JP2004346087A - Fluorine-containing elastomer and composition thereof - Google Patents

Fluorine-containing elastomer and composition thereof Download PDF

Info

Publication number
JP2004346087A
JP2004346087A JP2003102462A JP2003102462A JP2004346087A JP 2004346087 A JP2004346087 A JP 2004346087A JP 2003102462 A JP2003102462 A JP 2003102462A JP 2003102462 A JP2003102462 A JP 2003102462A JP 2004346087 A JP2004346087 A JP 2004346087A
Authority
JP
Japan
Prior art keywords
fluorine
mol
containing elastomer
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003102462A
Other languages
Japanese (ja)
Other versions
JP4491547B2 (en
JP2004346087A5 (en
Inventor
Satoshi Saito
智 斉藤
Atsushi Kanega
淳 金賀
Satoshi Horie
聡 堀江
Masatsugu Kudo
正嗣 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unimatec Co Ltd
Original Assignee
Unimatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unimatec Co Ltd filed Critical Unimatec Co Ltd
Priority to JP2003102462A priority Critical patent/JP4491547B2/en
Priority to US10/674,009 priority patent/US7312289B2/en
Publication of JP2004346087A publication Critical patent/JP2004346087A/en
Publication of JP2004346087A5 publication Critical patent/JP2004346087A5/ja
Application granted granted Critical
Publication of JP4491547B2 publication Critical patent/JP4491547B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorine-containing elastomer capable of giving a vulcanization product which has excellent low temperature characteristics and solvent resistance without deteriorating the original moldability/processability and compression permanent set-resistant characteristics of the fluorine-containing elastomer, and to provide a fluorine-containing elastomer composition which has excellent cold resistance, fuel oil resistance, and the like. <P>SOLUTION: This fluorine-containing elastomer whose copolymer composition comprises (a) 50 to 85 mol. % of vinylidene fluoride, (b) 0 to 25 mol. % of tetrafluoroethylene, (c) 7 to 20 mol. % of perfluoro(methylvinyl ether), (d) 3 to 15 mol. % of CF<SB>2</SB>=CFO[CF<SB>2</SB>CF(CF<SB>3</SB>)O]nCF<SB>3</SB>, and (e) 0.1 to 2 mol. % of RfX (Rf is a 2 to 8C unsaturated fluorohydrocarbon group in which one or more ether bonds may be contained; X is bromine or iodine). The fluorine-containing elastomer composition comprises 100 pts. wt. of the fluorine-containing elastomer, 0.1 to 10 pts. wt. of an organic peroxide, 0.1 to 10 pts. wt. of a multi-functional unsaturated compound, and ≥2 pts. wt. of an acid receptor. The fluorine-containing elastomer composition gives a cured product having excellent cold resistance and fuel oil resistance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、含フッ素エラストマーおよびその組成物に関する。更に詳しくは、成形加工性、低温特性および耐溶剤性にすぐれた加硫物を与え得る含フッ素エラストマーおよびその組成物に関する。
【0002】
【従来の技術】
フッ化ビニリデン−テトラフルオロエチレン−パーフルオロ(メチルビニルエーテル)を主構成単位とする含フッ素エラストマーは、含フッ素エラストマー特有のすぐれた耐熱性や耐溶剤性を有するばかりではなく、良好な低温特性をも有することから、自動車産業を始め種々の産業分野で用いられている。しかしながら、近年の技術進歩に伴う対応の面では、このような含フッ素エラストマーでは対応が困難な場合が多くみられ、特に低温特性およびメタノール等のアルコール性溶剤に対する耐性が厳しく求められるようになってきている。また、近年の排ガス規制等に伴ない、含フッ素エラストマ−に対するさらなる耐熱性、耐溶剤性、低温特性が求められている。
【0003】
このような課題を解決するために、上記含フッ素エラストマーにおいて、パーフルオロ(メチルビニルエーテル)の代りに側鎖に複数のエーテル結合を有する単量体を共重合させることが提案されている(特公平5−13961号公報)。この場合、得られる共重合体をエラストマー状にするためには、この単量体を多量に共重合させなければならず、これの共重合割合が少ないと半樹脂状となり、低温特性が損われるようになる。実際には、その共重合割合は12〜50モル%とされ、各実施例では25〜32モル%の共重合組成とされている。しかしながら、このような単量体を多量に含む含フッ素エラストマ−は、機械的強度が劣る上、例えば成形時に発泡が生じ易いなど成形加工性もよくないという問題もみられる。
【0004】
また、自動車燃料用シール材には、完璧な耐燃料油性が求められるため、現在は市販のフッ素ゴムを中心に使用されているが、自動車燃料としては一般に使用されているガソリン以外に、燃焼効率などの面からエーテルやアルコール等の含酸素燃料も使用されるようになってきている。含酸素燃料に対しては、フッ素ゴム中のフッ素含有量を増加させることで対応可能であるが、フッ素含有量を増加させると耐寒性が悪化し、冬季寒冷地で燃料漏れを生ずるおそれがある。逆に、フッ素含有量を減少させると、耐寒性は良好になるが含酸素燃料に対しての耐性がなくなり、これら両者を同時に満足させるのは非常に困難な状況にある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、含フッ素エラストマーが本来有する成形加工性および耐圧縮永久歪特性を損うことなく、低温特性および耐溶剤性にすぐれた加硫物を与え得る含フッ素エラストマーおよび耐寒性、耐燃料油性などにすぐれたその組成物を提供することにある。
【0006】
【課題を解決するための手段】
かかる本発明の目的は、その共重合組成が
(a)フッ化ビニリデン 50〜85モル%
(b)テトラフルオロエチレン 0〜25モル%
(c)パーフルオロ(メチルビニルエーテル) 7〜20モル%
(d)CF=CFO[CFCF(CF)O]nCF 3〜15モル%
(ただし、nは2〜6の整数である)
(e)RfX(Rfは炭素数2〜8の不飽和フルオロ炭化水素基であり、 0.1〜2モル%
基中に1個以上のエーテル結合を有していてもよく、
Xは臭素またはヨウ素である)
である含フッ素エラストマーによって達成される。この含フッ素エラストマーは、好ましくは一般式 R(Br)n(I)m (ここで、Rは炭素数2〜6の飽和フルオロ炭化水素基または飽和クロロフルオロ炭化水素基であり、nおよびmは0、1または2であり、m+nは2である)で表わされる含臭素および/またはヨウ素化合物の存在下で共重合して得られる。
【0007】
また、この含フッ素エラストマー100重量部当リ0.1〜10重量部の有機過酸化物、0.1〜10重量部の多官能性不飽和化合物および2重量部以上の受酸剤を添加した含フッ素エラストマー組成物は、耐寒性および耐燃料油性にすぐれた架橋物を与えるので、この架橋物は自動車燃料用シール材料として好適に用いられる。
【0008】
【発明の実施の形態】
含フッ素エラストマ−の共重合組成比は、(a)フッ化ビニリデンが50〜85モル%、好ましくは60〜85モル%、(b)テトラフルオロエチレンが0〜25モル%、好ましくは0〜20モル%、(c)パーフルオロ(メチルビニルエーテル)が7〜20モル%、好ましくは7〜15モル%、(d)前記一般式で表わされるパーフルオロビニルエーテルが3〜15モル%、好ましくは3〜10モル%、(e)前記一般式で表わされる含臭素またはヨウ素不飽和化合物が0.1〜2モル%、好ましくは0.3〜1.5モル%であり、これらの組成比は所望の低温特性および耐溶剤性を有する加硫物を与え得る範囲として選択されたものである。
【0009】
(a)成分のテトラフルオロエチレンには、下記(b)〜(e)成分がぞれぞれ共重合される。
(b)成分のテトラフルオロエチレンをさらに共重合させた場合には、耐溶剤性を著しく改善することができる。ただし、(b)成分の組成比率が大きすぎると低温特性が損われるので、その割合は25モル%以下、好ましくは20モル%以下とするのがよい。また、(b)成分の共重合は、メタノール・ガソリン混合燃料、エタノール・ガソリン混合燃料等の酸素含有化合物混合燃料やメタノール、エタノール等のアルコール燃料に対する耐性を著しく改善させる。
(c)成分のパーフルオロ(メチルビニルエーテル)は、得られる共重合体に柔軟性を付与し、低温特性、特にTR試験におけるTR70値を改善するための必須成分である。
(d)成分のパーフルオロビニルエーテルは、その一般式で表わされる化合物の単一成分を用いてもよいし、あるいは種々のn値を有する2種以上の混合物を用いてもよい。これに類似したパーフルオロビニルエーテルとしては、一般式CF=CFO〔CFCF(CF)O〕mCFCFCFが知られているが(特公平5−13961号公報)、本発明者らの検討結果によれば、後記比較例5の結果に示されるように、この単量体の共重合は低温特性を付与するが、分子量の低下、成形時の発泡等の成形加工性の低下、機械的強度の低下などが認められる。ただし、所望の性質を損わない範囲内、例えば1モル%以下の割合でこの化合物を共重合させることはできる。
前記一般式で表わされるパーフルオロビニルエーテルは、フッ化セシウム触媒、ジグライム溶剤等の存在下にCFOCF(CF)COFとヘキサフルオロプロペンオキシドとを反応させ、次いで無水炭酸カリウムとの反応および熱分解反応を行うことによって得られ、生成物はn=2〜6の混合物であるが、それを分留することによって種々のn値を有するパーフルオロビニルエーテルを分離し、それを単独で用いることができる。あるいは、それらを分離することなく、混合物としても用いることができる。
(e)成分の含臭素またはヨウ素化合物としては、例えばCF=CFOCFCFBr、CF=CFOCFCF(CF)OCFCFBr、CF=CFBr、CF=CHBr、CF=CFI、CF=CHI等のRf基が炭素数2〜8の不飽和フルオロ炭化水素基であり、基中に1個以上のエーテル結合を有していてもよいものも用いられ(特公昭54−1585号公報参照)、好ましくはCF=CFOCFCFBr、CF=CFI、CF=CHIが用いられる。
【0010】
また、本発明に係る含フッ素エラストマ−共重合体の分子量を調節する目的であるいは成形加工性、特に硬化段階での発泡を抑制する目的で、一般式R(Br)n(I)mで表わされる含臭素および/またはヨウ素化合物の存在下で共重合反応を行うことは非常に有効である(特公昭54−1585号公報参照)。
【0011】
かかる化合物としては、例えばICFCFCFCFI、ICFCFCFCFBr、ICFCFBr等が用いられ、特にICFCFCFCFIは硬化特性等の面からみて好適である。他の例は、特公昭63−308008号公報、同58−4728号公報等に記載されている。
【0012】
これらの化合物は連鎖移動剤として作用し、生成する共重合体の分子量を調節する働きをする。また、連鎖移動反応の結果として、分子末端に臭素および/またはヨウ素原子が結合した共重合体が得られ、これらの部位は加硫成形段階において硬化部位として働く。ただし、重合工程でのそれの使用割合が多いと、最終成形品の機械的強度を低下させるので、それの使用割合は全単量体重量に対して約1重量%以下、好ましくは約0.5〜0.01重量%とされる。
【0013】
さらに、加硫成形品の耐圧縮永久歪特性を改善するために、下記の如きパーフルオロジビニルエーテルを共重合させてもよい。その使用割合は、成形品の機械的物性の点から、全単量体重量に対して約1重量%以下、好ましくは約0.5〜0.1重量%とされる。
CF=CFOCFCF(CF)OCFCFOCF=CF
【0014】
また、本発明の含フッ素エラストマ−に求められる所望の性質を損わない範囲内において、他の単量体、例えばトリフルオロエチレン、ヘキサフルオロプロペン、クロロトリフルオロエチレン等の含フッ素単量体をさらに共重合させてもよい。
【0015】
本発明の含フッ素エラストマ−は、水性乳化重合法または水性けん濁重合法によって製造することができる。水性乳化重合法では、水溶性過酸化物を単独であるいはそれと水溶性還元性物質とを組合せたレドックス系のいずれをも反応開始剤系として用いることができる。水溶性過酸化物としては例えば過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等が、また水溶性還元性物質としては例えば亜硫酸ナトリウム、亜硫酸水素ナトリウム等が用いられる。この際、水性乳化液の安定化剤として、pH調節剤(緩衡剤)、例えばリン酸一水素ナトリウム、リン酸二水素ナトリウム、リン酸一水素カリウム、リン酸二水素カリウム等も用いられる。
【0016】
乳化重合法に用いられる乳化剤としては、一般にフッ素化カルボン酸塩が用いられ(特公平5−13961号公報参照)、好ましくは
CFCFCFO[CF(CF)CFO]nCF(CF)COONH
n:1または2
が用いられる。これらの乳化剤は、約1〜30重量%、好ましくは約5〜20重量%の水溶液として用いられる。乳化剤量がこれよりも少ないと、モノマーおよび生成共重合体を水性媒体中に均一に分散させることができず、多すぎると経済的に不利となる。
【0017】
共重合反応は、約20〜80℃、好ましくは、約25〜60℃の温度で行われる。重合温度が高すぎると、成形加工時に発泡などの問題が発生し、また加硫成形品の耐圧縮永久歪特性も悪化する。また、重合圧力は、一般に約5MPa以下で行われる。
【0018】
このようにして得られる含フッ素エラストマ−は、−30〜−45℃のガラス転移温度Tgを有する。また、得られる共重合体の分子量は特に限定されないが、数平均分子量Mn(GPC法、テトラヒドロフラン溶媒)が約10000〜1000000、好ましくは約50000〜300000であることが望ましい。また、分子量の指標としての溶液粘度ηsp/c(35℃、1重量%メチルエチルケトン溶液)は、約0.1〜2dl/g、好ましくは約0.2〜1dl/gであることが望ましい。得られる共重合体の組成または分子量によっては、メチルエチルケトンに難溶または不溶となり、1重量%メチルエチルケトン溶液を調製できない場合がある。この場合には、溶媒としてヘキサフルオロベンゼンを用い、1重量%ヘキサフルオロベンゼン溶液(35℃)として溶液粘度ηsp/cを測定した。この溶液粘度ηsp/cの値は、約0.1〜7dl/g、好ましくは0.3〜5dl/gであることが望ましい。
【0019】
このような性状の含フッ素エラストマーは、従来公知の種々の加硫方法、例えばパーオキサイド加硫法、ポリアミン加硫法、ポリオール加硫法あるいは放射線、電子線などの照射法によって硬化させることができるが、有機過酸化物を用いるパーオキサイド加硫法は、機械的強度にすぐれ、また架橋点の構造が安定した炭素−炭素結合を形成するため耐薬品性、耐摩耗性、耐溶剤性などにすぐれた加硫物を与えるので、特に好ましく用いられる。
【0020】
パーオキサイド加硫法に用いられる有機過酸化物としては、例えば2,5−ジメチル−2,5−ビス(第3ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ビス(第3ブチルパーオキシ)ヘキシン−3、ベンゾイルパーオキサイド、ビス(2,4−ジクロロベンゾイル)パーオキサイド、ジクミルパーオキサイド、ジ第3ブチルパーオキサイド、第3ブチルクミルパーオキサイド、第3ブチルパーオキシベンゼン、1,1−ビス(第3ブチルパーオキシ)−3,5,5−トリメチルシクロヘキサン、2,5−ジメチルヘキサン−2,5−ジヒドロキシパーオキサイド、α,α′−ビス(第3ブチルパーオキシ)−p−ジイソプロピルベンゼン、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、第3ブチルパーオキシイソプロピルカーボネート等が挙げられる。
【0021】
これらの有機過酸化物が用いられるパーオキサイド加硫法では、共架橋剤として多官能性不飽和化合物、例えばトリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルシアヌレート、トリアリルトリメリテート、N,N′−m−フェニレンビスマレイミド、ジアリルフタレート、トリス(ジアリルアミン)−s−トリアジン、亜リン酸トリアリル、1,2−ポリブタジエン、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート等を併用することが好ましい。これらの共架橋剤を併用することにより、よりすぐれた加硫特性、機械的強度、圧縮永久歪特性など有する加硫物を得ることができる。
【0022】
さらに、受酸剤としてハイドロタルサイト化合物や2価金属の酸化物または水酸化物、例えばカルシウム、マグネシウム、鉛、亜鉛などの酸化物または水酸化物を用いることもできる。
【0023】
パーオキサイド加硫系に配合される以上の各成分は、含フッ素エラストマー100重量部当り、有機過酸化物が約0.1〜10重量部、好ましくは約0.5〜5重量部の割合で、また必要に応じて共架橋剤が約0.1〜10重量部、好ましくは約0.5〜5重量部の割合で、さらに受酸剤は約2重量部以上、好ましくは約3〜20重量部の割合でそれぞれ用いられる。受酸剤の使用割合がこれよりも少ないと、金属に対する耐腐食性が損われるようになる。
【0024】
加硫に際しては、上記各成分に加えて、従来公知の充填剤、補強剤、可塑剤、滑剤、加工助剤、顔料などを適宜配合することもできる。充填剤または補強剤としてカーボンブラックを用いる場合、一般には含フッ素エラストマー100重量部当り約10〜50重量部程度の割合で用いられる。
【0025】
さらに、瀝青質微粉末の添加は耐圧縮永久歪特性を改善させ、耐熱性の向上によるシール材等の長寿命化を図ることができ、また偏平状充填剤の添加は燃料油遮断性を改善させ、シール対象とされる自動車燃料等の蒸散を一層抑制することを可能とする。
【0026】
瀝青質微粉末としては、石炭等の瀝青質物質を粉砕し、平均粒径を約10μm以下、一般には約1〜10μmであって、好ましくは約3〜8μmの大きさに微粉末化したものが用いられる。これ以上の平均粒径のものを用いると、ゴムの破断強度や破断伸びが低下し、強度面での実用性が損われるようになる。実際には、Keystone Filler & Mfg社製Mineral Black 325BA等の市販品がそのまま用いられる。これらの瀝青質微粉末は、含フッ素エラストマー100重量部当り約40重量部以下、好ましくは約5〜30重量部の割合で用いられる。これ以上の割合で用いられると、組成物の粘度が高くなりすぎ、混練時や成形時に支障を来すようになる。
【0027】
また、偏平状充填剤としては、例えばクレー、マイカ、グラファイト、二硫化モリブデン等の少くとも一種であって、平均粒子径が約0.5〜50μm、好ましくは約5〜30μmで、アスペクト比が3以上、好ましくは5〜30のものが用いられる。平均粒子径またはアスペクト比がこれ以下のものを用いると、燃料遮蔽性の向上がみられない。一方、これ以上の平均粒子径のものを用いると、ゴムの破断強度や破断伸びが低下して、強度面での実用性が損われるようになる。これらの偏平状充填剤は、含フッ素エラストマー100重量部当り約40重量部以下、好ましくは約5〜30重量部の割合で用いられる。これ以上の割合で用いられると、組成物の粘度が上昇して混練できなくなり、さらに架橋後のシール材が非常に硬くなってシール性が損われるようになる。
【0028】
以上の各成分は、ロール混合、ニーダ混合、バンバリー混合、溶液混合など一般に用いられる混合法によって混練され、混練された混練物は、一般に約100〜250℃で約1〜60分間程度行われるプレス加硫によって加硫され、好ましくはさらに約150〜250℃で約30時間以内のオーブン加硫(二次加硫)もが行われる。
【0029】
得られた含フッ素エラストマーは、有機過酸化物架橋後に以下に示される低温特性を発現する加硫物を与える。
−43℃≦TR10<−30℃<TR70≦−20℃
ここでTR10、TR70値は、TRテストでサンプルを50%伸長し、ガラス転移温度Tg以下としてガラス化させた後、徐々に温度を上げていくと歪みが緩和し、初期伸長に対して10%または70%回復した温度を示している。
【0030】
また、前記TR10、TR70についての条件を満足させるためには、前記(c)成分のパーフルオロ(メチルビニルエーテル)と(d)成分のパーフルオロビニルエーテルとの組成合計量が10モル%以上、好ましくは15モル%以上とすることが望ましい。これらの各成分組成合計量が10モル%以下では、得られる共重合体が半樹脂状になったり、低温特性、特にTR70値が悪化するようになる。
【0031】
【発明の効果】
本発明に係る含フッ素エラストマーは、それが本来有する耐熱性、成形加工性および耐圧縮永久歪特性に加えて、低温特性(ガラス転移温度)および耐溶剤性(耐メタール性)にすぐれた加硫物を形成し得るので、Oリング、オイルシール、燃料ホース等の成形材料として有効に用いることができる。
【0032】
特に、この含フッ素エラストマーに瀝青質微粉末または偏平状充填剤を添加して過酸化物架橋したものは、TR10値(JIS K6261準拠)が−30℃以下でありかつメタノール膨潤率(JIS K6258準拠;25℃、168時間)が+50%以内であって、耐寒性、耐圧縮永久歪特性にすぐれているばかりではなく、ガソリンや含酸素燃料が用いられる自動車燃料に対する燃料遮蔽性の点でもすぐれているので、自動車燃料用シール材等として有効に用いることができる。耐燃料油性は、燃料油やアルコールばかりでななく、潤滑油、作動油等の油類や芳香族または脂肪族の炭化水素類についても発揮されるので、これらを収容した容器のシール材等としても用いられる。
【0033】
【実施例】
次に、実施例について本発明を説明する。
【0034】
参考例
攪拌機を備えた容量10Lのステンレス鋼製オートクレーブ中に、フッ化セシウム36g、ジグライム360gおよびCFOCF(CF)COF 4.18kgを仕込み、一夜攪拌した後−10℃に冷却し、そこにヘキサフルオロプロペンオキシド12.0kgを150g/時間の供給速度で仕込んだ。供給終了後、この温度を保ちながら2時間攪拌を継続した後室温に戻し、攪拌を停止して静置した。その後、オートクレーブの下部取出口より、フルオロカーボン相のみを注意深く抜き取った。得られたフルオロカーボン相15.9kgを、ガスクロマトグラフィー(GC)により分析した結果、下記の組成を有していた。

Figure 2004346087
【0035】
得られたフルオロカーボン相の1.2kgおよび無水炭酸カルシウム1.2kgを、攪拌機を備えた容量10Lのガラス製反応容器に仕込み、130℃に加熱した。炭酸ガスの発生が終了した後、内部を1Torr迄減圧し、未反応のフルオロカーボン混合物および極く少量のジグライム(合計30g)を回収した。得られた生成物1.0kgをGCにより分析した結果、以下の組成を有していた。ビニル化反応は、ほぼ定量的(90%以上)に進行するため、反応の前後で組成は殆ど変化しない。
Figure 2004346087
【0036】
得られたビニルエーテル化合物を蒸留し、それぞれのn値を有する化合物を単離した。各化合物の同定は、19F−NMR分析(ケミカルシフトはCFCl基準)によって行われた。
(n=2)MPrVE
Figure 2004346087
Figure 2004346087
Figure 2004346087
Figure 2004346087
Figure 2004346087
Figure 2004346087
Figure 2004346087
Figure 2004346087
Figure 2004346087
Figure 2004346087
【0037】
実施例1
容量500mlのステンレス鋼製オートクレーブ内を窒素ガスで置換し、脱気後下記反応媒体を仕込んだ。
界面活性剤CFCFCFOCF(CF)CFOCF(CF)COONH 30g
NaHPO・12H0 0.5g
イオン交換水 250ml
【0038】
オートクレーブ内を再び窒素ガスで置換し、脱気後以下の反応原料を仕込んだ。
フッ化ビニリデン[VdF] 40g(68.1%)
テトラフルオロエチレン[TFE] 6g(6.5%)
パーフルオロ(メチルビニルエーテル)[FMVE] 24g(15.8%)
CF=CFOCFCF(CF)OCFCF(CF)OCF [MPrVE] 40g(8.8%)
CF=CFOCFCFBr [FBrVE] 2g(0.8%)
ICFCFCFCFI [DIOFB] 0.5g
なお、カッコ内の百分率はモル%である。
【0039】
次いで、オートクレーブ内部の温度を50℃とし、そこに亜硫酸水素ナトリウム0.01gおよび過硫酸アンモニウム0.05gをそれぞれ0.3重量%水溶液として加え、重合反応を開始させた。2時間反応を行った後冷却し、残ガスを排出して乳化液を取出し、これに5重量%塩化カルシウム水溶液を加えて重合物を凝析させ、水洗、乾燥して、下記組成(19F−NMR法による)のエラストマー状共重合体を108g得た。
VdF 71モル%
TFE 7モル%
FMVE 14モル%
MPrVE 7.2モル%
FBrVE 0.8モル%
【0040】
このエラストマー状共重合体100部(重量、以下同じ)に、
MTカーボンブラック(キャンキャブ製品サーマックスN990) 30部
トリアリルイソシアヌレート(日本化成製品TAIC M60) 6部
有機過酸化物(日本油脂製品パーヘキサ25B−40) 1.4部
ZnO 4部
を加え、2本ロールミルで混和し、得られた硬化性組成物を180℃で10分間圧縮成形して厚さ2mmのシートおよびOリング(P24)を得、さらに200℃で10時間の二次加硫(オーブン加硫)を行った。
【0041】
これの加硫の際および加硫物について、次の各試験を行った。
硬化試験:モンサント・ディスク・レオメータを使用し、180℃でのt10, t90,ML,MHの値を測定
常態物性:JIS K6250,6253に準拠
圧縮永久歪:ASTM D395 Method Bに準拠して、P24 Oリングについて200℃、 70時間の値を測定
低温特性:ASTM D1329に準拠して、TR10,TR70値を測定
メタノール膨潤試験:25℃のメタノール中に70時間浸せき後の体積変化率を測定
【0042】
実施例2〜6、比較例1〜2
実施例1において、反応媒体、反応原料および反応条件が下記表1の如くに変更された。この表1には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度ηsp/cおよびガラス転移温度Tg(SEIKO I SSC5200使用)が併記されている。なお、比較例1では、得られた共重合体がメチルエチルケトンに完全に溶解しないため、溶液粘度ηsp/cの測定をすることができなかった(後述のヘキサフルオロベンゼン溶液としての測定は実施していない)。
Figure 2004346087
Figure 2004346087
【0043】
また、実施例2〜6および比較例1〜2で得られたエラストマー状共重合体を用い、実施例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について行われた各試験での測定結果は、実施例1における測定結果と共に、次の表2に示される。
Figure 2004346087
【0044】
実施例7〜11、比較例3
実施例1において、亜硫酸ナトリウム量が0.04gに、過硫酸アンモニウム量が0.2gにそれぞれ変更され、また反応媒体、反応原料および反応条件が下記表3の如くに変更された。この表3には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度ηsp/cおよびガラス転移温度Tgが併記されている。なお、比較例3では、得られた共重合体がメチルエチルケトンに完全に溶解しないため、溶液粘度ηsp/cの測定をすることができなかった(後述のヘキサフルオロベンゼン溶液としての測定は実施していない)。
Figure 2004346087
Figure 2004346087
【0045】
また、実施例7〜11および比較例3で得られたエラストマー状共重合体を用い、実施例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について行われた各試験での測定結果は、次の表4に示される。
Figure 2004346087
【0046】
実施例12
容量500mlのステンレス鋼製オートクレーブ内を窒素ガスで置換し、脱気後下記反応媒体を仕込んだ。
界面活性剤CFCFCFOCF(CF)CFOCF(CF)COONH 40g
NaHPO・12H0 0.5g
イオン交換水 200ml
【0047】
Figure 2004346087
【0048】
次いで、オートクレーブ内部の温度を50℃とし、そこに亜硫酸水素ナトリウム0.1gおよび過硫酸アンモニウム0.5gをそれぞれ3重量%水溶液として加え、重合反応を開始させた。10時間反応を行った後冷却し、残ガスを排出して乳化液を取出し、これに5重量%塩化カルシウム水溶液を加えて重合物を凝析させ、水洗、乾燥して、下記組成(19F−NMR法による)のエラストマー状共重合体を123g得た。
VdF 86モル%
FMVE 8モル%
MPrVE 5.7モル%
FDVE 0.3モル%
この生成エラストマー共重合体の溶液粘度ηsp/cは0.30dl/g、ガラス転移温度Tg(SEIKO I SSC5200を用いて測定)は−41.3℃であった。
【0049】
実施例13
実施例12において、下記反応原料を用いた以外は、同条件で重合反応が行われた。
VdF 42g (77.64%)
FMVE 18g (12.83%)
MPrVE 65g ( 9.27%)
CF=CFI 0.5g ( 0.28%)
ICFCFCFCFI 0.5g
123g得られたエラストマー状共重合体は、実施例12と同様の組成(19F−NMR法でVdF 86モル%、FMVE 8モル%、MPrVE 6モル%)であり、その溶液粘度ηsp/cは0.28dl/g、ガラス転移温度Tgは−41.6℃であった。
【0050】
以上の実施例12〜13で得られたエラストマー状共重合体を用い、実施例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について(ただし、圧縮成形温度は170℃、二次加硫時間は4時間に変更)行われた各試験での測定結果は、次の表5に示される。
Figure 2004346087
【0051】
実施例14、比較例4
実施例1において、反応媒体、反応原料および反応条件が下記表6の如くに変更された。この表6には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度ηsp/cおよびガラス転移温度Tgが併記されている。なお、FPVEは
CF=CFOCFCF(CF)OCFCF(CF)OCFCFCF
である。
Figure 2004346087
【0052】
また、実施例14および比較例4で得られたエラストマー状共重合体を用い、実施例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について行われた各試験での測定結果は、次の表7に示される。なお、比較例4の試験片には、著しい発泡が認められた。
Figure 2004346087
【0053】
実施例15〜17
実施例1において、反応媒体、反応開始剤、反応原料および反応条件が下記表8の如くに変更された。この表8には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度ηsp/cおよびガラス転移温度Tgが併記されている。得られた共重合体が、35℃の1重量%メチルエチルケトン溶液として完全に溶解しない場合には、35℃の1重量%ヘキサフルオロベンゼン溶液として溶液粘度ηsp/cの値を測定し、カッコを付してその値を表示した。
Figure 2004346087
Figure 2004346087
【0054】
実施例15〜17で得られたエラストマー状共重合体を用い、実施例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について(ただし、有機過酸化物量は2部に、二次加硫条件は230℃、20時間に変更)行われた各試験での測定結果は、次の表9に示される。
Figure 2004346087
【0055】
実施例18〜22
実施例1において、反応媒体、反応開始剤、反応原料および反応条件が下記表10の如くに変更された。この表10には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度ηsp/cおよびガラス転移温度Tgが併記されている。なお、ITrFEは
CF=CFI
である。また、実施例18〜20および22の溶液粘度ηsp/cは、前記と同様の理由で1重量%ヘキサフルオロベンゼン溶液(35℃)として測定した。
Figure 2004346087
Figure 2004346087
【0056】
実施例18〜22で得られたエラストマー状共重合体を用い、実施例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について(ただし、実施例18〜19での有機過酸化物量は2部に、実施例18〜20での二次加硫条件は230℃、20時間に、実施例21での圧縮成形温度は170℃、二次加硫時間は4時間にそれぞれ変更)の各試験での測定結果は、次の表11に示される。
Figure 2004346087
【0057】
実施例23〜25
実施例1において、反応媒体、反応開始剤、反応原料および反応条件が下記表12の如くに変更された。この表12には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度ηsp/cおよびガラス転移温度Tgが併記されている。なお、BDFEは
CF=CHBr
である。また、実施例23の溶液粘度ηsp/cは、前記と同様の理由で1重量%ヘキサフルオロベンゼン溶液(35℃)として測定した。
Figure 2004346087
Figure 2004346087
【0058】
実施例23〜25で得られたエラストマー状共重合体を用い、実施例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について(ただし、有機過酸化物量は2部に、二次加硫条件は230℃、20時間にそれぞれ変更)の各試験での測定結果は、次の表13に示される。なお、実施例25では、成形時厚さ2mmのシート表面に極くわずかの発泡が認められた。
Figure 2004346087
【0059】
実施例26
前記実施例1の含フッ素エラストマー 100部
MTカーボンブラック(サーマックスN990) 40部
水酸化カルシウム 5部
2,5−ジメチル−2,5−ジ(第3ブチルパーオキシ)ヘキサン 2部
トリアリルイソシアヌレート 5部
以上の各成分をニーダおよびオープンロールで混練し、得られた硬化性組成物を170℃で20分間圧縮成形して厚さ2mmのシートおよびOリング(P24)を得、さらに160℃で2時間の二次加硫(オーブン加硫)を行った。
【0060】
これらの加硫物について、次の各試験を行った。
常態物性:JIS K6253,6251に準拠
耐寒性:ASTM D1329に準拠して、TR10値を測定
耐燃料油性:JIS K6258に準拠して、25℃の燃料油Cまたはメタノール中に 168時間浸せき後の体積変化率を測定
圧縮永久歪:ASTM D395 Method Bに準拠して、P24 Oリングについて200℃、 70時間または336時間の値を測定
腐食試験:2枚のSPCC板(JIS G3141に規定された冷間圧延鋼板;50×20×2 mm)間にゴム試験片(30×10×2mm)を挟み、これを2体積%の Aggressive Solution(水、塩酸、硫酸ナトリウム混合溶液)を添加した100℃の燃料油C/メタノール(体積比1:1)混合燃料中に168時間浸せき後、ゴム試験片を取り出し、SPCC板とゴム試験片とが接触していた部分を目視で観察し、腐食の有無を確認した
燃料透過性試験:上部が開口したSUS304製有底円筒状試験容器(高さ50mm、直径50mm、肉厚5mm)の内部に燃料油Cを約40ml入れ、その開口部を封止するように円板状ゴム試験片(直径50mm、厚さ2mm)をかぶせ、そのゴム試験片周囲を断面逆L字型の円筒状枠体で固定した測定用治具を用意し、その治具を70℃の恒温槽に入れ、24時間毎に治具全体の重量を測定し、その重量変化から燃料透過係数を求めた
低温シール試験:中心に加圧プレスを挿通させ、加圧プレス下方に空間部を設けた上部治具とこれとの接触面にP24 Oリングを装着させた下部治具とからなり、前記空間部にフッ素系不活性液体(3M社製品フロリナートFC77(R))を封入し、この試験用治具を−45℃の恒温槽内に1時間放置した後、加圧プレスにより不活性液体に1MPaの圧力をかけ、上部治具と下部治具との接触面(空間部が設けられていない接触面)からの不活性液体の漏れの有無を目視で確認した
燃料シール試験:上記低温シール試験において、フッ素系不活性液体の封入前に、メタノールを封入し、25℃で168時間放置した後これを除去する操作が行われた。
【0061】
実施例27
実施例26において、含フッ素エラストマーとして前記実施例5で得られたものが同量用いられた。
【0062】
実施例28
実施例26において、MTカーボンブラック量が20部に変更され、瀝青質微粉末(Keystone Filler & Mfg社製品Mineral Black 325BA;平均粒径6μm)20部が用いられた。
【0063】
実施例29
実施例26において、MTカーボンブラック量が20部に変更され、偏平状グラファイト(平均粒子径10μm、アスペクト比20)20部が用いられた。
【0064】
比較例5
実施例26において、含フッ素エラストマーとして市販品(デュポン社製品GLT505)が同量用いられた。
【0065】
比較例6
実施例26において、含フッ素エラストマーとして市販品(デュポン社製品GFLT501)が同量用いられた。
【0066】
比較例7
実施例26において、水酸化カルシウム量が1部に変更された。
【0067】
以上の実施例26〜29および比較例5〜7で得られた測定結果は、次の表14に示される。この結果から、各実施例のものは耐寒性と耐燃料油性とにすぐれ、自動車燃料用シール材料として好適であることが分る。また、瀝青質微粉末の配合により耐圧縮永久歪特性が、偏平状充填剤の配合により燃料油遮蔽性がそれぞれ改善されていることが分る。
Figure 2004346087
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluorine-containing elastomer and a composition thereof. More specifically, it relates to a fluorine-containing elastomer capable of providing a vulcanizate excellent in moldability, low-temperature properties and solvent resistance, and a composition thereof.
[0002]
[Prior art]
Fluorine-containing elastomers containing vinylidene fluoride-tetrafluoroethylene-perfluoro (methyl vinyl ether) as a main constituent unit not only have excellent heat resistance and solvent resistance characteristic of fluorine-containing elastomers, but also have good low-temperature properties. Because of this, it is used in various industrial fields including the automobile industry. However, in response to recent technological advances, such fluorine-containing elastomers are often difficult to cope with, and in particular, low-temperature characteristics and resistance to alcoholic solvents such as methanol have become strictly required. ing. Further, with the recent regulations on exhaust gas and the like, further heat resistance, solvent resistance and low-temperature characteristics are required for fluorine-containing elastomers.
[0003]
In order to solve such a problem, it has been proposed that, in the above-mentioned fluorine-containing elastomer, a monomer having a plurality of ether bonds in a side chain is copolymerized instead of perfluoro (methyl vinyl ether) (Japanese Patent Publication (Kokoku) Heisei). No. 5-13961). In this case, in order to make the obtained copolymer an elastomer, this monomer must be copolymerized in a large amount, and if the copolymerization ratio is small, it becomes a semi-resin and the low-temperature properties are impaired. Become like Actually, the copolymerization ratio is 12 to 50 mol%, and the copolymer composition in each example is 25 to 32 mol%. However, such fluorine-containing elastomers containing a large amount of such monomers have poor mechanical strength, and also have problems such as poor foamability during molding, such as poor foamability.
[0004]
In addition, since the sealing material for automobile fuel is required to have perfect fuel oil resistance, it is currently used mainly for commercially available fluoro rubbers. For this reason, oxygen-containing fuels such as ether and alcohol have been used. Oxygen-containing fuel can be dealt with by increasing the fluorine content in fluororubber, but increasing the fluorine content deteriorates cold resistance and may cause fuel leakage in cold winter regions. . Conversely, when the fluorine content is reduced, the cold resistance is improved, but the resistance to oxygen-containing fuel is lost, and it is very difficult to satisfy both of them at the same time.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a fluorine-containing elastomer which can provide a vulcanizate having excellent low-temperature properties and solvent resistance without impairing the moldability and compression set resistance inherent in the fluorine-containing elastomer, and a cold-resistant, An object of the present invention is to provide a composition excellent in fuel oil properties and the like.
[0006]
[Means for Solving the Problems]
The object of the present invention is that the copolymer composition
(A) 50-85 mol% of vinylidene fluoride
(B) 0 to 25 mol% of tetrafluoroethylene
(C) Perfluoro (methyl vinyl ether) 7 to 20 mol%
(D) CF2= CFO [CF2CF (CF3) O] nCF3                                  3 to 15 mol%
(However, n is an integer of 2 to 6)
(E) RfX (Rf is an unsaturated fluorohydrocarbon group having 2 to 8 carbon atoms, 0.1 to 2 mol%
The group may have one or more ether bonds,
X is bromine or iodine)
This is achieved by a fluorine-containing elastomer that is: This fluoroelastomer preferably has the general formula R (Br) n (I) m (where R is a saturated fluorohydrocarbon group having 2 to 6 carbon atoms or a saturated chlorofluorohydrocarbon group, and n and m are 0, 1 or 2 and m + n is 2) in the presence of a bromine-containing and / or iodine compound.
[0007]
Also, 0.1 to 10 parts by weight of an organic peroxide, 0.1 to 10 parts by weight of a polyfunctional unsaturated compound and 2 or more parts by weight of an acid acceptor were added per 100 parts by weight of the fluorine-containing elastomer. Since the fluorine-containing elastomer composition gives a crosslinked product excellent in cold resistance and fuel oil resistance, this crosslinked product is suitably used as a sealing material for automobile fuel.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The copolymerization ratio of the fluorinated elastomer is such that (a) vinylidene fluoride is 50 to 85 mol%, preferably 60 to 85 mol%, and (b) tetrafluoroethylene is 0 to 25 mol%, preferably 0 to 20 mol%. Mol%, (c) 7 to 20 mol%, preferably 7 to 15 mol% of perfluoro (methyl vinyl ether), and (d) 3 to 15 mol%, preferably 3 to 15 mol% of perfluorovinylether represented by the above general formula. 10 mol%, (e) 0.1 to 2 mol%, preferably 0.3 to 1.5 mol% of the bromine-containing or iodine-unsaturated compound represented by the above general formula. It is selected as a range that can provide a vulcanizate having low-temperature properties and solvent resistance.
[0009]
The following components (b) to (e) are copolymerized with the tetrafluoroethylene of the component (a).
When tetrafluoroethylene as the component (b) is further copolymerized, the solvent resistance can be significantly improved. However, if the composition ratio of the component (b) is too large, the low-temperature characteristics are impaired. Therefore, the ratio is preferably 25 mol% or less, more preferably 20 mol% or less. The copolymerization of the component (b) significantly improves the resistance to an oxygen-containing compound mixed fuel such as a methanol-gasoline mixed fuel and an ethanol-gasoline mixed fuel and an alcohol fuel such as methanol and ethanol.
The component (c), perfluoro (methyl vinyl ether), imparts flexibility to the obtained copolymer and has low-temperature properties, particularly TR70It is an essential component for improving the value.
As the perfluorovinyl ether of the component (d), a single component of the compound represented by the general formula may be used, or a mixture of two or more kinds having various n values may be used. A similar perfluorovinyl ether is represented by the general formula CF2= CFO [CF2CF (CF3) O] mCF2CF2CF3Is known (Japanese Patent Publication No. 5-13961), but according to the study results of the present inventors, as shown in the results of Comparative Example 5 below, copolymerization of this monomer has low-temperature properties. However, a decrease in the molecular weight, a decrease in molding processability such as foaming during molding, a decrease in mechanical strength, and the like are observed. However, this compound can be copolymerized within a range that does not impair the desired properties, for example, at a ratio of 1 mol% or less.
The perfluorovinyl ether represented by the above general formula is converted to CF in the presence of a cesium fluoride catalyst, a diglyme solvent or the like.3OCF (CF3) By reacting COF with hexafluoropropene oxide followed by a reaction with anhydrous potassium carbonate and a pyrolysis reaction, the product being a mixture of n = 2-6, but fractionating it Can be used to separate perfluorovinyl ethers having various n values, which can be used alone. Alternatively, they can be used as a mixture without separating them.
As the bromine-containing or iodine compound of the component (e), for example, CF2= CFOCF2CF2Br, CF2= CFOCF2CF (CF3) OCF2CF2Br, CF2= CFBr, CF2= CHBr, CF2= CFI, CF2R = groups such as ICHI are unsaturated fluorohydrocarbon groups having 2 to 8 carbon atoms, which may have one or more ether bonds in the group (Japanese Patent Publication No. 54-1585). Cf.), preferably CF2= CFOCF2CF2Br, CF2= CFI, CF2= CHI is used.
[0010]
Further, for the purpose of adjusting the molecular weight of the fluorine-containing elastomer-copolymer according to the present invention or for the purpose of suppressing the foaming during the molding processability, particularly the curing step, it is represented by the general formula R (Br) n (I) m. It is very effective to carry out the copolymerization reaction in the presence of a bromine-containing compound and / or an iodine compound (see Japanese Patent Publication No. 54-1585).
[0011]
Such compounds include, for example, ICF2CF2CF2CF2I, ICF2CF2CF2CF2Br, ICF2CF2Br etc. are used, especially ICF2CF2CF2CF2I is preferable from the viewpoint of curing characteristics and the like. Other examples are described in JP-B-63-308008 and JP-B-58-4728.
[0012]
These compounds act as a chain transfer agent and act to regulate the molecular weight of the resulting copolymer. Further, as a result of the chain transfer reaction, a copolymer having a bromine and / or iodine atom bonded to a molecular terminal is obtained, and these sites serve as hardening sites in the vulcanization molding step. However, if the proportion used in the polymerization step is high, the mechanical strength of the final molded article is reduced, so that the proportion used is about 1% by weight or less, preferably about 0.1% by weight, based on the total monomer weight. 5 to 0.01% by weight.
[0013]
Further, in order to improve the compression set resistance of the vulcanized molded product, a perfluorodivinyl ether as described below may be copolymerized. The use ratio is about 1% by weight or less, preferably about 0.5 to 0.1% by weight, based on the total monomer weight, from the viewpoint of the mechanical properties of the molded article.
CF2= CFOCF2CF (CF3) OCF2CF2OCF = CF2
[0014]
Further, other monomers, for example, fluorinated monomers such as trifluoroethylene, hexafluoropropene, and chlorotrifluoroethylene may be used as long as the desired properties required for the fluorinated elastomer of the present invention are not impaired. Further, they may be copolymerized.
[0015]
The fluorinated elastomer of the present invention can be produced by an aqueous emulsion polymerization method or an aqueous suspension polymerization method. In the aqueous emulsion polymerization method, any of a redox system using a water-soluble peroxide alone or a combination thereof with a water-soluble reducing substance can be used as a reaction initiator system. Examples of the water-soluble peroxide include ammonium persulfate, potassium persulfate, and sodium persulfate, and examples of the water-soluble reducing substance include sodium sulfite and sodium hydrogen sulfite. At this time, as a stabilizer of the aqueous emulsion, a pH adjuster (buffering agent) such as sodium monohydrogen phosphate, sodium dihydrogen phosphate, potassium monohydrogen phosphate, potassium dihydrogen phosphate and the like are also used.
[0016]
As the emulsifier used in the emulsion polymerization method, a fluorinated carboxylate is generally used (see Japanese Patent Publication No. 5-13961), preferably
CF3CF2CF2O [CF (CF3) CF2O] nCF (CF3) COONH4
n: 1 or 2
Is used. These emulsifiers are used as aqueous solutions of about 1 to 30% by weight, preferably about 5 to 20% by weight. If the amount of the emulsifier is smaller than this, the monomer and the resulting copolymer cannot be uniformly dispersed in the aqueous medium, and if the amount is too large, it is economically disadvantageous.
[0017]
The copolymerization reaction is carried out at a temperature of about 20-80C, preferably about 25-60C. If the polymerization temperature is too high, problems such as foaming occur during molding and the compression set resistance of the vulcanized molded product also deteriorates. Further, the polymerization pressure is generally performed at about 5 MPa or less.
[0018]
The fluorinated elastomer thus obtained has a glass transition temperature Tg of -30 to -45 ° C. The molecular weight of the obtained copolymer is not particularly limited, but the number average molecular weight Mn (GPC method, tetrahydrofuran solvent) is desirably about 10,000 to 1,000,000, preferably about 50,000 to 300,000. Further, the solution viscosity ηsp / c (35 ° C., 1% by weight methyl ethyl ketone solution) as an index of the molecular weight is preferably about 0.1 to 2 dl / g, and more preferably about 0.2 to 1 dl / g. Depending on the composition or molecular weight of the obtained copolymer, it may be insoluble or insoluble in methyl ethyl ketone, and a 1% by weight methyl ethyl ketone solution may not be prepared. In this case, hexafluorobenzene was used as a solvent, and the solution viscosity ηsp / c was measured as a 1% by weight hexafluorobenzene solution (35 ° C.). The value of the solution viscosity ηsp / c is desirably about 0.1 to 7 dl / g, preferably 0.3 to 5 dl / g.
[0019]
The fluorine-containing elastomer having such properties can be cured by various conventionally known vulcanization methods, for example, a peroxide vulcanization method, a polyamine vulcanization method, a polyol vulcanization method or an irradiation method such as radiation or electron beam. However, the peroxide vulcanization method using organic peroxide has excellent mechanical strength, and the structure of the cross-linking point forms a stable carbon-carbon bond, which results in chemical resistance, abrasion resistance, solvent resistance, etc. It is particularly preferably used because it gives an excellent vulcanizate.
[0020]
Examples of the organic peroxide used in the peroxide vulcanization method include 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane and 2,5-dimethyl-2,5-bis (third Butylperoxy) hexyne-3, benzoyl peroxide, bis (2,4-dichlorobenzoyl) peroxide, dicumyl peroxide, ditertiary butyl peroxide, tertiary butylcumyl peroxide, tertiary butylperoxybenzene, 1,1-bis (tert-butylperoxy) -3,5,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroxyperoxide, α, α′-bis (tert-butylperoxy) -P-diisopropylbenzene, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, tertiary butyl peroxy Siisopropyl carbonate and the like.
[0021]
In the peroxide vulcanization method using these organic peroxides, a polyfunctional unsaturated compound such as tri (meth) allyl isocyanurate, tri (meth) allyl cyanurate, triallyl trimellitate, It is preferable to use N, N'-m-phenylenebismaleimide, diallyl phthalate, tris (diallylamine) -s-triazine, triallyl phosphite, 1,2-polybutadiene, ethylene glycol diacrylate, diethylene glycol diacrylate, or the like in combination. By using these co-crosslinking agents in combination, it is possible to obtain a vulcanizate having better vulcanization characteristics, mechanical strength, compression set characteristics and the like.
[0022]
Further, as the acid acceptor, a hydrotalcite compound or an oxide or hydroxide of a divalent metal, for example, an oxide or hydroxide of calcium, magnesium, lead, zinc or the like can be used.
[0023]
The above components to be blended in the peroxide vulcanization system contain the organic peroxide in an amount of about 0.1 to 10 parts by weight, preferably about 0.5 to 5 parts by weight, per 100 parts by weight of the fluorine-containing elastomer. If necessary, the co-crosslinking agent is used in an amount of about 0.1 to 10 parts by weight, preferably about 0.5 to 5 parts by weight, and the acid acceptor is used in an amount of about 2 parts by weight or more, preferably about 3 to 20 parts by weight. They are used in parts by weight. If the proportion of the acid acceptor is lower than this, the corrosion resistance to the metal will be impaired.
[0024]
At the time of vulcanization, conventionally known fillers, reinforcing agents, plasticizers, lubricants, processing aids, pigments, and the like can be appropriately compounded in addition to the above components. When carbon black is used as a filler or reinforcing agent, it is generally used in an amount of about 10 to 50 parts by weight per 100 parts by weight of the fluoroelastomer.
[0025]
In addition, the addition of bituminous fine powder improves the compression set resistance and the longevity of seal materials etc. by improving heat resistance, and the addition of flat filler improves fuel oil barrier properties. As a result, it is possible to further suppress the evaporation of the vehicle fuel and the like to be sealed.
[0026]
Bituminous fine powder is obtained by pulverizing a bituminous substance such as coal and pulverizing it to a size of about 10 μm or less, generally about 1 to 10 μm, and preferably about 3 to 8 μm. Is used. If the average particle diameter is larger than this, the breaking strength and the breaking elongation of the rubber decrease, and the practicality in terms of strength is impaired. Actually, a commercially available product such as Mineral Black 325BA manufactured by Keystone Filler & Mfg is used as it is. These bituminous fine powders are used in an amount of about 40 parts by weight or less, preferably about 5 to 30 parts by weight, per 100 parts by weight of the fluoroelastomer. If it is used in a proportion higher than this, the viscosity of the composition becomes too high, which hinders kneading and molding.
[0027]
Further, as the flat filler, for example, at least one kind of clay, mica, graphite, molybdenum disulfide and the like, the average particle diameter is about 0.5 to 50 μm, preferably about 5 to 30 μm, and the aspect ratio is Those having 3 or more, preferably 5 to 30 are used. If the average particle diameter or the aspect ratio is less than this, no improvement in the fuel shielding property is observed. On the other hand, if the average particle size is larger than this, the breaking strength and the breaking elongation of the rubber are reduced, and the practicality in terms of strength is impaired. These flat fillers are used in an amount of about 40 parts by weight or less, preferably about 5 to 30 parts by weight, per 100 parts by weight of the fluoroelastomer. If it is used in a proportion higher than this, the viscosity of the composition increases and kneading becomes impossible, and furthermore, the sealing material after crosslinking becomes very hard and the sealing property is impaired.
[0028]
The above components are kneaded by a commonly used mixing method such as roll mixing, kneader mixing, Banbury mixing, solution mixing, and the kneaded mixture is generally pressed at about 100 to 250 ° C. for about 1 to 60 minutes. Vulcanization is performed by vulcanization, and preferably oven vulcanization (secondary vulcanization) is further performed at about 150 to 250 ° C. for about 30 hours or less.
[0029]
The obtained fluorine-containing elastomer gives a vulcanizate which exhibits the low-temperature properties shown below after crosslinking with an organic peroxide.
-43 ° C ≦ TR10<-30 ℃ <TR70≦ −20 ° C.
Where TR10, TR70As for the value, after the sample was stretched by 50% in the TR test and vitrified to a glass transition temperature Tg or lower, the strain was relaxed by gradually increasing the temperature, and the sample was recovered by 10% or 70% with respect to the initial elongation. Shows the temperature.
[0030]
In addition, the TR10, TR70In order to satisfy the above condition, the total composition of the perfluoro (methyl vinyl ether) as the component (c) and the perfluorovinyl ether as the component (d) is at least 10 mol%, preferably at least 15 mol%. It is desirable. If the total amount of these components is 10 mol% or less, the obtained copolymer may be semi-resin-like or may have low-temperature properties, particularly TR.70The value becomes worse.
[0031]
【The invention's effect】
The fluoroelastomer according to the present invention has excellent low-temperature properties (glass transition temperature) and solvent resistance (metallic resistance) in addition to its inherent heat resistance, moldability and compression set resistance. It can be used as a molding material for O-rings, oil seals, fuel hoses, etc.
[0032]
In particular, those obtained by adding bituminous fine powder or a flat filler to this fluorine-containing elastomer and performing peroxide crosslinking are referred to as TR.10Value (according to JIS K6261) is -30 ° C or less and the methanol swelling ratio (according to JIS K6258; 25 ° C, 168 hours) is within + 50%, and it is excellent in cold resistance and compression set resistance. In addition, it is excellent in fuel shielding properties against automobile fuel using gasoline or oxygen-containing fuel, and thus can be effectively used as a sealing material for automobile fuel. Fuel oil resistance is exhibited not only for fuel oils and alcohols, but also for oils such as lubricating oils and hydraulic oils, and aromatic or aliphatic hydrocarbons. Is also used.
[0033]
【Example】
Next, the present invention will be described with reference to examples.
[0034]
Reference example
In a 10 L stainless steel autoclave equipped with a stirrer, 36 g of cesium fluoride, 360 g of diglyme and CF3OCF (CF3) 4.18 kg of COF was charged, stirred overnight, cooled to -10 ° C, and 12.0 kg of hexafluoropropene oxide was charged at a feed rate of 150 g / hour. After the completion of the supply, stirring was continued for 2 hours while maintaining the temperature, and then the temperature was returned to room temperature. Thereafter, only the fluorocarbon phase was carefully extracted from the lower outlet of the autoclave. The obtained fluorocarbon phase (15.9 kg) was analyzed by gas chromatography (GC), and as a result, it had the following composition.
Figure 2004346087
[0035]
1.2 kg of the obtained fluorocarbon phase and 1.2 kg of anhydrous calcium carbonate were charged into a 10 L glass reactor equipped with a stirrer and heated to 130 ° C. After the generation of carbon dioxide gas was completed, the pressure inside the inside was reduced to 1 Torr, and an unreacted fluorocarbon mixture and a very small amount of diglyme (total 30 g) were recovered. As a result of analyzing 1.0 kg of the obtained product by GC, it had the following composition. Since the vinylation reaction proceeds almost quantitatively (90% or more), the composition hardly changes before and after the reaction.
Figure 2004346087
[0036]
The obtained vinyl ether compound was distilled, and a compound having each n value was isolated. Identification of each compound19F-NMR analysis (chemical shift is CFCl3Criteria).
(N = 2) MPr2VE
Figure 2004346087
Figure 2004346087
Figure 2004346087
Figure 2004346087
Figure 2004346087
Figure 2004346087
Figure 2004346087
Figure 2004346087
Figure 2004346087
Figure 2004346087
[0037]
Example 1
The inside of a 500 ml stainless steel autoclave was replaced with nitrogen gas, and after degassing, the following reaction medium was charged.
Surfactant CF3CF2CF2OCF (CF3) CF2OCF (CF3) COONH4          30g
Na2HPO4・ 12H20 0.5g
250ml ion exchange water
[0038]
The inside of the autoclave was replaced with nitrogen gas again, and after degassing, the following reaction raw materials were charged.
40 g (68.1%) of vinylidene fluoride [VdF]
6 g (6.5%) of tetrafluoroethylene [TFE]
24 g (15.8%) of perfluoro (methyl vinyl ether) [FMVE]
CF2= CFOCF2CF (CF3) OCF2CF (CF3) OCF3  [MPr2VE] 40 g (8.8%)
CF2= CFOCF2CF2Br [FBrVE] 2 g (0.8%)
ICF2CF2CF2CF20.5 g of I [DIOFB]
The percentages in parentheses are mol%.
[0039]
Next, the temperature inside the autoclave was set to 50 ° C., and 0.01 g of sodium hydrogen sulfite and 0.05 g of ammonium persulfate were added as 0.3% by weight aqueous solutions, respectively, to initiate a polymerization reaction. After the reaction was carried out for 2 hours, the mixture was cooled, the residual gas was discharged, and the emulsion was taken out. A 5% by weight aqueous solution of calcium chloride was added to coagulate the polymer, washed with water and dried to obtain the following composition (19108 g of an elastomeric copolymer (by F-NMR method) was obtained.
VdF 71 mol%
TFE 7 mol%
FMVE 14 mol%
MPr2VE 7.2 mol%
FBrVE 0.8 mol%
[0040]
To 100 parts (weight, the same applies hereinafter) of this elastomeric copolymer,
MT carbon black (Canmax product Thermax N990) 30 parts
Triallyl isocyanurate (TAIC M60, Nippon Kasei) 6 parts
Organic peroxide (Nippon Oil & Fat Products Perhexa 25B-40) 1.4 parts
4 parts of ZnO
And the mixture is mixed with a two-roll mill, and the obtained curable composition is compression-molded at 180 ° C. for 10 minutes to obtain a sheet and an O-ring (P24) having a thickness of 2 mm. Vulcanization (oven vulcanization) was performed.
[0041]
The following tests were performed on the vulcanized product and on the vulcanized product.
Curing test: t at 180 ° C. using Monsanto disk rheometer10, T90, ML, MH values
Normal properties: in accordance with JIS K6250,6253
Compression set: Measured at 200 ° C. for 70 hours for P24 O-ring in accordance with ASTM D395 Method B
Low temperature characteristics: TR according to ASTM D132910, TR70Measure value
Methanol swelling test: Measure volume change rate after immersion in methanol at 25 ° C for 70 hours
[0042]
Examples 2-6, Comparative Examples 1-2
In Example 1, the reaction medium, reaction raw materials, and reaction conditions were changed as shown in Table 1 below. Table 1 also shows the produced amount of the produced elastomer copolymer, the copolymer composition, the solution viscosity ηsp / c, and the glass transition temperature Tg (using SEIKO I SSC5200). In Comparative Example 1, the solution viscosity ηsp / c could not be measured because the obtained copolymer was not completely dissolved in methyl ethyl ketone (measurement as a hexafluorobenzene solution described below was performed. Absent).
Figure 2004346087
Figure 2004346087
[0043]
Using the elastomeric copolymers obtained in Examples 2 to 6 and Comparative Examples 1 and 2, a curable composition was prepared and vulcanized in the same manner as in Example 1; The measurement results in each test performed on the sulphate are shown in Table 2 below together with the measurement results in Example 1.
Figure 2004346087
[0044]
Examples 7 to 11, Comparative Example 3
In Example 1, the amount of sodium sulfite was changed to 0.04 g, the amount of ammonium persulfate was changed to 0.2 g, and the reaction medium, reaction raw materials and reaction conditions were changed as shown in Table 3 below. Table 3 also shows the amount of the produced elastomer copolymer, the copolymer composition, the solution viscosity ηsp / c, and the glass transition temperature Tg. In Comparative Example 3, since the obtained copolymer was not completely dissolved in methyl ethyl ketone, the solution viscosity ηsp / c could not be measured (the measurement as a hexafluorobenzene solution described later was performed. Absent).
Figure 2004346087
Figure 2004346087
[0045]
Using the elastomeric copolymers obtained in Examples 7 to 11 and Comparative Example 3, a curable composition was prepared and vulcanized in the same manner as in Example 1; Table 4 shows the measurement results of the tests performed for each test.
Figure 2004346087
[0046]
Example 12
The inside of a 500 ml stainless steel autoclave was replaced with nitrogen gas, and after degassing, the following reaction medium was charged.
Surfactant CF3CF2CF2OCF (CF3) CF2OCF (CF3) COONH4            40g
Na2HPO4・ 12H20 0.5g
Ion exchange water 200ml
[0047]
Figure 2004346087
[0048]
Next, the temperature inside the autoclave was set to 50 ° C., and 0.1 g of sodium hydrogen sulfite and 0.5 g of ammonium persulfate were added as 3% by weight aqueous solutions, respectively, to initiate a polymerization reaction. After the reaction was carried out for 10 hours, the mixture was cooled, the residual gas was discharged, the emulsion was taken out, a 5% by weight aqueous solution of calcium chloride was added to coagulate the polymer, washed with water and dried to obtain the following composition (19123 g of an elastomeric copolymer (by F-NMR method) was obtained.
86 mol% of VdF
FMVE 8 mol%
MPr4VE 5.7 mol%
FDVE 0.3 mol%
The solution viscosity ηsp / c of the resulting elastomeric copolymer was 0.30 dl / g, and the glass transition temperature Tg (measured using SEIKO I SSC5200) was -41.3 ° C.
[0049]
Example 13
A polymerization reaction was carried out under the same conditions as in Example 12 except that the following reaction raw materials were used.
VdF 42 g (77.64%)
FMVE 18g (12.83%)
MPr4VE 65g (9.27%)
CF2= CFI 0.5 g (0.28%)
ICF2CF2CF2CF2I 0.5g
The obtained elastomeric copolymer (123 g) had the same composition as in Example 12 (1986 mol% of VdF, 8 mol% of FMVE, MPr by F-NMR method4VE 6 mol%), the solution viscosity ηsp / c was 0.28 dl / g, and the glass transition temperature Tg was -41.6 ° C.
[0050]
Using the elastomeric copolymers obtained in the above Examples 12 and 13, a curable composition was prepared and vulcanized in the same manner as in Example 1, and at the time of vulcanization and on the vulcanized product (however, (The compression molding temperature was changed to 170 ° C. and the secondary vulcanization time was changed to 4 hours.) The results of the tests performed are shown in Table 5 below.
Figure 2004346087
[0051]
Example 14, Comparative Example 4
In Example 1, the reaction medium, reaction raw materials and reaction conditions were changed as shown in Table 6 below. Table 6 also shows the amount of the produced elastomer copolymer, the copolymer composition, the solution viscosity ηsp / c, and the glass transition temperature Tg. Note that FP3VE is
CF2= CFOCF2CF (CF3) OCF2CF (CF3) OCF2CF2CF3
It is.
Figure 2004346087
[0052]
Using the elastomeric copolymers obtained in Example 14 and Comparative Example 4, a curable composition was prepared and vulcanized in the same manner as in Example 1, and the vulcanized product was cured at the time of vulcanization. Table 7 below shows the measurement results of each test. In addition, remarkable foaming was observed in the test piece of Comparative Example 4.
Figure 2004346087
[0053]
Examples 15 to 17
In Example 1, the reaction medium, reaction initiator, reaction raw materials and reaction conditions were changed as shown in Table 8 below. Table 8 also shows the amount of the produced elastomer copolymer, the copolymer composition, the solution viscosity ηsp / c, and the glass transition temperature Tg. If the obtained copolymer is not completely dissolved as a 1% by weight methyl ethyl ketone solution at 35 ° C., the solution viscosity ηsp / c is measured as a 1% by weight hexafluorobenzene solution at 35 ° C. And displayed the value.
Figure 2004346087
Figure 2004346087
[0054]
Using the elastomeric copolymers obtained in Examples 15 to 17, a curable composition was prepared and vulcanized in the same manner as in Example 1; The oxide amount was 2 parts, and the secondary vulcanization conditions were changed to 230 ° C. and 20 hours.) The results of the tests performed are shown in Table 9 below.
Figure 2004346087
[0055]
Examples 18 to 22
In Example 1, the reaction medium, the reaction initiator, the reaction raw materials and the reaction conditions were changed as shown in Table 10 below. Table 10 also shows the amount of the produced elastomer copolymer, the copolymer composition, the solution viscosity ηsp / c, and the glass transition temperature Tg. ItrFE is
CF2= CFI
It is. The solution viscosity ηsp / c of each of Examples 18 to 20 and 22 was measured as a 1% by weight hexafluorobenzene solution (35 ° C.) for the same reason as described above.
Figure 2004346087
Figure 2004346087
[0056]
Using the elastomeric copolymers obtained in Examples 18 to 22, a curable composition was prepared and vulcanized in the same manner as in Example 1; The amount of the organic peroxide in Examples 18 to 19 was 2 parts, the secondary vulcanization conditions in Examples 18 to 20 were 230 ° C for 20 hours, and the compression molding temperature in Example 21 was 170 ° C and the secondary vulcanization. (The time was changed to 4 hours each.) The measurement results in each test are shown in Table 11 below.
Figure 2004346087
[0057]
Examples 23 to 25
In Example 1, the reaction medium, the reaction initiator, the reaction raw materials and the reaction conditions were changed as shown in Table 12 below. Table 12 also shows the amount of the produced elastomer copolymer, the copolymer composition, the solution viscosity ηsp / c, and the glass transition temperature Tg. In addition, BDFE is
CF2= CHBr
It is. The solution viscosity ηsp / c of Example 23 was measured as a 1% by weight hexafluorobenzene solution (35 ° C.) for the same reason as described above.
Figure 2004346087
Figure 2004346087
[0058]
Using the elastomeric copolymers obtained in Examples 23 to 25, a curable composition was prepared and vulcanized in the same manner as in Example 1; Table 13 shows the measurement results of each test (the amount of oxide was changed to 2 parts, and the secondary vulcanization conditions were changed to 230 ° C and 20 hours, respectively). In Example 25, very slight foaming was observed on the surface of the sheet having a thickness of 2 mm during molding.
Figure 2004346087
[0059]
Example 26
100 parts of the fluorine-containing elastomer of Example 1
MT carbon black (Thermax N990) 40 parts
5 parts of calcium hydroxide
2,5-dimethyl-2,5-di (tert-butylperoxy) hexane 2 parts
Triallyl isocyanurate 5 parts
The above components are kneaded with a kneader and an open roll, and the obtained curable composition is compression-molded at 170 ° C. for 20 minutes to obtain a sheet and an O-ring (P24) having a thickness of 2 mm, and further at 160 ° C. for 2 hours. Was subjected to secondary vulcanization (oven vulcanization).
[0060]
The following tests were performed on these vulcanized products.
Normal properties: JIS K6253,6251
Cold resistance: TR according to ASTM D132910Measure value
Fuel oil resistance: Measure the volume change rate after immersion in fuel oil C or methanol at 25 ° C for 168 hours in accordance with JIS K6258.
Compression set: Measured at 200 ° C. for 70 hours or 336 hours for P24 O-ring in accordance with ASTM D395 Method B
Corrosion test: A rubber test piece (30 × 10 × 2 mm) is sandwiched between two SPCC plates (cold rolled steel plate specified in JIS G3141; 50 × 20 × 2 mm), and this is a 2% by volume aggressive solution. After immersing in a fuel oil C / methanol (volume ratio 1: 1) mixed fuel at 100 ° C. to which (water, hydrochloric acid, sodium sulfate mixed solution) was added for 168 hours, a rubber test piece was taken out, and an SPCC plate and a rubber test piece were taken out. Was visually observed to confirm the presence or absence of corrosion
Fuel permeability test: Approximately 40 ml of fuel oil C is placed in a SUS304 bottomed cylindrical test container (height 50 mm, diameter 50 mm, wall thickness 5 mm) having an open top, and a circle is formed so as to seal the opening. A jig for measurement was prepared in which a plate-like rubber test piece (diameter: 50 mm, thickness: 2 mm) was covered, and the periphery of the rubber test piece was fixed by a cylindrical frame having an inverted L-shaped cross section. The jig was placed in a constant temperature bath, the weight of the entire jig was measured every 24 hours, and the fuel permeability coefficient was determined from the change in the weight.
Low-temperature seal test: An upper jig in which a pressure press is inserted at the center and a space is provided below the pressure press, and a lower jig in which a P24 O-ring is mounted on a contact surface with the press, and the space is formed. A fluorine-based inert liquid (Fluorinert FC77 (R) manufactured by 3M) is sealed in the container, and the test jig is left in a constant temperature bath at −45 ° C. for 1 hour. Pressure was applied, and the presence or absence of leakage of the inert liquid from the contact surface between the upper and lower jigs (the contact surface where no space was provided) was visually checked.
Fuel seal test: In the low-temperature seal test, an operation was performed in which methanol was sealed before the fluorine-based inert liquid was sealed, left standing at 25 ° C. for 168 hours, and then removed.
[0061]
Example 27
In Example 26, the same amount of the fluorinated elastomer obtained in Example 5 was used.
[0062]
Example 28
In Example 26, the amount of MT carbon black was changed to 20 parts, and 20 parts of a bituminous fine powder (Mineral Black 325BA manufactured by Keystone Filler &Mfg; average particle size: 6 μm) was used.
[0063]
Example 29
In Example 26, the amount of MT carbon black was changed to 20 parts, and 20 parts of flat graphite (average particle diameter 10 μm, aspect ratio 20) was used.
[0064]
Comparative Example 5
In Example 26, the same amount of a commercially available product (GLT505 manufactured by DuPont) was used as the fluorine-containing elastomer.
[0065]
Comparative Example 6
In Example 26, the same amount of a commercially available product (GFLT501 manufactured by DuPont) was used as the fluorine-containing elastomer.
[0066]
Comparative Example 7
In Example 26, the amount of calcium hydroxide was changed to 1 part.
[0067]
The measurement results obtained in Examples 26 to 29 and Comparative Examples 5 to 7 are shown in Table 14 below. From these results, it can be seen that those of the examples are excellent in cold resistance and fuel oil resistance and are suitable as sealing materials for automobile fuel. Further, it can be seen that the compression set resistance is improved by blending the bituminous fine powder, and the fuel oil shielding property is improved by blending the flat filler.
Figure 2004346087

Claims (15)

その共重合組成が
(a)フッ化ビニリデン 50〜85モル%
(b)テトラフルオロエチレン 0〜25モル%
(c)パーフルオロ(メチルビニルエーテル) 7〜20モル%
(d)CF=CFO[CFCF(CF)O]nCF 3〜15モル%
(ただし、nは2〜6の整数である)
(e)RfX(Rfは炭素数2〜8の不飽和フルオロ炭化水素基であり、 0.1〜2モル%
基中に1個以上のエーテル結合を有していてもよく、
Xは臭素またはヨウ素である)
である含フッ素エラストマー。
The copolymer composition is (a) vinylidene fluoride 50 to 85 mol%
(B) 0 to 25 mol% of tetrafluoroethylene
(C) Perfluoro (methyl vinyl ether) 7 to 20 mol%
(D) CF 2 = CFO [ CF 2 CF (CF 3) O] nCF 3 3~15 mol%
(However, n is an integer of 2 to 6)
(E) RfX (Rf is an unsaturated fluorohydrocarbon group having 2 to 8 carbon atoms, 0.1 to 2 mol%
The group may have one or more ether bonds,
X is bromine or iodine)
Is a fluorine-containing elastomer.
溶液粘度ηsp/c(35℃、1重量%メチルエチルケトン溶液)が0.1〜2dl/gである請求項1記載の含フッ素エラストマー。The fluorine-containing elastomer according to claim 1, wherein the solution viscosity ηsp / c (35 ° C, 1% by weight methyl ethyl ketone solution) is 0.1 to 2 dl / g. 溶液粘度ηsp/c(35℃、1重量%ヘキサフルオロベンゼン溶液)が0.1〜7dl/gである請求項1記載の含フッ素エラストマー。The fluorine-containing elastomer according to claim 1, wherein the solution viscosity ηsp / c (35 ° C, 1% by weight hexafluorobenzene solution) is 0.1 to 7 dl / g. 一般式 R(Br)n(I)m (ここで、Rは炭素数2〜6の飽和フルオロ炭化水素基または飽和クロロフルオロ炭化水素基であり、nおよびmは0、1または2であり、m+nは2である)で表わされる含臭素および/またはヨウ素化合物の存在下で共重合反応させて得られた請求項1記載の含フッ素エラストマ−。General Formula R (Br) n (I) m (where R is a saturated fluorohydrocarbon group or a saturated chlorofluorohydrocarbon group having 2 to 6 carbon atoms, n and m are 0, 1 or 2; The fluorine-containing elastomer according to claim 1, which is obtained by a copolymerization reaction in the presence of a bromine-containing and / or iodine compound represented by the formula (m + n is 2). −30〜−45℃のガラス転移温度Tgを有する請求項1または4記載の含フッ素エラストマ−。5. The fluorine-containing elastomer according to claim 1, which has a glass transition temperature Tg of -30 to -45 ° C. (c)成分と(d)成分との合計共重合量が10モル%以上である請求項1または4記載の含フッ素エラストマー。The fluoroelastomer according to claim 1 or 4, wherein the total copolymerization amount of the component (c) and the component (d) is 10 mol% or more. (e)成分化合物がCF=CFOCFCFBr、CF=CFBr、CF=CHBr、CF=CFIまたはCF=CHIである請求項1または4記載の含フッ素エラストマー。(E) component compounds CF 2 = CFOCF 2 CF 2 Br , CF 2 = CFBr, CF 2 = CHBr, CF 2 = CFI , or CF 2 = CHI is a claim 1 or 4 fluoroelastomer according. 含臭素および/またはヨウ素化合物がICFCFCFCFIである請求項1または4記載の含フッ素エラストマー。Bromine-containing and / or claim 1 or 4 fluoroelastomer according iodine compound is ICF 2 CF 2 CF 2 CF 2 I. 有機過酸化物架橋後に以下に示される低温特性(ASTM D1329準拠)を発現する加硫物を与える請求項1または4記載の含フッ素エラストマー。
−43℃≦TR10<−30℃<TR70≦−20℃
The fluoroelastomer according to claim 1 or 4, which gives a vulcanizate exhibiting the following low-temperature properties (according to ASTM D1329) after crosslinking with the organic peroxide.
−43 ° C. ≦ TR 10 <−30 ° C. <TR 70 ≦ −20 ° C.
請求項1または4記載の含フッ素エラストマー100重量部当リ0.1〜10重量部の有機過酸化物、0.1〜10重量部の多官能性不飽和化合物および2重量部以上の受酸剤を添加してなる含フッ素エラストマー組成物。5. An organic peroxide of 0.1 to 10 parts by weight, a polyfunctional unsaturated compound of 0.1 to 10 parts by weight, and an acid acceptor of 2 parts by weight or more per 100 parts by weight of the fluorine-containing elastomer according to claim 1 or 4. A fluorine-containing elastomer composition obtained by adding an agent. さらに、40重量部以下の瀝青質微粉末が添加された請求項10記載の含フッ素エラストマー組成物。The fluoroelastomer composition according to claim 10, further comprising 40 parts by weight or less of bituminous fine powder. さらに、40重量部以下の偏平状充填剤が添加された請求項10記載の含フッ素エラストマー組成物。The fluoroelastomer composition according to claim 10, further comprising 40 parts by weight or less of a flat filler. 請求項10、11または12記載の含フッ素エラストマー組成物を架橋成形して得られたフッ素ゴム系シール材。A fluororubber-based sealing material obtained by crosslinking and molding the fluorine-containing elastomer composition according to claim 10, 11 or 12. 自動車燃料用シール材として用いられる請求項13記載のフッ素ゴム系シール材。14. The fluororubber sealant according to claim 13, which is used as a sealant for automobile fuel. TR10値(ASTM D1329準拠)が−30℃以下でありかつメタノール膨潤率(JIS K6258準拠;25℃、168時間)が+50%以内である請求項13または14記載のフッ素ゴム系シール材。TR 10 value (ASTM D1329 compliant) is at -30 ° C. or less and methanol swelling rate (JIS K6258 compliant; 25 ° C., 168 hours) is within + 50% Claim 13 or 14 fluororubber-based sealing material according.
JP2003102462A 2002-04-23 2003-04-07 Fluorine-containing elastomer composition Expired - Lifetime JP4491547B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003102462A JP4491547B2 (en) 2002-04-23 2003-04-07 Fluorine-containing elastomer composition
US10/674,009 US7312289B2 (en) 2003-03-03 2003-09-29 Fluorine-containing elastomer and its composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002120818 2002-04-23
JP2003055183 2003-03-03
JP2003086943 2003-03-27
JP2003102462A JP4491547B2 (en) 2002-04-23 2003-04-07 Fluorine-containing elastomer composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006309853A Division JP4785713B2 (en) 2002-04-23 2006-11-16 Fluorine-containing elastomer and composition thereof

Publications (3)

Publication Number Publication Date
JP2004346087A true JP2004346087A (en) 2004-12-09
JP2004346087A5 JP2004346087A5 (en) 2005-12-15
JP4491547B2 JP4491547B2 (en) 2010-06-30

Family

ID=33545444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102462A Expired - Lifetime JP4491547B2 (en) 2002-04-23 2003-04-07 Fluorine-containing elastomer composition

Country Status (1)

Country Link
JP (1) JP4491547B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037025A (en) * 2004-07-29 2006-02-09 Asahi Glass Co Ltd Fluorine-containing elastomer and method for producing the same
JP2006233157A (en) * 2005-02-28 2006-09-07 Daikin Ind Ltd Fluoroelastomer and method for producing fluoroelastomer
JP2006274237A (en) * 2005-03-04 2006-10-12 Asahi Glass Co Ltd Fluorinated elastomer latex, its production method, fluorinated elastomer and fluororubber molded product
JP2006299224A (en) * 2005-03-22 2006-11-02 Nok Corp Fluororubber composition
WO2007105754A1 (en) * 2006-03-15 2007-09-20 Daikin Industries, Ltd. Fluorine rubber composite material, fuel permeation-resistant sealing member composed of same, and method for producing such composite material
WO2007111334A1 (en) * 2006-03-29 2007-10-04 Daikin Industries, Ltd. Fluoroelastomer composition, fluororesin composition, and molding thereof
JP2008095041A (en) * 2006-10-16 2008-04-24 Nok Corp Fluororubber blend
WO2008093436A1 (en) * 2007-01-29 2008-08-07 Unimatec Co., Ltd. Fluoroelastomer and composition thereof
JP2008285562A (en) * 2007-05-16 2008-11-27 Mitsubishi Cable Ind Ltd Self-lubricating rubber composition and sealing material using the same
WO2009001674A1 (en) * 2007-06-26 2008-12-31 Nok Corporation Rubber composition
WO2009055521A1 (en) * 2007-10-23 2009-04-30 Dupont Performance Elastomers L.L.C. Difunctional oligomers of perfluoro(methyl vinyl ether)
US8138274B2 (en) 2009-12-08 2012-03-20 Le Centre National De La Recherche Scien Process for preparation of fluorosilicon polymer
WO2012073977A1 (en) * 2010-11-30 2012-06-07 旭硝子株式会社 Crosslinkable fluororubber composition and crosslinked rubber article
WO2012141129A1 (en) 2011-04-11 2012-10-18 ユニマテック株式会社 Method for producing fluorine-containing elastomer
JP2012246498A (en) * 2006-12-26 2012-12-13 Daikin Industries Ltd Method for manufacturing fluorine-containing elastomer and fluorine-elastomer manufacturing by the same metod
JP2015500377A (en) * 2011-12-29 2015-01-05 チョンハオ チェングァン リサーチ インスティテュート オブ ケミカル インダストリー カンパニー リミテッドZhonghao Chenguang Research Institute Of Chemical Industry Companylimited Low temperature fluorine-containing elastomer and method for producing the same
WO2015088784A3 (en) * 2013-12-11 2015-08-27 3M Innovative Properties Company Highly fluorinated elastomers
JP2015168777A (en) * 2014-03-07 2015-09-28 日信工業株式会社 Carbon fiber composite material and seal member
WO2016072397A1 (en) * 2014-11-07 2016-05-12 旭硝子株式会社 Fluorine-containing elastomer, fluorine-containing elastomer composition, and fluorine-containing elastomer crosslinked article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308008A (en) * 1986-04-01 1988-12-15 Nippon Mektron Ltd Production of fluorine-containing elastomer vulcanizable with peroxide
JPH08157539A (en) * 1994-12-06 1996-06-18 Daikin Ind Ltd Fluororubber copolymer excellent in low-temperature sealing property and curing composition therefor
JPH09286824A (en) * 1995-11-15 1997-11-04 Bayer Ag Peroxide-cross-linkable fluororubber and its production and use
JP2001181350A (en) * 1999-12-22 2001-07-03 Nippon Mektron Ltd Fluoroelastomer, manufacturing method thereof, crosslinking composition and curing product thereof
JP2001192482A (en) * 2000-01-13 2001-07-17 Nok Corp Method for producing vulcanized molded product of fluororubber
JP2002037818A (en) * 2000-05-18 2002-02-06 Nippon Mektron Ltd Fluorine-containing copolymer and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308008A (en) * 1986-04-01 1988-12-15 Nippon Mektron Ltd Production of fluorine-containing elastomer vulcanizable with peroxide
JPH08157539A (en) * 1994-12-06 1996-06-18 Daikin Ind Ltd Fluororubber copolymer excellent in low-temperature sealing property and curing composition therefor
JPH09286824A (en) * 1995-11-15 1997-11-04 Bayer Ag Peroxide-cross-linkable fluororubber and its production and use
JP2001181350A (en) * 1999-12-22 2001-07-03 Nippon Mektron Ltd Fluoroelastomer, manufacturing method thereof, crosslinking composition and curing product thereof
JP2001192482A (en) * 2000-01-13 2001-07-17 Nok Corp Method for producing vulcanized molded product of fluororubber
JP2002037818A (en) * 2000-05-18 2002-02-06 Nippon Mektron Ltd Fluorine-containing copolymer and method for producing the same

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037025A (en) * 2004-07-29 2006-02-09 Asahi Glass Co Ltd Fluorine-containing elastomer and method for producing the same
JP2006233157A (en) * 2005-02-28 2006-09-07 Daikin Ind Ltd Fluoroelastomer and method for producing fluoroelastomer
JP2006274237A (en) * 2005-03-04 2006-10-12 Asahi Glass Co Ltd Fluorinated elastomer latex, its production method, fluorinated elastomer and fluororubber molded product
JP4539510B2 (en) * 2005-03-22 2010-09-08 Nok株式会社 Fluoro rubber composition
JP2006299224A (en) * 2005-03-22 2006-11-02 Nok Corp Fluororubber composition
WO2007105754A1 (en) * 2006-03-15 2007-09-20 Daikin Industries, Ltd. Fluorine rubber composite material, fuel permeation-resistant sealing member composed of same, and method for producing such composite material
JP5186360B2 (en) * 2006-03-15 2013-04-17 ダイキン工業株式会社 Fluororubber composite material, fuel-permeable sealing material comprising the same, and method for producing the composite material
US8071709B2 (en) 2006-03-15 2011-12-06 Daikin Industries, Ltd. Composite material comprising flourine-containing rubber, fuel-impermeable sealing material comprising same, and process for preparing composite material
WO2007111334A1 (en) * 2006-03-29 2007-10-04 Daikin Industries, Ltd. Fluoroelastomer composition, fluororesin composition, and molding thereof
JP2008095041A (en) * 2006-10-16 2008-04-24 Nok Corp Fluororubber blend
JP2012246498A (en) * 2006-12-26 2012-12-13 Daikin Industries Ltd Method for manufacturing fluorine-containing elastomer and fluorine-elastomer manufacturing by the same metod
US7932335B2 (en) 2007-01-29 2011-04-26 Unimatec Co., Ltd. Fluorine-containing elastomer and composition thereof
JP2008184496A (en) * 2007-01-29 2008-08-14 Yunimatekku Kk Fluorine-containing elastomer and composition thereof
WO2008093436A1 (en) * 2007-01-29 2008-08-07 Unimatec Co., Ltd. Fluoroelastomer and composition thereof
JP2008285562A (en) * 2007-05-16 2008-11-27 Mitsubishi Cable Ind Ltd Self-lubricating rubber composition and sealing material using the same
WO2009001674A1 (en) * 2007-06-26 2008-12-31 Nok Corporation Rubber composition
US8697782B2 (en) 2007-06-26 2014-04-15 Nok Corporation Rubber composition
JP2011500947A (en) * 2007-10-23 2011-01-06 デュポン パフォーマンス エラストマーズ エルエルシー Perfluoro (methyl vinyl ether) bifunctional oligomer
WO2009055521A1 (en) * 2007-10-23 2009-04-30 Dupont Performance Elastomers L.L.C. Difunctional oligomers of perfluoro(methyl vinyl ether)
US8138274B2 (en) 2009-12-08 2012-03-20 Le Centre National De La Recherche Scien Process for preparation of fluorosilicon polymer
WO2012073977A1 (en) * 2010-11-30 2012-06-07 旭硝子株式会社 Crosslinkable fluororubber composition and crosslinked rubber article
WO2012141129A1 (en) 2011-04-11 2012-10-18 ユニマテック株式会社 Method for producing fluorine-containing elastomer
EP2927251A1 (en) 2011-04-11 2015-10-07 Unimatec Co., Ltd. Method for producing fluorine-containing elastomer
JP2015500377A (en) * 2011-12-29 2015-01-05 チョンハオ チェングァン リサーチ インスティテュート オブ ケミカル インダストリー カンパニー リミテッドZhonghao Chenguang Research Institute Of Chemical Industry Companylimited Low temperature fluorine-containing elastomer and method for producing the same
WO2015088784A3 (en) * 2013-12-11 2015-08-27 3M Innovative Properties Company Highly fluorinated elastomers
KR20160098284A (en) * 2013-12-11 2016-08-18 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Highly fluorinated elastomers
KR102268379B1 (en) 2013-12-11 2021-06-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Highly fluorinated elastomers
US11111326B2 (en) 2013-12-11 2021-09-07 3M Innovative Properties Company Highly fluorinated elastomers
JP2015168777A (en) * 2014-03-07 2015-09-28 日信工業株式会社 Carbon fiber composite material and seal member
WO2016072397A1 (en) * 2014-11-07 2016-05-12 旭硝子株式会社 Fluorine-containing elastomer, fluorine-containing elastomer composition, and fluorine-containing elastomer crosslinked article

Also Published As

Publication number Publication date
JP4491547B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
US7932335B2 (en) Fluorine-containing elastomer and composition thereof
US7312289B2 (en) Fluorine-containing elastomer and its composition
JP2004346087A (en) Fluorine-containing elastomer and composition thereof
JP3508136B2 (en) Fluorine-containing elastic copolymer, curing composition containing the same, and sealing material produced therefrom
JPH10101740A (en) Fluoroelastomer and its cross-linkable composition
US11732073B2 (en) Fluorinated elastic copolymer, its composition and crosslinked rubber article
JP2007517964A (en) Fluoroelastomer having improved low temperature characteristics and method for producing the same
KR101022727B1 (en) Fluoroelastomers with improved permeation resistance and method for making the same
JP3336958B2 (en) Method for producing fluorine-containing block copolymer
US6303699B1 (en) Vulcanizable fluororubber produced from tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer
JP5725167B2 (en) Method for producing fluorine-containing elastomer
US6150485A (en) Process for producing fluorine-containing elastomer
KR20100075974A (en) Fluororubber composition for cell seals of fuel cells
JP2010241900A (en) Fluorine-containing elastomer composition
JP4785713B2 (en) Fluorine-containing elastomer and composition thereof
JP2750913B2 (en) Fluoroelastomer composition
JP7161137B2 (en) Compressed member for electrochemical device
JP7323822B2 (en) Compressed member for electrochemical device
JP2005350490A (en) Fluorine rubber composition
JP3496739B2 (en) Fluorine-containing elastomer, its production method and composition
JP2005344074A (en) Fluororubber composition
JP2002128833A (en) Fluorine-containing copolymer and method of producing the same
JP3671634B2 (en) Method for producing fluorine-containing elastomer
JP2010111789A (en) Fluorine-containing elastomer and crosslinkable composition thereof
WO2021065199A1 (en) Fluororubber composition and seal material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070228

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4491547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term