WO2012074098A1 - Power transmitting device for hydraulic shovel - Google Patents

Power transmitting device for hydraulic shovel Download PDF

Info

Publication number
WO2012074098A1
WO2012074098A1 PCT/JP2011/077926 JP2011077926W WO2012074098A1 WO 2012074098 A1 WO2012074098 A1 WO 2012074098A1 JP 2011077926 W JP2011077926 W JP 2011077926W WO 2012074098 A1 WO2012074098 A1 WO 2012074098A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
hydraulic pump
motor generator
engine
power
Prior art date
Application number
PCT/JP2011/077926
Other languages
French (fr)
Japanese (ja)
Inventor
緒方 永博
健司 宮川
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2012074098A1 publication Critical patent/WO2012074098A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/202Mechanical transmission, e.g. clutches, gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/10Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of fluid gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/02Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/14Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing the motor of fluid or electric gearing being disposed in or adjacent to traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K2025/005Auxiliary drives driven by electric motors forming part of the propulsion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/02Auxiliary drives directly from an engine shaft
    • B60K2025/026Auxiliary drives directly from an engine shaft by a hydraulic transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles

Definitions

  • the present invention relates to a technique for arranging each component in a power transmission device of a hydraulic excavator that can use an engine and a motor generator as a drive source of a hydraulic pump.
  • the power transmission device described in Patent Document 1 is connected to a hydraulic pump that pumps hydraulic oil to a hydraulic actuator, an engine that drives the hydraulic pump, a clutch that is interposed between the engine and the hydraulic pump, and the hydraulic pump.
  • a motor generator In such a power transmission device, the energy efficiency can be improved by controlling the driving of the engine and the motor generator and the connection / disconnection of the clutch according to the load of the hydraulic actuator.
  • the present invention has been made in view of the above situation, and provides a power transmission device for a hydraulic excavator that can be made compact.
  • At least two hydraulic pumps for pumping hydraulic oil to the hydraulic actuator, and at least two hydraulic pumps are driven by supplying electric power, or power is generated by being driven by an engine.
  • a power transmission device for a hydraulic excavator to be driven, wherein the at least two hydraulic pumps and the motor generator are arranged in parallel, and the at least two hydraulic pumps, the motor generator, and the clutch are integrally configured. is there.
  • the at least two hydraulic pumps, the motor generator, the clutch, and a flywheel cover that covers the flywheel of the engine are integrally configured.
  • the power transmission device of the hydraulic excavator can be made compact, and the power transmission device can be easily mounted on the hydraulic excavator.
  • the power transmission device of the hydraulic excavator can be made compact, and the power transmission device can be easily mounted on the hydraulic excavator.
  • FIG. 1 is an overall side view of a hydraulic excavator including a power transmission device according to an embodiment of the present invention.
  • the block diagram which showed the whole structure of the power transmission device. Front sectional drawing of a power transmission case. The side view of a power transmission case.
  • the plane schematic diagram of the hydraulic shovel which shows arrangement
  • the schematic diagram which shows the power transmission structure of a hydraulic pump and a motor generator.
  • (A) is a figure which shows the structure which transmits motive power via a pulley
  • (b) is a figure which shows the structure which transmits motive power via a gear.
  • (A) is a figure which shows the structure which transmits motive power via a gear
  • (b) is a figure which shows the structure which applied the oblique axis type axial piston pump as a hydraulic pump.
  • Hydraulic Excavator 4 Working Device 5 Crawler 5L Left Travel Motor (Hydraulic Actuator) 5R Right travel motor (hydraulic actuator) 6 swivel base 7 swivel motor (hydraulic actuator) 9 Engine 9b Flywheel 13 Boom cylinder (hydraulic actuator) 14 Arm cylinder (hydraulic actuator) 15 Bucket cylinder (hydraulic actuator) 16 Hydraulic actuator 20 Power transmission device 30 Power transmission case 31 Flywheel cover 40 First hydraulic pump (hydraulic pump) 50 Second hydraulic pump (hydraulic pump) 60 clutch 90 motor generator
  • the arrow L direction in the figure is defined as the left direction
  • the arrow U direction is defined as the upward direction
  • the arrow F direction is defined as the forward direction.
  • the hydraulic excavator 1 includes a traveling device 2, a turning device 3, and a working device 4.
  • the traveling device 2 includes a pair of left and right crawlers 5, 5, a left traveling motor 5L, a right traveling motor 5R, and the like.
  • the traveling device 2 can drive the hydraulic excavator 1 forward and backward by driving the crawler 5 on the left side of the body with the left traveling motor 5L and the crawler 5 on the right side of the body with the right traveling motor 5R.
  • the swivel device 3 constitutes the vehicle body of the excavator 1, and includes a swivel base 6, a swivel motor 7, a control unit 8, an engine 9, and the like.
  • the swivel base 6 is disposed above the travel device 2 and is supported by the travel device 2 so as to be capable of swiveling.
  • the turning device 3 can turn the turntable 6 with respect to the traveling device 2 by driving the turning motor 7.
  • a control unit 8 including various operation tools, an engine 9 serving as a power source, and the like are arranged on the swivel base 6, a control unit 8 including various operation tools, an engine 9 serving as a power source, and the like are arranged.
  • a flywheel 9b is fixed to the output shaft 9a of the engine 9, and power can be taken out from a connecting shaft 9c connected to the flywheel 9b (see FIG. 2).
  • the engine 9 which concerns on this embodiment shall be a diesel engine, this invention is not limited to this, A gasoline engine may be
  • the working device 4 includes a boom 10, an arm 11, a bucket 12, a boom cylinder 13, an arm cylinder 14, a bucket cylinder 15, and the like.
  • One end of the boom 10 is pivotally supported by the front portion of the swivel base 6 and is rotated by a boom cylinder 13 that is extended and retracted. More specifically, when the boom cylinder 13 is extended, the boom 10 is rotated upward, and when the boom cylinder 13 is contracted, the boom 10 is rotated downward.
  • One end of the arm 11 is pivotally supported by the other end of the boom 10 and is rotated by an arm cylinder 14 that is extended and retracted.
  • the working device 4 has a multi-joint structure that excavates earth and sand using the bucket 12.
  • the boom cylinder 13, the arm cylinder 14, the bucket cylinder 15, the left traveling motor 5L, the right traveling motor 5R, and the turning motor 7 are collectively referred to as a hydraulic actuator 16.
  • the working device provided in the excavator 1 according to the present embodiment is the working device 4 that has the bucket 12 and performs excavation work.
  • the working device is not limited to this.
  • the working device has a hydraulic breaker and is crushed. It may be a working device that performs work.
  • the power transmission device 20 transmits power from a drive source and drives various actuators.
  • the power transmission device 20 includes a first hydraulic pump 40, a second hydraulic pump 50, a clutch 60, a control valve 70, an operation unit 80, a motor generator 90, a battery 100, an inverter 110, a cell motor 120, an absorption horsepower detection unit 130, an operation state.
  • a detection unit 140, a charge state detection unit 150, an engine speed setting unit 160, an idle stop selection unit 170, an engine controller unit 180, a main controller 190, and the like are provided.
  • the first hydraulic pump 40 is an embodiment of the hydraulic pump according to the present invention, and is rotationally driven by the transmitted power to discharge hydraulic oil.
  • the first hydraulic pump 40 is a variable displacement pump that can change the discharge amount of hydraulic oil by changing the inclination angle of the movable swash plate 46.
  • the inclination angle of the movable swash plate 46 can be changed by an actuator (not shown) or manual operation.
  • the first hydraulic pump 40 is rotationally driven by power input from an input shaft 41 provided in the first hydraulic pump 40.
  • a gear 42 and a pulley 48 are fixed to the input shaft 41.
  • One end of an oil passage 49 is connected to the discharge port of the first hydraulic pump 40.
  • the second hydraulic pump 50 is an embodiment of the hydraulic pump according to the present invention, and is rotationally driven by the transmitted power to discharge hydraulic oil.
  • the second hydraulic pump 50 is a variable displacement pump that can change the discharge amount of hydraulic oil by changing the inclination angle of the movable swash plate 56.
  • the inclination angle of the movable swash plate 56 can be changed by an actuator (not shown) or manual operation.
  • the second hydraulic pump 50 is rotationally driven by power input from an input shaft 51 provided in the second hydraulic pump 50.
  • a gear 52 is fixed to the input shaft 51.
  • the gear 52 is meshed with a gear 42 fixed to the input shaft 41 of the first hydraulic pump 40.
  • One end of an oil passage 59 is connected to the discharge port of the second hydraulic pump 50.
  • the number of teeth of the gear 52 is set to be the same as the number of teeth of the gear 42.
  • the rotation speeds of the gear 52 and the gear 42 are the same. That is, the first hydraulic pump 40 and the second hydraulic pump 50 rotate at the same rotational speed.
  • the clutch 60 is interposed between the connecting shaft 9 c of the engine 9 and the input shaft 41 of the first hydraulic pump 40, and connects and disconnects power transmitted between the connecting shaft 9 c and the input shaft 41.
  • the connecting shaft 9c and the input shaft 41 are connected.
  • the connecting shaft 9c and the input shaft 41 can rotate at the same rotational speed, and as a result, the engine 9, and the first hydraulic pump 40 and the second hydraulic pump 50 can rotate at the same rotational speed.
  • the clutch 60 is disengaged, the connection between the connecting shaft 9c and the input shaft 41 is released, and even if the connecting shaft 9c of the engine 9 rotates, the rotational power is not transmitted to the input shaft 41.
  • various clutches such as a hydraulic clutch and an electromagnetic clutch can be applied.
  • the control valve 70 is for appropriately switching the direction and flow rate of hydraulic oil supplied from the first hydraulic pump 40 and the second hydraulic pump 50.
  • the control valve 70 appropriately includes a direction switching valve, a pressure compensation valve, and the like.
  • the other end of the oil passage 49 is connected to the control valve 70, and hydraulic oil discharged from the first hydraulic pump 40 is supplied to the control valve 70 through the oil passage 49.
  • the other end of the oil passage 59 is connected to the control valve 70, and hydraulic oil discharged from the second hydraulic pump 50 is supplied to the control valve 70 through the oil passage 59.
  • the hydraulic oil pumped from the first hydraulic pump 40 and the second hydraulic pump 50 is appropriately supplied to the hydraulic actuator 16 (boom cylinder 13, arm cylinder 14, etc.) via the control valve 70.
  • the hydraulic actuator 16 is driven by the supplied hydraulic oil.
  • the hydraulic actuator according to the present invention is not limited to the hydraulic actuator 16 (boom cylinder 13, arm cylinder 14, etc.), and may be a hydraulic actuator driven by hydraulic oil.
  • the operating means 80 is for switching the direction and flow rate of the hydraulic oil supplied to the hydraulic actuator 16 via the control valve 70.
  • the operation signal (electric signal) is transmitted to the control valve 70.
  • various valves (such as a directional switching valve) provided in the control valve 70 are switched. As a result, a desired amount of hydraulic fluid can be supplied to the hydraulic actuator 16 desired by the operator.
  • the operation means 80 which concerns on this embodiment shall operate the control valve 70 with an electrical signal
  • this invention is not limited to this. That is, it may be hydraulic operating means that applies a pilot pressure to the control valve 70 based on an operator's operation and operates the control valve 70 with the pilot pressure.
  • hydraulic operating means is used as the operating means 80 as described above, the hydraulic pressure can be supplied to the hydraulic operating means even when the engine 9 is stopped by idle stop control described later.
  • a hydraulic pump for supplying hydraulic oil to the operation means of the type and an electric motor for driving the hydraulic pump are separately provided.
  • the motor generator 90 is rotationally driven as an electric motor to generate power when electric power is supplied, and generates electric power as a generator when power is supplied.
  • the motor generator 90 includes an input / output shaft 91, and a pulley 92 is fixed to the input / output shaft 91.
  • a belt 93 is wound around the pulley 92 and the pulley 48 so that power can be transmitted between the pulley 92 and the pulley 48.
  • the motor generator 90 can rotationally drive the input / output shaft 91 when electric power is supplied.
  • the motor generator 90 can generate electric power when power is transmitted and the input / output shaft 91 is rotationally driven.
  • the battery 100 is a secondary battery that can store and discharge electric power supplied to the motor generator 90 and other electric devices.
  • the inverter 110 supplies electric power from the battery 100 to the motor generator 90 or enables electric power from the motor generator 90 to be supplied to the battery 100.
  • the inverter 110 includes a circuit that converts direct current into alternating current (inverter circuit) and a circuit that converts alternating current into direct current (converter circuit), and selects either one of the inverter circuit and the converter circuit or both It is possible not to.
  • the inverter 110 converts the DC power supplied from the battery 100 into AC and supplies it to the motor generator 90.
  • the motor generator 90 rotates the input / output shaft 91. That is, in this case, the motor generator 90 can be used as an electric motor. In this case, the supply of electric power from motor generator 90 to battery 100 is interrupted.
  • a state in which the motor generator 90 rotationally drives the input / output shaft 91 is referred to as a “driving state”.
  • the inverter 110 converts AC power supplied from the motor generator 90 into DC and stores the power in the battery 100. In this way, by allowing the inverter 110 to supply power from the motor generator 90 to the battery 100, the motor generator 90 generates power by the power from the engine 9 and stores (charges) the power in the battery 100. )be able to. That is, in this case, the motor generator 90 can be used as a generator. In this case, the supply of power from battery 100 to motor generator 90 is interrupted.
  • a state in which the motor generator 90 charges the battery 100 is referred to as a “power generation state”.
  • the inverter 110 When neither the inverter circuit nor the converter circuit is selected, the inverter 110 neither supplies power to the motor generator 90 nor supplies power to the battery 100. As described above, since power is not supplied to the motor generator 90, the motor generator 90 does not rotate the input / output shaft 91. Even if the input / output shaft 91 of the motor generator 90 is driven to rotate, the battery 100 is not charged because the power is not supplied to the battery 100, and the input / output shaft 91 of the motor generator 90 is rotated at this time. The resistance is smaller than the rotational resistance of the input / output shaft 91 in the power generation state.
  • a state in which the motor generator 90 neither rotates the input / output shaft 91 nor charges the battery 100 is referred to as a “neutral state”.
  • the cell motor 120 is an electric motor for starting the engine 9.
  • the cell motor 120 is driven by electric power supplied from the battery 100.
  • the absorption horsepower detection means 130 is for detecting the absorption horsepower Lp by the first hydraulic pump 40 and the second hydraulic pump 50.
  • the absorption horsepower Lp refers to horsepower required for the first hydraulic pump 40 and the second hydraulic pump 50 to drive.
  • the absorption horsepower detection means 130 includes a first pressure detection means 131, a second pressure detection means 132, a first volume detection means 133, a second volume detection means 134, and a pump rotation speed detection means 135.
  • the first pressure detecting means 131 is a sensor that detects the discharge pressure P1 of the first hydraulic pump 40.
  • the first pressure detecting means 131 is connected to the middle portion of the oil passage 49 and can detect the discharge pressure P1 of the first hydraulic pump 40 by detecting the pressure in the oil passage 49.
  • the second pressure detection means 132 is a sensor that detects the discharge pressure P2 of the second hydraulic pump 50.
  • the second pressure detection means 132 is connected to the middle part of the oil passage 59, and by detecting the pressure in the oil passage 59, the discharge pressure P2 of the second hydraulic pump 50 can be detected.
  • the first volume detection means 133 is for detecting the displacement volume q1 of the first hydraulic pump 40.
  • the first volume detection means 133 is a sensor that detects the inclination angle of the movable swash plate 46 of the first hydraulic pump 40. Based on the inclination angle of the movable swash plate 46, a displacement q1 of the first hydraulic pump 40 is calculated by a main controller 190 described later.
  • the second volume detection means 134 is for detecting the displacement volume q2 of the second hydraulic pump 50.
  • the second volume detection means 134 is a sensor that detects the inclination angle of the movable swash plate 56 of the second hydraulic pump 50. Based on the inclination angle of the movable swash plate 56, a displacement volume q2 of the second hydraulic pump 50 is calculated by a main controller 190 described later.
  • the pump rotation speed detection means 135 is a sensor that detects the rotation speed Np of the first hydraulic pump 40 and the second hydraulic pump 50.
  • the pump rotational speed detection means 135 can detect the rotational speed Np of the second hydraulic pump 50 by detecting the rotational speed of the gear 52 fixed to the input shaft 51 of the second hydraulic pump 50. Further, since the second hydraulic pump 50 and the first hydraulic pump 40 have the same rotational speed Np, the pump rotational speed detection means 135 detects the rotational speed Np of the second hydraulic pump 50, thereby simultaneously producing the first hydraulic pressure. The rotational speed Np of the pump 40 is also detected.
  • the operation state detection unit 140 is a sensor that detects whether or not the operation unit 80 is being operated.
  • the operation state detection means 140 is composed of a potentiometer or the like, and can detect that the operation means 80 has been operated by the operator.
  • the operation state detection unit 140 directly detects that the operation unit 80 is operated by a potentiometer or the like, but the present invention is not limited to this. That is, when the operation means 80 is a hydraulic type, it may be configured to detect that the operation means 80 is operated by detecting a pilot pressure for operating the control valve 70 with a pressure switch or the like. When the operation means 80 is hydraulic as described above, the hydraulic operation is performed so that the hydraulic oil can be supplied to the hydraulic operation means even when the engine 9 is stopped by idle stop control described later. A hydraulic pump for supplying hydraulic oil to the means and an electric motor for driving the hydraulic pump are separately provided.
  • the charge state detection means 150 detects the charge amount (remaining amount) C of the battery 100.
  • the charge state detection means 150 can detect information (for example, voltage, specific gravity of the battery fluid, etc.) indicating the charge amount (remaining amount) C of the battery 100.
  • the engine speed setting means 160 sets the speed of the engine 9.
  • the engine speed setting means 160 is constituted by a dial switch and can be operated by an operator.
  • the operation amount of the engine speed setting means 160 can be detected by a sensor (not shown) provided in the engine speed setting means 160.
  • the engine speed setting means 160 is not limited to a dial switch, and may be a lever, a pedal, or the like.
  • the idle stop selection means 170 is for selecting whether or not to perform idle stop control which will be described later.
  • the idle stop selection means 170 is constituted by a dial switch and can be operated by an operator.
  • the idle stop selection means 170 switches to an “OFF” position where idle stop control is not performed, an “ON” position where idle stop control is performed, or a “motor drive” position where the engine 9 is stopped and only the motor generator 90 is driven. Can do.
  • the position of the idle stop selection unit 170 can be detected by a sensor (not shown) provided in the idle stop selection unit 170.
  • the engine controller unit (hereinafter simply referred to as “ECU”) 180 is for controlling the operation of the engine 9 based on various signals and programs.
  • ECU 180 may have a configuration in which a CPU, ROM, RAM, HDD, or the like is connected by a bus, or may be configured by a one-chip LSI or the like.
  • ECU 180 is connected to an engine speed detecting means (not shown) for detecting the speed Ne of the engine 9 and can acquire a detection signal of the speed Ne of the engine 9 by the engine speed detecting means.
  • the ECU 180 is connected to the cell motor 120, transmits a control signal to the cell motor 120, and rotates the crankshaft of the engine 9 by the cell motor 120 to start the engine 9.
  • the ECU 180 is connected to a speed control device (not shown) for adjusting the fuel injection amount of the engine 9, transmits a control signal to the speed control device, and adjusts the fuel injection amount of the engine 9 to adjust the rotational speed Ne.
  • the engine 9 can be stopped by changing the torque characteristics or stopping the fuel supply of the engine 9.
  • the main controller 190 transmits control signals to the clutch 60, the inverter 110, and the ECU 180 based on various signals and programs.
  • the main controller 190 may be configured such that a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
  • the main controller 190 is connected to the first pressure detection means 131, and can acquire a detection signal of the discharge pressure P1 of the first hydraulic pump 40 by the first pressure detection means 131.
  • the main controller 190 is connected to the second pressure detection means 132, and can acquire a detection signal of the discharge pressure P2 of the second hydraulic pump 50 by the second pressure detection means 132.
  • the main controller 190 is connected to the first volume detection means 133 and can acquire a detection signal of the inclination angle of the movable swash plate 46 of the first hydraulic pump 40 by the first volume detection means 133.
  • the main controller 190 stores a map showing the relationship between the inclination angle of the movable swash plate 46 and the displacement volume q1 of the first hydraulic pump 40.
  • the main controller 190 calculates the displacement volume q1 of the first hydraulic pump 40 based on the detection signal of the inclination angle of the movable swash plate 46.
  • the main controller 190 is connected to the second volume detection unit 134 and can acquire a detection signal of the tilt angle of the movable swash plate 56 of the second hydraulic pump 50 by the second volume detection unit 134.
  • the main controller 190 stores a map indicating the relationship between the tilt angle of the movable swash plate 56 and the displacement volume q2 of the second hydraulic pump 50.
  • the main controller 190 calculates the displacement q2 of the second hydraulic pump 50 based on the detection signal of the inclination angle of the movable swash plate 56.
  • the main controller 190 is connected to the pump rotation speed detection means 135, and can acquire a detection signal of the rotation speed Np of the first hydraulic pump 40 and the second hydraulic pump 50 by the pump rotation speed detection means 135.
  • the main controller 190 calculates the absorption horsepower Lp by the first hydraulic pump 40 and the second hydraulic pump 50 based on the discharge pressure P1, the discharge pressure P2, the displacement volume q1, the displacement volume q2, and the rotation speed Np.
  • the main controller 190 is connected to the operation state detection unit 140 and can acquire a detection signal indicating that the operation unit 80 by the operation state detection unit 140 has been operated.
  • the main controller 190 is connected to the charge state detection unit 150 and can acquire a detection signal of the charge amount (remaining amount) C of the battery 100 by the charge state detection unit 150.
  • the main controller 190 is connected to the ECU 180, and can acquire a detection signal of the rotational speed Ne of the engine 9 by the ECU 180 (more specifically, an engine rotational speed detection means connected to the ECU 180). Further, the main controller 190 can transmit control signals to the ECU 180 to start or stop the engine 9 and to instruct the target rotational speed of the engine 9.
  • the main controller 190 is connected to a sensor provided in the engine speed setting means 160, and can acquire a detection signal of the operation amount of the engine speed setting means 160 by the sensor.
  • the main controller 190 is connected to a sensor provided in the idle stop selection unit 170, and can acquire a detection signal of the position of the idle stop selection unit 170 by the sensor.
  • the main controller 190 is connected to the clutch 60 and can transmit a control signal to the clutch 60 to connect and disconnect the clutch 60.
  • the main controller 190 is connected to the inverter 110 and can transmit to the inverter 110 a control signal indicating that either one of the inverter circuit or the converter circuit is selected or neither is selected.
  • the main controller 190 transmits a control signal to start the engine 9 to the ECU 180.
  • the ECU 180 that has received the control signal transmits the control signal to the cell motor 120 and starts the engine 9.
  • the main controller 190 transmits a control signal to stop the engine 9 to the ECU 180.
  • the ECU 180 that has received the control signal transmits the control signal to the speed governor and stops the engine 9.
  • the main controller 190 determines the target rotational speed of the engine 9 based on the operation amount of the engine rotational speed setting means 160.
  • the main controller 190 transmits the target rotational speed of the engine 9 to the ECU 180 as a control signal.
  • the ECU 180 that has received the control signal transmits a control signal to the speed governor, and adjusts the rotational speed Ne of the engine 9 so that the rotational speed Ne of the engine 9 becomes the target rotational speed.
  • the power of the engine 9 is transmitted to the first hydraulic pump 40 via the connecting shaft 9c, the clutch 60, and the input shaft 41.
  • the power from the engine 9 is also transmitted to the second hydraulic pump 50 via the gear 42, the gear 52 and the input shaft 51.
  • the first hydraulic pump 40 and the second hydraulic pump 50 rotate at the same rotational speed Np.
  • hydraulic oil is discharged from the first hydraulic pump 40 and the second hydraulic pump 50.
  • the hydraulic oil is supplied to the control valve 70 through the oil passage 49 and the oil passage 59.
  • the control valve 70 supplies hydraulic oil to the hydraulic actuator 16 desired by the operator based on an operation signal from the operation means 80.
  • the motor generator 90 when the control signal for selecting the inverter circuit is transmitted to the inverter 110 by the main controller 190, the motor generator 90 is switched to the driving state. In this case, the motor generator 90 rotates the input / output shaft 91 with the electric power of the battery 100 to generate power. The power is transmitted to the first hydraulic pump 40 through the input / output shaft 91, the pulley 92, the belt 93, the pulley 48, and the input shaft 41, and is transmitted through the gear 42, the gear 52, and the input shaft 51. Two hydraulic pumps 50 are transmitted. That is, in this case, the first hydraulic pump 40 and the second hydraulic pump 50 can be driven by the power from the motor generator 90 in addition to the power from the engine 9.
  • the motor generator 90 When the control signal for selecting the converter circuit is transmitted to the inverter 110 by the main controller 190, the motor generator 90 is switched to the power generation state. In this case, the motor generator 90 is rotationally driven by the power from the engine 9 transmitted via the belt 93, the pulley 92, and the input / output shaft 91, and generates electric power. The electric power is stored in the battery 100 via the inverter 110. In other words, in this case, the first hydraulic pump 40 and the second hydraulic pump 50 are driven by the power from the engine 9, and the motor generator 90 is rotationally driven to store electric power in the battery 100.
  • the motor generator 90 is switched to the neutral state.
  • the motor generator 90 is rotationally driven by the power from the engine 9 transmitted via the belt 93, the pulley 92, and the input / output shaft 91, but does not charge the battery 100. For this reason, the rotational resistance of the input / output shaft 91 of the motor generator 90 is smaller than that in the power generation state.
  • the main controller 190 switches the motor generator 90 to the driving state.
  • the first hydraulic pump 40 and the second hydraulic pump 50 are driven by the motor generator 90 in addition to the engine 9. That is, the motor generator 90 can assist in driving the first hydraulic pump 40 and the second hydraulic pump 50.
  • the main controller 190 switches the motor generator 90 to a neutral state. Thereby, overdischarge of the battery 100 can be prevented.
  • the main controller 190 switches the motor generator 90 to the power generation state.
  • the battery 100 can be charged using a margin of the output of the engine 9.
  • the following control (so-called idle stop control) is possible.
  • the main controller 190 stops the engine 9, disconnects the clutch 60, and switches the motor generator 90 to the neutral state. As a result, wasteful fuel and power consumption can be suppressed.
  • the main controller 190 switches the motor generator 90 to the driving state. Accordingly, the first hydraulic pump 40 and the second hydraulic pump 50 can be driven promptly by the motor generator 90 (electric motor) generally having a high low-speed torque.
  • the main controller 190 starts the engine 9, connects the clutch 60, and switches the motor generator 90 to the neutral state. Thereby, when the absorption horsepower Lp is large, the first hydraulic pump 40 and the second hydraulic pump 50 can be driven by the engine 9.
  • the first hydraulic pump 40, the second hydraulic pump 50, the clutch 60, and the motor generator 90 are supported by the power transmission case 30.
  • the power transmission case 30 includes a flywheel cover 31, a connecting plate 32, a pump case 33, and the like.
  • the flywheel cover 31 is a member that covers the flywheel 9b of the engine 9 from the right side.
  • the flywheel cover 31 includes a substantially truncated cone-shaped cover portion 31a in a front sectional view and a substantially rectangular parallelepiped body portion 31b integrally formed on the upper right end of the cover portion 31a.
  • the inside of the cover part 31a is formed so as to open toward the left, and the inside of the main body part 31b is formed so as to open toward the right.
  • a through hole 31c that connects the inside of the cover portion 31a and the inside of the main body portion 31b is formed in the substantially right and left central portion of the flywheel cover 31 (more specifically, the substantially central portion of the cover portion 31a in the vertical and horizontal directions).
  • the connecting plate 32 is a substantially rectangular plate-like member.
  • the connecting plate 32 is disposed with the plate surface directed in the left-right direction.
  • the connecting plate 32 is formed with a pair of upper and lower through holes 32a and 32b penetrating the plate surface in the left-right direction.
  • the connecting plate 32 is fixed to the right end of the main body 31 b of the flywheel cover 31.
  • the pump case 33 is a substantially rectangular parallelepiped member.
  • the inside of the pump case 33 is formed so as to open toward the left.
  • a through-hole 33 a that communicates the inside and the outside of the pump case 33 is formed in the lower portion of the right side surface of the pump case 33.
  • the pump case 33 is fixed to the right end of the connecting plate 32.
  • the clutch 60 is disposed in the cover portion 31a of the flywheel cover 31 (specifically, on the right side surface in the cover portion 31a and around the through hole 31c).
  • the first hydraulic pump 40 includes an input shaft 41, a gear 42, a cylinder block 43, a piston 44, a shoe 45, a movable swash plate 46, a valve plate 47, and the like.
  • the input shaft 41 is arranged with the axial direction directed in the left-right direction, and is inserted into the through hole 31 c of the flywheel cover 31, the through hole 32 b of the connecting plate 32, and the through hole 33 a of the pump case 33. At this time, an oil seal 31d, an oil seal 32d, and an oil seal 33b are provided between the through hole 31c, the through hole 32b, and the through hole 33a and the input shaft 41, respectively.
  • the input shaft 41 is rotatably supported by the pump case 33 via a bearing 41a. One end (left end) of the input shaft 41 is connected to the clutch 60. The other end (right end) of the input shaft 41 protrudes to the right of the pump case 33, and a pulley 48 is fixed to the protruding portion.
  • the gear 42 is spline-fitted to the input shaft 41 inside the main body 31 b of the flywheel cover 31 and is supported by the input shaft 41 so as not to be relatively rotatable.
  • the gear 42 is rotatably supported by the main body 31b of the flywheel cover 31 via the bearing 42a and the bearing 42b.
  • the cylinder block 43 is a substantially cylindrical member, and is arranged with the axial direction facing the left-right direction.
  • the cylinder block 43 is spline-fitted to the input shaft 41 inside the pump case 33 and is supported by the input shaft 41 so as not to be relatively rotatable.
  • a plurality of cylinders 43a, 43a,... Are formed on the same circumference around the axis of the cylinder block 43.
  • the piston 44 performs suction and discharge of hydraulic oil by sliding in the cylinder 43a.
  • a plurality of pistons 44 are provided, and right end sides of the plurality of pistons 44, 44... Are slidably inserted into the cylinders 43a, 43a,.
  • the shoe 45 restrains the sliding position of the piston 44 to the movable swash plate 46 side.
  • a plurality of shoes 45 are provided, and the plurality of shoes 45... Are connected to the left ends of the pistons 44.
  • the shoes 45, 45... Are held by a plate (not shown) so as not to be separated from the movable swash plate 46 and to be slidable on the movable swash plate 46.
  • the movable swash plate 46 is for changing the sliding amount of the pistons 44.
  • the movable swash plate 46 is fitted on the input shaft 41 on the left side of the cylinder block 43. By changing the inclination angle of the movable swash plate 46, the sliding amount of the pistons 44, 44... Relative to the cylinders 43a, 43a.
  • the valve plate 47 guides hydraulic oil sucked and discharged by the pistons 44, 44.
  • the valve plate 47 is a substantially disk-shaped member, and is fitted on the input shaft 41 in a state where the valve plate 47 is in contact with the right end of the cylinder block 43.
  • the valve plate 47 is formed with an oil passage for appropriately guiding hydraulic oil.
  • the cylinder block 43 rotates together with the input shaft 41.
  • the pistons 44, 44, ... inserted into the cylinders 43a, 43a, ... of the cylinder block 43 slide on the movable swash plate 46 via the shoes 45, 45 ... While rotating around the input shaft 41.
  • the second hydraulic pump 50 includes an input shaft 51, a gear 52, a cylinder block 53, a piston 54, a shoe 55, a movable swash plate 56, a valve plate 57, and the like. Since the second hydraulic pump 50 has substantially the same configuration as that of the first hydraulic pump 40, the following description will be made on portions of the configuration of the second hydraulic pump 50 that are different from the first hydraulic pump 40.
  • the input shaft 51 is disposed right above the input shaft 41 of the first hydraulic pump 40 with the axial direction directed in the left-right direction, and is inserted into the through hole 32a of the connecting plate 32. At this time, an oil seal 32 c is provided between the through hole 32 a and the input shaft 51.
  • the input shaft 51 is rotatably supported by the pump case 33 via a bearing 51a.
  • the gear 52 is spline-fitted to the input shaft 51 inside the main body 31 b of the flywheel cover 31 and is supported by the input shaft 51 so as not to be relatively rotatable.
  • the gear 52 is rotatably supported by the main body 31b of the flywheel cover 31 via a bearing 52a and a bearing 52b.
  • the gear 52 is meshed with the gear 42 of the first hydraulic pump 40.
  • the second hydraulic pump 50 is disposed in parallel with the first hydraulic pump 40. That is, the input shaft 51 of the second hydraulic pump 50 is disposed in parallel with the input shaft 41 of the first hydraulic pump 40, and at least a part of the second hydraulic pump 50 overlaps the first hydraulic pump 40 in the left-right direction. Be placed.
  • each member of the second hydraulic pump 50 is disposed so as to be in the same position as each member of the first hydraulic pump 40 in the left-right direction.
  • the gear 52 is in the same position in the left-right direction as the gear 42
  • the cylinder block 53 is in the cylinder block 43
  • the movable swash plate 56 is in the movable swash plate 46
  • the valve plate 57 is in the same position in the left-right direction. Has been placed.
  • the cylinder block 53 rotates together with the input shaft 51.
  • the pistons 54, 54, ... inserted into the cylinders 53a, 53a, ... of the cylinder block 53 slide on the movable swash plate 56 via the shoes 55, 55, ... While rotating around the input shaft 51.
  • the motor generator 90 is disposed so that the axial direction of the input / output shaft 91 is directed to the left and right, and the input / output shaft 91 is directed to the right.
  • the motor generator 90 is fixed to the lower part of the pump case 33 so that the input / output shaft 91 is positioned directly below the input shaft 41 of the first hydraulic pump 40.
  • the motor generator 90 is below the pump case 33, the connecting plate 32, and the flywheel cover 31 (specifically, the main body portion 31b), and the flywheel cover 31 (specifically, the cover portion 31a). Located in the lower right space.
  • the input / output shaft 91 of the motor generator 90 extends so as to protrude rightward from the right side surface of the pump case 33, and a pulley 92 is fixed to the protruding portion.
  • a belt 93 is wound between the pulley 92 and the pulley 48.
  • the motor generator 90 is arranged in parallel with the first hydraulic pump 40 and the second hydraulic pump 50. That is, the input / output shaft 91 of the motor generator 90 is arranged in parallel with the input shaft 41 of the first hydraulic pump 40 and the input shaft 51 of the second hydraulic pump 50, and at least a part of the motor generator 90 is the first hydraulic pressure in the left-right direction. It arrange
  • the motor generator 90 is disposed so as to be substantially at the same position as the first hydraulic pump 40 and the second hydraulic pump 50 in the left-right direction. Specifically, the motor generator 90 is arranged so that the left end of the motor generator 90 is in the same position in the left-right direction, and the right end of the motor generator 90 is in the left-right direction.
  • the first hydraulic pump 40, the second hydraulic pump 50, the clutch 60, and the motor generator 90 are integrally configured by being supported by the power transmission case 30.
  • the swivel base 6 is usually configured in a substantially circular shape in plan view, and thus the mounting space for the engine 9 and the first hydraulic pump 40 and the like is limited. Will be. More specifically, the space in the axial direction (left-right direction in FIG. 5) of the input shaft 41 of the first hydraulic pump 40 is limited.
  • the first hydraulic pump 40, the second hydraulic pump 50, and the motor generator 90 are arranged in parallel in the vertical direction, and the first hydraulic pump 40, second The hydraulic pump 50, the clutch 60, and the motor generator 90 are integrally configured.
  • the second hydraulic pump 50 is disposed above the first hydraulic pump 40 and the motor generator 90 is disposed below the first hydraulic pump 40 to balance the left and right, as well as the flywheel cover 31 and the connecting plate 32.
  • the motor generator 90 is integrally fixed to the lower surface of the pump case 33 in the right lower space of the power transmission case 30 constituted by the pump case 33.
  • the motor generator 90 enters the projected area of the power transmission case 30 in a plan view and substantially enters the projected area of the cover portion 31a in a side view.
  • the first hydraulic pump 40, the second hydraulic pump 50, the clutch 60, and the motor generator 90 can be made compact, and as a result, the power transmission device 20 can be made compact. Therefore, the power transmission device 20 according to this embodiment can be easily mounted on the hydraulic excavator 1 in which the mounting space for the engine 9, the first hydraulic pump 40, and the like is limited as described above.
  • the power transmission device 20 of the hydraulic excavator 1 supplies the hydraulic pumps (the first hydraulic pump 40 and the second hydraulic pump 50) for pumping hydraulic oil to the hydraulic actuator 16, and supplies power.
  • a power transmission device 20 of a hydraulic excavator 1 that drives the hydraulic pump by an engine 9 and / or a motor generator 90, wherein the hydraulic pump and the motor generator 90 are arranged in parallel, and the hydraulic pump and the motor generator 90 and the clutch 60 are integrally formed.
  • the power transmission device 20 of the hydraulic excavator 1 can be made compact, and the power transmission device 20 can be easily mounted on the hydraulic excavator 1. Further, by integrally configuring the hydraulic pump, the motor generator 90, and the clutch 60, it is possible to reduce the number of steps for assembling the power transmission device 20 to the hydraulic excavator 1.
  • the power transmission device 20 is configured integrally with the hydraulic pump, the motor generator 90, the clutch 60, and the flywheel cover 31 that covers the flywheel 9b of the engine 9.
  • the power transmission device 20 of the hydraulic excavator 1 can be made compact, and the power transmission device 20 can be easily mounted on the hydraulic excavator 1.
  • the number of steps for assembling the power transmission device 20 to the hydraulic excavator 1 can be reduced.
  • the power transmission device 20 is The hydraulic pump and motor generator 90 are arranged in a line in the vertical direction. By configuring in this way, The power transmission device 20 of the hydraulic excavator 1 can be made compact, and the power transmission device 20 can be easily mounted on the hydraulic excavator 1.
  • first hydraulic pump 40 and the second hydraulic pump 50 are configured so that the axes of the input shaft 41 and the input shaft 51 are the same as shown in FIGS. 6 (a), 6 (b) and 7 (a).
  • the so-called swash plate type axial piston pump in which the axes of the cylinder block 43 and the cylinder block 53 are on the same straight line is described, but the present invention is not limited to this. That is, as shown in FIG. 7B, the first hydraulic pump 40 and the second hydraulic pump 50 are configured such that the axis lines of the cylinder block 43 and the cylinder block 53 are respectively predetermined with respect to the axis lines of the input shaft 41 and the input shaft 51.
  • a so-called oblique axis type axial piston pump inclined at an angle may be used.
  • the power transmission device 20 includes two hydraulic pumps (the first hydraulic pump 40 and the second hydraulic pump 50) as hydraulic pumps, the present invention is not limited to this. A configuration including three or more hydraulic pumps is also possible.
  • the present invention can be used for the technology of the arrangement configuration of each component in a power transmission device of a hydraulic excavator that can use an engine and a motor generator as a drive source of a hydraulic pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Arrangement Of Transmissions (AREA)
  • Motor Power Transmission Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A power transmitting device (20) for a hydraulic shovel (1) comprises: hydraulic pumps (a first hydraulic pump (40) and a second hydraulic pump (50)) for supplying, under pressure, operating oil to a hydraulic actuator (16); a motor generator (90) which drives the hydraulic pumps by electric power supplied thereto or which generates electricity by being driven by an engine (9); and a clutch (60) for enabling and disabling the transmission of power from the engine (9) to the hydraulic pumps and to the motor generator (90), and the hydraulic pumps are driven by the engine (9) and/or the motor generator (90). The hydraulic pumps and the motor generator (90) are arranged parallel to each other, and the hydraulic pumps, the motor generator (90), and the clutch (60) are configured integrally.

Description

油圧ショベルの動力伝達装置Hydraulic excavator power transmission device
 本発明は、エンジンおよびモータジェネレータを油圧ポンプの駆動源として利用可能な油圧ショベルの動力伝達装置における、各構成部材の配置構成の技術に関する。 The present invention relates to a technique for arranging each component in a power transmission device of a hydraulic excavator that can use an engine and a motor generator as a drive source of a hydraulic pump.
 従来、エンジンおよびモータジェネレータを油圧ポンプの駆動源として利用し、当該油圧ポンプから圧送された作動油により油圧アクチュエータを駆動する動力伝達装置の技術は公知となっている。例えば、特許文献1に記載の如くである。 Conventionally, a technology of a power transmission device that uses an engine and a motor generator as a drive source of a hydraulic pump and drives a hydraulic actuator by hydraulic oil pumped from the hydraulic pump is known. For example, as described in Patent Document 1.
 特許文献1に記載の動力伝達装置は、油圧アクチュエータに作動油を圧送する油圧ポンプと、油圧ポンプを駆動するエンジンと、エンジンおよび油圧ポンプの間に介装されるクラッチと、油圧ポンプに連結されるモータジェネレータと、を具備するものである。
 このような動力伝達装置において、油圧アクチュエータの負荷に応じてエンジンおよびモータジェネレータの駆動、およびクラッチの断接を制御することにより、エネルギー効率の向上を図ることができる。
The power transmission device described in Patent Document 1 is connected to a hydraulic pump that pumps hydraulic oil to a hydraulic actuator, an engine that drives the hydraulic pump, a clutch that is interposed between the engine and the hydraulic pump, and the hydraulic pump. A motor generator.
In such a power transmission device, the energy efficiency can be improved by controlling the driving of the engine and the motor generator and the connection / disconnection of the clutch according to the load of the hydraulic actuator.
特開2001-99103号公報JP 2001-99103 A
 しかし、上述のような動力伝達装置を油圧ショベルに搭載するにあたっては、搭載スペースの確保が困難であった。 However, when mounting the power transmission device as described above on a hydraulic excavator, it was difficult to secure a mounting space.
 詳細に説明すると、住宅地や都市部などの作業スペースが狭い場所での工事で使用される油圧ショベルとしては、作業中に周囲の作業者や建造物等との接触を避けるために、履帯(クローラ)からの旋回台後端部のはみ出し量が小さい油圧ショベル(いわゆる、後方超小旋回型の油圧ショベルなど)を用いるのが主流となっている。
 上述のような油圧ショベルにおいては、作業中の車両バランスを安定させるために、エンジンや油圧ポンプなどの重量物を、作業装置(掘削装置等)とは反対側の旋回台後端部近傍に配置させる必要がある。その結果、油圧ポンプの搭載スペース(特に、当該油圧ポンプの駆動軸長手方向のスペース)が制限されることになり、当該搭載スペースの確保が困難となる。
In detail, as a hydraulic excavator used in construction in a small work space such as a residential area or urban area, in order to avoid contact with surrounding workers and buildings during work, The mainstream is to use a hydraulic excavator with a small amount of protrusion of the rear end of the swivel from the crawler (a so-called rear ultra-small swivel type hydraulic excavator).
In the hydraulic excavator as described above, in order to stabilize the vehicle balance during work, heavy objects such as an engine and a hydraulic pump are arranged in the vicinity of the rear end of the swivel platform on the side opposite to the work device (excavator, etc.). It is necessary to let As a result, the mounting space for the hydraulic pump (particularly, the space in the longitudinal direction of the drive shaft of the hydraulic pump) is limited, and it is difficult to ensure the mounting space.
 本発明は、以上の如き状況を鑑みてなされたものであり、コンパクト化を図ることが可能な油圧ショベルの動力伝達装置を提供するものである。 The present invention has been made in view of the above situation, and provides a power transmission device for a hydraulic excavator that can be made compact.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
 即ち、本発明においては、油圧アクチュエータに作動油を圧送するための少なくとも2つの油圧ポンプと、電力が供給されることにより前記少なくとも2つの油圧ポンプを駆動し、またはエンジンに駆動されることにより発電するモータジェネレータと、前記エンジンから前記少なくとも2つの油圧ポンプおよび前記モータジェネレータへと伝達される動力を断接するクラッチと、を具備し、前記エンジンおよび/または前記モータジェネレータにより前記少なくとも2つの油圧ポンプを駆動する油圧ショベルの動力伝達装置であって、前記少なくとも2つの油圧ポンプおよび前記モータジェネレータを並列に配置し、前記少なくとも2つの油圧ポンプ、前記モータジェネレータ、および前記クラッチを一体的に構成したものである。 That is, in the present invention, at least two hydraulic pumps for pumping hydraulic oil to the hydraulic actuator, and at least two hydraulic pumps are driven by supplying electric power, or power is generated by being driven by an engine. And a clutch for connecting and disconnecting power transmitted from the engine to the at least two hydraulic pumps and the motor generator, and the at least two hydraulic pumps are driven by the engine and / or the motor generator. A power transmission device for a hydraulic excavator to be driven, wherein the at least two hydraulic pumps and the motor generator are arranged in parallel, and the at least two hydraulic pumps, the motor generator, and the clutch are integrally configured. is there.
 本発明においては、前記少なくとも2つの油圧ポンプ、前記モータジェネレータ、および前記クラッチと、前記エンジンのフライホイールを覆うフライホイールカバーと、を一体的に構成したものである。 In the present invention, the at least two hydraulic pumps, the motor generator, the clutch, and a flywheel cover that covers the flywheel of the engine are integrally configured.
 本発明の効果として、以下に示すような効果を奏する。 As the effects of the present invention, the following effects are obtained.
 本発明においては、油圧ショベルの動力伝達装置のコンパクト化を図ることができ、当該動力伝達装置の油圧ショベルへの搭載を容易にすることができる。 In the present invention, the power transmission device of the hydraulic excavator can be made compact, and the power transmission device can be easily mounted on the hydraulic excavator.
 本発明においては、油圧ショベルの動力伝達装置のコンパクト化を図ることができ、当該動力伝達装置の油圧ショベルへの搭載を容易にすることができる。 In the present invention, the power transmission device of the hydraulic excavator can be made compact, and the power transmission device can be easily mounted on the hydraulic excavator.
本発明の一実施形態に係る動力伝達装置を具備する油圧ショベルの全体側面図。1 is an overall side view of a hydraulic excavator including a power transmission device according to an embodiment of the present invention. 動力伝達装置の全体的な構成を示したブロック図。The block diagram which showed the whole structure of the power transmission device. 動力伝達ケースの正面断面図。Front sectional drawing of a power transmission case. 動力伝達ケースの側面図。The side view of a power transmission case. エンジンおよび動力伝達ケースの配置を示す油圧ショベルの平面模式図。The plane schematic diagram of the hydraulic shovel which shows arrangement | positioning of an engine and a power transmission case. 油圧ポンプおよびモータジェネレータの動力伝達構成を示す模式図。(a)はプーリを介して動力を伝達する構成を示す図、(b)はギヤを介して動力を伝達する構成を示す図。The schematic diagram which shows the power transmission structure of a hydraulic pump and a motor generator. (A) is a figure which shows the structure which transmits motive power via a pulley, (b) is a figure which shows the structure which transmits motive power via a gear. 油圧ポンプおよびモータジェネレータの動力伝達構成を示す模式図。(a)はギヤを介して動力を伝達する構成を示す図、(b)は油圧ポンプとして斜軸式アキシャルピストンポンプを適用した構成を示す図。The schematic diagram which shows the power transmission structure of a hydraulic pump and a motor generator. (A) is a figure which shows the structure which transmits motive power via a gear, (b) is a figure which shows the structure which applied the oblique axis type axial piston pump as a hydraulic pump.
 1  油圧ショベル
 4  作業装置
 5  クローラ
 5L 左走行モータ(油圧アクチュエータ)
 5R 右走行モータ(油圧アクチュエータ)
 6  旋回台
 7  旋回モータ(油圧アクチュエータ)
 9  エンジン
 9b フライホイール
 13 ブームシリンダ(油圧アクチュエータ)
 14 アームシリンダ(油圧アクチュエータ)
 15 バケットシリンダ(油圧アクチュエータ)
 16 油圧アクチュエータ
 20 動力伝達装置
 30 動力伝達ケース
 31 フライホイールカバー
 40 第一油圧ポンプ(油圧ポンプ)
 50 第二油圧ポンプ(油圧ポンプ)
 60 クラッチ
 90 モータジェネレータ
1 Hydraulic Excavator 4 Working Device 5 Crawler 5L Left Travel Motor (Hydraulic Actuator)
5R Right travel motor (hydraulic actuator)
6 swivel base 7 swivel motor (hydraulic actuator)
9 Engine 9b Flywheel 13 Boom cylinder (hydraulic actuator)
14 Arm cylinder (hydraulic actuator)
15 Bucket cylinder (hydraulic actuator)
16 Hydraulic actuator 20 Power transmission device 30 Power transmission case 31 Flywheel cover 40 First hydraulic pump (hydraulic pump)
50 Second hydraulic pump (hydraulic pump)
60 clutch 90 motor generator
 以下の説明においては、図中の矢印L方向を左方向、矢印U方向を上方向、矢印F方向を前方向と定義する。 In the following description, the arrow L direction in the figure is defined as the left direction, the arrow U direction is defined as the upward direction, and the arrow F direction is defined as the forward direction.
 まず、図1を用いて、本発明の第一実施形態に係る動力伝達装置20を具備する油圧ショベル1について説明する。 First, the hydraulic excavator 1 including the power transmission device 20 according to the first embodiment of the present invention will be described with reference to FIG.
 油圧ショベル1は、走行装置2、旋回装置3、および作業装置4を具備する。 The hydraulic excavator 1 includes a traveling device 2, a turning device 3, and a working device 4.
 走行装置2は、左右一対のクローラ5・5、左走行モータ5L、および右走行モータ5R等を具備する。
 走行装置2は、左走行モータ5Lにより機体左側のクローラ5を、右走行モータ5Rにより機体右側のクローラ5を、それぞれ駆動することで、油圧ショベル1を前後進および旋回させることができる。
The traveling device 2 includes a pair of left and right crawlers 5, 5, a left traveling motor 5L, a right traveling motor 5R, and the like.
The traveling device 2 can drive the hydraulic excavator 1 forward and backward by driving the crawler 5 on the left side of the body with the left traveling motor 5L and the crawler 5 on the right side of the body with the right traveling motor 5R.
 旋回装置3は油圧ショベル1の車体を成すものであり、旋回台6、旋回モータ7、操縦部8、およびエンジン9等を具備する。
 旋回台6は、走行装置2の上方に配置され、走行装置2に旋回可能に支持される。旋回装置3は、旋回モータ7を駆動することで、当該旋回台6を走行装置2に対して旋回させることができる。また、旋回台6上には、種々の操作具を備える操縦部8、動力源となるエンジン9等が配置される。エンジン9の出力軸9aにはフライホイール9bが固設され、当該フライホイール9bに連結される連結軸9cから動力を取り出すことが可能である(図2参照)。
 なお、本実施形態に係るエンジン9はディーゼルエンジンであるものとするが、本発明はこれに限るものではなく、ガソリンエンジンであっても良い。
The swivel device 3 constitutes the vehicle body of the excavator 1, and includes a swivel base 6, a swivel motor 7, a control unit 8, an engine 9, and the like.
The swivel base 6 is disposed above the travel device 2 and is supported by the travel device 2 so as to be capable of swiveling. The turning device 3 can turn the turntable 6 with respect to the traveling device 2 by driving the turning motor 7. In addition, on the swivel base 6, a control unit 8 including various operation tools, an engine 9 serving as a power source, and the like are arranged. A flywheel 9b is fixed to the output shaft 9a of the engine 9, and power can be taken out from a connecting shaft 9c connected to the flywheel 9b (see FIG. 2).
In addition, although the engine 9 which concerns on this embodiment shall be a diesel engine, this invention is not limited to this, A gasoline engine may be sufficient.
 作業装置4は、ブーム10、アーム11、バケット12、ブームシリンダ13、アームシリンダ14、およびバケットシリンダ15等を具備する。
 ブーム10は、その一端部が旋回台6の前部に枢支され、伸縮自在に駆動するブームシリンダ13によって回動される。より詳細には、ブームシリンダ13が伸ばされた場合、ブーム10は上方に回動され、ブームシリンダ13が縮められた場合、ブーム10は下方に回動される。
 アーム11は、その一端部がブーム10の他端部に枢支され、伸縮自在に駆動するアームシリンダ14によって回動される。より詳細には、アームシリンダ14が伸ばされた場合、アーム11は下方(アーム11の他端側がブーム10に近接する方向)に回動され、アームシリンダ14が縮められた場合、アーム11は上方(アーム11の他端側がブーム10から離間する方向)に回動される。
 バケット12は、その一端部がアーム11の他端部に支持されて、伸縮自在に駆動するバケットシリンダ15によって回動される。より詳細には、バケットシリンダ15が伸ばされた場合、バケット12は下方(バケット12の他端側がアーム11に近接する方向)に回動され、バケットシリンダ15が縮められた場合、バケット12は上方(バケット12の他端側がアーム11から離間する方向)に回動される。
 以上の如く、作業装置4は、バケット12を用いて土砂等の掘削を行う多関節構造を構成している。
The working device 4 includes a boom 10, an arm 11, a bucket 12, a boom cylinder 13, an arm cylinder 14, a bucket cylinder 15, and the like.
One end of the boom 10 is pivotally supported by the front portion of the swivel base 6 and is rotated by a boom cylinder 13 that is extended and retracted. More specifically, when the boom cylinder 13 is extended, the boom 10 is rotated upward, and when the boom cylinder 13 is contracted, the boom 10 is rotated downward.
One end of the arm 11 is pivotally supported by the other end of the boom 10 and is rotated by an arm cylinder 14 that is extended and retracted. More specifically, when the arm cylinder 14 is extended, the arm 11 is rotated downward (the direction in which the other end of the arm 11 is close to the boom 10), and when the arm cylinder 14 is contracted, the arm 11 is upward. (The other end side of the arm 11 is rotated away from the boom 10).
One end of the bucket 12 is supported by the other end of the arm 11 and is rotated by a bucket cylinder 15 that is driven to extend and retract. More specifically, when the bucket cylinder 15 is extended, the bucket 12 is rotated downward (a direction in which the other end of the bucket 12 is close to the arm 11), and when the bucket cylinder 15 is contracted, the bucket 12 is upward. (The other end side of the bucket 12 is rotated away from the arm 11).
As described above, the working device 4 has a multi-joint structure that excavates earth and sand using the bucket 12.
 以下では、ブームシリンダ13、アームシリンダ14、バケットシリンダ15、左走行モータ5L、右走行モータ5R、および旋回モータ7を総称して油圧アクチュエータ16と記す。 Hereinafter, the boom cylinder 13, the arm cylinder 14, the bucket cylinder 15, the left traveling motor 5L, the right traveling motor 5R, and the turning motor 7 are collectively referred to as a hydraulic actuator 16.
 なお、本実施形態に係る油圧ショベル1に具備する作業装置は、バケット12を有して掘削作業を行う作業装置4としているが、これに限定するものではなく、例えば油圧ブレーカーを有して破砕作業を行う作業装置等であっても良い。 The working device provided in the excavator 1 according to the present embodiment is the working device 4 that has the bucket 12 and performs excavation work. However, the working device is not limited to this. For example, the working device has a hydraulic breaker and is crushed. It may be a working device that performs work.
 以下では、図2を用いて、本発明の実施の一形態にかかる動力伝達装置20について説明する。 Hereinafter, a power transmission device 20 according to an embodiment of the present invention will be described with reference to FIG.
 動力伝達装置20は、駆動源からの動力を伝達し、種々のアクチュエータを駆動させるためのものである。
 動力伝達装置20は、第一油圧ポンプ40、第二油圧ポンプ50、クラッチ60、コントロールバルブ70、操作手段80、モータジェネレータ90、バッテリ100、インバータ110、セルモータ120、吸収馬力検出手段130、操作状態検出手段140、充電状態検出手段150、エンジン回転数設定手段160、アイドルストップ選択手段170、エンジンコントローラユニット180、およびメインコントローラ190等を具備する。
The power transmission device 20 transmits power from a drive source and drives various actuators.
The power transmission device 20 includes a first hydraulic pump 40, a second hydraulic pump 50, a clutch 60, a control valve 70, an operation unit 80, a motor generator 90, a battery 100, an inverter 110, a cell motor 120, an absorption horsepower detection unit 130, an operation state. A detection unit 140, a charge state detection unit 150, an engine speed setting unit 160, an idle stop selection unit 170, an engine controller unit 180, a main controller 190, and the like are provided.
 第一油圧ポンプ40は、本発明に係る油圧ポンプの実施の一形態であり、伝達される動力によって回転駆動され、作動油を吐出するものである。第一油圧ポンプ40は、可動斜板46の傾斜角度を変更することによって作動油の吐出量を変更可能な可変容量型のポンプである。可動斜板46の傾斜角度は、図示しないアクチュエータ、または手動による操作によって変更することができる。第一油圧ポンプ40は、当該第一油圧ポンプ40に設けられる入力軸41から入力される動力により回転駆動する。入力軸41にはギヤ42およびプーリ48が固設される。第一油圧ポンプ40の吐出ポートには、油路49の一端が接続される。 The first hydraulic pump 40 is an embodiment of the hydraulic pump according to the present invention, and is rotationally driven by the transmitted power to discharge hydraulic oil. The first hydraulic pump 40 is a variable displacement pump that can change the discharge amount of hydraulic oil by changing the inclination angle of the movable swash plate 46. The inclination angle of the movable swash plate 46 can be changed by an actuator (not shown) or manual operation. The first hydraulic pump 40 is rotationally driven by power input from an input shaft 41 provided in the first hydraulic pump 40. A gear 42 and a pulley 48 are fixed to the input shaft 41. One end of an oil passage 49 is connected to the discharge port of the first hydraulic pump 40.
 第二油圧ポンプ50は、本発明に係る油圧ポンプの実施の一形態であり、伝達される動力によって回転駆動され、作動油を吐出するものである。第二油圧ポンプ50は、可動斜板56の傾斜角度を変更することによって作動油の吐出量を変更可能な可変容量型のポンプである。可動斜板56の傾斜角度は、図示しないアクチュエータ、または手動による操作によって変更することができる。第二油圧ポンプ50は、当該第二油圧ポンプ50に設けられる入力軸51から入力される動力により回転駆動する。入力軸51にはギヤ52が固設される。ギヤ52は、第一油圧ポンプ40の入力軸41に固設されるギヤ42と歯合される。第二油圧ポンプ50の吐出ポートには、油路59の一端が接続される。 The second hydraulic pump 50 is an embodiment of the hydraulic pump according to the present invention, and is rotationally driven by the transmitted power to discharge hydraulic oil. The second hydraulic pump 50 is a variable displacement pump that can change the discharge amount of hydraulic oil by changing the inclination angle of the movable swash plate 56. The inclination angle of the movable swash plate 56 can be changed by an actuator (not shown) or manual operation. The second hydraulic pump 50 is rotationally driven by power input from an input shaft 51 provided in the second hydraulic pump 50. A gear 52 is fixed to the input shaft 51. The gear 52 is meshed with a gear 42 fixed to the input shaft 41 of the first hydraulic pump 40. One end of an oil passage 59 is connected to the discharge port of the second hydraulic pump 50.
 また、ギヤ52の歯数は、ギヤ42の歯数と同一に設定される。これによって、ギヤ52とギヤ42とが歯合しながら回転する場合、当該ギヤ52およびギヤ42の回転数は同一となる。すなわち、第一油圧ポンプ40と第二油圧ポンプ50とは同一回転数で回転する。 Further, the number of teeth of the gear 52 is set to be the same as the number of teeth of the gear 42. Thus, when the gear 52 and the gear 42 rotate while meshing with each other, the rotation speeds of the gear 52 and the gear 42 are the same. That is, the first hydraulic pump 40 and the second hydraulic pump 50 rotate at the same rotational speed.
 クラッチ60は、エンジン9の連結軸9cと第一油圧ポンプ40の入力軸41との間に介設され、連結軸9cと入力軸41との間で伝達される動力を断接するものである。クラッチ60が接続されると、連結軸9cと入力軸41とが連結される。この場合、連結軸9cおよび入力軸41は同一回転数で回転可能となり、ひいてはエンジン9、並びに第一油圧ポンプ40および第二油圧ポンプ50は同一回転数で回転可能となる。クラッチ60が切断されると、連結軸9cと入力軸41との連結が解除され、エンジン9の連結軸9cが回転しても、当該回転動力は入力軸41に伝達されない。
 クラッチ60としては、油圧クラッチや電磁クラッチ等、種々のクラッチを適用することが可能である。
The clutch 60 is interposed between the connecting shaft 9 c of the engine 9 and the input shaft 41 of the first hydraulic pump 40, and connects and disconnects power transmitted between the connecting shaft 9 c and the input shaft 41. When the clutch 60 is connected, the connecting shaft 9c and the input shaft 41 are connected. In this case, the connecting shaft 9c and the input shaft 41 can rotate at the same rotational speed, and as a result, the engine 9, and the first hydraulic pump 40 and the second hydraulic pump 50 can rotate at the same rotational speed. When the clutch 60 is disengaged, the connection between the connecting shaft 9c and the input shaft 41 is released, and even if the connecting shaft 9c of the engine 9 rotates, the rotational power is not transmitted to the input shaft 41.
As the clutch 60, various clutches such as a hydraulic clutch and an electromagnetic clutch can be applied.
 コントロールバルブ70は、第一油圧ポンプ40および第二油圧ポンプ50から供給される作動油の方向および流量を適宜切り換えるためのものである。コントロールバルブ70は、方向切換弁、圧力補償弁等を適宜具備する。
 コントロールバルブ70には、油路49の他端が接続され、当該油路49を介して第一油圧ポンプ40から吐出される作動油がコントロールバルブ70に供給される。
 コントロールバルブ70には、油路59の他端が接続され、当該油路59を介して第二油圧ポンプ50から吐出される作動油がコントロールバルブ70に供給される。
 第一油圧ポンプ40および第二油圧ポンプ50から圧送された作動油は、コントロールバルブ70を介して油圧アクチュエータ16(ブームシリンダ13、アームシリンダ14等)に適宜供給される。当該供給される作動油によって、油圧アクチュエータ16が駆動される。
The control valve 70 is for appropriately switching the direction and flow rate of hydraulic oil supplied from the first hydraulic pump 40 and the second hydraulic pump 50. The control valve 70 appropriately includes a direction switching valve, a pressure compensation valve, and the like.
The other end of the oil passage 49 is connected to the control valve 70, and hydraulic oil discharged from the first hydraulic pump 40 is supplied to the control valve 70 through the oil passage 49.
The other end of the oil passage 59 is connected to the control valve 70, and hydraulic oil discharged from the second hydraulic pump 50 is supplied to the control valve 70 through the oil passage 59.
The hydraulic oil pumped from the first hydraulic pump 40 and the second hydraulic pump 50 is appropriately supplied to the hydraulic actuator 16 (boom cylinder 13, arm cylinder 14, etc.) via the control valve 70. The hydraulic actuator 16 is driven by the supplied hydraulic oil.
 なお、本発明に係る油圧アクチュエータは上記の油圧アクチュエータ16(ブームシリンダ13、アームシリンダ14等)に限るものではなく、作動油によって駆動される油圧アクチュエータであればよい。 The hydraulic actuator according to the present invention is not limited to the hydraulic actuator 16 (boom cylinder 13, arm cylinder 14, etc.), and may be a hydraulic actuator driven by hydraulic oil.
 操作手段80は、コントロールバルブ70を介して油圧アクチュエータ16に供給される作動油の方向および流量を切り換えるためのものである。操作手段80がオペレータによって操作されると、当該操作信号(電気信号)がコントロールバルブ70に送信される。当該信号に基づいて、コントロールバルブ70に具備される種々の弁(方向切換弁等)が切り換えられる。これによって、オペレータの所望の油圧アクチュエータ16に、所望の量の作動油を供給することができる。 The operating means 80 is for switching the direction and flow rate of the hydraulic oil supplied to the hydraulic actuator 16 via the control valve 70. When the operation means 80 is operated by an operator, the operation signal (electric signal) is transmitted to the control valve 70. Based on the signal, various valves (such as a directional switching valve) provided in the control valve 70 are switched. As a result, a desired amount of hydraulic fluid can be supplied to the hydraulic actuator 16 desired by the operator.
 なお、本実施形態に係る操作手段80は、電気信号によりコントロールバルブ70を動作させるものとしたが、本発明はこれに限るものではない。すなわち、オペレータの操作に基づいてコントロールバルブ70にパイロット圧を付与し、当該パイロット圧によりコントロールバルブ70を動作させる油圧式の操作手段であっても良い。
 上記の如く操作手段80として油圧式の操作手段を用いる場合においては、後述するアイドルストップ制御によりエンジン9が停止された際においても当該油圧式の操作手段に作動油を供給できるように、当該油圧式の操作手段に作動油を供給するための油圧ポンプ、および当該油圧ポンプを駆動するための電動機を別途設けるものとする。
In addition, although the operation means 80 which concerns on this embodiment shall operate the control valve 70 with an electrical signal, this invention is not limited to this. That is, it may be hydraulic operating means that applies a pilot pressure to the control valve 70 based on an operator's operation and operates the control valve 70 with the pilot pressure.
When hydraulic operating means is used as the operating means 80 as described above, the hydraulic pressure can be supplied to the hydraulic operating means even when the engine 9 is stopped by idle stop control described later. A hydraulic pump for supplying hydraulic oil to the operation means of the type and an electric motor for driving the hydraulic pump are separately provided.
 モータジェネレータ90は、電力が供給された場合は電動機として回転駆動して動力を発生し、動力が供給された場合は発電機として電力を発生するものである。モータジェネレータ90は入出力軸91を備え、当該入出力軸91にはプーリ92が固設される。プーリ92およびプーリ48にはベルト93が巻回され、当該プーリ92およびプーリ48間の動力の伝達が可能とされる。
 モータジェネレータ90は、電力が供給された場合、入出力軸91を回転駆動させることができる。
 モータジェネレータ90は、動力が伝達されて入出力軸91が回転駆動された場合、電力を発生させることができる。
The motor generator 90 is rotationally driven as an electric motor to generate power when electric power is supplied, and generates electric power as a generator when power is supplied. The motor generator 90 includes an input / output shaft 91, and a pulley 92 is fixed to the input / output shaft 91. A belt 93 is wound around the pulley 92 and the pulley 48 so that power can be transmitted between the pulley 92 and the pulley 48.
The motor generator 90 can rotationally drive the input / output shaft 91 when electric power is supplied.
The motor generator 90 can generate electric power when power is transmitted and the input / output shaft 91 is rotationally driven.
 バッテリ100は、モータジェネレータ90、およびその他の電気機器に供給する電力を蓄え、放電することが可能な二次電池である。 The battery 100 is a secondary battery that can store and discharge electric power supplied to the motor generator 90 and other electric devices.
 インバータ110は、バッテリ100からの電力をモータジェネレータ90に供給し、またはモータジェネレータ90からの電力をバッテリ100に供給することを可能にするものである。
 インバータ110は、直流を交流に変換する回路(インバータ回路)と交流を直流に変換する回路(コンバータ回路)とを備え、当該インバータ回路とコンバータ回路のうちいずれか一方を選択する、またはいずれも選択しないことが可能である。
The inverter 110 supplies electric power from the battery 100 to the motor generator 90 or enables electric power from the motor generator 90 to be supplied to the battery 100.
The inverter 110 includes a circuit that converts direct current into alternating current (inverter circuit) and a circuit that converts alternating current into direct current (converter circuit), and selects either one of the inverter circuit and the converter circuit or both It is possible not to.
 インバータ回路が選択された場合、インバータ110は、バッテリ100から供給される直流の電力を交流に変換し、モータジェネレータ90に供給する。このように、インバータ110によってバッテリ100からの電力をモータジェネレータ90に供給可能とすることで、当該モータジェネレータ90は入出力軸91を回転駆動させる。すなわち、この場合、モータジェネレータ90を電動機として使用することができる。この場合、モータジェネレータ90からバッテリ100への電力の供給は遮断される。以下、このモータジェネレータ90が入出力軸91を回転駆動させる状態を「駆動状態」と記す。 When the inverter circuit is selected, the inverter 110 converts the DC power supplied from the battery 100 into AC and supplies it to the motor generator 90. As described above, by allowing the inverter 110 to supply the electric power from the battery 100 to the motor generator 90, the motor generator 90 rotates the input / output shaft 91. That is, in this case, the motor generator 90 can be used as an electric motor. In this case, the supply of electric power from motor generator 90 to battery 100 is interrupted. Hereinafter, a state in which the motor generator 90 rotationally drives the input / output shaft 91 is referred to as a “driving state”.
 コンバータ回路が選択された場合、インバータ110は、モータジェネレータ90から供給される交流の電力を直流に変換し、当該電力をバッテリ100に蓄える。このように、インバータ110によってモータジェネレータ90からの電力をバッテリ100に供給可能とすることで、当該モータジェネレータ90はエンジン9からの動力により電力を発生させ、当該電力をバッテリ100に蓄える(充電する)ことができる。すなわち、この場合、モータジェネレータ90を発電機として使用することができる。この場合、バッテリ100からモータジェネレータ90への電力の供給は遮断される。以下、このモータジェネレータ90がバッテリ100を充電させる状態を「発電状態」と記す。 When the converter circuit is selected, the inverter 110 converts AC power supplied from the motor generator 90 into DC and stores the power in the battery 100. In this way, by allowing the inverter 110 to supply power from the motor generator 90 to the battery 100, the motor generator 90 generates power by the power from the engine 9 and stores (charges) the power in the battery 100. )be able to. That is, in this case, the motor generator 90 can be used as a generator. In this case, the supply of power from battery 100 to motor generator 90 is interrupted. Hereinafter, a state in which the motor generator 90 charges the battery 100 is referred to as a “power generation state”.
 インバータ回路およびコンバータ回路のいずれも選択されない場合、インバータ110は、モータジェネレータ90への電力の供給も、バッテリ100への電力の供給も行わない。このように、モータジェネレータ90への電力の供給を行わないため、モータジェネレータ90は入出力軸91を回転駆動させない。また、モータジェネレータ90の入出力軸91が回転駆動されても、バッテリ100への電力の供給を行わないため、バッテリ100の充電も行われず、この際のモータジェネレータ90の入出力軸91の回転抵抗は、発電状態の入出力軸91の回転抵抗よりも小さくなる。以下、このモータジェネレータ90が入出力軸91の回転駆動もバッテリ100の充電も行わない状態を「中立状態」と記す。 When neither the inverter circuit nor the converter circuit is selected, the inverter 110 neither supplies power to the motor generator 90 nor supplies power to the battery 100. As described above, since power is not supplied to the motor generator 90, the motor generator 90 does not rotate the input / output shaft 91. Even if the input / output shaft 91 of the motor generator 90 is driven to rotate, the battery 100 is not charged because the power is not supplied to the battery 100, and the input / output shaft 91 of the motor generator 90 is rotated at this time. The resistance is smaller than the rotational resistance of the input / output shaft 91 in the power generation state. Hereinafter, a state in which the motor generator 90 neither rotates the input / output shaft 91 nor charges the battery 100 is referred to as a “neutral state”.
 セルモータ120は、エンジン9を始動させるための電動機である。セルモータ120は、バッテリ100から供給される電力により駆動される。 The cell motor 120 is an electric motor for starting the engine 9. The cell motor 120 is driven by electric power supplied from the battery 100.
 吸収馬力検出手段130は、第一油圧ポンプ40および第二油圧ポンプ50による吸収馬力Lpを検出するためのものである。ここで、吸収馬力Lpとは、第一油圧ポンプ40および第二油圧ポンプ50が駆動するために必要な馬力をいう。吸収馬力検出手段130は、第一圧力検出手段131、第二圧力検出手段132、第一容積検出手段133、第二容積検出手段134、およびポンプ回転数検出手段135を具備する。 The absorption horsepower detection means 130 is for detecting the absorption horsepower Lp by the first hydraulic pump 40 and the second hydraulic pump 50. Here, the absorption horsepower Lp refers to horsepower required for the first hydraulic pump 40 and the second hydraulic pump 50 to drive. The absorption horsepower detection means 130 includes a first pressure detection means 131, a second pressure detection means 132, a first volume detection means 133, a second volume detection means 134, and a pump rotation speed detection means 135.
 第一圧力検出手段131は、第一油圧ポンプ40の吐出圧P1を検出するセンサである。第一圧力検出手段131は油路49の中途部に接続され、当該油路49内の圧力を検出することにより、ひいては第一油圧ポンプ40の吐出圧P1を検出することができる。 The first pressure detecting means 131 is a sensor that detects the discharge pressure P1 of the first hydraulic pump 40. The first pressure detecting means 131 is connected to the middle portion of the oil passage 49 and can detect the discharge pressure P1 of the first hydraulic pump 40 by detecting the pressure in the oil passage 49.
 第二圧力検出手段132は、第二油圧ポンプ50の吐出圧P2を検出するセンサである。第二圧力検出手段132は油路59の中途部に接続され、当該油路59内の圧力を検出することで、ひいては第二油圧ポンプ50の吐出圧P2を検出することができる。 The second pressure detection means 132 is a sensor that detects the discharge pressure P2 of the second hydraulic pump 50. The second pressure detection means 132 is connected to the middle part of the oil passage 59, and by detecting the pressure in the oil passage 59, the discharge pressure P2 of the second hydraulic pump 50 can be detected.
 第一容積検出手段133は、第一油圧ポンプ40の押しのけ容積q1を検出するためのものである。第一容積検出手段133は、第一油圧ポンプ40の可動斜板46の傾斜角度を検出するセンサである。当該可動斜板46の傾斜角度に基づいて、後述するメインコントローラ190により第一油圧ポンプ40の押しのけ容積q1が算出される。 The first volume detection means 133 is for detecting the displacement volume q1 of the first hydraulic pump 40. The first volume detection means 133 is a sensor that detects the inclination angle of the movable swash plate 46 of the first hydraulic pump 40. Based on the inclination angle of the movable swash plate 46, a displacement q1 of the first hydraulic pump 40 is calculated by a main controller 190 described later.
 第二容積検出手段134は、第二油圧ポンプ50の押しのけ容積q2を検出するためのものである。第二容積検出手段134は、第二油圧ポンプ50の可動斜板56の傾斜角度を検出するセンサである。当該可動斜板56の傾斜角度に基づいて、後述するメインコントローラ190により第二油圧ポンプ50の押しのけ容積q2が算出される。 The second volume detection means 134 is for detecting the displacement volume q2 of the second hydraulic pump 50. The second volume detection means 134 is a sensor that detects the inclination angle of the movable swash plate 56 of the second hydraulic pump 50. Based on the inclination angle of the movable swash plate 56, a displacement volume q2 of the second hydraulic pump 50 is calculated by a main controller 190 described later.
 ポンプ回転数検出手段135は、第一油圧ポンプ40および第二油圧ポンプ50の回転数Npを検出するセンサである。ポンプ回転数検出手段135は第二油圧ポンプ50の入力軸51に固設されるギヤ52の回転数を検出することで、ひいては第二油圧ポンプ50の回転数Npを検出することができる。また、第二油圧ポンプ50および第一油圧ポンプ40の回転数Npは同一であるため、ポンプ回転数検出手段135は、第二油圧ポンプ50の回転数Npを検出することで、同時に第一油圧ポンプ40の回転数Npも検出することになる。 The pump rotation speed detection means 135 is a sensor that detects the rotation speed Np of the first hydraulic pump 40 and the second hydraulic pump 50. The pump rotational speed detection means 135 can detect the rotational speed Np of the second hydraulic pump 50 by detecting the rotational speed of the gear 52 fixed to the input shaft 51 of the second hydraulic pump 50. Further, since the second hydraulic pump 50 and the first hydraulic pump 40 have the same rotational speed Np, the pump rotational speed detection means 135 detects the rotational speed Np of the second hydraulic pump 50, thereby simultaneously producing the first hydraulic pressure. The rotational speed Np of the pump 40 is also detected.
 操作状態検出手段140は、操作手段80が操作されているか否かを検出するセンサである。操作状態検出手段140はポテンショメータ等で構成され、オペレータにより操作手段80が操作されたことを検出することができる。 The operation state detection unit 140 is a sensor that detects whether or not the operation unit 80 is being operated. The operation state detection means 140 is composed of a potentiometer or the like, and can detect that the operation means 80 has been operated by the operator.
 なお、本実施形態に係る操作状態検出手段140は、ポテンショメータ等により操作手段80が操作されたことを直接検出するものとしたが、本発明はこれに限るものではない。すなわち、操作手段80が油圧式である場合、コントロールバルブ70を動作させるパイロット圧を圧力スイッチ等で検出することにより、操作手段80が操作されていることを検出する構成であっても良い。
 上記の如く操作手段80が油圧式である場合においては、後述するアイドルストップ制御によりエンジン9が停止された際においても当該油圧式の操作手段に作動油を供給できるように、当該油圧式の操作手段に作動油を供給するための油圧ポンプ、および当該油圧ポンプを駆動するための電動機を別途設けるものとする。
The operation state detection unit 140 according to the present embodiment directly detects that the operation unit 80 is operated by a potentiometer or the like, but the present invention is not limited to this. That is, when the operation means 80 is a hydraulic type, it may be configured to detect that the operation means 80 is operated by detecting a pilot pressure for operating the control valve 70 with a pressure switch or the like.
When the operation means 80 is hydraulic as described above, the hydraulic operation is performed so that the hydraulic oil can be supplied to the hydraulic operation means even when the engine 9 is stopped by idle stop control described later. A hydraulic pump for supplying hydraulic oil to the means and an electric motor for driving the hydraulic pump are separately provided.
 充電状態検出手段150は、バッテリ100の充電量(残量)Cを検出するものである。充電状態検出手段150は、バッテリ100の充電量(残量)Cを示す情報(例えば電圧、バッテリ液の比重等)を検出することができる。 The charge state detection means 150 detects the charge amount (remaining amount) C of the battery 100. The charge state detection means 150 can detect information (for example, voltage, specific gravity of the battery fluid, etc.) indicating the charge amount (remaining amount) C of the battery 100.
 エンジン回転数設定手段160は、エンジン9の回転数を設定するものである。エンジン回転数設定手段160は、ダイヤルスイッチにより構成され、オペレータによって操作可能とされる。エンジン回転数設定手段160の操作量は、当該エンジン回転数設定手段160に設けられるセンサ(不図示)により検出することができる。
 なお、エンジン回転数設定手段160はダイヤルスイッチに限るものではなく、レバー、ペダル等であっても良い。
The engine speed setting means 160 sets the speed of the engine 9. The engine speed setting means 160 is constituted by a dial switch and can be operated by an operator. The operation amount of the engine speed setting means 160 can be detected by a sensor (not shown) provided in the engine speed setting means 160.
The engine speed setting means 160 is not limited to a dial switch, and may be a lever, a pedal, or the like.
 アイドルストップ選択手段170は、後述するアイドルストップ制御を行うか否かを選択するためのものである。アイドルストップ選択手段170は、ダイヤルスイッチにより構成され、オペレータによって操作可能とされる。アイドルストップ選択手段170は、アイドルストップ制御を行わない「OFF」ポジション、アイドルストップ制御を行う「ON」ポジション、またはエンジン9を停止させ、モータジェネレータ90のみを駆動させる「モータ駆動」ポジションに切り換えることができる。アイドルストップ選択手段170のポジションは、当該アイドルストップ選択手段170に設けられるセンサ(不図示)により検出することができる。 The idle stop selection means 170 is for selecting whether or not to perform idle stop control which will be described later. The idle stop selection means 170 is constituted by a dial switch and can be operated by an operator. The idle stop selection means 170 switches to an “OFF” position where idle stop control is not performed, an “ON” position where idle stop control is performed, or a “motor drive” position where the engine 9 is stopped and only the motor generator 90 is driven. Can do. The position of the idle stop selection unit 170 can be detected by a sensor (not shown) provided in the idle stop selection unit 170.
 エンジンコントローラユニット(以下、単に「ECU」と記す)180は、種々の信号およびプログラムに基づいて、エンジン9の動作を制御するためのものである。ECU180は、具体的にはCPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。 The engine controller unit (hereinafter simply referred to as “ECU”) 180 is for controlling the operation of the engine 9 based on various signals and programs. Specifically, ECU 180 may have a configuration in which a CPU, ROM, RAM, HDD, or the like is connected by a bus, or may be configured by a one-chip LSI or the like.
 ECU180は、エンジン9の回転数Neを検出するエンジン回転数検出手段(不図示)と接続され、当該エンジン回転数検出手段によるエンジン9の回転数Neの検出信号を取得することが可能である。 ECU 180 is connected to an engine speed detecting means (not shown) for detecting the speed Ne of the engine 9 and can acquire a detection signal of the speed Ne of the engine 9 by the engine speed detecting means.
 ECU180は、セルモータ120と接続され、当該セルモータ120に制御信号を送信し、当該セルモータ120によりエンジン9のクランク軸を回転させることで当該エンジン9を始動させることが可能である。
 ECU180は、エンジン9の燃料噴射量を調節するための調速装置(不図示)と接続され、当該調速装置に制御信号を送信し、エンジン9の燃料噴射量を調節することで回転数Neやトルク特性を変更したり、エンジン9の燃料供給を停止することで当該エンジン9を停止したりすることが可能である。
The ECU 180 is connected to the cell motor 120, transmits a control signal to the cell motor 120, and rotates the crankshaft of the engine 9 by the cell motor 120 to start the engine 9.
The ECU 180 is connected to a speed control device (not shown) for adjusting the fuel injection amount of the engine 9, transmits a control signal to the speed control device, and adjusts the fuel injection amount of the engine 9 to adjust the rotational speed Ne. The engine 9 can be stopped by changing the torque characteristics or stopping the fuel supply of the engine 9.
 メインコントローラ190は、種々の信号およびプログラムに基づいて、クラッチ60、インバータ110、およびECU180に制御信号を送信するものである。メインコントローラ190は、具体的にはCPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。 The main controller 190 transmits control signals to the clutch 60, the inverter 110, and the ECU 180 based on various signals and programs. Specifically, the main controller 190 may be configured such that a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
 メインコントローラ190は、第一圧力検出手段131に接続され、第一圧力検出手段131による第一油圧ポンプ40の吐出圧P1の検出信号を取得することが可能である。
 メインコントローラ190は、第二圧力検出手段132に接続され、第二圧力検出手段132による第二油圧ポンプ50の吐出圧P2の検出信号を取得することが可能である。
 メインコントローラ190は、第一容積検出手段133に接続され、第一容積検出手段133による第一油圧ポンプ40の可動斜板46の傾斜角度の検出信号を取得することが可能である。メインコントローラ190には、可動斜板46の傾斜角度と第一油圧ポンプ40の押しのけ容積q1との関係を示すマップが記憶されている。当該メインコントローラ190は、当該可動斜板46の傾斜角度の検出信号に基づいて、第一油圧ポンプ40の押しのけ容積q1を算出する。
 メインコントローラ190は、第二容積検出手段134に接続され、第二容積検出手段134による第二油圧ポンプ50の可動斜板56の傾斜角度の検出信号を取得することが可能である。メインコントローラ190には、可動斜板56の傾斜角度と第二油圧ポンプ50の押しのけ容積q2との関係を示すマップが記憶されている。当該メインコントローラ190は、当該可動斜板56の傾斜角度の検出信号に基づいて、第二油圧ポンプ50の押しのけ容積q2を算出する。
 メインコントローラ190は、ポンプ回転数検出手段135に接続され、ポンプ回転数検出手段135による第一油圧ポンプ40および第二油圧ポンプ50の回転数Npの検出信号を取得することが可能である。
The main controller 190 is connected to the first pressure detection means 131, and can acquire a detection signal of the discharge pressure P1 of the first hydraulic pump 40 by the first pressure detection means 131.
The main controller 190 is connected to the second pressure detection means 132, and can acquire a detection signal of the discharge pressure P2 of the second hydraulic pump 50 by the second pressure detection means 132.
The main controller 190 is connected to the first volume detection means 133 and can acquire a detection signal of the inclination angle of the movable swash plate 46 of the first hydraulic pump 40 by the first volume detection means 133. The main controller 190 stores a map showing the relationship between the inclination angle of the movable swash plate 46 and the displacement volume q1 of the first hydraulic pump 40. The main controller 190 calculates the displacement volume q1 of the first hydraulic pump 40 based on the detection signal of the inclination angle of the movable swash plate 46.
The main controller 190 is connected to the second volume detection unit 134 and can acquire a detection signal of the tilt angle of the movable swash plate 56 of the second hydraulic pump 50 by the second volume detection unit 134. The main controller 190 stores a map indicating the relationship between the tilt angle of the movable swash plate 56 and the displacement volume q2 of the second hydraulic pump 50. The main controller 190 calculates the displacement q2 of the second hydraulic pump 50 based on the detection signal of the inclination angle of the movable swash plate 56.
The main controller 190 is connected to the pump rotation speed detection means 135, and can acquire a detection signal of the rotation speed Np of the first hydraulic pump 40 and the second hydraulic pump 50 by the pump rotation speed detection means 135.
 メインコントローラ190は、吐出圧P1、吐出圧P2、押しのけ容積q1、押しのけ容積q2、および回転数Npに基づいて、第一油圧ポンプ40および第二油圧ポンプ50による吸収馬力Lpを算出する。吸収馬力Lpは、Lp=K×((P1×q1×Np)+(P2×q2×Np))の式(Kは定数)を用いて算出される。 The main controller 190 calculates the absorption horsepower Lp by the first hydraulic pump 40 and the second hydraulic pump 50 based on the discharge pressure P1, the discharge pressure P2, the displacement volume q1, the displacement volume q2, and the rotation speed Np. The absorption horsepower Lp is calculated using an equation of Lp = K × ((P1 × q1 × Np) + (P2 × q2 × Np)) (K is a constant).
 メインコントローラ190は、操作状態検出手段140に接続され、操作状態検出手段140による操作手段80が操作された旨の検出信号を取得することが可能である。
 メインコントローラ190は、充電状態検出手段150に接続され、充電状態検出手段150によるバッテリ100の充電量(残量)Cの検出信号を取得することが可能である。
The main controller 190 is connected to the operation state detection unit 140 and can acquire a detection signal indicating that the operation unit 80 by the operation state detection unit 140 has been operated.
The main controller 190 is connected to the charge state detection unit 150 and can acquire a detection signal of the charge amount (remaining amount) C of the battery 100 by the charge state detection unit 150.
 メインコントローラ190は、ECU180と接続され、当該ECU180(より詳細には、ECU180に接続されるエンジン回転数検出手段)によるエンジン9の回転数Neの検出信号を取得することが可能である。また、メインコントローラ190は、ECU180に、エンジン9を始動または停止させる旨、およびエンジン9の目標回転数を指示する旨の制御信号を送信することが可能である。 The main controller 190 is connected to the ECU 180, and can acquire a detection signal of the rotational speed Ne of the engine 9 by the ECU 180 (more specifically, an engine rotational speed detection means connected to the ECU 180). Further, the main controller 190 can transmit control signals to the ECU 180 to start or stop the engine 9 and to instruct the target rotational speed of the engine 9.
 メインコントローラ190は、エンジン回転数設定手段160に設けられるセンサに接続され、当該センサによるエンジン回転数設定手段160の操作量の検出信号を取得することが可能である。
 メインコントローラ190は、アイドルストップ選択手段170に設けられるセンサに接続され、当該センサによるアイドルストップ選択手段170のポジションの検出信号を取得することが可能である。
The main controller 190 is connected to a sensor provided in the engine speed setting means 160, and can acquire a detection signal of the operation amount of the engine speed setting means 160 by the sensor.
The main controller 190 is connected to a sensor provided in the idle stop selection unit 170, and can acquire a detection signal of the position of the idle stop selection unit 170 by the sensor.
 メインコントローラ190は、クラッチ60に接続され、当該クラッチ60に、当該クラッチ60を断接する旨の制御信号を送信することが可能である。
 メインコントローラ190は、インバータ110に接続され、当該インバータ110に、インバータ回路またはコンバータ回路のうちいずれか一方を選択する旨、またはいずれも選択しない旨の制御信号を送信することが可能である。
The main controller 190 is connected to the clutch 60 and can transmit a control signal to the clutch 60 to connect and disconnect the clutch 60.
The main controller 190 is connected to the inverter 110 and can transmit to the inverter 110 a control signal indicating that either one of the inverter circuit or the converter circuit is selected or neither is selected.
 以下では、上述の如く構成された動力伝達装置20の基本的な動作態様について説明する。 Hereinafter, a basic operation mode of the power transmission device 20 configured as described above will be described.
 図示せぬキースイッチ等が操作され、メインコントローラ190にエンジン9を始動する旨の信号が送信されると、メインコントローラ190は、ECU180にエンジン9を始動させる旨の制御信号を送信する。当該制御信号を受信したECU180は、セルモータ120に制御信号を送信し、エンジン9を始動させる。 When a key switch or the like (not shown) is operated and a signal to start the engine 9 is transmitted to the main controller 190, the main controller 190 transmits a control signal to start the engine 9 to the ECU 180. The ECU 180 that has received the control signal transmits the control signal to the cell motor 120 and starts the engine 9.
 また、図示せぬキースイッチ等が操作され、メインコントローラ190にエンジン9を停止する旨の信号が送信されると、メインコントローラ190は、ECU180にエンジン9を停止させる旨の制御信号を送信する。当該制御信号を受信したECU180は、前記調速装置に制御信号を送信し、エンジン9を停止させる。 Further, when a key switch or the like (not shown) is operated and a signal to stop the engine 9 is transmitted to the main controller 190, the main controller 190 transmits a control signal to stop the engine 9 to the ECU 180. The ECU 180 that has received the control signal transmits the control signal to the speed governor and stops the engine 9.
 エンジン9が始動した場合、メインコントローラ190は、エンジン回転数設定手段160の操作量に基づいて、エンジン9の目標回転数を決定する。メインコントローラ190は、当該エンジン9の目標回転数を制御信号としてECU180に送信する。当該制御信号を受信したECU180は、前記調速装置に制御信号を送信し、エンジン9の回転数Neが目標回転数になるように、当該エンジン9の回転数Neを調節する。 When the engine 9 is started, the main controller 190 determines the target rotational speed of the engine 9 based on the operation amount of the engine rotational speed setting means 160. The main controller 190 transmits the target rotational speed of the engine 9 to the ECU 180 as a control signal. The ECU 180 that has received the control signal transmits a control signal to the speed governor, and adjusts the rotational speed Ne of the engine 9 so that the rotational speed Ne of the engine 9 becomes the target rotational speed.
 エンジン9が始動(駆動)し、クラッチ60が接続された場合、当該エンジン9の動力は、連結軸9c、クラッチ60、および入力軸41を介して第一油圧ポンプ40に伝達される。また、エンジン9からの動力は、ギヤ42、ギヤ52および入力軸51を介して第二油圧ポンプ50にも伝達される。これによって、第一油圧ポンプ40および第二油圧ポンプ50が同一の回転数Npで回転する。 When the engine 9 is started (driven) and the clutch 60 is connected, the power of the engine 9 is transmitted to the first hydraulic pump 40 via the connecting shaft 9c, the clutch 60, and the input shaft 41. The power from the engine 9 is also transmitted to the second hydraulic pump 50 via the gear 42, the gear 52 and the input shaft 51. As a result, the first hydraulic pump 40 and the second hydraulic pump 50 rotate at the same rotational speed Np.
 第一油圧ポンプ40および第二油圧ポンプ50が駆動(回転)されると、当該第一油圧ポンプ40および第二油圧ポンプ50から作動油が吐出される。当該作動油は、油路49および油路59を介してコントロールバルブ70に供給される。コントロールバルブ70は操作手段80からの操作信号に基づいて、オペレータの所望の油圧アクチュエータ16に作動油を供給する。 When the first hydraulic pump 40 and the second hydraulic pump 50 are driven (rotated), hydraulic oil is discharged from the first hydraulic pump 40 and the second hydraulic pump 50. The hydraulic oil is supplied to the control valve 70 through the oil passage 49 and the oil passage 59. The control valve 70 supplies hydraulic oil to the hydraulic actuator 16 desired by the operator based on an operation signal from the operation means 80.
 一方、メインコントローラ190によってインバータ回路を選択する旨の制御信号がインバータ110に送信された場合、モータジェネレータ90は駆動状態に切り換えられる。この場合、モータジェネレータ90はバッテリ100の電力により入出力軸91を回転駆動させ、動力を発生させる。当該動力は、入出力軸91、プーリ92、ベルト93、プーリ48、および入力軸41を介して第一油圧ポンプ40に伝達されるとともに、ギヤ42、ギヤ52、および入力軸51を介して第二油圧ポンプ50に伝達される。すなわちこの場合、エンジン9からの動力に加えてモータジェネレータ90からの動力により、第一油圧ポンプ40および第二油圧ポンプ50を駆動させることができる。 On the other hand, when the control signal for selecting the inverter circuit is transmitted to the inverter 110 by the main controller 190, the motor generator 90 is switched to the driving state. In this case, the motor generator 90 rotates the input / output shaft 91 with the electric power of the battery 100 to generate power. The power is transmitted to the first hydraulic pump 40 through the input / output shaft 91, the pulley 92, the belt 93, the pulley 48, and the input shaft 41, and is transmitted through the gear 42, the gear 52, and the input shaft 51. Two hydraulic pumps 50 are transmitted. That is, in this case, the first hydraulic pump 40 and the second hydraulic pump 50 can be driven by the power from the motor generator 90 in addition to the power from the engine 9.
 また、メインコントローラ190によってコンバータ回路を選択する旨の制御信号がインバータ110に送信された場合、モータジェネレータ90は発電状態に切り換えられる。この場合、モータジェネレータ90は、ベルト93、プーリ92、および入出力軸91を介して伝達されるエンジン9からの動力により回転駆動され、電力を発生させる。当該電力は、インバータ110を介してバッテリ100に蓄えられる。すなわちこの場合、エンジン9からの動力により、第一油圧ポンプ40および第二油圧ポンプ50が駆動されるとともに、モータジェネレータ90が回転駆動されてバッテリ100に電力が蓄えられる。 When the control signal for selecting the converter circuit is transmitted to the inverter 110 by the main controller 190, the motor generator 90 is switched to the power generation state. In this case, the motor generator 90 is rotationally driven by the power from the engine 9 transmitted via the belt 93, the pulley 92, and the input / output shaft 91, and generates electric power. The electric power is stored in the battery 100 via the inverter 110. In other words, in this case, the first hydraulic pump 40 and the second hydraulic pump 50 are driven by the power from the engine 9, and the motor generator 90 is rotationally driven to store electric power in the battery 100.
 また、メインコントローラ190によってインバータ回路およびコンバータ回路のいずれも選択しない旨の制御信号がインバータ110に送信された場合、モータジェネレータ90は中立状態に切り換えられる。この場合、モータジェネレータ90は、ベルト93、プーリ92、および入出力軸91を介して伝達されるエンジン9からの動力により回転駆動されるものの、バッテリ100の充電は行わない。このため、モータジェネレータ90の入出力軸91の回転抵抗は、発電状態に比べて小さい。 Further, when a control signal indicating that neither the inverter circuit nor the converter circuit is selected by the main controller 190 is transmitted to the inverter 110, the motor generator 90 is switched to the neutral state. In this case, the motor generator 90 is rotationally driven by the power from the engine 9 transmitted via the belt 93, the pulley 92, and the input / output shaft 91, but does not charge the battery 100. For this reason, the rotational resistance of the input / output shaft 91 of the motor generator 90 is smaller than that in the power generation state.
 上述の如く構成された動力伝達装置20において、例えば以下のような制御が可能である。 In the power transmission device 20 configured as described above, for example, the following control is possible.
 吸収馬力Lpが予め設定される値よりも大きい場合、メインコントローラ190はモータジェネレータ90を駆動状態に切り換える。これによって、第一油圧ポンプ40および第二油圧ポンプ50は、エンジン9に加えてモータジェネレータ90により駆動されることになる。すなわち、モータジェネレータ90によって第一油圧ポンプ40および第二油圧ポンプ50の駆動を補助することができる。 When the absorption horsepower Lp is larger than a preset value, the main controller 190 switches the motor generator 90 to the driving state. Thus, the first hydraulic pump 40 and the second hydraulic pump 50 are driven by the motor generator 90 in addition to the engine 9. That is, the motor generator 90 can assist in driving the first hydraulic pump 40 and the second hydraulic pump 50.
 吸収馬力Lpが予め設定される値よりも大きい場合であっても、バッテリ100の充電量Cが予め設定される値よりも小さい場合、メインコントローラ190はモータジェネレータ90を中立状態に切り換える。これによって、バッテリ100の過放電を防止することができる。 Even if the absorption horsepower Lp is larger than a preset value, if the charge amount C of the battery 100 is smaller than a preset value, the main controller 190 switches the motor generator 90 to a neutral state. Thereby, overdischarge of the battery 100 can be prevented.
 一方、吸収馬力Lpが予め設定される値よりも小さく、かつバッテリ100の充電量Cが予め設定される値よりも小さい場合、メインコントローラ190はモータジェネレータ90を発電状態に切り換える。これによって、エンジン9の出力の余裕分を用いてバッテリ100を充電することができる。 On the other hand, when the absorption horsepower Lp is smaller than a preset value and the charge amount C of the battery 100 is smaller than a preset value, the main controller 190 switches the motor generator 90 to the power generation state. As a result, the battery 100 can be charged using a margin of the output of the engine 9.
 また、上述の如く構成された動力伝達装置20において、例えば以下のような制御(いわゆるアイドルストップ制御)が可能である。 In the power transmission device 20 configured as described above, for example, the following control (so-called idle stop control) is possible.
 操作手段80が一定時間の間継続して操作されていない場合、メインコントローラ190は、エンジン9を停止し、クラッチ60を切断し、モータジェネレータ90を中立状態に切り換える。これによって、無駄な燃料および電力の消費を抑制することができる。 When the operating means 80 has not been operated continuously for a certain time, the main controller 190 stops the engine 9, disconnects the clutch 60, and switches the motor generator 90 to the neutral state. As a result, wasteful fuel and power consumption can be suppressed.
 この後操作手段80が操作された場合、メインコントローラ190はモータジェネレータ90を駆動状態に切り換える。これによって、一般に低速トルクの高いモータジェネレータ90(電動機)によって速やかに第一油圧ポンプ40および第二油圧ポンプ50を駆動することができる。 After that, when the operation means 80 is operated, the main controller 190 switches the motor generator 90 to the driving state. Accordingly, the first hydraulic pump 40 and the second hydraulic pump 50 can be driven promptly by the motor generator 90 (electric motor) generally having a high low-speed torque.
 さらに、この後吸収馬力Lpが予め設定される値よりも大きくなった場合、メインコントローラ190はエンジン9を始動し、クラッチ60を接続し、モータジェネレータ90を中立状態に切り換える。これによって、吸収馬力Lpが大きい場合にはエンジン9により第一油圧ポンプ40および第二油圧ポンプ50を駆動することができる。 Further, after this, when the absorption horsepower Lp becomes larger than a preset value, the main controller 190 starts the engine 9, connects the clutch 60, and switches the motor generator 90 to the neutral state. Thereby, when the absorption horsepower Lp is large, the first hydraulic pump 40 and the second hydraulic pump 50 can be driven by the engine 9.
 以下では、図3および図4を用いて、第一油圧ポンプ40、第二油圧ポンプ50、クラッチ60、およびモータジェネレータ90の構成について詳細に説明する。 Hereinafter, the configuration of the first hydraulic pump 40, the second hydraulic pump 50, the clutch 60, and the motor generator 90 will be described in detail with reference to FIG. 3 and FIG.
 第一油圧ポンプ40、第二油圧ポンプ50、クラッチ60、およびモータジェネレータ90は、動力伝達ケース30に支持される。
 動力伝達ケース30は、フライホイールカバー31、連結プレート32、およびポンプケース33等を具備する。
The first hydraulic pump 40, the second hydraulic pump 50, the clutch 60, and the motor generator 90 are supported by the power transmission case 30.
The power transmission case 30 includes a flywheel cover 31, a connecting plate 32, a pump case 33, and the like.
 フライホイールカバー31は、エンジン9のフライホイール9bを右方から覆う部材である。フライホイールカバー31は、正面断面視で略円錐台形状のカバー部31a、およびカバー部31aの右端上部に一体的に形成される略直方体状の本体部31bを具備する。カバー部31aの内部は左方に向かって開放するように形成され、本体部31bの内部は右方に向かって開放するように形成される。フライホイールカバー31の左右略中央部(より詳細には、カバー部31aの上下左右方向略中央部)には、カバー部31aの内部と本体部31bの内部とを連通する貫通孔31cが形成される。 The flywheel cover 31 is a member that covers the flywheel 9b of the engine 9 from the right side. The flywheel cover 31 includes a substantially truncated cone-shaped cover portion 31a in a front sectional view and a substantially rectangular parallelepiped body portion 31b integrally formed on the upper right end of the cover portion 31a. The inside of the cover part 31a is formed so as to open toward the left, and the inside of the main body part 31b is formed so as to open toward the right. A through hole 31c that connects the inside of the cover portion 31a and the inside of the main body portion 31b is formed in the substantially right and left central portion of the flywheel cover 31 (more specifically, the substantially central portion of the cover portion 31a in the vertical and horizontal directions). The
 連結プレート32は、略矩形板状の部材である。連結プレート32は、板面を左右方向に向けて配置される。連結プレート32には、その板面を左右方向に貫通する上下一対の貫通孔32aおよび貫通孔32bが形成される。連結プレート32は、フライホイールカバー31の本体部31bの右端に固設される。 The connecting plate 32 is a substantially rectangular plate-like member. The connecting plate 32 is disposed with the plate surface directed in the left-right direction. The connecting plate 32 is formed with a pair of upper and lower through holes 32a and 32b penetrating the plate surface in the left-right direction. The connecting plate 32 is fixed to the right end of the main body 31 b of the flywheel cover 31.
 ポンプケース33は、略直方体状の部材である。ポンプケース33の内部は左方に向かって開放するように形成される。ポンプケース33の右側面下部には、当該ポンプケース33の内部と外部とを連通する貫通孔33aが形成される。ポンプケース33は、連結プレート32の右端に固設される。 The pump case 33 is a substantially rectangular parallelepiped member. The inside of the pump case 33 is formed so as to open toward the left. A through-hole 33 a that communicates the inside and the outside of the pump case 33 is formed in the lower portion of the right side surface of the pump case 33. The pump case 33 is fixed to the right end of the connecting plate 32.
 クラッチ60は、フライホイールカバー31のカバー部31a内(詳細には、カバー部31a内の右側面であって貫通孔31cの周辺)に配置される。 The clutch 60 is disposed in the cover portion 31a of the flywheel cover 31 (specifically, on the right side surface in the cover portion 31a and around the through hole 31c).
 第一油圧ポンプ40は、入力軸41、ギヤ42、シリンダブロック43、ピストン44、シュー45、可動斜板46、およびバルブプレート47等を具備する。 The first hydraulic pump 40 includes an input shaft 41, a gear 42, a cylinder block 43, a piston 44, a shoe 45, a movable swash plate 46, a valve plate 47, and the like.
 入力軸41は、軸線方向を左右方向に向けて配置され、フライホイールカバー31の貫通孔31c、連結プレート32の貫通孔32b、およびポンプケース33の貫通孔33aに挿通される。この際、貫通孔31c、貫通孔32b、および貫通孔33aと入力軸41との間には、オイルシール31d、オイルシール32d、およびオイルシール33bがそれぞれ設けられる。入力軸41は、軸受41aを介してポンプケース33に回動可能に支持される。入力軸41の一端(左端)はクラッチ60に連結される。入力軸41の他端(右端)はポンプケース33の右方に突出され、当該突出した部分にプーリ48が固設される。 The input shaft 41 is arranged with the axial direction directed in the left-right direction, and is inserted into the through hole 31 c of the flywheel cover 31, the through hole 32 b of the connecting plate 32, and the through hole 33 a of the pump case 33. At this time, an oil seal 31d, an oil seal 32d, and an oil seal 33b are provided between the through hole 31c, the through hole 32b, and the through hole 33a and the input shaft 41, respectively. The input shaft 41 is rotatably supported by the pump case 33 via a bearing 41a. One end (left end) of the input shaft 41 is connected to the clutch 60. The other end (right end) of the input shaft 41 protrudes to the right of the pump case 33, and a pulley 48 is fixed to the protruding portion.
 ギヤ42は、フライホイールカバー31の本体部31bの内部において、入力軸41にスプライン嵌合され、当該入力軸41に相対回転不能に支持される。ギヤ42は、軸受42aおよび軸受42bを介してフライホイールカバー31の本体部31bに回動可能に支持される。 The gear 42 is spline-fitted to the input shaft 41 inside the main body 31 b of the flywheel cover 31 and is supported by the input shaft 41 so as not to be relatively rotatable. The gear 42 is rotatably supported by the main body 31b of the flywheel cover 31 via the bearing 42a and the bearing 42b.
 シリンダブロック43は、略円柱状の部材であり、軸線方向を左右方向に向けて配置される。シリンダブロック43は、ポンプケース33の内部において、入力軸41にスプライン嵌合され、当該入力軸41に相対回転不能に支持される。シリンダブロック43の軸線を中心とした同一円周上には、複数のシリンダ43a・43a・・・が形成される。 The cylinder block 43 is a substantially cylindrical member, and is arranged with the axial direction facing the left-right direction. The cylinder block 43 is spline-fitted to the input shaft 41 inside the pump case 33 and is supported by the input shaft 41 so as not to be relatively rotatable. A plurality of cylinders 43a, 43a,... Are formed on the same circumference around the axis of the cylinder block 43.
 ピストン44は、シリンダ43a内を摺動することにより、作動油の吸入および吐出を行うものである。ピストン44は複数設けられ、当該複数のピストン44・44・・・の右端側は、シリンダ43a・43a・・・にそれぞれ摺動可能に挿通される。 The piston 44 performs suction and discharge of hydraulic oil by sliding in the cylinder 43a. A plurality of pistons 44 are provided, and right end sides of the plurality of pistons 44, 44... Are slidably inserted into the cylinders 43a, 43a,.
 シュー45は、ピストン44の摺動位置を可動斜板46側に拘束するものである。シュー45は複数設けられ、当該複数のシュー45・45・・・は、ピストン44・44・・・の左端にそれぞれ連結される。シュー45・45・・・は、図示しないプレート等によって可動斜板46から離間しないように、かつ可動斜板46上を摺動可能となるように保持される。 The shoe 45 restrains the sliding position of the piston 44 to the movable swash plate 46 side. A plurality of shoes 45 are provided, and the plurality of shoes 45... Are connected to the left ends of the pistons 44. The shoes 45, 45... Are held by a plate (not shown) so as not to be separated from the movable swash plate 46 and to be slidable on the movable swash plate 46.
 可動斜板46は、ピストン44・44・・・の摺動量を変更するものである。可動斜板46はシリンダブロック43の左方において、入力軸41に外嵌される。可動斜板46の傾斜角度を変更することによって、シリンダ43a・43a・・・に対するピストン44・44・・・の摺動量を任意に変更することができる。 The movable swash plate 46 is for changing the sliding amount of the pistons 44. The movable swash plate 46 is fitted on the input shaft 41 on the left side of the cylinder block 43. By changing the inclination angle of the movable swash plate 46, the sliding amount of the pistons 44, 44... Relative to the cylinders 43a, 43a.
 バルブプレート47は、ピストン44・44・・・により吸入および吐出される作動油を案内するものである。バルブプレート47は略円盤状の部材であり、シリンダブロック43の右端と当接した状態で、入力軸41に外嵌される。バルブプレート47には、作動油を適宜案内するための油路が形成される。 The valve plate 47 guides hydraulic oil sucked and discharged by the pistons 44, 44. The valve plate 47 is a substantially disk-shaped member, and is fitted on the input shaft 41 in a state where the valve plate 47 is in contact with the right end of the cylinder block 43. The valve plate 47 is formed with an oil passage for appropriately guiding hydraulic oil.
 上述の如く構成された第一油圧ポンプ40において、入力軸41が回転すると、当該入力軸41とともにシリンダブロック43が回転する。シリンダブロック43が回転すると、当該シリンダブロック43のシリンダ43a・43a・・・に挿通されたピストン44・44・・・が、シュー45・45・・・を介して可動斜板46上を摺動しながら入力軸41の周りを回転する。 In the first hydraulic pump 40 configured as described above, when the input shaft 41 rotates, the cylinder block 43 rotates together with the input shaft 41. When the cylinder block 43 rotates, the pistons 44, 44, ... inserted into the cylinders 43a, 43a, ... of the cylinder block 43 slide on the movable swash plate 46 via the shoes 45, 45 ... While rotating around the input shaft 41.
 この状態で可動斜板46が傾斜すると、ピストン44・44・・・がシリンダ43a・43a・・・内を摺動する。ピストン44・44・・・の摺動運動によって、作動油はバルブプレート47を介してシリンダ43a・43a・・・に吸入され、またはシリンダ43a・43a・・・からバルブプレート47を介して吐出される。 When the movable swash plate 46 tilts in this state, the pistons 44, 44... Slide in the cylinders 43a, 43a. The hydraulic oil is drawn into the cylinders 43a, 43a,... Through the valve plate 47 or discharged from the cylinders 43a, 43a,. The
 第二油圧ポンプ50は、入力軸51、ギヤ52、シリンダブロック53、ピストン54、シュー55、可動斜板56、およびバルブプレート57等を具備する。
 なお、第二油圧ポンプ50は概ね第一油圧ポンプ40と同様の構成であるため、以下では第二油圧ポンプ50の構成のうち、第一油圧ポンプ40と異なる部分について説明する。
The second hydraulic pump 50 includes an input shaft 51, a gear 52, a cylinder block 53, a piston 54, a shoe 55, a movable swash plate 56, a valve plate 57, and the like.
Since the second hydraulic pump 50 has substantially the same configuration as that of the first hydraulic pump 40, the following description will be made on portions of the configuration of the second hydraulic pump 50 that are different from the first hydraulic pump 40.
 入力軸51は、軸線方向を左右方向に向けて、第一油圧ポンプ40の入力軸41の直上に配置され、連結プレート32の貫通孔32aに挿通される。この際、貫通孔32aと入力軸51との間には、オイルシール32cが設けられる。入力軸51は、軸受51aを介してポンプケース33に回動可能に支持される。 The input shaft 51 is disposed right above the input shaft 41 of the first hydraulic pump 40 with the axial direction directed in the left-right direction, and is inserted into the through hole 32a of the connecting plate 32. At this time, an oil seal 32 c is provided between the through hole 32 a and the input shaft 51. The input shaft 51 is rotatably supported by the pump case 33 via a bearing 51a.
 ギヤ52は、フライホイールカバー31の本体部31bの内部において、入力軸51にスプライン嵌合され、当該入力軸51に相対回転不能に支持される。ギヤ52は、軸受52aおよび軸受52bを介してフライホイールカバー31の本体部31bに回動可能に支持される。ギヤ52は、第一油圧ポンプ40のギヤ42と歯合される。 The gear 52 is spline-fitted to the input shaft 51 inside the main body 31 b of the flywheel cover 31 and is supported by the input shaft 51 so as not to be relatively rotatable. The gear 52 is rotatably supported by the main body 31b of the flywheel cover 31 via a bearing 52a and a bearing 52b. The gear 52 is meshed with the gear 42 of the first hydraulic pump 40.
 第二油圧ポンプ50は、第一油圧ポンプ40と並列に配置される。すなわち、第二油圧ポンプ50の入力軸51は第一油圧ポンプ40の入力軸41と平行に配置され、第二油圧ポンプ50の少なくとも一部は左右方向において第一油圧ポンプ40と重複するように配置される。
 本実施形態においては、第二油圧ポンプ50の各部材は第一油圧ポンプ40の各部材と左右方向において同一位置となるように配置されている。詳細には、ギヤ52はギヤ42と、シリンダブロック53はシリンダブロック43と、可動斜板56は可動斜板46と、バルブプレート57はバルブプレート47と、それぞれ左右方向において同一位置となるように配置されている。
The second hydraulic pump 50 is disposed in parallel with the first hydraulic pump 40. That is, the input shaft 51 of the second hydraulic pump 50 is disposed in parallel with the input shaft 41 of the first hydraulic pump 40, and at least a part of the second hydraulic pump 50 overlaps the first hydraulic pump 40 in the left-right direction. Be placed.
In the present embodiment, each member of the second hydraulic pump 50 is disposed so as to be in the same position as each member of the first hydraulic pump 40 in the left-right direction. Specifically, the gear 52 is in the same position in the left-right direction as the gear 42, the cylinder block 53 is in the cylinder block 43, the movable swash plate 56 is in the movable swash plate 46, and the valve plate 57 is in the same position in the left-right direction. Has been placed.
 上述の如く構成された第二油圧ポンプ50において、入力軸41の回転がギヤ42およびギヤ52を介して入力軸51に伝達されると、当該入力軸51とともにシリンダブロック53が回転する。シリンダブロック53が回転すると、当該シリンダブロック53のシリンダ53a・53a・・・に挿通されたピストン54・54・・・が、シュー55・55・・・を介して可動斜板56上を摺動しながら入力軸51の周りを回転する。 In the second hydraulic pump 50 configured as described above, when the rotation of the input shaft 41 is transmitted to the input shaft 51 via the gear 42 and the gear 52, the cylinder block 53 rotates together with the input shaft 51. When the cylinder block 53 rotates, the pistons 54, 54, ... inserted into the cylinders 53a, 53a, ... of the cylinder block 53 slide on the movable swash plate 56 via the shoes 55, 55, ... While rotating around the input shaft 51.
 この状態で可動斜板56が傾斜すると、ピストン54・54・・・がシリンダ53a・53a・・・内を摺動する。ピストン54・54・・・の摺動運動によって、作動油はバルブプレート57を介してシリンダ53a・53a・・・に吸入され、またはシリンダ53a・53a・・・からバルブプレート57を介して吐出される。 When the movable swash plate 56 tilts in this state, the pistons 54, 54,... Slide in the cylinders 53a, 53a,. The hydraulic fluid is drawn into the cylinders 53a, 53a,... Through the valve plate 57 or discharged from the cylinders 53a, 53a,. The
 モータジェネレータ90は、入出力軸91の軸線方向を左右方向に向けて、かつ入出力軸91が右方を向くように配置される。モータジェネレータ90は、入出力軸91が第一油圧ポンプ40の入力軸41の直下に位置するように、ポンプケース33の下部に固定される。これによって、モータジェネレータ90は、ポンプケース33、連結プレート32、およびフライホイールカバー31(詳細には、本体部31b)の下方であって、フライホイールカバー31(詳細には、カバー部31a)の下部の右方の空間に配置される。モータジェネレータ90の入出力軸91は、ポンプケース33の右側面よりも右方に突出するように延設され、当該突出した部分にプーリ92が固設される。プーリ92とプーリ48との間には、ベルト93が巻回される。 The motor generator 90 is disposed so that the axial direction of the input / output shaft 91 is directed to the left and right, and the input / output shaft 91 is directed to the right. The motor generator 90 is fixed to the lower part of the pump case 33 so that the input / output shaft 91 is positioned directly below the input shaft 41 of the first hydraulic pump 40. Thus, the motor generator 90 is below the pump case 33, the connecting plate 32, and the flywheel cover 31 (specifically, the main body portion 31b), and the flywheel cover 31 (specifically, the cover portion 31a). Located in the lower right space. The input / output shaft 91 of the motor generator 90 extends so as to protrude rightward from the right side surface of the pump case 33, and a pulley 92 is fixed to the protruding portion. A belt 93 is wound between the pulley 92 and the pulley 48.
 モータジェネレータ90は、第一油圧ポンプ40および第二油圧ポンプ50と並列に配置される。すなわち、モータジェネレータ90の入出力軸91は第一油圧ポンプ40の入力軸41および第二油圧ポンプ50の入力軸51と平行に配置され、モータジェネレータ90の少なくとも一部は左右方向において第一油圧ポンプ40および第二油圧ポンプ50と重複するように配置される。
 本実施形態においては、モータジェネレータ90は第一油圧ポンプ40および第二油圧ポンプ50と左右方向において略同一位置となるように配置されている。詳細には、モータジェネレータ90の左端はギヤ42およびギヤ52と、モータジェネレータ90の右端はバルブプレート47およびバルブプレート57と、それぞれ左右方向において略同一位置となるように配置されている。
The motor generator 90 is arranged in parallel with the first hydraulic pump 40 and the second hydraulic pump 50. That is, the input / output shaft 91 of the motor generator 90 is arranged in parallel with the input shaft 41 of the first hydraulic pump 40 and the input shaft 51 of the second hydraulic pump 50, and at least a part of the motor generator 90 is the first hydraulic pressure in the left-right direction. It arrange | positions so that the pump 40 and the 2nd hydraulic pump 50 may overlap.
In the present embodiment, the motor generator 90 is disposed so as to be substantially at the same position as the first hydraulic pump 40 and the second hydraulic pump 50 in the left-right direction. Specifically, the motor generator 90 is arranged so that the left end of the motor generator 90 is in the same position in the left-right direction, and the right end of the motor generator 90 is in the left-right direction.
 上述の如く、第一油圧ポンプ40、第二油圧ポンプ50、クラッチ60、およびモータジェネレータ90は、動力伝達ケース30に支持されることにより、一体的に構成される。 As described above, the first hydraulic pump 40, the second hydraulic pump 50, the clutch 60, and the motor generator 90 are integrally configured by being supported by the power transmission case 30.
 以下では、図3から図5までを用いて、上述の如く構成された動力伝達装置20を油圧ショベル1に搭載する際の配置について説明する。 Hereinafter, the arrangement when the power transmission device 20 configured as described above is mounted on the excavator 1 will be described with reference to FIGS.
 図5に示すように、油圧ショベル1においては、作業中の車両バランスを安定させるために、エンジン9、第一油圧ポンプ40、および第二油圧ポンプ50等の重量物を、旋回台6における作業装置4とは反対側(旋回台6の後端部近傍)に配置させるのが通常である。 As shown in FIG. 5, in the hydraulic excavator 1, heavy objects such as the engine 9, the first hydraulic pump 40, and the second hydraulic pump 50 are used to work on the swivel 6 in order to stabilize the vehicle balance during the work. Usually, it is arranged on the opposite side of the device 4 (near the rear end of the swivel base 6).
 この場合、後方超小旋回型の油圧ショベルなどでは、旋回台6は平面視略円形状に構成されていることが通常であるため、エンジン9と第一油圧ポンプ40等の搭載スペースが制限されることになる。より具体的には、第一油圧ポンプ40の入力軸41の軸線方向(図5における左右方向)のスペースが制限される。 In this case, in a rear ultra-small turning type hydraulic excavator or the like, the swivel base 6 is usually configured in a substantially circular shape in plan view, and thus the mounting space for the engine 9 and the first hydraulic pump 40 and the like is limited. Will be. More specifically, the space in the axial direction (left-right direction in FIG. 5) of the input shaft 41 of the first hydraulic pump 40 is limited.
 本実施形態においては、図3および図4に示すように、第一油圧ポンプ40、第二油圧ポンプ50、およびモータジェネレータ90を上下方向に並列に配置し、かつ第一油圧ポンプ40、第二油圧ポンプ50、クラッチ60、およびモータジェネレータ90は一体的に構成される。そして、第二油圧ポンプ50は第一油圧ポンプ40の上方に、モータジェネレータ90は第一油圧ポンプ40の下方に、それぞれ配置して、左右のバランスをとるとともに、フライホイールカバー31、連結プレート32、およびポンプケース33で構成する動力伝達ケース30の右部下方空間において、モータジェネレータ90をポンプケース33の下面に一体的に固設している。これによって、モータジェネレータ90は、平面視において動力伝達ケース30の投影面積内に入り、側面視においてカバー部31aの投影面積内に略入るようになる。こうして、第一油圧ポンプ40、第二油圧ポンプ50、クラッチ60、およびモータジェネレータ90のコンパクト化を図り、ひいては動力伝達装置20のコンパクト化を図ることができる。
 したがって、上述の如くエンジン9や第一油圧ポンプ40等の搭載スペースが制限される油圧ショベル1においても、本実施形態に係る動力伝達装置20を容易に搭載することができる。
In the present embodiment, as shown in FIGS. 3 and 4, the first hydraulic pump 40, the second hydraulic pump 50, and the motor generator 90 are arranged in parallel in the vertical direction, and the first hydraulic pump 40, second The hydraulic pump 50, the clutch 60, and the motor generator 90 are integrally configured. The second hydraulic pump 50 is disposed above the first hydraulic pump 40 and the motor generator 90 is disposed below the first hydraulic pump 40 to balance the left and right, as well as the flywheel cover 31 and the connecting plate 32. The motor generator 90 is integrally fixed to the lower surface of the pump case 33 in the right lower space of the power transmission case 30 constituted by the pump case 33. As a result, the motor generator 90 enters the projected area of the power transmission case 30 in a plan view and substantially enters the projected area of the cover portion 31a in a side view. In this way, the first hydraulic pump 40, the second hydraulic pump 50, the clutch 60, and the motor generator 90 can be made compact, and as a result, the power transmission device 20 can be made compact.
Therefore, the power transmission device 20 according to this embodiment can be easily mounted on the hydraulic excavator 1 in which the mounting space for the engine 9, the first hydraulic pump 40, and the like is limited as described above.
 以上の如く、本実施形態に係る油圧ショベル1の動力伝達装置20は、油圧アクチュエータ16に作動油を圧送するための油圧ポンプ(第一油圧ポンプ40および第二油圧ポンプ50)と、電力が供給されることにより前記油圧ポンプを駆動し、またはエンジン9に駆動されることにより発電するモータジェネレータ90と、エンジン9から前記油圧ポンプおよびモータジェネレータ90へと伝達される動力を断接するクラッチ60と、を具備し、エンジン9および/またはモータジェネレータ90により前記油圧ポンプを駆動する油圧ショベル1の動力伝達装置20であって、前記油圧ポンプおよびモータジェネレータ90を並列に配置し、前記油圧ポンプ、モータジェネレータ90、およびクラッチ60を一体的に構成したものである。
 このように構成することにより、油圧ショベル1の動力伝達装置20のコンパクト化を図ることができ、当該動力伝達装置20の油圧ショベル1への搭載を容易にすることができる。
 また、前記油圧ポンプ、モータジェネレータ90、およびクラッチ60を一体的に構成することにより、動力伝達装置20の油圧ショベル1への組み立て工数の削減を図ることができる。
As described above, the power transmission device 20 of the hydraulic excavator 1 according to the present embodiment supplies the hydraulic pumps (the first hydraulic pump 40 and the second hydraulic pump 50) for pumping hydraulic oil to the hydraulic actuator 16, and supplies power. A motor generator 90 for driving the hydraulic pump by being driven or generating electric power by being driven by the engine 9, and a clutch 60 for connecting / disconnecting power transmitted from the engine 9 to the hydraulic pump and the motor generator 90, A power transmission device 20 of a hydraulic excavator 1 that drives the hydraulic pump by an engine 9 and / or a motor generator 90, wherein the hydraulic pump and the motor generator 90 are arranged in parallel, and the hydraulic pump and the motor generator 90 and the clutch 60 are integrally formed.
With this configuration, the power transmission device 20 of the hydraulic excavator 1 can be made compact, and the power transmission device 20 can be easily mounted on the hydraulic excavator 1.
Further, by integrally configuring the hydraulic pump, the motor generator 90, and the clutch 60, it is possible to reduce the number of steps for assembling the power transmission device 20 to the hydraulic excavator 1.
 また、本実施形態に係る動力伝達装置20は、前記油圧ポンプ、モータジェネレータ90、およびクラッチ60と、エンジン9のフライホイール9bを覆うフライホイールカバー31と、を一体的に構成したものである。
 このように構成することにより、油圧ショベル1の動力伝達装置20のコンパクト化を図ることができ、当該動力伝達装置20の油圧ショベル1への搭載を容易にすることができる。
 また、前記油圧ポンプ、モータジェネレータ90、クラッチ60、およびフライホイールカバー31を一体的に構成することにより、動力伝達装置20の油圧ショベル1への組み立て工数の削減を図ることができる。
Further, the power transmission device 20 according to the present embodiment is configured integrally with the hydraulic pump, the motor generator 90, the clutch 60, and the flywheel cover 31 that covers the flywheel 9b of the engine 9.
With this configuration, the power transmission device 20 of the hydraulic excavator 1 can be made compact, and the power transmission device 20 can be easily mounted on the hydraulic excavator 1.
Further, by integrally configuring the hydraulic pump, the motor generator 90, the clutch 60, and the flywheel cover 31, the number of steps for assembling the power transmission device 20 to the hydraulic excavator 1 can be reduced.
 また、本実施形態に係る動力伝達装置20は、
 前記油圧ポンプおよびモータジェネレータ90を上下方向に一列に配置したものである。
 このように構成することにより、
 油圧ショベル1の動力伝達装置20のコンパクト化を図ることができ、当該動力伝達装置20の油圧ショベル1への搭載を容易にすることができる。
Moreover, the power transmission device 20 according to the present embodiment is
The hydraulic pump and motor generator 90 are arranged in a line in the vertical direction.
By configuring in this way,
The power transmission device 20 of the hydraulic excavator 1 can be made compact, and the power transmission device 20 can be easily mounted on the hydraulic excavator 1.
 なお、本実施形態においては、図6(a)に示すように、入力軸41と入出力軸91との間の動力の伝達は、プーリ48、ベルト93、およびプーリ92を介してなされるものとしたが、本発明はこれに限るものではない。
 すなわち、図6(b)に示すように、ギヤ48aおよびギヤ92aを介して動力を伝達する構成とすることも可能である。
 また、図7(a)に示すように、入出力軸91に固設されたギヤ92bを、ギヤ42に歯合させて、入力軸41と入出力軸91との間の動力の伝達を行うことも可能である。
In the present embodiment, as shown in FIG. 6A, power is transmitted between the input shaft 41 and the input / output shaft 91 via the pulley 48, the belt 93, and the pulley 92. However, the present invention is not limited to this.
That is, as shown in FIG. 6B, it is possible to adopt a configuration in which power is transmitted through the gear 48a and the gear 92a.
Further, as shown in FIG. 7A, the gear 92b fixed to the input / output shaft 91 is engaged with the gear 42 to transmit power between the input shaft 41 and the input / output shaft 91. It is also possible.
 さらに、本実施形態に係る第一油圧ポンプ40および第二油圧ポンプ50は、図6(a)、(b)および図7(a)に示すように、入力軸41および入力軸51の軸線とシリンダブロック43およびシリンダブロック53の軸線とがそれぞれ同一直線上にある、いわゆる斜板式アキシャルピストンポンプであるものとしたが、本発明はこれに限るものではない。
 すなわち、図7(b)に示すように、第一油圧ポンプ40および第二油圧ポンプ50は、入力軸41および入力軸51の軸線に対してシリンダブロック43およびシリンダブロック53の軸線がそれぞれ所定の角度だけ傾いている、いわゆる斜軸式アキシャルピストンポンプであってもよい。
Further, the first hydraulic pump 40 and the second hydraulic pump 50 according to the present embodiment are configured so that the axes of the input shaft 41 and the input shaft 51 are the same as shown in FIGS. 6 (a), 6 (b) and 7 (a). The so-called swash plate type axial piston pump in which the axes of the cylinder block 43 and the cylinder block 53 are on the same straight line is described, but the present invention is not limited to this.
That is, as shown in FIG. 7B, the first hydraulic pump 40 and the second hydraulic pump 50 are configured such that the axis lines of the cylinder block 43 and the cylinder block 53 are respectively predetermined with respect to the axis lines of the input shaft 41 and the input shaft 51. A so-called oblique axis type axial piston pump inclined at an angle may be used.
 また、本実施形態に係る動力伝達装置20は、油圧ポンプとして2つの油圧ポンプ(第一油圧ポンプ40および第二油圧ポンプ50)を具備するものとしたが、本発明はこれに限るものではなく、3つ以上の油圧ポンプを具備する構成とすることも可能である。 Moreover, although the power transmission device 20 according to the present embodiment includes two hydraulic pumps (the first hydraulic pump 40 and the second hydraulic pump 50) as hydraulic pumps, the present invention is not limited to this. A configuration including three or more hydraulic pumps is also possible.
 本発明は、エンジンおよびモータジェネレータを油圧ポンプの駆動源として利用可能な油圧ショベルの動力伝達装置における、各構成部材の配置構成の技術に利用することが可能である。 The present invention can be used for the technology of the arrangement configuration of each component in a power transmission device of a hydraulic excavator that can use an engine and a motor generator as a drive source of a hydraulic pump.

Claims (2)

  1.  油圧アクチュエータに作動油を圧送するための少なくとも2つの油圧ポンプと、
     電力が供給されることにより前記少なくとも2つの油圧ポンプを駆動し、またはエンジンに駆動されることにより発電するモータジェネレータと、
     前記エンジンから前記少なくとも2つの油圧ポンプおよび前記モータジェネレータへと伝達される動力を断接するクラッチと、
     を具備し、
     前記エンジンおよび/または前記モータジェネレータにより前記少なくとも2つの油圧ポンプを駆動する油圧ショベルの動力伝達装置であって、
     前記少なくとも2つの油圧ポンプおよび前記モータジェネレータを並列に配置し、
     前記少なくとも2つの油圧ポンプ、前記モータジェネレータ、および前記クラッチを一体的に構成した、
     油圧ショベルの動力伝達装置。
    At least two hydraulic pumps for pumping hydraulic oil to the hydraulic actuator;
    A motor generator that drives the at least two hydraulic pumps when supplied with electric power or generates electric power when driven by an engine;
    A clutch for connecting and disconnecting power transmitted from the engine to the at least two hydraulic pumps and the motor generator;
    Comprising
    A power transmission device for a hydraulic excavator that drives the at least two hydraulic pumps by the engine and / or the motor generator,
    Arranging the at least two hydraulic pumps and the motor generator in parallel;
    The at least two hydraulic pumps, the motor generator, and the clutch are configured integrally.
    Power transmission device for hydraulic excavators.
  2.  前記少なくとも2つの油圧ポンプ、前記モータジェネレータ、および前記クラッチと、前記エンジンのフライホイールを覆うフライホイールカバーと、を一体的に構成した、
     請求項1に記載の油圧ショベルの動力伝達装置。
    The at least two hydraulic pumps, the motor generator, and the clutch, and a flywheel cover that covers the flywheel of the engine are integrally configured.
    The power transmission device for a hydraulic excavator according to claim 1.
PCT/JP2011/077926 2010-12-03 2011-12-02 Power transmitting device for hydraulic shovel WO2012074098A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010270623A JP2012117349A (en) 2010-12-03 2010-12-03 Power transmission device for hydraulic shovel
JP2010-270623 2010-12-03

Publications (1)

Publication Number Publication Date
WO2012074098A1 true WO2012074098A1 (en) 2012-06-07

Family

ID=46172020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077926 WO2012074098A1 (en) 2010-12-03 2011-12-02 Power transmitting device for hydraulic shovel

Country Status (2)

Country Link
JP (1) JP2012117349A (en)
WO (1) WO2012074098A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2546420A3 (en) * 2011-07-11 2017-06-14 Liebherr-Hydraulikbagger GmbH Work machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109522B2 (en) * 2012-10-19 2017-04-05 株式会社小松製作所 Work vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009308A (en) * 2001-06-22 2003-01-10 Kobelco Contstruction Machinery Ltd Work machine
JP2005002607A (en) * 2003-06-10 2005-01-06 Seirei Ind Co Ltd Excavation working vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009308A (en) * 2001-06-22 2003-01-10 Kobelco Contstruction Machinery Ltd Work machine
JP2005002607A (en) * 2003-06-10 2005-01-06 Seirei Ind Co Ltd Excavation working vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2546420A3 (en) * 2011-07-11 2017-06-14 Liebherr-Hydraulikbagger GmbH Work machine

Also Published As

Publication number Publication date
JP2012117349A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5764310B2 (en) Power transmission device
JP6806409B2 (en) Flood hybrid propulsion circuit with static pressure option and its operation method
JP6161630B2 (en) Combination of propulsion circuit and work circuit for work equipment
KR101342565B1 (en) Electricity-liquid drive system of operating machine
JP4524679B2 (en) Hybrid construction machinery
KR101834589B1 (en) Construction machine having rotary element
US9547286B2 (en) Power transmission apparatus
KR102035517B1 (en) Hybrid construction machinery
KR102445784B1 (en) Hydraulic hybrid propel circuit with hydrostatic option and method of operation
JP2009121262A (en) Engine control device for construction equipment
JP2005194978A (en) Working machine
JP2007217992A (en) Operation control device of construction machine
WO2012074098A1 (en) Power transmitting device for hydraulic shovel
JP2014133455A (en) Hydraulic pump drive device of construction machine
JP2005086892A (en) Drive controller for hybrid work machine
JP4063742B2 (en) Drive control device for hybrid work machine
JP7512232B2 (en) Work Machine
US12031289B2 (en) Working machine
US20220090345A1 (en) Working machine
JP2022179123A (en) work machine
JP7171518B2 (en) work machine
JP7155071B2 (en) work machine
US11993911B2 (en) Working machine
JP2016138507A (en) Engine control device for work vehicle
JP2004204909A (en) Hydraulic circuit structure for backhoe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845316

Country of ref document: EP

Kind code of ref document: A1