WO2012075847A1 - 多时分配置方法及装置 - Google Patents

多时分配置方法及装置 Download PDF

Info

Publication number
WO2012075847A1
WO2012075847A1 PCT/CN2011/079925 CN2011079925W WO2012075847A1 WO 2012075847 A1 WO2012075847 A1 WO 2012075847A1 CN 2011079925 W CN2011079925 W CN 2011079925W WO 2012075847 A1 WO2012075847 A1 WO 2012075847A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
time
maximum
configuration
irrelevant
Prior art date
Application number
PCT/CN2011/079925
Other languages
English (en)
French (fr)
Inventor
王晶
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012075847A1 publication Critical patent/WO2012075847A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing

Definitions

  • the present invention relates to the field of communications, and in particular to a multi-time allocation method and apparatus.
  • Synchronous Digital Hierarchy (SDH) has been widely developed and applied in the field of optical communication.
  • SDH Synchronous Digital Hierarchy
  • the optical network can flexibly and quickly realize the adjustment of business, and will better meet the various needs of different customers. This puts more stringent requirements on the SDH device or network element in terms of time slot cross configuration.
  • time slot configuration In an optical synchronous digital transmission network, if data transmission exists between two network elements or within a single network element, time slot configuration must be performed.
  • the function of the time slot configuration is to determine the specific cross path during transmission for all given time slots and incoming time slots.
  • the network controller (Net Control Processor, NCP for short) sends a time slot cross-command to the time slot algorithm module.
  • NCP Network Control Processor
  • specific paths are obtained. Configure the command results.
  • the NCP then sends the result of the configuration command to each board in the network element.
  • the board implements the cross-configuration of the service, that is, the path between the incoming time slot and the outgoing time slot.
  • the purpose of the slot algorithm is to: arrange the connection path of the slot stream in the hardware resource (space division module, time division module) according to the in-time slot and the out-slot slot delivered by the network management, that is, complete the calculation of the slot configuration function. .
  • the position of the outgoing time slot and the incoming time slot may be between the light plates or the light plate to the tributary board.
  • a certain time slot may only need to complete the intersection of the outgoing and the indirect through the space division cross matrix, and may also need to complete the intersection of the outgoing and the incoming through the space division cross matrix and the time division cross matrix.
  • the current level of hardware technology determines that the management unit (AU) slot signal can be implemented by the AU-level space division cross matrix, and the AU-level time slot signal cannot follow the AU where it is located.
  • the space division cross By using the space division cross to complete the intersection of this level, they can only rely on the cooperation of the air separation module and the time division module to complete the intersection.
  • the AU-level time slot signal must be configured once through the space division cross matrix, and the time slot signal below the AU level must pass the cooperation of the space division module and the time division module. To complete the cross.
  • the time division module In order to realize the signal transmission between the signal boards below the AU level, the time division module internally realizes the time slot crossing below the AU level, and the time division module and the signal board pass the AU level space division cross matrix and the management unit group between the signal boards ( The Administration Unit Group (abbreviated as AUG) bus connection performs AU level signal time slot exchange.
  • AUG Administration Unit Group
  • the time division module can achieve any crossover below the AU level signal, due to the limitation of the capacity of the single time division module and the time-interval factor in the multi-time division module, the problem of large-scale low-order time slot resource configuration cannot be well solved. Therefore, how to optimize the use of resources, while ensuring the configuration success rate while saving time-division modules becomes a problem that must be considered in the time slot configuration process.
  • a primary object of the present invention is to provide a multi-time division configuration method and apparatus to solve at least one of the above problems.
  • a multi-time division configuration method including: dividing an unrelated group, wherein each of the unrelated groups includes one or more in-slot ends and/or out-of-slot ends are associated
  • the gap is determined by determining that the unrelated group including the largest number of timeslots in the above-mentioned irrelevant group is the largest irrelevant group; and configuring the above-mentioned maximum irrelevant group.
  • determining that the unrelated group including the largest number of timeslots in the unrelated group is the largest unrelated group includes: selecting the unrelated group with the largest number of slot ends as the maximum unrelated group; When the irrelevant group is selected, the unrelated group in which the number of inbound slots is the largest is selected as the maximum irrelevant group.
  • configuring the maximum irrelevant group includes: configuring the maximum irrelevant group to the time slot module in which the inbound time slot of the maximum unrelated group is located, and the time division module that has occupied the most time slot end; If the idle inbound slot end and the idle out slot end of the time division module fail to meet the configuration requirements of the maximum unrelated group, the maximum irrelevant group is configured to remove the time slot module except the time division module, and the occupied time slot end is included. On the time division module, until the configuration requirement of the maximum irrelevant group is satisfied; if there is no time division module that satisfies the configuration requirement of the maximum irrelevant group, the maximum irrelevant group is split, and the step of determining the maximum irrelevant group is performed.
  • the method further includes: determining whether all the irrelevant groups are configured, and if yes, ending the configuration, otherwise performing the step of determining the maximum irrelevant group.
  • the time slot associated with the in-slot end and/or the e-slot end includes: an in-slot end and/or an out-slot end intersecting to an unscheduled time slot of the same slot end. .
  • a multi-time division configuration apparatus including: a division module, configured to divide an unrelated group, wherein each of the unrelated groups includes one or more in-slot terminals and/or an out-of-time Correlation The time slot; the determining module is configured to determine that the unrelated group including the largest number of time slots end in the above-mentioned irrelevant group is the largest irrelevant group; and the configuration module is configured to configure the maximum irrelevant group.
  • the determining module includes: a first selecting unit, configured to select an unrelated group having the largest number of time slots as the maximum unrelated group; and the second selecting unit is set to have the largest number of the plurality of outgoing time slots In the group, the irrelevant group in which the number of inbound slots is the largest is selected as the largest irrelevant group.
  • the configuration module includes: a first configuration unit, configured to configure the maximum irrelevant group to the time slot end of the maximum unrelated group, and the one or more time division modules including the time slot module that has occupied the most time slot end.
  • the second configuration unit is configured to configure the maximum irrelevant group to be removed when the idle in-slot end and the idle out-slot end of the time-division module having the most occupied time slot end cannot meet the configuration requirement of the maximum unrelated group
  • the time-division module remaining outside the time-division module includes the time-division module that has occupied the most time slot end until the configuration requirement of the maximum irrelevant group is satisfied; the split cycle unit is set to be in the absence of the configuration requirement that satisfies the maximum irrelevant group.
  • the multi-time time configuration apparatus further includes: a judging module configured to determine whether all the irrelevant groups are configured, and if yes, ending the configuration, otherwise causing the determining module to perform the step of determining the maximum irrelevant group.
  • the time slot associated with the in-slot end and/or the out-slot end includes: the in-slot end and/or the out-slot end intersecting to the same slot end, the out-of-slot end is not determined. .
  • the scheme of dividing the irrelevant group and determining the maximum irrelevant group from above, and preferentially configuring the largest irrelevant group solves the problem that the multi-time sub-module is in the time slot configuration, the time-division resource is partially idle, but the configuration cannot be continued.
  • the effect of ensuring a high configuration success rate while ensuring optimal resource allocation is achieved.
  • FIG. 1 is a flowchart of a multi-time division configuration method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an example 1 of a multi-time division configuration
  • FIG. 3 is a schematic diagram of a configuration result of performing multi-time division configuration on the example 1 according to the prior art.
  • 4 is a schematic diagram showing a configuration result of a multi-time division configuration of the example 2 according to the multi-time division configuration method according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a multi-time division configuration method according to a preferred embodiment of the present invention
  • FIG. 6 is an example 2 according to the present invention.
  • FIG. 1 is a flowchart of a multi-time division configuration method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an example 1 of a multi-time division configuration
  • FIG. 3 is a schematic diagram of a configuration result of performing multi-time division configuration on the example 1 according to the prior art.
  • 4 is
  • FIG. 7 is a schematic structural diagram of a time division module 1 and a time division module 2 according to Example 2 of the present invention
  • FIG. 8 is a schematic diagram showing a configuration result of an unrelated group 1 according to Example 2 of the present invention
  • 9 is a schematic diagram of the configuration result of the irrelevant group 2 according to the second embodiment of the present invention
  • FIG. 10 is a schematic diagram showing the configuration result of the multi-time division configuration of the example 2 according to the prior art
  • FIG. 11 is a structure of the multi-time division configuration apparatus according to the embodiment of the present invention.
  • Figure 12 is a block diagram showing the structure of a multi-time division configuration apparatus in accordance with a preferred embodiment of the present invention.
  • the multi-time-sequencing configuration method includes: Step S102: dividing an unrelated group, where each of the unrelated groups includes one or more in-slot terminals and/or out-slot terminals. Associated time slot. Step S104: Determine that the irrelevant group including the largest number of timeslots in the unrelated group is the largest irrelevant group.
  • Step S106 configuring the maximum irrelevant group.
  • the division of the irrelevant group minimizes the possibility of waste of resources caused by the time slot into the time slot end and concurrently transmitted to multiple time division modules, thereby ensuring optimal utilization of time division resources.
  • the maximum irrelevant group is configured preferentially, and the configuration order is configured first, and then the configuration sequence is small, which improves the probability of successful configuration.
  • Fig. 2 shows an example of a multi-time division configuration (Example 1). There are two time division modules in the figure. The twill portion indicates that the time division of the portion is already occupied, and the white portion indicates that the time division of this portion is idle. of. Same There are also two irrelevant groups.
  • the unrelated group 2 As shown in Figure 3, if you configure the unrelated group 2 to the time division module 1, the unrelated group 1 cannot be configured, which will cause the configuration to fail. However, if the above method is used, as shown in FIG. 4, the irrelevant group 1 is configured to the time division module 1, and the unrelated group 2 is configured to the time division module 2, and the configuration is found to be successful.
  • the time slot associated with the in-slot end and/or the out-slot end includes, but is not limited to: the in-slot end and/or the out-slot end intersecting to the out-slot end of the same slot end. Undetermined time slot.
  • the AU level time slot signal does not need to participate in the division of the unrelated group, and the cross configuration can be completed directly through the air separation module.
  • the time slot in the outbound position of the time division module (out of the time slot) has been determined, and the time division position allocation can be preferentially performed, and the division of the unrelated group is not required.
  • the principle of the time division configuration is to configure the time-division module in which the time slot is located, and to directly establish a connection with the determined entry position (into the time slot end) for the incoming time slot end, and assign a time to the time division module for the undetermined input position.
  • step S104 may further include the following processing:
  • step S106 may further include the following processing:
  • the maximum irrelevant group Configuring the maximum irrelevant group to one or more time division modules in which the inbound time slot of the maximum irrelevant group is included in the time division module that has occupied the most time slot end. (2) If the idle inbound slot end and the idle out slot end of the time division module cannot meet the configuration requirement of the maximum irrelevant group, the maximum irrelevant group is configured to include the remaining time division module except the time division module. It occupies the time-division module that is the most in the slot end until the configuration requirement of the maximum irrelevant group is met.
  • the maximum irrelevant group is split, and the process returns to step S104.
  • the maximum irrelevant group is preferentially configured to one or more time-division modules in which the in-slot end of the maximum unrelated group is located, and the time-division module that has occupied the most in-slot end is configured, that is, configured to If the module fails to meet the configuration requirements of the maximum irrelevant group, the maximum irrelevant group is adapted to another time division module, and the module may be preferentially excluded after excluding the module.
  • the time-division module with the least number of idle slots is configured, which can maximize the utilization of time-division module resources. If it is found that there is no time-division module that satisfies the configuration requirement of the maximum irrelevant group, the maximum irrelevant group is split, and the process returns to step S104 to re-determine a maximum irrelevant group, and the above steps are cyclically executed.
  • the following processing may further be included: determining whether all the irrelevant groups are configured, and if yes, ending the configuration, otherwise performing the step of determining the maximum irrelevant group. This will ensure that all irrelevant groups will be configured. In summary, as shown in FIG.
  • the multi-time allocation method may include the following steps: Step S502, dividing an irrelevant group. Step S504, determining a maximum irrelevant group. Step S506, configuring a maximum irrelevant group. In step S508, it is determined whether the configuration is successful. If the step S510 is not successful, the process proceeds to step S512. In step S510, the maximum irrelevant group is split, and the process returns to step S504. In step S512, it is judged whether there is any remaining irrelevant group, and if yes, the process returns to step S504, otherwise it ends.
  • Step S502 dividing an irrelevant group.
  • Step S504 determining a maximum irrelevant group.
  • Step S506 configuring a maximum irrelevant group.
  • step S508 it is determined whether the configuration is successful. If the step S510 is not successful, the process proceeds to step S512. In step S510, the maximum irrelevant group is split, and the process returns to step S504. In step S512, it is judged whether there is any remaining irrelevant group, and if yes, the process returns to step S50
  • Example 2 All time slots in which the time slot has been determined at the position of the time division module have been configured, and all the space division intersections that have not passed the time division configuration are also configured.
  • the time slot configuration has been completed for all AU level time slots.
  • the capacity of the time division module is 5x5AUG, where the time division module 1 (1# time division module) has occupied 2x2AUG, and the time division module 2 (2# time division module) has occupied 3> ⁇ 3AUG.
  • the AU surrounded by circles in FIGS. 7 to 10 indicates the AU that has been allocated for use.
  • the time slots to be configured this time are divided into unrelated groups.
  • time slot is regarded as the intersection of the service on a certain logical AUG to the service on a certain logical AUG, and the factors of the port and the board are not concerned.
  • the time slots below the AU level that need to be configured are as follows: AUG1 TU1 ⁇ AUG4 TU1,
  • the slot crossing of all Tributary Unit (TU) levels defaults to TU12 (representing the rate of TU, including TU11, TU3, etc.).
  • TU12 Representing the rate of TU, including TU11, TU3, etc.
  • the second step is to determine (calculate) the maximum irrelevant group. According to the calculation principle of the maximum irrelevant group, first compare the number of AUGs in which the time slot is located, both of which are 2, and then compare the number of AUGs in which the time slot is located, the 1#-independent group is 3, and the 2#-independent group is 2, very Obviously, the 1# unrelated group is the largest irrelevant group.
  • the configuration of the maximum irrelevant group is started. First, the adaptability of the maximum irrelevant group and the time division module is calculated. First, the adaptability to the time division module 1 is calculated.
  • the number of time slots AUG 2 is smaller than the number of idle AUs of the time division module 1 by 3, and one allocated time slot AUG is removed, and the remaining number of inbound slots AUG 2 is less than the time division.
  • Module 1 has an idle AU number of 3 and can be configured to time division module 1. Then, the compatibility with the time division module 2 is calculated.
  • the number of time slots AUG 2 is equal to the number of idle AUs of the time division module 2, the number of incoming time slots AUG is greater than the number of idle AUs of the time division module 2, and cannot be configured to 2. # ⁇ .
  • the fourth step is to configure the largest irrelevant group.
  • the positions of the incoming 3AU and 4AU in the time division module 1 are assigned to the AUG2 and P AUG3, and the positions of the 3AU and 4AU are assigned to give the AUG4 and P AUG5. Since the incoming AUG1 has been allocated, no further allocation is required.
  • the maximum irrelevant group is calculated. Since there is one extraneous group remaining, 2# unrelated group, no calculation is needed.
  • the maximum irrelevant group is configured. First, the compatibility of the largest irrelevant group with the time division module is calculated. First, the adaptability to the time division module 1 is calculated.
  • the number of time slots AUG 2 is greater than the number of idle AUs of the time division module 1 and does not satisfy the adaptation condition. Then, the compatibility with the time division module 2 is calculated.
  • the number of time slots AUG 2 is equal to the number of idle AUs of the time division module 2, and the number of incoming time slots AUG 2 is equal to the number of idle AUs of the time division module 2, which can be configured to the time division. Module 2.
  • the seventh step configures the largest irrelevant group.
  • the positions of the 4AU and 5AU in the time division module 2 are assigned to the AUG6 and the AUG7, and the positions of the 4AU and 5AU are assigned to give the AUG8 and the AUG9, as shown in FIG. The configuration for the largest irrelevant group is completed.
  • the eighth step calculates the maximum irrelevant group. Since the number of remaining unrelated groups is 0, it ends. If this method is not used, if the configuration is performed in the normal order, as shown in Figure 10, the 2#-independent group is configured first, and the 1#-independent group cannot be configured. Even if the 1#-independent group is split into the most basic unit group, the configuration cannot be completed.
  • 11 is a block diagram showing the structure of a multi-time division configuration apparatus according to an embodiment of the present invention. As shown in FIG.
  • a multi-time division configuration apparatus includes: a division module 112, configured to divide an unrelated group, wherein each of the unrelated groups includes one or more in-slot terminals and/or an out-of-time There are associated time slots at the slot end.
  • the determining module 114 is configured to determine that the unrelated group including the largest number of time slot ends in the above-mentioned irrelevant group is the largest irrelevant group.
  • the configuration module 116 is configured to configure the maximum irrelevant group.
  • the time slot associated with the in-slot end and/or the e-slot end includes, but is not limited to: the in-slot end and/or the out-slot end intersecting to the same slot end.
  • Time slot In the specific implementation process, only the time slot in which the time slot is out of the time division module is determined, and the division of the unrelated group is required.
  • the principle of unrelated group division is to divide the time slot into/and out of the time slot with the associated time slot into the same unrelated group.
  • the so-called association means that the time slot intersects to the same AUG.
  • the determining module 114 may further include: a first selecting unit 1142, configured to select an unrelated group having the largest number of slot ends as the maximum irrelevant group.
  • the second selecting unit 1144 is configured to select, as the maximum irrelevant group, the unrelated group in which the number of incoming slot terminals is the largest when there are a plurality of unrelated groups having the largest number of outgoing slot terminals. If the number of outgoing time slots in an unrelated group is the largest, then this irrelevant group is the largest irrelevant group. If the number of time slots is the largest, there are several unrelated groups, then the largest number of time slots in the unrelated groups is the largest irrelevant group.
  • a first selecting unit 1142 configured to select an unrelated group having the largest number of slot ends as the maximum irrelevant group.
  • the second selecting unit 1144 is configured to select, as the maximum irrelevant group, the unrelated group in which the number of incoming slot terminals is the largest when there are a plurality of unrelated groups having the largest number of outgoing slot terminals. If the number of outgoing time slots in
  • the configuration module 116 may further include: a first configuration unit 1162, configured to configure the maximum irrelevant group to one or more time division modules in which the inbound time slot of the maximum unrelated group is located It occupies the time-division module that has the largest number of time slots.
  • the second configuration unit 1164 is configured to configure the maximum irrelevant group when the idle in-slot end and the idle out-slot end of the time-division module having the most occupied time slot end cannot meet the configuration requirement of the maximum unrelated group.
  • the time-division module remaining outside the time-division module includes the time-division module that has occupied the most time slot end until the configuration requirement of the maximum irrelevant group is satisfied.
  • the split loop unit 1166 is configured to split the maximum irrelevant group when there is no time division module that satisfies the configuration requirement of the maximum irrelevant group, and cause the determination module 114 to perform the step of determining the maximum irrelevant group.
  • the foregoing unit needs to perform the steps of configuring the maximum irrelevant group cyclically until the allocation succeeds or fails.
  • the multi-time division configuration apparatus may further include: a determining module 118, configured to determine whether all the irrelevant groups are configured, and if yes, end the configuration, otherwise the determining module is enabled. Perform the steps to determine the largest irrelevant group. The setting of the decision module 118 ensures that all irrelevant groups will be configured.
  • the technical solution of the present invention effectively compensates for the deficiencies of the prior art processing of the time division configuration of the multi-time division module, and reduces the probability that the time division configuration of the remaining resources may be unsuccessful.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the computing device may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. Perform the steps shown or described, or separate them into individual integrated circuit modules, or Multiple of these modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本发明公开了一种多时分配置方法及装置,上述方法包括:划分无关组,其中,每个无关组中均包括一个或多个入时隙端和/或出时隙端有关联的时隙;确定上述无关组中包括出时隙端数目最多的无关组为最大无关组;对上述最大无关组进行配置。通过本发明提供的技术方案,达到了在保证资源优化配置的同时,保证高的配置成功率的效果。

Description

多时分配置方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种多时分配置方法及装置。 背景技术 光同步数字传输网 (Synchronous Digital Hierarchy, 简称为 SDH) 已经在光通讯 领域得到广泛的发展和应用。 随着社会生活的日益丰富以及科技的进步, 光通讯领域 的需求也越来越多样化, 光网络能够灵活快速的实现业务的调整, 将能更好的满足不 同客户的各种需求。这就给 SDH设备或者网元在时隙交叉配置的方面提出了更为苛刻 的要求。 光同步数字传输网中, 如果两个网元之间或者单个网元内部存在数据传输, 就必 须要进行时隙配置。 时隙配置的功能就是对于所有的给定出时隙和入时隙, 确定在传 输过程中具体交叉路径。通常是在网管上配置时隙交叉关系后,由网元控制处理器 (Net Control Processor,简称为 NCP)下发时隙交叉命令给时隙算法模块,经过算法的处理, 得到具体的各种路径配置命令结果。 NCP再将这些配置命令结果下发到网元中的各个 单板, 由单板来实现业务的交叉配置, 即实现入时隙和出时隙之间路径的连通。其中, 时隙算法的目的就是: 根据网管下发的入时隙和出时隙, 安排时隙流在硬件资源 (空 分模块、 时分模块) 中的连通路径, 即完成时隙配置功能的计算。 出时隙和入时隙的位置可能是光板之间的, 也可能是光板到支路板的。 某一条时 隙可能仅仅只需要通过空分交叉矩阵就能够直接完成出和入的交叉, 也可能需要通过 空分交叉矩阵和时分交叉矩阵一起来完成出和入的交叉。 目前的硬件技术的发展水平 决定了对于管理单元 (Administration Unit, 简称为 AU) 级时隙信号可以通过 AU级 空分交叉矩阵实现, 而低于 AU级别的时隙信号如果不能跟随它所在的 AU利用空分 交叉完成该级别的交叉, 它们就只能依靠空分模块和时分模块的配合来完成交叉。 当 然, 出于某种技术要求, 也可能会规定对于 AU级时隙信号都必须通过空分交叉矩阵 一次性完成配置, 对于低于 AU级别的时隙信号必须经过空分模块和时分模块的配合 来完成交叉。 为了实现信号板间低于 AU级别的信号传输, 时分模块内部来实现低于 AU级别的时隙交叉, 时分模块与信号板之间通过 AU级空分交叉矩阵和信号板之间 管理单元组(Administration Unit Group, 简称为 AUG) 总线的连接进行 AU级别信号 时隙交换。 虽然时分模块能够实现低于 AU级别信号的任意交叉, 但由于单时分模块容量本 身的限制以及多时分模块中跨时分因素的影响, 仍不能很好的解决大批量低阶时隙资 源配置的问题, 所以如何优化的利用资源, 在保证配置成功率的同时又能够节省时分 模块就成为时隙配置过程中必须要考虑的问题。 如果没有一套好的多时分的处理机制, 对于多时分模块在时隙配置时, 就有可能 出现时分资源还有部分空闲, 却无法继续配置的可能, 或者对于同样的时隙数据, 出 现不同的下发次序, 有时会成功有时会失败的情况。 发明内容 本发明的主要目的在于提供一种多时分配置方法及装置, 以至少解决上述问题之 一。 根据本发明的一个方面, 提供了一种多时分配置方法, 包括: 划分无关组, 其中, 每个无关组中均包括一个或多个入时隙端和 /或出时隙端有关联的时隙; 确定上述无关 组中包括出时隙端数目最多的无关组为最大无关组; 对上述最大无关组进行配置。 在上述方法中,确定无关组中包括出时隙端数目最多的无关组为最大无关组包括: 选择出时隙端数目最多的无关组作为最大无关组; 当存在多个出时隙端数目最多的无 关组时, 选择其中入时隙端数目最多的无关组作为最大无关组。 在上述方法中, 对最大无关组进行配置包括: 将最大无关组配置到最大无关组的 入时隙端所在的一个或多个时分模块中包含已占用入时隙端最多的时分模块上; 如果 该时分模块的空闲入时隙端和空闲出时隙端无法满足最大无关组的配置要求, 则将最 大无关组配置到除去该时分模块外剩下的时分模块中包含已占用入时隙端最多的时分 模块上, 直至满足最大无关组的配置要求; 若果不存在满足最大无关组的配置要求的 时分模块, 则拆分最大无关组, 执行确定最大无关组的步骤。 在上述方法中, 在对最大无关组进行配置之后, 还包括: 判断是否所有无关组都 配置完毕, 如果是, 则结束配置, 否则执行确定最大无关组的步骤。 在上述方法中,入时隙端和 /或出时隙端有关联的时隙包括:入时隙端和 /或出时隙 端交叉到同一个时隙端的出时隙端未确定的时隙。 根据本发明的另一个方面, 提供了一种多时分配置装置, 包括: 划分模块, 设置 为划分无关组, 其中, 每个无关组中均包括一个或多个入时隙端和 /或出时隙端有关联 的时隙; 确定模块, 设置为确定上述无关组中包括出时隙端数目最多的无关组为最大 无关组; 配置模块, 设置为对上述最大无关组进行配置。 在上述装置中, 确定模块包括: 第一选择单元, 设置为选择出时隙端数目最多的 无关组作为最大无关组; 第二选择单元, 设置为在存在多个出时隙端数目最多的无关 组时, 选择其中入时隙端数目最多的无关组作为最大无关组。 在上述装置中, 配置模块包括: 第一配置单元, 设置为将最大无关组配置到最大 无关组的入时隙端所在的一个或多个时分模块中包含已占用入时隙端最多的时分模块 上; 第二配置单元, 设置为在包含已占用入时隙端最多的时分模块的空闲入时隙端和 空闲出时隙端无法满足最大无关组的配置要求时, 将最大无关组配置到除去该时分模 块外剩下的时分模块中包含已占用入时隙端最多的时分模块上, 直至满足最大无关组 的配置要求; 拆分循环单元, 设置为在不存在满足最大无关组的配置要求的时分模块 时, 拆分最大无关组, 并使确定模块执行确定最大无关组的步骤。 在上述装置中, 多时分配置装置还包括: 判断模块, 设置为判断是否所有无关组 都配置完毕, 如果是, 则结束配置, 否则使确定模块执行确定最大无关组的步骤。 在上述装置中,入时隙端和 /或出时隙端有关联的时隙包括:入时隙端和 /或出时隙 端交叉到同一个时隙端的出时隙端未确定的时隙。 通过本发明, 采用划分无关组, 并从中确定最大无关组, 优先对最大无关组进行 配置的方案, 解决了多时分模块在时隙配置时, 时分资源还有部分空闲, 却无法继续 配置的问题, 进而达到了在保证资源优化配置的同时, 保证高的配置成功率的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据本发明实施例的多时分配置方法流程图; 图 2是多时分配置的实例 1示意图; 图 3是根据现有技术对实例 1进行多时分配置的配置结果示意图; 图 4是根据本发明实施例的多时分配置方法对实例 2进行多时分配置的配置结果 示意图; 图 5是根据本发明优选实施例的多时分配置方法流程图; 图 6是根据本发明实例 2的无关组 1和无关组 2的结构示意图; 图 7是根据本发明实例 2的时分模块 1和时分模块 2的结构示意图; 图 8是根据本发明实例 2的无关组 1的配置结果示意图; 图 9是根据本发明实例 2的无关组 2的配置结果示意图; 图 10是根据现有技术对实例 2进行多时分配置的配置结果示意图; 图 11是根据本发明实施例的多时分配置装置的结构框图; 图 12是根据本发明优选实施例的多时分配置装置的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 1是根据本发明实施例的多时分配置方法流程图。 如图 1所示, 根据本发明实 施例的多时分配置方法包括: 步骤 S102, 划分无关组, 其中, 每个无关组中均包括一个或多个入时隙端和 /或出 时隙端有关联的时隙。 步骤 S104, 确定上述无关组中包括出时隙端数目最多的无关组为最大无关组。 步骤 S106, 对上述最大无关组进行配置。 上述方法中, 无关组的划分, 尽可能的减少了时隙入时隙端并发到多个时分模块 上造成资源浪费的可能, 保证了时分资源的优化利用。 同时, 优先对最大无关组进行 配置, 应用了先配置大的, 再配置小的的配置顺序, 提高了配置成功的几率。 如图 2所示, 图 2表示了一个多时分配置的实例(实例 1 ), 图中有两个时分模块, 斜纹部分表示该部分的时分已经被占用, 白色的部分表示此部分的时分是空闲的。 同 时也存在两个无关组, 如图 3所示, 如果先配置无关组 2到时分模块 1, 那么无关组 1 就无法进行配置了, 会导致配置失败。 但是, 如果使用上述方法, 如图 4中所示, 将 无关组 1配置到时分模块 1, 无关组 2配置到时分模块 2, 就会发现配置是成功的。 优选地, 步骤 S102中, 入时隙端和 /或出时隙端有关联的时隙包括但不限于: 入 时隙端和 /或出时隙端交叉到同一个时隙端的出时隙端未确定的时隙。 在具体实施过程中, AU 级别的时隙信号不需要参与无关组的划分, 直接通过空 分模块完成交叉配置即可。 出时隙在时分模块的出位置 (出时隙端) 已经确定的时隙, 可以优先进行时分位 置分配, 也不需要参与无关组的划分。 此时, 时分配置的原则是配置到出时隙所在时 分模块中, 对于入时隙端有确定入位置 (入时隙端) 的直接建立连接, 对于没有确定 入位置的在该时分模块分配一个空闲的入 AUG (入时隙端), 如果找不到空闲的入 AUG, 则返回失败。 只有出时隙在时分模块的出位置未确定的时隙, 才需要进行无关组的划分。 而无关组划分的原则是: 将时隙的入和 /或出时隙端有关联的时隙划分到同一个无 关组中, 所谓的关联即是指时隙交叉到同一个 AUG。 优选地, 步骤 S104, 可以进一步包括以下处理:
( 1 ) 选择出时隙端数目最多的无关组作为最大无关组。
(2)当存在多个出时隙端数目最多的无关组时,选择其中入时隙端数目最多的无 关组作为最大无关组。 若某个无关组中的出时隙端数目最大, 那么这个无关组就是最大无关组。 若出时 隙端数目最大的含有好几个无关组, 那么就以这几个无关组里面入时隙端数目最大的 为最大无关组。 优选地, 步骤 S106还可以进一步包以下处理:
( 1 )将最大无关组配置到该最大无关组的入时隙端所在的一个或多个时分模块中 包含已占用入时隙端最多的时分模块上。 (2)如果该时分模块的空闲入时隙端和空闲出时隙端无法满足该最大无关组的配 置要求, 则将该最大无关组配置到除去该时分模块外剩下的时分模块中包含已占用入 时隙端最多的时分模块上, 直至满足该最大无关组的配置要求。
( 3 )如果不存在满足该最大无关组的配置要求的时分模块,则拆分该最大无关组, 返回步骤 S104。 在确定了最大无关组之后, 优先将该最大无关组配置到该最大无关组的入时隙端 所在的一个或多个时分模块中包含已占用入时隙端最多的时分模块上, 即配置到这些 时分模块中空闲入时隙端最少的时分模块上, 若该模块无法满足最大无关组的配置要 求, 则将该最大无关组改配到另一个时分模块上去, 可以优先选择排除了这个模块后 剩下的时分模块中空闲入时隙端最少的时分模块进行配置, 这种做法可以最大限度的 利用时分模块资源。 若果最后发现不存在满足该最大无关组的配置要求的时分模块, 则拆分该最大无关组,返回步骤 S104,重新确定一个最大无关组,循环执行上述步骤。 优选地, 步骤 S106之后, 还可以进一步包括以下处理: 判断是否所有无关组都配 置完毕, 如果是, 则结束配置, 否则执行确定最大无关组的步骤。 这样一来即可确保所有的无关组都会被配置。 综上所述, 如图 5所示, 根据本发明优选实施例的多时分配置方法, 可以包括以 下步骤: 步骤 S502, 划分无关组。 步骤 S504, 确定最大无关组。 步骤 S506, 配置最大无关组。 步骤 S508,判断配置是否成功,若果不成功进行步骤 S510,成功则进行步骤 S512。 步骤 S510, 拆分最大无关组, 返回步骤 S504。 步骤 S512, 判断是否还有剩余的无关组, 是则返回步骤 S504, 否则结束。 下面结合实例 2及图 6至图 10对上述优选实施例进行详细说明。 实例 2的前提: 所有出时隙在时分模块的位置已经确定的时隙已经完成了配置, 并且所有不经过时分配置的空分交叉也完成了配置。 所有 AU级别的时隙已经完成了 时隙配置。 实例的环境: 如图 7所示, 时分模块的容量都是 5x5AUG, 其中时分模块 1 ( 1# 时分模块) 时分已占用 2x2AUG, 时分模块 2 (2#时分模块) 时分已占用 3><3AUG。 图 7至图 10中被圆圈包围的 AU表示已分配使用的 AU。 第一步, 对本次将要配置的时隙进行无关组的划分。 为了叙述的方便, 将时隙看 成某个逻辑 AUG上业务到某个逻辑 AUG上业务的交叉, 不关心端口和板的因素。 需 要配置的低于 AU级别的时隙如下: AUG1 TU1→ AUG4 TU1,
AUG2 TU1→ AUG4 TU2,
AUG2 TU1→ AUG5 TU1,
AUG3 TU1→ AUG4 TU3,
AUG3 TU1→ AUG5 TU2, AUG6 TU1→ AUG8 TU1,
AUG6 TU1→ AUG9 TU1,
AUG7 TU1→ AUG9 TU2。 这里假设 1号 AUG和 7号 AUG在时分模块 1已经存在时分入位置(入时隙端), 且分别对应时分的 2AU和 1AU, 剩余的其它 AUG的入和出位置都未分配。 所有支路 单元 (Tributary Unit, 简称为 TU) 级别的时隙交叉默认为 TU12 (表示 TU的速率, 还包括 TU11、 TU3等) 的。 根据无关组的划分原则, 可以划分成为两个无关组, 1#无关组和 2#无关组, 如图 6所示:
1#无关组: AUG1 TU1→ AUG4 TU1, AUG2 TU1→ AUG4 TU2, AUG2 TU1→ AUG5 TU1, AUG3 TU1→ AUG4 TU3, AUG3 TU1→ AUG5 TU2。 2#无关组:
AUG6 TU1→ AUG8 TU1, AUG6 TU1→ AUG9 TU1, AUG7 TU1→ AUG9 TU2。 第二步, 确定 (计算) 最大无关组。 按照最大无关组的计算原则, 先比较出时隙 所在的 AUG的数目, 两者都是 2, 再比较入时隙所在 AUG的数目, 1#无关组是 3, 2#无关组是 2, 很明显, 1#无关组为最大无关组。 第三步, 开始对最大无关组进行配置, 首先, 计算最大无关组与时分模块的适配 性。 首先, 计算与时分模块 1的适配性, 出时隙 AUG数 2小于时分模块 1的空闲出 AU数 3, 去除 1个已分配的入时隙 AUG, 剩余的入时隙 AUG数 2小于时分模块 1 的空闲入 AU数 3, 可以配置到时分模块 1。 然后, 计算与时分模块 2的适配性, 出时 隙 AUG数 2等于时分模块 2的空闲出 AU数 2, 入时隙 AUG数 3大于时分模块 2的 空闲入 AU数 2, 不能配置到 2#时分模块。 第四步, 配置最大无关组。 将时分模块 1 的中的入 3AU、 4AU的位置分配给入 AUG2禾 P AUG3 , 将出 3AU、 4AU的位置分配给出 AUG4禾 P AUG5, 由于入 AUG1 已经分配, 故不需要再进行分配。 对于最大无关组的配置完成, 如图 8所示。 第五步, 计算最大无关组。 由于剩余一个无关组, 2#无关组, 所以不需要进行计 算。 第六步, 开始对最大无关组进行配置, 首先, 计算最大无关组与时分模块的适配 性。 首先, 计算与时分模块 1的适配性, 出时隙 AUG数 2大于时分模块 1的空闲出 AU数 1, 不满足适配条件。 然后, 计算与时分模块 2的适配性, 出时隙 AUG数 2等 于时分模块 2的空闲出 AU数 2,入时隙 AUG数 2等于时分模块 2的空闲入 AU数 2, 可以配置到时分模块 2。 第七步 配置最大无关组。 将时分模块 2 的中的入 4AU、 5AU 的位置分配给入 AUG6和 AUG7, 将出 4AU、 5AU的位置分配给出 AUG8和 AUG9, 如图 9所示。 对 于最大无关组的配置完成。 第八步 计算最大无关组。 由于剩余无关组数为 0, 结束。 如果不采用此方法, 如果按照一般的顺序进行配置的方法, 如图 10所示, 先配置 完 2#无关组, 1#无关组就无法配置了。 即使将 1#无关组拆分成为最基本单元组, 也不 能完成配置。 图 11是根据本发明实施例的多时分配置装置的结构框图。 如图 11所示, 根据本 发明实施例的多时分配置装置包括: 划分模块 112, 设置为划分无关组, 其中, 每个无关组中均包括一个或多个入时 隙端和 /或出时隙端有关联的时隙。 确定模块 114, 设置为确定上述无关组中包括出时隙端数目最多的无关组为最大 无关组。 配置模块 116, 设置为对上述最大无关组进行配置。 使用上述装置进行多时分配置, 可以在保证了时分资源的优化利用的同时, 提高 配置成功的几率。 优选地, 上述入时隙端和 /或出时隙端有关联的时隙包括但不限于: 入时隙端和 / 或出时隙端交叉到同一个时隙端的出时隙端未确定的时隙。 在具体实施过程中, 只有出时隙在时分模块的出位置未确定的时隙, 才需要进行 无关组的划分。 而无关组划分的原则是: 将时隙的入和 /或出时隙端有关联的时隙划分到同一个无 关组中, 所谓的关联即是指时隙交叉到同一个 AUG。 优选地, 如图 12所示, 确定模块 114可以进一步包括: 第一选择单元 1142, 设置为选择出时隙端数目最多的无关组作为最大无关组。 第二选择单元 1144, 设置为在存在多个出时隙端数目最多的无关组时, 选择其中 入时隙端数目最多的无关组作为最大无关组。 若某个无关组中的出时隙端数目最大, 那么这个无关组就是最大无关组。 若出时 隙端数目最大的含有好几个无关组, 那么就以这几个无关组里面入时隙端数目最大的 为最大无关组。 优选地, 如图 12所示, 配置模块 116可以进一步包括: 第一配置单元 1162, 设置为将最大无关组配置到该最大无关组的入时隙端所在的 一个或多个时分模块中包含已占用入时隙端最多的时分模块上。 第二配置单元 1164, 设置为在上述包含已占用入时隙端最多的时分模块的空闲入 时隙端和空闲出时隙端无法满足该最大无关组的配置要求时, 将该最大无关组配置到 除去该时分模块外剩下的时分模块中包含已占用入时隙端最多的时分模块上, 直至满 足该最大无关组的配置要求。 拆分循环单元 1166,设置为在不存在满足该最大无关组的配置要求的时分模块时, 拆分该最大无关组, 并使确定模块 114执行确定最大无关组的步骤。 在具体实施过程中, 上述单元需要循环执行配置最大无关组的步骤, 直至分配成 功或失败。 优选地, 如图 12所示, 根据本发明实施例的多时分配置装置还可以进一步包括: 判断模块 118, 设置为判断是否所有无关组都配置完毕, 如果是, 则结束配置, 否则使确定模块执行确定最大无关组的步骤。 判断模块 118的设置确保了所有的无关组都会被配置。 从以上的描述中, 可以看出, 本发明的技术方案有效弥补了现有技术对多时分模 块时分配置的处理的不足, 降低了有时分资源剩余但的时分配置不成功的情况出现的 几率。 解决了并发占用多个时分位置导致资源浪费的问题以及因为下发时隙次序不同 导致, 有时会成功有时会失败的问题, 有效的节约了资源, 而且最大程度的保证了时 隙配置的成功。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种多时分配置方法, 包括:
划分无关组, 其中, 每个所述无关组中均包括一个或多个入时隙端和 /或出 时隙端有关联的时隙;
确定所述无关组中包括出时隙端数目最多的无关组为最大无关组; 对所述最大无关组进行配置。
2. 根据权利要求 1所述的方法, 其中, 所述确定所述无关组中包括出时隙端数目 最多的无关组为最大无关组包括:
选择出时隙端数目最多的无关组作为所述最大无关组; 当存在多个出时隙端数目最多的无关组时, 选择其中入时隙端数目最多的 无关组作为所述最大无关组。
3. 根据权利要求 1所述的方法, 其中, 所述对所述最大无关组进行配置包括: 将所述最大无关组配置到所述最大无关组的入时隙端所在的一个或多个时 分模块中包含已占用入时隙端最多的时分模块上; 如果该时分模块的空闲入时隙端和空闲出时隙端无法满足所述最大无关组 的配置要求, 则将所述最大无关组配置到除去该时分模块外剩下的时分模块中 包含已占用入时隙端最多的时分模块上,直至满足所述最大无关组的配置要求; 若果不存在满足所述最大无关组的配置要求的时分模块, 则拆分所述最大 无关组, 执行所述确定最大无关组的步骤。
4. 根据权利要求 1所述的方法, 其中, 在所述对所述最大无关组进行配置之后, 还包括:
判断是否所有无关组都配置完毕, 如果是, 则结束配置, 如果否, 则执行 所述确定最大无关组的步骤。
5. 根据权利要求 1至 4任一项所述的方法, 其中, 所述入时隙端和 /或出时隙端有 关联的时隙包括:入时隙端和 /或出时隙端交叉到同一个时隙端的出时隙端未确 定的时隙。
6. 一种多时分配置装置, 包括:
划分模块, 设置为划分无关组, 其中, 每个所述无关组中均包括一个或多 个入时隙端和 /或出时隙端有关联的时隙;
确定模块, 设置为确定所述无关组中包括出时隙端数目最多的无关组为最 大无关组;
配置模块, 设置为对所述最大无关组进行配置。
7. 根据权利要求 6所述的装置, 其中, 所述确定模块包括: 第一选择单元, 设置为选择出时隙端数目最多的无关组作为所述最大无关 组;
第二选择单元, 设置为在存在多个出时隙端数目最多的无关组时, 选择其 中入时隙端数目最多的无关组作为所述最大无关组。
8. 根据权利要求 6所述的装置, 其中, 所述配置模块包括: 第一配置单元, 设置为将所述最大无关组配置到所述最大无关组的入时隙 端所在的一个或多个时分模块中包含已占用入时隙端最多的时分模块上;
第二配置单元, 设置为在所述包含已占用入时隙端最多的时分模块的空闲 入时隙端和空闲出时隙端无法满足所述最大无关组的配置要求时, 将所述最大 无关组配置到除去该时分模块外剩下的时分模块中包含已占用入时隙端最多的 时分模块上, 直至满足所述最大无关组的配置要求;
拆分循环单元, 设置为在不存在满足所述最大无关组的配置要求的时分模 块时, 拆分所述最大无关组, 并使所述确定模块执行所述确定最大无关组的步 骤。
9. 根据权利要求 6所述的装置, 其中, 所述多时分配置装置还包括: 判断模块, 设置为判断是否所有无关组都配置完毕, 如果是, 则结束配置, 如果否, 则控制所述确定模块执行所述确定最大无关组的步骤。
10. 根据权利要求 6至 9任一项所述的装置, 其中, 所述入时隙端和 /或出时隙端有 关联的时隙包括:入时隙端和 /或出时隙端交叉到同一个时隙端的出时隙端未确 定的时隙。
PCT/CN2011/079925 2010-12-09 2011-09-21 多时分配置方法及装置 WO2012075847A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010581473.7 2010-12-09
CN201010581473.7A CN102546075B (zh) 2010-12-09 2010-12-09 多时分配置方法及装置

Publications (1)

Publication Number Publication Date
WO2012075847A1 true WO2012075847A1 (zh) 2012-06-14

Family

ID=46206598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079925 WO2012075847A1 (zh) 2010-12-09 2011-09-21 多时分配置方法及装置

Country Status (2)

Country Link
CN (1) CN102546075B (zh)
WO (1) WO2012075847A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079366A (zh) * 2013-03-28 2014-10-01 中兴通讯股份有限公司 一种多时分模块的时分配置方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022299A (ja) * 1988-06-13 1990-01-08 Fujitsu Ltd 時間スイッチ回路
CN1166771A (zh) * 1996-03-21 1997-12-03 西门子公司 交换设备中多信道链路上时隙分配的交换设备和方法
CN1905755A (zh) * 2005-07-28 2007-01-31 中兴通讯股份有限公司 一种sdh系统支路板上光板时隙时分优化配置方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141213B (zh) * 2007-02-12 2011-05-25 中兴通讯股份有限公司 多时分模块的时隙优化配置方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022299A (ja) * 1988-06-13 1990-01-08 Fujitsu Ltd 時間スイッチ回路
CN1166771A (zh) * 1996-03-21 1997-12-03 西门子公司 交换设备中多信道链路上时隙分配的交换设备和方法
CN1905755A (zh) * 2005-07-28 2007-01-31 中兴通讯股份有限公司 一种sdh系统支路板上光板时隙时分优化配置方法

Also Published As

Publication number Publication date
CN102546075B (zh) 2014-08-13
CN102546075A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
EP3101849A1 (en) Flow table entry generation method and device
WO2021189994A1 (zh) 基于FlexE传输业务流的方法及设备
RU2513918C1 (ru) Кластерный маршрутизатор и способ кластерной маршрутизации
EP2932671A1 (en) Method and system for efficient graceful restart in an open shortest path first (ospf) network
WO2011160490A1 (zh) 多点控制单元资源调度方法及系统
EP3468097B1 (en) Generating a forwarding table in a forwarding device
JP2016501474A (ja) 分散型スイッチレス相互接続
WO2014005522A1 (zh) 路由计算方法及装置
CN110856052A (zh) 支持多种粒度的FlexE实现方法、装置及电子设备
US11979335B2 (en) Network controller
EP2461521A1 (en) Method, device and system for automatically discovering optical fiber connections within network element
CN111092824B (zh) 流量管理系统、方法、电子终端、及存储介质
CN112073319B (zh) 一种路径切换方法及系统
CN105577310B (zh) 一种时间触发以太网络中任务分区与通信调度的同步方法
US8873427B2 (en) Method for establishing topology structure of switching equipment, switching equipment and stacking system
WO2012075847A1 (zh) 多时分配置方法及装置
EP3125478A1 (en) Method, device, and system for determining intermediate routing node
KR20130066401A (ko) 칩 멀티 프로세서, 및 칩 멀티 프로세서를 위한 라우터
WO2011003260A1 (zh) 一种自动交换光网络中业务迁移的方法和装置
WO2012126212A1 (zh) 射频识别设备接口层的通信装置及方法
CN115038172A (zh) 一种时隙分配处理方法、设备及存储介质
EP2939382B1 (en) Distributed data processing system
Zhang et al. Pas de deux: Shape the Circuits, and Shape the Apps too!
US9385969B2 (en) Merging fibre channel fabrics
WO2012083763A1 (zh) 保护倒换协议状态同步方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847230

Country of ref document: EP

Kind code of ref document: A1