 产生的所述特定频率的周期性信号 VCLK可以通过, 用于匹配不同类 型的喷墨打印机需要识别的共振状态响应的谐振频率特性。
PCT/CN2011/081156 2010-12-07 2011-10-22 用于喷墨打印机的墨盒及其控制方法 WO2012075858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010576993.9 2010-12-07
CN201010576993.9A CN102139574B (zh) 2010-12-07 2010-12-07 用于喷墨打印机的墨盒及其控制方法

Publications (1)

Publication Number Publication Date
WO2012075858A1 true WO2012075858A1 (zh) 2012-06-14

Family

ID=44407461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081156 WO2012075858A1 (zh) 2010-12-07 2011-10-22 用于喷墨打印机的墨盒及其控制方法

Country Status (2)

Country Link
CN (1) CN102139574B (zh)
WO (1) WO2012075858A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102139574B (zh) * 2010-12-07 2014-08-20 深圳市晟碟半导体有限公司 用于喷墨打印机的墨盒及其控制方法
JP5866865B2 (ja) * 2011-08-24 2016-02-24 セイコーエプソン株式会社 印刷装置およびその制御方法
CN102744970A (zh) * 2012-07-10 2012-10-24 辉芒微电子(深圳)有限公司 一种高速墨盒芯片
CN105912060B (zh) * 2016-05-31 2018-02-02 杭州旗捷科技有限公司 一种墨盒芯片
CN113352768B (zh) * 2020-03-05 2022-07-12 珠海艾派克微电子有限公司 耗材及打印设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090639A (ja) * 2002-08-12 2004-03-25 Seiko Epson Corp 印刷材の収容容器およびその検出装置
CN201067999Y (zh) * 2007-08-14 2008-06-04 珠海天威技术开发有限公司 墨盒
CN101508204A (zh) * 2008-12-31 2009-08-19 吴学谦 可测量物品剩余量的容器
CN201427438Y (zh) * 2008-12-12 2010-03-24 珠海艾派克微电子有限公司 一种带有替代压电传感器的墨盒
CN101700715A (zh) * 2009-08-20 2010-05-05 珠海纳思达电子科技有限公司 一种喷墨打印机墨盒的回收方法及应用该方法得到的回收墨盒
JP2010210562A (ja) * 2009-03-12 2010-09-24 Seiko Epson Corp 液体残量検出システム
CN201881648U (zh) * 2010-12-07 2011-06-29 深圳市晟碟半导体有限公司 用于喷墨打印机的墨盒
CN102139574A (zh) * 2010-12-07 2011-08-03 深圳市晟碟半导体有限公司 用于喷墨打印机的墨盒及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1111953C (zh) * 1998-04-25 2003-06-18 普诚科技股份有限公司 振荡器内建于集成电路内的频率调整方法与装置
JP4259059B2 (ja) * 2002-07-18 2009-04-30 セイコーエプソン株式会社 カートリッジおよび印刷装置
US7554307B2 (en) * 2006-06-15 2009-06-30 Monolithic Power Systems, Inc. Low dropout linear regulator having high power supply rejection and low quiescent current
CN101045394A (zh) * 2007-05-03 2007-10-03 吴嘉懿 有测量消耗品剩余量电路的消耗品容器
CN101293428A (zh) * 2008-07-01 2008-10-29 珠海艾派克微电子有限公司 一种应用于喷墨打印机的模拟激励响应特性的方法及电路

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090639A (ja) * 2002-08-12 2004-03-25 Seiko Epson Corp 印刷材の収容容器およびその検出装置
CN201067999Y (zh) * 2007-08-14 2008-06-04 珠海天威技术开发有限公司 墨盒
CN201427438Y (zh) * 2008-12-12 2010-03-24 珠海艾派克微电子有限公司 一种带有替代压电传感器的墨盒
CN101508204A (zh) * 2008-12-31 2009-08-19 吴学谦 可测量物品剩余量的容器
JP2010210562A (ja) * 2009-03-12 2010-09-24 Seiko Epson Corp 液体残量検出システム
CN101700715A (zh) * 2009-08-20 2010-05-05 珠海纳思达电子科技有限公司 一种喷墨打印机墨盒的回收方法及应用该方法得到的回收墨盒
CN201881648U (zh) * 2010-12-07 2011-06-29 深圳市晟碟半导体有限公司 用于喷墨打印机的墨盒
CN102139574A (zh) * 2010-12-07 2011-08-03 深圳市晟碟半导体有限公司 用于喷墨打印机的墨盒及其控制方法

Also Published As

Publication number Publication date
CN102139574B (zh) 2014-08-20
CN102139574A (zh) 2011-08-03

Similar Documents

Publication Publication Date Title
WO2012075858A1 (zh) 用于喷墨打印机的墨盒及其控制方法
JP5792168B2 (ja) 誘導パワー伝送
CN201881648U (zh) 用于喷墨打印机的墨盒
JP5148753B2 (ja) 振動発電器、振動発電装置、及び振動発電装置を搭載した通信装置
TW201103227A (en) Apparatus and method for improving the standby efficiency of a charger, and ultra low standby power charge
CN105099238B (zh) 控制功率转换器的同步整流器的方法以及控制电路
TWI408883B (zh) 定時啟動之控制電路與降壓式直流/直流轉換器
EP2879023B1 (en) Capacitive stylus pen
TW200917637A (en) Synchronous rectifying method and apparatus
JP2009225551A (ja) 電力伝送システム
US9106148B2 (en) Power supply apparatus and image forming apparatus
JP2012050208A (ja) 電力供給回路及び該回路を備えた機器
CN110335579A (zh) 一种蜂鸣器的驱动电路
WO2023104047A1 (zh) 电池管理电路及电池装置
JP2005538609A5 (zh)
CN203410167U (zh) 喷墨打印机墨盒的芯片
CN201280108Y (zh) 汽车网关控制器
CN109474239A (zh) 5g标准源高频晶振电路
CN210927584U (zh) 雾化追频电路及雾化驱动电路和雾化驱动电路板
CN207994954U (zh) 基于压电陶瓷震动环境能量收集的智能供电系统
JP2019139735A (ja) 電子ペンの電子回路及び電子ペン
CN202711680U (zh) 机动车船用电子喇叭
CN103578459B (zh) 机动车船用电子喇叭
TWI492017B (zh) 喚醒電路、整合式功率二極體及使用其之電源供應器
CN209593736U (zh) 带有反馈的随频电子鸣笛喇叭

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DD 17/10/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11847374

Country of ref document: EP

Kind code of ref document: A1