WO2012073977A1 - Crosslinkable fluororubber composition and crosslinked rubber article - Google Patents

Crosslinkable fluororubber composition and crosslinked rubber article Download PDF

Info

Publication number
WO2012073977A1
WO2012073977A1 PCT/JP2011/077579 JP2011077579W WO2012073977A1 WO 2012073977 A1 WO2012073977 A1 WO 2012073977A1 JP 2011077579 W JP2011077579 W JP 2011077579W WO 2012073977 A1 WO2012073977 A1 WO 2012073977A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoropolymer
fluororubber composition
carbon atoms
crosslinkable fluororubber
group
Prior art date
Application number
PCT/JP2011/077579
Other languages
French (fr)
Japanese (ja)
Inventor
宏樹 長井
武志 山田
杉山 徳英
雅博 大倉
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012546896A priority Critical patent/JPWO2012073977A1/en
Publication of WO2012073977A1 publication Critical patent/WO2012073977A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium

Definitions

  • the present invention relates to a crosslinkable fluororubber composition and a crosslinked rubber article.
  • a method of obtaining a crosslinked rubber article by cross-linking fluorororubber (1) a method of generating radicals by heating using an organic peroxide and (2) a method of crosslinking radicals by irradiating fluororubber with radiation.
  • a crosslinking agent such as a polyol crosslinking system and a polyamine crosslinking system.
  • a crosslinkable fluororubber composition containing a polyfunctional compound is used as a crosslinking aid in order to improve the crosslinking characteristics of the fluororubber and the characteristics of the resulting crosslinked rubber article.
  • a crosslinkable fluororubber composition containing triallyl isocyanurate (TAIC) as a crosslinking aid (see Non-Patent Document 1 and Patent Document 1) is known.
  • TAIC triallyl isocyanurate
  • the crosslinked rubber article produced by the methods (1) and (2) using the crosslinkable fluororubber composition is more resistant to chemicals (particularly amine resistant) than the crosslinked rubber article produced by the method (3). Excellent).
  • the crosslinkable fluororubber composition it has been difficult to obtain a crosslinked rubber article that is remarkably excellent in heat resistance.
  • An object of the present invention is to provide a crosslinkable fluororubber composition that provides a crosslinkable rubber article having both excellent chemical resistance and heat resistance, and a crosslinked rubber article obtained from the crosslinkable fluororubber composition.
  • the fluoropolymer (P) is a fluoropolymer having a repeating unit derived from the fluoromonoene (a) and a repeating unit derived from the unsaturated side chain residual fluorodiene (b).
  • the crosslinkable fluororubber composition as described.
  • the fluoromonoene (a) is tetrafluoroethylene, chlorotrifluoroethylene, and CF 2 ⁇ CFO—R f1 (wherein R f1 is a fluoroalkyl group having 1 to 6 carbon atoms, or carbon atom-carbon)
  • Q f3 is a fluoroalkylene group having 1 to 6 carbon atoms or a fluoroalkylene group having 2 to 6 carbon atoms having at least one etheric oxygen atom between carbon atoms.
  • the crosslinkable fluororubber composition according to any one of [1] to [6], which contains 1 to 50 parts by mass of the fluoropolymer (P) with respect to 100 parts by mass of the fluororubber.
  • the fluororubber is selected from the group consisting of a tetrafluoroethylene / propylene copolymer, a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer, and a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer.
  • the crosslinkable fluororubber composition according to any one of [1] to [7], which is one or more selected.
  • crosslinkable fluororubber composition according to any one of [1] to [8], further containing an organic peroxide.
  • the crosslinked rubber article according to [10] which is a sealing material.
  • the crosslinkable fluororubber composition of the present invention can produce a crosslinked rubber article having excellent chemical resistance and heat resistance. Moreover, since the crosslinked rubber article of the present invention is produced by crosslinking the crosslinkable fluororubber composition of the present invention, it has excellent chemical resistance and heat resistance.
  • the crosslinkable fluororubber composition of the present invention is a composition containing fluororubber and a fluoropolymer (P) described later having a plurality of polymerizable double bonds as essential components.
  • the fluoropolymer (P) functions as a crosslinking aid in the crosslinkable fluororubber composition of the present invention. That is, the fluoropolymer (P) is bonded to the fluororubber by radicals induced by light or heat to give a crosslinked rubber article that is a three-dimensional crosslinked product.
  • the fluoropolymer (P) is a fluoropolymer having a repeating unit derived from the unsaturated side chain residual fluorodiene (b), and has a plurality of polymerizable double bonds (carbon-carbon double bonds) in the molecule. .
  • the fluoropolymer (P) is preferably a fluoropolymer having a repeating unit derived from the fluoromonoene (a) and a repeating unit derived from the unsaturated side chain remaining fluorodiene (b).
  • Fluoromonoene (a) is a fluorine-containing compound having one polymerizable double bond in the molecule.
  • the fluoromonoene (a) include fluoroethylenes such as tetrafluoroethylene (TFE), trifluoroethylene, chlorotrifluoroethylene (CTFE), and vinylidene fluoride; hexafluoropropylene, CF 2 ⁇ CFO—R f1 ( In the formula, R f1 is a fluoroalkyl group having 1 to 6 carbon atoms, or a fluoroalkyl group having 2 to 6 carbon atoms having at least one etheric oxygen atom between carbon atoms.
  • Fluorovinyl ether (hereinafter referred to as “fluoromonoene (a1)”) and the like.
  • the fluoroalkyl group is a group in which one or more hydrogen atoms of the alkyl group are substituted with fluorine atoms.
  • a fluoroalkyl group having one or more etheric oxygen atoms between carbon atoms and carbon atoms means one or more hydrogen atoms of an alkyl group having one or more etheric oxygen atoms between carbon atoms and carbon atoms.
  • a group substituted by a fluorine atom is a group in which all hydrogen atoms of the alkyl group are substituted with fluorine atoms.
  • fluoromonoene (a) 1 or more types chosen from the group which consists of TFE, CTFE, and fluoromonoene (a1) are preferable. If TFE is used as the fluoromonoene (a), the flowability of the fluoropolymer (P) is improved, and a crosslinked rubber article having particularly excellent heat resistance is obtained.
  • CTFE is used as the fluoromonoene (a)
  • the cross-linking efficiency is improved because the compatibility is good particularly when a vinylidene fluoride copolymer fluororubber is used as the fluororubber.
  • the fluoromonoene (a1) is used as the fluoromonoene (a), the viscosity of the fluoropolymer (P) becomes lower and the production of the crosslinkable fluororubber composition becomes easier.
  • the carbon number of R f1 in the fluoromonoene (a1) is preferably 1 to 5, and more preferably 1 to 3. If the carbon number of R f1 is in this range, it can act as a crosslinking aid for fluororubber without reducing the fluidity and heat resistance of the fluoropolymer (P).
  • the fluoroalkylene group for R f1 may be linear or branched. In R f1 of the fluoromonoene (a1), from the viewpoint of heat resistance of the crosslinked rubber article, it is preferable that all hydrogen atoms of the alkyl group are substituted with fluorine atoms.
  • fluoromonoene (a1) CF 2 ⁇ CFO—R F1 (wherein R F1 is a perfluoroalkyl group having 1 to 6 carbon atoms, or one or more etheric oxygen atoms between carbon atoms and carbon atoms) And a perfluorovinyl ether (hereinafter referred to as “fluoromonoene (a11)”) represented by a C 2-6 perfluoroalkyl group.
  • the combined use of TFE and fluoromonoene (a1) is preferable in that the fluidity of the fluoropolymer (P) is further improved as compared with the case where they are used alone.
  • the fluoromonoene (a) is preferably a perfluoromonomer from the viewpoint of the fluidity of the fluoropolymer (P) and the heat resistance of the crosslinked rubber article, more preferably TFE or fluoromonoene (a11), single use of TFE, or TFE. And fluoromonoene (a11) are more preferred. Fluoromonoene (a) may be used alone or in combination of two or more.
  • Fluorodiene (b) is an unsaturated side chain-remaining fluorine-containing compound having two polymerizable double bonds in the molecule. That is, in the polymerization for producing the fluoropolymer (P), at least a part of the two polymerizable double bonds does not contribute to the polymerization reaction, and the fluorodiene (b) remains a double bond after the polymerization. It is a remaining compound. Specifically, two carbon atoms in one polymerizable double bond of fluorodiene (b) form a main chain after polymerization.
  • At least a part of the other polymerizable double bond does not contribute to the polymerization reaction and remains as an unsaturated side chain in the fluoropolymer (P).
  • unsaturated side chains remain in the fluoropolymer (P)
  • a crosslinked rubber article is obtained by a crosslinking reaction using the unsaturated side chains.
  • Examples of the fluorodiene (b) include perfluorodiene composed of carbon atoms and fluorine atoms, or perfluorodiene composed of carbon atoms, fluorine atoms and oxygen atoms. Moreover, the fluorodiene by which one or more of the fluorine atoms of the said perfluorodiene was substituted by the hydrogen atom is mentioned.
  • perfluorodiene is preferable from the viewpoint of heat resistance of the crosslinked rubber article, and from the viewpoint of fluidity of the fluoropolymer (P) and chemical resistance and heat resistance of the resulting crosslinked rubber article. More preferred is a perfluorodiene composed of an atom, a fluorine atom and an oxygen atom.
  • the number of atoms of a linking chain (total of carbon atoms and oxygen atoms) that connects two polymerizable double bonds in the fluorodiene (b) is preferably 5 to 10, and more preferably 5 to 8. If the number of atoms in the linking chain is equal to or greater than the lower limit, it is possible to suppress intramolecular cyclization by reacting these two polymerizable double bonds in the molecule during the polymerization reaction in the production of the fluoropolymer (P). Then, the polymerizable double bond tends to remain as an unsaturated side chain in the fluoropolymer (P).
  • the polymerizable double bond remaining in the side chain of the fluoropolymer (P) causes a crosslinking reaction during storage of the crosslinkable fluororubber composition of the present invention. It is difficult to cause high molecular weight and gelation of the fluoropolymer (P). Thereby, when knead
  • the fluorodiene (b) having a linking chain atom number of not more than the upper limit can be easily synthesized and purified to high purity.
  • the fluorodiene (b) is preferably a compound having no ring structure from the viewpoint of preventing the fluidity of the fluoropolymer (P) from being excessively lowered.
  • the fluorodiene (b) the following fluorodienes (b1) to (b3) are more preferable.
  • Q f1 and Q f2 each independently represent a fluoroalkylene group having 3 to 8 carbon atoms, or a fluoroalkylene group having 3 to 8 carbon atoms having one or more etheric oxygen atoms between carbon atoms. It is a group.
  • Q f3 is a fluoroalkylene group having 1 to 6 carbon atoms or a fluoroalkylene group having 2 to 6 carbon atoms having at least one etheric oxygen atom between carbon atoms.
  • the fluoroalkylene group is a group in which one or more hydrogen atoms of the alkylene group are substituted with fluorine atoms.
  • the fluoroalkylene group having one or more etheric oxygen atoms between carbon atoms and carbon atoms means one or more hydrogen atoms of an alkylene group having one or more etheric oxygen atoms between carbon atoms and carbon atoms.
  • the perfluoroalkylene group is a group in which all hydrogen atoms of the alkylene group are substituted with fluorine atoms.
  • the fluoroalkylene groups of Q f1 , Q f2 , and Q f3 in the fluorodienes (b1) to (b3) may have a branched structure.
  • the number of carbon atoms of the fluoroalkylene group of Q f1 is preferably 3-6.
  • the number of carbon atoms in the fluoroalkylene group of Q f2 is preferably 3-6.
  • the number of carbon atoms in the fluoroalkylene group of Q f3 is preferably 2-5.
  • fluorodiene (b1) the following fluorodienes (b11) and (b12) are preferable.
  • Q F11 is a C 3-8 perfluoroalkylene group or a C 3-8 perfluoroalkylene group having one or more etheric oxygen atoms between carbon atoms.
  • Q F12 is a C 2-6 perfluoroalkylene group or a C 2-6 perfluoroalkylene group having one or more etheric oxygen atoms between carbon atoms.
  • fluorodiene (b11) examples include the following compounds.
  • CF 2 CFO (CF 2) 5
  • OCF CF 2
  • CF 2 CFO (CF 2) 6
  • OCF CF 2
  • CF 2 CFO (CF 2) 4 OCF (CF 3)
  • fluorodiene (b12) examples include the following compounds.
  • the fluorodiene (b2) the following fluorodiene (b21) is preferable.
  • (B21) CH 2 ⁇ CFCF 2 O—Q F21 —OCF 2 CF ⁇ CH 2
  • Q F21 is a C 3-8 perfluoroalkylene group or a C 3-8 perfluoroalkylene group having one or more etheric oxygen atoms between carbon atoms.
  • Specific examples of the fluorodiene (b21) include the following compounds.
  • the fluorodiene (b3) the following fluorodiene (b31) is preferable.
  • (B31) CH 2 ⁇ CFCF 2 O—Q F31 —OCF ⁇ CF 2
  • Q F31 is a C 1-6 perfluoroalkylene group or a C 2-6 perfluoroalkylene group having one or more etheric oxygen atoms between carbon atoms.
  • Specific examples of the fluorodiene (b31) include the following compounds.
  • the fluorodiene (b) has a suitable degree of polymerizability in which a polymerizable double bond is likely to remain in the side chain during the synthesis of the fluoropolymer (P), and a cross-linked rubber article having more excellent heat resistance can be obtained. Therefore, fluorodiene (b1) is more preferable, and fluorodiene (b11) is more preferable. Fluorodiene (b) may be used alone or in combination of two or more.
  • the fluoropolymer (P) has a repeating unit based on the fluorodiene (b), and at least a part of the repeating unit derived from the fluorodiene (b) has an unsaturated side chain having a polymerizable double bond. Remains. For example, when CF 2 ⁇ CF—O— (CF 2 ) 4 —O—CF ⁇ CF 2 is used as the fluorodiene (b), the resulting fluoropolymer (P) has a non-polymerizable double bond. It has at least a repeating unit represented by the following formula in which a saturated side chain remains.
  • the weight average molecular weight (hereinafter referred to as “Mw”) of the fluoropolymer (P) is preferably 3,000 to 50,000, and more preferably 10,000 to 30,000. If Mw of fluoropolymer (P) is more than a lower limit, the heat resistance of the crosslinked fluororubber article obtained by curing the crosslinkable fluororubber composition will be better. Moreover, if Mw of fluoropolymer (P) is below an upper limit, when manufacturing a crosslinkable fluororubber composition, mixing and dispersion to fluororubber are easy.
  • Mw and the number average molecular weight (hereinafter referred to as “Mn”) in the present invention are those of Asahi Clin AK-225SEC Grade 1 (mixed solvent of dichloropentafluoropropane and hexafluoroisopropyl alcohol (dichloropentafluoro), manufactured by Asahi Glass Co., Ltd.
  • the content of the polymerizable double bond remaining in the side chain in the fluoropolymer (P) is preferably 0.2 to 2 mmol / g, more preferably 0.5 to 1.5 mmol / g.
  • the content of the polymerizable double bond can be calculated by measurement by F 19 -NMR. If the content of the polymerizable double bond is at least the lower limit, it is easy to sufficiently crosslink when the crosslinkable fluororubber composition is cured, and it becomes easy to obtain a crosslinked rubber article having excellent heat resistance.
  • the content of the polymerizable double bond is not more than the upper limit, it is easy to suppress a decrease in heat resistance due to decomposition of unreacted polymerizable double bonds remaining in the crosslinked rubber article after curing, It is easy to prevent a decrease in fluidity due to gelation or high molecular weight due to a crosslinking reaction during production of the fluoropolymer (P).
  • the fluoropolymer (P) is obtained by homopolymerizing the fluorodiene (b) or by copolymerizing the fluoromonoene (a) and the fluorodiene (b). A part of the polymerizable double bond of diene (b) remains as a side chain without contributing to the reaction.
  • the polymerization method for homopolymerizing fluorodiene (b) or copolymerizing fluoromonoene (a) and fluorodiene (b) is not particularly limited, and known methods such as suspension polymerization, solution polymerization, emulsion polymerization and bulk polymerization The polymerization method can be employed.
  • solution polymerization is particularly preferable because it can be polymerized in a state diluted with a solvent and can suppress a cross-linking reaction between molecules due to a polymerizable double bond remaining in a side chain.
  • Solution polymerization is a polymerization method in which fluorodiene (b) alone or fluoromonoene (a) and fluorodiene (b) are added to a polymerization initiator in a polymerization solvent to polymerize.
  • a fluorine-containing solvent capable of dissolving the generated fluoropolymer (P) is preferable.
  • the fluorine-containing solvent include dichloropentafluoropropane (HCFC-225), CF 3 CH 2 CF 2 H (HFC-245fa), CF 3 CF 2 CH 2 CF 2 H (HFC-365mfc), perfluorohexane, perfluoro octane, perfluoro (2-butyl tetrahydrofuran), perfluoro (tributylamine), CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 H, CF 3 CH 2 OCF 2 CF 2 H, CF 3 CH 2 OCH 2 CF 3, CF 3 CF 2 OCF 2 CF 2 OCF 2 CF 3 and the like.
  • the fluorodiene (b) or the total amount of fluoromonoene (a) and the fluorodiene (b) are not reacted at once, but a part of the total amount used.
  • a method is preferred in which the polymerization reaction is started by previously charging the reaction mixture into the reaction vessel and the polymerization is performed while the remaining fluoromonoene (a) and fluorodiene (b) are sequentially added while the polymerization reaction proceeds.
  • the low molecular weight component has a lower content of polymerizable double bonds per molecule than a component having a molecular weight of 1000 or more.
  • the content of the low molecular weight component in the fluoropolymer (P) is preferably less than 10% by mass, and more preferably less than 1% by mass.
  • the content of repeating units derived from fluorodiene (b) is particularly small, Ingredients can be produced.
  • the method of sequentially adding the fluoromonoene (a) and the fluorodiene (b) described above makes it easy to reduce the formation of such a compound.
  • the molar ratio of fluoromonoene (a) to fluorodiene (b) is preferably 1:99 to 95: 5.
  • the molar ratio of the fluoroethylenes to the fluorodiene (b) is more preferably 5:95 to 80:20, and particularly preferably 30:70 to 70:30.
  • the charging ratio of fluoroethylenes is less than or equal to the above upper limit value, it is easy to suppress a decrease in fluidity due to an excessive increase in the molecular weight of the fluoropolymer (P). Moreover, the elongation of the resulting crosslinked rubber article is improved.
  • an organic peroxide having a 10-hour half-life temperature of 20 to 120 ° C. can be used, and a decrease in reaction rate due to a hydrogen atom extraction reaction in the polymerization initiator is prevented.
  • fluorine-containing peroxides such as fluorine-containing diacyl peroxide are preferable.
  • the concentration of the polymerization initiator in the reaction solution is preferably from 0.1 to 5% by mass, more preferably from 0.5 to 2% by mass.
  • the polymerization temperature is preferably 20 to 120 ° C., more preferably 40 to 90 ° C., although it varies depending on the 10-hour half-life temperature of the polymerization initiator and the polymerization rate of the monomer.
  • the fluoropolymer (P) it is preferable to use a chain transfer agent in order to adjust the molecular weight.
  • the chain transfer agent include chlorine compounds such as CCl 4 , CH 3 Cl, SO 2 Cl 2 and CHFCl 2 ; iodine compounds such as fluoroalkyl iodide and fluoroalkylene diiodide; methanol, ethanol, isopropanol, hexane, Examples thereof include hydrocarbon solvents such as diethyl ether.
  • SO 2 Cl 2 , I— (CF 2 ) n —I (n is 4 or 6) is preferable from the viewpoint of high chain transfer efficiency and high yield of the fluoropolymer (P). .
  • the amount of chain transfer agent used varies depending on the chain transfer constant, but when SO 2 Cl 2 is used, the amount of fluorodiene (b) used in fluorodiene (b) homopolymerization or the amount of fluoromonoene (a)
  • the molar ratio is preferably 0.001 to 0.1, preferably 0.001 to 0.05, based on the total amount of fluoromonoene (a) and fluorodiene (b). It is more preferable that If the molar ratio is at least the lower limit, it is easy to prevent the molecular weight of the fluoropolymer (P) from becoming too high. Moreover, if the said molar ratio is below an upper limit, it will be easy to prevent that the molecular weight of fluoropolymer (P) falls too much.
  • the obtained fluoropolymer (P) In the obtained fluoropolymer (P), it is preferable to remove by purification the low molecular weight component having a molecular weight of less than 1,000 after polymerization. Since the low molecular weight component in the fluoropolymer (P) can be reduced by purification, the obtained fluoropolymer (P) has a smaller molecular weight distribution expressed by Mw / Mn measured by GPC and a narrow dispersion. It becomes. Thereby, it becomes easy to obtain a crosslinked rubber article excellent in thermal stability and dimensional stability. However, the fluoropolymer (P) may not be purified after polymerization.
  • ( ⁇ ) a method of removing the low molecular weight components by heating the fluoropolymer (P) under reduced pressure, and ( ⁇ ) an extraction solvent in a supercritical state.
  • Examples thereof include a method for removing a low molecular weight component and ( ⁇ ) a method for removing a low molecular weight component using gel permeation chromatography.
  • the method ( ⁇ ) is preferable from the viewpoint of simplicity of the operation method and ease of scale-up, and it is more preferable to carry out the method ( ⁇ ) after the method ( ⁇ ).
  • the reduced pressure condition in the method ( ⁇ ) is preferably 1 to 100 hPa, more preferably 1 to 20 hPa, and most preferably 1 to 10 hPa. If the pressure is equal to or higher than the lower limit, the pressure can be reduced easily even if the apparatus size is increased. If the pressure is not more than the upper limit value, the removal efficiency of the low molecular weight component is improved.
  • the heating temperature in the method ( ⁇ ) is preferably from 100 to 150 ° C, more preferably from 120 to 150 ° C. When the temperature is at least the lower limit, the low molecular weight component can be removed in a shorter time, and the removal efficiency is improved. If temperature is below an upper limit, it will be easy to suppress that gelation reaction arises partially during heating.
  • the fluoropolymer (P) is brought into contact with the extraction solvent in a supercritical state, and then the fluoropolymer (P) and the extraction solvent are separated, whereby the low content contained in the fluoropolymer (P) is obtained.
  • the extraction solvent is a medium that can dissolve the low molecular weight component and separate the low molecular weight component from the fluoropolymer (P).
  • the extraction solvent is not particularly limited as long as it can extract a low molecular weight component in a temperature range of not less than the critical temperature of the extraction solvent to be used and less than 130 ° C. and under a pressure of not less than the critical pressure of the extraction solvent. .
  • the extraction solvent examples include carbon atoms; fluorocarbons having 1 to 3 carbon atoms such as fluoroform (CF 3 H; R23) and perfluoroethane (C 2 F 6 ; R116).
  • fluoroform CF 3 H; R23
  • perfluoroethane C 2 F 6 ; R116
  • carbon dioxide, fluoroform, and perfluoroethane are preferable, and carbon dioxide is more preferable in that it can be easily brought into a supercritical state and is excellent in extraction efficiency.
  • Only one type of extraction solvent may be used alone, or two or more types may be used in combination.
  • the temperature of the extraction solvent in the method ( ⁇ ) is preferably not less than the critical temperature of the extraction solvent to be used and less than 130 ° C. Further, the pressure of the extraction solvent is not less than the critical pressure of the extraction solvent. That is, the method ( ⁇ ) is preferably a method in which an extraction solvent made into a supercritical fluid of less than 130 ° C. is brought into contact with the fluoropolymer (P). If it is in the said range, the temperature of an extraction solvent can be suitably set according to the extraction solvent to be used.
  • the lower limit of the temperature of the extraction solvent is more preferably 0.1 ° C. higher than the critical temperature.
  • the upper limit of the temperature of the extraction solvent is more preferably 100 ° C, and further preferably 80 ° C. If the pressure of an extraction solvent is in the said range, it can set suitably according to the extraction solvent to be used.
  • the lower limit of the extraction solvent pressure is preferably 10,000 Pa higher than the critical pressure, and more preferably 70 MPa higher than the critical pressure.
  • the extraction efficiency of the low molecular weight component is improved by increasing the density of the extraction solvent. This is considered to be because the solubility of the low molecular weight component in the extraction solvent increases as the density of the extraction solvent increases.
  • the density of the extraction solvent at the time of extraction that is, the density of the extraction solvent in the supercritical state is preferably 0.2 g / cm 3 or more and 1.3 g / cm 3 or less.
  • a halogenated hydrocarbon solvent or a hydrocarbon solvent may be used in combination with the extraction solvent as a cosolvent.
  • the entrainer is preferably a halogenated hydrocarbon solvent from the viewpoint of solubility.
  • halogenated hydrocarbon solvents include CF 3 CF 2 CHCl 2 , CF 2 ClCF 2 CHClF, CF 3 CF 2 CHCl 2 , CFC 1 2 CF 2 Cl, CCl 4 , CF 3 CHFCHFCF 2 CF 3 , CF 3 CH 2 OCF 2 CF 2 H and the like.
  • hydrocarbon solvent examples include methanol, ethanol, propanol, isopropanol, dimethyl ether and the like.
  • An entrainer may be used individually by 1 type and may use 2 or more types together.
  • since extraction is performed using an extraction solvent in a supercritical state, low molecular weight substances can be efficiently reduced, and the molecular weight distribution of the resulting fluoropolymer (P) becomes narrowly dispersed.
  • the method ( ⁇ ) is a method for removing low molecular weight components contained in the fluoropolymer (P) by adding a soot solvent to the fluoropolymer (P) and then separating the supernatant.
  • a soot solvent examples include methanol, hexane, diethyl ether and the like.
  • the content of the fluoropolymer (P) in the crosslinkable fluororubber composition of the present invention is 1 with respect to 100 parts by mass of the fluororubber because it is easy to obtain a crosslinked rubber article excellent in heat resistance and chemical resistance. Is preferably 50 parts by mass, more preferably 2 to 45 parts by mass, and still more preferably 3 to 40 parts by mass. If content of a fluoropolymer (P) is more than a lower limit, it will become easy to form bridge
  • the content of the fluoropolymer (P) is not more than the upper limit, even if unstable terminal groups (carboxyl groups, etc.) derived from the fluoropolymer (P) in the crosslinked rubber article are present, the thermal stability due to the groups It is easy to suppress the decrease.
  • the fluororubber can be cross-linked by (1) a method in which an organic peroxide is used to generate radicals by heating and cross-linking, or (2) a method in which a radical is generated by irradiation with radiation to cross-link.
  • the crosslinking by the method (1) may be referred to as organic peroxide crosslinking
  • the crosslinking by the method (2) may be referred to as radiation crosslinking.
  • the fluorine content of the fluororubber is preferably 40% by mass or more, more preferably 50% by mass or more, and further preferably 55% by mass or more.
  • the fluorine content of fluororubber is the ratio of the total mass of all fluorine atoms to the total mass of fluororubber.
  • Fluorororubber includes vinylidene fluoride / hexafluoropropylene copolymer, vinylidene fluoride / TFE / hexafluoropropylene copolymer, vinylidene fluoride / CTFE copolymer, TFE / propylene copolymer, TFE. / Propylene / vinylidene fluoride copolymer, hexafluoropropylene / ethylene copolymer, TFE / perfluoroalkyl vinyl ether copolymer, vinylidene fluoride / TFE / perfluoroalkyl vinyl ether copolymer, and the like. These may be used alone or in combination of two or more.
  • the fluororubber is selected from the group consisting of a TFE / propylene copolymer, a vinylidene fluoride / TFE / hexafluoropropylene copolymer, and a TFE / perfluoroalkyl vinyl ether copolymer because of its excellent chemical resistance.
  • a TFE / propylene copolymer a vinylidene fluoride / TFE / hexafluoropropylene copolymer
  • a TFE / perfluoroalkyl vinyl ether copolymer because of its excellent chemical resistance.
  • One or more selected from the above are preferred.
  • the fluororubber is particularly preferably a perfluoroelastomer obtained by polymerizing a perfluoromonomer in which all of the hydrogen atoms of the monomer are substituted with fluorine atoms.
  • the perfluoroelastomer includes a repeating unit derived from TFE and CF 2 ⁇ CF—O—R F2 (wherein R F2 is a perfluoroalkyl group having 1 to 20 carbon atoms, or an ether between carbon atoms and carbon atoms).
  • elastomer having a repeating unit derived from a perfluoroalkyl group having 1 or more carbon atoms and having 1 or more carbon atoms and having 1 to 20 carbon atoms hereinafter referred to as “perfluoromonomer (x)”. Is preferred).
  • perfluoromonomer (x) perfluoromonomer (x)
  • the repeating unit derived from perfluoromonomer (x) may be only 1 type, and 2 or more types may be sufficient as it.
  • the carbon number of the perfluoroalkyl group of R F2 in the perfluoromonomer (x) is preferably 1-8.
  • the perfluoroalkyl group for R F2 may be linear or branched.
  • the fluororubber is not limited to a perfluoroelastomer, and an elastomer obtained by using a chain transfer agent or comonomer containing a small amount of hydrogen atoms may be used when polymerizing a perfluoromonomer.
  • chain transfer agent containing a hydrogen atom examples include chain or cyclic saturated hydrocarbons such as methane, ethane, propane, butane, pentane, hexane, and cyclohexane; alcohols such as methanol, ethanol, and propanol; t-dodecyl mercaptan, and mercaptans such as n-dodecyl mercaptan and n-octadecyl mercaptan.
  • chain transfer agents may be used individually by 1 type, and may use 2 or more types together.
  • CF 2 ⁇ CF—O—CH 2 CF 3 As a comonomer containing a hydrogen atom, CF 2 ⁇ CF—O—CH 2 CF 3 , CF 2 ⁇ CF—O—CH 2 CF 2 CF 2 CF 3 , CF 2 ⁇ CF—O—CH 2 (CF 2 CF 2 ) 2 H, CF 2 ⁇ CF—O—CF 2 CF 2 CH 2 —I, CF 2 ⁇ CF—O—CF 2 CF 2 CH 2 —Br, CF 2 ⁇ CF—O—CF 2 CF 2 (CF 3 ) —O—CF 2 CF 2 CH 2 —I, CF 2 ⁇ CF—O—CF 2 CF 2 (CF 3 ) —O—CF 2 CF 2 CH 2 —Br, and the like.
  • comonomers may be used individually by 1 type, and may use 2 or more types together.
  • the content of hydrogen atoms in the elastomer is preferably 0.5% by mass or less from the viewpoint of characteristics such as heat resistance and chemical resistance of the crosslinked rubber article, 0.3 mass% or less is more preferable, and 0.1 mass% or less is especially preferable.
  • the fluororubber is preferably a perfluoroelastomer having at least one of an iodine atom and a bromine atom (hereinafter sometimes referred to as “elastomer (Y)”), particularly in the case of organic peroxide crosslinking, and has an iodine atom.
  • elastomer (Y) perfluoroelastomers
  • Perfluoroelastomers are more preferred.
  • the perfluoroelastomer having at least one of an iodine atom and a bromine atom is an elastomer in which one or more fluorine atoms of the perfluoroelastomer are substituted with iodine atoms or bromine atoms.
  • the perfluoroelastomer having iodine atoms is an elastomer in which one or more fluorine atoms of the perfluoroelastomer are substituted with iodine atoms.
  • Examples of the elastomer (Y) include elastomers described in JP-A-53-125491, JP-B-53-4115, and JP-A-59-20310. Specifically, in addition to at least one perfluoromonomer selected from the group consisting of TFE and perfluoromonomer (x), a monomer having at least one of an iodine atom and a bromine atom (hereinafter referred to as “monomer (y)”).
  • I—R F3 —I (wherein R F3 is a perfluoroalkylene group having 1 to 8 carbon atoms, or has at least one etheric oxygen atom between carbon atoms and carbon atoms).
  • R F3 is a perfluoroalkylene group having 1 to 8 carbon atoms, or has at least one etheric oxygen atom between carbon atoms and carbon atoms).
  • CF 2 ⁇ CF—Br CH 2 ⁇ CHCF 2 CF 2 —Br, CF 2 ⁇ CF—O—CF 2 CF 2 —I, CF 2 ⁇ CF—O—CF 2 CF 2 — Br, CF 2 ⁇ CF—O—CF 2 CF 2 CH 2 —I, CF 2 ⁇ CF—O—CF 2 CF 2 CH 2 —Br, CF 2 ⁇ CF—O—CF 2 CF 2 (CF 3 ) — O—CF 2 CF 2 CH 2 —I, CF 2 ⁇ CF—O—CF 2 CF 2 (CF 3 ) —O—CF 2 CF 2 CH 2 —Br, and the like can be given.
  • IR F3- I include diiododifluoromethane, 1,2-diiodoperfluoroethane, 1,3-diiodoperfluoropropane, 1,4-diiodoperfluorobutane, 1,5-diiodo.
  • Examples include perfluoropentane, 1,6-diiodoperfluorohexane, 1,7-diiodoperfluoroheptane, 1,8-diiodoperfluorooctane, and the like.
  • 1,4-diiodoperfluorobutane and 1,6-diiodoperfluorohexane are preferred, and 1,4-diiodoperfluorobutane is particularly preferred.
  • the iodine atom and bromine atom in the elastomer (Y) are preferably bonded to the polymer terminal.
  • the total content of iodine atoms and bromine atoms in the elastomer (Y) is preferably 0.1 to 1.5% by mass from the viewpoint of easily obtaining a crosslinked rubber article excellent in rubber physical properties and compression set. More preferably, the content is 0.2 to 1.0% by mass, and particularly preferably 0.25 to 1.0% by mass.
  • AFLAS PFE-1100 manufactured by Asahi Glass Co., Ltd., TFE / perfluoroalkyl vinyl ether copolymer
  • AFLAS 100S manufactured by Asahi Glass Co., Ltd., TFE / propylene
  • Copolymer and trade name “AFLAS 200P” (Asahi Glass Co., Ltd., TFE / propylene / vinylidene fluoride copolymer) and the like, which can be crosslinked with organic peroxides.
  • the crosslinkable fluororubber composition of the present invention When the crosslinkable fluororubber composition of the present invention is cured by organic peroxide crosslinking, the crosslinkable fluororubber composition of the present invention preferably contains an organic peroxide. When the crosslinkable fluororubber composition is cured by radiation crosslinking, it is not necessary to contain an organic peroxide.
  • the organic peroxide is not particularly limited as long as it can easily generate radicals by heating, and preferably has a half-life of 1 minute at 130 to 220 ° C.
  • the content of the organic peroxide is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the fluororubber, 0.2 -4 parts by mass is more preferable, and 0.5-3 parts by mass is more preferable. If content of an organic peroxide is more than a lower limit, crosslinking efficiency will improve. If the content of the organic peroxide is not more than the upper limit value, it is easy to suppress the amount of inactive decomposition products that do not contribute to the radical reaction.
  • the crosslinkable fluororubber composition of the present invention preferably contains an acid acceptor from the viewpoint of promoting the crosslinking reaction.
  • the acid acceptor include magnesium oxide, zinc oxide, calcium hydroxide, calcium oxide, lead oxide, dibasic lead phosphite, and hydrotalcite. Of these, magnesium oxide and zinc oxide are preferable.
  • An acid acceptor may be used individually by 1 type, and may use 2 or more types together.
  • the content of the acid acceptor is preferably 0.1 to 20 parts by mass, and 0.2 to 10 parts by mass with respect to 100 parts by mass of the fluororubber. Part is more preferred. If content of an acid acceptor is more than a lower limit, the effect by an acid acceptor will be easy to be acquired. If content of an acid acceptor is below an upper limit, it will be easy to suppress that the rubber physical property of a crosslinked rubber article is impaired.
  • the crosslinkable fluororubber composition of the present invention preferably contains a filler from the viewpoint of improving the strength of the resulting crosslinked rubber article.
  • a filler carbon black is preferable. Carbon black is not particularly limited as long as it is used for blending rubber. Specific examples include furnace black, acetylene black, thermal black, channel black, and graphite. Of these, furnace black is more preferable. As the grade of carbon black, HAF-LS, HAF, HAF-HS, FEF, GPF, APF, SRF-LM, SRF-HM and MT are preferable, and MT is particularly preferable.
  • the content of the filler is preferably 5 to 100 parts by mass and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the fluororubber. If the content of the filler is equal to or higher than the lower limit value, the effect of the filler is easily obtained. If content of a filler is below an upper limit, it will be easy to suppress that the elongation characteristic of crosslinked rubber articles falls. Moreover, if content of a filler exists in the said range, the balance of the intensity
  • the crosslinkable fluorororubber composition of the present invention may contain additives such as a reinforcing material, a processing aid, a lubricant, a lubricant, a flame retardant, an antistatic agent, a colorant, and an ultraviolet absorber.
  • a reinforcing material examples include fluororesins such as polytetrafluoroethylene and ethylene / TFE copolymer, glass fibers, carbon fibers, and white carbon.
  • the content of the reinforcing material is preferably 5 to 200 parts by mass and more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the fluororubber.
  • the processing aid examples include alkali metal salts of higher fatty acids. Of these, stearates and laurates are preferable.
  • the content of the processing aid is preferably 0.1 to 20 parts by mass, and 0.2 to 10 parts per 100 parts by mass of the fluororubber. Mass parts are more preferred, and 1 to 5 parts by mass are even more preferred.
  • the processing aid is at least the lower limit value, it is easy to suppress the tensile strength of the crosslinked rubber article from being significantly lowered, or to increase the elongation and the change in tensile strength after heat aging.
  • the content of the processing aid is not more than the upper limit, bloom may occur on the surface of the crosslinked rubber article, the hardness of the crosslinked rubber article may be too high, or chemical resistance and steam resistance may be reduced. Easy to suppress.
  • the method for producing the crosslinkable fluorororubber composition of the present invention is not particularly limited, and a conventionally known method can be adopted. Among them, a kneading machine such as a two-roll, a Banbury mixer, a kneader or the like containing fluororubber, fluoropolymer (P), and organic peroxide, carbon black, acid acceptor, and other additives used as necessary. A method of kneading with the use of is preferred. Moreover, the method of knead
  • a component that is unlikely to react or decompose due to heat generation is sufficiently kneaded with fluororubber, and then a component that easily reacts or a component that easily decomposes is mixed and kneaded.
  • a component that easily reacts or a component that easily decomposes is mixed and kneaded.
  • a component that easily reacts or a component that easily decomposes is mixed and kneaded.
  • the crosslinkable fluororubber composition of the present invention described above uses a fluororubber having excellent chemical resistance. Moreover, since radicals are used for crosslinking by organic peroxide crosslinking or radiation crosslinking, the chemical resistance of fluororubber is not lowered, and a crosslinked rubber article having excellent chemical resistance can be obtained. Moreover, since sufficient crosslinking can be formed by using the fluoropolymer (P) as a crosslinking aid, excellent heat resistance is also achieved. Therefore, if the crosslinkable fluororubber composition of the present invention is used, a crosslinked rubber article having excellent chemical resistance and heat resistance can be obtained.
  • the crosslinked rubber article of the present invention is an article formed by crosslinking the aforementioned crosslinkable fluororubber composition of the present invention.
  • the crosslinked rubber article of the present invention can be used in a wide range of transport machines such as automobiles, general equipment, electrical equipment, chemical equipment industry, semiconductors, O-rings, seats, gaskets, oil seals, bearing seals and other sealing materials, diaphragms, It can be suitably used as each member such as a cushioning material, an anti-vibration material, a wire coating material, an industrial belt, a tube / hose, a sheet and the like.
  • a sealing material is preferable because it is excellent in chemical resistance at high temperatures and also has excellent basic properties such as strength, hardness, modulus, and heat aging resistance. More preferably.
  • the crosslinked rubber article of the present invention is obtained by using the crosslinkable fluororubber composition of the present invention and curing and molding by organic peroxide crosslinking or radiation crosslinking.
  • a conventionally known molding method such as extrusion molding, injection molding, transfer molding, press molding or the like can be adopted for both organic peroxide crosslinking and radiation crosslinking.
  • a mold having a cavity complementary to the shape of one or several crosslinked rubber articles is used, and the cavity is provided in the cavity.
  • examples thereof include a method of filling a crosslinkable fluororubber composition containing an organic peroxide and curing the mold by heating.
  • the heating temperature is preferably 130 to 220 ° C, more preferably 140 to 200 ° C, and particularly preferably 150 to 200 ° C.
  • the crosslinked rubber article (primary crosslinked product) heated and crosslinked under the above-described conditions is further heated in an oven or the like using electricity, hot air, steam or the like as a heat source as necessary to allow the crosslinking to proceed (hereinafter referred to as “2” It is also preferred to be referred to as “secondary crosslinking”.
  • secondary crosslinking By performing secondary crosslinking, the residue of the organic peroxide contained in the crosslinked rubber article is decomposed and volatilized, and the amount thereof is reduced.
  • the heating temperature during secondary crosslinking is preferably 150 to 280 ° C, more preferably 180 ° C to 260 ° C, and further preferably 200 to 250 ° C.
  • the heating time in the secondary crosslinking is preferably 1 to 48 hours, more preferably 2 to 24 hours.
  • the crosslinkable fluororubber composition of the present invention is dissolved and dispersed in an appropriate solvent to form a suspension solution, which is formed by coating or the like.
  • a method of curing by irradiating with radiation after drying is mentioned.
  • the radiation include ionizing radiation such as electron beams and ⁇ rays.
  • the dose of ionizing radiation is preferably 1 to 300 kGy, more preferably 10 to 200 kGy.
  • Analytical column Two PLgel MIXED-E columns (manufactured by Polymer Laboratories) connected in series. Standard sample for molecular weight measurement: PMMA (polymethyl methacrylate). Mobile phase flow rate: 1.0 mL / min. Column temperature: 37 ° C. Detector: Evaporative light scattering detector.
  • the fluoropolymer solution 1 was washed with water, the lower layer was separated, and filtered using a PTFE (polytetrafluoroethylene) membrane filter having a pore diameter of 1 ⁇ m, thereby obtaining a substantially transparent fluoropolymer solution 2.
  • a PTFE polytetrafluoroethylene
  • P1 a colorless and transparent highly viscous liquid fluoropolymer
  • the molar ratio of the repeating unit derived from TFE to the repeating unit derived from C4DVE was 69/31.
  • the content of the polymerizable double bond was 1.18 mmol / g.
  • Fluoropolymer (P2) In a glass flask equipped with a stirrer and a condenser having an internal volume of 500 mL, 497 g of C4DVE, 2.5 g of I (CF 2 ) 6 I, and V-601 (manufactured by Wako Pure Chemical Industries) as a polymerization initiator 0.7 g of the solution was added, the solution was bubbled with nitrogen for 10 minutes, and the temperature in the flask was increased to 70 ° C. with stirring. The polymerization reaction was carried out for 25 hours while maintaining the internal temperature at 70 ° C. After cooling to room temperature, the internal volume was taken out into a glass beaker 2L by dissolving contents in C 6 F 13 H.
  • TAIC triallyl isocyanurate
  • Acid acceptor Kyowamag # 150 Magnesium oxide (manufactured by Kyowa Chemical Industry Co., Ltd.).
  • Filler MT carbon carbon black (grade: MT carbon, manufactured by CANCARB).
  • Nonsal SN-1 Sodium stearate (manufactured by NOF Corporation).
  • Example 1 100 parts by mass of fluorine-containing rubber (Y1), 1 part by mass of Perhexa 25B (manufactured by NOF Corporation), 33.8 parts by mass of fluoropolymer (P1), 10 parts by mass of MT carbon, 3 parts by mass of Kyowamag # 150 Were kneaded with a biaxial roll to obtain a crosslinkable fluororubber composition (i).
  • the obtained crosslinkable fluororubber composition (i) was molded into a sheet shape having a length of 100 mm ⁇ width of 100 mm ⁇ thickness of 2 mm in a hot press at 170 ° C. for 20 minutes (primary crosslinking). The obtained sheet was further placed in a gear oven at 250 ° C.
  • Example 2 A sheet material was prepared in the same manner as in Example 1 except that 5 parts by mass of TAIC was used instead of 33.8 parts by mass of fluoropolymer (P1) as a crosslinking aid, and Kyowamag # 150 was not used. Was measured.
  • Example 3 A sheet material was prepared in the same manner as in Example 1 except that 5 parts by mass of TAIC was used instead of 33.8 parts by mass of the fluoropolymer (P1) as a crosslinking aid, and the characteristics were measured.
  • Example 4 A sheet material was prepared in the same manner as in Example 1 except that 21.3 parts by mass of the fluoropolymer (P2) was used instead of 33.8 parts by mass of the fluoropolymer (P1) as a crosslinking aid. was measured.
  • Example 5 A sheet material was prepared in the same manner as in Example 1 except that 14.2 parts by mass of the fluoropolymer (P2) was used instead of 33.8 parts by mass of the fluoropolymer (P1) as a crosslinking aid. was measured.
  • Examples [1], [4] and [5] are examples, and examples [2] and [3] are comparative examples.
  • Hardness In accordance with JIS K6253-1997, the hardness (HS) was measured by a durometer type A hardness test at 23 ° C. The hardness of the sealing material is preferably 60 to 95 °.
  • Tensile strength (TB) In accordance with JIS K6251-2004, the tensile strength (TB) was measured at 23 ° C. As the tensile strength (TB) of the sealing material, 10 MPa or more is suitable.
  • Elongation The elongation (EB) was measured at 23 ° C. according to JIS K6251-2004. As the elongation (EB) of the sealing material, 130% or more is suitable.
  • the sheet materials of Examples 1, 4 and 5 using fluoropolymers (P1 and P2) as crosslinking aids are the sheets of Example 2 and Example 3 using TAIC as the crosslinking aid.
  • the rate of change in tensile strength in the air heat aging test could be kept small, and the heat resistance was excellent.
  • crosslinkable fluororubber composition of the present invention By using the crosslinkable fluororubber composition of the present invention, a crosslinked rubber article having excellent chemical resistance (particularly amine resistance) and heat resistance can be obtained. O-ring, sheet, gasket, oil seal, bearing seal And is particularly useful as a sealing material for oil drilling.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2010-266864 filed on November 30, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The purpose of the present invention is to provide: a crosslinkable fluororubber composition which enables the production of a crosslinked rubber article having both excellent chemical resistance and excellent heat resistance; and a crosslinked rubber article produced using the crosslinkable fluororubber composition. A crosslinkable fluororubber composition which comprises a fluororubber and a fluoropolymer (P) that has a repeating unit derived from a fluorodiene (b) having unsaturated side chain residual performance and also has multiple polymerizable double bonds; and a crosslinked rubber article produced by crosslinking the crosslinkable fluororubber composition.

Description

架橋性フッ素ゴム組成物および架橋ゴム物品Crosslinkable fluororubber composition and crosslinked rubber article
 本発明は、架橋性フッ素ゴム組成物および架橋ゴム物品に関する。 The present invention relates to a crosslinkable fluororubber composition and a crosslinked rubber article.
 フッ素ゴムを架橋して架橋ゴム物品を得る方法としては、(1)有機過酸化物を使用して加熱によりラジカルを生成させて架橋する方法、(2)フッ素ゴムに放射線を照射してラジカルを生成させて架橋する方法、(3)ポリオール架橋系、ポリアミン架橋系等の架橋剤を使用して架橋する方法が知られている。 As a method of obtaining a crosslinked rubber article by cross-linking fluororubber, (1) a method of generating radicals by heating using an organic peroxide and (2) a method of crosslinking radicals by irradiating fluororubber with radiation. There are known methods of forming and crosslinking, and (3) methods of crosslinking using a crosslinking agent such as a polyol crosslinking system and a polyamine crosslinking system.
 方法(1)、(2)では、フッ素ゴムの架橋特性や、得られる架橋ゴム物品の特性の向上を図るため、架橋助剤として多官能性化合物が配合された架橋性フッ素ゴム組成物が使用される。例えば、架橋助剤としてトリアリルイソシアヌレート(TAIC)を配合した架橋性フッ素ゴム組成物(非特許文献1、特許文献1参照)が知られている。
 架橋助剤としてTAICを使用することで、フッ素ゴムの架橋速度が向上する。また、前記架橋性フッ素ゴム組成物を用いて、方法(1)、(2)によって製造した架橋ゴム物品は、方法(3)で製造した架橋ゴム物品に比べて、耐薬品性(特に耐アミン性)に優れている。しかし、前記架橋性フッ素ゴム組成物では、耐熱性に著しく優れる架橋ゴム物品を得ることは困難であった。
In the methods (1) and (2), a crosslinkable fluororubber composition containing a polyfunctional compound is used as a crosslinking aid in order to improve the crosslinking characteristics of the fluororubber and the characteristics of the resulting crosslinked rubber article. Is done. For example, a crosslinkable fluororubber composition containing triallyl isocyanurate (TAIC) as a crosslinking aid (see Non-Patent Document 1 and Patent Document 1) is known.
By using TAIC as a crosslinking aid, the crosslinking rate of the fluororubber is improved. The crosslinked rubber article produced by the methods (1) and (2) using the crosslinkable fluororubber composition is more resistant to chemicals (particularly amine resistant) than the crosslinked rubber article produced by the method (3). Excellent). However, with the crosslinkable fluororubber composition, it has been difficult to obtain a crosslinked rubber article that is remarkably excellent in heat resistance.
日本特開平7-179705号公報Japanese Unexamined Patent Publication No. 7-179705
 本発明は、優れた耐薬品性と耐熱性を兼ね備えた架橋ゴム物品を与える架橋性フッ素ゴム組成物、および該架橋性フッ素ゴム組成物により得られる架橋ゴム物品の提供を目的とする。 An object of the present invention is to provide a crosslinkable fluororubber composition that provides a crosslinkable rubber article having both excellent chemical resistance and heat resistance, and a crosslinked rubber article obtained from the crosslinkable fluororubber composition.
 本発明は、前記課題を解決するために以下の構成を採用した。
[1]フッ素ゴムと、重合性二重結合を複数有する下記フルオロポリマー(P)とを含有する架橋性フッ素ゴム組成物。
 フルオロポリマー(P):不飽和側鎖残存性のフルオロジエン(b)に由来する繰り返し単位を有するフルオロポリマー。
[2]前記フルオロポリマー(P)が、フルオロモノエン(a)に由来する繰り返し単位と、不飽和側鎖残存性のフルオロジエン(b)に由来する繰り返し単位を有するフルオロポリマーである[1]に記載の架橋性フッ素ゴム組成物。
[3]前記フルオロモノエン(a)が、テトラフルオロエチレン、クロロトリフルオロエチレン、およびCF=CFO-Rf1(式中、Rf1は炭素数1~6のフルオロアルキル基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数2~6のフルオロアルキル基である。)からなる群から選ばれる1種以上である[2]に記載の架橋性フッ素ゴム組成物。
[4]前記フルオロジエン(b)が、下記フルオロジエン(b1)~(b3)からなる群から選ばれる1種以上である[1]~[3]のいずれかに記載の架橋性フッ素ゴム組成物。
 (b1)CF=CFO-Qf1-OCF=CF
 (b2)CH=CFCFO-Qf2-OCFCF=CH
 (b3)CH=CFCFO-Qf3-OCF=CF
(式中、Qf1、Qf2は、それぞれ独立に炭素数3~8のフルオロアルキレン基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数3~8のフルオロアルキレン基である。
 Qf3は、炭素数1~6のフルオロアルキレン基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数2~6のフルオロアルキレン基である。)
[5]前記フルオロポリマー(P)の重量平均分子量が3,000~50,000である[1]~[4]のいずれかに記載の架橋性フッ素ゴム組成物。
[6]前記フルオロポリマー(P)中の重合性二重結合の含有量が0.2~2mmol/gである[1]~[5]のいずれかに記載の架橋性フッ素ゴム組成物。
[7]前記フッ素ゴム100質量部に対して前記フルオロポリマー(P)を1~50質量部含有する[1]~[6]のいずれかに記載の架橋性フッ素ゴム組成物。
[8]前記フッ素ゴムが、テトラフルオロエチレン/プロピレン系共重合体、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、およびテトラフルオロエチレン/ペルフルオロアルキルビニルエーテル系共重合体からなる群から選ばれる1種以上である[1]~[7]のいずれかに記載の架橋性フッ素ゴム組成物。
[9]さらに、有機過酸化物を含有する[1]~[8]のいずれかに記載の架橋性フッ素ゴム組成物。
[10][1]または[2]に記載の架橋性フッ素ゴム組成物を架橋してなる架橋ゴム物品。
[11]シール材である[10]に記載の架橋ゴム物品。
The present invention employs the following configuration in order to solve the above problems.
[1] A crosslinkable fluororubber composition containing fluororubber and the following fluoropolymer (P) having a plurality of polymerizable double bonds.
Fluoropolymer (P): a fluoropolymer having repeating units derived from unsaturated side chain remaining fluorodiene (b).
[2] The fluoropolymer (P) is a fluoropolymer having a repeating unit derived from the fluoromonoene (a) and a repeating unit derived from the unsaturated side chain residual fluorodiene (b). The crosslinkable fluororubber composition as described.
[3] The fluoromonoene (a) is tetrafluoroethylene, chlorotrifluoroethylene, and CF 2 ═CFO—R f1 (wherein R f1 is a fluoroalkyl group having 1 to 6 carbon atoms, or carbon atom-carbon) The crosslinkable fluororubber composition according to [2], which is at least one selected from the group consisting of a C2-C6 fluoroalkyl group having at least one etheric oxygen atom between atoms.
[4] The crosslinkable fluororubber composition according to any one of [1] to [3], wherein the fluorodiene (b) is at least one selected from the group consisting of the following fluorodienes (b1) to (b3): object.
(B1) CF 2 = CFO-Q f1 -OCF = CF 2
(B2) CH 2 ═CFCF 2 O—Q f2 —OCF 2 CF═CH 2
(B3) CH 2 ═CFCF 2 O—Q f3 —OCF═CF 2
( Wherein Q f1 and Q f2 each independently represents a fluoroalkylene group having 3 to 8 carbon atoms, or a fluoroalkylene group having 3 to 8 carbon atoms having one or more etheric oxygen atoms between carbon atoms and carbon atoms) It is.
Q f3 is a fluoroalkylene group having 1 to 6 carbon atoms or a fluoroalkylene group having 2 to 6 carbon atoms having at least one etheric oxygen atom between carbon atoms. )
[5] The crosslinkable fluororubber composition according to any one of [1] to [4], wherein the fluoropolymer (P) has a weight average molecular weight of 3,000 to 50,000.
[6] The crosslinkable fluororubber composition according to any one of [1] to [5], wherein the content of polymerizable double bonds in the fluoropolymer (P) is 0.2 to 2 mmol / g.
[7] The crosslinkable fluororubber composition according to any one of [1] to [6], which contains 1 to 50 parts by mass of the fluoropolymer (P) with respect to 100 parts by mass of the fluororubber.
[8] The fluororubber is selected from the group consisting of a tetrafluoroethylene / propylene copolymer, a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer, and a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer. The crosslinkable fluororubber composition according to any one of [1] to [7], which is one or more selected.
[9] The crosslinkable fluororubber composition according to any one of [1] to [8], further containing an organic peroxide.
[10] A crosslinked rubber article obtained by crosslinking the crosslinkable fluororubber composition according to [1] or [2].
[11] The crosslinked rubber article according to [10], which is a sealing material.
 本発明の架橋性フッ素ゴム組成物は、優れた耐薬品性と耐熱性を兼ね備えた架橋ゴム物品を製造することができる。
 また、本発明の架橋ゴム物品は、本発明の架橋性フッ素ゴム組成物を架橋して製造されるため、優れた耐薬品性と耐熱性を兼ね備えている。
The crosslinkable fluororubber composition of the present invention can produce a crosslinked rubber article having excellent chemical resistance and heat resistance.
Moreover, since the crosslinked rubber article of the present invention is produced by crosslinking the crosslinkable fluororubber composition of the present invention, it has excellent chemical resistance and heat resistance.
<架橋性フッ素ゴム組成物>
 本発明の架橋性フッ素ゴム組成物は、フッ素ゴムと、重合性二重結合を複数有する後述のフルオロポリマー(P)を必須成分として含有する組成物である。
[フルオロポリマー(P)]
 フルオロポリマー(P)は、本発明の架橋性フッ素ゴム組成物において架橋助剤として機能する。つまり、フルオロポリマー(P)は、光または熱により誘起されたラジカルによってフッ素ゴムと結合し、三次元架橋物である架橋ゴム物品を与える。
 フルオロポリマー(P)は、不飽和側鎖残存性のフルオロジエン(b)に由来する繰り返し単位を有するフルオロポリマーであり、重合性二重結合(炭素-炭素二重結合)を分子内に複数有する。フルオロポリマー(P)は、フルオロモノエン(a)に由来する繰り返し単位と、不飽和側鎖残存性のフルオロジエン(b)に由来する繰り返し単位を有するフルオロポリマーが好ましい。
<Crosslinkable fluororubber composition>
The crosslinkable fluororubber composition of the present invention is a composition containing fluororubber and a fluoropolymer (P) described later having a plurality of polymerizable double bonds as essential components.
[Fluoropolymer (P)]
The fluoropolymer (P) functions as a crosslinking aid in the crosslinkable fluororubber composition of the present invention. That is, the fluoropolymer (P) is bonded to the fluororubber by radicals induced by light or heat to give a crosslinked rubber article that is a three-dimensional crosslinked product.
The fluoropolymer (P) is a fluoropolymer having a repeating unit derived from the unsaturated side chain residual fluorodiene (b), and has a plurality of polymerizable double bonds (carbon-carbon double bonds) in the molecule. . The fluoropolymer (P) is preferably a fluoropolymer having a repeating unit derived from the fluoromonoene (a) and a repeating unit derived from the unsaturated side chain remaining fluorodiene (b).
(フルオロモノエン(a))
 フルオロモノエン(a)は、分子内に重合性二重結合を1つ有する含フッ素化合物である。
 フルオロモノエン(a)としては、たとえば、テトラフルオロエチレン(TFE)、トリフルオロエチレン、クロロトリフルオロエチレン(CTFE)、フッ化ビニリデン等のフルオロエチレン類;ヘキサフルオロプロピレン、CF=CFO-Rf1(式中、Rf1は炭素数1~6のフルオロアルキル基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数2~6のフルオロアルキル基である。)で表されるフルオロビニルエーテル(以下、「フルオロモノエン(a1)」という。)等が挙げられる。
 本発明において、フルオロアルキル基とは、アルキル基の水素原子の1個以上がフッ素原子に置換された基である。また、炭素原子-炭素原子間にエーテル性酸素原子を1個以上有するフルオロアルキル基とは、炭素原子-炭素原子間にエーテル性酸素原子を1個以上有するアルキル基の水素原子の1個以上がフッ素原子に置換された基である。また、ペルフルオロアルキル基とは、アルキル基の全ての水素原子がフッ素原子に置換された基である。
(Fluoromonoene (a))
Fluoromonoene (a) is a fluorine-containing compound having one polymerizable double bond in the molecule.
Examples of the fluoromonoene (a) include fluoroethylenes such as tetrafluoroethylene (TFE), trifluoroethylene, chlorotrifluoroethylene (CTFE), and vinylidene fluoride; hexafluoropropylene, CF 2 ═CFO—R f1 ( In the formula, R f1 is a fluoroalkyl group having 1 to 6 carbon atoms, or a fluoroalkyl group having 2 to 6 carbon atoms having at least one etheric oxygen atom between carbon atoms. Fluorovinyl ether (hereinafter referred to as “fluoromonoene (a1)”) and the like.
In the present invention, the fluoroalkyl group is a group in which one or more hydrogen atoms of the alkyl group are substituted with fluorine atoms. In addition, a fluoroalkyl group having one or more etheric oxygen atoms between carbon atoms and carbon atoms means one or more hydrogen atoms of an alkyl group having one or more etheric oxygen atoms between carbon atoms and carbon atoms. A group substituted by a fluorine atom. The perfluoroalkyl group is a group in which all hydrogen atoms of the alkyl group are substituted with fluorine atoms.
 フルオロモノエン(a)としては、TFE、CTFE、およびフルオロモノエン(a1)からなる群から選ばれる1種以上が好ましい。
 フルオロモノエン(a)としてTFEを使用すれば、フルオロポリマー(P)の流動性が向上し、また耐熱性が特に優れた架橋ゴム物品が得られる。
 フルオロモノエン(a)としてCTFEを使用すれば、特にフッ素ゴムとしてフッ化ビニリデン共重合系フッ素ゴムを使用した場合に相溶性が良いため架橋効率が良くなる。
 フルオロモノエン(a)としてフルオロモノエン(a1)を使用すれば、フルオロポリマー(P)の粘度がより低くなり、架橋性フッ素ゴム組成物の製造が容易になる。
As fluoromonoene (a), 1 or more types chosen from the group which consists of TFE, CTFE, and fluoromonoene (a1) are preferable.
If TFE is used as the fluoromonoene (a), the flowability of the fluoropolymer (P) is improved, and a crosslinked rubber article having particularly excellent heat resistance is obtained.
When CTFE is used as the fluoromonoene (a), the cross-linking efficiency is improved because the compatibility is good particularly when a vinylidene fluoride copolymer fluororubber is used as the fluororubber.
When the fluoromonoene (a1) is used as the fluoromonoene (a), the viscosity of the fluoropolymer (P) becomes lower and the production of the crosslinkable fluororubber composition becomes easier.
 フルオロモノエン(a1)のRf1の炭素数は、1~5が好ましく、1~3がより好ましい。Rf1の炭素数がこの範囲であれば、フルオロポリマー(P)の流動性および耐熱性を低下させることなくフッ素ゴムの架橋助剤として作用できる。Rf1のフルオロアルキレン基は、直鎖状であってもよく、分岐鎖状であってもよい。
 フルオロモノエン(a1)のRf1は、架橋ゴム物品の耐熱性の点から、アルキル基の水素原子が全てフッ素原子に置換されていることが好ましい。つまり、フルオロモノエン(a1)としては、CF=CFO-RF1(式中、RF1は炭素数1~6のペルフルオロアルキル基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数2~6のペルフルオロアルキル基である。)で表されるペルフルオロビニルエーテル(以下、「フルオロモノエン(a11)」という。)がより好ましい。
The carbon number of R f1 in the fluoromonoene (a1) is preferably 1 to 5, and more preferably 1 to 3. If the carbon number of R f1 is in this range, it can act as a crosslinking aid for fluororubber without reducing the fluidity and heat resistance of the fluoropolymer (P). The fluoroalkylene group for R f1 may be linear or branched.
In R f1 of the fluoromonoene (a1), from the viewpoint of heat resistance of the crosslinked rubber article, it is preferable that all hydrogen atoms of the alkyl group are substituted with fluorine atoms. That is, as the fluoromonoene (a1), CF 2 ═CFO—R F1 (wherein R F1 is a perfluoroalkyl group having 1 to 6 carbon atoms, or one or more etheric oxygen atoms between carbon atoms and carbon atoms) And a perfluorovinyl ether (hereinafter referred to as “fluoromonoene (a11)”) represented by a C 2-6 perfluoroalkyl group.
 TFEとフルオロモノエン(a1)の併用は、それらを単独で使用する場合に比べて、フルオロポリマー(P)の流動性がさらに向上する点で好ましい。
 フルオロモノエン(a)としては、フルオロポリマー(P)の流動性および架橋ゴム物品の耐熱性の点から、ペルフルオロモノマーが好ましく、TFE、フルオロモノエン(a11)がより好ましく、TFEの単独使用、またはTFEとフルオロモノエン(a11)の併用がさらに好ましい。
 フルオロモノエン(a)は、1種のみを単独で使用してもよく、2種以上を併用してもよい。
The combined use of TFE and fluoromonoene (a1) is preferable in that the fluidity of the fluoropolymer (P) is further improved as compared with the case where they are used alone.
The fluoromonoene (a) is preferably a perfluoromonomer from the viewpoint of the fluidity of the fluoropolymer (P) and the heat resistance of the crosslinked rubber article, more preferably TFE or fluoromonoene (a11), single use of TFE, or TFE. And fluoromonoene (a11) are more preferred.
Fluoromonoene (a) may be used alone or in combination of two or more.
(フルオロジエン(b))
 フルオロジエン(b)は、分子内に重合性二重結合を2つ有する、不飽和側鎖残存性の含フッ素化合物である。つまり、フルオロジエン(b)は、フルオロポリマー(P)を製造する重合の際、2つの重合性二重結合のうちの少なくとも一部が重合反応に寄与せず、重合後も二重結合のまま残存する化合物である。具体的には、フルオロジエン(b)の一方の重合性二重結合における2つの炭素原子は、重合後に主鎖を形成する。もう一方の重合性二重結合のうちの少なくとも一部は、重合反応に寄与せず、フルオロポリマー(P)中に不飽和側鎖として残存する。
 フルオロジエン(b)を用いることにより、フルオロポリマー(P)中に不飽和側鎖が残存し、この不飽和側鎖を利用した架橋反応により架橋ゴム物品が得られる。
(Fluorodiene (b))
Fluorodiene (b) is an unsaturated side chain-remaining fluorine-containing compound having two polymerizable double bonds in the molecule. That is, in the polymerization for producing the fluoropolymer (P), at least a part of the two polymerizable double bonds does not contribute to the polymerization reaction, and the fluorodiene (b) remains a double bond after the polymerization. It is a remaining compound. Specifically, two carbon atoms in one polymerizable double bond of fluorodiene (b) form a main chain after polymerization. At least a part of the other polymerizable double bond does not contribute to the polymerization reaction and remains as an unsaturated side chain in the fluoropolymer (P).
By using the fluorodiene (b), unsaturated side chains remain in the fluoropolymer (P), and a crosslinked rubber article is obtained by a crosslinking reaction using the unsaturated side chains.
 フルオロジエン(b)としては、炭素原子とフッ素原子から構成されるペルフルオロジエン、または炭素原子とフッ素原子と酸素原子から構成されるペルフルオロジエンが挙げられる。また、前記ペルフルオロジエンのフッ素原子の1個以上が水素原子で置換されたフルオロジエンが挙げられる。フルオロジエン(b)としては、架橋ゴム物品の耐熱性の点から、ペルフルオロジエンが好ましく、フルオロポリマー(P)の流動性、および得られる架橋ゴム物品の耐薬品性、耐熱性の点から、炭素原子とフッ素原子と酸素原子から構成されるペルフルオロジエンがさらに好ましい。 Examples of the fluorodiene (b) include perfluorodiene composed of carbon atoms and fluorine atoms, or perfluorodiene composed of carbon atoms, fluorine atoms and oxygen atoms. Moreover, the fluorodiene by which one or more of the fluorine atoms of the said perfluorodiene was substituted by the hydrogen atom is mentioned. As the fluorodiene (b), perfluorodiene is preferable from the viewpoint of heat resistance of the crosslinked rubber article, and from the viewpoint of fluidity of the fluoropolymer (P) and chemical resistance and heat resistance of the resulting crosslinked rubber article. More preferred is a perfluorodiene composed of an atom, a fluorine atom and an oxygen atom.
 フルオロジエン(b)における2つの重合性二重結合を連結する連結鎖(炭素原子と酸素原子の合計)の原子数は、5~10が好ましく、5~8がより好ましい。
 前記連結鎖の原子数が下限値以上であれば、フルオロポリマー(P)の製造における重合反応時に、分子中のこれら2つの重合性二重結合が反応して分子内環化が起こることが抑制され、フルオロポリマー(P)中に重合性二重結合が不飽和側鎖として残存しやすくなる。また、前記連結鎖の原子数が上限値以下であれば、フルオロポリマー(P)の側鎖に残存した重合性二重結合が本発明の架橋性フッ素ゴム組成物の保存中に架橋反応を起こし難く、フルオロポリマー(P)の高分子量化やゲル化が生じ難い。これにより、フッ素ゴムと混練する際に、フルオロポリマー(P)の流動性が著しく低下することを抑制しやすくなる。また、連結鎖の原子数が上限値以下のフルオロジエン(b)は、それ自体を合成し、高純度に精製することが容易である。
The number of atoms of a linking chain (total of carbon atoms and oxygen atoms) that connects two polymerizable double bonds in the fluorodiene (b) is preferably 5 to 10, and more preferably 5 to 8.
If the number of atoms in the linking chain is equal to or greater than the lower limit, it is possible to suppress intramolecular cyclization by reacting these two polymerizable double bonds in the molecule during the polymerization reaction in the production of the fluoropolymer (P). Then, the polymerizable double bond tends to remain as an unsaturated side chain in the fluoropolymer (P). If the number of atoms of the linking chain is not more than the upper limit, the polymerizable double bond remaining in the side chain of the fluoropolymer (P) causes a crosslinking reaction during storage of the crosslinkable fluororubber composition of the present invention. It is difficult to cause high molecular weight and gelation of the fluoropolymer (P). Thereby, when knead | mixing with fluororubber, it becomes easy to suppress that the fluidity | liquidity of fluoropolymer (P) falls remarkably. In addition, the fluorodiene (b) having a linking chain atom number of not more than the upper limit can be easily synthesized and purified to high purity.
 フルオロジエン(b)は、フルオロポリマー(P)の流動性が低下しすぎることを防ぐ点から、環構造を有さない化合物であることが好ましい。フルオロジエン(b)としては下記フルオロジエン(b1)~(b3)がより好ましい。
 (b1)CF=CFO-Qf1-OCF=CF
 (b2)CH=CFCFO-Qf2-OCFCF=CH
 (b3)CH=CFCFO-Qf3-OCF=CF
 ただし、式中、Qf1、Qf2は、それぞれ独立に炭素数3~8のフルオロアルキレン基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数3~8のフルオロアルキレン基である。
 Qf3は、炭素数1~6のフルオロアルキレン基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数2~6のフルオロアルキレン基である。
 本発明において、フルオロアルキレン基とは、アルキレン基の水素原子の1個以上がフッ素原子に置換された基である。また、炭素原子-炭素原子間にエーテル性酸素原子を1個以上有するフルオロアルキレン基とは、炭素原子-炭素原子間にエーテル性酸素原子を1個以上有するアルキレン基の水素原子の1個以上がフッ素原子に置換された基である。また、ペルフルオロアルキレン基とは、アルキレン基の全ての水素原子がフッ素原子に置換された基である。
The fluorodiene (b) is preferably a compound having no ring structure from the viewpoint of preventing the fluidity of the fluoropolymer (P) from being excessively lowered. As the fluorodiene (b), the following fluorodienes (b1) to (b3) are more preferable.
(B1) CF 2 = CFO-Q f1 -OCF = CF 2
(B2) CH 2 ═CFCF 2 O—Q f2 —OCF 2 CF═CH 2
(B3) CH 2 ═CFCF 2 O—Q f3 —OCF═CF 2
In the formula, Q f1 and Q f2 each independently represent a fluoroalkylene group having 3 to 8 carbon atoms, or a fluoroalkylene group having 3 to 8 carbon atoms having one or more etheric oxygen atoms between carbon atoms. It is a group.
Q f3 is a fluoroalkylene group having 1 to 6 carbon atoms or a fluoroalkylene group having 2 to 6 carbon atoms having at least one etheric oxygen atom between carbon atoms.
In the present invention, the fluoroalkylene group is a group in which one or more hydrogen atoms of the alkylene group are substituted with fluorine atoms. In addition, the fluoroalkylene group having one or more etheric oxygen atoms between carbon atoms and carbon atoms means one or more hydrogen atoms of an alkylene group having one or more etheric oxygen atoms between carbon atoms and carbon atoms. A group substituted by a fluorine atom. The perfluoroalkylene group is a group in which all hydrogen atoms of the alkylene group are substituted with fluorine atoms.
 フルオロジエン(b1)~(b3)におけるQf1、Qf2、およびQf3のフルオロアルキレン基は、分岐構造を有してもよい。
 Qf1のフルオロアルキレン基の炭素原子数は、3~6が好ましい。
 Qf2のフルオロアルキレン基の炭素原子数は、3~6が好ましい。
 Qf3のフルオロアルキレン基の炭素原子数は、2~5が好ましい。
The fluoroalkylene groups of Q f1 , Q f2 , and Q f3 in the fluorodienes (b1) to (b3) may have a branched structure.
The number of carbon atoms of the fluoroalkylene group of Q f1 is preferably 3-6.
The number of carbon atoms in the fluoroalkylene group of Q f2 is preferably 3-6.
The number of carbon atoms in the fluoroalkylene group of Q f3 is preferably 2-5.
 フルオロジエン(b1)としては、下記フルオロジエン(b11)および(b12)が好ましい。
 (b11)CF=CFO-QF11-OCF=CF
 (b12)CF=CFOCH-QF12-CHOCF=CF
 ただし、式中、QF11は、炭素数3~8のペルフルオロアルキレン基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数3~8のペルフルオロアルキレン基である。
 QF12は、炭素数2~6のペルフルオロアルキレン基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数2~6のペルフルオロアルキレン基である。
As the fluorodiene (b1), the following fluorodienes (b11) and (b12) are preferable.
(B11) CF 2 = CFO-Q F11 -OCF = CF 2
(B12) CF 2 = CFOCH 2 -Q F12 -CH 2 OCF = CF 2
In the formula, Q F11 is a C 3-8 perfluoroalkylene group or a C 3-8 perfluoroalkylene group having one or more etheric oxygen atoms between carbon atoms.
Q F12 is a C 2-6 perfluoroalkylene group or a C 2-6 perfluoroalkylene group having one or more etheric oxygen atoms between carbon atoms.
 フルオロジエン(b11)の具体例としては、下記化合物が挙げられる。
 CF=CFO(CFOCF=CF
 CF=CFO(CFOCF=CF
 CF=CFO(CFOCF=CF
 CF=CFO(CFOCF(CF)CFOCF=CF等。
 フルオロジエン(b12)の具体例としては、下記化合物が挙げられる。
 CF=CFOCH(CFCHOCF=CF
 CF=CFOCH(CFCHOCF=CF等。
Specific examples of the fluorodiene (b11) include the following compounds.
CF 2 = CFO (CF 2) 4 OCF = CF 2,
CF 2 = CFO (CF 2) 5 OCF = CF 2,
CF 2 = CFO (CF 2) 6 OCF = CF 2,
CF 2 = CFO (CF 2) 4 OCF (CF 3) CF 2 OCF = CF 2 and so on.
Specific examples of the fluorodiene (b12) include the following compounds.
CF 2 = CFOCH 2 (CF 2 ) 2 CH 2 OCF = CF 2,
CF 2 = CFOCH 2 (CF 2 ) 4 CH 2 OCF = CF 2 and so on.
 フルオロジエン(b2)としては、下記フルオロジエン(b21)が好ましい。
 (b21)CH=CFCFO-QF21-OCFCF=CH
 ただし、式中、QF21は、炭素数3~8のペルフルオロアルキレン基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数3~8のペルフルオロアルキレン基である。
 フルオロジエン(b21)の具体例としては、下記化合物が挙げられる。
 CH=CFCFO(CFOCFCF=CH
 CH=CFCFO(CFOCFCF=CH
 CH=CFCFO(CFOCFCF=CH
 CH=CFCFO(CFOCF(CF)CFOCFCF=CH等。
As the fluorodiene (b2), the following fluorodiene (b21) is preferable.
(B21) CH 2 ═CFCF 2 O—Q F21 —OCF 2 CF═CH 2
In the formula, Q F21 is a C 3-8 perfluoroalkylene group or a C 3-8 perfluoroalkylene group having one or more etheric oxygen atoms between carbon atoms.
Specific examples of the fluorodiene (b21) include the following compounds.
CH 2 = CFCF 2 O (CF 2) 2 OCF 2 CF = CH 2,
CH 2 = CFCF 2 O (CF 2) 3 OCF 2 CF = CH 2,
CH 2 = CFCF 2 O (CF 2) 4 OCF 2 CF = CH 2,
CH 2 = CFCF 2 O (CF 2) 2 OCF (CF 3) CF 2 OCF 2 CF = CH 2 and the like.
 フルオロジエン(b3)としては、下記フルオロジエン(b31)が好ましい。
 (b31)CH=CFCFO-QF31-OCF=CF
 ただし、式中、QF31は、炭素数1~6のペルフルオロアルキレン基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数2~6のペルフルオロアルキレン基である。
 フルオロジエン(b31)の具体例としては、下記化合物が挙げられる。
 CH=CFCFOCF(CF)CFOCF=CF
 CH=CFCFOCF(CF)CFOCF(CF)CFOCF=CF等。
As the fluorodiene (b3), the following fluorodiene (b31) is preferable.
(B31) CH 2 ═CFCF 2 O—Q F31 —OCF═CF 2
In the formula, Q F31 is a C 1-6 perfluoroalkylene group or a C 2-6 perfluoroalkylene group having one or more etheric oxygen atoms between carbon atoms.
Specific examples of the fluorodiene (b31) include the following compounds.
CH 2 = CFCF 2 OCF (CF 3) CF 2 OCF = CF 2,
CH 2 = CFCF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) CF 2 OCF = CF 2 and the like.
 フルオロジエン(b)としては、フルオロポリマー(P)の合成の際に重合性二重結合が側鎖に残りやすい適度な重合性を有する点、より耐熱性に優れた架橋ゴム物品が得られる点から、フルオロジエン(b1)がより好ましく、フルオロジエン(b11)がさらに好ましい。
 フルオロジエン(b)は、1種のみを単独で使用してもよく、2種以上を併用してもよい。
The fluorodiene (b) has a suitable degree of polymerizability in which a polymerizable double bond is likely to remain in the side chain during the synthesis of the fluoropolymer (P), and a cross-linked rubber article having more excellent heat resistance can be obtained. Therefore, fluorodiene (b1) is more preferable, and fluorodiene (b11) is more preferable.
Fluorodiene (b) may be used alone or in combination of two or more.
 フルオロポリマー(P)は、フルオロジエン(b)に基づく繰り返し単位を有しており、フルオロジエン(b)に由来する繰り返し単位の少なくとも一部に、重合性二重結合を有する不飽和側鎖が残存している。たとえば、フルオロジエン(b)として、CF=CF-O-(CF-O-CF=CFを使用した場合、得られるフルオロポリマー(P)は、重合性二重結合を有する不飽和側鎖が残存した下記式に示す繰り返し単位を少なくとも有する。 The fluoropolymer (P) has a repeating unit based on the fluorodiene (b), and at least a part of the repeating unit derived from the fluorodiene (b) has an unsaturated side chain having a polymerizable double bond. Remains. For example, when CF 2 ═CF—O— (CF 2 ) 4 —O—CF═CF 2 is used as the fluorodiene (b), the resulting fluoropolymer (P) has a non-polymerizable double bond. It has at least a repeating unit represented by the following formula in which a saturated side chain remains.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 フルオロポリマー(P)の重量平均分子量(以下、「Mw」という。)は、3,000~50,000が好ましく、10,000~30,000がより好ましい。フルオロポリマー(P)のMwが下限値以上であれば、架橋性フッ素ゴム組成物を硬化して得られる架橋フッ素ゴム物品の耐熱性がより良好となる。また、フルオロポリマー(P)のMwが上限値以下であれば、架橋性フッ素ゴム組成物を製造する際に、フッ素ゴムへの混合分散が容易である。これにより、所望の形状に成形することが容易になるうえ、流動が不均一になって架橋ゴム物品の特性に偏りが発生することを抑制しやすくなる。また、フルオロポリマー(P)のMwを前記範囲内において高く設定することにより、より高い熱安定性を有する架橋ゴム物品が得られやすくなる。
 なお、本発明におけるMwおよび数平均分子量(以下、「Mn」という。)は、旭硝子社製、アサヒクリンAK-225SECグレード1(ジクロロペンタフルオロプロパンとヘキサフルオロイソプロピルアルコールとの混合溶媒(ジクロロペンタフルオロプロパン/ヘキサフルオロイソプロピルアルコール=99/1(体積比)))を溶媒として用いて、ゲルパーミエーションクロマトグラフィー(GPC)によりPMMA(ポリメチルメタクリレート)換算分子量として算出したものを意味する。
The weight average molecular weight (hereinafter referred to as “Mw”) of the fluoropolymer (P) is preferably 3,000 to 50,000, and more preferably 10,000 to 30,000. If Mw of fluoropolymer (P) is more than a lower limit, the heat resistance of the crosslinked fluororubber article obtained by curing the crosslinkable fluororubber composition will be better. Moreover, if Mw of fluoropolymer (P) is below an upper limit, when manufacturing a crosslinkable fluororubber composition, mixing and dispersion to fluororubber are easy. Thereby, it becomes easy to mold into a desired shape, and it becomes easy to suppress the occurrence of unevenness in characteristics of the crosslinked rubber article due to non-uniform flow. Moreover, it becomes easy to obtain the crosslinked rubber article which has higher thermal stability by setting Mw of fluoropolymer (P) high in the said range.
The Mw and the number average molecular weight (hereinafter referred to as “Mn”) in the present invention are those of Asahi Clin AK-225SEC Grade 1 (mixed solvent of dichloropentafluoropropane and hexafluoroisopropyl alcohol (dichloropentafluoro), manufactured by Asahi Glass Co., Ltd. Propane / hexafluoroisopropyl alcohol = 99/1 (volume ratio))) as a solvent, and a molecular weight calculated as PMMA (polymethyl methacrylate) equivalent molecular weight by gel permeation chromatography (GPC).
 フルオロポリマー(P)中の側鎖に残存する重合性二重結合の含有量は、0.2~2mmol/gが好ましく、0.5~1.5mmol/gがより好ましい。前記重合性二重結合の含有量は、F19-NMRによる測定により算出できる。
 重合性二重結合の含有量が下限値以上であれば、架橋性フッ素ゴム組成物を硬化する際に充分に架橋しやすく、優れた耐熱性を有する架橋ゴム物品を得ることが容易になる。また、重合性二重結合の含有量が上限値以下であれば、硬化後の架橋ゴム物品中に残存する未反応の重合性二重結合の分解による耐熱性の低下を抑制しやすく、また、フルオロポリマー(P)製造時の架橋反応によるゲル化や高分子量化による流動性の低下を防ぎやすい。
The content of the polymerizable double bond remaining in the side chain in the fluoropolymer (P) is preferably 0.2 to 2 mmol / g, more preferably 0.5 to 1.5 mmol / g. The content of the polymerizable double bond can be calculated by measurement by F 19 -NMR.
If the content of the polymerizable double bond is at least the lower limit, it is easy to sufficiently crosslink when the crosslinkable fluororubber composition is cured, and it becomes easy to obtain a crosslinked rubber article having excellent heat resistance. Moreover, if the content of the polymerizable double bond is not more than the upper limit, it is easy to suppress a decrease in heat resistance due to decomposition of unreacted polymerizable double bonds remaining in the crosslinked rubber article after curing, It is easy to prevent a decrease in fluidity due to gelation or high molecular weight due to a crosslinking reaction during production of the fluoropolymer (P).
(フルオロポリマー(P)の合成)
 フルオロポリマー(P)は、フルオロジエン(b)を単独重合すること、または、フルオロモノエン(a)とフルオロジエン(b)を共重合することで得られ、単独重合または共重合の際に、フルオロジエン(b)の重合性二重結合の一部が反応に寄与せずに側鎖として残存する。
 フルオロジエン(b)を単独重合、または、フルオロモノエン(a)とフルオロジエン(b)を共重合、させる重合方法は特に限定されず、懸濁重合、溶液重合、乳化重合、塊状重合等の公知の重合方法を採用できる。なかでも、溶媒で希釈した状態で重合でき、側鎖に残存する重合性二重結合による分子間の架橋反応を抑制できる点から、溶液重合が特に好ましい。
 溶液重合は、重合溶媒中で、重合開始剤に、フルオロジエン(b)単独、または、フルオロモノエン(a)とフルオロジエン(b)、を添加して重合させる重合方法である。
(Synthesis of fluoropolymer (P))
The fluoropolymer (P) is obtained by homopolymerizing the fluorodiene (b) or by copolymerizing the fluoromonoene (a) and the fluorodiene (b). A part of the polymerizable double bond of diene (b) remains as a side chain without contributing to the reaction.
The polymerization method for homopolymerizing fluorodiene (b) or copolymerizing fluoromonoene (a) and fluorodiene (b) is not particularly limited, and known methods such as suspension polymerization, solution polymerization, emulsion polymerization and bulk polymerization The polymerization method can be employed. Among these, solution polymerization is particularly preferable because it can be polymerized in a state diluted with a solvent and can suppress a cross-linking reaction between molecules due to a polymerizable double bond remaining in a side chain.
Solution polymerization is a polymerization method in which fluorodiene (b) alone or fluoromonoene (a) and fluorodiene (b) are added to a polymerization initiator in a polymerization solvent to polymerize.
 溶液重合における重合溶媒としては、生成するフルオロポリマー(P)が溶解できる含フッ素溶媒が好ましい。含フッ素溶媒としては、例えば、ジクロロペンタフルオロプロパン(HCFC-225)、CFCHCFH(HFC-245fa)、CFCFCHCFH(HFC-365mfc)、ペルフルオロヘキサン、ペルフルオロオクタン、ペルフルオロ(2-ブチルテトラヒドロフラン)、ペルフルオロ(トリブチルアミン)、CFCFCFCFCFCFH、CFCHOCFCFH、CFCHOCHCF、CFCFOCFCFOCFCF等が挙げられる。 As a polymerization solvent in solution polymerization, a fluorine-containing solvent capable of dissolving the generated fluoropolymer (P) is preferable. Examples of the fluorine-containing solvent include dichloropentafluoropropane (HCFC-225), CF 3 CH 2 CF 2 H (HFC-245fa), CF 3 CF 2 CH 2 CF 2 H (HFC-365mfc), perfluorohexane, perfluoro octane, perfluoro (2-butyl tetrahydrofuran), perfluoro (tributylamine), CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 H, CF 3 CH 2 OCF 2 CF 2 H, CF 3 CH 2 OCH 2 CF 3, CF 3 CF 2 OCF 2 CF 2 OCF 2 CF 3 and the like.
 フルオロポリマー(P)の合成において、フルオロジエン(b)、または、フルオロモノエン(a)とフルオロジエン(b)、の全使用量を一度に反応させずに、その全使用量のうちの一部を予め反応容器内に投入して重合反応を開始させ、重合反応の進行中に残りのフルオロモノエン(a)およびフルオロジエン(b)を逐次添加しながら重合させる方法が特に好ましい。
 これにより、得られるフルオロポリマー(P)の分子量分布および組成分布をより狭くでき、フルオロポリマー(P)中の分子量1,000未満の低分子量成分の含有量を容易に低減でき、またフルオロポリマー(P)の収率が向上する。前記低分子量成分は、分子量が1000以上の成分に比べて1分子あたりの重合性二重結合の含有量が少なくなる。重合性二重結合は硬化反応に用いられた際に一般に体積収縮を伴うため、前記低分子量成分の含有量を低減することで硬化反応を均一に進行させやすくなり、熱安定性、寸法安定性に優れた架橋ゴム物品が得られやすくなる。フルオロポリマー(P)中の前記低分子量成分の含有量は、10質量%未満が好ましく、1質量%未満がより好ましい。
 また、フルオロモノエン(a)とフルオロジエン(b)との共重合において、前記低分子量成分以外に、特にフルオロジエン(b)に由来する繰り返し単位の含有量が少なく、実質的に架橋助剤とならない成分が生成し得る。しかし、前述したフルオロモノエン(a)およびフルオロジエン(b)を逐次添加する方法であれば、このような化合物の生成を低減することが容易になる。
In the synthesis of the fluoropolymer (P), the fluorodiene (b) or the total amount of fluoromonoene (a) and the fluorodiene (b) are not reacted at once, but a part of the total amount used. In particular, a method is preferred in which the polymerization reaction is started by previously charging the reaction mixture into the reaction vessel and the polymerization is performed while the remaining fluoromonoene (a) and fluorodiene (b) are sequentially added while the polymerization reaction proceeds.
Thereby, the molecular weight distribution and composition distribution of the resulting fluoropolymer (P) can be narrowed, the content of low molecular weight components having a molecular weight of less than 1,000 in the fluoropolymer (P) can be easily reduced, and the fluoropolymer (P The yield of P) is improved. The low molecular weight component has a lower content of polymerizable double bonds per molecule than a component having a molecular weight of 1000 or more. When a polymerizable double bond is used in a curing reaction, it generally involves volume shrinkage, so reducing the content of the low molecular weight component facilitates the uniform progress of the curing reaction, resulting in thermal stability and dimensional stability. It is easy to obtain a crosslinked rubber article excellent in the above. The content of the low molecular weight component in the fluoropolymer (P) is preferably less than 10% by mass, and more preferably less than 1% by mass.
In addition, in the copolymerization of fluoromonoene (a) and fluorodiene (b), in addition to the low molecular weight component, the content of repeating units derived from fluorodiene (b) is particularly small, Ingredients can be produced. However, the method of sequentially adding the fluoromonoene (a) and the fluorodiene (b) described above makes it easy to reduce the formation of such a compound.
 フルオロジエン(b)の単独重合では、いうまでもなく、フルオロジエン(b)を100モル%使用する。一方、フルオロモノエン(a)とフルオロジエン(b)との共重合においては、フルオロモノエン(a)とフルオロジエン(b)とのモル比は、1:99~95:5が好ましい。また、フルオロモノエン(a)としてフルオロエチレン類を用いる場合、フルオロエチレン類とフルオロジエン(b)のモル比は5:95~80:20がより好ましく、30:70~70:30が特に好ましい。フルオロエチレン類の仕込み割合が前記上限値以下であれば、フルオロポリマー(P)の分子量が高くなりすぎて流動性が低下することを抑制しやすい。また、得られる架橋ゴム物品の伸度が向上する。 Needless to say, in the homopolymerization of fluorodiene (b), 100 mol% of fluorodiene (b) is used. On the other hand, in the copolymerization of fluoromonoene (a) and fluorodiene (b), the molar ratio of fluoromonoene (a) to fluorodiene (b) is preferably 1:99 to 95: 5. When fluoroethylenes are used as the fluoromonoene (a), the molar ratio of the fluoroethylenes to the fluorodiene (b) is more preferably 5:95 to 80:20, and particularly preferably 30:70 to 70:30. If the charging ratio of fluoroethylenes is less than or equal to the above upper limit value, it is easy to suppress a decrease in fluidity due to an excessive increase in the molecular weight of the fluoropolymer (P). Moreover, the elongation of the resulting crosslinked rubber article is improved.
 フルオロポリマー(P)の合成に用いる重合開始剤としては、10時間半減温度が20~120℃の有機過酸化物が使用でき、重合開始剤中の水素原子の引き抜き反応による反応率の低下を防ぐ点から、含フッ素ジアシルペルオキシド等の含フッ素過酸化物が好ましい。
 反応溶液中の重合開始剤の濃度は、0.1~5質量%が好ましく、0.5~2質量%がより好ましい。
 また、重合温度は、重合開始剤の10時間半減温度とモノマーの重合速度によっても異なるが、20~120℃が好ましく、40~90℃がより好ましい。
As a polymerization initiator used for the synthesis of the fluoropolymer (P), an organic peroxide having a 10-hour half-life temperature of 20 to 120 ° C. can be used, and a decrease in reaction rate due to a hydrogen atom extraction reaction in the polymerization initiator is prevented. From the viewpoint, fluorine-containing peroxides such as fluorine-containing diacyl peroxide are preferable.
The concentration of the polymerization initiator in the reaction solution is preferably from 0.1 to 5% by mass, more preferably from 0.5 to 2% by mass.
The polymerization temperature is preferably 20 to 120 ° C., more preferably 40 to 90 ° C., although it varies depending on the 10-hour half-life temperature of the polymerization initiator and the polymerization rate of the monomer.
 フルオロポリマー(P)の合成には、分子量を調節するために連鎖移動剤を使用することが好ましい。
 連鎖移動剤としては、たとえば、CCl、CHCl、SOCl、CHFCl等の塩素化合物;フルオロアルキルアイオダイド、フルオロアルキレンジアイオダイド等のヨウ素化合物;メタノール、エタノール、イソプロパノール、ヘキサン、ジエチルエーテル等の炭化水素系溶媒が挙げられる。なかでも、連鎖移動効率が高く、高収率でフルオロポリマー(P)が得られる点から、SOCl、I-(CF-I(nは4または6である。)が好ましい。
 連鎖移動剤の使用量は、連鎖移動定数によっても異なるが、SOClを使用する場合、フルオロジエン(b)単独重合ではフルオロジエン(b)の使用量、または、フルオロモノエン(a)とフルオロジエン(b)の共重合ではフルオロモノエン(a)とフルオロジエン(b)の合計量、に対し、モル比で0.001~0.1であることが好ましく、0.001~0.05であることがより好ましい。前記モル比が下限値以上であれば、フルオロポリマー(P)の分子量が高くなりすぎることを防ぎやすい。また、前記モル比が上限値以下であれば、フルオロポリマー(P)の分子量が低下しすぎることを防ぎやすい。
In the synthesis of the fluoropolymer (P), it is preferable to use a chain transfer agent in order to adjust the molecular weight.
Examples of the chain transfer agent include chlorine compounds such as CCl 4 , CH 3 Cl, SO 2 Cl 2 and CHFCl 2 ; iodine compounds such as fluoroalkyl iodide and fluoroalkylene diiodide; methanol, ethanol, isopropanol, hexane, Examples thereof include hydrocarbon solvents such as diethyl ether. Among these, SO 2 Cl 2 , I— (CF 2 ) n —I (n is 4 or 6) is preferable from the viewpoint of high chain transfer efficiency and high yield of the fluoropolymer (P). .
The amount of chain transfer agent used varies depending on the chain transfer constant, but when SO 2 Cl 2 is used, the amount of fluorodiene (b) used in fluorodiene (b) homopolymerization or the amount of fluoromonoene (a) In the copolymerization of fluorodiene (b), the molar ratio is preferably 0.001 to 0.1, preferably 0.001 to 0.05, based on the total amount of fluoromonoene (a) and fluorodiene (b). It is more preferable that If the molar ratio is at least the lower limit, it is easy to prevent the molecular weight of the fluoropolymer (P) from becoming too high. Moreover, if the said molar ratio is below an upper limit, it will be easy to prevent that the molecular weight of fluoropolymer (P) falls too much.
(フルオロポリマー(P)の精製)
 得られたフルオロポリマー(P)は、重合後に分子量が1,000未満の低分子量成分を精製により除去することが好ましい。精製することにより、フルオロポリマー(P)中の低分子量成分を低減できるので、得られるフルオロポリマー(P)は、GPCにより測定されるMw/Mnで表される分子量分布がより小さく狭分散なものとなる。これにより、熱安定性、寸法安定性に優れた架橋ゴム物品が得られやすくなる。
 ただし、フルオロポリマー(P)は、重合後に精製を行わなくてもよい。
(Purification of fluoropolymer (P))
In the obtained fluoropolymer (P), it is preferable to remove by purification the low molecular weight component having a molecular weight of less than 1,000 after polymerization. Since the low molecular weight component in the fluoropolymer (P) can be reduced by purification, the obtained fluoropolymer (P) has a smaller molecular weight distribution expressed by Mw / Mn measured by GPC and a narrow dispersion. It becomes. Thereby, it becomes easy to obtain a crosslinked rubber article excellent in thermal stability and dimensional stability.
However, the fluoropolymer (P) may not be purified after polymerization.
 分子量が1,000未満の低分子量成分の除去方法としては、(α)フルオロポリマー(P)を減圧下に加熱して低分子量成分を除去する方法、(β)超臨界状態にある抽出溶媒によりフルオロポリマー(P)から低分子量成分を抽出する方法、(γ)フルオロポリマー(P)の溶液を貧溶媒中に投入し、分子量が1,000以上のフルオロポリマー(P)を沈殿させ、沈殿しない低分子量成分を除去する方法、(δ)ゲルパーミエーションクロマトグラフィーを用いて、低分子量成分を除去する方法等が挙げられる。なかでも、操作方法の簡便さ、およびスケールアップの容易さの点から、方法(α)が好ましく、方法(α)の後に方法(β)を実施することがより好ましい。 As a method for removing low molecular weight components having a molecular weight of less than 1,000, (α) a method of removing the low molecular weight components by heating the fluoropolymer (P) under reduced pressure, and (β) an extraction solvent in a supercritical state. Method of extracting low molecular weight components from fluoropolymer (P), (γ) A solution of fluoropolymer (P) is put into a poor solvent, and fluoropolymer (P) having a molecular weight of 1,000 or more is precipitated and does not precipitate Examples thereof include a method for removing a low molecular weight component and (δ) a method for removing a low molecular weight component using gel permeation chromatography. Among these, the method (α) is preferable from the viewpoint of simplicity of the operation method and ease of scale-up, and it is more preferable to carry out the method (β) after the method (α).
 方法(α)における減圧条件としては、1~100hPaが好ましく、1~20hPaがより好ましく、1~10hPaが最も好ましい。圧力が下限値以上であれば、装置サイズが大きくなっても減圧が容易である。圧力が上限値以下であれば、低分子量成分の除去効率が向上する。
 方法(α)における加熱の温度は、100~150℃が好ましく、120~150℃がより好ましい。温度が下限値以上であれば、低分子量成分をより短時間で除去でき、除去効率も向上する。温度が上限値以下であれば、加熱中に部分的にゲル化反応が生じることを抑制しやすい。
The reduced pressure condition in the method (α) is preferably 1 to 100 hPa, more preferably 1 to 20 hPa, and most preferably 1 to 10 hPa. If the pressure is equal to or higher than the lower limit, the pressure can be reduced easily even if the apparatus size is increased. If the pressure is not more than the upper limit value, the removal efficiency of the low molecular weight component is improved.
The heating temperature in the method (α) is preferably from 100 to 150 ° C, more preferably from 120 to 150 ° C. When the temperature is at least the lower limit, the low molecular weight component can be removed in a shorter time, and the removal efficiency is improved. If temperature is below an upper limit, it will be easy to suppress that gelation reaction arises partially during heating.
 方法(β)は、フルオロポリマー(P)を超臨界状態にある抽出溶媒と接触させた後に、フルオロポリマー(P)と抽出溶媒を分離することで、フルオロポリマー(P)に含まれている低分子量成分を除去する方法である。
 抽出溶媒は、前記低分子量成分を溶解して、該低分子量成分をフルオロポリマー(P)から分離できる媒体である。抽出溶媒としては、使用する抽出溶媒の臨界温度以上130℃未満の温度範囲で、且つ、該抽出溶媒の臨界圧力以上の圧力の条件下で、低分子量成分を抽出できるものであれば特に限定されない。
 抽出溶媒としては、たとえば、二酸化炭素;フルオロホルム(CFH;R23)、ペルフルオロエタン(C;R116)等の炭素数1~3のフルオロカーボン等が挙げられる。なかでも、容易に超臨界状態にすることができ、抽出効率に優れる点で、二酸化炭素、フルオロホルム、ペルフルオロエタンが好ましく、二酸化炭素がより好ましい。
 抽出溶媒は、1種のみを単独で使用してもよく、2種以上を併用してもよい。
In the method (β), the fluoropolymer (P) is brought into contact with the extraction solvent in a supercritical state, and then the fluoropolymer (P) and the extraction solvent are separated, whereby the low content contained in the fluoropolymer (P) is obtained. This is a method for removing molecular weight components.
The extraction solvent is a medium that can dissolve the low molecular weight component and separate the low molecular weight component from the fluoropolymer (P). The extraction solvent is not particularly limited as long as it can extract a low molecular weight component in a temperature range of not less than the critical temperature of the extraction solvent to be used and less than 130 ° C. and under a pressure of not less than the critical pressure of the extraction solvent. .
Examples of the extraction solvent include carbon atoms; fluorocarbons having 1 to 3 carbon atoms such as fluoroform (CF 3 H; R23) and perfluoroethane (C 2 F 6 ; R116). Among these, carbon dioxide, fluoroform, and perfluoroethane are preferable, and carbon dioxide is more preferable in that it can be easily brought into a supercritical state and is excellent in extraction efficiency.
Only one type of extraction solvent may be used alone, or two or more types may be used in combination.
 方法(β)における抽出溶媒の温度は、使用する抽出溶媒の臨界温度以上130℃未満が好ましい。また、抽出溶媒の圧力は、該抽出溶媒の臨界圧力以上である。すなわち、方法(β)では、130℃未満の超臨界流体にした抽出溶媒をフルオロポリマー(P)に接触させる方法が好ましい。
 抽出溶媒の温度は、前記範囲内であれば使用する抽出溶媒に応じて適宜設定できる。抽出溶媒の温度の下限は臨界温度より0.1℃高い温度がより好ましい。抽出溶媒の温度の上限は、100℃がより好ましく、80℃がさらに好ましい。
 抽出溶媒の圧力は、前記範囲内であれば使用する抽出溶媒に応じて適宜設定できる。抽出溶媒の圧力の下限は、臨界圧力より10,000Pa高い圧力が好ましく、臨界圧力より70MPa高い圧力がより好ましい。
The temperature of the extraction solvent in the method (β) is preferably not less than the critical temperature of the extraction solvent to be used and less than 130 ° C. Further, the pressure of the extraction solvent is not less than the critical pressure of the extraction solvent. That is, the method (β) is preferably a method in which an extraction solvent made into a supercritical fluid of less than 130 ° C. is brought into contact with the fluoropolymer (P).
If it is in the said range, the temperature of an extraction solvent can be suitably set according to the extraction solvent to be used. The lower limit of the temperature of the extraction solvent is more preferably 0.1 ° C. higher than the critical temperature. The upper limit of the temperature of the extraction solvent is more preferably 100 ° C, and further preferably 80 ° C.
If the pressure of an extraction solvent is in the said range, it can set suitably according to the extraction solvent to be used. The lower limit of the extraction solvent pressure is preferably 10,000 Pa higher than the critical pressure, and more preferably 70 MPa higher than the critical pressure.
 方法(β)では、抽出溶媒の密度を高くすることにより、低分子量成分の抽出効率が向上する。これは、抽出溶媒の密度が高いほど、低分子量成分の抽出溶媒に対する溶解度が向上するためと考えられる。
 抽出時の抽出溶媒の密度、すなわち超臨界状態の抽出溶媒の密度は、0.2g/cm以上1.3g/cm以下が好ましい。
In the method (β), the extraction efficiency of the low molecular weight component is improved by increasing the density of the extraction solvent. This is considered to be because the solubility of the low molecular weight component in the extraction solvent increases as the density of the extraction solvent increases.
The density of the extraction solvent at the time of extraction, that is, the density of the extraction solvent in the supercritical state is preferably 0.2 g / cm 3 or more and 1.3 g / cm 3 or less.
 また、方法(β)では、抽出溶媒に、助溶媒としてハロゲン化炭化水素系溶媒または炭化水素系溶媒(以下、「エントレーナ」という。)を併用してもよい。エントレーナとしては、溶解性の点からハロゲン化炭化水素系溶媒が好ましい。
 ハロゲン化炭化水素系溶媒としては、CFCFCHCl、CFClCFCHClF、CFCFCHCl、CFC1CFCl、CCl、CFCHFCHFCFCF、CFCHOCFCFH等が挙げられる。
 炭化水素系溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、ジメチルエーテル等が挙げられる。
 エントレーナは、1種を単独で使用してよく、2種以上を併用してもよい。
 方法(β)は、超臨界状態にある抽出溶媒を用いて抽出を行うものであるので、低分子量体を効率的に低減でき、得られるフルオロポリマー(P)の分子量分布が狭分散となる。
In the method (β), a halogenated hydrocarbon solvent or a hydrocarbon solvent (hereinafter referred to as “entrainer”) may be used in combination with the extraction solvent as a cosolvent. The entrainer is preferably a halogenated hydrocarbon solvent from the viewpoint of solubility.
Examples of halogenated hydrocarbon solvents include CF 3 CF 2 CHCl 2 , CF 2 ClCF 2 CHClF, CF 3 CF 2 CHCl 2 , CFC 1 2 CF 2 Cl, CCl 4 , CF 3 CHFCHFCF 2 CF 3 , CF 3 CH 2 OCF 2 CF 2 H and the like.
Examples of the hydrocarbon solvent include methanol, ethanol, propanol, isopropanol, dimethyl ether and the like.
An entrainer may be used individually by 1 type and may use 2 or more types together.
In the method (β), since extraction is performed using an extraction solvent in a supercritical state, low molecular weight substances can be efficiently reduced, and the molecular weight distribution of the resulting fluoropolymer (P) becomes narrowly dispersed.
 方法(γ)は、フルオロポリマー(P)に貪溶媒を投入した後、上澄み液を分離することで、フルオロポリマー(P)に含まれている低分子量成分を除去する方法である。
 方法(γ)に使用する貧溶媒としては、メタノール、ヘキサン、ジエチルエーテル等が挙げられる。
The method (γ) is a method for removing low molecular weight components contained in the fluoropolymer (P) by adding a soot solvent to the fluoropolymer (P) and then separating the supernatant.
Examples of the poor solvent used in the method (γ) include methanol, hexane, diethyl ether and the like.
 本発明の架橋性フッ素ゴム組成物におけるフルオロポリマー(P)の含有量は、耐熱性および耐薬品性に優れた架橋ゴム物品が得られやすい点から、フッ素ゴムの100質量部に対して、1~50質量部が好ましく、2~45質量部がより好ましく、3~40質量部がさらに好ましい。フルオロポリマー(P)の含有量が下限値以上であれば、充分に架橋を形成しやすく、耐熱性に優れた架橋ゴム物品が得られやすくなる。フルオロポリマー(P)の含有量が上限値以下であれば、架橋ゴム物品中のフルオロポリマー(P)由来の不安定末端基(カルボキシル基等。)が存在しても該基による熱安定性の低下を抑制しやすい。 The content of the fluoropolymer (P) in the crosslinkable fluororubber composition of the present invention is 1 with respect to 100 parts by mass of the fluororubber because it is easy to obtain a crosslinked rubber article excellent in heat resistance and chemical resistance. Is preferably 50 parts by mass, more preferably 2 to 45 parts by mass, and still more preferably 3 to 40 parts by mass. If content of a fluoropolymer (P) is more than a lower limit, it will become easy to form bridge | crosslinking sufficiently and it will become easy to obtain the crosslinked rubber article excellent in heat resistance. If the content of the fluoropolymer (P) is not more than the upper limit, even if unstable terminal groups (carboxyl groups, etc.) derived from the fluoropolymer (P) in the crosslinked rubber article are present, the thermal stability due to the groups It is easy to suppress the decrease.
[フッ素ゴム]
 フッ素ゴムは、(1)有機過酸化物を使用して加熱によってラジカルを生成させて架橋する方法、または(2)放射線を照射してラジカルを生成させて架橋する方法により架橋できる。以下、方法(1)による架橋を有機過酸化物架橋、方法(2)による架橋を放射線架橋ということがある。
 フッ素ゴムのフッ素含有量は、40質量%以上が好ましく、50質量%以上がより好ましく、55質量%以上がさらに好ましい。フッ素含有量が下限値以上であれば、耐熱性、耐薬品性、電気絶縁性、耐スチーム性に優れた架橋ゴム物品が得られやすい。フッ素ゴムのフッ素含有量とは、フッ素ゴムの全質量に対する全フッ素原子を合計した質量の割合である。
[Fluoro rubber]
The fluororubber can be cross-linked by (1) a method in which an organic peroxide is used to generate radicals by heating and cross-linking, or (2) a method in which a radical is generated by irradiation with radiation to cross-link. Hereinafter, the crosslinking by the method (1) may be referred to as organic peroxide crosslinking, and the crosslinking by the method (2) may be referred to as radiation crosslinking.
The fluorine content of the fluororubber is preferably 40% by mass or more, more preferably 50% by mass or more, and further preferably 55% by mass or more. If the fluorine content is at least the lower limit, a crosslinked rubber article excellent in heat resistance, chemical resistance, electrical insulation and steam resistance can be easily obtained. The fluorine content of fluororubber is the ratio of the total mass of all fluorine atoms to the total mass of fluororubber.
 フッ素ゴムとしては、フッ化ビニリデン/ヘキサフルオロプロピレン系共重合体、フッ化ビニリデン/TFE/ヘキサフルオロプロピレン系共重合体、フッ化ビニリデン/CTFE系共重合体、TFE/プロピレン系共重合体、TFE/プロピレン/フッ化ビニリデン系共重合体、ヘキサフルオロプロピレン/エチレン系共重合体、TFE/ペルフルオロアルキルビニルエーテル系共重合体、フッ化ビニリデン/TFE/ペルフルオロアルキルビニルエーテル系共重合体等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。
 フッ素ゴムとしては、耐薬品性に優れる点から、TFE/プロピレン系共重合体、フッ化ビニリデン/TFE/ヘキサフルオロプロピレン系共重合体、およびTFE/ペルフルオロアルキルビニルエーテル系共重合体からなる群から選ばれる1種以上が好ましい。
Fluororubber includes vinylidene fluoride / hexafluoropropylene copolymer, vinylidene fluoride / TFE / hexafluoropropylene copolymer, vinylidene fluoride / CTFE copolymer, TFE / propylene copolymer, TFE. / Propylene / vinylidene fluoride copolymer, hexafluoropropylene / ethylene copolymer, TFE / perfluoroalkyl vinyl ether copolymer, vinylidene fluoride / TFE / perfluoroalkyl vinyl ether copolymer, and the like. These may be used alone or in combination of two or more.
The fluororubber is selected from the group consisting of a TFE / propylene copolymer, a vinylidene fluoride / TFE / hexafluoropropylene copolymer, and a TFE / perfluoroalkyl vinyl ether copolymer because of its excellent chemical resistance. One or more selected from the above are preferred.
 フッ素ゴムは、耐熱性に優れる点から、モノマーが有する水素原子が全てフッ素原子に置換されたペルフルオロモノマーを重合して得られるペルフルオロエラストマーが特に好ましい。
 ペルフルオロエラストマーとしては、TFEに由来する繰り返し単位と、CF=CF-O-RF2(ただし、式中、RF2は炭素数1~20のペルフルオロアルキル基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数1~20のペルフルオロアルキル基である。以下、「ペルフルオロモノマー(x)」という。)に由来する繰り返し単位とを有するエラストマー(以下、「エラストマー(X)」という。)が好ましい。
 エラストマー(X)においては、ペルフルオロモノマー(x)に由来する繰り返し単位は、1種のみであってもよく、2種以上であってもよい。
From the viewpoint of excellent heat resistance, the fluororubber is particularly preferably a perfluoroelastomer obtained by polymerizing a perfluoromonomer in which all of the hydrogen atoms of the monomer are substituted with fluorine atoms.
The perfluoroelastomer includes a repeating unit derived from TFE and CF 2 ═CF—O—R F2 (wherein R F2 is a perfluoroalkyl group having 1 to 20 carbon atoms, or an ether between carbon atoms and carbon atoms). An elastomer having a repeating unit derived from a perfluoroalkyl group having 1 or more carbon atoms and having 1 or more carbon atoms and having 1 to 20 carbon atoms (hereinafter referred to as “perfluoromonomer (x)”) (hereinafter referred to as “elastomer (X)”). Is preferred).
In elastomer (X), the repeating unit derived from perfluoromonomer (x) may be only 1 type, and 2 or more types may be sufficient as it.
 ペルフルオロモノマー(x)におけるRF2のペルフルオロアルキル基の炭素数は、1~8が好ましい。RF2のペルフルオロアルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。
 ペルフルオロモノマー(x)としては、CF=CF-O-CF、CF=CF-O-CFCF、CF=CF-O-CFCFCF、CF=CF-O-CFCF(CF)OCFCFCF、CF=CF-O-CFCF-O-CFCFが好ましく、CF=CF-O-CFがより好ましい。
The carbon number of the perfluoroalkyl group of R F2 in the perfluoromonomer (x) is preferably 1-8. The perfluoroalkyl group for R F2 may be linear or branched.
As the perfluoromonomer (x), CF 2 ═CF—O—CF 3 , CF 2 ═CF—O—CF 2 CF 3 , CF 2 ═CF—O—CF 2 CF 2 CF 3 , CF 2 ═CF—O —CF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 , CF 2 ═CF—O—CF 2 CF 2 —O—CF 2 CF 3 is preferred, and CF 2 ═CF—O—CF 3 is more preferred.
 エラストマー(X)における共重合比率は、ゴム物性に優れる点から、TFEに由来する繰り返し単位/ペルフルオロモノマー(x)に基づく繰り返し単位=30/70~80/20(モル比)が好ましい。 The copolymerization ratio in the elastomer (X) is preferably a repeating unit derived from TFE / repeating unit based on perfluoromonomer (x) = 30/70 to 80/20 (molar ratio) from the viewpoint of excellent rubber properties.
 また、フッ素ゴムは、ペルフルオロエラストマーには限定されず、ペルフルオロモノマーを重合する際に、少量の水素原子を含む連鎖移動剤またはコモノマーを使用して得たエラストマーを使用してもよい。
 水素原子を含む連鎖移動剤としては、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、シクロヘキサン等の鎖状または環状の飽和炭化水素類;メタノール、エタノール、プロパノール等のアルコール類;t-ドデシルメルカプタン、n-ドデシルメルカプタン、n-オクタデシルメルカプタン等のメルカプタン類等が挙げられる。これら連鎖移動剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 水素原子を含むコモノマーとしては、CF=CF-O-CHCF、CF=CF-O-CHCFCFCF、CF=CF-O-CH(CFCFH、CF=CF-O-CFCFCH-I、CF=CF-O-CFCFCH-Br、CF=CF-O-CFCF(CF)-O-CFCFCH-I、CF=CF-O-CFCF(CF)-O-CFCFCH-Br等が挙げられる。これらコモノマーは、1種を単独で使用してもよく、2種以上を併用してもよい。
 前記連鎖移動剤およびコモノマーの少なくとも一方を使用した場合、エラストマー中の水素原子の含有量は、架橋ゴム物品の耐熱性、耐薬品性等の特性の点から、0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.1質量%以下が特に好ましい。
The fluororubber is not limited to a perfluoroelastomer, and an elastomer obtained by using a chain transfer agent or comonomer containing a small amount of hydrogen atoms may be used when polymerizing a perfluoromonomer.
Examples of the chain transfer agent containing a hydrogen atom include chain or cyclic saturated hydrocarbons such as methane, ethane, propane, butane, pentane, hexane, and cyclohexane; alcohols such as methanol, ethanol, and propanol; t-dodecyl mercaptan, and mercaptans such as n-dodecyl mercaptan and n-octadecyl mercaptan. These chain transfer agents may be used individually by 1 type, and may use 2 or more types together.
As a comonomer containing a hydrogen atom, CF 2 ═CF—O—CH 2 CF 3 , CF 2 ═CF—O—CH 2 CF 2 CF 2 CF 3 , CF 2 ═CF—O—CH 2 (CF 2 CF 2 ) 2 H, CF 2 ═CF—O—CF 2 CF 2 CH 2 —I, CF 2 ═CF—O—CF 2 CF 2 CH 2 —Br, CF 2 ═CF—O—CF 2 CF 2 (CF 3 ) —O—CF 2 CF 2 CH 2 —I, CF 2 ═CF—O—CF 2 CF 2 (CF 3 ) —O—CF 2 CF 2 CH 2 —Br, and the like. These comonomers may be used individually by 1 type, and may use 2 or more types together.
When at least one of the chain transfer agent and the comonomer is used, the content of hydrogen atoms in the elastomer is preferably 0.5% by mass or less from the viewpoint of characteristics such as heat resistance and chemical resistance of the crosslinked rubber article, 0.3 mass% or less is more preferable, and 0.1 mass% or less is especially preferable.
 また、フッ素ゴムとしては、特に有機過酸化物架橋の場合、ヨウ素原子および臭素原子の少なくとも一方を有するペルフルオロエラストマー(以下、「エラストマー(Y)」ということもある。)が好ましく、ヨウ素原子を有するペルフルオロエラストマーがより好ましい。ヨウ素原子および臭素原子の少なくとも一方を有するペルフルオロエラストマーとは、ペルフルオロエラストマーのフッ素原子の1個以上が、ヨウ素原子または臭素原子に置換されたエラストマーである。ヨウ素原子を有するペルフルオロエラストマーとは、ペルフルオロエラストマーのフッ素原子の1個以上がヨウ素原子に置換されたエラストマーである。 The fluororubber is preferably a perfluoroelastomer having at least one of an iodine atom and a bromine atom (hereinafter sometimes referred to as “elastomer (Y)”), particularly in the case of organic peroxide crosslinking, and has an iodine atom. Perfluoroelastomers are more preferred. The perfluoroelastomer having at least one of an iodine atom and a bromine atom is an elastomer in which one or more fluorine atoms of the perfluoroelastomer are substituted with iodine atoms or bromine atoms. The perfluoroelastomer having iodine atoms is an elastomer in which one or more fluorine atoms of the perfluoroelastomer are substituted with iodine atoms.
 エラストマー(Y)としては、たとえば、日本特開昭53-125491号公報、日本特公昭53-4115号公報、日本特開昭59-20310号公報に記載されたエラストマーが挙げられる。具体的には、TFEおよびペルフルオロモノマー(x)からなる群から選ばれる1種以上のペルフルオロモノマーに加えて、ヨウ素原子および臭素原子の少なくとも一方を有するモノマー(以下、「モノマー(y)」という。)を共重合して得たエラストマー;I-RF3-I(式中、RF3は炭素数1~8のペルフルオロアルキレン基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数1~8のペルフルオロアルキレン基である。)で表される化合物の存在下に、前記モノマーを共重合させて得たエラストマー等が挙げられる。 Examples of the elastomer (Y) include elastomers described in JP-A-53-125491, JP-B-53-4115, and JP-A-59-20310. Specifically, in addition to at least one perfluoromonomer selected from the group consisting of TFE and perfluoromonomer (x), a monomer having at least one of an iodine atom and a bromine atom (hereinafter referred to as “monomer (y)”). I—R F3 —I (wherein R F3 is a perfluoroalkylene group having 1 to 8 carbon atoms, or has at least one etheric oxygen atom between carbon atoms and carbon atoms). And an elastomer obtained by copolymerizing the monomer in the presence of a compound represented by the formula (1).
 モノマー(y)としては、CF=CF-Br、CH=CHCFCF-Br、CF=CF-O-CFCF-I、CF=CF-O-CFCF-Br、CF=CF-O-CFCFCH-I、CF=CF-O-CFCFCH-Br、CF=CF-O-CFCF(CF)-O-CFCFCH-I、CF=CF-O-CFCF(CF)-O-CFCFCH-Br等が挙げられる。 As the monomer (y), CF 2 ═CF—Br, CH 2 ═CHCF 2 CF 2 —Br, CF 2 ═CF—O—CF 2 CF 2 —I, CF 2 ═CF—O—CF 2 CF 2 — Br, CF 2 ═CF—O—CF 2 CF 2 CH 2 —I, CF 2 ═CF—O—CF 2 CF 2 CH 2 —Br, CF 2 ═CF—O—CF 2 CF 2 (CF 3 ) — O—CF 2 CF 2 CH 2 —I, CF 2 ═CF—O—CF 2 CF 2 (CF 3 ) —O—CF 2 CF 2 CH 2 —Br, and the like can be given.
 I-RF3-Iの具体例としては、ジヨードジフルオロメタン、1,2-ジヨードペルフルオロエタン、1,3-ジヨードペルフルオロプロパン、1,4-ジヨードペルフルオロブタン、1,5-ジヨードペルフルオロペンタン、1,6-ジヨードペルフルオロヘキサン、1,7-ジヨードペルフルオロヘプタン、1,8-ジヨードペルフルオロオクタン等が挙げられる。なかでも、1,4-ジヨードペルフルオロブタン、1,6-ジヨードペルフルオロヘキサンが好ましく、1,4-ジヨードペルフルオロブタンが特に好ましい。
 エラストマー(Y)中のヨウ素原子および臭素原子は、高分子末端に結合していることが好ましい。
Specific examples of IR F3- I include diiododifluoromethane, 1,2-diiodoperfluoroethane, 1,3-diiodoperfluoropropane, 1,4-diiodoperfluorobutane, 1,5-diiodo. Examples include perfluoropentane, 1,6-diiodoperfluorohexane, 1,7-diiodoperfluoroheptane, 1,8-diiodoperfluorooctane, and the like. Of these, 1,4-diiodoperfluorobutane and 1,6-diiodoperfluorohexane are preferred, and 1,4-diiodoperfluorobutane is particularly preferred.
The iodine atom and bromine atom in the elastomer (Y) are preferably bonded to the polymer terminal.
 エラストマー(Y)中のヨウ素原子および臭素原子の合計の含有量は、ゴム物性と圧縮永久歪みに優れた架橋ゴム物品が得られやすい点から、0.1~1.5質量%が好ましく、0.2~1.0質量%がより好ましく、0.25~1.0質量%が特に好ましい。 The total content of iodine atoms and bromine atoms in the elastomer (Y) is preferably 0.1 to 1.5% by mass from the viewpoint of easily obtaining a crosslinked rubber article excellent in rubber physical properties and compression set. More preferably, the content is 0.2 to 1.0% by mass, and particularly preferably 0.25 to 1.0% by mass.
 上市されているフッ素ゴムのうち好ましいものとしては、商品名「AFLAS PFE-1100」(旭硝子社製、TFE/ペルフルオロアルキルビニルエーテル共重合体)、商品名「AFLAS 100S」(旭硝子社製、TFE/プロピレン共重合体)、商品名「AFLAS 200P」(旭硝子社製、TFE/プロピレン/フッ化ビニリデン共重合体)等の有機過酸化物架橋が可能なフッ素ゴムが挙げられる。 Among the commercially available fluoro rubbers, preferred are the trade name “AFLAS PFE-1100” (manufactured by Asahi Glass Co., Ltd., TFE / perfluoroalkyl vinyl ether copolymer), and the trade name “AFLAS 100S” (manufactured by Asahi Glass Co., Ltd., TFE / propylene). Copolymer) and trade name “AFLAS 200P” (Asahi Glass Co., Ltd., TFE / propylene / vinylidene fluoride copolymer) and the like, which can be crosslinked with organic peroxides.
[有機過酸化物]
 有機過酸化物架橋により本発明の架橋性フッ素ゴム組成物を硬化させる場合、本発明の架橋性フッ素ゴム組成物には有機過酸化物を含有させることが好ましい。架橋性フッ素ゴム組成物を放射線架橋で硬化させる場合は、有機過酸化物は特に含有させる必要はない。
 有機過酸化物は、加熱によって容易にラジカルを発生するものであればよく、半減期が1分となる温度が130~220℃であるものが好ましい。具体的には、1,1-ジ(t-ヘキシルパーオキシ)-3,5,5-トリメチルシクロへキサン、2,5-ジメチルへキサン-2,5-ジヒドロパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、ジクミルパーオキシド、α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-へキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-へキシン-3、ジベンゾイルパーオキシド、t-ブチルパーオキシベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)へキサン、t-ブチルパーオキシマレイン酸、t-ヘキシルパーオキシイソプロピルモノカーボネート等が挙げられる。なかでも、α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼンが特に好ましい。
 有機過酸化物は、1種を単独で使用してもよく、2種以上を併用してもよい。
[Organic peroxide]
When the crosslinkable fluororubber composition of the present invention is cured by organic peroxide crosslinking, the crosslinkable fluororubber composition of the present invention preferably contains an organic peroxide. When the crosslinkable fluororubber composition is cured by radiation crosslinking, it is not necessary to contain an organic peroxide.
The organic peroxide is not particularly limited as long as it can easily generate radicals by heating, and preferably has a half-life of 1 minute at 130 to 220 ° C. Specifically, 1,1-di (t-hexylperoxy) -3,5,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butyl Peroxide, t-butylcumyl peroxide, dicumyl peroxide, α, α'-bis (t-butylperoxy) -p-diisopropylbenzene, 2,5-dimethyl-2,5-di (t-butylperoxide Oxy) -hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexyne-3, dibenzoyl peroxide, t-butylperoxybenzene, 2,5-dimethyl-2, Examples include 5-di (benzoylperoxy) hexane, t-butylperoxymaleic acid, t-hexylperoxyisopropyl monocarbonate, and the like. Of these, α, α′-bis (t-butylperoxy) -p-diisopropylbenzene is particularly preferable.
An organic peroxide may be used individually by 1 type, and may use 2 or more types together.
 本発明の架橋性フッ素ゴム組成物が有機過酸化物を含有する場合、有機過酸化物の含有量は、フッ素ゴム100質量部に対して、0.1~5質量部が好ましく、0.2~4質量部がより好ましく、0.5~3質量部がさらに好ましい。有機過酸化物の含有量が下限値以上であれば、架橋効率が向上する。有機過酸化物の含有量が上限値以下であれば、ラジカル反応に寄与しない無効分解物の生成量を抑制しやすい。 When the crosslinkable fluororubber composition of the present invention contains an organic peroxide, the content of the organic peroxide is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the fluororubber, 0.2 -4 parts by mass is more preferable, and 0.5-3 parts by mass is more preferable. If content of an organic peroxide is more than a lower limit, crosslinking efficiency will improve. If the content of the organic peroxide is not more than the upper limit value, it is easy to suppress the amount of inactive decomposition products that do not contribute to the radical reaction.
[その他の成分]
 本発明の架橋性フッ素ゴム組成物は、架橋反応が促進される点から、受酸剤を含有することが好ましい。
 受酸剤としては、酸化マグネシウム、酸化亜鉛、水酸化カルシウム、酸化カルシウム、酸化鉛、二塩基性亜リン酸鉛、ハイドロタルサイト等が挙げられる。なかでも、酸化マグネシウム、酸化亜鉛が好ましい。受酸剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 本発明の架橋性ゴム組成物が受酸剤を含有する場合、受酸剤の含有量は、フッ素ゴム100質量部に対して、0.1~20質量部が好ましく、0.2~10質量部がより好ましい。受酸剤の含有量が下限値以上であれば、受酸剤による効果が得られやすい。受酸剤の含有量が上限値以下であれば、架橋ゴム物品のゴム物性が損なわれることを抑制しやすい。
[Other ingredients]
The crosslinkable fluororubber composition of the present invention preferably contains an acid acceptor from the viewpoint of promoting the crosslinking reaction.
Examples of the acid acceptor include magnesium oxide, zinc oxide, calcium hydroxide, calcium oxide, lead oxide, dibasic lead phosphite, and hydrotalcite. Of these, magnesium oxide and zinc oxide are preferable. An acid acceptor may be used individually by 1 type, and may use 2 or more types together.
When the crosslinkable rubber composition of the present invention contains an acid acceptor, the content of the acid acceptor is preferably 0.1 to 20 parts by mass, and 0.2 to 10 parts by mass with respect to 100 parts by mass of the fluororubber. Part is more preferred. If content of an acid acceptor is more than a lower limit, the effect by an acid acceptor will be easy to be acquired. If content of an acid acceptor is below an upper limit, it will be easy to suppress that the rubber physical property of a crosslinked rubber article is impaired.
 本発明の架橋性フッ素ゴム組成物は、得られる架橋ゴム物品の強度が向上する点から、充填剤を含有することが好ましい。充填剤としては、カーボンブラックが好ましい。
 カーボンブラックとしては、ゴムの配合用として使用されているものであれば特に限定されない。具体例としては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイト等が挙げられる。なかでも、ファーネスブラックがより好ましい。
 カーボンブラックのグレードとしては、HAF-LS、HAF、HAF-HS、FEF、GPF、APF、SRF-LM、SRF-HM、MTが好ましく、MTが特に好ましい。
The crosslinkable fluororubber composition of the present invention preferably contains a filler from the viewpoint of improving the strength of the resulting crosslinked rubber article. As the filler, carbon black is preferable.
Carbon black is not particularly limited as long as it is used for blending rubber. Specific examples include furnace black, acetylene black, thermal black, channel black, and graphite. Of these, furnace black is more preferable.
As the grade of carbon black, HAF-LS, HAF, HAF-HS, FEF, GPF, APF, SRF-LM, SRF-HM and MT are preferable, and MT is particularly preferable.
 本発明の架橋性フッ素ゴム組成物が充填剤を含有する場合、充填剤の含有量は、フッ素ゴム100質量部に対して、5~100質量部が好ましく、10~50質量部がより好ましい。充填剤の含有量が下限値以上であれば、充填材による効果が得られやすい。充填剤の含有量が上限値以下であれば、架橋ゴム物品の伸び特性が低下することを抑制しやすい。また、充填剤の含有量が前記範囲内であれば、得られる架橋ゴム物品の強度と伸びのバランスがより良好になる。 When the crosslinkable fluororubber composition of the present invention contains a filler, the content of the filler is preferably 5 to 100 parts by mass and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the fluororubber. If the content of the filler is equal to or higher than the lower limit value, the effect of the filler is easily obtained. If content of a filler is below an upper limit, it will be easy to suppress that the elongation characteristic of crosslinked rubber articles falls. Moreover, if content of a filler exists in the said range, the balance of the intensity | strength and elongation of the crosslinked rubber article obtained will become more favorable.
 また、本発明の架橋性フッ素ゴム組成物は、補強材、加工助剤、滑剤、潤滑剤、難燃剤、帯電防止剤、着色剤、紫外線吸収剤等の添加剤を含有してもよい。
 補強材としては、ポリテトラフルオロエチレン、エチレン/TFE共重合体等のフッ素樹脂、ガラス繊維、炭素繊維、ホワイトカーボン等が挙げられる。
 本発明の架橋性フッ素ゴム組成物が補強材を含有する場合、補強材の含有量は、フッ素ゴム100質量部に対して、5~200質量部が好ましく、10~100質量部がより好ましい。
Moreover, the crosslinkable fluororubber composition of the present invention may contain additives such as a reinforcing material, a processing aid, a lubricant, a lubricant, a flame retardant, an antistatic agent, a colorant, and an ultraviolet absorber.
Examples of the reinforcing material include fluororesins such as polytetrafluoroethylene and ethylene / TFE copolymer, glass fibers, carbon fibers, and white carbon.
When the crosslinkable fluororubber composition of the present invention contains a reinforcing material, the content of the reinforcing material is preferably 5 to 200 parts by mass and more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the fluororubber.
 加工助剤としては、高級脂肪酸のアルカリ金属塩等が挙げられる。なかでも、ステアリン酸塩、ラウリン酸塩が好ましい。
 本発明の架橋性フッ素ゴム組成物が加工助剤を含有する場合、加工助剤の含有量は、フッ素ゴム100質量部に対して、0.1~20質量部が好ましく、0.2~10質量部がより好ましく、1~5質量部がさらに好ましい。加工助剤が下限値以上であれば、架橋ゴム物品の引張強度が著しく低下したり、熱老化後の伸びや引張強度の変化が大きくなることを抑制しやすい。加工助剤の含有量が上限値以下であれば、架橋ゴム物品の表面にブルームが生じたり、架橋ゴム物品の硬度が高くなりすぎたり、耐薬品性、耐スチーム性が低下したりすることを抑制しやすい。
Examples of the processing aid include alkali metal salts of higher fatty acids. Of these, stearates and laurates are preferable.
When the crosslinkable fluororubber composition of the present invention contains a processing aid, the content of the processing aid is preferably 0.1 to 20 parts by mass, and 0.2 to 10 parts per 100 parts by mass of the fluororubber. Mass parts are more preferred, and 1 to 5 parts by mass are even more preferred. If the processing aid is at least the lower limit value, it is easy to suppress the tensile strength of the crosslinked rubber article from being significantly lowered, or to increase the elongation and the change in tensile strength after heat aging. If the content of the processing aid is not more than the upper limit, bloom may occur on the surface of the crosslinked rubber article, the hardness of the crosslinked rubber article may be too high, or chemical resistance and steam resistance may be reduced. Easy to suppress.
[架橋性フッ素ゴム組成物の製造方法]
 本発明の架橋性フッ素ゴム組成物の製造方法は特に限定されず、従来公知の方法を採用できる。なかでも、フッ素ゴム、フルオロポリマー(P)、および必要に応じて使用する有機過酸化物、カーボンブラック、受酸剤、その他の添加剤等を、2本ロール、バンバリーミキサー、ニーダー等の混練機を用いて混練する方法が好ましい。また、前記各成分を溶剤に溶解、分散した状態で混練して調製する方法も採用できる。
[Method for producing crosslinkable fluororubber composition]
The method for producing the crosslinkable fluororubber composition of the present invention is not particularly limited, and a conventionally known method can be adopted. Among them, a kneading machine such as a two-roll, a Banbury mixer, a kneader or the like containing fluororubber, fluoropolymer (P), and organic peroxide, carbon black, acid acceptor, and other additives used as necessary. A method of kneading with the use of is preferred. Moreover, the method of knead | mixing in the state which melt | dissolved and disperse | distributed each said component in the solvent is also employable.
 前記各成分の混合の順序としては、まず、発熱によって反応や分解が起き難い成分をフッ素ゴムと充分に混錬した後に、反応しやすい成分あるいは分解しやすい成分を配合して混錬することが好ましい。
 たとえば、有機過酸化物を使用する場合、有機過酸化物は後から配合し混練することが好ましい。この場合、混練の際は、架橋反応が進行しないようにする点から、混練機を水冷して20~120℃の温度範囲に維持することが好ましい。
As the mixing order of the respective components, first, a component that is unlikely to react or decompose due to heat generation is sufficiently kneaded with fluororubber, and then a component that easily reacts or a component that easily decomposes is mixed and kneaded. preferable.
For example, when an organic peroxide is used, it is preferable to mix and knead the organic peroxide later. In this case, at the time of kneading, it is preferable to keep the kneader in a temperature range of 20 to 120 ° C. by cooling with water in order to prevent the crosslinking reaction from proceeding.
 以上説明した本発明の架橋性フッ素ゴム組成物は、耐薬品性に優れるフッ素ゴムを使用している。また、有機過酸化物架橋または放射線架橋によってラジカルを利用して架橋するので、フッ素ゴムが有する耐薬品性は低下せず、優れた耐薬品性を有する架橋ゴム物品が得られる。また、架橋助剤としてフルオロポリマー(P)を使用して充分な架橋を形成できるため、優れた耐熱性も達成される。よって、本発明の架橋性フッ素ゴム組成物を使用すれば、優れた耐薬品性と耐熱性を兼ね備えた架橋ゴム物品が得られる。 The crosslinkable fluororubber composition of the present invention described above uses a fluororubber having excellent chemical resistance. Moreover, since radicals are used for crosslinking by organic peroxide crosslinking or radiation crosslinking, the chemical resistance of fluororubber is not lowered, and a crosslinked rubber article having excellent chemical resistance can be obtained. Moreover, since sufficient crosslinking can be formed by using the fluoropolymer (P) as a crosslinking aid, excellent heat resistance is also achieved. Therefore, if the crosslinkable fluororubber composition of the present invention is used, a crosslinked rubber article having excellent chemical resistance and heat resistance can be obtained.
<架橋ゴム物品>
 本発明の架橋ゴム物品は、前述した本発明の架橋性フッ素ゴム組成物を架橋してなる物品である。
 本発明の架橋ゴム物品は、自動車等の輸送機械、一般機器、電気機器、化学装置工業、半導体等の幅広い分野において、Oリング、シート、ガスケット、オイルシール、ベアリングシール等のシール材、ダイヤフラム、緩衝材、防振材、電線被覆材、工業ベルト類、チューブ・ホース類、シート類等の各部材として好適に使用できる。なかでも、高温での耐薬品に優れ、さらには、強度、硬度、モジュラス、耐熱老化性等の基本特性にも優れている点から、シール材であることが好ましく、石油掘削用のシール材であることがより好ましい。
<Crosslinked rubber article>
The crosslinked rubber article of the present invention is an article formed by crosslinking the aforementioned crosslinkable fluororubber composition of the present invention.
The crosslinked rubber article of the present invention can be used in a wide range of transport machines such as automobiles, general equipment, electrical equipment, chemical equipment industry, semiconductors, O-rings, seats, gaskets, oil seals, bearing seals and other sealing materials, diaphragms, It can be suitably used as each member such as a cushioning material, an anti-vibration material, a wire coating material, an industrial belt, a tube / hose, a sheet and the like. Among them, a sealing material is preferable because it is excellent in chemical resistance at high temperatures and also has excellent basic properties such as strength, hardness, modulus, and heat aging resistance. More preferably.
[架橋ゴム物品の製造方法]
 本発明の架橋ゴム物品は、本発明の架橋性フッ素ゴム組成物を使用し、有機過酸化物架橋または放射線架橋により硬化させて成形することで得られる。
 本発明の架橋性フッ素ゴム組成物の成形は、有機過酸化物架橋および放射線架橋のいずれの場合も、押出成形、射出成形、トランスファー成形、プレス成形等の従来公知の成形方法を採用できる。
[Method for producing crosslinked rubber article]
The crosslinked rubber article of the present invention is obtained by using the crosslinkable fluororubber composition of the present invention and curing and molding by organic peroxide crosslinking or radiation crosslinking.
For the molding of the crosslinkable fluororubber composition of the present invention, a conventionally known molding method such as extrusion molding, injection molding, transfer molding, press molding or the like can be adopted for both organic peroxide crosslinking and radiation crosslinking.
 有機過酸化物架橋により架橋ゴム物品を得る方法の具体例としては、たとえば、架橋ゴム物品1個分または数個分の形状に相補的な形状のキャビティを有する金型を使用し、該キャビティに有機過酸化物を含有する架橋性フッ素ゴム組成物を充填し、金型を加熱して硬化させる方法が挙げられる。
 加熱温度は、130~220℃が好ましく、140~200℃がより好ましく、150~200℃が特に好ましい。
As a specific example of a method for obtaining a crosslinked rubber article by organic peroxide crosslinking, for example, a mold having a cavity complementary to the shape of one or several crosslinked rubber articles is used, and the cavity is provided in the cavity. Examples thereof include a method of filling a crosslinkable fluororubber composition containing an organic peroxide and curing the mold by heating.
The heating temperature is preferably 130 to 220 ° C, more preferably 140 to 200 ° C, and particularly preferably 150 to 200 ° C.
 また、前記条件で加熱して架橋した架橋ゴム物品(一次架橋物)を、必要に応じて電気、熱風、蒸気等を熱源とするオーブン等でさらに加熱して架橋を進行させる(以下、「二次架橋」という。)ことも好ましい。二次架橋を行うことにより、架橋ゴム物品に含有される有機過酸化物の残渣が分解、揮散し、その量が低減される。
 二次架橋時の加熱温度としては、150~280℃が好ましく、180℃~260℃がより好ましく、200~250℃がさらに好ましい。
 二次架橋における加熱時間は、1~48時間が好ましく、2~24時間がより好ましい。
Further, the crosslinked rubber article (primary crosslinked product) heated and crosslinked under the above-described conditions is further heated in an oven or the like using electricity, hot air, steam or the like as a heat source as necessary to allow the crosslinking to proceed (hereinafter referred to as “2” It is also preferred to be referred to as “secondary crosslinking”. By performing secondary crosslinking, the residue of the organic peroxide contained in the crosslinked rubber article is decomposed and volatilized, and the amount thereof is reduced.
The heating temperature during secondary crosslinking is preferably 150 to 280 ° C, more preferably 180 ° C to 260 ° C, and further preferably 200 to 250 ° C.
The heating time in the secondary crosslinking is preferably 1 to 48 hours, more preferably 2 to 24 hours.
 放射線架橋により架橋ゴム物品を得る方法の具体例としては、たとえば、本発明の架橋性フッ素ゴム組成物を適当な溶媒中に溶解、分散して懸濁溶液とし、これを塗布等により成形し、乾燥させた後に、放射線を照射して硬化させる方法が挙げられる。
 放射線としては、電子線、γ線等の電離性放射線が挙げられる。
 電離性放射線の照射量は、1~300kGyが好ましく、10~200kGyがより好ましい。
As a specific example of a method for obtaining a crosslinked rubber article by radiation crosslinking, for example, the crosslinkable fluororubber composition of the present invention is dissolved and dispersed in an appropriate solvent to form a suspension solution, which is formed by coating or the like, A method of curing by irradiating with radiation after drying is mentioned.
Examples of the radiation include ionizing radiation such as electron beams and γ rays.
The dose of ionizing radiation is preferably 1 to 300 kGy, more preferably 10 to 200 kGy.
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。
[GPC分析]
 本実施例で得られたフルオロポリマー(P)のMnおよびMwは、日本特開2001-208736号公報に記載の方法に従い、下記の条件にてGPCにより測定した。
 移動相:旭硝子社製、アサヒクリンAK-225SECグレード1(ジクロロペンタフルオロプロパンとヘキサフルオロイソプロピルアルコールとの混合溶媒(ジクロロペンタフルオロプロパン/ヘキサフルオロイソプロピルアルコール=99/1(体積比)))。
 分析カラム:PLgel MIXED-Eカラム(ポリマーラボラトリーズ社製)を2本直列に連結したもの。
 分子量測定用標準試料:PMMA(ポリメチルメタクリレート)。
 移動相流速:1.0mL/分。
 カラム温度:37℃。
 検出器:蒸発光散乱検出器。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description.
[GPC analysis]
Mn and Mw of the fluoropolymer (P) obtained in this example were measured by GPC according to the method described in Japanese Patent Application Laid-Open No. 2001-208736 under the following conditions.
Mobile phase: Asahi Clin AK-225 SEC Grade 1 (mixed solvent of dichloropentafluoropropane and hexafluoroisopropyl alcohol (dichloropentafluoropropane / hexafluoroisopropyl alcohol = 99/1 (volume ratio)) manufactured by Asahi Glass Co., Ltd.).
Analytical column: Two PLgel MIXED-E columns (manufactured by Polymer Laboratories) connected in series.
Standard sample for molecular weight measurement: PMMA (polymethyl methacrylate).
Mobile phase flow rate: 1.0 mL / min.
Column temperature: 37 ° C.
Detector: Evaporative light scattering detector.
[使用原料]
 本実施例で使用した成分は、以下の通りである。
(1)フッ素ゴム
 フッ素ゴム(Y1):TFE/ペルフルオロアルキルビニルエーテル系共重合体のエラストマー(過酸化物架橋タイプ)である商品名「AFLAS PFE-1100」(旭硝子社製、フッ素含有量:72質量%)。
[Raw materials]
The components used in this example are as follows.
(1) Fluoro rubber Fluoro rubber (Y1): TFE / perfluoroalkyl vinyl ether copolymer elastomer (peroxide crosslinking type), trade name “AFLAS PFE-1100” (Asahi Glass Co., Ltd., fluorine content: 72 mass) %).
(2)架橋助剤
 フルオロポリマー(P1):
 内容積が1L(リットル)の撹拌機付きステンレス製オートクレーブを脱気した後、該オートクレーブに、フルオロモノエン(a)であるTFEの17g、フルオロジエン(b)であるペルフルオロブチレンジビニルエーテル(以下、「C4DVE」という。)の76g、SOClの3.0g、AK225cb(旭硝子社製)の725g、および重合開始剤である(CCOO)の6.8gを含有するAK225cb溶液の227gを圧入し、撹拌しながらオートクレーブ内を40℃に昇温した。その後、TFEの追加仕込み量が29g、C4DVEの追加仕込み量が44gとなるように、圧力を0.2MPaに保ちながらTFEおよびC4DVEを逐次添加して4時間重合反応を行った。その後、室温まで冷却し、未反応のTFEをパージした後、内容物を内容積が2Lのガラスビーカーに取り出した。
 次に、撹拌しながらメタノールの500gを投入して、生成したフルオロポリマーを析出させ、上澄みを除去することで低分子量成分を除去し、AK225cbに再溶解し、フルオロポリマー溶液1を得た。ついで、フルオロポリマー溶液1を水洗して下層を分離して、細孔径1μmのPTFE(ポリテトラフルオロエチレン)製メンブランフィルターを用いてろ過することで、ほぼ透明なフルオロポリマー溶液2を得た。次に、エバポレーターを用いて該フルオロポリマー溶液2から溶媒を留去した後、100℃で2時間真空乾燥することにより、無色透明な高粘度液状のフルオロポリマー(P1)の52gを得た。
 得られたフルオロポリマー(P1)の平均分子量をGPCにより測定したところ、Mwが22,800、Mnが7,300であった。
 また、19F-NMRによりフルオロポリマー(P1)の組成および重合性二重結合の含有量を測定したところ、TFEに由来する繰り返し単位とC4DVEに由来する繰り返し単位のモル比は69/31であり、重合性二重結合の含有量は1.18mmol/gであった。
フルオロポリマー(P2):
 内容積が500mLの撹拌機と冷却器が付いたガラス製フラスコに、C4DVEの497g、I(CFIの2.5g、および重合開始剤であるV-601(和光純薬工業製)の0.7gを加え、溶液を10分間窒素バブリングし、撹拌しながらフラスコ内が70℃になるよう水浴で昇温した。内温を70℃に保持しながら25時間重合反応を行った。その後、室温まで冷却し、内容物をC13Hに溶かして内容積が2Lのガラスビーカーに取り出した。
 次に、撹拌しながらメタノールの374gを投入して、生成したフルオロポリマーを析出させ、上澄みを除去することで低分子量成分を除去した。50℃で12時間真空乾燥することにより、無色透明な高粘度液状のフルオロポリマー(P2)の124gを得た。
 得られたフルオロポリマー(P2)の平均分子量をGPCにより測定したところ、Mwが25,700、Mnが6,800であった。
 また、19F-NMRによりフルオロポリマー(P2)の重合性二重結合の含有量を測定したところ、重合性二重結合の含有量は2.68mmol/gであった。
(2) Crosslinking aid Fluoropolymer (P1):
After degassing a stainless steel autoclave with a stirrer with an internal volume of 1 L (liter), 17 g of TFE as fluoromonoene (a) and perfluorobutylene divinyl ether (hereinafter referred to as “fluorodiene (b)”) were added to the autoclave. Of AK225cb solution containing 76 g of C4DVE), 3.0 g of SO 2 Cl 2 , 725 g of AK225cb (Asahi Glass Co., Ltd.) and 6.8 g of (C 3 F 7 COO) 2 which is a polymerization initiator. 227 g was injected, and the temperature inside the autoclave was raised to 40 ° C. while stirring. Thereafter, TFE and C4DVE were successively added while performing the polymerization reaction for 4 hours while maintaining the pressure at 0.2 MPa so that the additional amount of TFE was 29 g and the additional amount of C4DVE was 44 g. Then, after cooling to room temperature and purging unreacted TFE, the contents were taken out into a glass beaker having an internal volume of 2 L.
Next, 500 g of methanol was added while stirring to precipitate the produced fluoropolymer, the low molecular weight component was removed by removing the supernatant, and redissolved in AK225cb to obtain a fluoropolymer solution 1. Next, the fluoropolymer solution 1 was washed with water, the lower layer was separated, and filtered using a PTFE (polytetrafluoroethylene) membrane filter having a pore diameter of 1 μm, thereby obtaining a substantially transparent fluoropolymer solution 2. Next, after distilling off the solvent from the fluoropolymer solution 2 using an evaporator, it was vacuum-dried at 100 ° C. for 2 hours to obtain 52 g of a colorless and transparent highly viscous liquid fluoropolymer (P1).
When the average molecular weight of the obtained fluoropolymer (P1) was measured by GPC, Mw was 22,800 and Mn was 7,300.
Further, when the composition of the fluoropolymer (P1) and the content of the polymerizable double bond were measured by 19 F-NMR, the molar ratio of the repeating unit derived from TFE to the repeating unit derived from C4DVE was 69/31. The content of the polymerizable double bond was 1.18 mmol / g.
Fluoropolymer (P2):
In a glass flask equipped with a stirrer and a condenser having an internal volume of 500 mL, 497 g of C4DVE, 2.5 g of I (CF 2 ) 6 I, and V-601 (manufactured by Wako Pure Chemical Industries) as a polymerization initiator 0.7 g of the solution was added, the solution was bubbled with nitrogen for 10 minutes, and the temperature in the flask was increased to 70 ° C. with stirring. The polymerization reaction was carried out for 25 hours while maintaining the internal temperature at 70 ° C. After cooling to room temperature, the internal volume was taken out into a glass beaker 2L by dissolving contents in C 6 F 13 H.
Next, 374 g of methanol was added while stirring to precipitate the generated fluoropolymer, and the low molecular weight component was removed by removing the supernatant. By vacuum drying at 50 ° C. for 12 hours, 124 g of a colorless transparent high-viscosity liquid fluoropolymer (P2) was obtained.
When the average molecular weight of the obtained fluoropolymer (P2) was measured by GPC, Mw was 25,700 and Mn was 6,800.
Further, the content of the polymerizable double bond of the fluoropolymer (P2) was measured by 19 F-NMR, whereby the content of the polymerizable double bond was 2.68 mmol / g.
 TAIC:トリアリルイソシアヌレート。 TAIC: triallyl isocyanurate.
(3)有機過酸化物
 パーブチルP:α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン(商品名「パーカドックス14」、日油社製)。
(3) Organic peroxide Perbutyl P: α, α′-bis (t-butylperoxy) -p-diisopropylbenzene (trade name “Perkadox 14”, manufactured by NOF Corporation).
(4)受酸剤
 キョーワマグ#150:酸化マグネシウム(協和化学工業社製)。
(5)充填剤
 MTカーボン:カーボンブラック(グレード:MTカーボン、CANCARB社製)。(6)加工助剤
 ノンサールSN-1:ステアリン酸ナトリウム(日油社製)。
(4) Acid acceptor Kyowamag # 150: Magnesium oxide (manufactured by Kyowa Chemical Industry Co., Ltd.).
(5) Filler MT carbon: carbon black (grade: MT carbon, manufactured by CANCARB). (6) Processing aid Nonsal SN-1: Sodium stearate (manufactured by NOF Corporation).
[例1]
 含フッ素ゴム(Y1)の100質量部、パーヘキサ25B(日本油脂社製)の1質量部、フルオロポリマー(P1)の33.8質量部、MTカーボンの10質量部、キョーワマグ#150の3質量部を二軸ロールによって混練し、架橋性フッ素ゴム組成物(i)を得た。得られた架橋性フッ素ゴム組成物(i)を、170℃の熱プレス20分で縦100mm×横100mm×厚み2mmのシート状に成形した(一次架橋)。得られたシートを、さらに250℃のギアオーブンに2時間入れ、二次架橋し、シート材を得た。
 得られたシート材から第3号ダンベルで試料を打ち抜いて、硬度(HS)、引張り強度(TB)、伸び(EB)、および100%引張応力(M100)を測定して常態物性評価をし、さらにギアオーブンで250℃、70時間熱処理した後の硬度(HS)、引張り強度(TB)、および伸び(EB)を測定して耐熱老化性を評価した。
[Example 1]
100 parts by mass of fluorine-containing rubber (Y1), 1 part by mass of Perhexa 25B (manufactured by NOF Corporation), 33.8 parts by mass of fluoropolymer (P1), 10 parts by mass of MT carbon, 3 parts by mass of Kyowamag # 150 Were kneaded with a biaxial roll to obtain a crosslinkable fluororubber composition (i). The obtained crosslinkable fluororubber composition (i) was molded into a sheet shape having a length of 100 mm × width of 100 mm × thickness of 2 mm in a hot press at 170 ° C. for 20 minutes (primary crosslinking). The obtained sheet was further placed in a gear oven at 250 ° C. for 2 hours and subjected to secondary crosslinking to obtain a sheet material.
A sample was punched out from the obtained sheet material with a No. 3 dumbbell, and the physical properties were evaluated by measuring hardness (HS), tensile strength (TB), elongation (EB), and 100% tensile stress (M100). Further, the heat aging resistance was evaluated by measuring the hardness (HS), tensile strength (TB), and elongation (EB) after heat treatment in a gear oven at 250 ° C. for 70 hours.
[例2]
 架橋助剤として、フルオロポリマー(P1)の33.8質量部の代わりにTAICの5質量部を使用し、キョーワマグ#150を使用しない以外は、例1と同様にしてシート材を作製し、特性を測定した。
[Example 2]
A sheet material was prepared in the same manner as in Example 1 except that 5 parts by mass of TAIC was used instead of 33.8 parts by mass of fluoropolymer (P1) as a crosslinking aid, and Kyowamag # 150 was not used. Was measured.
[例3]
 架橋助剤として、フルオロポリマー(P1)の33.8質量部の代わりにTAICの5質量部を使用した以外は、例1と同様にしてシート材を作製し、特性を測定した。
[例4]
 架橋助剤として、フルオロポリマー(P1)の33.8質量部に代えて、フルオロポリマー(P2)の21.3質量部を使用した以外は、例1と同様にしてシート材を作製し、特性を測定した。
[例5]
 架橋助剤として、フルオロポリマー(P1)の33.8質量部に代えて、フルオロポリマー(P2)の14.2質量部を使用した以外は、例1と同様にしてシート材を作製し、特性を測定した。
 例[1]、[4]および[5]は実施例であり、例[2]、および[3]は比較例である。
[Example 3]
A sheet material was prepared in the same manner as in Example 1 except that 5 parts by mass of TAIC was used instead of 33.8 parts by mass of the fluoropolymer (P1) as a crosslinking aid, and the characteristics were measured.
[Example 4]
A sheet material was prepared in the same manner as in Example 1 except that 21.3 parts by mass of the fluoropolymer (P2) was used instead of 33.8 parts by mass of the fluoropolymer (P1) as a crosslinking aid. Was measured.
[Example 5]
A sheet material was prepared in the same manner as in Example 1 except that 14.2 parts by mass of the fluoropolymer (P2) was used instead of 33.8 parts by mass of the fluoropolymer (P1) as a crosslinking aid. Was measured.
Examples [1], [4] and [5] are examples, and examples [2] and [3] are comparative examples.
[測定方法]
(1)硬度(HS)
 JIS K6253-1997に準拠し、23℃でのデュロメータータイプA硬度試験にて硬度(HS)を測定した。
 シール材の硬度としては60~95°が適している。
(2)引張り強度(TB)
 JIS K6251-2004に準拠し、23℃にて引張り強度(TB)を測定した。
 シール材の引張り強度(TB)としては10MPa以上が適している。
(3)伸び(EB)
 JIS K6251-2004に準拠し、23℃にて伸び(EB)を測定した。
 シール材の伸び(EB)としては130%以上が適している。
(4)100%引張応力(モジュラス)
 JIS K6251-2004に準拠して、23℃にて100%引張応力(M100)を測定した。
 シール材の100%引張応力(M100)としては3~17MPaが適している。
(5)空気加熱老化試験(硬度変化率)
 ギアオーブンで250℃、70時間熱処理した後、JIS K6253-1997に準拠し、23℃でのデュロメータータイプA硬度試験にて硬度(HS)を測定し、(1)の硬度と比較して変化率を求めた。
(6)空気加熱老化試験(引張り強度変化率)
 ギアオーブンで250℃、70時間熱処理した後、JIS K6251-2004に準拠し、23℃にて引張り強度(TB)を測定し、(2)の引張り強度と比較して変化率を求めた。
(7)空気加熱老化試験(伸び変化率)
 ギアオーブンで250℃、70時間熱処理した後、JIS K6251-2004に準拠し、23℃にて伸び(EB)を測定し、(3)の伸びと比較して変化率を求めた。
 例[1]~例[5]におけるシート作製に用いたそれぞれの材料の組成(質量部)、および上記特性の評価測定結果を表1に示す。
[Measuring method]
(1) Hardness (HS)
In accordance with JIS K6253-1997, the hardness (HS) was measured by a durometer type A hardness test at 23 ° C.
The hardness of the sealing material is preferably 60 to 95 °.
(2) Tensile strength (TB)
In accordance with JIS K6251-2004, the tensile strength (TB) was measured at 23 ° C.
As the tensile strength (TB) of the sealing material, 10 MPa or more is suitable.
(3) Elongation (EB)
The elongation (EB) was measured at 23 ° C. according to JIS K6251-2004.
As the elongation (EB) of the sealing material, 130% or more is suitable.
(4) 100% tensile stress (modulus)
In accordance with JIS K6251-2004, 100% tensile stress (M100) was measured at 23 ° C.
As the 100% tensile stress (M100) of the sealing material, 3 to 17 MPa is suitable.
(5) Air heating aging test (hardness change rate)
After heat treatment in gear oven at 250 ° C for 70 hours, according to JIS K6253-1997, the hardness (HS) was measured by durometer type A hardness test at 23 ° C, and the rate of change compared with the hardness of (1) Asked.
(6) Air heating aging test (rate of change in tensile strength)
After heat treatment at 250 ° C. for 70 hours in a gear oven, the tensile strength (TB) was measured at 23 ° C. according to JIS K6251-2004, and the rate of change was determined by comparison with the tensile strength of (2).
(7) Air heat aging test (elongation change rate)
After heat treatment in a gear oven at 250 ° C. for 70 hours, the elongation (EB) was measured at 23 ° C. in accordance with JIS K6251-2004, and the rate of change was determined by comparison with the elongation in (3).
Table 1 shows the compositions (parts by mass) of the respective materials used for sheet production in Examples [1] to [5], and the evaluation measurement results of the above characteristics.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、架橋助剤としてフルオロポリマー(P1およびP2)を使用した例1、例4および例5のシート材は、架橋助剤としてTAICを使用した例2、および例3のシート材に比べて、空気加熱老化試験における引張強度変化率を小さく抑えることができ、耐熱性に優れていた。 As shown in Table 1, the sheet materials of Examples 1, 4 and 5 using fluoropolymers (P1 and P2) as crosslinking aids are the sheets of Example 2 and Example 3 using TAIC as the crosslinking aid. Compared to the material, the rate of change in tensile strength in the air heat aging test could be kept small, and the heat resistance was excellent.
 本発明の架橋性フッ素ゴム組成物を用いることにより、優れた耐薬品性(特に耐アミン性)と耐熱性を兼ね備えた架橋ゴム物品が得られ、Oリング、シート、ガスケット、オイルシール、ベアリングシール等のシール材等に用いられ、特に石油掘削用のシール材として有用である。
 なお、2010年11月30日に出願された日本特許出願2010-266864号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
By using the crosslinkable fluororubber composition of the present invention, a crosslinked rubber article having excellent chemical resistance (particularly amine resistance) and heat resistance can be obtained. O-ring, sheet, gasket, oil seal, bearing seal And is particularly useful as a sealing material for oil drilling.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2010-266864 filed on November 30, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (11)

  1.  フッ素ゴムと、重合性二重結合を複数有する下記フルオロポリマー(P)とを含有する架橋性フッ素ゴム組成物。
     フルオロポリマー(P):不飽和側鎖残存性のフルオロジエン(b)に由来する繰り返し単位を有するフルオロポリマー。
    A crosslinkable fluororubber composition comprising a fluororubber and the following fluoropolymer (P) having a plurality of polymerizable double bonds.
    Fluoropolymer (P): a fluoropolymer having repeating units derived from unsaturated side chain remaining fluorodiene (b).
  2.  前記フルオロポリマー(P)が、フルオロモノエン(a)に由来する繰り返し単位と、不飽和側鎖残存性のフルオロジエン(b)に由来する繰り返し単位を有するフルオロポリマーである請求項1に記載の架橋性フッ素ゴム組成物。 The crosslinking according to claim 1, wherein the fluoropolymer (P) is a fluoropolymer having a repeating unit derived from the fluoromonoene (a) and a repeating unit derived from the unsaturated side chain remaining fluorodiene (b). Fluororubber composition.
  3.  前記フルオロモノエン(a)が、テトラフルオロエチレン、クロロトリフルオロエチレン、およびCF=CFO-Rf1(式中、Rf1は炭素数1~6のフルオロアルキル基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数2~6のフルオロアルキル基である。)からなる群から選ばれる1種以上である請求項2に記載の架橋性フッ素ゴム組成物。 The fluoromonoene (a) is tetrafluoroethylene, chlorotrifluoroethylene, and CF 2 ═CFO—R f1 (wherein R f1 is a fluoroalkyl group having 1 to 6 carbon atoms, or a carbon atom-carbon atom) 3. The crosslinkable fluororubber composition according to claim 2, which is at least one selected from the group consisting of a C2-C6 fluoroalkyl group having at least one etheric oxygen atom.
  4.  前記フルオロジエン(b)が、下記フルオロジエン(b1)~(b3)からなる群から選ばれる1種以上である請求項1~3のいずれか一項に記載の架橋性フッ素ゴム組成物。
     (b1)CF=CFO-Qf1-OCF=CF
     (b2)CH=CFCFO-Qf2-OCFCF=CH
     (b3)CH=CFCFO-Qf3-OCF=CF
    (式中、Qf1、Qf2は、それぞれ独立に炭素数3~8のフルオロアルキレン基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数3~8のフルオロアルキレン基である。
     Qf3は、炭素数1~6のフルオロアルキレン基、または炭素原子-炭素原子間にエーテル性酸素原子を1個以上有する炭素数2~6のフルオロアルキレン基である。)
    The crosslinkable fluororubber composition according to any one of claims 1 to 3, wherein the fluorodiene (b) is at least one selected from the group consisting of the following fluorodienes (b1) to (b3).
    (B1) CF 2 = CFO-Q f1 -OCF = CF 2
    (B2) CH 2 ═CFCF 2 O—Q f2 —OCF 2 CF═CH 2
    (B3) CH 2 ═CFCF 2 O—Q f3 —OCF═CF 2
    ( Wherein Q f1 and Q f2 each independently represents a fluoroalkylene group having 3 to 8 carbon atoms, or a fluoroalkylene group having 3 to 8 carbon atoms having one or more etheric oxygen atoms between carbon atoms and carbon atoms) It is.
    Q f3 is a fluoroalkylene group having 1 to 6 carbon atoms or a fluoroalkylene group having 2 to 6 carbon atoms having at least one etheric oxygen atom between carbon atoms. )
  5.  前記フルオロポリマー(P)の重量平均分子量が3,000~50,000である請求項1~4のいずれか一項に記載の架橋性フッ素ゴム組成物。 The crosslinkable fluororubber composition according to any one of claims 1 to 4, wherein the fluoropolymer (P) has a weight average molecular weight of 3,000 to 50,000.
  6.  前記フルオロポリマー(P)中の重合性二重結合の含有量が0.2~2mmol/gである請求項1~5のいずれか一項に記載の架橋性フッ素ゴム組成物。 The crosslinkable fluororubber composition according to any one of claims 1 to 5, wherein the content of the polymerizable double bond in the fluoropolymer (P) is 0.2 to 2 mmol / g.
  7.  前記フッ素ゴム100質量部に対して前記フルオロポリマー(P)を1~50質量部含有する請求項1~6のいずれか一項に記載の架橋性フッ素ゴム組成物。 The crosslinkable fluororubber composition according to any one of claims 1 to 6, comprising 1 to 50 parts by mass of the fluoropolymer (P) with respect to 100 parts by mass of the fluororubber.
  8.  前記フッ素ゴムが、テトラフルオロエチレン/プロピレン系共重合体、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、およびテトラフルオロエチレン/ペルフルオロアルキルビニルエーテル系共重合体からなる群から選ばれる1種以上である請求項1~7のいずれか一項に記載の架橋性フッ素ゴム組成物。 The fluororubber is selected from the group consisting of a tetrafluoroethylene / propylene copolymer, a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer, and a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer. The crosslinkable fluororubber composition according to any one of claims 1 to 7, wherein the composition is at least one species.
  9.  さらに、有機過酸化物を含有する請求項1~8のいずれか一項に記載の架橋性フッ素ゴム組成物。 The crosslinkable fluororubber composition according to any one of claims 1 to 8, further comprising an organic peroxide.
  10.  請求項1または2に記載の架橋性フッ素ゴム組成物を架橋してなる架橋ゴム物品。 A crosslinked rubber article obtained by crosslinking the crosslinkable fluororubber composition according to claim 1 or 2.
  11.  シール材である請求項10に記載の架橋ゴム物品。 The crosslinked rubber article according to claim 10, which is a sealing material.
PCT/JP2011/077579 2010-11-30 2011-11-29 Crosslinkable fluororubber composition and crosslinked rubber article WO2012073977A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012546896A JPWO2012073977A1 (en) 2010-11-30 2011-11-29 Crosslinkable fluororubber composition and crosslinked rubber article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-266864 2010-11-30
JP2010266864 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073977A1 true WO2012073977A1 (en) 2012-06-07

Family

ID=46171906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077579 WO2012073977A1 (en) 2010-11-30 2011-11-29 Crosslinkable fluororubber composition and crosslinked rubber article

Country Status (3)

Country Link
JP (1) JPWO2012073977A1 (en)
TW (1) TW201229072A (en)
WO (1) WO2012073977A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030586A1 (en) * 2012-08-21 2014-02-27 旭硝子株式会社 Curable fluorine-containing polymer, method for producing same, and fluorine-containing polymer cured product
WO2015146851A1 (en) * 2014-03-25 2015-10-01 旭硝子株式会社 Fluororubber molded article
JPWO2014084082A1 (en) * 2012-11-29 2017-01-05 旭硝子株式会社 Fluoro rubber composition and cross-linked rubber article using the same
WO2017086323A1 (en) * 2015-11-19 2017-05-26 旭硝子株式会社 Fluorocopolymer-containing crosslinkable composition, crosslinked object, and sealing material for semiconductor production device
US9982091B2 (en) 2014-03-06 2018-05-29 3M Innovative Properties Company Highly fluorinated elastomers
WO2019054293A1 (en) * 2017-09-14 2019-03-21 三菱電線工業株式会社 Uncrosslinked rubber composition and rubber product manufactured by using same and manufacturing method therefor
JP2019214743A (en) * 2019-09-19 2019-12-19 三菱電線工業株式会社 Rubber product and method for producing the same
JP2020070326A (en) * 2018-10-30 2020-05-07 三菱電線工業株式会社 Uncrosslinked fluororubber composition and rubber product produced using the same
JP2021105179A (en) * 2018-03-29 2021-07-26 三菱電線工業株式会社 Uncrosslinked rubber composition, rubber product produced using the same, and method for producing the same
CN115605540A (en) * 2020-05-14 2023-01-13 霓佳斯株式会社(Jp) Rubber composition, fluoroelastomer and sealing material
WO2024046494A1 (en) * 2022-10-12 2024-03-07 嘉兴富瑞邦新材料科技有限公司 Breathable polytetrafluoroethylene stretch film and preparation method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105622871B (en) * 2015-12-23 2018-03-16 西安交通大学 A kind of cross-linking type fluoropolymer base dielectric elastomer composite material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230151A (en) * 1991-08-06 1993-09-07 Asahi Glass Co Ltd Fluorine-containing polymer and cured products thereof
JP2004346087A (en) * 2002-04-23 2004-12-09 Yunimatekku Kk Fluorine-containing elastomer and composition thereof
WO2006080259A1 (en) * 2005-01-27 2006-08-03 Kureha Corporation Vinylidene fluoride based core-shell type polymer and use thereof in nonaqueous electrochemical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230151A (en) * 1991-08-06 1993-09-07 Asahi Glass Co Ltd Fluorine-containing polymer and cured products thereof
JP2004346087A (en) * 2002-04-23 2004-12-09 Yunimatekku Kk Fluorine-containing elastomer and composition thereof
WO2006080259A1 (en) * 2005-01-27 2006-08-03 Kureha Corporation Vinylidene fluoride based core-shell type polymer and use thereof in nonaqueous electrochemical device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030586A1 (en) * 2012-08-21 2014-02-27 旭硝子株式会社 Curable fluorine-containing polymer, method for producing same, and fluorine-containing polymer cured product
EP2889315A4 (en) * 2012-08-21 2016-04-06 Asahi Glass Co Ltd Curable fluorine-containing polymer, method for producing same, and fluorine-containing polymer cured product
JPWO2014084082A1 (en) * 2012-11-29 2017-01-05 旭硝子株式会社 Fluoro rubber composition and cross-linked rubber article using the same
US9815972B2 (en) 2012-11-29 2017-11-14 Asahi Glass Company, Limited Fluoro-rubber composition and cross-linked rubber article using same
US9982091B2 (en) 2014-03-06 2018-05-29 3M Innovative Properties Company Highly fluorinated elastomers
WO2015146851A1 (en) * 2014-03-25 2015-10-01 旭硝子株式会社 Fluororubber molded article
US10005888B2 (en) 2014-03-25 2018-06-26 Asahi Glass Company, Limited Fluororubber molded article
WO2017086323A1 (en) * 2015-11-19 2017-05-26 旭硝子株式会社 Fluorocopolymer-containing crosslinkable composition, crosslinked object, and sealing material for semiconductor production device
WO2019054293A1 (en) * 2017-09-14 2019-03-21 三菱電線工業株式会社 Uncrosslinked rubber composition and rubber product manufactured by using same and manufacturing method therefor
JP2019052226A (en) * 2017-09-14 2019-04-04 三菱電線工業株式会社 Rubber product and manufacturing method therefor
CN111094437A (en) * 2017-09-14 2020-05-01 三菱电线工业株式会社 Uncrosslinked rubber composition, rubber product produced using the same, and method for producing the same
US20200277467A1 (en) * 2017-09-14 2020-09-03 Mitsubishi Cable Industries, Ltd. Uncrosslinked rubber composition and rubber product manufactured by using same and manufacturing method therefor
CN111094437B (en) * 2017-09-14 2022-05-13 三菱电线工业株式会社 Uncrosslinked rubber composition, rubber product produced using the same, and method for producing the same
JP2021105179A (en) * 2018-03-29 2021-07-26 三菱電線工業株式会社 Uncrosslinked rubber composition, rubber product produced using the same, and method for producing the same
JP2020070326A (en) * 2018-10-30 2020-05-07 三菱電線工業株式会社 Uncrosslinked fluororubber composition and rubber product produced using the same
JP2019214743A (en) * 2019-09-19 2019-12-19 三菱電線工業株式会社 Rubber product and method for producing the same
CN115605540A (en) * 2020-05-14 2023-01-13 霓佳斯株式会社(Jp) Rubber composition, fluoroelastomer and sealing material
WO2024046494A1 (en) * 2022-10-12 2024-03-07 嘉兴富瑞邦新材料科技有限公司 Breathable polytetrafluoroethylene stretch film and preparation method therefor

Also Published As

Publication number Publication date
JPWO2012073977A1 (en) 2014-05-19
TW201229072A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
WO2012073977A1 (en) Crosslinkable fluororubber composition and crosslinked rubber article
TWI672321B (en) Highly fluorinated elastomers
TWI491648B (en) Crosslinkable fluorine rubber composition and cross-linked rubber items
US11732073B2 (en) Fluorinated elastic copolymer, its composition and crosslinked rubber article
JP6582991B2 (en) Perfluoroelastomer, perfluoroelastomer composition, and crosslinked rubber article
EP1808448B1 (en) Process for producing elastic fluorocopolymer and crosslinked fluororubber
WO2014030586A1 (en) Curable fluorine-containing polymer, method for producing same, and fluorine-containing polymer cured product
JP7283383B2 (en) Method for producing crosslinkable fluorine-containing elastic copolymer
WO2019073934A1 (en) Fluorine-containing elastic copolymer composition, paint, and painted article
US5824755A (en) Process for producing fluoroelastomers
JP5353880B2 (en) Fuel low permeability block copolymer
JP2010144127A (en) Coating composition, coated article, and method for producing coated article
JP2007056215A (en) Peroxide-crosslinkable fluororubber
JP2005220161A (en) Perfluoroelastomer composition for vulcanization and method for producing perfluoroelastomer molded product
WO2022260138A1 (en) Production method for aqueous fluorine-containing elastomer dispersion, fluorine-containing elastomer, and composition
JPWO2019009250A1 (en) Fluorine-containing elastic copolymer composition and crosslinked rubber article
JP6134293B2 (en) Sealing material
JP2010084000A (en) Novel crosslinking aid, crosslinkable fluororubber composition, and crosslinked rubber product
JPH06136008A (en) Production of fluorine-containing polymer
JPH07173204A (en) Production of fluoroelastomer
JP2013014785A (en) Peroxide-crosslinkable fluorine-containing rubber
WO2023017701A1 (en) Method for producing low-viscosity fluorine-containing elastomer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546896

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844320

Country of ref document: EP

Kind code of ref document: A1