WO2012075426A1 - Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof - Google Patents
Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof Download PDFInfo
- Publication number
- WO2012075426A1 WO2012075426A1 PCT/US2011/063129 US2011063129W WO2012075426A1 WO 2012075426 A1 WO2012075426 A1 WO 2012075426A1 US 2011063129 W US2011063129 W US 2011063129W WO 2012075426 A1 WO2012075426 A1 WO 2012075426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- event
- seq
- soybean
- plant
- dna
- Prior art date
Links
- 244000068988 Glycine max Species 0.000 title claims abstract description 547
- 235000010469 Glycine max Nutrition 0.000 title claims abstract description 478
- 239000004009 herbicide Substances 0.000 title claims abstract description 161
- 230000002363 herbicidal effect Effects 0.000 title claims abstract description 90
- 230000009261 transgenic effect Effects 0.000 title claims abstract description 62
- 238000001514 detection method Methods 0.000 title abstract description 34
- 241000196324 Embryophyta Species 0.000 claims abstract description 313
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 152
- 238000000034 method Methods 0.000 claims abstract description 133
- 230000014509 gene expression Effects 0.000 claims abstract description 73
- 239000005562 Glyphosate Substances 0.000 claims abstract description 62
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 claims abstract description 62
- 229940097068 glyphosate Drugs 0.000 claims abstract description 62
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid Chemical compound CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000005561 Glufosinate Substances 0.000 claims abstract description 23
- 108020004414 DNA Proteins 0.000 claims description 158
- 239000000523 sample Substances 0.000 claims description 141
- 238000009395 breeding Methods 0.000 claims description 66
- 230000001488 breeding effect Effects 0.000 claims description 62
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 claims description 51
- 108091093088 Amplicon Proteins 0.000 claims description 50
- 108700019146 Transgenes Proteins 0.000 claims description 49
- 238000009396 hybridization Methods 0.000 claims description 49
- 241000238631 Hexapoda Species 0.000 claims description 48
- 239000012634 fragment Substances 0.000 claims description 46
- 150000007523 nucleic acids Chemical class 0.000 claims description 46
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 43
- 238000003752 polymerase chain reaction Methods 0.000 claims description 38
- 102000039446 nucleic acids Human genes 0.000 claims description 35
- 108020004707 nucleic acids Proteins 0.000 claims description 35
- 108091033319 polynucleotide Proteins 0.000 claims description 35
- 102000040430 polynucleotide Human genes 0.000 claims description 35
- 239000002157 polynucleotide Substances 0.000 claims description 35
- 125000003729 nucleotide group Chemical group 0.000 claims description 20
- 239000002773 nucleotide Substances 0.000 claims description 18
- 230000000295 complement effect Effects 0.000 claims description 15
- LCPDWSOZIOUXRV-UHFFFAOYSA-N phenoxyacetic acid Chemical compound OC(=O)COC1=CC=CC=C1 LCPDWSOZIOUXRV-UHFFFAOYSA-N 0.000 claims description 15
- 239000002253 acid Substances 0.000 claims description 12
- 230000002759 chromosomal effect Effects 0.000 claims description 11
- 230000002441 reversible effect Effects 0.000 claims description 10
- TVSPPYGAFOVROT-UHFFFAOYSA-N 2-phenoxybutanoic acid Chemical compound CCC(C(O)=O)OC1=CC=CC=C1 TVSPPYGAFOVROT-UHFFFAOYSA-N 0.000 claims description 7
- 238000013518 transcription Methods 0.000 claims description 7
- 230000035897 transcription Effects 0.000 claims description 7
- 239000002794 2,4-DB Substances 0.000 claims description 6
- LLWADFLAOKUBDR-UHFFFAOYSA-N 2-methyl-4-chlorophenoxybutyric acid Chemical compound CC1=CC(Cl)=CC=C1OCCCC(O)=O LLWADFLAOKUBDR-UHFFFAOYSA-N 0.000 claims description 6
- 239000005575 MCPB Substances 0.000 claims description 6
- 101150039283 MCPB gene Proteins 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000005504 Dicamba Substances 0.000 claims description 5
- 239000005574 MCPA Substances 0.000 claims description 5
- WHKUVVPPKQRRBV-UHFFFAOYSA-N Trasan Chemical compound CC1=CC(Cl)=CC=C1OCC(O)=O WHKUVVPPKQRRBV-UHFFFAOYSA-N 0.000 claims description 5
- IWEDIXLBFLAXBO-UHFFFAOYSA-N dicamba Chemical group COC1=C(Cl)C=CC(Cl)=C1C(O)=O IWEDIXLBFLAXBO-UHFFFAOYSA-N 0.000 claims description 5
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 claims description 4
- 239000005558 Fluroxypyr Substances 0.000 claims description 3
- 239000005627 Triclopyr Substances 0.000 claims description 3
- MEFQWPUMEMWTJP-UHFFFAOYSA-N fluroxypyr Chemical compound NC1=C(Cl)C(F)=NC(OCC(O)=O)=C1Cl MEFQWPUMEMWTJP-UHFFFAOYSA-N 0.000 claims description 3
- REEQLXCGVXDJSQ-UHFFFAOYSA-N trichlopyr Chemical compound OC(=O)COC1=NC(Cl)=C(Cl)C=C1Cl REEQLXCGVXDJSQ-UHFFFAOYSA-N 0.000 claims description 3
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 claims description 2
- 108700026220 vif Genes Proteins 0.000 claims description 2
- 239000007850 fluorescent dye Substances 0.000 claims 2
- 235000012054 meals Nutrition 0.000 claims 1
- 102000004169 proteins and genes Human genes 0.000 abstract description 67
- 238000003556 assay Methods 0.000 abstract description 38
- 238000004458 analytical method Methods 0.000 abstract description 29
- -1 aryloxyalkanoate Chemical compound 0.000 abstract description 6
- 238000003976 plant breeding Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 4
- 238000002944 PCR assay Methods 0.000 abstract description 3
- 239000013615 primer Substances 0.000 description 135
- 235000018102 proteins Nutrition 0.000 description 59
- 210000001519 tissue Anatomy 0.000 description 48
- 230000010354 integration Effects 0.000 description 37
- 238000003780 insertion Methods 0.000 description 33
- 230000037431 insertion Effects 0.000 description 33
- 108010082527 phosphinothricin N-acetyltransferase Proteins 0.000 description 32
- 238000003199 nucleic acid amplification method Methods 0.000 description 30
- 230000003321 amplification Effects 0.000 description 26
- RBSXHDIPCIWOMG-UHFFFAOYSA-N 1-(4,6-dimethoxypyrimidin-2-yl)-3-(2-ethylsulfonylimidazo[1,2-a]pyridin-3-yl)sulfonylurea Chemical compound CCS(=O)(=O)C=1N=C2C=CC=CN2C=1S(=O)(=O)NC(=O)NC1=NC(OC)=CC(OC)=N1 RBSXHDIPCIWOMG-UHFFFAOYSA-N 0.000 description 25
- 230000006378 damage Effects 0.000 description 25
- 210000004027 cell Anatomy 0.000 description 22
- 239000013612 plasmid Substances 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 19
- 239000002987 primer (paints) Substances 0.000 description 19
- 230000009418 agronomic effect Effects 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- 238000002105 Southern blotting Methods 0.000 description 14
- 230000002068 genetic effect Effects 0.000 description 14
- 238000002965 ELISA Methods 0.000 description 13
- 239000003550 marker Substances 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 102000004190 Enzymes Human genes 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 239000000872 buffer Substances 0.000 description 12
- 210000000349 chromosome Anatomy 0.000 description 12
- 230000012010 growth Effects 0.000 description 12
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 11
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 11
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 108091008146 restriction endonucleases Proteins 0.000 description 11
- 208000027418 Wounds and injury Diseases 0.000 description 10
- 238000012512 characterization method Methods 0.000 description 10
- 208000014674 injury Diseases 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 230000009466 transformation Effects 0.000 description 10
- 108091092195 Intron Proteins 0.000 description 9
- 229920001213 Polysorbate 20 Polymers 0.000 description 9
- 239000003599 detergent Substances 0.000 description 9
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 9
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 9
- 238000010195 expression analysis Methods 0.000 description 9
- 239000002953 phosphate buffered saline Substances 0.000 description 9
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 9
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 9
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 9
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 9
- 230000006798 recombination Effects 0.000 description 9
- 238000005215 recombination Methods 0.000 description 9
- 230000001568 sexual effect Effects 0.000 description 9
- 239000006228 supernatant Substances 0.000 description 9
- 238000002744 homologous recombination Methods 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 241000589158 Agrobacterium Species 0.000 description 7
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical group CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 7
- 241001367803 Chrysodeixis includens Species 0.000 description 7
- 108091034117 Oligonucleotide Proteins 0.000 description 7
- 238000012408 PCR amplification Methods 0.000 description 7
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 7
- 230000006801 homologous recombination Effects 0.000 description 7
- 230000000749 insecticidal effect Effects 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 230000000007 visual effect Effects 0.000 description 7
- 241000625764 Anticarsia gemmatalis Species 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- 101100313146 Dictyostelium discoideum tbpA gene Proteins 0.000 description 6
- 240000008042 Zea mays Species 0.000 description 6
- 229940098773 bovine serum albumin Drugs 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 230000029087 digestion Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- 239000013642 negative control Substances 0.000 description 6
- 239000000419 plant extract Substances 0.000 description 6
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 101150090317 tfdA gene Proteins 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 102000053602 DNA Human genes 0.000 description 5
- 102000016680 Dioxygenases Human genes 0.000 description 5
- 108010028143 Dioxygenases Proteins 0.000 description 5
- 238000008157 ELISA kit Methods 0.000 description 5
- 101150111720 EPSPS gene Proteins 0.000 description 5
- 238000009015 Human TaqMan MicroRNA Assay kit Methods 0.000 description 5
- 238000010222 PCR analysis Methods 0.000 description 5
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 5
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 241001233957 eudicotyledons Species 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 230000000306 recurrent effect Effects 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 229930192334 Auxin Natural products 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 4
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 4
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 4
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 4
- 239000002363 auxin Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 244000038559 crop plants Species 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000036253 epinasty Effects 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 235000009973 maize Nutrition 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 101150113864 pat gene Proteins 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 238000003753 real-time PCR Methods 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 4
- 229960000268 spectinomycin Drugs 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 101150003560 trfA gene Proteins 0.000 description 4
- 239000011534 wash buffer Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- HXKWSTRRCHTUEC-UHFFFAOYSA-N 2,4-Dichlorophenoxyaceticacid Chemical compound OC(=O)C(Cl)OC1=CC=C(Cl)C=C1 HXKWSTRRCHTUEC-UHFFFAOYSA-N 0.000 description 3
- CAAMSDWKXXPUJR-UHFFFAOYSA-N 3,5-dihydro-4H-imidazol-4-one Chemical compound O=C1CNC=N1 CAAMSDWKXXPUJR-UHFFFAOYSA-N 0.000 description 3
- IRLPACMLTUPBCL-KQYNXXCUSA-N 5'-adenylyl sulfate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OS(O)(=O)=O)[C@@H](O)[C@H]1O IRLPACMLTUPBCL-KQYNXXCUSA-N 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 108020001019 DNA Primers Proteins 0.000 description 3
- 230000004544 DNA amplification Effects 0.000 description 3
- 239000003155 DNA primer Substances 0.000 description 3
- 239000003298 DNA probe Substances 0.000 description 3
- 241001600125 Delftia acidovorans Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 3
- 102000018120 Recombinases Human genes 0.000 description 3
- 108010091086 Recombinases Proteins 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 241000607479 Yersinia pestis Species 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 238000007405 data analysis Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 229960000310 isoleucine Drugs 0.000 description 3
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 3
- 238000007403 mPCR Methods 0.000 description 3
- 239000002853 nucleic acid probe Substances 0.000 description 3
- 238000009401 outcrossing Methods 0.000 description 3
- 231100000208 phytotoxic Toxicity 0.000 description 3
- 230000000885 phytotoxic effect Effects 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920002578 polythiourethane polymer Polymers 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- LUBJCRLGQSPQNN-UHFFFAOYSA-N 1-Phenylurea Chemical compound NC(=O)NC1=CC=CC=C1 LUBJCRLGQSPQNN-UHFFFAOYSA-N 0.000 description 2
- 108020005065 3' Flanking Region Proteins 0.000 description 2
- UPMXNNIRAGDFEH-UHFFFAOYSA-N 3,5-dibromo-4-hydroxybenzonitrile Chemical compound OC1=C(Br)C=C(C#N)C=C1Br UPMXNNIRAGDFEH-UHFFFAOYSA-N 0.000 description 2
- 108010020183 3-phosphoshikimate 1-carboxyvinyltransferase Proteins 0.000 description 2
- 108020005029 5' Flanking Region Proteins 0.000 description 2
- 108010000700 Acetolactate synthase Proteins 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000005489 Bromoxynil Substances 0.000 description 2
- 101100296426 Caenorhabditis elegans pat-12 gene Proteins 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- 241001364932 Chrysodeixis Species 0.000 description 2
- 108700010070 Codon Usage Proteins 0.000 description 2
- 208000035240 Disease Resistance Diseases 0.000 description 2
- 108010033040 Histones Proteins 0.000 description 2
- 206010061217 Infestation Diseases 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 241000209510 Liliopsida Species 0.000 description 2
- 206010028851 Necrosis Diseases 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- 102000001406 Perilipin Human genes 0.000 description 2
- 108060006002 Perilipin Proteins 0.000 description 2
- 108020001991 Protoporphyrinogen Oxidase Proteins 0.000 description 2
- 102100029028 Protoporphyrinogen oxidase Human genes 0.000 description 2
- 101710088839 Replication initiation protein Proteins 0.000 description 2
- 241000187191 Streptomyces viridochromogenes Species 0.000 description 2
- 108091036066 Three prime untranslated region Proteins 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 2
- 125000003275 alpha amino acid group Chemical group 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 230000010165 autogamy Effects 0.000 description 2
- 238000004166 bioassay Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 150000002148 esters Chemical group 0.000 description 2
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 2
- 229960005542 ethidium bromide Drugs 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 208000006278 hypochromic anemia Diseases 0.000 description 2
- 239000003547 immunosorbent Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 238000011512 multiplexed immunoassay Methods 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 238000007899 nucleic acid hybridization Methods 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 108010001545 phytoene dehydrogenase Proteins 0.000 description 2
- 230000005080 plant death Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 244000000000 soil microbiome Species 0.000 description 2
- 230000010473 stable expression Effects 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- MZHCENGPTKEIGP-UHFFFAOYSA-N 2-(2,4-dichlorophenoxy)propanoic acid Chemical compound OC(=O)C(C)OC1=CC=C(Cl)C=C1Cl MZHCENGPTKEIGP-UHFFFAOYSA-N 0.000 description 1
- WNTGYJSOUMFZEP-UHFFFAOYSA-N 2-(4-chloro-2-methylphenoxy)propanoic acid Chemical compound OC(=O)C(C)OC1=CC=C(Cl)C=C1C WNTGYJSOUMFZEP-UHFFFAOYSA-N 0.000 description 1
- SXERGJJQSKIUIC-UHFFFAOYSA-N 2-Phenoxypropionic acid Chemical compound OC(=O)C(C)OC1=CC=CC=C1 SXERGJJQSKIUIC-UHFFFAOYSA-N 0.000 description 1
- APOYTRAZFJURPB-UHFFFAOYSA-N 2-methoxy-n-(2-methoxyethyl)-n-(trifluoro-$l^{4}-sulfanyl)ethanamine Chemical compound COCCN(S(F)(F)F)CCOC APOYTRAZFJURPB-UHFFFAOYSA-N 0.000 description 1
- 108020005345 3' Untranslated Regions Proteins 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 240000006995 Abutilon theophrasti Species 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 241000219318 Amaranthus Species 0.000 description 1
- 241001542006 Amaranthus palmeri Species 0.000 description 1
- 241000482638 Amaranthus tuberculatus Species 0.000 description 1
- 244000036975 Ambrosia artemisiifolia Species 0.000 description 1
- 235000003133 Ambrosia artemisiifolia Nutrition 0.000 description 1
- 241000208841 Ambrosia trifida Species 0.000 description 1
- 241000625753 Anticarsia Species 0.000 description 1
- 108010007730 Apyrase Proteins 0.000 description 1
- 102000007347 Apyrase Human genes 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 241001167018 Aroa Species 0.000 description 1
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 240000000385 Brassica napus var. napus Species 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241001515826 Cassava vein mosaic virus Species 0.000 description 1
- 244000277285 Cassia obtusifolia Species 0.000 description 1
- 235000006719 Cassia obtusifolia Nutrition 0.000 description 1
- 240000006122 Chenopodium album Species 0.000 description 1
- 235000009344 Chenopodium album Nutrition 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 240000001579 Cirsium arvense Species 0.000 description 1
- 235000005918 Cirsium arvense Nutrition 0.000 description 1
- 244000074881 Conyza canadensis Species 0.000 description 1
- 235000004385 Conyza canadensis Nutrition 0.000 description 1
- 244000289527 Cordyline terminalis Species 0.000 description 1
- 235000009091 Cordyline terminalis Nutrition 0.000 description 1
- 241000252867 Cupriavidus metallidurans Species 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 101100117236 Drosophila melanogaster speck gene Proteins 0.000 description 1
- 241000702189 Escherichia virus Mu Species 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 108010034791 Heterochromatin Proteins 0.000 description 1
- XVOKUMIPKHGGTN-UHFFFAOYSA-N Imazethapyr Chemical compound OC(=O)C1=CC(CC)=CN=C1C1=NC(C)(C(C)C)C(=O)N1 XVOKUMIPKHGGTN-UHFFFAOYSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 102000012330 Integrases Human genes 0.000 description 1
- 108010061833 Integrases Proteins 0.000 description 1
- 235000021506 Ipomoea Nutrition 0.000 description 1
- 241000207783 Ipomoea Species 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108010081996 Photosystem I Protein Complex Proteins 0.000 description 1
- 108010060806 Photosystem II Protein Complex Proteins 0.000 description 1
- 108020005120 Plant DNA Proteins 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 241000205407 Polygonum Species 0.000 description 1
- 244000110797 Polygonum persicaria Species 0.000 description 1
- 235000004442 Polygonum persicaria Nutrition 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 102100032258 Prostaglandin reductase 1 Human genes 0.000 description 1
- 101710184687 Prostaglandin reductase 1 Proteins 0.000 description 1
- 108020004518 RNA Probes Proteins 0.000 description 1
- 239000003391 RNA probe Substances 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101100337362 Schizosaccharomyces pombe (strain 972 / ATCC 24843) gms1 gene Proteins 0.000 description 1
- 102000004523 Sulfate Adenylyltransferase Human genes 0.000 description 1
- 108010022348 Sulfate adenylyltransferase Proteins 0.000 description 1
- 229940100389 Sulfonylurea Drugs 0.000 description 1
- 239000008049 TAE buffer Substances 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 240000001949 Taraxacum officinale Species 0.000 description 1
- 235000006754 Taraxacum officinale Nutrition 0.000 description 1
- 235000005187 Taraxacum officinale ssp. officinale Nutrition 0.000 description 1
- 108700029229 Transcriptional Regulatory Elements Proteins 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 244000067505 Xanthium strumarium Species 0.000 description 1
- 235000007244 Zea mays Nutrition 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 1
- 241001300270 Zingel streber Species 0.000 description 1
- 241001148683 Zostera marina Species 0.000 description 1
- 241000235033 Zygosaccharomyces rouxii Species 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- HGEVZDLYZYVYHD-UHFFFAOYSA-N acetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound CC(O)=O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O HGEVZDLYZYVYHD-UHFFFAOYSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 208000005652 acute fatty liver of pregnancy Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 1
- 238000012832 cell culture technique Methods 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000005081 chemiluminescent agent Substances 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012272 crop production Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 108010027183 cytochrome P-450 CYP76B1 (Helianthus tuberosus) Proteins 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- UKWLRLAKGMZXJC-QIECWBMSSA-L disodium;[4-chloro-3-[(3r,5s)-1-chloro-3'-methoxyspiro[adamantane-4,4'-dioxetane]-3'-yl]phenyl] phosphate Chemical compound [Na+].[Na+].O1OC2([C@@H]3CC4C[C@H]2CC(Cl)(C4)C3)C1(OC)C1=CC(OP([O-])([O-])=O)=CC=C1Cl UKWLRLAKGMZXJC-QIECWBMSSA-L 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009313 farming Methods 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000002875 fluorescence polarization Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000004458 heterochromatin Anatomy 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- OKCDZCGCKMTKMK-UHFFFAOYSA-N n-phenyl-2h-triazolo[4,5-d]pyrimidine-5-sulfonamide Chemical compound N=1C=C2NN=NC2=NC=1S(=O)(=O)NC1=CC=CC=C1 OKCDZCGCKMTKMK-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 101150075980 psbA gene Proteins 0.000 description 1
- 238000012175 pyrosequencing Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 230000021749 root development Effects 0.000 description 1
- 239000012882 rooting medium Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000010153 self-pollination Effects 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- JXOHGGNKMLTUBP-HSUXUTPPSA-N shikimic acid Chemical compound O[C@@H]1CC(C(O)=O)=C[C@@H](O)[C@H]1O JXOHGGNKMLTUBP-HSUXUTPPSA-N 0.000 description 1
- JXOHGGNKMLTUBP-JKUQZMGJSA-N shikimic acid Natural products O[C@@H]1CC(C(O)=O)=C[C@H](O)[C@@H]1O JXOHGGNKMLTUBP-JKUQZMGJSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229940027257 timentin Drugs 0.000 description 1
- 238000012090 tissue culture technique Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012250 transgenic expression Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H5/00—Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N39/00—Biocides, pest repellants or attractants, or plant growth regulators containing aryloxy- or arylthio-aliphatic or cycloaliphatic compounds, containing the group or, e.g. phenoxyethylamine, phenylthio-acetonitrile, phenoxyacetone
- A01N39/02—Aryloxy-carboxylic acids; Derivatives thereof
- A01N39/04—Aryloxy-acetic acids; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8274—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8274—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
- C12N15/8275—Glyphosate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1085—Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
- C12N9/1092—3-Phosphoshikimate 1-carboxyvinyltransferase (2.5.1.19), i.e. 5-enolpyruvylshikimate-3-phosphate synthase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/93—Ligases (6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y205/00—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
- C12Y205/01—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
- C12Y205/01019—3-Phosphoshikimate 1-carboxyvinyltransferase (2.5.1.19), i.e. 5-enolpyruvylshikimate-3-phosphate synthase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y604/00—Ligases forming carbon-carbon bonds (6.4)
- C12Y604/01—Ligases forming carbon-carbon bonds (6.4.1)
- C12Y604/01002—Acetyl-CoA carboxylase (6.4.1.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/16—Primer sets for multiplex assays
Definitions
- Glyphosate N-phosphonomethylglycine
- EPSPS 5- enolpymvylshikimate-3 -phosphate synthase
- Inhibition of EPSPS effectively disrupts protein synthesis and thereby kills the affected plant cells.
- glyphosate is non-selective, it kills both weeds and crop plants. Thus it is useful with crop plants when one can modify the crop plants to be resistant to glyphosate, allowing the desirable plants to survive exposure to the glyphosate.
- glyphosate tolerance genes have been created through the introduction of mutations. These include the AroA gene isolated by Comai and described at U.S. Patent Nos. 5,094,945, 4,769,061 and 4,535,060. A single mutant has been utilized, as described in U.S. Patent No. 5,310,667, by substituting an alanine residue for a glycine residue between amino acid positions 80 and 120. Double mutants have been described in U.S. Patent Nos. 6,225,114 and 5,866,775 in which, in addition to the above mutation, a second mutation (a threonine residue for an alanine residue between positions 170 and 210) was introduced into a wild-type EPSPS gene.
- 2,4-dichlorophenoxyacetic acid 2,4-D
- 2,4-D which has been used as a herbicide for more than 60 years, provides broad spectrum, post-emergence control of many annual, biennial, and perennial broadleaf weeds including several key weeds in corn, soybeans, and cotton.
- Key weeds controlled by 2,4-D (560 - 1120 g ae/ha rates) in row crop production include Ambrosia artemisiifolia, Ambrosia trifida, Xanthium strumarium, Chenopodium album, Helianthus annuus, Ipomoea sp., Abutilon theophrasti, Conyza Canadensis, and Senna obtusifolia.
- 2,4-D provides partial control of several key weeds including Polygonum
- 2,4-D selectivity in dicot crops like soybean or cotton is very poor, and hence 2,4-D is not typically used on (and generally not near) sensitive dicot crops. Additionally, 2,4-D's use in grass crops is somewhat limited by the nature of crop injury that can occur. 2,4-D in combination with glyphosate has been used to provide a more robust burndown treatment prior to planting no-till soybeans and cotton; however, due to these dicot species' sensitivity to 2,4-D, these burndown treatments must occur at least 14-30 days prior to planting (Agriliance, 2005).
- Ralstonia eutropha which contains a gene that codes for tfdA (Streber et al, 1987), an enzyme which catalyzes the first step in the mineralization pathway. (See U.S. Pat. No. 6,153,401 and GENBANK Acc. No. M16730).
- tfdA has been reported to degrade 2,4-D (Smejkal et al, 2001). The products that result from the degradation have little to no herbicidal activity compared to 2,4-D.
- tfdA has been used in transgenic plants to impart 2,4-D resistance in dicot plants (e.g., cotton and tobacco) normally sensitive to 2,4-D (Streber et al. (1989), Lyon et al. (1989), Lyon (1993), and U.S. Pat. No. 5,608,147).
- tfdA-type genes that encode proteins capable of degrading 2,4-D have been identified from the environment and deposited into the Genbank database. Many homologues are similar to tfdA (>85% amino acid identity). However, there are a number of polynucleotide sequences that have a significantly lower identity to tfdA (25-50%), yet have the characteristic residues associated with a-ketoglutarate dioxygenase Fe (II) dioxygenases.
- II a-ketoglutarate dioxygenase Fe
- a 2,4-D-degrading gene with low sequence identity ( ⁇ 35%) to tfdA is the aad-12 gene from Delftia acidovorans (US Patent App 2011/0203017).
- the aad-12 gene encodes an S-enantiomer-specific a-ketoglutarate-dependent dioxygenase which has been used in plants to confer tolerance to certain phenoxy auxin herbicides, including, but not limited to: phenoxyacetic acid herbicides such as 2,4-D and MCPA; and phenoxybutanoic acid herbicides, such as 2,4-DB and MCPB) and pyridyloxyalkanoic acid herbicides ⁇ e.g., pyridyloxyacetic acid herbicides such as triclopyr and fluroxypyr), and including acid, salt, or ester forms of the active ingredient(s). (See, e.g., WO 2007/053482).
- Glufosinate-ammonium is a non-systemic, non-selective herbicide in the phosphinothricin class of herbicides. Used primarily for post-emergence control of a wide range of broadleaf and grassy weeds, L-phosphinothricin, the active ingredient in glufosinate, controls weeds through the irreversible inhibition of glutamine-synthase, an enzyme which is necessary for ammonia detoxification in plants.
- Glufosinate herbicides are sold commercially, for example, under the brand names Ignite®, BAST A, and Liberty®.
- phosphinothricin N-acetyl transferase isolated from the soil bacterium Streptomyces viridochromogenes, catalyzes the conversion of L-phosphinothricin to its inactive form by acetylation.
- a plant-optimized form of the gene expressing PAT has been used in soybeans to confer tolerance to glufosinate herbicide.
- glufosinate resistant soybeans is event A5547-127.
- Most recently, the use of glufosinate herbicide in combination with the glufosinate-tolerance trait has been proposed as a non-selective means to effectively manage ALS- and glyphosate resistant weeds.
- heterologous or foreign genes in plants is influenced by where the foreign gene is inserted in the chromosome. This could be due to chromatin structure (e.g., heterochromatin) or the proximity of transcriptional regulation elements (e.g., enhancers) close to the integration site (Weising et ah, Ann. Rev. Genet 22:421-477, 1988), for example.
- chromatin structure e.g., heterochromatin
- transcriptional regulation elements e.g., enhancers
- the same gene in the same type of transgenic plant (or other organism) can exhibit a wide variation in expression level amongst different events. There may also be differences in spatial or temporal patterns of expression. For example, differences in the relative expression of a transgene in various plant tissues may not correspond to the patterns expected from transcriptional regulatory elements present in the introduced gene construct.
- the subject invention can provide, in part, effective means for managing weed resistance, which helps preserve the usefulness of herbicide-tolerant technologies.
- the subject invention can also provide growers with great flexibility and convenience in weed control options.
- the present invention relates in part to the soybean (Glycine max) event designated pDAB8264.44.06.1 ("Event pDAB8264.44.06.1”) having representative seed deposited with American Type Culture Collection (ATCC) with Accession No. PTA-11336, and progeny derived thereof.
- the subject invention includes soybean plants comprising Event pDAB8264.44.06.1 (and includes soybean plants comprising a transgenic insert in a genomic segment comprising SEQ ID NO:l and SEQ ID NO:2).
- the transgenic insert present in the subject event and deposited seed comprises three herbicide tolerance genes: aad-12, 2mepsps, and a pat gene.
- the aad-12 gene derived from Delftia acidovorans, encodes the aryloxyalkanoate dioxygenase (AAD-12) protein, which confers tolerance to, e.g., 2,4-dichlorophenoxyacetic acid and pyridyloxyacetate herbicides.
- AAD-12 aryloxyalkanoate dioxygenase
- the 2mepsps gene a modified EPSPS sequence isolated from maize, produces a protein which confers tolerance to glyphosate herbicides.
- the pat gene from the soil bacterium Streptomyces viridochromogenes, confers tolerance to the herbicide glufosinate.
- inventions comprise progeny plants, soybeans, seeds, and/or regenerable parts of the plants and seeds and progeny comprising soybean event pDAB8264.44.06.1, as well as food or feed products made from any thereof.
- the invention also includes plant parts of Event pDAB8264.44.06.1 that include, but are not limited to, pollen, ovule, flowers, shoots, roots, leaves, nuclei of vegetative cells, pollen cells, and other plant cells that comprise Event pDAB8264.44.06.1.
- the invention further relates to soybean plants having tolerance to multiple herbicides including phenoxyacetic acid herbicides, phenoxybutanoic acid herbicides, pyridyloxyalkanoic acid herbicides, glyphosate, and/or glufosinate. Such soybean plants may also be stacked with genes that confer tolerance to various other non-selective and selective herbicides, including but not limited to dicamba, imidazolinone, and HPPD herbicides.
- the invention further includes novel genetic compositions Event pDAB8264.44.06.1 and aspects of agronomic performance of soybean plants comprising Event pDAB8264.44.06.1.
- This invention relates in part to plant breeding and herbicide tolerant plants.
- This invention includes a novel transformation event in soybean plants comprising a polynucleotide, as described herein, inserted into a specific site within the genome of a soybean cell.
- said event / polynucleotide can be "stacked" with other traits, including, for example, agronomic traits and/or insect-inhibitory proteins.
- the subject invention includes plants having the single event, as described herein.
- the subject herbicide tolerance event can be combined in a breeding stack with an insect resistance event.
- the insect resistance event comprises a crylF gene and a crylAc gene.
- soybean event 9582.812.9.1 (“the 812 Event")
- soybean event 9582.814.19.1 (“the 814 Event”).
- Plants, plant cells, and seeds, for example, comprising any combination of the subject events are included in the subject invention.
- the subject invention includes the Soybean Event 9582.812.9.1 ('812 Event), alone, as discussed in more detail below.
- the additional traits may be stacked into the plant genome, or into the same locus as Event pDAB8264.44.06.1, for example via plant breeding, re-transformation of the transgenic plant containing Event DAS-8264.44.06.1, or addition of new traits through targeted integration via homologous recombination.
- Other embodiments include the excision of a portion or all of the transgenic insert and/or flanking sequences of Event DAS-8264.44.06.1. Upon excision, another and/or additional insert can be targeted to the specific chromosomal site of Event DAS-8264.44.06.1.
- the exemplified insert can be replaced, or further insert(s) can be stacked, in this manner, with the exemplified insert of the subject soybean event.
- the present invention encompasses a soybean chromosomal target site located on chromosome 6.
- the target site comprises a heterologous nucleic acid.
- the soybean chromosomal target site is located between or within the genomic flanking sequences set forth in SEQ ID NO:l and SEQ ID NO:2.
- the present invention encompasses a method of making a transgenic soybean plant comprising inserting a heterologous nucleic acid at a position on chromosome 6.
- the heterologous nucleic acid is inserted on chromosome 6 near or between various exemplified polynucleotide segments as described herein.
- the subject invention provides assays for detecting the presence of the subject event in a sample (of soybeans, for example).
- the assays can be based on the DNA sequence of the recombinant construct, inserted into the soybean genome, and on the genomic sequences flanking the insertion site. Kits and conditions useful in conducting the assays are also provided.
- the subject invention relates in part to the cloning and analysis of the DNA sequences of the whole exemplified insert and the border regions thereof (in transgenic soybean lines). These sequences are unique. Based on these insert and border (and junction) sequences, event-specific primers can be and were generated. PCR analysis demonstrated that the events can be identified by analysis of the PCR amplicons generated with these event-specific primer sets. Thus, these and other related procedures can be used to uniquely identify soybean lines comprising the event of the subject invention.
- the subject invention also relates in part to realtime or endpoint TaqMan PCR assays for the detection of event 8264.44.06.1. Some embodiments are directed to assays that are capable of high throughput zygosity analysis.
- the subject invention further relates, in part, to the use of a GMFL01-25-J19 (GenBank: AK286292.1) reference gene for use in determining zygosity. These and other related procedures can be used to uniquely identify the zygosity of Event pDAB8264.44.06.1 and breed soybean lines comprising the event.
- Figure 1 is a plasmid map of pDAB8264.
- Figure 2 is a schematic diagram depicting primer locations for soybean Event
- Figure 3 is a schematic diagram depicting primer locations and genomic DNA deletion in soybean Event pDAB8264.44.06.1.
- Figure 4 is a schematic diagram depicting primer locations for the TaqMan assay detection of soybean Event pDAB8264.44.06.1.
- SEQ ID NO:l provides the 5' flanking border sequence for the subject soybean Event pDAB8264.44.06.1.
- SEQ ID NO:2 provides the 3' flanking border sequence for the subject soybean Event pDAB8264.44.06.1.
- SEQ ID NO:3 provides primer 4406_WF1.
- SEQ ID NO:4 provides primer 4406_WF2.
- SEQ ID NO:5 provides primer 4406_WF3.
- SEQ ID NO: 6 provides primer 4406_WF4.
- SEQ ID NO:7 provides primer 4406 WR5.
- SEQ ID NO:8 provides primer 4406 WR6.
- SEQ ID NO:9 provides primer 4406_WR7.
- SEQ ID NO:10 provides primer 4406 WR8.
- SEQ ID NO: 11 provides primer ED vl Cl .
- SEQ ID NO:12 provides primer PAT_12.
- SEQ ID NO: 13 provides sequence for plasmid pDAB8264.
- SEQ ID NO: 14 provides partial 5' soybean genomic flanking and partial 5' insert sequence.
- SEQ ID NO: 15 provides partial 3' soybean genomic flanking and partial 3' insert sequence.
- SEQ ID NO: 16 provides a 98 base pair sequence spanning the 5' integration junction.
- SEQ ID NO: 17 provides a 131 base pair sequence spanning the 3' integration junction.
- SEQ ID NO: 18 provides primer 4406 5 .
- SEQ ID NO: 19 provides primer 4406_5'R.
- SEQ ID NO:20 provides probe 4406_5 * P.
- SEQ ID NO:21 provides primer 4406_3'F.
- SEQ ID NO:22 provides primer 4406_3'R.
- SEQ ID NO:23 provides probe 4406_3 * P.
- SEQ ID NO:24 provides primer GMS116F.
- SEQ ID NO:25 provides primer GMS116R.
- SEQ ID NO:26 provides probe GMS116Probe
- SEQ ID NO:27 provides the sequence of soybean Event pDAB8264.44.06.1 , including the 5' genomic flanking sequence, insert, and 3' genomic flanking sequence.
- SEQ ID NO:28 provides the expected sequence of Soybean Event 9582.812.9.1, including the 5' genomic flanking sequence, pDAB9582 T-strand insert, and 3' genomic flanking sequence.
- SEQ ID NO: 29 provides the expected sequence of Soybean Event 9582.814.19.1, including the 5' genomic flanking sequence, pDAB9582 T-strand insert, and 3' genomic flanking sequence.
- the invention described herein includes novel transformation events of soybean plants (soybean) comprising a cassette for the expression of multiple herbicide tolerance genes inserted into a specific locus within the genome of a soybean cell.
- the exemplified transgenic insert comprising Event pDAB8264.44.06.1 includes genetic elements for the expression of three different herbicide tolerance genes: (1) a synthetic aad-12 gene; (2) an EPSPS sequence from maize encoding a protein containing mutations, as compared to the wild-type EPSPS polypeptide: at amino acid residues 102 (from threonine to isoleucine) and 106 (from proline to serine) and which confers resistance or tolerance to glyphosate herbicides; and (3) a pat gene which confers tolerance or resistance to the glufosinate herbicides.
- the aad-12 gene was derived from Delftia acidovorans and encodes an aryloxyalkanoate dioxygenase (AAD-12) protein enzyme capable of deactivating herbicides having an a- ketoglutarate moiety, including phenoxyalkanoate herbicides ⁇ e.g., phenoxyacetic acid herbicides such as 2,4-D and MCPA; phenoxypropionic acid herbicides such as dichlorprop, mecoprop and their enantiomers; and phenoxybutanoic acid herbicides such as 2,4-DB and MCPB) and pyridyloxyalkanoic acid herbicides ⁇ e.g. , pyridyloxyacetic acid herbicides such as triclopyr and fluroxypyr), including acid, salt, or ester forms of the active ingredient(s)
- AAD-12 aryloxyalkanoate dioxygenase
- the subject invention relates in part to transgenic soybean Event pDAB8264.44.06.1, plant lines comprising these events, and the cloning and analysis of the DNA sequences of this insert, and/or the border regions thereof. Plant lines of the subject invention can be detected using sequences disclosed and suggested herein.
- This invention relates in part to plant breeding and herbicide tolerant plants.
- said polynucleotide sequence can be "stacked" with other traits (such as other herbicide tolerance gene(s) and/or gene(s) that encode insect-inhibitory proteins or inhibitory RNA sequences, for example).
- the subject invention also includes plants having a single event, as described herein.
- the subject herbicide tolerance event can be combined in a breeding stack with an insect resistance event.
- the insect resistance event is selected from the group consisting of the 812 Event and the 814 Event (as defined in greater detail below), each of which comprises a crylF gene and a crylAc gene. Plants, plant cells, and seeds, for example, comprising any combination of the subject events are included in the subject invention.
- the subject invention also includes the novel 812 Event, alone, in certain embodiments, including plants, plant cells, and seeds, for example.
- U.S. provisional application serial number 61/471,845, filed April 5, 2011, relates in part to soybean lines comprising Soybean Event 9582.812.9.1 (the 812 Event). Seeds comprising this event were deposited and made available to the public without restriction (but subject to patent rights), with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA, 20110. The deposit, designated as ATCC Deposit No. PTA-11602, was made on January 20, 2011. This deposit was made and will be maintained in accordance with and under the terms of the Budapest Treaty with respect to seed deposits for the purposes of patent procedure.
- ATCC American Type Culture Collection
- U.S. provisional applications serial numbers 61/511,664 (filed July 26, 2011) and 61/521,798 (filed August 10, 2011) relates in part to soybean lines comprising soybean event 9582.814.19.1 (the 814 Event). Seeds comprising this event were deposited with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA, 20110. The deposit, ATCC Patent Deposit Designation PTA-12006, was received by the ATCC on July 21, 2011. This deposit was made and will be maintained in accordance with and under the terms of the Budapest Treaty with respect to seed deposits for the purposes of patent procedure.
- ATCC American Type Culture Collection
- the subject invention also includes plants, seeds, and plant cells, for example, comprising SEQ ID NO:27 (Event pDAB8264.44.06.1; the 4406 Event), SEQ ID NO:28 (the 812 Event), and/or SEQ ID NO:29 (the 814 Event), and variants of these sequences having, for example, at least 95,%, 96%, 97%, 98%, or 99% identity with such sequences. It is not uncommon for some variation (such as deletion of some segments) to occur upon integration of an insert sequence within the plant genome. This is discussed in more detail in Example 7, for example.
- the subject invention also provides assays for detecting the presence of the subject event in a sample. Aspects of the subject invention include methods of designing and/or producing any diagnostic nucleic acid molecules exemplified or suggested herein, particularly those based wholly or partially on the subject flanking sequences.
- a polynucleotide segment exemplified or described herein can be excised and subsequently re-targeted with additional polynucleotide sequence(s).
- this invention relates to herbicide-tolerant soybean lines, and the identification thereof.
- the subject invention relates in part to detecting the presence of the subject event in order to determine whether progeny of a sexual cross contain the event of interest.
- a method for detecting the event is included and is helpful, for example, for complying with regulations requiring the pre-market approval and labeling of foods derived from recombinant crop plants, for example. It is possible to detect the presence of the subject event by any well-known nucleic acid detection method such as polymerase chain reaction (PCR) or DNA hybridization using nucleic acid probes. Event-specific PCR assays are discussed herein. ⁇ See e.g. Windels et al. (Med. Fac.
- Some of these examples relate to using a primer set spanning the junction between the insert and flanking DNA. More specifically, one primer included sequence from the insert and a second primer included sequence from flanking DNA.
- soybean Event pDAB8264.44.06.1 Exemplified herein is soybean Event pDAB8264.44.06.1, and its selection and characterization for stability and expression in soybean plants from generation to generation. Both flanking sequences of Event pDAB8264.44.06.1 have been sequenced and are described herein as SEQ ID NO: l and SEQ ID NO:2. Event specific assays were developed. It has also been mapped onto the soybean genome (soybean chromosome 6). Event pDAB8264.44.06.1 can be introgressed into elite cultivars where it will confer tolerance to phenoxy auxin, glyphosate and glufosinate herbicides in inbred and hybrid soybean lines.
- EPSPS gene encodes a mutant 5-enolpyruvyl-3-phosphoshikimic acid synthase (EPSPS).
- the wild-type EPSPS gene was originally isolated from Zea mays, and the sequence was deposited under GenBank accession number X63374. See also U.S. Patent No. 6,566,587 (in particular, SEQ ID No. 3 therein).
- EPSPS wild-type plant EPSPS nucleotide sequence
- Modification of the wild-type plant EPSPS nucleotide sequence can provide such resistance when expressed in a plant cell.
- EPSPS polypeptide modified to substitute isoleucine for threonine at residue 102 and substitute serine for proline at position 106 of the protein
- 2mEPSPS double mutant EPSPS polypeptide
- the subject EPSPS gene also referred to as the "2mepsps gene" or DMMG, can alternatively be optimized to improve expression in both dicotyledonous plants as well as monocotyledonous plants, and in particular in soybean. Codon usage can be selected based upon preferred hemicot codon usage, i.e. redesigned such that the protein is encoded by codons having a bias toward both monocot and dicot plant usage. Deleterious sequences and superfluous restriction sites can be removed to increase the efficiency of transcription/translation of the 2mepsps coding sequence and to facilitate DNA manipulation steps.
- a hemicot-optimized version of the subject monocot gene is further detailed in U.S. S.N. 13/303,502 (filed November 23, 2011, claiming priority to December 3, 2010) entitled, "OPTIMIZED EXPRESSION OF GLYPHOSATE RESISTANCE ENCODING NUCLEIC ACID MOLECULES IN PLANT CELLS.”
- PCR primers can be designed that generate a PCR amplicon across the junction region of the insert and the host genome. This PCR amplicon can be used to identify a unique or distinct type of insertion event.
- Identity to the sequence of the present invention can be a polynucleotide sequence having at least 65% sequence identity, more preferably at least 70% sequence identity, more preferably at least 75% sequence identity, more preferably at least 80% identity, and more preferably at least 85% 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% sequence identity with a sequence exemplified or described herein.
- Hybridization and hybridization conditions as provided herein can also be used to define such plants and polynculeotide sequences of the subject invention. The sequence which comprises the flanking sequences plus the full insert sequence can be confirmed with reference to the deposited seed.
- Events are originally random events, as part of this disclosure at least 2500 seeds of a soybean line comprising Event pDAB8264.44.06.1 have been deposited and made available to the public without restriction (but subject to patent rights), with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA, 20110. The deposit has been designated as ATCC Deposit No. PTA-11336. 100 packets (25 seeds per packet) of Glycine max seeds ("Soybean Seed Glycine max L.: pDAB8264.44.06.1”) were deposited on behalf of Dow AgroSciences LLC and MS Technologies, LLC on September 14, 2010. The deposit was tested on October 04, 2010, and on that date, the seeds were viable.
- Glycine max seeds Soybean Seed Glycine max L.: pDAB8264.44.06.1
- At least 2500 seeds of a soybean line comprising Event pDAB9582.812.9.1 and Event pDAB8264.44.06.1 have been deposited and made available to the public without restriction (but subject to patent rights), with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA, 20110. The deposit has been identified as
- the deposited seeds are part of the subject invention.
- soybean plants can be grown from these seeds, and such plants are part of the subject invention.
- the subject invention also relates to DNA sequences contained in these soybean plants that are useful for detecting these plants and progeny thereof. Detection methods and kits of the subject invention can be directed to identifying any one, two, or even all three of these events, depending on the ultimate purpose of the test.
- progeny denotes the offspring of any generation of a parent plant which comprises soybean Event pDAB8264.44.06.1.
- a transgenic "event" is produced by transformation of plant cells with heterologous
- DNA i.e., a nucleic acid construct that includes a transgene of interest, regeneration of a population of plants resulting from the insertion of the transgene into the genome of the plant, and selection of a particular plant characterized by insertion into a particular genome location.
- the term “event” refers to the original transformant and progeny of the transformant that include the heterologous DNA.
- the term “event” also refers to progeny produced by a sexual outcross between the transformant and another variety that includes the genomic/transgene DNA.
- the inserted transgene DNA and flanking genomic DNA (genomic/transgene DNA) from the transformed parent is present in the progeny of the cross at the same chromosomal location.
- the term "event” also refers to DNA from the original transformant and progeny thereof comprising the inserted DNA and flanking genomic sequence immediately adjacent to the inserted DNA that would be expected to be transferred to a progeny that receives inserted DNA including the transgene of interest as the result of a sexual cross of one parental line that includes the inserted DNA ⁇ e.g., the original transformant and progeny resulting from selfing) and a parental line that does not contain the inserted DNA.
- junction sequence spans the point at which DNA inserted into the genome is linked to DNA from the soybean native genome flanking the insertion point, the identification or detection of one or the other junction sequences in a plant's genetic material being sufficient to be diagnostic for the event. Included are the DNA sequences that span the insertions in herein- described soybean events and similar lengths of flanking DNA. Specific examples of such diagnostic sequences are provided herein; however, other sequences that overlap the junctions of the insertions, or the junctions of the insertions and the genomic sequence, are also diagnostic and could be used according to the subject invention.
- the subject invention relates in part to event identification using such flanking, junction, and insert sequences.
- Related PCR primers and amplicons are included in the invention.
- PCR analysis methods using amplicons that span across inserted DNA and its borders can be used to detect or identify commercialized transgenic soybean varieties or lines derived from the subject proprietary transgenic soybean lines.
- the binary plasmid, pDAB8264 (SEQ ID NO: 13) comprises the genetic elements depicted in Figure 1.
- the following genetic elements (T-strand border sequences are not included) are contained within the T-strand region of pDAB8264.
- Table 1 the residue numbering of the genetic elements is provided with respect to SEQ ID NO: 13 disclosed herein.
- Table 1 Residue Numbering of the Genetic Elements Comprising Binary Plasmid pDAB8264 (SEP ID NO: 13).
- SEQ ID NOs: 14 and 15, respectively are the 5' and 3' flanking sequences together with 5' and 3' portions of the insert sequence, as described in more detail below, and thus include the 5' and 3' "junction" or "transition” sequences of the insert and the genomic DNA.
- residues 1-570 are 5' genomic flanking sequence
- residues 571-859 are residues of the 5' end of the insert.
- residues 1-220 are residues of the 3' end of the insert
- residues 221-1719 are 3' genomic flanking sequence. The junction sequence or transition with respect to the 5' end of the insert thus occurs at residues 570-571 of SEQ ID NO: 14.
- junction sequence or transition with respect to the 3' end of the insert thus occurs at residues 220-221 of SEQ ID NO: 15.
- Polynucleotides of the subject invention include those comprising, for example, 5, 10, 20, 50, 100, 150, or 200 bases, or possibly more, and any increments therebetween, on either side of the junction sequence.
- a primer spanning the junction sequence could comprise, for example, 5-10 bases that would hybridize with flanking sequence and 5-10 bases that would hybridize with insert sequence. Probes and amplicons could be similarly designed, although they would often be longer than primers.
- the subject sequences are unique. Based on these insert and flanking sequences, event-specific primers were generated. PCR analysis
- soybean lines can be identified in different soybean genotypes by analysis of the PCR amplicons generated with these event-specific primer sets. Thus, these and other related procedures can be used to uniquely identify these soybean lines.
- the sequences identified herein are unique.
- Detection techniques of the subject invention are especially useful in conjunction with plant breeding, to determine which progeny plants comprise a given event, after a parent plant comprising an event of interest is crossed with another plant line in an effort to impart one or more additional traits of interest in the progeny.
- PCR analysis methods benefit soybean breeding programs as well as quality control, especially for commercialized transgenic soybean seeds.
- PCR detection kits for these transgenic soybean lines can also now be made and used. This can also benefit product registration and product stewardship.
- flanking soybean/genomic sequences can be used to specifically identify the genomic location of each insert. This information can be used to make molecular marker systems specific to each event. These can be used for accelerated breeding strategies and to establish linkage data.
- flanking sequence information can be used to study and characterize transgene integration processes, genomic integration site characteristics, event sorting, stability of transgenes and their flanking sequences, and gene expression (especially related to gene silencing, transgene methylation patterns, position effects, and potential expression-related elements such as MARS [matrix attachment regions], and the like).
- the subject invention includes seeds available under ATCC Deposit No. PTA- 11336.
- the subject invention also includes a herbicide-tolerant soybean plant grown from a seed deposited with the ATCC under accession number PTA-11336.
- the subject invention further includes parts of said plant, such as leaves, tissue samples, seeds produced by said plant, pollen, and the like (wherein they comprise a transgenic insert flanked by SEQ ID NO: l and SEQ ID NO:2).
- the subject invention includes descendant and/or progeny plants of plants grown from the deposited seed, preferably a herbicide-resistant soybean plant wherein said plant has a genome comprising a detectable wild-type genomic DNA/insert DNA junction sequence as described herein.
- the term "soybean” means Glycine max and includes all varieties thereof that can be bred with a soybean plant.
- the invention further includes processes of making crosses using a plant of the subject invention as at least one parent.
- the subject invention includes an Fi hybrid plant having as one or both parents any of the plants exemplified herein.
- seed produced by such Fi hybrids of the subject invention is seed produced by such Fi hybrids of the subject invention.
- This invention includes a method for producing an Fi hybrid seed by crossing an exemplified plant with a different ⁇ e.g. in-bred parent) plant and harvesting the resultant hybrid seed.
- the subject invention includes an exemplified plant that is either a female parent or a male parent. Characteristics of the resulting plants may be improved by careful consideration of the parent plants.
- a herbicide-tolerant soybean plant of the subject invention can be bred by first sexually crossing a first parental soybean plant consisting of a soybean plant grown from seed of any one of the lines referred to herein, and a second parental soybean plant, thereby producing a plurality of first progeny plants; then selecting a first progeny plant that is resistant to a herbicide (or that possesses at least one of the events of the subject invention); selfing the first progeny plant, thereby producing a plurality of second progeny plants; and then selecting from the second progeny plants a plant that is resistant to a herbicide (or that possesses at least one of the events of the subject invention). These steps can further include the back-crossing of the first progeny plant or the second progeny plant to the second parental soybean plant or a third parental soybean plant.
- a soybean crop comprising soybean seeds of the subject invention, or progeny thereof, can then be planted.
- transgenic plants can also be mated to produce offspring that contain two independently segregating, added, exogenous genes. Selfing of appropriate progeny can produce plants that are homozygous for both added, exogenous genes.
- Back-crossing to a parental plant and out-crossing with a non-transgenic plant are also contemplated, as is vegetative propagation. Other breeding methods commonly used for different traits and crops are known in the art. Backcross breeding has been used to transfer genes for a simply inherited, highly heritable trait into a desirable homozygous cultivar or inbred line, which is the recurrent parent. The source of the trait to be transferred is called the donor parent.
- the resulting plant is expected to have the attributes of the recurrent parent (e.g., cultivar) and the desirable trait transferred from the donor parent.
- individuals possessing the phenotype of the donor parent are selected and repeatedly crossed (backcrossed) to the recurrent parent.
- the resulting parent is expected to have the attributes of the recurrent parent (e.g. , cultivar) and the desirable trait transferred from the donor parent.
- DNA molecules of the present invention can be used as molecular markers in a marker assisted breeding (MAB) method.
- DNA molecules of the present invention can be used in methods (such as, AFLP markers, RFLP markers, RAPD markers, SNPs, and SSRs) that identify genetically linked agronomically useful traits, as is known in the art.
- the herbicide- resistance trait can be tracked in the progeny of a cross with a soybean plant of the subject invention (or progeny thereof and any other soybean cultivar or variety) using the MAB methods.
- the DNA molecules are markers for this trait, and MAB methods that are well known in the art can be used to track the herbicide-resistance trait(s) in soybean plants where at least one soybean line of the subject invention, or progeny thereof, was a parent or ancestor.
- the methods of the present invention can be used to identify any soybean variety having the subject event.
- Methods of the subject invention include a method of producing a herbicide-tolerant soybean plant wherein said method comprises introgessing Event pDAB8264.44.06.1 into a soybean cultivar. More specifically, methods of the present invention can comprise crossing two plants of the subject invention, or one plant of the subject invention and any other plant.
- Preferred methods further comprise selecting progeny of said cross by analyzing said progeny for an event detectable according to the subject invention.
- the subject invention can be used to track the subject event through breeding cycles with plants comprising other desirable traits, such as agronomic traits such as those tested herein in various Examples. Plants comprising the subject event and the desired trait can be detected, identified, selected, and quickly used in further rounds of breeding, for example.
- the subject event / trait can also be combined through breeding, and tracked according to the subject invention, with an insect resistant trait(s) and/or with further herbicide tolerance traits.
- One embodiment of the latter is a plant comprising the subject event combined with a gene encoding resistance to the herbicide dicamba.
- the subject invention can be combined with, for example, additional traits encoding glyphosate resistance (e.g., resistant plant or bacterial glyphosate oxidase (GOX)), glyphosate acetyl transferase (GAT), additional traits for glufosinate resistance (e.g., glyphosate resistance (e.g., resistant plant or bacterial glyphosate oxidase (GOX)), glyphosate acetyl transferase (GAT), additional traits for glufosinate resistance (e.g.
- additional traits encoding glyphosate resistance e.g., resistant plant or bacterial glyphosate oxidase (GOX)
- GAT glyphosate acetyl transferase
- additional traits for glufosinate resistance e.g.
- bialaphos resistance bar
- traits conferring acetolactate synthase (ALS)-inhibiting herbicide resistance e.g., imidazolinones [such as imazethapyr], sulfonylureas, triazolopyrimidine sulfonanilide, pyrmidmylthiobenzoates, and other chemistries [Csrl, SurA, et al.]
- bromoxynil resistance traits e.g. , Bxn
- traits for resistance to dicamba herbicide see, e.g., U.S.
- traits for resistance to inhibitors of HPPD (4-hydroxlphenyl-pyruvate-dioxygenase) enzyme traits for resistance to inhibitors of phytoene desaturase (PDS)
- traits for resistance to photosystem II inhibiting herbicides e.g. , psbA
- traits for resistance to photosystem I inhibiting herbicides e.g., psbA
- traits for resistance to protoporphyrinogen oxidase IX (PPO)-inhibiting herbicides e.g., PPO-1
- traits for resistance to phenylurea herbicides e.g. , CYP76B1
- One or more of such traits can be combined with the subject invention to provide the ability to effectively control, delay and/or prevent weed shifts and/or resistance to herbicides of multiple classes.
- the aad-12 gene used in the subject invention also provides resistance to compounds that are converted to phenoxyacetate auxin herbicides (e.g., 2,4-DB, MCPB, etc.).
- phenoxyacetate auxin herbicides e.g., 2,4-DB, MCPB, etc.
- the butyric acid moiety present in the 2,4-DB herbicide is converted through B-oxidation to the phytotoxic 2,4-dichlorophenoxyacetic acid.
- MCPB is converted through B-oxidation to the phytotoxic MCPA.
- the butanoic acid herbicides are themselves nonherbi eidal, but are converted to their respective acid from by ⁇ -oxidation within susceptible plants to produce the acetic acid form of the herbicide that is phytotoxic.
- Plants incapable of rapid B-oxidation are not harmed by the butanoic acid herbicides.
- plants that are capable of rapid B-oxidation and can convert the butanoic acid herbicide to the acetic form are subsequently protected by AAD-12.
- herbicides are well known in the art. Such applications can include tank mixes of more than one herbicide.
- Preferred herbicides for use according to the subject invention are combinations of glyphosate, glufosinate, and a phenoxy auxin herbicide (such as 2,4-D; 2,4-DB; MCPA; MCPB). Other preferred combinations induce glyphosate plus 2,4-D or glufosinate plus 2,4-D mixtures.
- glyphosate such as 2,4-D; 2,4-DB; MCPA; MCPB
- Other preferred combinations induce glyphosate plus 2,4-D or glufosinate plus 2,4-D mixtures.
- One or more of the subject herbicides can be applied to a field/area prior to planting it with seeds of the subject invention.
- Such applications can be within 14 days, for example, of planting seeds of the subject invention.
- One or more of the subject herbicides can also be applied after planting prior to emergence.
- One or more of the subject herbicides can also be applied to the ground (for controlling weeds) or over the top of the weeds and/or over the top of transgenic plants of the subject invention.
- the subject three herbicides can be rotated or used in combination to, for example, control or prevent weeds that might to tolerant to one herbicide but not another.
- Various application times for the subject three types of herbicides can be used in various ways as would be known in the art.
- the subject event can be stacked with one or more additional herbicide tolerance traits, one or more additional input (e.g., insect resistance (e.g., the 812 Event or the
- the subject invention can be used to provide a complete agronomic package of improved crop quality with the ability to flexibly and cost effectively control any number of agronomic pests.
- WO 2008/021207 describes zinc finger mediated-homologous recombination to integrate one or more donor polynucleotide sequences within specific locations of the genome.
- recombinases such as FLP/FRT as described in U.S. Patent No. 6,720,475, or CRE/LOX as described in US Patent No. 5,658,772, can be utilized to integrate a polynucleotide sequence into a specific chromosomal site.
- meganucleases for targeting donor polynucleotides into a specific chromosomal location was described in Puchta et al., PNAS USA 93 (1996) pp. 5055-5060).
- site specific integration within plant cells are generally known and applicable (Kumar et al., Trends in Plant Sci. 6(4) (2001) pp. 155-159).
- site-specific recombination systems which have been identified in several prokaryotic and lower eukaryotic organisms may be applied to use in plants. Examples of such systems include, but are not limited too; the R/RS recombinase system from the pSRl plasmid of the yeast
- the transgenic event can be considered a preferred genomic locus which was selected based on unique characteristics such as single insertion site, normal Mendelian segregation and stable expression, and a superior combination of efficacy, including herbicide tolerance and agronomic performance in and across multiple environmental locations.
- the newly integrated transgenes should maintain the transgene expression characteristics of the existing transformants.
- the development of assays for the detection and confirmation of the newly integrated event would be overcome as the genomic flanking sequences and chromosomal location of the newly integrated event are already identified.
- the integration of a new transgene into a specific chromosomal location which is linked to an existing transgene would expedite the introgression of the transgenes into other genetic backgrounds by sexual out-crossing using conventional breeding methods.
- polynucleotide sequences from a transgenic event For instance transgene excision as described in U.S. Patent Application No. 13/011,666, describes the use of zinc finger nucleases to remove a polynucleotide sequence, consisting of a gene expression cassette, from a chromosomally integrated transgenic event.
- the polynucleotide sequence which is removed can be a selectable marker.
- the modified transgenic event can be retargeted by the insertion of a polynucleotide sequence. The excision of a
- polynucleotide sequence and subsequent retargeting of the modified transgenic event provides advantages such as re-use of a selectable marker or the ability to overcome unintended changes to the plant transcriptome which results from the expression of specific genes.
- the subject invention discloses herein a specific site on chromosome 6 in the soybean genome that is excellent for insertion of heterologous nucleic acids. Also disclosed is a 5' flanking sequence and a 3 f flanking sequence, which can also be useful in identifying and/or targeting the location of the insertion/targeting site on chromosome 6. Thus, the subject invention provides methods to introduce heterologous nucleic acids of interest into this pre- established target site or in the vicinity of this target site.
- the subject invention also encompasses a soybean seed and/or a soybean plant comprising any heterologous nucleotide sequence inserted at the disclosed target site or in the general vicinity of such site.
- targeted integration is to excise and/or substitute a different insert in place of the pat expression cassette exemplified herein.
- targeted homologous recombination for example and without limitation, can be used according to the subject invention.
- gene, event or trait ' "stacking" is combining desired traits into one transgenic line. Plant breeders stack transgenic traits by making crosses between parents that each have a desired trait and then identifying offspring that ha ve both of these desired traits. Another way to stack genes is by transferring two or more genes into the cell nucleus of a plant at the same time during transformation. Another way to stack genes is by re-transforming a transgenic plant with another gene of interest. For example, gene stacking can be used to combine two or more different traits, including for example, two or more different insect traits, insect resistance trait(s) and disease resistance trait(s), two or more herbicide resistance traits, and/or insect resistance trait(s) and herbicide resistant trait(s). The use of a selectable marker in addition to a gene of interest can also be considered gene stacking.
- Homologous recombination refers to a reaction between any pair of nucl eotide sequences having corresponding sites containing a similar nucleotide sequence through which the two nucleotide sequences can interact (recombine) to form a new, recombinant D A sequence.
- the sites of similar nucleotide sequence are each referred to herein as a "homology seq uence.”
- the frequency of homologous recombination increases as the length of the homology sequence increases.
- the recombination frequency (or efficiency) declines as the divergence between the two sequences increases.
- Recombination may be accomplished using one homology seq uence on each of the donor and target molecules, thereby generating a "single-crossover" recombination product, Alternatively, two homology sequences may be placed on each of the target and donor nucleotide sequences.
- the subject event enables transgenic expression of three different herbicide tolerance proteins resulting in tolerance to combinations of herbicides that would control nearly all broadleaf and grass weeds.
- This multi-herbicide tolerance trait expression cassette/transgenic insert can be stacked with other herbicide tolerance traits (e.g., glyphosate resistance, glufosinate resistance, imidazolinone resistance, dicamba resistance, HPPD resistance, bromoxynil resistance, et al), and insect resistance traits (such as CrylF, CrylAb, CrylAc, Cry 34/45, CrylBe, CrylCa, CrylDa, CrylEa, CrylFa, vegetative insecticidal proteins ("VIPS") - including VIP3A, and the like), for example.
- the herbicide tolerance proteins in the expression cassette /transgenic insert of the subject invention can serve as one or more selectable marker sto aid in selection of primary transformants of plants genetically engineered with a second gene or group of genes.
- a preferred plant, or a seed, of the subject invention comprises in its genome the insert sequences, as identified herein, together with at least 20-500 or more contiguous flanking nucleotides on both sides of the insert, as described herein.
- reference to flanking sequences refers to those identified with respect to SEQ ID NO:l and SEQ ID NO:2.
- the subject events include heterologous DNA inserted between the subject flanking genomic sequences immediately adjacent to the inserted DNA. All or part of these flanking sequences could be expected to be transferred to progeny that receives the inserted DNA as a result of a sexual cross of a parental line that includes the event.
- the subject invention includes tissue cultures of regenerable cells of a plant of the subject invention. Also included is a plant regenerated from such tissue culture, particularly where said plant is capable of expressing all the morphological and physiological properties of an exemplified variety. Preferred plants of the subject invention have all the physiological and morphological characteristics of a plant grown from the deposited seed. This invention further comprises progeny of such seed and seed possessing the quality traits of interest.
- Manipulations (such as mutation, further transfection, and further breeding) of plants or seeds, or parts thereof, may lead to the creation of what may be termed "essentially derived” varieties.
- the International Union for the Protection of New Varieties of Plants (UPOV) has provided the following guideline for determining if a variety has been essentially derived from a protected variety:
- [A] variety shall be deemed to be essentially derived from another variety ("the initial variety) when
- a "line” is a group of plants that display little or no genetic variation between individuals for at least one trait. Such lines may be created by several generations of self-pollination and selection, or vegetative propagation from a single parent using tissue or cell culture techniques.
- the terms "cultivar” and “variety” are synonymous and refer to a line which is used for commercial production.
- Stability or “stable” means that with respect to the given component, the component is maintained from generation to generation and, preferably, at least three generations at substantially the same level, e.g., preferably ⁇ 15%, more preferably ⁇ 10%, most preferably ⁇ 5%.
- the stability may be affected by temperature, location, stress and the time of planting.
- “Commercial Utility” is defined as having good plant vigor and high fertility, such that the crop can be produced by farmers using conventional farming equipment, and the oil with the described components can be extracted from the seed using conventional crushing and extraction equipment. To be commercially useful, the yield, as measured by seed weight, oil content, and total oil produced per acre, is within 15% of the average yield of an otherwise comparable commercial canola variety without the premium value traits grown in the same region.
- Agronomically elite means that a line has desirable agronomic characteristics such as yield, maturity, disease resistance, and the like, in addition to the herbicide tolerance due to the subject event(s).
- Agronomic traits taken individually or in any combination, as set forth in Examples, below, in a plant comprising an event of the subject invention, are within the scope of the subject invention. Any and all of these agronomic characteristics and data points can be used to identify such plants, either as a point or at either end or both ends of a range of chracteristics used to define such plants.
- preferred embodiments of detection kits can include probes and/or primers directed to and/or comprising "junction sequences" or "transition sequences” (where the soybean genomic flanking sequence meets the insert sequence).
- this includes a polynucleotide probes, primers, and/or amplicons designed to identify one or both junction sequences (where the insert meets the flanking sequence), as indicated in the Table 1.
- One common design is to have one primer that hybridizes in the flanking region, and one primer that hybridizes in the insert. Such primers are often each about at least 15 residues in length.
- the primers can be used to generate/amplify a detectable amplicon that indicates the presence of an event of the subject invention.
- These primers can be used to generate an amplicon that spans (and includes) a junction sequence as indicated above.
- flanking primers typically not designed to hybridize beyond about 200 bases or so beyond the junction.
- typical flanking primers would be designed to comprise at least 15 residues of either strand within 200 bases into the flanking sequences from the beginning of the insert. That is, primers comprising a sequence of an appropriate size from (or hybridizing to) residues within 100 to 200-500 or so bases from either or both junction sequences identified above are within the scope of the subject invention.
- Insert primers can likewise be designed anywhere on the insert, but residues on the insert (including the complement) within 100 to 200-500 or so bases in from the junction sequence(s) identified above, can be used, for example, non-exclusively for such primer design.
- primers and probes can be designed to hybridize, under a range of standard hybridization and/or PCR conditions, to segments of sequences exemplified herein(or complements thereof), wherein the primer or probe is not perfectly complementary to the exemplified sequence. That is, some degree of mismatch can be tolerated.
- primers and probes can be designed to hybridize, under a range of standard hybridization and/or PCR conditions, to segments of sequences exemplified herein(or complements thereof), wherein the primer or probe is not perfectly complementary to the exemplified sequence. That is, some degree of mismatch can be tolerated.
- an approximately 20 nucleotide primer for example, typically one or two or so nucleotides do not need to bind with the opposite strand if the mismatched base is internal or on the end of the primer that is opposite the amplicon.
- Synthetic nucleotide analogs such as inosine, can also be used in probes.
- genomic sequence it is not uncommon for some genomic sequence to be deleted, for example, when a sequence is inserted during the creation of an event. Thus, some differences can also appear between the subject flanking sequences and genomic sequences listed in
- compositions and methods are provided for detecting the presence of the transgene/genomic insertion region, in plants and seeds and the like, from a soybean plant.
- DNA sequences are provided that comprise the subject transgene/genomic insertion region junction sequence provided herein, segments comprising a junction sequence identified herein, and complements of any such exemplified sequences and any segments thereof.
- the insertion region junction sequence spans the junction between heterologous DNA inserted into the genome and the DNA from the soybean cell flanking the insertion site. Such sequences can be diagnostic for the given event.
- event-specific primers can be generated.
- PCR analysis demonstrated that soybean lines of the subject invention can be identified in different soybean genotypes by analysis of the PCR amplicons generated with these event-specific primer sets. These and other related procedures can be used to uniquely identify these soybean lines. Thus, PCR amplicons derived from such primer pairs are unique and can be used to identify these soybean lines.
- DNA sequences that comprise a contiguous fragment of the novel transgene/genomic insertion region are an aspect of this invention. Included are DNA sequences that comprise a sufficient length of polynucleotides of transgene insert sequence and a sufficient length of polynucleotides of soybean genomic sequence from one or more of the aforementioned soybean plants and/or sequences that are useful as primer sequences for the production of an amplicon product diagnostic for one or more of these soybean plants.
- DNA sequences that comprise at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more contiguous nucleotides of a transgene portion of a DNA sequence identified herein, or complements thereof, and a similar length of flanking soybean DNA sequence (such as SEQ ID NO: l and SEQ ID NO:2 and segments thereof) from these sequences, or complements thereof.
- flanking soybean DNA sequence such as SEQ ID NO: l and SEQ ID NO:2 and segments thereof
- Such sequences are useful as DNA primers in DNA amplification methods.
- the amplicons produced using these primers are diagnostic for any of the soybean events referred to herein. Therefore, the invention also includes the amplicons produced by such DNA primers and homologous primers.
- This invention also includes methods of detecting the presence of DNA, in a sample, that corresponds to the soybean event referred to herein.
- Such methods can comprise: (a) contacting the sample comprising DNA with a primer set that, when used in a nucleic acid amplification reaction with DNA from at least one of these soybean events, produces an amplicon that is diagnostic for said event(s); (b) performing a nucleic acid amplification reaction, thereby producing the amplicon; and (c) detecting the amplicon.
- Further detection methods of the subject invention include a method of detecting the presence of a DNA, in a sample, corresponding to said event, wherein said method comprises: (a) contacting the sample comprising DNA with a probe that hybridizes under stringent hybridization conditions with DNA from at least one of said soybean events and which does not hybridize under the stringent hybridization conditions with a control soybean plant (non-event- of-interest DNA); (b) subjecting the sample and probe to stringent hybridization conditions; and (c) detecting hybridization of the probe to the DNA.
- the subject invention includes methods of producing a soybean plant comprising Event pDAB8264.44.06.1 , wherein said method comprises the steps of: (a) sexually crossing a first parental soybean line (comprising an expression cassettes of the present invention, which confers said herbicide resistance trait to plants of said line) and a second parental soybean line (that lacks this herbicide tolerance trait) thereby producing a plurality of progeny plants; and (b) selecting a progeny plant by the use of molecular markers.
- Such methods may optionally comprise the further step of back-crossing the progeny plant to the second parental soybean line to producing a true-breeding soybean plant that comprises said herbicide tolerance trait.
- methods of determining the zygosity of progeny of a cross with said event can comprise contacting a sample, comprising soybean DNA, with a primer set of the subject invention.
- Said primers when used in a nucleic-acid amplification reaction with genomic DNA from at least one of said soybean events, produces a first amplicon that is diagnostic for at least one of said soybean events.
- Such methods further comprise performing a nucleic acid amplification reaction, thereby producing the first amplicon; detecting the first amplicon; and contacting the sample comprising soybean DNA with said primer set (said primer set, when used in a nucleic-acid amplification reaction with genomic DNA from soybean plants, produces a second amplicon comprising the native soybean genomic DNA homologous to the soybean genomic region; and performing a nucleic acid amplification reaction, thereby producing the second amplicon.
- the methods further comprise detecting the second amplicon, and comparing the first and second amplicons in a sample, wherein the presence of both amplicons indicates that the sample is heterozygous for the transgene insertion.
- DNA detection kits can be developed using the compositions disclosed herein and methods well known in the art of DNA detection.
- the kits are useful for identification of the subject soybean event DNA in a sample and can be applied to methods for breeding soybean plants containing this DNA.
- the kits contain DNA sequences homologous or complementary to the amplicons, for example, disclosed herein, or to DNA sequences homologous or
- DNA sequences can be used in DNA amplification reactions or as probes in a DNA
- kits may also contain the reagents and materials necessary for the performance of the detection method.
- a “probe” is an isolated nucleic acid molecule to which is attached a conventional detectable label or reporter molecule (such as a radioactive isotope, ligand, chemiluminescent agent, or enzyme). Such a probe is complementary to a strand of a target nucleic acid, in the case of the present invention, to a strand of genomic DNA from one of said soybean events, whether from a soybean plant or from a sample that includes DNA from the event. Probes according to the present invention include not only deoxyribonucleic or ribonucleic acids but also polyamides and other probe materials that bind specifically to a target DNA sequence and can be used to detect the presence of that target DNA sequence.
- isolated polynucleotide connotes that the polynucleotide is in a non-natural state - operably linked to a heterologous promoter, for example.
- a “purified” protein likewise connotes that the protein is in a non-natural state.
- Primer pairs of the present invention refer to their use for amplification of a target nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other conventional nucleic-acid amplification methods.
- PCR polymerase chain reaction
- Probes and primers are generally 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118
- probes and primers hybridize specifically to a target sequence under high stringency hybridization conditions.
- probes and primers according to the present invention have complete sequence similarity with the target sequence, although probes differing from the target sequence and that retain the ability to hybridize to target sequences may be designed by conventional methods.
- PCR-primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose.
- Primers and probes based on the flanking DNA and insert sequences disclosed herein can be used to confirm (and, if necessary, to correct) the disclosed sequences by conventional methods, e.g., by re-cloning and sequencing such sequences.
- nucleic acid probes and primers of the present invention hybridize under stringent conditions to a target DNA sequence. Any conventional nucleic acid hybridization or amplification method can be used to identify the presence of DNA from a transgenic event in a sample.
- Nucleic acid molecules or fragments thereof are capable of specifically hybridizing to other nucleic acid molecules under certain circumstances. As used herein, two nucleic acid molecules are said to be capable of specifically hybridizing to one another if the two molecules are capable of forming an anti-parallel, double-stranded nucleic acid structure.
- a nucleic acid molecule is said to be the "complement" of another nucleic acid molecule if they exhibit complete complementarity.
- molecules are said to exhibit "complete complementarity" when every nucleotide of one of the molecules is complementary to a nucleotide of the other.
- Two molecules are said to be “minimally complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional "low-stringency” conditions.
- the molecules are said to be “complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional "high-stringency” conditions.
- Conventional stringency conditions are described by Sambrook et al., 1989.
- nucleic acid molecule In order for a nucleic acid molecule to serve as a primer or probe it need only be sufficiently complementary in sequence to be able to form a stable double-stranded structure under the particular solvent and salt concentrations employed.
- a substantially homologous sequence is a nucleic acid sequence that will specifically hybridize to the complement of the nucleic acid sequence to which it is being compared under high stringency conditions.
- stringent conditions is functionally defined with regard to the hybridization of a nucleic-acid probe to a target nucleic acid (i.e., to a particular nucleic-acid sequence of interest) by the specific hybridization procedure discussed in Sambrook et al., 1989, at 9.52-9.55. See also, Sambrook et al, 1989 at 9.47-9.52 and 9.56-9.58. Accordingly, the nucleotide sequences of the invention may be used for their ability to selectively form duplex molecules with complementary stretches of DNA fragments.
- one will typically employ relatively stringent conditions to form the hybrids e.g. , with regards to endpoint TaqMan and real-time PCR applications, one will select 1.5mM to about 4.0mM MgC12 at temperature of about 60°C to about 75°C and may vary hold times, as decribed herein, for increasing stringency.
- relatively low salt and/or high temperature conditions such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50° C to about 70° C.
- Stringent conditions could involve washing the hybridization filter at least twice with high- stringency wash buffer (0.2X SSC, 0.1% SDS, 65° C).
- Appropriate stringency conditions which promote DNA hybridization for example, 6.
- OX SSC at 50° C are known to those skilled in the art.
- the salt concentration in the wash step can be selected from a low stringency of about 2.0X SSC at 50° C to a high stringency of about 0.2X SSC at 50° C.
- the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22° C, to high stringency conditions at about 65° C.
- Both temperature and salt may be varied, or either the temperature or the salt concentration may be held constant while the other variable is changed. Such selective conditions tolerate little, if any, mismatch between the probe and the template or target strand. Detection of DNA sequences via hybridization is well-known to those of skill in the art, and the teachings of U.S. Patent Nos. 4,965, 188 and 5,176,995 are exemplary of the methods of hybridization analyses.
- a nucleic acid of the present invention will specifically hybridize to one or more of the primers (or amplicons or other sequences) exemplified or suggested herein, including complements and fragments thereof, under high stringency conditions.
- a marker nucleic acid molecule of the present invention has the nucleic acid sequence as set forth herein in one of the exemplified sequences, or complements and/or fragments thereof.
- a marker nucleic acid molecule of the present invention shares between 80% and 100% or 90%> and 100% sequence identity with such nucleic acid sequences. In a further aspect of the present invention, a marker nucleic acid molecule of the present invention shares between 95% and 100% sequence identity with such sequence. Such sequences may be used as markers in plant breeding methods to identify the progeny of genetic crosses.
- the hybridization of the probe to the target DNA molecule can be detected by any number of methods known to those skilled in the art, these can include, but are not limited to, fluorescent tags, radioactive tags, antibody based tags, and chemiluminescent tags.
- stringent conditions are conditions that permit the primer pair to hybridize only to the target nucleic-acid sequence to which a primer having the corresponding wild-type sequence (or its complement) would bind and preferably to produce a unique amplification product, the amplicon.
- amplified DNA refers to the product of nucleic-acid amplification of a target nucleic acid sequence that is part of a nucleic acid template.
- DNA extracted from a soybean plant tissue sample may be subjected to nucleic acid amplification method using a primer pair that includes a primer derived from flanking sequence in the genome of the plant adjacent to the insertion site of inserted heterologous DNA, and a second primer derived from the inserted heterologous DNA to produce an amplicon that is diagnostic for the presence of the event DNA.
- the amplicon is of a length and has a sequence that is also diagnostic for the event.
- the amplicon may range in length from the combined length of the primer pairs plus one nucleotide base pair, and/or the combined length of the primer pairs plus about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106
- a primer pair can be derived from flanking sequence on both sides of the inserted DNA so as to produce an amplicon that includes the entire insert nucleotide sequence.
- a member of a primer pair derived from the plant genomic sequence may be located a distance from the inserted DNA sequence. This distance can range from one nucleotide base pair up to about twenty thousand nucleotide base pairs.
- the use of the term "amplicon" specifically excludes primer dimers that may be formed in the DNA thermal amplification reaction.
- Nucleic-acid amplification can be accomplished by any of the various nucleic-acid amplification methods known in the art, including the polymerase chain reaction (PCR).
- PCR polymerase chain reaction
- a variety of amplification methods are known in the art and are described, inter alia, in U.S. Patent No. 4,683,195 and U.S. Patent No. 4,683,202.
- PCR amplification methods have been developed to amplify up to 22 kb of genomic DNA. These methods as well as other methods known in the art of DNA amplification may be used in the practice of the present invention.
- sequence of the heterologous transgene DNA insert or flanking genomic sequence from a subject soybean event can be verified (and corrected if necessary) by amplifying such sequences from the event using primers derived from the sequences provided herein followed by standard DNA sequencing of the PCR amplicon or of the cloned DNA.
- the amplicon produced by these methods may be detected by a plurality of techniques.
- Agarose gel electrophoresis and staining with ethidium bromide is a common well known method of detecting DNA amplicons.
- Another such method is Genetic Bit Analysis where an DNA oligonucleotide is designed which overlaps both the adjacent flanking genomic DNA sequence and the inserted DNA sequence. The oligonucleotide is immobilized in wells of a microwell plate.
- a single-stranded PCR product can be hybridized to the immobilized oligonucleotide and serve as a template for a single base extension reaction using a DNA polymerase and labeled ddNTPs specific for the expected next base.
- Readout may be fluorescent or ELISA-based. A signal indicates presence of the insert/flanking sequence due to successful amplification, hybridization, and single base extension.
- Another method is the Pyrosequencing technique as described by Winge (Innov. Pharma. Tech. 00: 18-24, 2000).
- an oligonucleotide is designed that overlaps the adjacent genomic DNA and insert DNA junction.
- the oligonucleotide is hybridized to single-stranded PCR product from the region of interest (one primer in the inserted sequence and one in the flanking genomic sequence) and incubated in the presence of a DNA polymerase, ATP, sulfurylase, luciferase, apyrase, adenosine 5' phosphosulfate and luciferin.
- DNTPs are added individually and the incorporation results in a light signal that is measured.
- a light signal indicates the presence of the transgene insert/flanking sequence due to successful amplification, hybridization, and single or multi-base extension.
- Fluorescence Polarization is another method that can be used to detect an amplicon of the present invention.
- an oligonucleotide is designed which overlaps the genomic flanking and inserted DNA junction.
- the oligonucleotide is hybridized to single- stranded PCR product from the region of interest (one primer in the inserted DNA and one in the flanking genomic DNA sequence) and incubated in the presence of a DNA polymerase and a fluorescent-labeled ddNTP. Single base extension results in incorporation of the ddNTP. Incorporation can be measured as a change in polarization using a fluorometer. A change in polarization indicates the presence of the transgene insert/flanking sequence due to successful amplification, hybridization, and single base extension.
- TAQMAN PE Applied Biosystems, Foster City, Calif.
- a FRET oligonucleotide probe is designed that overlaps the genomic flanking and insert DNA junction.
- the FRET probe and PCR primers are cycled in the presence of a thermostable polymerase and dNTPs.
- Taq DNA polymerase cleans and releases the fluorescent moiety away from the quenching moiety on the FRET probe.
- a fluorescent signal indicates the presence of the flanking/transgene insert sequence due to successful amplification and hybridization.
- Molecular Beacons have been described for use in sequence detection. Briefly, a FRET oligonucleotide probe is designed that overlaps the flanking genomic and insert DNA junction. The unique structure of the FRET probe results in it containing secondary structure that keeps the fluorescent and quenching moieties in close proximity.
- the FRET probe and PCR primers are cycled in the presence of a thermostable polymerase and dNTPs. Following successful PCR amplification, hybridization of the FRET probe to the target sequence results in the removal of the probe secondary structure and spatial separation of the fluorescent and quenching moieties. A fluorescent signal results. A fluorescent signal indicates the presence of the flanking genomic/transgene insert sequence due to successful amplification and hybridization.
- the subject invention also includes a soybean seed and/or a soybean plant comprising at least one non-aadl 2/pat/2mepsps coding sequence in or around the general vicinity of this genomic location.
- a soybean seed and/or a soybean plant comprising at least one non-aadl 2/pat/2mepsps coding sequence in or around the general vicinity of this genomic location.
- One option is to substitute a different insert in place of the insert exemplified herein.
- targeted homologous recombination for example, can be used according to the subject invention.
- This type of technology is the subject of, for example, WO 03/080809 A2 and the corresponding published U.S. application (U.S. 2003/0232410).
- the subject invention includes plants and plant cells comprising a heterologous insert (in place of or with multi-copies of the exemplified insert), flanked by all or a recognizable part of the flanking sequences identified herein as SEQ ID NO: l and SEQ ID NO:2.
- a heterologous insert in place of or with multi-copies of the exemplified insert
- An additional copy (or additional copies) of the exemplified insert or any of its components could also be targeted for insertion in this / these manner(s).
- Transgenic soybean ⁇ Glycine max containing the Soybean Event 8264.44.06.1 was generated through Agrobacterium-rnQdiated transformation of soybean cotyledonary node explants.
- the disarmed Agrobacterium strain EHA101 (Hood et al., 2006), carrying the binary vector pDAB8264 ( Figure 1) containing the selectable marker, pat, and the genes of interest, aad- ⁇ 2 and 2mepsps vl, within the T-strand DNA region, was used to initiate transformation.
- Agrobacterium-mediatGd transformation was carried out using a modified procedure of Zeng et al. (2004). Briefly, soybean seeds (cv Maverick) were germinated on basal media and cotyledonary nodes were isolated and infected with Agrobacterium. Plant initiation, shoot elongation, and rooting media were supplemented with cefotaxime, timentin and vancomycin for removal of Agrobacterium. Glufosinate selection was employed to inhibit the growth of non- transformed shoots. Selected shoots were transferred to rooting medium for root development and then transferred to soil mix for acclimatization of plantlets.
- Terminal leaflets of selected plantlets were leaf painted with glufosinate to screen for putative trans formants.
- the screened plantlets were transferred to the greenhouse, allowed to acclimate and then leaf-painted with glufosinate to reconfirm tolerance and deemed to be putative trans formants.
- the screened plants were sampled and molecular analyses for the confirmation of the selectable marker gene and/or the gene of interest were carried out. To plants were allowed to self fertilize in the greenhouse to give rise to T 1 seed.
- AAD-12 protein levels were determined in soybean event 8264.44.06.1.
- the soluble, extractable AAD-12 protein was measured using a quantitative enzyme-linked immunosorbent assay (ELISA) method from soybean leaf tissue.
- ELISA enzyme-linked immunosorbent assay
- AAD-12 protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) containing 0.5% Bovine Serum Albumin (BSA).
- PBST detergent Tween-20
- BSA Bovine Serum Albumin
- the plant tissue was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using an AAD-12 ELISA kit in a sandwich format. The kit was used following the manufacturer's suggested protocol.
- soybean event 8264.44.06.1 Detection analysis was performed to investigate the expression stability and heritability both vertically (between generations) and horizontally (between lineages of the same generation) in soybean event 8264.44.06.1. At the T4 generation soybean event 8264.44.06.1 expression was stable (not segregating) and consistent across all lineages. Field expression level studies were performed on soybean event; average expression across all lineages was approximately 200-400 ng/cm 2 .
- Levels of 2mEPSPS protein were determined in soybean event 8264.44.06.1.
- the soluble, extractable 2mEPSPS protein was measured using a quantitative enzyme-linked immunosorbent assay (ELISA) method from soybean leaf tissue.
- ELISA enzyme-linked immunosorbent assay
- the 2mEPSPS protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) containing 0.5% Bovine Serum Albumin (BSA). The plant tissue was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using a 2mEPSPS ELISA kit in a sandwich format. The kit was used following the manufacturer's suggested protocol.
- PBST detergent Tween-20
- BSA Bovine Serum Albumin
- soybean event 8264.44.06.1 Detection analysis was performed to investigate the expression stability and heritability both vertically (between generations) and horizontally (between lineages of the same generation) in soybean event 8264.44.06.1. At the T4 generation soybean event 8264.44.06.1 expression was stable (not segregating) and consistent across all lineages. Field expression level studies were performed on soybean event 8264.44.06.1. Average expression across all lineages was approximately 5,000 - 17,500 ng/cm 2 . These expression levels were higher than the positive control which expressed the 2mEPSPS protein.
- PAT protein levels were determined in soybean event 8264.44.06.1.
- the soluble, extractable PAT protein was measured using a quantitative enzyme-linked immunosorbent assay (ELISA) method from soybean leaf tissue.
- ELISA enzyme-linked immunosorbent assay
- soybean tissues were isolated from the test plants and prepared for expression analysis.
- the PAT protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) containing 0.5% Bovine Serum Albumin (BSA).
- PBST detergent Tween-20
- BSA Bovine Serum Albumin
- the plant tissue was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using a PAT ELISA kit in a sandwich format. The kit was used following the manufacturer's suggested protocol.
- soybean event 8264.44.06.1 Detection analysis was performed to investigate the expression stability and heritability both vertically (between generations) and horizontally (between lineages of the same generation) in soybean event 8264.44.06.1. At the T4 generation soybean event 8264.44.06.1 expression was stable (not segregating) and consistent across all lineages. Field expression level studies were performed on soybean event 8264.44.06.1. Average expression across all lineages was approximately 15 - 25 ng/cm 2 .
- flanking genomic T-DNA border regions of soybean event pDAB8264.44.06.1 were determined.
- 2,578 bp of soybean event pDAB8264.44.06.1 genomic sequence was confirmed, comprising 570 bp of 5' flanking border sequence (SEQ ID NO: l), 1,499 bp of 3' flanking border sequence (SEQ ID NO:2).
- PCR amplification based on the soybean Event pDAB8264.44.06.1 border sequences validated that the border regions were of soybean origin and that the junction regions are unique sequences for event pDAB8264.44.06.1. The junction regions could be used for event- specific identification of soybean event pDAB8264.44.06.1.
- the T-strand insertion site was characterized by amplifying a genomic fragment corresponding to the region of the identified flanking border sequences from the genome of wild type soybean. Comparison of soybean event pDAB8264.44.06.1 with the wild type genomic sequence revealed about 4,357 bp deletion from the original locus. Overall, the characterization of the insert and border sequence of soybean event pDAB8264.44.06.1 indicated that an intact copy of the T-strand was present in the soybean genome.
- 2mepsps specific primers for example ED vl Cl (SEQ ID NO: l 1), and two primers designed according to the cloned 5' end border sequence and/or its alignment sequence on soybean genome chromosome 6, designated 4406-WF1 (SEQ ID NO:3) and 4406-WF3 (SEQ ID NO:5), were used for amplifying the DNA segment that spans the 2mepsps gene to 5' end border sequence.
- a pat specific primer for example PAT- 12 (SEQ ID NO: 12)
- three primers designed according to the cloned 3' end border sequence designated 4406-WR5 (SEQ ID NO:7), 4406-WR7 (SEQ ID NO:9) and 4406-WR8 (SEQ ID NO: 10)
- 4406-WR5 SEQ ID NO:7
- 4406-WR8 SEQ ID NO: 10
- DNA fragments with predicted sizes were amplified only from the genomic DNA of soybean event pDAB8264.44.06.1 with each primer pair, one primer located on the flanking border of soybean event pDAB8264.44.06.1 and one transgene specific primer, but not from DNA samples from other transgenic soybean lines or non-transgenic control.
- the results indicate that the cloned 5' and 3' border sequences are the flanking border sequences of the T-strand insert for soybean event pDAB8264.44.06.1.
- PCR amplification with the primer pair of 4406-WF1 (SEQ ID NO:3) and 4406-WR5 (SEQ ID NO:7) amplified an approximately 12 kb DNA fragment from the genomic DNA of soybean event pDAB8264.44.06.1 and a 6 kb DNA fragment from the non-transgenic soybean controls and other soybean transgenic lines.
- PCR reactions completed with the primer pair of 4406-WF3 (SEQ ID NO:5) and 4406- WR7 (SEQ ID NO: 9) produced an approximately 12 kb DNA fragment from the sample of soybean event pDAB8264.44.06.1 and a 6 kb DNA fragment from all the other soybean control lines, correspondingly.
- Soybean event pDAB8264.44.06.1 was characterized as a full length, simple integration event containing a single copy of the aad-Yl, pat and 2mepsps vl PTU from plasmid pDAB8264.
- Southern blot data suggested that a T-strand fragment inserted into the genome of soybean event pDAB8264.44.06.1 .
- Detailed Southern blot analysis was conducted using a probe specific to the aad-Yl, pat and 2mepsps vl insert, contained in the T-strand integration region of pDAB8264, and descriptive restriction enzymes that have cleavage sites located within the plasmid and produce hybridizing fragments internal to the plasmid or fragments that span the junction of the plasmid with soybean genomic DNA (border fragments).
- the molecular weights indicated from the Southern hybridization for the combination of the restriction enzyme and the probe were unique for the event, and established its identification patterns.
- Example 4.1 Soybean Leaf Sample Collection and Genomic DNA (gDNA) Isolation Genomic DNA was extracted from leaf tissue harvested from individual soybean plants containing soybean event pDAB8264.44.06.1 . In addition, gDNA was isolated from a conventional soybean plant, Maverick, which contains the genetic background that is
- Genomic DNA from the soybean pDAB8264.44.06.1 and non-transgenic soybean line Maverick was digested by adding approximately five units of selected restriction enzyme per ⁇ g of DNA and the corresponding reaction buffer to each DNA sample. Each sample was incubated at approximately 37°C overnight.
- the restriction enzymes BstZl 71, HinDIII, Ncol, Nsil, and Pad were used individually for the digests (New England Biolabs, Ipswich, MA).
- a positive hybridization control sample was prepared by combining plasmid DNA, pDAB8264 with genomic DNA from the non-transgenic soybean variety, Maverick.
- the plasmid DNA / genomic DNA cocktail was digested using the same procedures and restriction enzyme as the test samples. After the digestions were incubated overnight, NaCl was added to a final concentration of 0.1M and the digested DNA samples were precipitated with isopropanol. The precipitated DNA pellet was resuspended in 20 ⁇ of IX loading buffer (0.01% bromophenol blue, 10.0 mM EDTA, 5.0% glycerol, 1.0 mM Tris pH 7.5).
- the DNA samples and molecular size markers were then electrophoresed through 0.85%> agarose gels with 0.4X TAE buffer (Fisher Scientific, Pittsburgh, PA) at 35 volts for approximately 18-22 hours to achieve fragment separation.
- the gels were stained with ethidium bromide (Invitrogen, Carlsbad, CA) and the DNA was visualized under ultraviolet (UV) light
- Southern transfer was performed overnight onto nylon membranes using a wicking system with lOx SSC. After transfer the DNA was bound to the membrane by UV crosslinking following by briefly washing membrane with a 2x SSC solution. This process produced Southern blot membranes ready for hybridization.
- Probes were generated by a PCR-based incorporation of a digoxigenin (DIG) labeled nucleotide, [DIG-1 l]-dUTP, into the DNA fragment amplified from plasmid pDAB8264 using primers specific to gene elements. Generation of DNA probes by PCR synthesis was carried out using a PCR DIG Probe Synthesis Kit (Roche Diagnostics, Indianapolis, IN) following the DIG labeled nucleotide, [DIG-1 l]-dUTP, into the DNA fragment amplified from plasmid pDAB8264 using primers specific to gene elements. Generation of DNA probes by PCR synthesis was carried out using a PCR DIG Probe Synthesis Kit (Roche Diagnostics, Indianapolis, IN) following the
- Labeled probes were analyzed by agarose gel electrophoresis to determine their quality and quantity. A desired amount of labeled probe was then used for hybridization to the target DNA on the nylon membranes for detection of the specific fragments using the procedures essentially as described for DIG Easy Hyb Solution (Roche Diagnostics, Indianapolis, IN). Briefly, nylon membrane blots containing fixed DNA were briefly washed with 2x SSC and pre- hybridized with 20-25 mL of pre-warmed DIG Easy Hyb solution in hybridization bottles at approximately 45-55°C for about 2 hours in a hybridization oven.
- the pre-hybridization solution was then decanted and replaced with approximately 15 mL of pre-warmed DIG Easy Hyb solution containing a desired amount of specific probes denatured by boiling in a water bath for approximately five minutes.
- the hybridization step was then conducted at approximately 45- 55°C overnight in the hybridization oven.
- DIG Easy Hyb solutions containing the probes were decanted into clean tubes and stored at approximately -20°C. These probes could be reused for twice according to the manufacturer's recommended procedure.
- the membrane blots were rinsed briefly and washed twice in clean plastic containers with low stringency wash buffer (2x SSC, 0.1% SDS) for approximately five minutes at room temperature, followed by washing twice with high stringency wash buffer (O. lx SSC, 0.1% SDS) for 15 minutes each at approximately 65 °C.
- the membrane blots briefly washed with lx Maleic acid buffer from the DIG Wash and Block Buffer Set (Roche Diagnostics, Indianapolis, IN) for approximately 5 minutes.
- Expected and observed fragment sizes with a particular digest and probe based on the known restriction enzyme sites of the aad-12 and 2mepsps PTU, are given in Table 6. Expected fragment sizes are based on the plasmid map of pDAB8264 and observed fragment sizes are approximate results from these analyses and are based on the indicated sizes of the DIG-labeled DNA Molecular Weight Marker II and Mark VII fragments.
- Two types of fragments were identified from these digests and hybridizations: internal fragments where known enzyme sites flank the probe region and are completely contained within the insertion region of the aad-12 and 2mepsps PTU PTU, and border fragments where a known enzyme site is located at one end of the probe region and a second site is expected in the soybean genome. Border fragment sizes vary by event because, in most cases, DNA fragment integration sites are unique for each event. The border fragments provide a means to locate a restriction enzyme site relative to the integrated DNA and to evaluate the number of DNA insertions.
- the restriction enzymes Ncol and HinD III bind and cleave unique restriction sites in plasmid pDAB8264. Subsequently, these enzymes were selected to characterize the aad-12 gene insert in soybean event pDAB8264.44.06.1. Border fragments of greater than 4,078 bp or greater than 3,690 bp were predicted to hybridize with the probe following HinD III and Ncol digests, respectively (Table 6). Single aad-12 hybridization bands of approximately 7,400 bp and approximately 3,800 bp were observed when HinDIII and Ncol were used, respectively.
- the restriction enzymes BstZl 71, Ncol and Nsil bind and cleave restriction sites in plasmid pDAB8264. Subsequently, these enzymes were selected to characterize the 2mepsps gene insert in soybean event pDAB8264.44.06.1. Border fragments of greater than 4,858 bp, greater than 3,756, or greater than 5,199 bp were predicted to hybridize with the probe following the BstZl 71, Ncol and Nsil digests respectively (Table 6). Single 2mepsps hybridization bands of approximately 16,000 bp, approximately 6,100 bp and approximately 5,300 bp were observed when BstZl 71, Ncol and Nsil were used, respectively.
- Southern blot analysis was also conducted to verify the absence of the spectinomycin resistance gene (specK), Ori Rep element and replication initiation protein trfA (trf A element) in soybean event pDAB8264.44.06.1. No specific hybridization to spectinomycin resistance, Ori Rep element or trf A element is expected when appropriate positive (pDAB8264 plus Maverick) and negative (Maverick) controls are included for Southern analysis. Following Hind III digestion and hybridization with specR specific probe, one expected size band of approximately 9,300 bp was observed in the positive control sample (pDAB8264 plus maverick) but absent from samples of the negative control and soybean event pDAB8264.44.06.1.
- soybean Event pDAB8264.44.06.1 were studied in yield trials at multiple geographical locales during a single growing season. No agronomically meaningful unintended differences were observed between soybean Event pDAB8264.44.06.1 and the Maverick control plants. The results of the study demonstrated that soybean Event pDAB8264.44.06.1 was agronomically equivalent to the
- soybean Event pDAB8264.44.06.1 provided robust herbicide tolerance when sprayed with a tankmix of glyphosate and 2,4-D.
- Vigor is an overall estimate of the health of the plot. Results were rated on a scale of 0-100% with 0% representing a plot with all dead plants and 100% representing plots that look very healthy.
- Stand count at R2 or Rl Is a visual estimate of the average vigor of plants in each plot, determined by counting the number of plants in a representative one meter section of one row per plot, and taking note at the R2 or Rl growth stage. 6.) Rated overall visual crop injury, chlorosis and necrosis at 1 day, 7 days, and 14 days after
- Shattering Recorded a visual estimate of pod shattering at harvest time.
- Herbicide tolerance of soybean Event pDAB 8264.44.06.1 was assessed following the application of a tankmix of 2,4-D and glyphosate at 2,185 g ae/ha mixed with 2% weight per weight ammonium sulfate (AMS).
- the herbicides were sprayed as a V3/R2 sequential herbicide treatment. This herbicide treatment was completed by spraying soybean plants at the V3 growth stage of development followed by a second sequential application at the R2 growth stage of development.
- the V3 growth stage is characterized when the unifoliolate and first three trifoliolate leaves are fully developed.
- the R2 growth stage is characterized by a single open flower at one of the two uppermost nodes on the main stem with a fully developed leaf.
- soybean Event pDAB8264.44.06.1 sprayed with the 2,4-D and glyphosate herbicide tank mix as compared to unsprayed soybean Event pDAB8264.44.06.1 are
- Table 7 presents the means from an analysis comparing soybean Event pDAB8264.44.06.1 sprayed with a tankmix of 2,4-D and glyphosate to unsprayed soybean Event pDAB8264.44.06.1.
- the herbicide application did not damage soybean Event
- soybean Event pDAB8264.44.06.1 performed equivalently as compared to unsprayed soybean Event pDAB 8264.44.06.1 plants for the reported agronomic characteristics listed in Table 7.
- soybean Event pDAB8264.44.06.1 showed robust tolerance to the 2,4-D and glyphosate tank mix. In contrast, none of the Maverick plants were surviving after being sprayed with the herbicide treatment.
- Each plot was 2 rows wide and rows were spaced 30 inches apart. Plots were planted to a total length of 12.5 ft with a 2.5 to 3.0 foot alley between plots.
- Table 8 presents the means from the analysis comparing the agronomic equivalence of soybean Event pDAB8264.44.06.1 with the control line, Maverick.
- the agronomic data is indicative that soybean Event pDAB8264.44.06.1performs equivalently to Maverick plants, and does not result in agronomically meaningful unintended differences.
- Soybean event pDAB8264.44.06.1 contains the T-strand of the binary vector pDAB8264
- Another event specific assay for soybean event pDAB8264.44.06.1 was designed to specifically target a 13 lbp DNA fragment (SEQ ID NO: 17) that spans the 3' integration junction using two specific primers and a target-specific MGB probe synthesized by ABI containing the FAM reporter at its 5 'end. Specificity of this Taqman detection method for soybean event pDAB8264.44.06.1 was tested against 11 different events which contain the 2mEPSPS and aad- ⁇ 2 PTUs and a control non-transgenic soybean variety (Maverick) in duplex format with the soybean specific endogenous reference gene, GMFL01-25-J19 (Glycine max cDNA, GenBank: AK286292.1).
- Genomic DNA was extracted using modified Qiagen MagAttract plant DNA kit (Qiagen, Valencia, CA). Fresh soybean leaf discs, 8 per sample, were used for gDNA extraction.
- the gDNA was quantified with the Pico Green method according to vendor's instructions (Molecular Probes, Eugene, OR). Samples were diluted with DNase-free water resulting in a concentration of 10 ng/ ⁇ for the purpose of this study.
- pDAB8264.44.06.1 specific Taqman assay. These reagents can be used with the conditions listed below to detect the transgene within soybean event pDAB8264.44.06.1. Table 9 lists the primer and probe sequences that were developed specifically for the detection of soybean event pDAB8264.44.06.1.
- the multiplex PCR conditions for amplification are as follows: IX Roche PCR Buffer, 0.4 ⁇ event specific forward primer, 0.4 ⁇ event specific reverse primer, 0.4 ⁇ Primer GMS116 F, 0.4 ⁇ Primer GMS116 R, 0.2 ⁇ Event specific probe, 0.2 ⁇ GMS116 Probe, 0.1% PVP, 20 ng gDNA in a total reaction of 10 ⁇ .
- the cocktail was amplified using the following conditions: i) 95°C for 10 min., ii) 95°C for 10 sec, iii) 60°C for 30 sec, iv) 72°C for 1 sec v) repeat step ii-iv for 35 cycles, v) 40°C hold.
- the Real time PCR was carried out on the Roche LightCycler 480. Data analysis was based on measurement of the crossing point (Cp value) determined by LightCycler 480 software, which is the PCR cycle number when the rate of change in fluorescence reaches its maximum.
- Cp value the crossing point
- the Taqman detection method for soybean event pDAB8264.44.06.1 was tested against 11 different events which contain the 2mEPSPS and aad- ⁇ 2 PTUs and non-transgenic soybean varieties in duplex format with soybean specific endogenous reference gene, GMFL01-25-J19 (GenBank: AK286292.1 ).
- the assays specifically detected the soybean event
- the event specific primers and probes can be used for the detection of the soybean event pDAB8264.44.06.1 and these conditions and reagents are applicable for zygosity assays.
- SEQ ID NO:27 provides the full length sequence of soybean Event pDAB8264.44.06.1. This sequence contains the 5' genomic flanking sequence, the integrated T-strand insert from pDAB8264 and the 3' genomic flanking sequence. With respect to SEQ ID NO:27, residues 1-1494 are 5' genomic flanking sequence, residues 1495-1497 are a three base pair insertion, residues 1498 - 1 1,774 are the pDAB8264 T-strand insert, and residues 1 1,775 - 13,659 are 3' flanking sequence. The junction sequence or transition with respect to the 5' end of the insert thus occurs at residues 1494 - 1495 of SEQ ID NO:27.
- SEQ ID NO:27 is the polynucleotide sequence of soybean Event pDAB8264.44.06.1 and was assembled from an alignment of multiple PCR contigs which were produced via PCR amplification reactions and sequenced using the ABI Big Dye® Terminator sequencing reaction kit (Applied Biosystems, Foster City, CA).
- Example 8 Breeding Stack of soybean Event pDAB 8264.44.06.1 and Soybean Insect Tolerant Event pDAB9582.812.9.1
- Example 8.1 Sexual Crossing of soybean Event pDAB 8264.44.06.1 and Soybean Insect Tolerant Event pDAB9582.812.9.1
- Soybean event pDAB8264.44.06.1 was sexually crossed with soybean event
- the F2 plants were sprayed with a single herbicide application containing both 2,4-D (1 120 g ae/ha) and glyphosate (1 120 g ae/ha).
- the resulting F2 plants were screened using a Taqman zygosity based assay to identify plants that were homozygous for both events. Selling of these F2 homozygous plants produced an F3 offspring that were homozygous for both soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1.
- the resulting event was labeled as soybean event
- TAQMAN® primers and probes as previously described were designed for the use of individual event specific assays for soybean events pDAB9582.812.9.1 (U.S. Provisional Application No. 61/471845) and pDAB8264.44.06.1 (described above). These reagents were used with the conditions listed below to determine the zygosity of each integration event contained within the breeding stack of soybean event pDAB9582.812.9.1 : :pDAB8264.44.06.1.
- the multiplex PCR conditions for amplification are as follows: IX Roche PCR Buffer, 0.4 ⁇ event pDAB8264.44.06.1 specific forward primer, 0.4 ⁇ event pDAB8264.44.06.1 specific reverse primer 0.4 ⁇ event pDAB9582.812.9.1 specific forward primer, 0.4 ⁇ event pDAB9582.812.9.1 specific reverse primer, 0.4 ⁇ Primer GMSl 16 F, 0.4 ⁇ Primer GMSl 16 R, 0.2 ⁇ Event pDAB9582.812.9.1 specific probe, 0.2 ⁇ Event pDAB8264.44.06.1 specific probe, 0.2 ⁇ GMSl 16 Probe, 0.1% PVP, 20 ng gDNA in a total reaction of 10 ⁇ .
- the cocktail was amplified using the following conditions: i) 95°C for 10 min., ii) 95°C for 10 sec, iii) 60°C for 30 sec, iv) 72°C for 1 sec v) repeat step ii-iv for 35 cycles, v) 40°C hold.
- the Real time PCR was carried out on the Roche LightCycler® 480. Data analysis was based on measurement of the crossing point (Cp value) determined by LightCycler® 480 software, which is the PCR cycle number when the rate of change in fluorescence reaches its maximum.
- a total of 3,187 segregating F2 plants, produced from the breeding cross of soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1 were tested with the event specific TAQMAN® assays to determine the zygosity of individual plants for both soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1.
- the results from these assays indicated that soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1 were both present and detected in 2,360 plants.
- the zygosity status (also described as ploidy level) of each integration event is indicated in Table 9b. Of the 2,360 identified plants, 237 were determined to contain two copies of soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1.
- Homozygous : Homozygous 237
- Hemizygous Homozygous 542
- Hemizygous : Hemizygous 1075
- ELISA Immunosorbent Assay
- the soluble, extractable PAT protein was obtained from soybean leaf tissue and measured using a quantitative ELISA method (APS 014, Envirologix, Portland, ME). Samples of soybean leaf tissues were isolated from greenhouse grown test plants at the unifoliate to VI stage and prepared for expression analysis. The PAT protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) and 1% polyvinylpyrrolidone 40 (PVP-40). The samples were then extracted using a GenoGrinder® at 1500 rpm for 5 minutes. The plant extract was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using the PAT ELISA kit in a sandwich format. The kit was used following the manufacturer's suggested protocol
- soybean event pDAB9582.812.9. l ::pDAB8264.44.06.1 The F3 generation of the breeding stack, soybean event pD AB9582.812.9. l ::pDAB8264.44.06.1 expressed PAT at higher concentrations than either the parental events, pDAB9582.812.9.1 and pDAB8264.44.06.1.
- the increased concentration of PAT in soybean event pDAB9582.812.9.1 ::pDAB8264.44.06.1 breeding stack was expected.
- the higher concentrations of PAT are a result of soybean event pDAB9582.812.9.1 ::pDAB8264.44.06.1 containing twice as many copies of the pat coding sequence as compared to either of the parental events (Table 10).
- pDAB9582.812.9.1 ::pDAB8264.44.06.1 was compared to the parental event, soybean event pDAB9582.812.9.1.
- the soluble, extractable CrylF and CrylAc protein was obtained from soybean leaf tissue and measured using a multiplexed electrochemiluminescent MSD assay. Samples of soybean leaf tissue were isolated from greenhouse grown plants at the unifoliate to VI stage and prepared for expression analysis. The CrylF and CrylAc protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20
- PBST polyvinylpyrrolidone 40
- PVP-40 polyvinylpyrrolidone 40
- the samples were then extracted using a GenoGrinder® at 1500 rpm for 5 minutes.
- the plant extract was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using a CrylF/Cryl Ac multiplex MSD assay from Meso-Scale Discovery.
- the kit was used following the manufacturer's suggested protocol. Detection analysis was performed to investigate the expression and heritability of soybean event pDAB9582.812.9.1 : :pDAB8264.44.06.1.
- soybean event pDAB9582.812.9.1 : :pDAB8264.44.06.1 plants contained a functionally expressing copy of the cry IF and cry 1 Ac coding sequences which were inherited from the parental line, soybean event pDAB9582.812.9.1.
- the soluble, extractable AAD12 and 2mEPSPS protein was obtained from soybean leaf tissue and measured using a multiplexed electrochemiluminescent MSD assay. Samples of soybean leaf tissue were isolated from greenhouse grown plants at the unifoliate to VI stage and prepared for expression analysis. The AAD12 and 2mEPSPS protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween- 20 (PBST) and 1% polyvinylpyrrolidone 40 (PVP-40). The samples were then extracted using a GenoGrinder® at 1500 rpm for 5 minutes.
- PBST phosphate buffered saline solution containing the detergent Tween- 20
- PVP-40 polyvinylpyrrolidone 40
- the plant extract was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using a AAD12 and 2mEPSPS multiplex MSD assay from Meso-Scale Discovery.
- the kit was used following the manufacturer's suggested protocol. Detection analysis was performed to investigate the expression and heritability of soybean event pDAB9582.812.9.1 : :pDAB8264.44.06.1.
- the F3 generation of the breeding stack of soybean event pDAB9582.812.9.1 ::pDAB8264.44.06.1 expressed AAD 12 and 2mEPSPS proteins at concentrations higher than the parental soybean event pDAB8264.44.06.1. (Table 12).
- soybean event pDAB9582.812.9.1 :pDAB8264.44.06.1 plants contained a functionally expressing copy of the aad-12 and 2mEPSPS coding sequences which were inherited from the parental line, soybean event pDAB8264.44.06.1.
- pDAB9582.812.9.1 ::pDAB8264.44.06.1 was assayed during two growing seasons. Soybean event pDAB9582.812.9.1 : :pDAB8264.44.06.1 seed were planted and grown to maturity.
- Mature plants were sprayed with a single herbicide application which consisted of a combination of 2,4-D and glyphosate. The resulting tolerance to these herbicides was measured by counting the number of surviving plants. Comparatively, control plants which did not contain the aad-12 and 2mEPSPS genes and were expected to be susceptible to the application of the 2,4-D and glyphosate herbicides were included in the study.
- pDAB9582.812.9.1 ::pDAB 8264.44.06.1 Each plot was 1 row wide and rows were spaced 30 inches apart. Plots were planted on 12 foot centers (total planted length 7.5 feet) with a 4.5 foot alley between plots. A total of 4,364 plants from F2 segregating lineages of the breeding stack of soybean event pDAB9582.812.9.1 ::pDAB8264.44.06.1 were sprayed with a mixture of 2,4-D and glyphosate (1 120 g ae/ha). A single spray application of the glyphosate/2,4-D herbicides was made between V3 and V4 growth stages.
- the V3 growth stage is characterized by the unifoliate and first three trifoliate leaves being fully developed and the V4 growth stage is characterized by the unifoliate and first four trifoliate leaves being fully developed.
- the plots were observed and 3,234 plants were identified as being tolerant to the application of the herbicides.
- pDAB9582.812.9.1 ::pDAB8264.44.06.1 plants which were susceptible to the herbicide application did not contain copies of the aad-12 and 2mEPSPS as a result of Mendelian segregation of the pDAB8264.44.06.1 integration event.
- soybean event pDAB8264.44.06.1 conferred tolerance to 2,4-D and glyphosate herbicides. These traits were passed and inherited in soybean event pDAB9582.812.9.1 ::pDAB8264.44.06.1, thereby providing herbicidal tolerance to soybean event
- Soybean event pDAB9582.812.9.1 ::pDAB8264.44.06.1 was tested against lab reared soybean pests including Anticarsia gemmatalis (velvetbean caterpillar) and Pseudoplusia includens (soybean looper).
- soybean event pDAB9582.812.9.1 ::pDAB8264.44.06.1 was compared against the parental soybean events (soybean event pDAB9582.812.9.1 and soybean event pDAB 8264.44.06.1) in addition to the non-transformed soybean variety Maverick. This comparison was made to determine whether the level of plant protection provided by the Cry IF and Cry 1 Ac proteins would be present in the breeding stack which introduced additional transgenes into the genome of the soybean plant.
- soybean event pDAB9582.812.9.1 ::pDAB8264.44.06.1 and soybean event pDAB8264.44.06.1 were both sprayed with a single herbicide application containing 2,4-D and glyphosate (840 g ae/ha) prior to the insect bioassay to determine whether the spraying of the herbicides had any effect on the plant protection from insects provided by the CrylF and CrylAc proteins.
- soybean event pDAB9582.812.9.1 The results (Table 13) obtained from these replicated experiments indicated that the level of insect protection and mortality provided by the CrylF and CrylAc proteins of the breeding stack of soybean event pDAB9582.812.9.1 : :pDAB8264.44.06.1 were consistent with the parental soybean event pDAB9582.812.9.1. As expected, soybean event
- soybean event pDAB9582.812.9.1 ::pDAB8264.44.06.1 sustained significantly lower insect damage (0.10-0.15 %) than soybean event pDAB8264.44.06.1 (58-76%) and the Maverick (79-91%) control plants for all insects tested. Additionally, high insect mortality (100%) was recorded for all soybean events which contained the cry IF and cry 1 Ac coding sequences, while the negative controls, Maverick and soybean event pDAB8264.44.06.1 resulted in ⁇ 10% insect mortality.
- the soybean event pDAB9582.812.9.1 ::pDAB8264.44.06.1 provided protection from insecticidal activity at levels comparable to the parental soybean event pDAB9582.812.9.1.
- Example 9 Breeding Stack of soybean Event pDAB 8264.44.06.1 and Soybean Insect Tolerant Event pDAB9582.814.19.1
- Example 9.1 Sexual Crossing of soybean Event pDAB 8264.44.06.1 and Soybean Insect Tolerant Event pDAB9582.814.19.1
- Soybean event pDAB8264.44.06.1 was sexually crossed with soybean event pDAB9582.814.19.1.
- the anthers of soybean event pDAB8264.44.06.1 were manually rubbed across the stigma of soybean event pDAB9582.814.19.1, thereby fertilizing soybean event pDAB9582.814.19.1.
- the resulting Fl progeny which contained integration events from both soybean event pDAB9582.814.19.1 and soybean event pDAB8264.44.06.1 were screened for tolerance to 2,4-D and glyphosate herbicides to identify progeny plants which contained both integration events.
- the Fl progeny plants were self- fertilized to produce an F2 offspring which was confirmed to segregate independently for both events.
- the F2 plants were sprayed with a single herbicide application containing both 2,4-D (840 g ae/ha) and glyphosate (840 g ae/ha).
- the resulting F2 plants were screened using a Taqman zygosity based assay to identify plants that were homozygous for both events. Selfing of these F2 homozygous plants produced an F3 offspring that were homozygous for both soybean event pDAB9582.814.19.1 and soybean event pDAB8264.44.06.1.
- the resulting event was labeled as soybean event
- TAQMAN® primers and probes as previously described were designed for the use of individual event specific assays for soybean events pDAB9582.814.19.1 (U.S. Provisional Application No. 61/471845) and pDAB8264.44.06.1 (described above). These reagents were used with the conditions listed below to determine the zygosity of each integration event contained within the breeding stack of soybean event pDAB9582.814.19.1 ::pDAB8264.44.06.1.
- the multiplex PCR conditions for amplification are as follows: IX Roche PCR Buffer, 0.4 ⁇ event pDAB8264.44.06.1 specific forward primer, 0.4 ⁇ event pDAB8264.44.06.1 specific reverse primer 0.4 ⁇ event pDAB9582.814.19.1 specific forward primer, 0.4 ⁇ event pDAB9582.814.19.1 specific reverse primer, 0.4 ⁇ Primer GMS116 F, 0.4 ⁇ Primer
- pDAB8264.44.06.1 specific probe 0.2 ⁇ GMS1 16 Probe, 0.1% PVP, 20 ng gDNA in a total reaction of 10 ⁇ .
- the cocktail was amplified using the following conditions: i) 95°C for 10 min., ii) 95°C for 10 sec, iii) 60°C for 30 sec, iv) 72°C for 1 sec v) repeat step ii-iv for 35 cycles, v) 40°C hold.
- the Real time PCR was carried out on the Roche LightCycler® 480. Data analysis was based on measurement of the crossing point (Cp value) determined by
- LightCycler® 480 software which is the PCR cycle number when the rate of change in fluorescence reaches its maximum.
- a total of 37 segregating F2 plants, produced from the breeding cross of soybean event pDAB9582.814.19.1 and soybean event pDAB8264.44.06.1 were tested with the event specific TAQMAN® assays to determine the zygosity of individual plants for both soybean event pDAB9582.814.19.1 and soybean event pDAB8264.44.06.1.
- the results from these assays indicated that soybean event pDAB9582.814.19.1 and soybean event pDAB8264.44.06.1 were both present and detected in 23 plants.
- the zygosity status (also described as ploidy level) of each integration event is indicated in Table 14. Of the 23 identified plants, 1 plant was identified which contained two copies of soybean event pDAB9582.814.19.1 and soybean event pDAB8264.44.06.1.
- Homozygous : Homozygous 1
- Hemizygous Homozygous 3
- Hemizygous : Hemizygous 12
- ELISA Immunosorbent Assay
- the soluble, extractable PAT protein was obtained from soybean leaf tissue and measured using a quantitative ELISA method (APS 014, Envirologix, Portland, ME). Samples of soybean leaf tissues were isolated from greenhouse grown test plants at the unifoliate to VI stage and prepared for expression analysis. The PAT protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) and 1% polyvinylpyrrolidone 40 (PVP-40). The samples were then extracted using a GenoGrinder® at 1500 rpm for 5 minutes. The plant extract was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using the PAT ELISA kit in a sandwich format. The kit was used following the manufacturer's suggested protocol
- soybean event pDAB9582.814.19.1 ::pDAB8264.44.06.1 The F3 generation of the breeding stack, soybean event pDAB9582.814.19. l ::pDAB8264.44.06.1 expressed PAT at higher concentrations than either the parental events, pDAB9582.814.19.1 and pDAB8264.44.06.1.
- the increased concentration of PAT in soybean event pDAB9582.814.19.1 ::pDAB8264.44.06.1 breeding stack was expected.
- the higher concentrations of PAT are a result of soybean event pDAB9582.814.19.1 ::pDAB8264.44.06.1 containing twice as many copies of the pat coding sequence as compared to either of the parental events (Table 15).
- pDAB9582.814.19.1 ::pDAB8264.44.06.1 was compared to the parental event, soybean event pDAB9582.814.19.1.
- the soluble, extractable CrylF and CrylAc protein was obtained from soybean leaf tissue and measured using a multiplexed electrochemiluminescent MSD assay. Samples of soybean leaf tissue were isolated from greenhouse grown plants at the unifoliate to VI stage and prepared for expression analysis. The CrylF and CrylAc protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) and 1% polyvinylpyrrolidone 40 (PVP-40). The samples were then extracted using a GenoGrinder® at 1500 rpm for 5 minutes.
- PBST detergent Tween-20
- PVP-40 polyvinylpyrrolidone 40
- the plant extract was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using a CrylF/Cryl Ac multiplex MSD assay from Meso-Scale Discovery.
- the kit was used following the manufacturer's suggested protocol.
- pDAB9582.814.19.1 ::pDAB8264.44.06.1 was compared to the parental event, Soybean Event pDAB8264.44.06.1.
- the soluble, extractable AAD12 and 2mEPSPS protein was obtained from soybean leaf tissue and measured using a multiplexed electrochemiluminescent MSD assay. Samples of soybean leaf tissue were isolated from greenhouse grown plants at the unifoliate to VI stage and prepared for expression analysis. The AAD12 and 2mEPSPS protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween- 20 (PBST) and 1% polyvinylpyrrolidone 40 (PVP-40). The samples were then extracted using a GenoGrinder® at 1500 rpm for 5 minutes.
- PBST phosphate buffered saline solution containing the detergent Tween- 20
- PVP-40 polyvinylpyrrolidone 40
- the plant extract was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using a AAD12 and 2mEPSPS multiplex MSD assay from Meso-Scale Discovery.
- the kit was used following the manufacturer's suggested protocol.
- soybean event pDAB9582.814.19.1 ::pDAB8264.44.06.1 The F3 generation of the breeding stack of soybean event pDAB9582.814.19.1 ::pDAB8264.44.06.1 expressed AAD 12 and 2mEPSPS proteins at concentrations lower than the parental soybean event pDAB8264.44.06.1. (Table 17). Despite the variability in expression levels, these results indicated that soybean event pDAB9582.814.19.1 ::pDAB8264.44.06.1 plants contained a functionally expressing copy of the aad-12 and 2mEPSPS coding sequences which were inherited from the parental line, soybean event pDAB8264.44.06.1.
- pDAB9582.814.19.1 ::pDAB8264.44.06.1 seed were planted in a greenhouse study and mature plants were sprayed with a single herbicide application which consisted of a combination of 2,4- D and glyphosate. The resulting tolerance to these herbicides was measured by counting the number of surviving plants. Comparatively, control plants which did not contain the aad-12 and 2mEPSPS genes and were expected to be susceptible to the application of the 2,4-D and glyphosate herbicides were included in the study.
- soybean event tolerance was assessed in greenhouse grown F2 plants of soybean event pDAB9582.814.19.1 : pDAB8264.44.06.1.
- the soybean plants were grown in 4 inch pots which contained one plant per pot.
- a total of 37, F3 homozygous plants were sprayed with a single application of 2,4-D and glyphosate (840 ae/ha) at the unfoliate growth stage. All 25 plants survived after being sprayed with the herbicides, indicating that the soybean event
- soybean event pDAB8264.44.06.1 conferred tolerance to 2,4-D and glyphosate herbicides. These traits were passed and inherited in soybean event pDAB9582.814.19.1 : :pDAB8264.44.06.1 , thereby providing herbicidal tolerance to soybean event
- pDAB9582.812.9.1 : :pDAB8264.44.06.1 plants which were susceptible to the herbicide application did not contain copies of the aad-12 and 2mEPSPS as a result of Mendelian segregation of the pDAB8264.44.06.1 integration event. Additionally, control plants which did not contain the aad-12 and 2mEPSPS genes were susceptible to the application of the 2,4-D and glyphosate herbicides.
- Soybean event pDAB9582.814.19.1 ::pDAB8264.44.06.1 was tested against lab reared soybean pests including Anticarsia gemmatalis (velvetbean caterpillar) and Pseudoplusia includens (soybean looper).
- soybean event pDAB9582.814.19.1 ::pDAB8264.44.06.1 was compared against the parental soybean events (soybean event pDAB9582.814.19.1 and soybean event pDAB8264.44.06.1) in addition to the non-transformed soybean variety Maverick. This comparison was made to determine whether the level of plant protection to insect damage provided by the CrylF and CrylAc proteins would be present in the breeding stack which introduced additional transgenes into the genome of the soybean plant.
- soybean event pDAB9582.814.19.1 ::pDAB8264.44.06.1 and soybean event pDAB8264.44.06.1 were both sprayed with a single herbicide application containing 2,4-D and glyphosate (840 g ae/ha) prior to the insect bioassay to determine whether the spraying of the herbicides had any effect on the plant protection from insects provided by the CrylF and CrylAc proteins.
- soybean event pDAB9582.814.19.1 ::pDAB8264.44.06.1 sustained significantly lower insect damage (0.10-0.12 %) than soybean event pDAB8264.44.06.1 (58-76%) and the Maverick (79-91%) control plants for all insects tested. Additionally, high insect mortality (100%) was recorded for all soybean events which contained the cry IF and cry 1 Ac coding sequences, while the negative controls, maverick and soybean event pDAB8264.44.06.1, resulted in ⁇ 10% insect mortality.
- the soybean event pDAB9582.814.19.1 ::pDAB8264.44.06.1 provided protection from insecticidal activity at levels comparable to the parental soybean event pDAB9582.814.19.1.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Botany (AREA)
- Mycology (AREA)
- Immunology (AREA)
- Environmental Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Physiology (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Dentistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Beans For Foods Or Fodder (AREA)
Abstract
Description
Claims
Priority Applications (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013542220A JP6111200B2 (en) | 2010-12-03 | 2011-12-02 | Stack of herbicide tolerance event 82644.44.06.1, related transgenic soybean lines, and detection thereof |
UAA201308352A UA115766C2 (en) | 2010-12-03 | 2011-12-02 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
CN201180066807.XA CN103561564B (en) | 2010-12-03 | 2011-12-02 | Herbicide tolerant event 8264.44.06.1 of superposition, related transgenic Semen sojae atricolor system and detection thereof |
MX2013006194A MX348731B (en) | 2010-12-03 | 2011-12-02 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof. |
US13/991,246 US9540655B2 (en) | 2010-12-03 | 2011-12-02 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
BR112012010778A BR112012010778A8 (en) | 2010-12-03 | 2011-12-02 | stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines and detection |
EP11845484.2A EP2645848B1 (en) | 2010-12-03 | 2011-12-02 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
CA2819684A CA2819684C (en) | 2010-12-03 | 2011-12-02 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
KR1020137017380A KR102031625B1 (en) | 2010-12-03 | 2011-12-02 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
EP18172142.4A EP3382028A1 (en) | 2010-12-03 | 2011-12-02 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
AU2011336364A AU2011336364B2 (en) | 2010-12-03 | 2011-12-02 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
RU2013129985A RU2608650C2 (en) | 2010-12-03 | 2011-12-02 | Stacked herbicide tolerance event 8264.44.06.1 related transgenic soybean lines and detection thereof |
MX2017008555A MX369292B (en) | 2010-12-03 | 2011-12-02 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof. |
IL226664A IL226664B (en) | 2010-12-03 | 2013-05-30 | Stacked herbicide tolerance event 8264.44.06.1 related transgenic soybean lines and detection thereof |
US15/399,674 US10400250B2 (en) | 2010-12-03 | 2017-01-05 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US16/434,995 US10973229B2 (en) | 2010-12-03 | 2019-06-07 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US17/224,694 US11425906B2 (en) | 2010-12-03 | 2021-04-07 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US17/876,172 US20230056359A1 (en) | 2010-12-03 | 2022-07-28 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US17/897,988 US11819022B2 (en) | 2010-12-03 | 2022-08-29 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US18/504,940 US20240147996A1 (en) | 2010-12-03 | 2023-11-08 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41970610P | 2010-12-03 | 2010-12-03 | |
US61/419,706 | 2010-12-03 | ||
US201161471845P | 2011-04-05 | 2011-04-05 | |
US61/471,845 | 2011-04-05 | ||
US201161511664P | 2011-07-26 | 2011-07-26 | |
US61/511,664 | 2011-07-26 | ||
US201161521798P | 2011-08-10 | 2011-08-10 | |
US61/521,798 | 2011-08-10 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/991,246 A-371-Of-International US9540655B2 (en) | 2010-12-03 | 2011-12-02 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US15/399,674 Continuation US10400250B2 (en) | 2010-12-03 | 2017-01-05 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012075426A1 true WO2012075426A1 (en) | 2012-06-07 |
Family
ID=46172294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/063129 WO2012075426A1 (en) | 2010-12-03 | 2011-12-02 | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
Country Status (16)
Country | Link |
---|---|
US (7) | US9540655B2 (en) |
EP (2) | EP2645848B1 (en) |
JP (1) | JP6111200B2 (en) |
KR (1) | KR102031625B1 (en) |
CN (2) | CN103561564B (en) |
AR (1) | AR084161A1 (en) |
AU (1) | AU2011336364B2 (en) |
BR (1) | BR112012010778A8 (en) |
CA (1) | CA2819684C (en) |
CL (1) | CL2013001572A1 (en) |
IL (1) | IL226664B (en) |
MX (3) | MX369292B (en) |
RU (1) | RU2608650C2 (en) |
UA (1) | UA115766C2 (en) |
UY (2) | UY33767A (en) |
WO (1) | WO2012075426A1 (en) |
Cited By (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013016516A1 (en) | 2011-07-26 | 2013-01-31 | Dow Agrosciences Llc | Insect resistant and herbicide tolerant breeding stack of soybean event pdab9582.814.19.1 and pdab4468.04.16.1 |
WO2013016520A1 (en) * | 2011-07-26 | 2013-01-31 | Dow Agrosciences Llc | SOYBEAN EVENT pDAB9582.814.19.1 DETECTION METHOD |
WO2013075817A1 (en) | 2011-11-21 | 2013-05-30 | Bayer Intellectual Property Gmbh | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
WO2013079566A2 (en) | 2011-11-30 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives |
WO2013098147A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013098146A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013110594A1 (en) | 2012-01-25 | 2013-08-01 | Bayer Intellectual Property Gmbh | Active compound combinations containing fluopyram and biological control agent |
WO2014004472A1 (en) * | 2012-06-25 | 2014-01-03 | Dow Agrosciences Llc | Soybean event pdab9582.816.15.1 detection method |
WO2014004458A3 (en) * | 2012-06-25 | 2014-02-20 | Dow Agrosciences Llc | Insect resistant and herbicide tolerant soybean event pdab9582.816.15.1 |
WO2014043435A1 (en) | 2012-09-14 | 2014-03-20 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2014060520A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
WO2014060519A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives |
WO2014060518A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method of plant growth promotion using carboxamide derivatives |
WO2014060502A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Active compound combinations comprising carboxamide derivatives |
WO2014090765A1 (en) | 2012-12-12 | 2014-06-19 | Bayer Cropscience Ag | Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops |
WO2014124368A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and a fungicide |
WO2014124361A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and another biological control agent |
WO2014124373A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and an insecticide |
WO2014138339A2 (en) | 2013-03-07 | 2014-09-12 | Athenix Corp. | Toxin genes and methods for their use |
WO2014170345A2 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants |
WO2014177582A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides |
WO2014177514A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | Nematicidal n-substituted phenethylcarboxamides |
EP2837287A1 (en) | 2013-08-15 | 2015-02-18 | Bayer CropScience AG | Use of prothioconazole for increasing root growth of Brassicaceae |
US9018451B2 (en) | 2010-12-03 | 2015-04-28 | M S Technologies, LLC | Optimized expression of glyphosate resistance encoding nucleic acid molecules in plant cells |
EP2731419A4 (en) * | 2011-07-13 | 2015-04-29 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.42.32.1, related transgenic soybean lines, and detection thereof |
WO2015138394A2 (en) | 2014-03-11 | 2015-09-17 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2015160618A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a biological control agent |
WO2015160619A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a fungicide |
WO2015160620A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and an insecticide |
EP3097782A1 (en) | 2015-05-29 | 2016-11-30 | Bayer CropScience Aktiengesellschaft | Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents |
US9540655B2 (en) | 2010-12-03 | 2017-01-10 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US9540656B2 (en) | 2010-12-03 | 2017-01-10 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8291.45.36.2, related transgenic soybean lines, and detection thereof |
WO2017042259A1 (en) | 2015-09-11 | 2017-03-16 | Bayer Cropscience Aktiengesellschaft | Hppd variants and methods of use |
WO2018098214A1 (en) | 2016-11-23 | 2018-05-31 | Bayer Cropscience Lp | Axmi669 and axmi991 toxin genes and methods for their use |
WO2018119364A1 (en) | 2016-12-22 | 2018-06-28 | Bayer Cropscience Lp | Elite event ee-gm5 and methods and kits for identifying such event in biological samples |
WO2018119361A1 (en) | 2016-12-22 | 2018-06-28 | Bayer Cropscience Lp | Elite event ee-gm4 and methods and kits for identifying such event in biological samples |
WO2018119336A1 (en) | 2016-12-22 | 2018-06-28 | Athenix Corp. | Use of cry14 for the control of nematode pests |
WO2018136611A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Use of bp005 for the control of plant pathogens |
WO2018136604A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Bp005 toxin gene and methods for its use |
WO2018165091A1 (en) | 2017-03-07 | 2018-09-13 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2018195256A1 (en) | 2017-04-21 | 2018-10-25 | Bayer Cropscience Lp | Method of improving crop safety |
WO2019020283A1 (en) | 2017-07-27 | 2019-01-31 | Basf Se | Use of herbicidal compositions based on l-glufosinate in tolerant field crops |
WO2019083810A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to 4-hydroxyphenylpyruvate dioxygenase (hppd) inhibitors by down-regulation of hppd expression in soybean |
WO2019083808A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to hppd inhibitors by down-regulation of putative 4-hydroxyphenylpyruvate reductases in soybean |
WO2019233863A1 (en) | 2018-06-04 | 2019-12-12 | Bayer Aktiengesellschaft | Herbicidally active bicyclic benzoylpyrazoles |
EP3701796A1 (en) | 2019-08-08 | 2020-09-02 | Bayer AG | Active compound combinations |
EP3708565A1 (en) | 2020-03-04 | 2020-09-16 | Bayer AG | Pyrimidinyloxyphenylamidines and the use thereof as fungicides |
WO2021013719A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021013720A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021013721A1 (en) | 2019-07-22 | 2021-01-28 | Bayer Aktiengesellschaft | 5-amino substituted pyrazoles and triazoles as pest control agents |
WO2021022069A1 (en) | 2019-08-01 | 2021-02-04 | Bayer Cropscience Lp | Method of improving cold stress tolerance and crop safety |
WO2021058659A1 (en) | 2019-09-26 | 2021-04-01 | Bayer Aktiengesellschaft | Rnai-mediated pest control |
WO2021064075A1 (en) | 2019-10-02 | 2021-04-08 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
WO2021069569A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021069567A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021089673A1 (en) | 2019-11-07 | 2021-05-14 | Bayer Aktiengesellschaft | Substituted sulfonyl amides for controlling animal pests |
WO2021097162A1 (en) | 2019-11-13 | 2021-05-20 | Bayer Cropscience Lp | Beneficial combinations with paenibacillus |
WO2021099303A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021099271A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
WO2021105091A1 (en) | 2019-11-25 | 2021-06-03 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021155084A1 (en) | 2020-01-31 | 2021-08-05 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
WO2021165195A1 (en) | 2020-02-18 | 2021-08-26 | Bayer Aktiengesellschaft | Heteroaryl-triazole compounds as pesticides |
WO2021211926A1 (en) | 2020-04-16 | 2021-10-21 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021209490A1 (en) | 2020-04-16 | 2021-10-21 | Bayer Aktiengesellschaft | Cyclaminephenylaminoquinolines as fungicides |
WO2021213978A1 (en) | 2020-04-21 | 2021-10-28 | Bayer Aktiengesellschaft | 2-(het)aryl-substituted condensed heterocyclic derivatives as pest control agents |
WO2021224323A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021224220A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Pyridine (thio)amides as fungicidal compounds |
WO2021228734A1 (en) | 2020-05-12 | 2021-11-18 | Bayer Aktiengesellschaft | Triazine and pyrimidine (thio)amides as fungicidal compounds |
WO2021233861A1 (en) | 2020-05-19 | 2021-11-25 | Bayer Aktiengesellschaft | Azabicyclic(thio)amides as fungicidal compounds |
EP3915971A1 (en) | 2020-12-16 | 2021-12-01 | Bayer Aktiengesellschaft | Phenyl-s(o)n-phenylamidines and the use thereof as fungicides |
WO2021245087A1 (en) | 2020-06-04 | 2021-12-09 | Bayer Aktiengesellschaft | Heterocyclyl pyrimidines and triazines as novel fungicides |
WO2021247477A1 (en) | 2020-06-02 | 2021-12-09 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021249995A1 (en) | 2020-06-10 | 2021-12-16 | Bayer Aktiengesellschaft | Azabicyclyl-substituted heterocycles as fungicides |
WO2021255089A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides |
WO2021255169A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
WO2021255118A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | Composition for use in agriculture |
WO2021255071A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection |
WO2021255170A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
WO2021255091A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazoles and their derivatives as fungicides |
WO2021257775A1 (en) | 2020-06-17 | 2021-12-23 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
EP3929189A1 (en) | 2020-06-25 | 2021-12-29 | Bayer Animal Health GmbH | Novel heteroaryl-substituted pyrazine derivatives as pesticides |
WO2022002818A1 (en) | 2020-07-02 | 2022-01-06 | Bayer Aktiengesellschaft | Heterocyclene derivatives as pest control agents |
WO2022026849A1 (en) * | 2020-07-31 | 2022-02-03 | Inari Agriculture Technology, Inc. | Inir19 transgenic soybean |
WO2022033991A1 (en) | 2020-08-13 | 2022-02-17 | Bayer Aktiengesellschaft | 5-amino substituted triazoles as pest control agents |
WO2022053453A1 (en) | 2020-09-09 | 2022-03-17 | Bayer Aktiengesellschaft | Azole carboxamide as pest control agents |
WO2022058327A1 (en) | 2020-09-15 | 2022-03-24 | Bayer Aktiengesellschaft | Substituted ureas and derivatives as new antifungal agents |
EP3974414A1 (en) | 2020-09-25 | 2022-03-30 | Bayer AG | 5-amino substituted pyrazoles and triazoles as pesticides |
WO2022129190A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides |
WO2022129200A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Use of dhodh inhibitor for controlling resistant phytopathogenic fungi in crops |
WO2022129196A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Heterobicycle substituted 1,2,4-oxadiazoles as fungicides |
WO2022129188A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | 1,2,4-oxadiazol-3-yl pyrimidines as fungicides |
EP4036083A1 (en) | 2021-02-02 | 2022-08-03 | Bayer Aktiengesellschaft | 5-oxy substituted heterocycles as pesticides |
WO2022173885A1 (en) | 2021-02-11 | 2022-08-18 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin oxidase levels in plants |
WO2022182834A1 (en) | 2021-02-25 | 2022-09-01 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture in plants |
WO2022207494A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2022207496A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2022233777A1 (en) | 2021-05-06 | 2022-11-10 | Bayer Aktiengesellschaft | Alkylamide substituted, annulated imidazoles and use thereof as insecticides |
WO2022238391A1 (en) | 2021-05-12 | 2022-11-17 | Bayer Aktiengesellschaft | 2-(het)aryl-substituted condensed heterocycle derivatives as pest control agents |
WO2022266271A1 (en) | 2021-06-17 | 2022-12-22 | Pairwise Plants Services, Inc. | Modification of growth regulating factor family transcription factors in soybean |
WO2022271892A1 (en) | 2021-06-24 | 2022-12-29 | Pairwise Plants Services, Inc. | Modification of hect e3 ubiquitin ligase genes to improve yield traits |
WO2023278651A1 (en) | 2021-07-01 | 2023-01-05 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing root system development |
WO2023017120A1 (en) | 2021-08-13 | 2023-02-16 | Bayer Aktiengesellschaft | Active compound combinations and fungicide compositions comprising those |
WO2023019188A1 (en) | 2021-08-12 | 2023-02-16 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
WO2023023496A1 (en) | 2021-08-17 | 2023-02-23 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin receptor histidine kinase genes in plants |
WO2023025682A1 (en) | 2021-08-25 | 2023-03-02 | Bayer Aktiengesellschaft | Novel pyrazinyl-triazole compounds as pesticides |
EP4144739A1 (en) | 2021-09-02 | 2023-03-08 | Bayer Aktiengesellschaft | Anellated pyrazoles as parasiticides |
WO2023034891A1 (en) | 2021-09-02 | 2023-03-09 | Pairwise Plants Services, Inc. | Methods and compositions for improving plant architecture and yield traits |
WO2023034731A1 (en) | 2021-08-30 | 2023-03-09 | Pairwise Plants Services, Inc. | Modification of ubiquitin binding peptidase genes in plants for yield trait improvement |
WO2023049720A1 (en) | 2021-09-21 | 2023-03-30 | Pairwise Plants Services, Inc. | Methods and compositions for reducing pod shatter in canola |
WO2023060028A1 (en) | 2021-10-04 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
WO2023060152A2 (en) | 2021-10-07 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
WO2023078915A1 (en) | 2021-11-03 | 2023-05-11 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether (thio)amides as fungicidal compounds |
WO2023099445A1 (en) | 2021-11-30 | 2023-06-08 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether oxadiazines as fungicidal compounds |
WO2023108035A1 (en) | 2021-12-09 | 2023-06-15 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
WO2023147526A1 (en) | 2022-01-31 | 2023-08-03 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
WO2023148036A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests in soybean |
WO2023148028A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests |
WO2023168217A1 (en) | 2022-03-02 | 2023-09-07 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
WO2023192838A1 (en) | 2022-03-31 | 2023-10-05 | Pairwise Plants Services, Inc. | Early flowering rosaceae plants with improved characteristics |
WO2023196886A1 (en) | 2022-04-07 | 2023-10-12 | Pairwise Plants Services, Inc. | Methods and compositions for improving resistance to fusarium head blight |
WO2023205714A1 (en) | 2022-04-21 | 2023-10-26 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
WO2023215809A1 (en) | 2022-05-05 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture and/or improving plant yield traits |
WO2023213670A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Crystalline forms of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine |
WO2023213626A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Use of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine for controlling unwanted microorganisms |
WO2023215704A1 (en) | 2022-05-02 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing yield and disease resistance |
EP4295688A1 (en) | 2022-09-28 | 2023-12-27 | Bayer Aktiengesellschaft | Active compound combination |
WO2024006792A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024006679A1 (en) | 2022-06-27 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024006791A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024018016A1 (en) | 2022-07-21 | 2024-01-25 | Syngenta Crop Protection Ag | Crystalline forms of 1,2,4-oxadiazole fungicides |
WO2024030984A1 (en) | 2022-08-04 | 2024-02-08 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
WO2024036240A1 (en) | 2022-08-11 | 2024-02-15 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024033374A1 (en) | 2022-08-11 | 2024-02-15 | Syngenta Crop Protection Ag | Novel arylcarboxamide or arylthioamide compounds |
WO2024054880A1 (en) | 2022-09-08 | 2024-03-14 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield characteristics in plants |
WO2024068837A1 (en) | 2022-09-28 | 2024-04-04 | Syngenta Crop Protection Ag | Agricultural methods |
WO2024068520A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068517A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068519A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068518A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068838A1 (en) | 2022-09-28 | 2024-04-04 | Syngenta Crop Protection Ag | Fungicidal compositions |
WO2024100069A1 (en) | 2022-11-08 | 2024-05-16 | Syngenta Crop Protection Ag | Microbiocidal pyridine derivatives |
EP4385327A1 (en) | 2022-12-15 | 2024-06-19 | Kimitec Group S.L. | Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants |
WO2024137438A2 (en) | 2022-12-19 | 2024-06-27 | BASF Agricultural Solutions Seed US LLC | Insect toxin genes and methods for their use |
WO2024173622A1 (en) | 2023-02-16 | 2024-08-22 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024182658A1 (en) | 2023-03-02 | 2024-09-06 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024186950A1 (en) | 2023-03-09 | 2024-09-12 | Pairwise Plants Services, Inc. | Modification of brassinosteroid signaling pathway genes for improving yield traits in plants |
Families Citing this family (386)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9497924B1 (en) | 2015-08-05 | 2016-11-22 | M.S. Technologies Llc | Soybean cultivar 41180801 |
US9491922B1 (en) | 2015-08-05 | 2016-11-15 | M.S. Technologies Llc | Soybean cultivar 45391601 |
CN105567682B (en) * | 2016-01-12 | 2019-01-29 | 吉林省农业科学院 | Transgenic soybean event B4J8049 external source Insert Fragment flanking sequence and its application |
US9961859B1 (en) | 2017-02-28 | 2018-05-08 | M.S. Technologies, Llc | Soybean cultivar 57111348 |
US9961860B1 (en) | 2017-02-28 | 2018-05-08 | M.S. Technologies, Llc | Soybean cultivar 52030201 |
US9961861B1 (en) | 2017-02-28 | 2018-05-08 | M.S. Technologies, Llc | Soybean cultivar 54190212 |
US9999190B1 (en) | 2017-02-28 | 2018-06-19 | M.S. Technologies, Llc | Soybean cultivar 54172927 |
US9867357B1 (en) | 2017-02-28 | 2018-01-16 | M.S. Technologies, Llc | Soybean cultivar 56171900 |
US9999189B1 (en) | 2017-02-28 | 2018-06-19 | M.S. Technologies, Llc | Soybean cultivar 54113122 |
US9961858B1 (en) | 2017-02-28 | 2018-05-08 | M.S. Technologies, Llc | Soybean cultivar 54062650 |
US10058049B1 (en) | 2017-02-28 | 2018-08-28 | M.S. Technologies Llc | Soybean cultivar 59104161 |
US10568288B1 (en) * | 2018-05-15 | 2020-02-25 | Pioneer Hi-Bred International, Inc. | Soybean variety 5PUBF54 |
US10568287B1 (en) * | 2018-05-15 | 2020-02-25 | Pioneer Hi-Bred International, Inc. | Soybean variety 5PYVU85 |
US10499594B1 (en) | 2018-05-21 | 2019-12-10 | M.S. Technologies, L.L.C. | Soybean cultivar 79162140 |
US10501747B1 (en) | 2018-05-21 | 2019-12-10 | M.S. Technologies, L.L.C. | Soybean cultivar 77130123 |
US10494639B1 (en) | 2018-05-21 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 63301112 |
US10485209B1 (en) | 2018-05-21 | 2019-11-26 | M.S. Technologies, L.L.C. | Soybean cultivar 72151329 |
US10485208B1 (en) | 2018-05-21 | 2019-11-26 | M.S. Technologies, L.L.C. | Soybean cultivar 69311428 |
US10492433B1 (en) | 2018-08-01 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 78492244 |
US10455793B1 (en) | 2018-08-01 | 2019-10-29 | M.S. Technologies, L.L.C. | Soybean cultivar 69090024 |
US10485211B1 (en) | 2018-08-01 | 2019-11-26 | M.S. Technologies, L.L.C. | Soybean cultivar 74142136 |
US10492400B1 (en) | 2018-08-01 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 76011212 |
US10455794B1 (en) | 2018-08-01 | 2019-10-29 | M.S. Technologies, L.L.C. | Soybean cultivar 51284052 |
US10485210B1 (en) | 2018-08-01 | 2019-11-26 | M.S. Technologies, L.L.C. | Soybean cultivar 64432136 |
US10555478B1 (en) | 2018-08-01 | 2020-02-11 | M.S. Technologies, L.L.C. | Soybean cultivar 75242840 |
US10492403B1 (en) | 2018-08-01 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 70311819 |
US10492402B1 (en) | 2018-08-01 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 63452016 |
US10499582B1 (en) | 2018-08-01 | 2019-12-10 | M.S. Technologies, L.L.C. | Soybean cultivar 60312840 |
US10492401B1 (en) | 2018-08-01 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 64002217 |
US10455795B1 (en) | 2018-08-01 | 2019-10-29 | M.S. Technologies, L.L.C. | Soybean cultivar 79150907 |
US10455796B1 (en) | 2018-08-01 | 2019-10-29 | M.S. Technologies, L.L.C. | Soybean cultivar 76420724 |
US10492404B1 (en) | 2018-08-01 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 61332840 |
US10448604B1 (en) | 2018-08-01 | 2019-10-22 | M.S. Technologies, L.L.C. | Soybean cultivar 60111110 |
US10485212B1 (en) | 2018-08-01 | 2019-11-26 | M.S. Technologies, L.L.C. | Soybean cultivar 65110742 |
US10555479B1 (en) | 2018-08-01 | 2020-02-11 | M.S. Technologies, L.L.C. | Soybean cultivar 71342318 |
US10492399B1 (en) | 2018-08-01 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 75001212 |
US10548271B1 (en) | 2018-08-02 | 2020-02-04 | M.S. Technologies, L.L.C. | Soybean cultivar 65180532 |
US10448605B1 (en) | 2018-08-02 | 2019-10-22 | M.S. Technologies, L.L.C. | Soybean cultivar 63332027 |
US10492438B1 (en) | 2018-08-02 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 72191315 |
US10492439B1 (en) | 2018-08-02 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 78281713 |
US10512229B1 (en) | 2018-08-02 | 2019-12-24 | M.S. Technologies, L.L.C. | Soybean cultivar 74340613 |
US10492436B1 (en) | 2018-08-02 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 70422534 |
US10499597B1 (en) | 2018-08-02 | 2019-12-10 | M.S. Technologies, L.L.C. | Soybean cultivar 74211709 |
US10492441B1 (en) | 2018-08-02 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 75162223 |
US10542690B1 (en) | 2018-08-02 | 2020-01-28 | M.S. Technologies, L.L.C. | Soybean cultivar 71052129 |
US10349605B1 (en) | 2018-08-02 | 2019-07-16 | M.S. Technologies, Llc | Soybean cultivar 78320329 |
US10537085B1 (en) | 2018-08-02 | 2020-01-21 | M.S. Technologies, L.L.C. | Soybean cultivar 73330613 |
US10398120B1 (en) | 2018-08-02 | 2019-09-03 | M.S. Technologies, L.L.C. | Soybean cultivar 70271905 |
US10499583B1 (en) | 2018-08-02 | 2019-12-10 | M.S. Technologies, L.L.C. | Soybean cultivar 73390208 |
US10542692B1 (en) | 2018-08-02 | 2020-01-28 | M.S. Technologies, L.L.C. | Soybean cultivar 70262703 |
US10499595B1 (en) | 2018-08-02 | 2019-12-10 | M.S. Technologies, L.L.C. | Soybean cultivar 77242824 |
US10349606B1 (en) | 2018-08-02 | 2019-07-16 | M.S. Technologies, Llc | Soybean cultivar 70404329 |
US10440925B1 (en) | 2018-08-02 | 2019-10-15 | M.S. Technologies, L.L.C. | Soybean cultivar 61414428 |
US10506783B1 (en) | 2018-08-02 | 2019-12-17 | M.S. Technologies, L.L.C. | Soybean cultivar 70391206 |
US10537084B1 (en) | 2018-08-02 | 2020-01-21 | M.S. Technologies, L.L.C. | Soybean cultivar 71201428 |
US10492437B1 (en) | 2018-08-02 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 73081781 |
US10537076B1 (en) | 2018-08-02 | 2020-01-21 | M.S. Technologies, L.L.C. | Soybean cultivar 70120311 |
US10531620B1 (en) | 2018-08-02 | 2020-01-14 | M.S. Technologies, L.L.C. | Soybean cultivar 70140849 |
US10440924B1 (en) | 2018-08-02 | 2019-10-15 | M.S. Technologies, L.L.C. | Soybean cultivar 60431428 |
US10398121B1 (en) | 2018-08-02 | 2019-09-03 | M.S. Technologies, Llc | Soybean cultivar 76132184 |
US10499596B1 (en) | 2018-08-02 | 2019-12-10 | M.S. Technologies, L.L.C. | Soybean cultivar 76034331 |
US10440926B1 (en) | 2018-08-02 | 2019-10-15 | M.S. Technologies, L.L.C. | Soybean cultivar 75251428 |
US10524445B1 (en) | 2018-08-02 | 2020-01-07 | M.S. Technologies, L.L.C. | Soybean cultivar 75052534 |
US10542691B1 (en) | 2018-08-02 | 2020-01-28 | M.S. Technologies, L.L.C. | Soybean cultivar 73040436 |
US10492440B1 (en) | 2018-08-02 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 76172605 |
US10537078B1 (en) | 2018-08-03 | 2020-01-21 | M.S. Technologies, L.L.C. | Soybean cultivar 78221232 |
US10631484B2 (en) | 2018-08-03 | 2020-04-28 | M.S. Technologies, L.L.C. | Soybean cultivar 60310209 |
US10517247B1 (en) | 2018-08-03 | 2019-12-31 | M.S. Technologies, L.L.C. | Soybean cultivar 71270402 |
US10492442B1 (en) | 2018-08-03 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 64490328 |
US10531621B1 (en) | 2018-08-03 | 2020-01-14 | M.S. Technologies, L.L.C. | Soybean cultivar 61364961 |
US10609881B2 (en) | 2018-08-03 | 2020-04-07 | M.S. Technologies, L.L.C. | Soybean cultivar 74092327 |
US10542694B1 (en) | 2018-08-03 | 2020-01-28 | M.S. Technologies, L.L.C. | Soybean cultivar 77290232 |
US10537077B1 (en) | 2018-08-03 | 2020-01-21 | M.S. Technologies, L.L.C. | Soybean cultivar 76391606 |
US10517245B1 (en) | 2018-08-03 | 2019-12-31 | M.S. Technologies, L.L.C. | Soybean cultivar 67371612 |
US10492443B1 (en) | 2018-08-03 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 70552824 |
US10517246B1 (en) | 2018-08-03 | 2019-12-31 | M.S. Technologies, L.L.C. | Soybean cultivar 61242247 |
US10631483B2 (en) | 2018-08-03 | 2020-04-28 | M.S. Technologies, L.L.C. | Soybean cultivar 63030535 |
US10542693B1 (en) | 2018-08-03 | 2020-01-28 | M.S. Technologies, L.L.C. | Soybean cultivar 74312619 |
US10660291B2 (en) | 2018-08-03 | 2020-05-26 | M.S. Technologies, L.L.C. | Soybean cultivar 76071630 |
US10492444B1 (en) | 2018-08-03 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar 73412247 |
US10660286B2 (en) | 2018-08-03 | 2020-05-26 | M.S. Technologies, L.L.C. | Soybean cultivar 66472542 |
US10477819B1 (en) | 2018-08-06 | 2019-11-19 | M.S. Technologies, L.L.C. | Soybean cultivar 75162339 |
US10631511B1 (en) | 2019-04-04 | 2020-04-28 | M.S. Technologies, L.L.C. | Soybean cultivar 83190332 |
US10667483B1 (en) | 2019-04-22 | 2020-06-02 | M.S. Technolgies, L.L.C. | Soybean cultivar 88092742 |
US10595486B1 (en) | 2019-06-13 | 2020-03-24 | M.S. Technologies, L.L.C. | Soybean cultivar 80330329 |
US10897867B1 (en) | 2019-08-19 | 2021-01-26 | M.S. Technologies, L.L.C. | Soybean cultivar 84450325 |
US10993403B2 (en) | 2019-08-19 | 2021-05-04 | M.S. Technologies, L.L.C. | Soybean cultivar 88042312 |
US10980205B2 (en) | 2019-08-19 | 2021-04-20 | M.S. Technologies, L.L.C. | Soybean cultivar 81140111 |
US10980207B2 (en) | 2019-08-19 | 2021-04-20 | M.S. Technologies, L.L.C. | Soybean cultivar 87242903 |
US10952395B2 (en) | 2019-08-19 | 2021-03-23 | M.S. Technologies, L.L.C. | Soybean cultivar 81371335 |
US10993402B2 (en) | 2019-08-19 | 2021-05-04 | M.S. Technologies, L.L.C. | Soybean cultivar 87390112 |
US10932431B1 (en) | 2019-08-19 | 2021-03-02 | M.S. Technologies, L.L.C. | Soybean cultivar 86072910 |
US10945401B1 (en) | 2019-08-19 | 2021-03-16 | M.S. Technologies, L.L.C. | Soybean cultivar 83372609 |
US10952394B2 (en) | 2019-08-19 | 2021-03-23 | M.S. Technologies, L.L.C. | Soybean cultivar 88390016 |
US10897866B1 (en) | 2019-08-19 | 2021-01-26 | M.S. Technologies, L.L.C. | Soybean cultivar 81442208 |
US10966396B2 (en) | 2019-08-19 | 2021-04-06 | M.S. Technologies, L.L.C. | Soybean cultivar 89192414 |
US10945399B1 (en) | 2019-08-19 | 2021-03-16 | M.S. Technologies, L.L.C. | Soybean cultivar 89442841 |
US10973197B2 (en) | 2019-08-19 | 2021-04-13 | M.S. Technologies, L.L.C. | Soybean cultivar 87161800 |
US10980204B2 (en) | 2019-08-19 | 2021-04-20 | M.S. Technologies, L.L.C. | Soybean cultivar 85010111 |
US10939651B1 (en) | 2019-08-19 | 2021-03-09 | M.S. Technologies, L.L.C. | Soybean cultivar 83011212 |
US10945400B1 (en) | 2019-08-19 | 2021-03-16 | M.S. Technologies, L.L.C. | Soybean cultivar 86220335 |
US10980206B2 (en) | 2019-08-19 | 2021-04-20 | M.S. Technologies, L.L.C. | Soybean cultivar 86052115 |
US11044870B2 (en) | 2019-08-19 | 2021-06-29 | M.S. Technologies, L.L.C. | Soybean cultivar 87011338 |
US10918064B1 (en) | 2019-08-19 | 2021-02-16 | M.S. Technologies, L.L.C. | Soybean cultivar 84322401 |
US11337394B2 (en) | 2019-08-20 | 2022-05-24 | M.S. Technologies, L.L.C. | Soybean cultivar 86092833 |
US11219179B2 (en) | 2019-08-20 | 2022-01-11 | M.S. Technologies, L.L.C. | Soybean cultivar 87272833 |
US11044872B2 (en) | 2019-08-20 | 2021-06-29 | M.S. Technologies, L.L.C. | Soybean cultivar 84344663 |
US11212998B2 (en) | 2019-08-20 | 2022-01-04 | M.S. Technologies, L.L.C. | Soybean cultivar 88282833 |
US11044871B2 (en) | 2019-08-20 | 2021-06-29 | M.S. Technologies, L.L.C. | Soybean cultivar 84340383 |
US10952399B2 (en) | 2019-08-20 | 2021-03-23 | M.S. Technologies, L.L.C. | Soybean cultivar 80230701 |
US10952397B2 (en) | 2019-08-20 | 2021-03-23 | M.S. Technologies, L.L.C. | Soybean cultivar 86160724 |
US10945402B1 (en) | 2019-08-20 | 2021-03-16 | M.S. Technologies, L.L.C. | Soybean cultivar 88020223 |
US10952398B2 (en) | 2019-08-20 | 2021-03-23 | M.S. Technologies, L.L.C. | Soybean cultivar 84380724 |
US11044875B2 (en) | 2019-08-20 | 2021-06-29 | M.S. Technologies, L.L.C. | Soybean cultivar 81322943 |
US10945405B1 (en) | 2019-08-20 | 2021-03-16 | M.S. Technologies, L.L.C. | Soybean cultivar 81090603 |
US10932432B1 (en) | 2019-08-20 | 2021-03-02 | M.S. Technologies, L.L.C. | Soybean cultivar 87222215 |
US10952396B2 (en) | 2019-08-20 | 2021-03-23 | M.S. Technologies, L.L.C. | Soybean cultivar 88362310 |
US10945403B1 (en) | 2019-08-20 | 2021-03-16 | M.S. Technologies, L.L.C. | Soybean cultivar 85202128 |
US11172632B2 (en) | 2019-08-20 | 2021-11-16 | M.S. Technologies, L.L.C. | Soybean cultivar 85031644 |
US10945404B1 (en) | 2019-08-20 | 2021-03-16 | M.S. Technologies, L.L.C. | Soybean cultivar 83221630 |
US11044874B2 (en) | 2019-08-20 | 2021-06-29 | M.S. Technologies, L.L.C. | Soybean cultivar 83292541 |
US11044873B2 (en) | 2019-08-20 | 2021-06-29 | M.S. Technologies, L.L.C. | Soybean cultivar 88482541 |
US11006605B2 (en) | 2019-08-27 | 2021-05-18 | M.S. Technologies, L.L.C. | Soybean cultivar 84410120 |
US11071273B2 (en) | 2019-08-27 | 2021-07-27 | M.S. Technologies, L.L.C. | Soybean cultivar 86172030 |
US10897871B1 (en) | 2019-08-27 | 2021-01-26 | M.S. Technologies, L.L.C. | Soybean cultivar 86240211 |
US10993405B2 (en) | 2019-08-27 | 2021-05-04 | M.S. Technologies, L.L.C. | Soybean cultivar 85281832 |
US11044877B2 (en) | 2019-08-27 | 2021-06-29 | M.S. Technologies, L.L.C. | Soybean cultivar 85262507 |
US11006604B2 (en) | 2019-08-27 | 2021-05-18 | M.S. Technologies, L.L.C. | Soybean cultivar 82431018 |
US10986797B2 (en) | 2019-08-28 | 2021-04-27 | M.S. Technologies, L.L.C. | Soybean cultivar 86440139 |
US10966398B2 (en) | 2019-08-28 | 2021-04-06 | M.S. Technologies, L.L.C. | Soybean cultivar 86240546 |
US11071274B2 (en) | 2019-08-28 | 2021-07-27 | M.S. Technologies, L.L.C. | Soybean cultivar 83050118 |
US11019791B2 (en) | 2019-08-28 | 2021-06-01 | M.S. Technologies, L.L.C. | Soybean cultivar 89242215 |
US10966399B2 (en) | 2019-08-28 | 2021-04-06 | M.S. Technologies, L.L.C. | Soybean cultivar 80532336 |
US10952401B1 (en) | 2019-08-28 | 2021-03-23 | M.S. Technologies, L.L.C. | Soybean cultivar 83292238 |
US11076554B2 (en) | 2019-08-28 | 2021-08-03 | M.S. Technologies, L.L.C. | Soybean cultivar 87272107 |
US11096364B2 (en) | 2019-08-28 | 2021-08-24 | M.S. Technologies, L.L.C. | Soybean cultivar 81111940 |
US11006606B2 (en) | 2019-08-28 | 2021-05-18 | M.S. Technologies, L.L.C. | Soybean cultivar 81201100 |
US10999999B2 (en) | 2019-08-28 | 2021-05-11 | M.S. Technologies, L.L.C. | Soybean cultivar 83392343 |
US10959391B2 (en) | 2019-08-28 | 2021-03-30 | M.S. Technologies, L.L.C. | Soybean cultivar 80412336 |
US10986799B2 (en) | 2019-08-28 | 2021-04-27 | M.S. Technologies, L.L.C. | Soybean cultivar 81440919 |
US10966397B2 (en) | 2019-08-28 | 2021-04-06 | M.S. Technologies, L.L.C. | Soybean cultivar 82151940 |
US10986798B2 (en) | 2019-08-28 | 2021-04-27 | M.S. Technologies, L.L.C. | Soybean cultivar 82230919 |
US10952402B1 (en) | 2019-08-29 | 2021-03-23 | M.S. Technologies, L.L.C. | Soybean cultivar 81171312 |
US10905082B1 (en) | 2019-08-29 | 2021-02-02 | M.S. Technologies, L.L.C. | Soybean cultivar 82212235 |
US11000001B2 (en) | 2019-08-29 | 2021-05-11 | M.S. Technologies, L.L.C. | Soybean cultivar 83271604 |
US11026391B2 (en) | 2019-08-29 | 2021-06-08 | M.S. Technologies, L.L.C. | Soybean cultivar 82152612 |
US10912276B1 (en) | 2019-08-29 | 2021-02-09 | M.S. Technologies, L.L.C. | Soybean cultivar 85161716 |
US11076556B2 (en) | 2019-08-29 | 2021-08-03 | M.S. Technologies, L.L.C. | Soybean cultivar 83422133 |
US11006607B2 (en) | 2019-08-29 | 2021-05-18 | M.S. Technologies, L.L.C. | Soybean cultivar 80462534 |
US11076555B2 (en) | 2019-08-29 | 2021-08-03 | M.S. Technologies, L.L.C. | Soybean cultivar 84490022 |
US10952404B1 (en) | 2019-08-29 | 2021-03-23 | M.S. Technologies, L.L.C. | Soybean cultivar 87092440 |
US11044878B2 (en) | 2019-08-29 | 2021-06-29 | M.S. Technologies, L.L.C. | Soybean cultivar 88031336 |
US10980209B2 (en) | 2019-08-29 | 2021-04-20 | M.S. Technologies, L.L.C. | Soybean cultivar 87230016 |
US10939654B1 (en) | 2019-08-29 | 2021-03-09 | M.S. Technologies, L.L.C. | Soybean cultivar 81111423 |
US10952405B1 (en) | 2019-08-29 | 2021-03-23 | M.S. Technologies, L.L.C. | Soybean cultivar 88103440 |
US10939653B1 (en) | 2019-08-29 | 2021-03-09 | M.S. Technologies, L.L.C. | Soybean cultivar 88432102 |
US11071275B2 (en) | 2019-08-29 | 2021-07-27 | M.S. Technologies, L.L.C. | Soybean cultivar 88060022 |
US11076557B2 (en) | 2019-08-29 | 2021-08-03 | M.S. Technologies, L.L.C. | Soybean cultivar 83381828 |
US11140846B2 (en) | 2019-08-29 | 2021-10-12 | M.S. Technologies, L.L.C. | Soybean cultivar 88070907 |
US10952403B1 (en) | 2019-08-29 | 2021-03-23 | M.S. Technologies, L.L.C. | Soybean cultivar 80462430 |
US11140847B2 (en) | 2019-08-29 | 2021-10-12 | M.S. Technologies, L.L.C. | Soybean cultivar 80372223 |
US10980210B2 (en) | 2019-08-29 | 2021-04-20 | M.S. Technologies, L.L.C. | Soybean cultivar 80202604 |
US11044879B2 (en) | 2019-08-29 | 2021-06-29 | M.S. Technologies, L.L.C. | Soybean cultivar 82352802 |
US10925245B1 (en) | 2019-08-29 | 2021-02-23 | M.S. Technologies, L.L.C. | Soybean cultivar 89021021 |
US11134635B2 (en) | 2019-08-29 | 2021-10-05 | M.S. Technologies, L.L.C. | Soybean cultivar 82371519 |
US11013198B2 (en) | 2019-08-29 | 2021-05-25 | M.S. Technologies, L.L.C. | Soybean cultivar 84042612 |
US11140845B2 (en) | 2019-08-29 | 2021-10-12 | M.S. Technologies, L.L.C. | Soybean cultivar 88041740 |
US11134636B2 (en) | 2019-08-29 | 2021-10-05 | M.S. Technologies, L.L.C. | Soybean cultivar 83222640 |
CN110951913B (en) * | 2020-01-09 | 2022-06-10 | 福建中医药大学 | Molecular specificity marker primer and method for mutual identification of amaranthus viridis, amaranthus pallidus and amaranthus retroflexus |
US11051481B1 (en) | 2020-02-13 | 2021-07-06 | M.S. Technologies, L.L.C. | Soybean cultivar 93020437 |
US11147230B2 (en) | 2020-02-13 | 2021-10-19 | M.S. Technologies, L.L.C. | Soybean cultivar 91420287 |
US11076563B1 (en) | 2020-02-13 | 2021-08-03 | M.S. Technologies, L.L.C. | Soybean cultivar 94040702 |
US11051479B1 (en) | 2020-02-13 | 2021-07-06 | M.S. Technologies, L.L.C. | Soybean cultivar 94140580 |
US11147229B2 (en) | 2020-02-13 | 2021-10-19 | M.S. Technologies, L.L.C. | Soybean cultivar 98240355 |
US11051480B1 (en) | 2020-02-13 | 2021-07-06 | M.S. Technologies, L.L.C. | Soybean cultivar 93230440 |
US11191238B2 (en) | 2020-02-13 | 2021-12-07 | M.S. Technologies, L.L.C. | Soybean cultivar 99240189 |
US11109557B1 (en) | 2020-02-13 | 2021-09-07 | M.S. Technologies, L.L.C. | Soybean cultivar 98110162 |
US11202427B2 (en) | 2020-02-13 | 2021-12-21 | M.S. Technologies, L.L.C. | Soybean cultivar 94110636 |
US11134640B2 (en) | 2020-02-13 | 2021-10-05 | M.S. Technologies, L.L.C. | Soybean cultivar 94220034 |
US11076562B1 (en) | 2020-02-13 | 2021-08-03 | M.S. Technologies, L.L.C. | Soybean cultivar 95130401 |
US11116168B2 (en) | 2020-02-13 | 2021-09-14 | M.S. Technologies, L.L.C. | Soybean cultivar 95420460 |
US11140855B2 (en) | 2020-02-13 | 2021-10-12 | M.S. Technologies, L.L.C. | Soybean cultivar 90420357 |
US11140856B2 (en) | 2020-02-21 | 2021-10-12 | M.S. Technologies, L.L.C. | Soybean cultivar 93440976 |
US11147231B2 (en) | 2020-02-21 | 2021-10-19 | M.S. Technologies, L.L.C. | Soybean cultivar 97040540 |
US11109558B1 (en) | 2020-02-21 | 2021-09-07 | M.S. Technologies, L.L.C. | Soybean cultivar 91220032 |
JP7211387B2 (en) | 2020-02-28 | 2023-01-24 | いすゞ自動車株式会社 | Driving support device and driving support method |
US11102951B1 (en) | 2020-06-02 | 2021-08-31 | M.S. Technologies, L.L.C. | Soybean cultivar 96130264 |
US11122766B1 (en) | 2020-06-02 | 2021-09-21 | M.S. Technologies, L.L.C. | Soybean cultivar 96140088 |
US11172638B1 (en) | 2020-06-02 | 2021-11-16 | M.S. Technologies, L.L.C. | Soybean cultivar 97320638 |
US11172639B1 (en) | 2020-06-02 | 2021-11-16 | M.S. Technologies, L.L.C. | Soybean cultivar 99310382 |
US11140857B1 (en) | 2020-06-02 | 2021-10-12 | M.S. Technologies, L.L.C. | Soybean cultivar 93320341 |
US11202429B1 (en) | 2020-06-02 | 2021-12-21 | M.S. Technologies, L.L.C. | Soybean cultivar 91410746 |
US11116169B1 (en) | 2020-06-02 | 2021-09-14 | M.S. Technologies, L.L.C. | Soybean cultivar 92050703 |
US11202430B1 (en) | 2020-06-02 | 2021-12-21 | M.S. Technologies, L.L.C. | Soybean cultivar 93120753 |
US11172640B1 (en) | 2020-06-02 | 2021-11-16 | M.S. Technologies, L.L.C. | Soybean cultivar 91230357 |
US11122764B1 (en) | 2020-06-02 | 2021-09-21 | M.S. Technologies, L.L.C. | Soybean cultivar 91210322 |
US11122765B1 (en) | 2020-06-02 | 2021-09-21 | M.S. Technologies, L.L.C. | Soybean cultivar 98220804 |
US11172637B1 (en) | 2020-06-02 | 2021-11-16 | M.S. Technologies, L.L.C. | Soybean cultivar 96350326 |
US11166430B1 (en) | 2020-06-02 | 2021-11-09 | M.S. Technologies, L.L.C. | Soybean cultivar 99120525 |
US11213001B2 (en) | 2020-06-02 | 2022-01-04 | M.S. Technologies, L.L.C. | Soybean cultivar 98320614 |
US11197452B1 (en) | 2020-07-14 | 2021-12-14 | M.S. Technologies, L.L.C. | Soybean cultivar 92140814 |
US11134642B1 (en) | 2020-07-14 | 2021-10-05 | M.S. Technologies, L.L.C. | Soybean cultivar 98272614 |
US11140858B1 (en) | 2020-07-14 | 2021-10-12 | M.S. Technologies, L.L.C. | Soybean cultivar 91040342 |
US11172641B1 (en) | 2020-07-14 | 2021-11-16 | M.S. Technologies, L.L.C. | Soybean cultivar 90140287 |
US11202433B1 (en) | 2020-07-14 | 2021-12-21 | M.S. Technologies, L.L.C. | Soybean cultivar 92010858 |
US11191240B1 (en) | 2020-07-14 | 2021-12-07 | M.S. Technologies, L.L.C. | Soybean cultivar 91210615 |
US11172643B1 (en) | 2020-07-14 | 2021-11-16 | M.S. Technologies, L.L.C. | Soybean cultivar 94440162 |
US11202432B1 (en) | 2020-07-14 | 2021-12-21 | M.S. Technologies, L.L.C. | Soybean cultivar 91410530 |
US11191242B1 (en) | 2020-07-14 | 2021-12-07 | M.S. Technologies, L.L.C. | Soybean cultivar 95450804 |
US11116170B1 (en) | 2020-07-14 | 2021-09-14 | M.S. Technologies, L.L.C. | Soybean cultivar 91250440 |
US11172642B1 (en) | 2020-07-14 | 2021-11-16 | M.S. Technologies, L.L.C. | Soybean cultivar 99150287 |
US11191241B1 (en) | 2020-07-14 | 2021-12-07 | M.S. Technologies, L.L.C. | Soybean cultivar 92220615 |
US11252912B2 (en) | 2020-07-17 | 2022-02-22 | M.S. Technologies, L.L.C. | Soybean cultivar 90220377 |
US11252911B2 (en) | 2020-07-17 | 2022-02-22 | M.S. Technologies, L.L.C. | Soybean cultivar 91110447 |
US11252909B2 (en) | 2020-07-17 | 2022-02-22 | M.S. Technologies, L.L.C. | Soybean cultivar 94120737 |
US11259490B2 (en) | 2020-07-17 | 2022-03-01 | M.S. Technologies, L.L.C. | Soybean cultivar 99250287 |
US11202434B1 (en) | 2020-07-17 | 2021-12-21 | M.S. Technologies, L.L.C. | Soybean cultivar 93140657 |
US11224183B1 (en) | 2020-07-17 | 2022-01-18 | M.S. Technologies, L.L.C. | Soybean cultivar 95040275 |
US11252908B2 (en) | 2020-07-17 | 2022-02-22 | M.S. Technologies, L.L.C. | Soybean cultivar 98310437 |
US11202435B1 (en) | 2020-07-17 | 2021-12-21 | M.S. Technologies, L.L.C. | Soybean cultivar 92040765 |
US11219184B1 (en) | 2020-07-17 | 2022-01-11 | M.S. Technologies, L.L.C. | Soybean cultivar 95250357 |
US11252913B2 (en) | 2020-07-17 | 2022-02-22 | M.S. Technologies, L.L.C. | Soybean cultivar 97240377 |
US11252914B2 (en) | 2020-07-17 | 2022-02-22 | M.S. Technologies, L.L.C. | Soybean cultivar 95111047 |
US11252910B2 (en) | 2020-07-17 | 2022-02-22 | M.S. Technologies, L.L.C. | Soybean cultivar 99350737 |
US11140859B1 (en) | 2020-07-29 | 2021-10-12 | M.S. Technologies, L.L.C. | Soybean cultivar 90120947 |
US11252915B1 (en) | 2020-07-29 | 2022-02-22 | M.S. Technologies, L.L.C. | Soybean cultivar 99040204 |
US11229179B1 (en) | 2020-07-29 | 2022-01-25 | M.S. Technologies, L.L.C. | Soybean cultivar 91410830 |
US11219186B1 (en) | 2020-07-29 | 2022-01-11 | M.S. Technologies, L.L.C. | Soybean cultivar 91120809 |
US11140860B1 (en) | 2020-07-29 | 2021-10-12 | M.S. Technologies, L.L.C. | Soybean cultivar 96220972 |
US11259491B2 (en) | 2020-07-29 | 2022-03-01 | M.S. Technologies, L.L.C. | Soybean cultivar 80540918 |
US11337397B2 (en) | 2020-07-29 | 2022-05-24 | M.S. Technologies, L.L.C. | Soybean cultivar 90442929 |
US11134643B1 (en) | 2020-07-29 | 2021-10-05 | M.S. Technologies, L.L.C. | Soybean cultivar 93410922 |
US11178837B1 (en) | 2020-07-29 | 2021-11-23 | M.S. Technologies, L.L.C. | Soybean cultivar 92230102 |
US11337395B2 (en) | 2020-07-29 | 2022-05-24 | M.S. Technologies, L.L.C. | Soybean cultivar 99090148 |
US11330782B2 (en) | 2020-07-29 | 2022-05-17 | M.S. Technologies, L.L.C. | Soybean cultivar 93070018 |
US11219187B1 (en) | 2020-07-29 | 2022-01-11 | M.S. Technologies, L.L.C. | Soybean cultivar 94240013 |
US11224184B1 (en) | 2020-07-29 | 2022-01-18 | M.S. Technologies, L.L.C. | Soybean cultivar 93330609 |
US11266103B2 (en) | 2020-07-29 | 2022-03-08 | M.S. Technologies, L.L.C. | Soybean cultivar 99150754 |
US11266104B2 (en) | 2020-07-29 | 2022-03-08 | M.S. Technologies, L.L.C. | Soybean cultivar 99030547 |
US11178838B1 (en) | 2020-07-29 | 2021-11-23 | M.S. Technologies, L.L.C. | Soybean cultivar 99262713 |
US11197453B1 (en) | 2020-07-29 | 2021-12-14 | M.S. Technologies, L.L.C. | Soybean cultivar 95130716 |
US11266101B2 (en) | 2020-07-29 | 2022-03-08 | M.S. Technologies, L.L.C. | Soybean cultivar 96310052 |
US11337396B2 (en) | 2020-07-29 | 2022-05-24 | M.S. Technologies, L.L.C. | Soybean cultivar 92312145 |
US11219185B1 (en) | 2020-07-29 | 2022-01-11 | M.S. Technologies, L.L.C. | Soybean cultivar 97250069 |
US11266102B2 (en) | 2020-07-29 | 2022-03-08 | M.S. Technologies, L.L.C. | Soybean cultivar 92220922 |
US11326177B2 (en) | 2020-07-31 | 2022-05-10 | Inari Agriculture Technology, Inc. | INIR12 transgenic maize |
US11242534B1 (en) | 2020-07-31 | 2022-02-08 | Inari Agriculture Technology, Inc. | INHT31 transgenic soybean |
US20240011043A1 (en) | 2020-07-31 | 2024-01-11 | Inari Agriculture Technology, Inc. | Generation of plants with improved transgenic loci by genome editing |
US11369073B2 (en) | 2020-07-31 | 2022-06-28 | Inari Agriculture Technology, Inc. | INIR12 transgenic maize |
US11214811B1 (en) | 2020-07-31 | 2022-01-04 | Inari Agriculture Technology, Inc. | INIR6 transgenic maize |
US11363791B2 (en) | 2020-09-25 | 2022-06-21 | M.S. Technologies, L.L.C. | Soybean cultivar 96060511 |
US11369075B2 (en) | 2020-09-25 | 2022-06-28 | M.S. Technologies, L.L.C. | Soybean cultivar 90392435 |
US11363789B2 (en) | 2020-09-25 | 2022-06-21 | M.S. Technologies, L.L.C. | Soybean cultivar 90440910 |
US11363790B2 (en) | 2020-09-25 | 2022-06-21 | M.S. Technologies, L.L.C | Soybean cultivar 91320747 |
US11412693B2 (en) | 2020-09-25 | 2022-08-16 | M.S. Technologies, L.L.C. | Soybean cultivar 95240447 |
US11432513B2 (en) | 2020-09-25 | 2022-09-06 | M.S. Technologies, L.L.C. | Soybean cultivar 99350040 |
US11540481B2 (en) | 2020-12-29 | 2023-01-03 | M.S. Technologies, L.L.C. | Soybean cultivar 97282440 |
US11445691B2 (en) | 2020-12-29 | 2022-09-20 | M.S. Technologies, L.L.C. | Soybean cultivar 92170645 |
US11477962B2 (en) | 2020-12-29 | 2022-10-25 | M.S. Technologies, L.L.C. | Soybean cultivar 94110617 |
US11457602B2 (en) | 2020-12-29 | 2022-10-04 | M.S. Technologies, L.L.C. | Soybean cultivar 97442034 |
US11716948B2 (en) | 2021-09-07 | 2023-08-08 | M.S. Technologies, L.L.C. | Soybean cultivar 04010758 |
US11678638B2 (en) | 2021-09-07 | 2023-06-20 | M.S. Technologies, L.L.C. | Soybean cultivar 02050116 |
US11825797B2 (en) | 2021-09-07 | 2023-11-28 | M.S. Technologies, L.L.C. | Soybean cultivar 03020534 |
US11696559B2 (en) | 2021-09-07 | 2023-07-11 | M.S. Technologies, L.L.C. | Soybean cultivar 08230349 |
US11818998B2 (en) | 2021-09-07 | 2023-11-21 | M.S. Technologies, L.L.C. | Soybean cultivar 05370116 |
US11712016B2 (en) | 2021-09-07 | 2023-08-01 | M.S. Technologies, L.L.C. | Soybean cultivar 05101723 |
US11930766B2 (en) | 2021-09-07 | 2024-03-19 | M.S. Technologies, L.L.C. | Soybean cultivar 03220758 |
US11678637B2 (en) | 2021-09-07 | 2023-06-20 | M.S. Technologies, L.L.C. | Soybean cultivar 03220116 |
US11653616B2 (en) | 2021-09-07 | 2023-05-23 | M.S. Technologies, L.L.C. | Soybean cultivar 03310138 |
US11737417B2 (en) | 2021-09-07 | 2023-08-29 | M.S. Technologies, L.L.C. | Soybean cultivar 09020706 |
US11737418B2 (en) | 2021-09-07 | 2023-08-29 | M.S. Technologies, L.L.C. | Soybean cultivar 00120926 |
US11771039B2 (en) | 2021-09-08 | 2023-10-03 | M.S. Technologies, L.L.C. | Soybean cultivar 06210302 |
US11647728B2 (en) | 2021-09-08 | 2023-05-16 | M.S. Technologies, L.L.C. | Soybean cultivar 04420302 |
US11690345B2 (en) | 2021-09-08 | 2023-07-04 | M.S. Technologies, L.L.C. | Soybean cultivar 09150308 |
US11653617B2 (en) | 2021-09-08 | 2023-05-23 | M.S. Technologies, L.L.C. | Soybean cultivar 08330707 |
US11716950B2 (en) | 2021-09-08 | 2023-08-08 | M.S. Technologies, L.L.C. | Soybean cultivar 02020322 |
US11895974B2 (en) | 2021-09-08 | 2024-02-13 | M.S. Technologies, L.L.C. | Soybean cultivar 08140308 |
US11716951B2 (en) | 2021-09-08 | 2023-08-08 | M.S. Technologies, L.L.C. | Soybean cultivar 04130322 |
US11825799B2 (en) | 2021-09-08 | 2023-11-28 | M.S. Technologies, L.L.C. | Soybean cultivar 01120432 |
US11716952B2 (en) | 2021-09-08 | 2023-08-08 | M.S. Technologies, L.L.C. | Soybean cultivar 04233715 |
US11700828B2 (en) | 2021-09-08 | 2023-07-18 | M.S. Technologies, L.L.C. | Soybean cultivar 00320209 |
US11696560B2 (en) | 2021-09-08 | 2023-07-11 | M.S. Technologies, L.L.C. | Soybean cultivar 01440925 |
US11622528B2 (en) | 2021-09-08 | 2023-04-11 | M.S. Technologies, L.L.C. | Soybean cultivar 01230324 |
US11839191B2 (en) | 2021-09-08 | 2023-12-12 | M.S. Technologies, L.L.C. | Soybean cultivar 01230720 |
US11825800B2 (en) | 2021-09-08 | 2023-11-28 | M.S. Technologies, L.L.C. | Soybean cultivar 05020705 |
US11985948B2 (en) | 2021-09-08 | 2024-05-21 | M.S. Technologies, L.L.C. | Soybean cultivar 04420343 |
US11707043B2 (en) | 2021-09-08 | 2023-07-25 | M.S. Technologies, L.L.C. | Soybean cultivar 02330315 |
US11766017B2 (en) | 2021-09-08 | 2023-09-26 | M.S. Technologies, L.L.C. | Soybean cultivar 01430308 |
US11825798B2 (en) | 2021-09-08 | 2023-11-28 | M.S. Technologies, L.L.C. | Soybean cultivar 07030530 |
US11716949B2 (en) | 2021-09-08 | 2023-08-08 | M.S. Technologies, L.L.C. | Soybean cultivar 04130507 |
US11832575B2 (en) | 2021-09-08 | 2023-12-05 | M.S. Technologies, L.L.C. | Soybean cultivar 09230307 |
US11716954B2 (en) | 2021-09-10 | 2023-08-08 | M.S. Technologies, L.L.C. | Soybean cultivar 04110156 |
US11766018B2 (en) | 2021-09-10 | 2023-09-26 | M.S. Technologies, L.L.C. | Soybean cultivar 08110534 |
US11696562B2 (en) | 2021-09-10 | 2023-07-11 | M.S. Technologies, L.L.C. | Soybean cultivar 06320913 |
US11856915B2 (en) | 2021-09-10 | 2024-01-02 | M.S. Technologies, L.L.C. | Soybean cultivar 00350156 |
US11778971B2 (en) | 2021-09-10 | 2023-10-10 | M.S. Technologies, L.L.C. | Soybean cultivar 08150118 |
US11716955B2 (en) | 2021-09-10 | 2023-08-08 | M.S. Technologies, L.L.C. | Soybean cultivar 08080534 |
US11716953B2 (en) | 2021-09-10 | 2023-08-08 | M.S. Technologies, L.L.C. | Soybean cultivar 02440012 |
US11744213B2 (en) | 2021-09-10 | 2023-09-05 | M.S. Technologies, L.L.C. | Soybean cultivar 05150332 |
US11785909B2 (en) | 2021-09-10 | 2023-10-17 | M.S. Technologies, L.L.C. | Soybean cultivar 08080157 |
US11744214B2 (en) | 2021-09-10 | 2023-09-05 | M.S. Technologies, L.L.C. | Soybean cultivar 04040454 |
US11712017B2 (en) | 2021-09-10 | 2023-08-01 | M.S. Technologies, L.L.C. | Soybean cultivar 02270817 |
US11690346B2 (en) | 2021-09-10 | 2023-07-04 | M.S. Technologies, L.L.C. | Soybean cultivar 08210041 |
US11696561B2 (en) | 2021-09-10 | 2023-07-11 | M.S. Technologies, L.L.C. | Soybean cultivar 03420817 |
US11778972B2 (en) | 2021-09-15 | 2023-10-10 | M.S. Technologies, L.L.C. | Soybean cultivar 05120629 |
US11856917B2 (en) | 2021-09-15 | 2024-01-02 | M.S. Technologies, L.L.C. | Soybean cultivar 02220303 |
US11771042B2 (en) | 2021-09-15 | 2023-10-03 | M.S. Technologies, L.L.C. | Soybean cultivar 01310539 |
US11785910B2 (en) | 2021-09-15 | 2023-10-17 | M.S. Technologies, L.L.C. | Soybean cultivar 00150230 |
US11771041B2 (en) | 2021-09-15 | 2023-10-03 | M.S. Technologies, L.L.C. | Soybean cultivar 00230222 |
US11766020B2 (en) | 2021-09-15 | 2023-09-26 | M.S. Technologies, L.L.C. | Soybean cultivar 01450536 |
US11758867B2 (en) | 2021-09-15 | 2023-09-19 | M.S. Technologies, L.L.C. | Soybean cultivar 01020340 |
US11856916B2 (en) | 2021-09-15 | 2024-01-02 | M.S. Technologies, L.L.C. | Soybean cultivar 06380605 |
US11895975B2 (en) | 2021-09-15 | 2024-02-13 | M.S. Technologies, L.L.C. | Soybean cultivar 09001515 |
US11771040B2 (en) | 2021-09-15 | 2023-10-03 | M.S. Technologies, L.L.C. | Soybean cultivar 07110300 |
US11766021B2 (en) | 2021-09-15 | 2023-09-26 | M.S. Technologies, L.L.C. | Soybean cultivar 03420109 |
US11766019B2 (en) | 2021-09-15 | 2023-09-26 | M.S. Technologies, L.L.C. | Soybean cultivar 08220628 |
US11832576B2 (en) | 2021-09-15 | 2023-12-05 | M.S. Technologies, L.L.C. | Soybean cultivar 08050515 |
US11758868B2 (en) | 2021-09-15 | 2023-09-19 | M.S. Technologies, L.L.C. | Soybean cultivar 03130400 |
US11930767B2 (en) | 2021-09-15 | 2024-03-19 | M.S. Technologies, L.L.C. | Soybean cultivar 04150316 |
US11825801B2 (en) | 2021-09-15 | 2023-11-28 | M.S. Technologies, L.L.C. | Soybean cultivar 03120254 |
US11778973B2 (en) | 2021-09-22 | 2023-10-10 | M.S. Technologies, L.L.C. | Soybean cultivar 00150108 |
US11819002B2 (en) | 2021-09-22 | 2023-11-21 | M.S. Technologies, L.L.C. | Soybean cultivar 06140706 |
US11818999B2 (en) | 2021-09-22 | 2023-11-21 | M.S. Technologies, L.L.C. | Soybean cultivar 04420349 |
US11778974B2 (en) | 2021-09-22 | 2023-10-10 | M.S. Technologies, L.L.C. | Soybean cultivar 07050021 |
US11819001B2 (en) | 2021-09-22 | 2023-11-21 | M.S. Technologies, L.L.C. | Soybean cultivar 02180205 |
US11812716B2 (en) | 2021-09-22 | 2023-11-14 | M.S. Technologies, L.L.C. | Soybean cultivar 04110707 |
US11832577B2 (en) | 2021-09-22 | 2023-12-05 | M.S. Technologies, L.L.C. | Soybean cultivar 08070926 |
US11825802B2 (en) | 2021-09-22 | 2023-11-28 | M.S. Technologies, L.L.C. | Soybean cultivar 05220177 |
US11825803B2 (en) | 2021-09-22 | 2023-11-28 | M.S. Technologies, L.L.C. | Soybean cultivar 08140870 |
US11812713B2 (en) | 2021-09-22 | 2023-11-14 | M.S. Technologies, L.L.C. | Soybean cultivar 09080611 |
US11812717B2 (en) | 2021-09-22 | 2023-11-14 | M.S. Technologies, L.L.C. | Soybean cultivar 06360802 |
US11819000B2 (en) | 2021-09-22 | 2023-11-21 | M.S. Technologies, L.L.C. | Soybean cultivar 05030038 |
US11771043B2 (en) | 2021-09-22 | 2023-10-03 | M.S. Technologies, L.L.C. | Soybean cultivar 06110608 |
US11812712B2 (en) | 2021-09-22 | 2023-11-14 | M.S. Technologies, L.L.C. | Soybean cultivar 02120535 |
US11812715B2 (en) | 2021-09-22 | 2023-11-14 | M.S. Technologies, L.L.C. | Soybean cultivar 05150847 |
US11812714B2 (en) | 2021-09-22 | 2023-11-14 | M.S. Technologies, L.L.C. | Soybean cultivar 03330181 |
US11716956B2 (en) | 2021-09-22 | 2023-08-08 | M.S. Technologies, L.L.C. | Soybean cultivar 07090548 |
US11832579B2 (en) | 2021-10-06 | 2023-12-05 | M.S. Technologies, L.L.C. | Soybean cultivar 04120519 |
US11758870B2 (en) | 2021-10-06 | 2023-09-19 | M.S. Technologies, L.L.C. | Soybean cultivar 09020446 |
US11925162B2 (en) | 2021-10-06 | 2024-03-12 | M.S. Technologies, L.L.C. | Soybean cultivar 01030624 |
US11925163B2 (en) | 2021-10-06 | 2024-03-12 | M.S. Technologies, L.L.C. | Soybean cultivar 07160900 |
US11930772B2 (en) | 2021-10-06 | 2024-03-19 | M.S. Technologies, L.L.C. | Soybean cultivar 04220959 |
US12035678B2 (en) | 2021-10-06 | 2024-07-16 | M.S. Technologies, L.L.C. | Soybean cultivar 03440554 |
US12035679B2 (en) | 2021-10-06 | 2024-07-16 | M.S. Technologies, L.L.C. | Soybean cultivar 01310057 |
US11839194B2 (en) | 2021-10-06 | 2023-12-12 | M.S. Technologies, L.L.C. | Soybean cultivar 04020201 |
US11930771B2 (en) | 2021-10-06 | 2024-03-19 | M.S. Technologies, L.L.C. | Soybean cultivar 02130624 |
US11832580B2 (en) | 2021-10-06 | 2023-12-05 | M.S. Technologies, L.L.C. | Soybean cultivar 06150159 |
US11925165B2 (en) | 2021-10-06 | 2024-03-12 | M.S. Technologies, L.L.C. | Soybean cultivar 03050606 |
US11903359B2 (en) | 2021-10-06 | 2024-02-20 | M.S. Technologies, L.L.C. | Soybean cultivar 05010818 |
US11925164B2 (en) | 2021-10-06 | 2024-03-12 | M.S. Technologies, L.L.C. | Soybean cultivar 07370900 |
US11917975B2 (en) | 2021-10-07 | 2024-03-05 | M.S. Technologies, L.L.C. | Soybean cultivar 05410624 |
US11895977B2 (en) | 2021-10-07 | 2024-02-13 | M.S. Technologies, L.L.C. | Soybean cultivar 03220926 |
US11930773B2 (en) | 2021-10-07 | 2024-03-19 | M.S. Technologies, L.L.C. | Soybean cultivar 81150353 |
US11997979B2 (en) | 2021-10-07 | 2024-06-04 | M.S. Technologies, L.L.C. | Soybean cultivar 05250624 |
US11930774B2 (en) | 2021-10-07 | 2024-03-19 | M.S. Technologies. L.L.C. | Soybean cultivar 03040515 |
US11882809B2 (en) | 2021-10-07 | 2024-01-30 | M.S. Technologies, L.L.C. | Soybean cultivar 04110611 |
US12022793B2 (en) | 2021-10-07 | 2024-07-02 | M.S. Technologies, L.L.C. | Soybean cultivar 05330516 |
US11930775B2 (en) | 2021-10-07 | 2024-03-19 | M.S. Technologies, L.L.C. | Soybean cultivar 09160202 |
US12029190B2 (en) | 2021-10-07 | 2024-07-09 | M.S. Technologies, L.L.C. | Soybean cultivar 02220412 |
US11895976B2 (en) | 2021-10-07 | 2024-02-13 | M.S. Technologies, L.L.C. | Soybean cultivar 04370122 |
US11980153B2 (en) | 2021-11-01 | 2024-05-14 | M.S. Technologies, L.L.C. | Soybean cultivar 02460140 |
US11980154B2 (en) | 2021-11-01 | 2024-05-14 | M.S. Technologies, L.L.C. | Soybean cultivar 01139005 |
US11991976B2 (en) | 2021-11-01 | 2024-05-28 | M.S. Technologies, L.L.C. | Soybean cultivar 04310504 |
US11950562B2 (en) | 2021-11-01 | 2024-04-09 | M.S. Technologies, L.L.C. | Soybean cultivar 04230926 |
US11895979B2 (en) | 2021-11-01 | 2024-02-13 | M.S. Technologies, L.L.C. | Soybean cultivar 04420512 |
US11895978B2 (en) | 2021-11-01 | 2024-02-13 | M.S. Technologies, L.L.C. | Soybean cultivar 03140402 |
US11930776B2 (en) | 2021-11-09 | 2024-03-19 | M.S. Technologies, L.L.C. | Soybean cultivar 07081321 |
US12127522B2 (en) | 2021-11-09 | 2024-10-29 | M.S. Technologies, L.L.C. | Soybean cultivar 02198425 |
US11991978B2 (en) | 2021-11-19 | 2024-05-28 | M.S. Technologies, L.L.C. | Soybean cultivar 86422336 |
US11980155B2 (en) | 2021-11-19 | 2024-05-14 | M.S. Technologies, L.L.C. | Soybean cultivar 89033583 |
US11980156B2 (en) | 2021-11-19 | 2024-05-14 | M.S. Technologies, L.L.C. | Soybean cultivar 88173583 |
US11991977B2 (en) | 2021-11-19 | 2024-05-28 | M.S. Technologies, L.L.C. | Soybean cultivar 80101544 |
US12114632B2 (en) | 2021-11-19 | 2024-10-15 | M.S. Technologies, L.L.C. | Soybean cultivar 88161335 |
US12035680B2 (en) | 2021-11-19 | 2024-07-16 | M.S. Technologies, L.L.C. | Soybean cultivar 87470849 |
US12016306B2 (en) | 2022-03-15 | 2024-06-25 | M.S. Technologies, L.L.C. | Soybean cultivar 11050808 |
US12016304B2 (en) | 2022-03-15 | 2024-06-25 | M.S. Technologies, L.L.C. | Soybean cultivar 18120126 |
US11980157B2 (en) | 2022-03-15 | 2024-05-14 | M.S. Technologies, L.L.C. | Soybean cultivar 13130617 |
US12016305B2 (en) | 2022-03-15 | 2024-06-25 | M.S. Technologies, L.L.C. | Soybean cultivar 13390425 |
US12121000B2 (en) | 2022-08-31 | 2024-10-22 | M.S. Technologies, L.L.C. | Soybean cultivar 13330102 |
US12121001B2 (en) | 2022-08-31 | 2024-10-22 | M.S. Technologies, L.L.C. | Soybean cultivar 14310432 |
US12089560B2 (en) | 2022-08-31 | 2024-09-17 | M.S. Technologies, L.L.C. | Soybean cultivar 14240419 |
US12089559B2 (en) | 2022-08-31 | 2024-09-17 | M.S. Technologies, L.L.C. | Soybean cultivar 13320419 |
US12114636B2 (en) | 2022-08-31 | 2024-10-15 | M.S. Technologies, L.L.C. | Soybean cultivar 15050102 |
US12114635B2 (en) | 2022-08-31 | 2024-10-15 | M.S. Technologies, L.L.C. | Soybean cultivar 19320106 |
US12070007B2 (en) | 2022-08-31 | 2024-08-27 | M.S. Technologies, L.L.C. | Soybean cultivar 11230247 |
CN116716434B (en) * | 2023-08-01 | 2023-10-03 | 隆平生物技术(海南)有限公司 | Transgenic soybean event LP012-3 and detection method thereof |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4535060A (en) | 1983-01-05 | 1985-08-13 | Calgene, Inc. | Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use |
US5094945A (en) | 1983-01-05 | 1992-03-10 | Calgene, Inc. | Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthase, production and use |
US5310667A (en) | 1989-07-17 | 1994-05-10 | Monsanto Company | Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthases |
US5633435A (en) | 1990-08-31 | 1997-05-27 | Monsanto Company | Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases |
US5866775A (en) | 1990-09-28 | 1999-02-02 | Monsanto Company | Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthases |
US6040497A (en) | 1997-04-03 | 2000-03-21 | Dekalb Genetics Corporation | Glyphosate resistant maize lines |
US6566587B1 (en) | 1995-07-19 | 2003-05-20 | Bayer Cropscience S.A. | Mutated 5-enolpyruvylshikimate-3-phosphate synthase, gene coding for said protein and transformed plants containing said gene |
US20040031072A1 (en) * | 1999-05-06 | 2004-02-12 | La Rosa Thomas J. | Soy nucleic acid molecules and other molecules associated with transcription plants and uses thereof for plant improvement |
US20050216969A1 (en) * | 2004-03-26 | 2005-09-29 | Dow Agrosciences Llc | Cry1F and Cry1AC transgenic cotton lines and event-specific identification thereof |
US20060282915A1 (en) * | 2005-05-27 | 2006-12-14 | Monsanto Technology Llc | Soybean event MON89788 and methods for detection thereof |
US20090104700A1 (en) * | 2007-10-05 | 2009-04-23 | Samuel Jayakumar P | Methods for transferring molecular substances into plant cells |
US7786353B2 (en) * | 2003-09-29 | 2010-08-31 | Monsanto Technology Llc | Methods for enhancing drought tolerance in plants and compositions thereof |
US20100251432A1 (en) * | 2007-05-09 | 2010-09-30 | Dow Agrosciences Llc | Novel Herbicide Resistance Genes |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5176995A (en) | 1985-03-28 | 1993-01-05 | Hoffmann-La Roche Inc. | Detection of viruses by amplification and hybridization |
US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4965188A (en) | 1986-08-22 | 1990-10-23 | Cetus Corporation | Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme |
DE3629890A1 (en) | 1986-08-29 | 1988-03-10 | Schering Ag | MICROORGANISMS AND PLASMIDES FOR THE 2,4-DICHLORPHENOXYACETIC ACID (2,4-D) MONOOXIGENASE - FORMATION AND METHOD FOR PRODUCING THIS PLASMIDE AND STEM |
US5658772A (en) | 1989-12-22 | 1997-08-19 | E. I. Du Pont De Nemours And Company | Site-specific recombination of DNA in plant cells |
US5608147A (en) | 1994-01-11 | 1997-03-04 | Kaphammer; Bryan J. | tfdA gene selectable markers in plants and the use thereof |
US7105724B2 (en) | 1997-04-04 | 2006-09-12 | Board Of Regents Of University Of Nebraska | Methods and materials for making and using transgenic dicamba-degrading organisms |
US6720475B1 (en) | 1997-11-18 | 2004-04-13 | Pioneer Hi-Bred International, Inc. | Modified nucleic acid sequence encoding FLP recombinase |
US20030237110A9 (en) * | 1998-05-12 | 2003-12-25 | Incyte Pharmaceuticals, Inc. | Polynucleotides and polypeptides derived from corn seedling |
US20070083945A1 (en) * | 2000-03-10 | 2007-04-12 | Byrum Joseph R | Nucleic acid molecules and other molecules associated with plants |
US7834146B2 (en) | 2000-05-08 | 2010-11-16 | Monsanto Technology Llc | Recombinant polypeptides associated with plants |
US20030031757A1 (en) | 2001-08-03 | 2003-02-13 | Kraft Food Holdings, Inc. | Stable and bioavailable iron fortified beverages |
BR0211809A (en) | 2001-08-09 | 2004-09-08 | Univ Saskatchewan | Wheat plants having increased resistance to imidazolinone herbicides and its production method |
JP4928713B2 (en) * | 2001-08-22 | 2012-05-09 | ソレイ リミテッド ライアビリティ カンパニー | Soybean meal with reduced fat and soluble sugar content, and production method and use thereof |
US20030232410A1 (en) | 2002-03-21 | 2003-12-18 | Monika Liljedahl | Methods and compositions for using zinc finger endonucleases to enhance homologous recombination |
JP2004027091A (en) | 2002-06-27 | 2004-01-29 | Nisshin Oillio Ltd | Compressed soybean oil and method for producing the same |
US7705216B2 (en) | 2002-07-29 | 2010-04-27 | Monsanto Technology Llc | Corn event PV-ZMIR13 (MON863) plants and compositions and methods for detection thereof |
US7045684B1 (en) | 2002-08-19 | 2006-05-16 | Mertec, Llc | Glyphosate-resistant plants |
WO2004074443A2 (en) | 2003-02-18 | 2004-09-02 | Monsanto Technology Llc | Glyphosate resistant class i 5-enolpyruvylshikimate-3-phosphate synthase (epsps) |
FR2865738B1 (en) | 2004-02-03 | 2008-06-20 | Agronomique Inst Nat Rech | USE OF GENES ENCODING POTASSIVE CHANNELS TO MODIFY A PHENOTYPE RELATING TO A SIZE OF AT LEAST ONE PLANT STORAGE ORGAN |
SI2298901T2 (en) * | 2004-04-30 | 2017-08-31 | Dow Agrosciences Llc | Novel herbicide resistance genes |
US7750207B2 (en) | 2004-09-01 | 2010-07-06 | Monsanto Technology Llc | Zea mays ribulose bisphosphate carboxylase activase promoter |
EP1794308B1 (en) | 2004-09-29 | 2013-08-28 | Pioneer-Hi-Bred International, Inc. | Corn event das-59122-7 and methods for detection thereof |
MX2007005166A (en) | 2004-10-29 | 2007-06-26 | Bayer Bioscience Nv | Stress tolerant cotton plants. |
ATE514792T1 (en) | 2005-04-11 | 2011-07-15 | Bayer Bioscience Nv | ELITE EVENT A5547-127 AND METHODS AND KITS FOR IDENTIFYING SUCH EVENT IN BIOLOGICAL SAMPLES |
BRPI0618025B1 (en) | 2005-10-28 | 2016-12-27 | Dow Agrosciences Llc | method for controlling weeds in an area, isolated polynucleotide, plant cell and herbicide resistant plant |
WO2011066360A1 (en) | 2009-11-24 | 2011-06-03 | Dow Agrosciences Llc | Detection of aad-12 soybean event 416 |
UA14839U (en) | 2006-02-23 | 2006-05-15 | Tetiana Viacheslavivna Chokha | Biscuit confectionery product |
US7951995B2 (en) | 2006-06-28 | 2011-05-31 | Pioneer Hi-Bred International, Inc. | Soybean event 3560.4.3.5 and compositions and methods for the identification and detection thereof |
ZA200900787B (en) | 2006-08-11 | 2010-05-26 | Dow Agrosciences Llc | Zinc finger nuclease-mediated homologous recombination |
BR122017006111B8 (en) * | 2006-10-31 | 2022-12-06 | Du Pont | METHODS TO CONTROL WEEDS |
NZ576800A (en) | 2006-12-14 | 2013-02-22 | Dow Agrosciences Llc | Optimized non-canonical zinc finger proteins |
CN100558902C (en) | 2007-01-24 | 2009-11-11 | 中国农业科学院油料作物研究所 | Transgene rape exogenous origin gene integrator incident Rf1 exogenous insertion vector flanking sequence and application thereof |
JP2008295322A (en) * | 2007-05-30 | 2008-12-11 | Cb:Kk | Edible seed processed product |
EP2594647A3 (en) | 2007-09-21 | 2013-07-24 | BASF Plant Science GmbH | Plants with increased yield |
US8049071B2 (en) * | 2007-11-15 | 2011-11-01 | Monsanto Technology Llc | Soybean plant and seed corresponding to transgenic event MON87701 and methods for detection thereof |
CA2714460C (en) | 2008-03-03 | 2016-05-17 | Ms Technologies Llc | Antibodies immunoreactive with mutant 5-enolpyruvylshikimate-3-phosphate synthase |
AU2009257375B2 (en) | 2008-06-11 | 2016-07-07 | Dow Agrosciences Llc | Constructs for expressing herbicide tolerance genes, related plants, and related trait combinations |
EP2304030B1 (en) | 2008-07-01 | 2015-11-25 | Monsanto Technology LLC | Recombinant dna constructs and methods for modulating expression of a target gene |
US8344209B2 (en) | 2008-07-14 | 2013-01-01 | Syngenta Participations Ag | Plant regulatory sequences |
CN102131921A (en) | 2008-08-05 | 2011-07-20 | 帝斯曼知识产权资产管理有限公司 | Adipoyl-7-adca producing strains |
WO2010079032A1 (en) | 2008-12-17 | 2010-07-15 | Basf Plant Science Gmbh | Production of ketocarotenoids in plants |
EP2573183B1 (en) | 2009-01-22 | 2017-01-04 | Syngenta Participations AG | Mutant hydroxyphenylpyruvate dioxgenase polypeptids and methods of use |
MX2012005932A (en) | 2009-11-23 | 2012-09-12 | Bayer Cropscience Nv | Herbicide tolerant soybean plants and methods for identifying same. |
CN102711444B (en) | 2009-11-24 | 2015-08-12 | 陶氏益农公司 | AAD-12 event 416, relevant genetically engineered soybean system and event-specific identification thereof |
RU2583658C2 (en) | 2009-11-24 | 2016-05-10 | ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи | Control dicotyledonous volunteers aad in monocotyledonous crops |
CN103561564B (en) * | 2010-12-03 | 2016-11-16 | 陶氏益农公司 | Herbicide tolerant event 8264.44.06.1 of superposition, related transgenic Semen sojae atricolor system and detection thereof |
AR087185A1 (en) | 2011-07-13 | 2014-02-26 | Dow Agrosciences Llc | 8264.42.32.1 EVENT OF TOLERANCE STACKED ON HERBICIDES, RELATED TRANSGENIC SOYA LINES AND THEIR DETECTION |
-
2011
- 2011-12-02 CN CN201180066807.XA patent/CN103561564B/en active Active
- 2011-12-02 KR KR1020137017380A patent/KR102031625B1/en active IP Right Grant
- 2011-12-02 US US13/991,246 patent/US9540655B2/en active Active
- 2011-12-02 JP JP2013542220A patent/JP6111200B2/en active Active
- 2011-12-02 UA UAA201308352A patent/UA115766C2/en unknown
- 2011-12-02 MX MX2017008555A patent/MX369292B/en unknown
- 2011-12-02 BR BR112012010778A patent/BR112012010778A8/en active IP Right Grant
- 2011-12-02 EP EP11845484.2A patent/EP2645848B1/en active Active
- 2011-12-02 CA CA2819684A patent/CA2819684C/en active Active
- 2011-12-02 AU AU2011336364A patent/AU2011336364B2/en active Active
- 2011-12-02 CN CN201610916452.3A patent/CN107529548B/en active Active
- 2011-12-02 RU RU2013129985A patent/RU2608650C2/en active
- 2011-12-02 EP EP18172142.4A patent/EP3382028A1/en active Pending
- 2011-12-02 MX MX2013006194A patent/MX348731B/en active IP Right Grant
- 2011-12-02 WO PCT/US2011/063129 patent/WO2012075426A1/en active Application Filing
- 2011-12-05 AR ARP110104545A patent/AR084161A1/en active IP Right Grant
- 2011-12-05 UY UY0001033767A patent/UY33767A/en active IP Right Grant
- 2011-12-05 UY UY0001038329A patent/UY38329A/en active IP Right Grant
-
2013
- 2013-05-30 IL IL226664A patent/IL226664B/en active IP Right Grant
- 2013-05-31 CL CL2013001572A patent/CL2013001572A1/en unknown
- 2013-05-31 MX MX2019013089A patent/MX2019013089A/en unknown
-
2017
- 2017-01-05 US US15/399,674 patent/US10400250B2/en active Active
-
2019
- 2019-06-07 US US16/434,995 patent/US10973229B2/en active Active
-
2021
- 2021-04-07 US US17/224,694 patent/US11425906B2/en active Active
-
2022
- 2022-07-28 US US17/876,172 patent/US20230056359A1/en not_active Abandoned
- 2022-08-29 US US17/897,988 patent/US11819022B2/en active Active
-
2023
- 2023-11-08 US US18/504,940 patent/US20240147996A1/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4769061A (en) | 1983-01-05 | 1988-09-06 | Calgene Inc. | Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthase, production and use |
US5094945A (en) | 1983-01-05 | 1992-03-10 | Calgene, Inc. | Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthase, production and use |
US4535060A (en) | 1983-01-05 | 1985-08-13 | Calgene, Inc. | Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use |
US5310667A (en) | 1989-07-17 | 1994-05-10 | Monsanto Company | Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthases |
US5633435A (en) | 1990-08-31 | 1997-05-27 | Monsanto Company | Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases |
US5866775A (en) | 1990-09-28 | 1999-02-02 | Monsanto Company | Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthases |
US6225114B1 (en) | 1990-09-28 | 2001-05-01 | Monsanto Company | Modified gene encoding glyphosate-tolerant 5-enolpruvyl-3-phosphoshikimate synthase |
US6566587B1 (en) | 1995-07-19 | 2003-05-20 | Bayer Cropscience S.A. | Mutated 5-enolpyruvylshikimate-3-phosphate synthase, gene coding for said protein and transformed plants containing said gene |
US6040497A (en) | 1997-04-03 | 2000-03-21 | Dekalb Genetics Corporation | Glyphosate resistant maize lines |
US20040031072A1 (en) * | 1999-05-06 | 2004-02-12 | La Rosa Thomas J. | Soy nucleic acid molecules and other molecules associated with transcription plants and uses thereof for plant improvement |
US7786353B2 (en) * | 2003-09-29 | 2010-08-31 | Monsanto Technology Llc | Methods for enhancing drought tolerance in plants and compositions thereof |
US20050216969A1 (en) * | 2004-03-26 | 2005-09-29 | Dow Agrosciences Llc | Cry1F and Cry1AC transgenic cotton lines and event-specific identification thereof |
US20060282915A1 (en) * | 2005-05-27 | 2006-12-14 | Monsanto Technology Llc | Soybean event MON89788 and methods for detection thereof |
US20100251432A1 (en) * | 2007-05-09 | 2010-09-30 | Dow Agrosciences Llc | Novel Herbicide Resistance Genes |
US20090104700A1 (en) * | 2007-10-05 | 2009-04-23 | Samuel Jayakumar P | Methods for transferring molecular substances into plant cells |
Non-Patent Citations (5)
Title |
---|
DATABASE GenBank [O] retrieved from NCBI Database accession no. X63374 |
DATABASE GENBANK [online] 19 November 2008 (2008-11-19), "Glycine max cDNA, clone: GMFL01-25-J19", retrieved from http://www.ncbi.nlm.nih.gov/nuccore/AK286292.1 Database accession no. AK286292.1. * |
DATABASE GENBANK [online] 5 December 2008 (2008-12-05), "Glycine max clone BAC 71B1.", retrieved from http://www.ncbi.nlm.nih.gov/nuccore/EU721743 Database accession no. EU721743.1. * |
See also references of EP2645848A4 |
WEISING ET AL., ANN. REV. GENET, vol. 22, 1988, pages 421 - 477 |
Cited By (180)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11425906B2 (en) | 2010-12-03 | 2022-08-30 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US9540655B2 (en) | 2010-12-03 | 2017-01-10 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US9540656B2 (en) | 2010-12-03 | 2017-01-10 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8291.45.36.2, related transgenic soybean lines, and detection thereof |
US9018451B2 (en) | 2010-12-03 | 2015-04-28 | M S Technologies, LLC | Optimized expression of glyphosate resistance encoding nucleic acid molecules in plant cells |
EP3382028A1 (en) | 2010-12-03 | 2018-10-03 | Dow AgroSciences LLC | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US10400250B2 (en) | 2010-12-03 | 2019-09-03 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US10973229B2 (en) | 2010-12-03 | 2021-04-13 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
US11819022B2 (en) | 2010-12-03 | 2023-11-21 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof |
EP2731419A4 (en) * | 2011-07-13 | 2015-04-29 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.42.32.1, related transgenic soybean lines, and detection thereof |
US9732353B2 (en) | 2011-07-13 | 2017-08-15 | Dow Agrosciences Llc | Stacked herbicide tolerance event 8264.42.32.1, related transgenic soybean lines, and detection thereof |
EP2736321A4 (en) * | 2011-07-26 | 2015-02-11 | Dow Agrosciences Llc | Insect resistant and herbicide tolerant soybean event 9582.814.19.1 |
WO2013016520A1 (en) * | 2011-07-26 | 2013-01-31 | Dow Agrosciences Llc | SOYBEAN EVENT pDAB9582.814.19.1 DETECTION METHOD |
US8632978B2 (en) * | 2011-07-26 | 2014-01-21 | Dow Agrosciences, Llc. | Soybean event pDAB9582.814.19.1 detection method |
WO2013016516A1 (en) | 2011-07-26 | 2013-01-31 | Dow Agrosciences Llc | Insect resistant and herbicide tolerant breeding stack of soybean event pdab9582.814.19.1 and pdab4468.04.16.1 |
US20130065230A1 (en) * | 2011-07-26 | 2013-03-14 | Dow Agrosciences Llc | SOYBEAN EVENT pDAB9582.814.19.1 DETECTION METHOD |
US9695441B2 (en) | 2011-07-26 | 2017-07-04 | Dow Agrosciences Llc | Insect resistant and herbicide tolerant soybean event 9582.814.19.1 |
WO2013075817A1 (en) | 2011-11-21 | 2013-05-30 | Bayer Intellectual Property Gmbh | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
WO2013079566A2 (en) | 2011-11-30 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives |
WO2013098146A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013098147A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013110594A1 (en) | 2012-01-25 | 2013-08-01 | Bayer Intellectual Property Gmbh | Active compound combinations containing fluopyram and biological control agent |
CN104718293B (en) * | 2012-06-25 | 2022-04-12 | 美国陶氏益农公司 | Soybean event pDAB9582.816.15.1 detection method |
WO2014004458A3 (en) * | 2012-06-25 | 2014-02-20 | Dow Agrosciences Llc | Insect resistant and herbicide tolerant soybean event pdab9582.816.15.1 |
AU2013280641B2 (en) * | 2012-06-25 | 2019-04-04 | Corteva Agriscience Llc | Insect resistant and herbicide tolerant soybean event pDAB9582.816.15.1 |
RU2650626C2 (en) * | 2012-06-25 | 2018-04-17 | ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи | Insect-resistant and herbicide-resistant soybean transformant pdab9582.816.15.1 |
US9863008B2 (en) | 2012-06-25 | 2018-01-09 | Dow Agrosciences Llc | Soybean event pDAB9582.816.15.1 detection method |
US10455834B2 (en) | 2012-06-25 | 2019-10-29 | Dow Agrosciences Llc | Insect resistant and herbicide tolerant soybean event pDAB9582.816.15.1 |
US20150335017A1 (en) * | 2012-06-25 | 2015-11-26 | Dow Agrosciences Llc | INSECT RESISTANT AND HERBICIDE TOLERANT SOYBEAN EVENT pDAB9582.816.15.1 |
KR102085131B1 (en) * | 2012-06-25 | 2020-03-05 | 다우 아그로사이언시즈 엘엘씨 | Insect resistant and herbicide tolerant soybean event pdab9582.816.15.1 |
KR20150027233A (en) * | 2012-06-25 | 2015-03-11 | 다우 아그로사이언시즈 엘엘씨 | Insect resistant and herbicide tolerant soybean event pdab9582.816.15.1 |
JP2018171061A (en) * | 2012-06-25 | 2018-11-08 | ダウ アグロサイエンシィズ エルエルシー | INSECT RESISTANT AND HERBICIDE TOLERANT SOYBEAN EVENT pDAB9582.816.15.1 |
CN104583404A (en) * | 2012-06-25 | 2015-04-29 | 美国陶氏益农公司 | Insect resistant and herbicide tolerant soybean event pDAB9582.816.15.1 |
CN112273114A (en) * | 2012-06-25 | 2021-01-29 | 美国陶氏益农公司 | Insect-resistant and herbicide-tolerant soybean event pDAB9582.816.15.1 |
CN104718293A (en) * | 2012-06-25 | 2015-06-17 | 美国陶氏益农公司 | Soybean event pDAB9582.816.15.1 detection method |
JP2015522283A (en) * | 2012-06-25 | 2015-08-06 | ダウ アグロサイエンシィズ エルエルシー | Insect- and herbicide-tolerant soybean events pDAB9582.8815.15.1 |
WO2014004472A1 (en) * | 2012-06-25 | 2014-01-03 | Dow Agrosciences Llc | Soybean event pdab9582.816.15.1 detection method |
CN112273114B (en) * | 2012-06-25 | 2023-02-28 | 美国陶氏益农公司 | Insect-resistant and herbicide-tolerant soybean event pDAB9582.816.15.1 |
EP2864481A4 (en) * | 2012-06-25 | 2016-02-10 | Dow Agrosciences Llc | Insect resistant and herbicide tolerant soybean event pdab9582.816.15.1 |
EP3683307A2 (en) | 2012-09-14 | 2020-07-22 | BASF Agricultural Solutions Seed US LLC | Hppd variants and methods of use |
EP3173477A1 (en) | 2012-09-14 | 2017-05-31 | Bayer Cropscience LP | Hppd variants and methods of use |
WO2014043435A1 (en) | 2012-09-14 | 2014-03-20 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2014060502A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Active compound combinations comprising carboxamide derivatives |
WO2014060518A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method of plant growth promotion using carboxamide derivatives |
WO2014060519A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives |
WO2014060520A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
WO2014090765A1 (en) | 2012-12-12 | 2014-06-19 | Bayer Cropscience Ag | Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops |
WO2014124373A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and an insecticide |
WO2014124375A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and a biological control agent |
WO2014124361A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and another biological control agent |
WO2014124369A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and a fungicide |
WO2014124368A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and a fungicide |
WO2014124379A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and an insecticide |
EP3626828A2 (en) | 2013-03-07 | 2020-03-25 | BASF Agricultural Solutions Seed US LLC | Toxin genes and methods for their use |
WO2014138339A2 (en) | 2013-03-07 | 2014-09-12 | Athenix Corp. | Toxin genes and methods for their use |
WO2014170345A2 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants |
WO2014177514A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | Nematicidal n-substituted phenethylcarboxamides |
WO2014177582A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides |
EP2837287A1 (en) | 2013-08-15 | 2015-02-18 | Bayer CropScience AG | Use of prothioconazole for increasing root growth of Brassicaceae |
WO2015138394A2 (en) | 2014-03-11 | 2015-09-17 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2015160619A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a fungicide |
WO2015160620A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and an insecticide |
WO2015160618A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a biological control agent |
WO2016193073A1 (en) | 2015-05-29 | 2016-12-08 | Bayer Cropscience Aktiengesellschaft | Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents |
EP3097782A1 (en) | 2015-05-29 | 2016-11-30 | Bayer CropScience Aktiengesellschaft | Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents |
WO2017042259A1 (en) | 2015-09-11 | 2017-03-16 | Bayer Cropscience Aktiengesellschaft | Hppd variants and methods of use |
WO2018098214A1 (en) | 2016-11-23 | 2018-05-31 | Bayer Cropscience Lp | Axmi669 and axmi991 toxin genes and methods for their use |
WO2018119364A1 (en) | 2016-12-22 | 2018-06-28 | Bayer Cropscience Lp | Elite event ee-gm5 and methods and kits for identifying such event in biological samples |
WO2018119361A1 (en) | 2016-12-22 | 2018-06-28 | Bayer Cropscience Lp | Elite event ee-gm4 and methods and kits for identifying such event in biological samples |
WO2018119336A1 (en) | 2016-12-22 | 2018-06-28 | Athenix Corp. | Use of cry14 for the control of nematode pests |
WO2018136611A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Use of bp005 for the control of plant pathogens |
WO2018136604A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Bp005 toxin gene and methods for its use |
WO2018165091A1 (en) | 2017-03-07 | 2018-09-13 | Bayer Cropscience Lp | Hppd variants and methods of use |
WO2018195256A1 (en) | 2017-04-21 | 2018-10-25 | Bayer Cropscience Lp | Method of improving crop safety |
WO2019020283A1 (en) | 2017-07-27 | 2019-01-31 | Basf Se | Use of herbicidal compositions based on l-glufosinate in tolerant field crops |
WO2019083808A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to hppd inhibitors by down-regulation of putative 4-hydroxyphenylpyruvate reductases in soybean |
WO2019083810A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | Improvement of herbicide tolerance to 4-hydroxyphenylpyruvate dioxygenase (hppd) inhibitors by down-regulation of hppd expression in soybean |
WO2019233863A1 (en) | 2018-06-04 | 2019-12-12 | Bayer Aktiengesellschaft | Herbicidally active bicyclic benzoylpyrazoles |
WO2021013721A1 (en) | 2019-07-22 | 2021-01-28 | Bayer Aktiengesellschaft | 5-amino substituted pyrazoles and triazoles as pest control agents |
WO2021013720A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021013719A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021022069A1 (en) | 2019-08-01 | 2021-02-04 | Bayer Cropscience Lp | Method of improving cold stress tolerance and crop safety |
EP3701796A1 (en) | 2019-08-08 | 2020-09-02 | Bayer AG | Active compound combinations |
WO2021058659A1 (en) | 2019-09-26 | 2021-04-01 | Bayer Aktiengesellschaft | Rnai-mediated pest control |
WO2021064075A1 (en) | 2019-10-02 | 2021-04-08 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
WO2021069567A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021069569A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021089673A1 (en) | 2019-11-07 | 2021-05-14 | Bayer Aktiengesellschaft | Substituted sulfonyl amides for controlling animal pests |
WO2021097162A1 (en) | 2019-11-13 | 2021-05-20 | Bayer Cropscience Lp | Beneficial combinations with paenibacillus |
WO2021099303A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021099271A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
WO2021105091A1 (en) | 2019-11-25 | 2021-06-03 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021155084A1 (en) | 2020-01-31 | 2021-08-05 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
WO2021165195A1 (en) | 2020-02-18 | 2021-08-26 | Bayer Aktiengesellschaft | Heteroaryl-triazole compounds as pesticides |
EP3708565A1 (en) | 2020-03-04 | 2020-09-16 | Bayer AG | Pyrimidinyloxyphenylamidines and the use thereof as fungicides |
WO2021211926A1 (en) | 2020-04-16 | 2021-10-21 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021209490A1 (en) | 2020-04-16 | 2021-10-21 | Bayer Aktiengesellschaft | Cyclaminephenylaminoquinolines as fungicides |
WO2021213978A1 (en) | 2020-04-21 | 2021-10-28 | Bayer Aktiengesellschaft | 2-(het)aryl-substituted condensed heterocyclic derivatives as pest control agents |
WO2021224323A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
WO2021224220A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Pyridine (thio)amides as fungicidal compounds |
WO2021228734A1 (en) | 2020-05-12 | 2021-11-18 | Bayer Aktiengesellschaft | Triazine and pyrimidine (thio)amides as fungicidal compounds |
WO2021233861A1 (en) | 2020-05-19 | 2021-11-25 | Bayer Aktiengesellschaft | Azabicyclic(thio)amides as fungicidal compounds |
WO2021247477A1 (en) | 2020-06-02 | 2021-12-09 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021245087A1 (en) | 2020-06-04 | 2021-12-09 | Bayer Aktiengesellschaft | Heterocyclyl pyrimidines and triazines as novel fungicides |
WO2021249995A1 (en) | 2020-06-10 | 2021-12-16 | Bayer Aktiengesellschaft | Azabicyclyl-substituted heterocycles as fungicides |
WO2021257775A1 (en) | 2020-06-17 | 2021-12-23 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
WO2021255118A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | Composition for use in agriculture |
WO2021255071A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection |
WO2021255089A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides |
WO2021255091A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazoles and their derivatives as fungicides |
WO2021255170A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
WO2021255169A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
EP3929189A1 (en) | 2020-06-25 | 2021-12-29 | Bayer Animal Health GmbH | Novel heteroaryl-substituted pyrazine derivatives as pesticides |
WO2021259997A1 (en) | 2020-06-25 | 2021-12-30 | Bayer Animal Health Gmbh | Novel heteroaryl-substituted pyrazine derivatives as pesticides |
WO2022002818A1 (en) | 2020-07-02 | 2022-01-06 | Bayer Aktiengesellschaft | Heterocyclene derivatives as pest control agents |
WO2022026849A1 (en) * | 2020-07-31 | 2022-02-03 | Inari Agriculture Technology, Inc. | Inir19 transgenic soybean |
WO2022033991A1 (en) | 2020-08-13 | 2022-02-17 | Bayer Aktiengesellschaft | 5-amino substituted triazoles as pest control agents |
WO2022053453A1 (en) | 2020-09-09 | 2022-03-17 | Bayer Aktiengesellschaft | Azole carboxamide as pest control agents |
WO2022058327A1 (en) | 2020-09-15 | 2022-03-24 | Bayer Aktiengesellschaft | Substituted ureas and derivatives as new antifungal agents |
EP3974414A1 (en) | 2020-09-25 | 2022-03-30 | Bayer AG | 5-amino substituted pyrazoles and triazoles as pesticides |
EP3915971A1 (en) | 2020-12-16 | 2021-12-01 | Bayer Aktiengesellschaft | Phenyl-s(o)n-phenylamidines and the use thereof as fungicides |
WO2022129190A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides |
WO2022129196A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Heterobicycle substituted 1,2,4-oxadiazoles as fungicides |
WO2022129188A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | 1,2,4-oxadiazol-3-yl pyrimidines as fungicides |
WO2022129200A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Use of dhodh inhibitor for controlling resistant phytopathogenic fungi in crops |
EP4036083A1 (en) | 2021-02-02 | 2022-08-03 | Bayer Aktiengesellschaft | 5-oxy substituted heterocycles as pesticides |
WO2022173885A1 (en) | 2021-02-11 | 2022-08-18 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin oxidase levels in plants |
WO2022182834A1 (en) | 2021-02-25 | 2022-09-01 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture in plants |
WO2022207494A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2022207496A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2022233777A1 (en) | 2021-05-06 | 2022-11-10 | Bayer Aktiengesellschaft | Alkylamide substituted, annulated imidazoles and use thereof as insecticides |
WO2022238391A1 (en) | 2021-05-12 | 2022-11-17 | Bayer Aktiengesellschaft | 2-(het)aryl-substituted condensed heterocycle derivatives as pest control agents |
WO2022266271A1 (en) | 2021-06-17 | 2022-12-22 | Pairwise Plants Services, Inc. | Modification of growth regulating factor family transcription factors in soybean |
WO2022271892A1 (en) | 2021-06-24 | 2022-12-29 | Pairwise Plants Services, Inc. | Modification of hect e3 ubiquitin ligase genes to improve yield traits |
WO2023278651A1 (en) | 2021-07-01 | 2023-01-05 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing root system development |
WO2023019188A1 (en) | 2021-08-12 | 2023-02-16 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
WO2023017120A1 (en) | 2021-08-13 | 2023-02-16 | Bayer Aktiengesellschaft | Active compound combinations and fungicide compositions comprising those |
WO2023023496A1 (en) | 2021-08-17 | 2023-02-23 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin receptor histidine kinase genes in plants |
WO2023025682A1 (en) | 2021-08-25 | 2023-03-02 | Bayer Aktiengesellschaft | Novel pyrazinyl-triazole compounds as pesticides |
WO2023034731A1 (en) | 2021-08-30 | 2023-03-09 | Pairwise Plants Services, Inc. | Modification of ubiquitin binding peptidase genes in plants for yield trait improvement |
EP4144739A1 (en) | 2021-09-02 | 2023-03-08 | Bayer Aktiengesellschaft | Anellated pyrazoles as parasiticides |
WO2023034891A1 (en) | 2021-09-02 | 2023-03-09 | Pairwise Plants Services, Inc. | Methods and compositions for improving plant architecture and yield traits |
WO2023049720A1 (en) | 2021-09-21 | 2023-03-30 | Pairwise Plants Services, Inc. | Methods and compositions for reducing pod shatter in canola |
WO2023060028A1 (en) | 2021-10-04 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
WO2023060152A2 (en) | 2021-10-07 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
WO2023078915A1 (en) | 2021-11-03 | 2023-05-11 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether (thio)amides as fungicidal compounds |
WO2023099445A1 (en) | 2021-11-30 | 2023-06-08 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether oxadiazines as fungicidal compounds |
WO2023108035A1 (en) | 2021-12-09 | 2023-06-15 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
WO2023147526A1 (en) | 2022-01-31 | 2023-08-03 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
WO2023148028A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests |
WO2023148036A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests in soybean |
WO2023168217A1 (en) | 2022-03-02 | 2023-09-07 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
WO2023192838A1 (en) | 2022-03-31 | 2023-10-05 | Pairwise Plants Services, Inc. | Early flowering rosaceae plants with improved characteristics |
WO2023196886A1 (en) | 2022-04-07 | 2023-10-12 | Pairwise Plants Services, Inc. | Methods and compositions for improving resistance to fusarium head blight |
WO2023205714A1 (en) | 2022-04-21 | 2023-10-26 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
WO2023215704A1 (en) | 2022-05-02 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing yield and disease resistance |
WO2023213670A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Crystalline forms of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine |
WO2023213626A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Use of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine for controlling unwanted microorganisms |
WO2023215809A1 (en) | 2022-05-05 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture and/or improving plant yield traits |
WO2024006679A1 (en) | 2022-06-27 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024006792A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024006791A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024018016A1 (en) | 2022-07-21 | 2024-01-25 | Syngenta Crop Protection Ag | Crystalline forms of 1,2,4-oxadiazole fungicides |
WO2024030984A1 (en) | 2022-08-04 | 2024-02-08 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
WO2024036240A1 (en) | 2022-08-11 | 2024-02-15 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
WO2024033374A1 (en) | 2022-08-11 | 2024-02-15 | Syngenta Crop Protection Ag | Novel arylcarboxamide or arylthioamide compounds |
WO2024054880A1 (en) | 2022-09-08 | 2024-03-14 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield characteristics in plants |
WO2024068517A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068837A1 (en) | 2022-09-28 | 2024-04-04 | Syngenta Crop Protection Ag | Agricultural methods |
WO2024068520A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
EP4295688A1 (en) | 2022-09-28 | 2023-12-27 | Bayer Aktiengesellschaft | Active compound combination |
WO2024068519A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068518A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
WO2024068838A1 (en) | 2022-09-28 | 2024-04-04 | Syngenta Crop Protection Ag | Fungicidal compositions |
WO2024100069A1 (en) | 2022-11-08 | 2024-05-16 | Syngenta Crop Protection Ag | Microbiocidal pyridine derivatives |
EP4385327A1 (en) | 2022-12-15 | 2024-06-19 | Kimitec Group S.L. | Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants |
WO2024126688A1 (en) | 2022-12-15 | 2024-06-20 | Kimitec Biogroup S.L | Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants |
WO2024137438A2 (en) | 2022-12-19 | 2024-06-27 | BASF Agricultural Solutions Seed US LLC | Insect toxin genes and methods for their use |
WO2024173622A1 (en) | 2023-02-16 | 2024-08-22 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024182658A1 (en) | 2023-03-02 | 2024-09-06 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
WO2024186950A1 (en) | 2023-03-09 | 2024-09-12 | Pairwise Plants Services, Inc. | Modification of brassinosteroid signaling pathway genes for improving yield traits in plants |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11819022B2 (en) | Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof | |
US9540656B2 (en) | Stacked herbicide tolerance event 8291.45.36.2, related transgenic soybean lines, and detection thereof | |
US9732353B2 (en) | Stacked herbicide tolerance event 8264.42.32.1, related transgenic soybean lines, and detection thereof | |
AU2012286879B2 (en) | Insect resistant and herbicide tolerant breeding stack of soybean event pDAB9582.814.19.1 AND pDAB4468.04.16.1 | |
US8785728B2 (en) | AAD-12 event 1606 and related transgenic soybean lines | |
WO2011066384A1 (en) | Aad-12 event 416, related transgenic soybean lines, and event-specific identification thereof | |
WO2012033808A2 (en) | Methods for determining the presence or zygosity of aad-12 soybean event 1606 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11845484 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012010778 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 226664 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2819684 Country of ref document: CA Ref document number: 2013542220 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013001572 Country of ref document: CL Ref document number: MX/A/2013/006194 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: A201308352 Country of ref document: UA |
|
ENP | Entry into the national phase |
Ref document number: 2013129985 Country of ref document: RU Kind code of ref document: A Ref document number: 20137017380 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011845484 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011336364 Country of ref document: AU Date of ref document: 20111202 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13991246 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 112012010778 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120507 |