WO2012073953A1 - 無線通信システム、無線基地局、ネットワーク管理装置および無線通信方法 - Google Patents
無線通信システム、無線基地局、ネットワーク管理装置および無線通信方法 Download PDFInfo
- Publication number
- WO2012073953A1 WO2012073953A1 PCT/JP2011/077530 JP2011077530W WO2012073953A1 WO 2012073953 A1 WO2012073953 A1 WO 2012073953A1 JP 2011077530 W JP2011077530 W JP 2011077530W WO 2012073953 A1 WO2012073953 A1 WO 2012073953A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radio
- cell
- interference avoidance
- avoidance control
- radio cell
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0083—Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
- H04W36/0085—Hand-off measurements
- H04W36/0088—Scheduling hand-off measurements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/345—Interference values
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/382—Monitoring; Testing of propagation channels for resource allocation, admission control or handover
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/16—Discovering, processing access restriction or access information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
Definitions
- the present invention relates to a radio coverage optimization technique and an interference avoidance control technique in a land mobile communication system based on a cellular system.
- a wide area is generally divided into small zones called radio cells, and one radio base station is provided for about 1 to 10 radio cells.
- the base station antenna is installed on a steel tower or a high-rise building rooftop so that radio waves can be radiated to as wide an area as possible.
- the antenna tilt angle and transmission output are set so as not to create a dead zone where communication is impossible in the wireless cell as much as possible.
- the antenna of the base station radiates radio waves limited to the radio cell starting from its own station and gives excessive interference to the surrounding radio cells. Must not.
- the base station needs to register neighboring radio cells that are candidates for handover for each radio cell as adjacent cells after well understanding radio wave propagation characteristics.
- a base station collects radio quality information in a radio terminal used by a general user, and automatically adjusts a coverage (ie, a coverage) of a radio cell based on a statistical value of the radio quality information. It is disclosed.
- a picocell base station collects information on reception quality of pilot signals from subordinate radio terminals, and when the number of detected macrocells is less than 3, The pilot signal transmission power is increased by assuming that the coverage is insufficient. Further, when the number of macro cells is four or more, the pico cell base station considers that there is excessive interference and reduces the transmission output of the pilot signal. As a result of such control, interference between radio cells can be avoided autonomously and the coverage of the radio cells can be optimized.
- a system that autonomously changes parameters of a base station or the like based on a measurement value of radio quality by a terminal or a radio base station is called a self-management network (SON), which is called 3GPP (3rd Standardization organizations such as Generation (Partnership Project) are working on standardization.
- 3GPP 3rd Standardization organizations such as Generation (Partnership Project) are working on standardization.
- Japanese Patent Application Laid-Open No. 2009-081486 discloses a technique for evaluating a change in wireless quality due to movement of a terminal.
- the related technique disclosed in International Publication WO2008 / 107425 requires an interface for exchanging control signals for cooperatively performing interference avoidance control between a base station and neighboring base stations, and there is no such interface Not applicable to Also, even if the base station receives an interference avoidance request from the neighboring base station, as long as there is no radio quality information in the neighboring base station, either the radio quality in the own base station or the radio quality in the neighboring base station is good. I can't judge. Therefore, in the related art disclosed in International Publication WO2008 / 107425, there is a problem that it is difficult to determine whether to actually perform interference avoidance control, and it is difficult to derive an appropriate amount of change in transmission power.
- the problem with the related technology is particularly noticeable when radio cells belonging to different management domains share the same frequency band and are geographically adjacent.
- radio base stations manufactured by different vendors are mixed in geographically adjacent areas, or when a plurality of mobile communication carriers share the same frequency resource There is.
- an element management system that primarily manages radio base stations is prepared for each vendor of the radio base stations. It is not common practice to share wireless quality management information between element management systems from different vendors. Therefore, the wireless cells located at the boundary of the management domain do not share the problem of coverage size and wireless quality. For this reason, the problem that the coverage of the radio cell of a new base station can be kept small, and the problem that it is difficult to determine whether to respond to interference avoidance requests from neighboring base stations and to determine the control amount become significant.
- Japanese Patent Application Laid-Open No. 2009-081486 discloses a technique for evaluating a change in radio quality accompanying the movement of a terminal, but it has not been possible to detect interference avoidance control in neighboring cells.
- the present invention has been made in view of the above problems, and in particular, in a radio base station installed at a management domain boundary, optimizes the coverage of a radio cell and autonomously executes interference avoidance control with surrounding cells.
- the purpose is to do.
- the radio communication system obtains measurement values of radio qualities of peripheral radio cells located around the target radio cell from radio terminals connected to the radio base station of the target radio cell to be subjected to interference avoidance control.
- an interference avoidance control means for performing interference avoidance control of the target radio cell.
- the radio base station of the present invention from a radio terminal connected to the own station, a collection means for collecting measurement values of radio quality of surrounding radio cells located around the target radio cell in charge of the own station, Detecting means for detecting interference avoidance control in the peripheral radio cell from a temporal change in a measurement value of radio quality of the peripheral radio cell, and depending on whether the interference avoidance control in the peripheral radio cell is detected or not It is characterized by comprising interference avoidance control means for performing interference avoidance control of a radio cell.
- the network management device of the present invention measures the radio quality of the peripheral radio cells located around the target radio cell from the radio terminal connected to the radio base station of the target radio cell that is the target of interference avoidance control.
- a collecting means for collecting values, a detecting means for detecting interference avoidance control in the neighboring radio cell from a temporal change in a measurement value of radio quality of the neighboring radio cell, and whether interference avoidance control in the neighboring radio cell is detected It is characterized by comprising interference avoidance control means for performing interference avoidance control of the target radio cell depending on whether or not.
- the radio communication method of the present invention is a method for measuring radio quality of peripheral radio cells located around the target radio cell from a radio terminal connected to a radio base station of the target radio cell that is subject to interference avoidance control.
- an interference avoidance control step for performing interference avoidance control of the target radio cell according to whether or not.
- the present invention from a radio terminal connected to a radio base station of a target radio cell that is subject to interference avoidance control, collect measurement values of radio quality of surrounding radio cells located around the target radio cell, Interference avoidance control in the surrounding radio cell is detected from the temporal change in the measurement value of the radio quality of the surrounding radio cell, and interference avoidance control of the target radio cell is performed depending on whether or not interference avoidance control in the surrounding radio cell is detected. Do. In the present invention, it is possible to optimize the coverage of the target radio cell and autonomously execute interference avoidance control with surrounding radio cells.
- the present invention it is possible to prevent the radio cell coverage of the new base station from being suppressed to a small level when the radio cell coverage of the existing base station is wide in a radio base station or the like installed at the management domain boundary. it can. Further, according to the present invention, when there is no means for sharing the radio quality information measured in the target radio cell and the radio quality information measured in the neighboring radio cell, or when the radio base station in charge of the target radio cell and the surrounding Even when there is no interface for transmitting / receiving interference avoidance control signals to / from the radio base station in charge of the radio cell, the coverage of the target radio cell is optimized and interference avoidance control with surrounding radio cells is autonomous. Can be executed.
- FIG. 1 is a configuration diagram of a wireless network according to a first embodiment of the present invention.
- 2A-2B are block diagrams showing the internal configuration of the network management apparatus in the first embodiment of the present invention.
- FIG. 3 is a diagram showing a configuration example of the base station configuration information database of the network management device in the management domain A in the first embodiment of the present invention.
- FIG. 4 is a diagram showing a configuration example of the base station configuration information database of the network management device in the management domain B in the first embodiment of the present invention.
- 5A-5B are block diagrams showing the internal configuration of the base station in the first embodiment of the present invention.
- FIG. 6 is a diagram illustrating an example of terminal radio quality information collected from a radio terminal in the first embodiment of the present invention.
- FIG. 7 is a diagram showing an example of time-series terminal radio quality information stored in the terminal radio quality information database of the network management apparatus in the first embodiment of the present invention.
- FIG. 8 is a flowchart showing the wireless parameter update process performed by the wireless parameter update unit of the network management device in the first embodiment of the present invention.
- FIG. 9 is a diagram illustrating an intermediate state of coverage accompanying the radio parameter update of the radio cell in the first embodiment of the present invention.
- FIG. 10 is a diagram illustrating a final state after coverage optimization accompanying radio parameter update of a radio cell in the first embodiment of the present invention.
- FIG. 11 is a flowchart showing a wireless parameter update process performed by the wireless parameter update unit of the network management device in the second embodiment of the present invention.
- FIG. 12 is a flowchart showing a wireless parameter initial value setting process performed by the wireless parameter update unit of the network management device in the third embodiment of the present invention.
- FIG. 13 is a flowchart showing a wireless parameter initial value setting process performed by the wireless parameter update unit of the network management device in the fourth embodiment of the present invention.
- FIG. 1 shows a configuration diagram of a wireless network according to a first embodiment of the present invention.
- base stations 50 to 54 are base stations belonging to the management domain A, and each accommodates three cells.
- the base station 50 sets the area represented by the radio cells A1, A2, and A3 as the assigned range.
- the base station 51 sets the area represented by the radio cells A4, A5, A6 as the assigned range.
- the base station 52 takes charge of the areas represented by the radio cells A7, A8, A9.
- the base station 53 takes the area represented by the radio cells A10, A11, A12 as the assigned range.
- the base station 54 takes charge of the areas represented by the radio cells A13, A14, A15.
- the base stations 60 to 64 are base stations belonging to the management domain B, each having an omnidirectional antenna and accommodating one cell under the control.
- Base stations 60, 61, 62, 63, and 64 have areas in charge represented by radio cells B1, B2, B3, B4, and B5, respectively.
- the wireless terminals 70, 71, and 72 are located inside the wireless cells A3, A14, and A8, respectively, and transmit and receive wireless signals to and from the base stations 50, 54, and 51 through wireless links, respectively.
- the base stations 50 to 54 belonging to the management domain A are managed by the network management device 20 located in the wired network 10.
- the base stations 50 to 54 receive a wireless parameter setting / update instruction from the network management apparatus 20, and use the communication quality measurement value measured by the local station and the wireless quality measurement value measured by the wireless terminal as management information. Transfer to the management device 20.
- the base stations 60 to 64 belonging to the management domain B are managed by the network management device 21 located in the wired network 11.
- the base stations 60 to 64 receive a wireless parameter setting / update instruction from the network management device 21 and also use the communication quality measurement value measured by the local station and the wireless quality measurement value measured by the wireless terminal as management information. Transfer to the management device 21.
- the network management apparatus 20 in the management domain A and the network management apparatus 21 in the management domain B do not exchange management information directly.
- FIG. 2A shows the internal configuration of the network management device 20.
- the network management device 20 includes a collection unit 20a, a detection unit 20b, an interference avoidance control unit 20c, an identification unit 20d, and an initial value setting unit 20e.
- FIG. 2B is a block diagram showing a specific configuration of the network management apparatus 20.
- the transmission / reception unit 200 transmits / receives signals to / from the base station via the wired links 30, 31 and the like.
- the terminal radio quality information collection unit 201 requests terminal radio quality information from the radio terminal via the base station, and sends terminal radio quality information collected from the radio terminal to a terminal radio quality information database (hereinafter referred to as terminal radio quality information DB). ) 203.
- terminal radio quality information database hereinafter referred to as terminal radio quality information database
- the radio parameter update unit 202 analyzes the measurement result stored in the terminal radio quality information DB 203 and updates the radio parameter.
- the radio parameter updating unit 202 stores the updated radio parameters in a base station configuration information database (hereinafter referred to as base station configuration information DB) 204 and provides the base station via the transmission / reception unit 200.
- base station configuration information DB a base station configuration information database
- FIG. 3 shows a configuration example of the base station configuration information DB 204 in the network management device 20.
- Base station configuration information stored in the base station configuration information DB 204 is prepared for each cell, and includes a radio cell identifier 410, a base station identifier 420, a neighboring cell list 430, an upper limit value 440 of total transmission power, an antenna It comprises a down tilt angle 450, an antenna azimuth angle 460, and the like.
- FIG. 4 shows a configuration example of the base station configuration information DB 204 in the network management device 21.
- the base station configuration information stored in the base station configuration information DB 204 is prepared for each cell, and includes a radio cell identifier 411, a base station identifier 421, an adjacent cell list 431,
- the transmission power is composed of an upper limit value 441, an antenna down tilt angle 451, an antenna azimuth angle 461, and the like.
- the antenna tilt angle 451 and the antenna azimuth angle 461 are N / A (not available) because the base station group in the management domain B assumes an omnicell configuration including an omnidirectional antenna. is there.
- FIG. 5A shows the internal configuration of the base station 50.
- the base station 50 includes a collection unit 50a, a detection unit 50b, an interference avoidance control unit 50c, an identification unit 50d, and an initial value setting unit 50e.
- FIG. 5B is a block diagram showing a specific configuration of the base station 50.
- the transmission / reception unit 300 transmits / receives a wireless signal to / from the wireless terminal via the wireless link, and transfers a signal to / from the wired network 10 including the network management device 20 via the wired link 30.
- the call control unit 301 controls outgoing calls and incoming calls to wireless terminals and assigns wireless resources.
- the terminal radio quality information collection unit 302 collects terminal radio quality information from the subordinate radio terminals, and transmits the collected terminal radio quality information to the network management apparatus 20.
- the wireless parameter setting unit 303 updates the wireless parameters (neighbor cell list, antenna tilt angle, transmission power, etc.) of the local station.
- Other base stations have the same internal configuration as the base station 50.
- the storage of the terminal wireless quality information and the update processing of the wireless parameters are concentrated in the network management apparatus 20 or the network management apparatus 21.
- the wireless parameter update process only information collected from wireless terminals under the target wireless cell is analyzed, and information acquired via surrounding wireless cells is not required. Therefore, it is also possible to execute the storage of terminal radio quality information and the update process of radio parameters in a distributed manner at each base station.
- the terminal wireless quality information collection unit 201 and the wireless parameter update unit 202 constitute a collection unit 20a, and wireless communication is performed.
- the parameter update unit 202 constitutes a detection unit 20b and an identification unit 20d
- the radio parameter update unit 202 and the radio parameter setting unit 303 constitute an interference avoidance control unit 20c and an initial value setting unit 20e.
- the terminal radio quality information collection unit 302 and the radio parameter setting unit 303 constitute a collection unit 50a
- the parameter setting unit 303 constitutes a detection unit 50b, an interference avoidance control unit 50c, an identification unit 50d, and an initial value setting unit 50e.
- the processing performed by the radio parameter update unit 202 in the following description is performed by the radio parameter setting unit 303 instead. It will be.
- FIG. 6 shows an example of the terminal wireless quality information 500 collected from the wireless terminal.
- the example shown here is the E-UTRA (Evolved Universal Terrestrial Radio Access) of the document “3GPP TS 36.331,“ Radio Resource Control (RRC); Protocol specification (Release Sec 8) ”, Sec. 6.3.5. Based on measurement information specified in the specification. However, the measurement information format does not necessarily have to be E-UTRA specifications.
- E-UTRA Evolved Universal Terrestrial Radio Access
- the terminal radio quality information 500 includes a terminal radio quality measurement identifier (measId) 510, a serving cell (Serving Cell) radio quality measurement result (measResultServCell) 520, and neighboring cell radio quality measurement results (measResultNeighCells) 530, 540 for the radio cell to which the terminal belongs. , 550.
- the serving cell radio quality measurement result 520 further includes a reference signal reception field strength (rsrpResult) 521 and a reference signal reception quality (rsrqResult) 522.
- the neighboring cell radio quality measurement results 530, 540, and 550 further include a neighboring cell identifier 531, a reference signal reception field strength 532, and a reference signal reception quality 533.
- FIG. 7 shows an example of time-series terminal radio quality information 600 stored in the terminal radio quality information DB 203 of the network management device 21 for the radio cell B1.
- the terminal radio quality information 600 includes a total report number Sa, a serving cell weak electric field report number Sf, a cell A1 total report number A1a, a cell A1 interference report number A1f, a cell A2 total report number A2a, and a cell A2 interference report number.
- A2f, cell B2 total report count B2a, cell B2 interference report count B2f, cell B3 total report count B3a, and cell B3 interference report count B3f are included.
- the terminal radio quality information 600 is based on information collected from a radio terminal connected via a radio link with the base station 60 in charge of the radio cell B1.
- a neighboring cell refers to a wireless cell in charge of a base station different from a base station in charge of the target cell among wireless cells located around the processing target cell.
- the total number of reports Sa is the number of all radio quality reports received from the radio terminal connected to the base station in charge of the serving cell B1 in the serving cell B1.
- the serving cell weak electric field report count Sf is the number of radio quality reports indicating that the reference signal received power (RSRP) of the serving cell B1 has fallen below a predetermined threshold Ts [dBm] as shown in Equation (1). It is. RSRP (B1) ⁇ Ts (1)
- the cell A1 total report count A1a is the number of radio quality reports including the radio quality measurement results of the neighboring cell A1.
- the cell A1 interference report count A1f is a value obtained by dividing the RSRP value of the neighboring cell A1 by the RSRP value of the serving cell B1 as shown in Equation (2) among the radio quality measurement results of the neighboring cell A1. This is the number of radio quality reports indicating that the limit has been exceeded.
- the cell A2 total report count A2a is the number of radio quality reports including the radio quality measurement results of the neighboring cell A2.
- the cell A2 interference report count A2f is a value obtained by dividing the RSRP value of the neighboring cell A2 by the RSRP value of the serving cell B1 as shown in Equation (3) among the radio quality measurement results of the neighboring cell A2 as a predetermined value Tn [dB]. This is the number of radio quality reports indicating that the limit has been exceeded.
- the cell B2 total report count B2a is the number of radio quality reports including the radio quality measurement results of the neighboring cell B2.
- the cell B2 interference report count B2f is a value obtained by dividing the RSRP value of the neighboring cell B2 by the RSRP value of the serving cell B1 as shown in the equation (4) among the radio quality measurement results of the neighboring cell B2 as a predetermined value Tn [dB]. This is the number of radio quality reports indicating that the limit has been exceeded.
- the cell B3 total report count B3a is the number of radio quality reports including the radio quality measurement results of the neighboring cell B3.
- the cell B3 interference report count B3f is a value obtained by dividing the RSRP value of the neighboring cell B3 by the RSRP value of the serving cell B1 as shown in Equation (5) among the radio quality measurement results of the neighboring cell B3. This is the number of radio quality reports indicating that the limit has been exceeded.
- the terminal wireless quality information DB 203 adds to the information shown in FIG.
- the number of all reports and the number of interference reports are also retained for newly reported neighboring cells.
- the terminal radio quality information 600 as described above is stored for each of the target serving cells.
- the terminal radio quality information 600 is stored for each of the radio cells B1, B2, B3, B4, and B5.
- the total number of neighboring cell Xi reports is represented as Xia
- the number of neighboring cell Xi interference reports is represented as Xif.
- the wireless parameter update unit 202 first checks whether or not the cell that is the target of the wireless parameter update process is a cell that has newly started operation (step S101). Whether or not the target cell is a newly started operation can be determined by whether or not the elapsed time Uptime from the start of operation of the target cell is less than a predetermined threshold Th0.
- the wireless parameter update unit 202 determines that the target cell is a cell that has newly started operation (YES in step S101), and sets the initial value of the wireless parameter (step S101). S102), the wireless parameter update process is terminated (step S103).
- the radio parameter update unit 202 determines that the target cell is not a cell that has newly started operation (NO in step S101), and the terminal radio quality information DB 203 of the own device. To obtain terminal radio quality information 600 of the target cell (step S104).
- the radio parameter update unit 202 sets a radio cell quality report ratio Sf [t] / Sa [t] indicating that the target cell has a weak electric field as a serving cell weak electric field.
- Sf [t] is the latest total number of reports of the target cell
- Sf [t] is the latest number of serving cell weak electric field reports.
- radio parameter updating section 202 determines that the target cell has a weak electric field, and increases the transmission power of the base station in charge of the target cell by ⁇ P1. (Step S106), the wireless parameter update process is terminated (step S107). In the process of step S106, upon receiving an instruction from the radio parameter update unit 202, the radio parameter setting unit 303 of the base station in charge of the target cell increases the transmission power by ⁇ P1.
- step S106 instead of increasing the transmission power of the base station in charge of the target cell, the downtilt angle of the antenna of this base station may be decreased.
- the radio parameter setting unit 303 of the base station receives an instruction from the radio parameter update unit 202 and decreases the downtilt angle of the antenna.
- the radio parameter update unit 202 determines the radio quality report ratio Xif [t indicating that there is interference from the neighboring cell Xi with respect to the target cell. ] / Xia [t] is obtained as an interference detection rate, and neighboring cells Xi with this interference detection rate exceeding a predetermined threshold Th2 are extracted in order (step S108).
- the wireless parameter updating unit 202 detects interference in the neighboring cell Xi from the temporal change of the measurement information for the extracted neighboring cell Xi.
- the avoidance control is detected, and it is determined whether or not the interference detection rate of the neighboring cell Xi has decreased (step S110).
- This interference avoidance control is performed by the base station in charge of the neighboring cell Xi.
- Whether or not the interference detection rate of the neighboring cell Xi has decreased is calculated by calculating an interference detection rate change amount Xif [t ⁇ 1] / Xia [t ⁇ 1] ⁇ Xif [t] / Xia [t]. This can be determined by comparing the amount of change in the rate with a predetermined threshold Th3.
- Xia [t] is the latest total number of reports of the neighboring cell Xi stored as part of the terminal radio quality information 600 of the target cell
- Xia [t ⁇ 1] is the time immediately before the neighboring cell Xi. This is the total number of reports in the band.
- Xif [t] is the latest interference report number of the neighboring cell Xi stored as a part of the terminal radio quality information 600 of the target cell
- Xif [t ⁇ 1] is a time zone immediately before the neighboring cell Xi. The number of interference reports.
- the radio parameter update unit 202 When the change amount of the interference detection rate exceeds the threshold Th3 (YES in step S110), the radio parameter update unit 202 considers that the interference avoidance control in the neighboring cell Xi has been detected, and transmits the transmission power of the base station in charge of the target cell. Is reduced by ⁇ P2 (step S111). In addition, when the amount of change in the interference detection rate is equal to or less than threshold Th3 (NO in step S110), radio parameter updating section 202 considers that interference avoidance control in neighboring cell Xi has not been detected, and base station in charge of the target cell Is decreased by ⁇ P3 (step S112). In the processes of steps S111 and S112, upon receiving an instruction from the radio parameter update unit 202, the radio parameter setting unit 303 of the base station in charge of the target cell decreases the transmission power by ⁇ P2 or ⁇ P3.
- the interference avoidance control of the target cell can be promoted.
- steps S111 and S112 instead of decreasing the transmission power of the base station in charge of the target cell, the downtilt angle of the antenna of this base station may be increased.
- the radio parameter updating unit 202 returns to step S108, and determines whether there is a neighboring cell Xi that has not performed the processing of steps S110 to S112 among the neighboring cells Xi whose interference detection rate exceeds the threshold Th2. To do.
- the wireless parameter update unit 202 proceeds to step S110.
- the wireless parameter updating unit 202 completes the wireless parameter. The update process is terminated (step S109).
- interference avoidance control of neighboring cells is detected based on whether or not the threshold of the interference detection rate is exceeded.
- the detection method is not limited to this, and other methods are also possible. Conceivable.
- the terminal radio quality information DB 203 if it is possible to store the measurement value reported from the radio terminal in the format of FIG. 6 as it is, the RSRP of the reported neighboring cell and the reference of the neighboring cell You may make it detect the interference avoidance control of a surrounding cell based on the temporal variation
- the interference avoidance control in the neighboring cell is detected. Should be considered. The same applies to the case of using the RSRQ of the neighboring cell.
- FIG. 9 and 10 show the intermediate state of coverage and the final state after optimization when the wireless parameters are updated with the wireless cell B1 as the target cell.
- the radio parameter update unit 202 of the network management device 21 temporarily expands the coverage of the cell B1 so as to eliminate the weak electric field area of the cell B1. , Interference from neighboring cells A4, A3, A8, A13, A14, and A6 with respect to cell B1 is detected.
- the radio parameter update unit 202 of the network management device 21 reduces the coverage of the cell B1 as a result of performing interference avoidance control, and stops the reduction of transmission power when the coverage optimization state shown in FIG. 10 is reached. .
- the radio parameter update unit 202 of the network management device 21 detects the interference avoidance control in the neighboring cell during the interference avoidance control, the radio parameter update unit 202 promotes the interference avoidance control of the cell B1 and thereby appropriately sets the coverage of the cell B1 early. And autonomously avoiding interference.
- the wireless parameter updating unit 202 determines that the extracted neighboring cell Xi is a target cell for the wireless parameter updating process. It is identified whether or not they belong to the same management domain (step S130). Identification of whether or not the peripheral cell Xi belongs to the same management domain as the target cell can be realized, for example, by predefining a numerical range of the cell identifier for each management domain.
- the radio parameter update unit 202 decreases the transmission power of the base station in charge of the target cell by ⁇ P4 or is in charge of the neighboring cell Xi Requesting the base station to avoid interference (step S131).
- the interference avoidance technique disclosed in International Publication WO2009 / 152978 and International Publication WO2008 / 107425 may be used.
- the wireless parameter updating unit 202 detects interference avoidance control in the neighboring cell Xi from the temporal change of measurement information, and the neighboring cell Xi It is determined whether or not the interference detection rate has decreased (step S132).
- the process in step S132 is the same as the process in step S110 in the first embodiment.
- the radio parameter update unit 202 decreases the transmission power of the base station in charge of the target cell by ⁇ P2 (step S134).
- Radio parameter updating section 202 reduces the transmission power of the base station in charge of the target cell by ⁇ P3 when the amount of change in interference detection rate is equal to or less than threshold Th3 (NO in step S132) (step S135).
- the processes in steps S134 and S135 are the same as the processes in steps S111 and S112 in the first embodiment.
- the wireless parameter update unit 202 returns to step S128, and determines whether there is a neighboring cell Xi that has not performed the processing of steps S130 to S135 among the neighboring cells Xi whose interference detection rate exceeds the threshold Th2. To do. When there is an unprocessed neighboring cell Xi, the wireless parameter update unit 202 proceeds to step S130. Further, when there is no unprocessed neighboring cell Xi and extraction of all neighboring cells Xi whose interference detection rate exceeds the threshold Th2 is completed (NO in step S128), the wireless parameter update unit 202 completes the wireless parameter. The update process is terminated (step S129).
- the interference avoidance control based on the temporal change of the measurement information similar to the first embodiment is performed, so Interference avoidance control can be performed more efficiently.
- the reason why interference avoidance control can be performed efficiently is that if it is within the management domain, it is easy to share the radio quality measurement results in each cell and confirm the presence or absence of interference avoidance control in the neighboring cells. This is because the interference avoidance control can be performed without using the temporal change in the measurement result of interference from.
- the radio parameter update unit 202 starts the process of the target cell from the terminal radio quality information DB 203 of its own device. Terminal wireless quality information is acquired (step S141).
- the radio parameter updating unit 202 determines the number of terminal radio quality information necessary for initial value determination depending on whether the total number of reports Sa [t] exceeds a predetermined value Th4 for the target cell for the radio parameter initial value setting process. It is checked whether or not it exists (step S142). When the total number of reports Sa [t] of the target cell is equal to or less than the predetermined value Th4 (NO in step S142), the radio parameter update unit 202 determines that the number of reports is insufficient and determines the transmission power of the base station in charge of the target cell and The antenna tilt angle is set to a default value (step S143), and the wireless parameter initial value setting process is terminated (step S144). In the process of step S143, upon receiving an instruction from the radio parameter update unit 202, the radio parameter setting unit 303 of the base station in charge of the target cell sets the transmission power and the antenna tilt angle to default values.
- Radio parameter updating section 202 determines that there are as many pieces of terminal radio quality information necessary for initial value determination when the total number of reports Sa [t] in the target cell exceeds predetermined value Th4 (YES in step S142). Then, the neighboring cell Xi having the highest interference detection rate is extracted (step S145). The method for calculating the interference detection rate is as described in the first embodiment.
- the radio parameter updating unit 202 uses the latest total number of reports Xia [t] and the latest number of interference reports Xif [t] of the neighboring cell Xi,
- the transmission power P of the base station in charge of the target cell is calculated as follows, the transmission power P is increased (step S146), and the wireless parameter initial value setting process is terminated (step S147).
- P Median (Pmax, Pmin + ⁇ ⁇ Xif [t] / Xia [t], Pmin) (6)
- Equation (6) ⁇ is a constant, Pmin is a predetermined minimum value of transmission power, and Pmax is a predetermined maximum value of transmission power.
- Median (x, y, z) is a function that takes the median of the arguments x, y, z. Equation (6) means that the transmission power P of the target cell is updated so as to increase in proportion to the interference detection rate of the neighboring cell Xi. Note that after the initial value of the transmission power of the target cell is set according to the degree of interference from neighboring cells, the same initialization is not performed again.
- the larger the degree of interference from the neighboring cells the larger the initial value of the transmission power of the target cell. Can be prevented from being reduced, and the cell coverage can be balanced.
- the radio parameter update unit 202 starts the process of the target cell from the terminal radio quality information DB 203 of its own device. Terminal wireless quality information is acquired (step S161).
- the processing in steps S162 to S164 in FIG. 13 is the same as that in steps S142 to S144 in the third embodiment, and a description thereof will be omitted.
- the radio parameter updating unit 202 extracts a neighboring cell Xi having the highest interference detection rate among neighboring cells belonging to the same management domain as the cell that is the target of the wireless parameter initial value setting process (step S165).
- the radio parameter updating unit 202 uses the latest total number of reports Xia [t] and the latest number of interference reports Xif [t] of the neighboring cell Xi,
- the transmission power P of the base station in charge of the target cell is calculated as follows, the transmission power P is decreased (step S166), and the wireless parameter initial value setting process is terminated (step S167).
- P Median (Pmax, Pmax ⁇ * Xif [t] / Xia [t], Pmin) (7)
- ⁇ is a constant.
- Expression (7) means that the transmission power P of the target cell is updated so as to decrease in proportion to the interference detection rate of the neighboring cell Xi.
- the coverage of existing neighboring cells belonging to different management domains is determined to some extent by determining the transmission power of the target cell considering only the degree of interference from neighboring cells belonging to the same management domain. Even when it is wide, it is possible to prevent the coverage of the target cell from being kept small, and to balance the coverage of the cell.
- the unit can be realized by a computer including a CPU, a storage device, and an interface, and a program for controlling these hardware resources.
- at least a part of the call control unit 301, the terminal radio quality information collection unit 302, and the radio parameter setting unit 303 among the configurations of the base stations described in the first to fourth examples includes a CPU, a storage device And a computer having an interface and a program for controlling these hardware resources.
- the CPU of each device executes the processing described in the first to fourth embodiments in accordance with a program stored in the storage device.
- the collection means which collects the measured value of the radio
- a radio communication system comprising interference avoidance control means for performing interference avoidance control.
- the wireless communication system further includes identification means for identifying whether or not a neighboring wireless cell belongs to a management domain different from the target wireless cell, and the detection means is a management domain different from the target wireless cell.
- the interference avoidance control in the neighboring radio cell belonging to the target radio cell is detected, and the interference avoidance control means detects the interference avoidance control in the neighboring radio cell belonging to a different management domain from the target radio cell, depending on whether or not the interference avoidance control in the neighboring radio cell is detected.
- a wireless communication system characterized by performing avoidance control.
- a wireless communication system further comprising initial value setting means for setting an initial value.
- a wireless communication system In the wireless communication system according to supplementary note 2, out of the measurement values of the wireless quality of the peripheral wireless cells collected from the wireless terminals, based on the measurement values related to the peripheral wireless cells belonging to the same management domain as the target wireless cell, A wireless communication system, further comprising initial value setting means for setting an initial value of transmission power of a radio base station in charge of a target radio cell.
- the measurement value of the radio quality is a reference signal reception power transmitted from a radio base station in charge of a neighboring radio cell, or a total reception power with respect to the reference signal reception power.
- the interference avoidance control unit is configured to reduce a total transmission power including a reference signal of a radio base station in charge of the target radio cell or a radio base in charge of the target radio cell.
- the interference avoidance control means determines the interference avoidance control amount of the target radio cell when detecting interference avoidance control in the peripheral radio cell, and performs interference avoidance control in the peripheral radio cell.
- a wireless communication system characterized in that the wireless communication system is larger than the interference avoidance control amount of the target wireless cell when it is not detected.
- Collection means for collecting measurement values of radio quality of peripheral radio cells located around the target radio cell in charge of the own station from radio terminals connected to the own station, and radio quality of the peripheral radio cells
- Detection means for detecting interference avoidance control in the surrounding radio cell from the temporal change of the measured value, and interference avoidance for performing interference avoidance control of the target radio cell according to whether or not the interference avoidance control in the surrounding radio cell is detected
- a control means for controlling interference avoidance control in the surrounding radio cell from the temporal change of the measured value, and interference avoidance for performing interference avoidance control of the target radio cell according to whether or not the interference avoidance control in the surrounding radio cell is detected
- the collection means which collects the measured value of the radio
- a network management apparatus comprising interference avoidance control means for performing interference avoidance control.
- the collection step which collects the measured value of the radio
- Examples of utilization of the present invention include a base station and a network management apparatus corresponding to a self-management network (Self-Organizing Network) that performs autonomous optimization of cell coverage in mobile communication.
- a self-management network Self-Organizing Network
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
無線網のネットワーク管理装置は、干渉回避制御の対象となる対象無線セルの無線基地局と接続されている無線端末から、対象無線セルの周辺に位置する周辺無線セルの無線品質の測定値を収集する端末無線品質情報収集部(201)と、周辺無線セルの無線品質の測定値の時間的変化から周辺無線セルにおける干渉回避制御を検出し、周辺無線セルにおける干渉回避制御を検出したか否かに応じて、対象無線セルの干渉回避制御を行う無線パラメータ更新部(202)とを備える。
Description
本発明は、セルラー方式に基づく陸上移動通信システムにおける無線カバレッジの最適化技術および干渉回避制御技術に関するものである。
陸上移動通信システムでは、一般に広域エリアを無線セルと呼ばれる小ゾーンに分割し、1から10程度の無線セルにつき1つの無線基地局を配備している。基地局のアンテナは、できるだけ広い領域に対して電波を放射できるように鉄塔や高層ビルの屋上などに設置される。無線セル内において通信不能となる不感地帯をなるべくつくらないように、アンテナのチルト角や送信出力が設定される。一方、限られた周波数帯域を有効に利用するため、基地局のアンテナは、自局を起点とする無線セルに限定して電波を放射し、周辺の無線セルに対して過大な干渉を与えてはならない。また、基地局は、各々の無線セルに対してハンドオーバ候補となる周辺の無線セルを、あらかじめ電波伝搬特性を良く把握した上で隣接セルとして登録しておく必要がある。
このような基地局のアンテナチルト角、送信出力や隣接セルリストといった無線パラメータを適正に設定するため、エリア設計時や通信システムの運用中に、フィールドにおける無線品質の詳細な測定が行われる。従来、この無線品質の詳細な測定は、専用の測定器を搭載した電測車による走行試験によって行われていたが、測定とその結果の解析に多くの作業を要するという課題があった。また、無線品質の問題が多く発生する屋内では測定が難しいという課題があった。
こうした課題を解決するため、一般ユーザが利用する無線端末における無線品質情報を基地局が収集し、無線品質情報の統計値に基づき無線セルのカバレッジ(すなわちカバー範囲)を自動的に調整する方法が開示されている。例えば、国際公開WO2009/152978に開示された技術では、ピコセル基地局は、配下の無線端末からパイロット信号の受信品質の情報を収集し、検出されたマクロセル数が3未満の場合には無線セルのカバレッジが不十分と見なしてパイロット信号の送信出力を増加する。また、ピコセル基地局は、マクロセル数が4以上の場合には干渉過多と見なしてパイロット信号の送信出力を低減する。このような制御の結果、無線セル間の干渉を自律的に回避し、無線セルのカバレッジを適正化することができる。
他の技術として、国際公開WO2008/107425には、基地局が周辺のセルからの干渉を検出すると、どの周辺セルが干渉源であるかを特定し、干渉源の周辺セルの基地局に対して送信電力の低減を要求する要求コマンドを送信し、干渉回避を図る技術が開示されている。要求コマンドを受けて周辺セルの基地局が送信電力を低減すると、無線セル間の干渉が軽減され、カバレッジが自動的に調整されることになる。
このように端末や無線基地局による無線品質の測定値に基づき、自律的に基地局等のパラメータを変更するシステムは、自己管理ネットワーク(Self Organizing Network:SON)と呼ばれており、3GPP(3rd Generation Partnership Project)等の標準化団体において規格化が進められている。
また、特開2009-081486号公報には、端末の移動に伴う無線品質の変化を評価する技術が開示されている。
国際公開WO2009/152978に開示された関連技術では、新規に基地局を追加した場合、無線端末から報告される周辺セル数が3に近づくよう送信電力の調整を行う。したがって、新規基地局は、少しずつ送信電力を増やして、既存基地局の無線セルとの境界付近に無線信号が到達すると、そこで制御を止めることになる。このため、国際公開WO2009/152978に開示された関連技術では、既に既存基地局の無線セルのカバレッジが広い場合には、新規基地局の無線セルのカバレッジが小さく抑えられることになり、無線セルの大きさのバランスが悪くなる可能性があった。
一方、国際公開WO2008/107425に開示された関連技術は、基地局と周辺基地局との間で協調的に干渉回避制御を行うための制御信号をやりとりするインタフェースを必要とし、このインタフェースがない場合には適用できない。また、仮に基地局が干渉回避要求を周辺基地局から受け取ったとしても、周辺基地局における無線品質情報がない限りは、自基地局における無線品質と周辺基地局における無線品質のいずれが良好であるのか判断ができない。そのため、国際公開WO2008/107425に開示された関連技術では、実際に干渉回避制御を行うべきか否かの決定が難しく、適切な送信電力の変更量の導出も難しいという問題点があった。
関連技術の問題点は、特に異なる管理ドメインに属する無線セルが、同じ周波数帯を共有し地理的に隣接するように配置された場合に顕著となる。このような場合の例としては、例えば、異なるベンダによって製造された無線基地局が地理的に隣接するエリアに混在する場合や、複数の移動通信事業者が同一の周波数資源を共有するような場合がある。異なるベンダによって製造された無線基地局が地理的に隣接するエリアに混在する場合、一般に無線基地局を一次的に管理するエレメント・マネジメント・システムは無線基地局のベンダ毎に用意される。異なるベンダのエレメント・マネジメント・システム間で無線品質の管理情報を共有することは通常行われていない。したがって、管理ドメインの境界に位置する無線セルにおいて、互いにカバレッジの大きさや無線品質の問題が共有されないことになる。このため、新規基地局の無線セルのカバレッジが小さく抑えられるという問題や、周辺基地局からの干渉回避要求に対する応答可否の決定および制御量の決定が難しいという問題が顕著となる。
また、特開2009-081486号公報には、端末の移動に伴う無線品質の変化を評価する技術が開示されているが、周辺セルにおける干渉回避制御を検出することは実現できていなかった。
本発明は、上記の課題を鑑みてなされたものであり、特に管理ドメイン境界に設置される無線基地局において、無線セルのカバレッジを適正化し、周辺のセルとの干渉回避制御を自律的に実行することを目的とする。
本発明の無線通信システムは、干渉回避制御の対象となる対象無線セルの無線基地局と接続されている無線端末から、前記対象無線セルの周辺に位置する周辺無線セルの無線品質の測定値を収集する収集手段と、前記周辺無線セルの無線品質の測定値の時間的変化から前記周辺無線セルにおける干渉回避制御を検出する検出手段と、前記周辺無線セルにおける干渉回避制御を検出したか否かに応じて、前記対象無線セルの干渉回避制御を行う干渉回避制御手段とを備えることを特徴とするものである。
また、本発明の無線基地局は、自局と接続されている無線端末から、自局が担当する対象無線セルの周辺に位置する周辺無線セルの無線品質の測定値を収集する収集手段と、前記周辺無線セルの無線品質の測定値の時間的変化から前記周辺無線セルにおける干渉回避制御を検出する検出手段と、前記周辺無線セルにおける干渉回避制御を検出したか否かに応じて、前記対象無線セルの干渉回避制御を行う干渉回避制御手段とを備えることを特徴とするものである。
また、本発明のネットワーク管理装置は、干渉回避制御の対象となる対象無線セルの無線基地局と接続されている無線端末から、前記対象無線セルの周辺に位置する周辺無線セルの無線品質の測定値を収集する収集手段と、前記周辺無線セルの無線品質の測定値の時間的変化から前記周辺無線セルにおける干渉回避制御を検出する検出手段と、前記周辺無線セルにおける干渉回避制御を検出したか否かに応じて、前記対象無線セルの干渉回避制御を行う干渉回避制御手段とを備えることを特徴とするものである。
また、本発明の無線通信方法は、干渉回避制御の対象となる対象無線セルの無線基地局と接続されている無線端末から、前記対象無線セルの周辺に位置する周辺無線セルの無線品質の測定値を収集する収集ステップと、前記周辺無線セルの無線品質の測定値の時間的変化から前記周辺無線セルにおける干渉回避制御を検出する検出ステップと、前記周辺無線セルにおける干渉回避制御を検出したか否かに応じて、前記対象無線セルの干渉回避制御を行う干渉回避制御ステップとを備えることを特徴とするものである。
本発明によれば、干渉回避制御の対象となる対象無線セルの無線基地局と接続されている無線端末から、対象無線セルの周辺に位置する周辺無線セルの無線品質の測定値を収集し、周辺無線セルの無線品質の測定値の時間的変化から周辺無線セルにおける干渉回避制御を検出し、周辺無線セルにおける干渉回避制御を検出したか否かに応じて、対象無線セルの干渉回避制御を行う。本発明では、対象無線セルのカバレッジを適正化し、周辺無線セルとの干渉回避制御を自律的に実行することができる。その結果、本発明では、管理ドメイン境界に設置される無線基地局等において、既存基地局の無線セルのカバレッジが広い場合に、新規基地局の無線セルのカバレッジが小さく抑えられるのを防ぐことができる。また、本発明によれば、対象無線セルで測定された無線品質情報と周辺無線セルで測定された無線品質情報とを共有する手段がない場合や、対象無線セルを担当する無線基地局と周辺無線セルを担当する無線基地局との間で干渉回避の制御信号の送受信を行うインタフェースがないような場合においても、対象無線セルのカバレッジを適正化し、周辺無線セルとの干渉回避制御を自律的に実行することができる。
[第1実施例]
次に、本発明の実施例について図面を参照して詳細に説明する。図1に本発明の第1実施例に係る無線網の構成図を示す。図1において、基地局50~54は、管理ドメインAに属する基地局であり、それぞれ配下に3つのセルを収容する。基地局50は、無線セルA1,A2,A3で表されるエリアを担当範囲とする。基地局51は、無線セルA4,A5,A6で表されるエリアを担当範囲とする。基地局52は、無線セルA7,A8,A9で表されるエリアを担当範囲とする。基地局53は、無線セルA10,A11,A12で表されるエリアを担当範囲とする。基地局54は、無線セルA13,A14,A15で表されるエリアを担当範囲とする。
次に、本発明の実施例について図面を参照して詳細に説明する。図1に本発明の第1実施例に係る無線網の構成図を示す。図1において、基地局50~54は、管理ドメインAに属する基地局であり、それぞれ配下に3つのセルを収容する。基地局50は、無線セルA1,A2,A3で表されるエリアを担当範囲とする。基地局51は、無線セルA4,A5,A6で表されるエリアを担当範囲とする。基地局52は、無線セルA7,A8,A9で表されるエリアを担当範囲とする。基地局53は、無線セルA10,A11,A12で表されるエリアを担当範囲とする。基地局54は、無線セルA13,A14,A15で表されるエリアを担当範囲とする。
基地局60~64は、管理ドメインBに属する基地局であり、それぞれ無指向性のアンテナを備え、配下に1つのセルを収容する。基地局60,61,62,63,64は、それぞれ無線セルB1,B2,B3,B4,B5で表されるエリアを担当範囲とする。
無線端末70,71,72は、それぞれ無線セルA3,A14,A8の内部に位置し、それぞれ無線リンクを介して基地局50,54,51と無線信号の送受信を行っているものとする。
無線端末70,71,72は、それぞれ無線セルA3,A14,A8の内部に位置し、それぞれ無線リンクを介して基地局50,54,51と無線信号の送受信を行っているものとする。
管理ドメインAに属する基地局50~54は、有線網10内に位置するネットワーク管理装置20によって管理される。基地局50~54は、ネットワーク管理装置20から無線パラメータの設定・更新指示を受けると共に、自局で測定した通信品質の測定値や無線端末で測定された無線品質の測定値を管理情報としてネットワーク管理装置20に転送する。
同様に、管理ドメインBに属する基地局60~64は、有線網11内に位置するネットワーク管理装置21によって管理される。基地局60~64は、ネットワーク管理装置21から無線パラメータの設定・更新指示を受けると共に、自局で測定した通信品質の測定値や無線端末で測定された無線品質の測定値を管理情報としてネットワーク管理装置21に転送する。ここで、管理ドメインAのネットワーク管理装置20と管理ドメインBのネットワーク管理装置21とは、管理情報を直接やりとりしないと想定する。
図2(A)にネットワーク管理装置20の内部構成を示す。ネットワーク管理装置20は、収集部20aと、検出部20bと、干渉回避制御部20cと、識別部20dと、初期値設定部20eとから構成される。図2(B)はネットワーク管理装置20の具体的な構成を示すブロック図である。送受信部200は、有線リンク30,31等を介して基地局と信号の送受信を行う。端末無線品質情報収集部201は、基地局を介して無線端末に対して端末無線品質情報を要求し、無線端末から収集した端末無線品質情報を端末無線品質情報データベース(以下、端末無線品質情報DB)203に格納する。無線パラメータ更新部202は、端末無線品質情報DB203に格納された測定結果を分析して無線パラメータを更新する。無線パラメータ更新部202は、更新した無線パラメータを基地局構成情報データベース(以下、基地局構成情報DB)204に保存すると共に、送受信部200を介して基地局に提供する。ネットワーク管理装置21の内部構成は、ネットワーク管理装置20と同様である。
図3にネットワーク管理装置20における基地局構成情報DB204の構成例を示す。基地局構成情報DB204に保存される基地局構成情報は、セル毎に用意され、無線セル識別子410と、基地局識別子420と、隣接セルリスト430と、総送信電力の上限値440と、アンテナのダウンチルト角450と、アンテナ方位角460等から構成される。
図4にネットワーク管理装置21における基地局構成情報DB204の構成例を示す。ネットワーク管理装置20の場合と同様に、基地局構成情報DB204に保存される基地局構成情報は、セル毎に用意され、無線セル識別子411と、基地局識別子421と、隣接セルリスト431と、総送信電力の上限値441と、アンテナのダウンチルト角451と、アンテナ方位角461等から構成される。なお、図4においてアンテナチルト角451およびアンテナ方位角461がN/A(not available)となっているのは、管理ドメインBの基地局群が無指向性のアンテナを備えるオムニセル構成を想定したためである。
図5(A)に基地局50の内部構成を示す。基地局50は、収集部50aと、検出部50bと、干渉回避制御部50cと、識別部50dと、初期値設定部50eとから構成される。図5(B)は基地局50の具体的な構成を示すブロック図である。送受信部300は、無線リンクを介して無線端末と無線信号の送受信を行うと共に、有線リンク30を介して、ネットワーク管理装置20を含む有線網10との間で信号の転送を行う。呼制御部301は、無線端末に対する発呼や着呼の制御と、無線リソースの割り当てを行う。端末無線品質情報収集部302は、ネットワーク管理装置20からの指示を受けて配下の無線端末から端末無線品質情報を収集し、収集した端末無線品質情報をネットワーク管理装置20へ送信する。無線パラメータ設定部303は、ネットワーク管理装置20からの指示を受けて自局の無線パラメータ(隣接セルリスト、アンテナチルト角、送信電力など)を更新する。他の基地局についても内部構成は基地局50と同様である。
なお、本実施例においては、端末無線品質情報の保存と無線パラメータの更新処理とをネットワーク管理装置20またはネットワーク管理装置21において集中的に行うようにしている。後述のとおり、無線パラメータの更新処理には、対象となる無線セルの配下の無線端末から収集した情報のみが分析対象となり、周辺の無線セル経由で取得した情報は必要としない。そのため、端末無線品質情報の保存と無線パラメータの更新処理とを各基地局において分散的に実行することも可能である。
端末無線品質情報の保存と無線パラメータの更新処理とをネットワーク管理装置20,21において集中的に行う場合、端末無線品質情報収集部201と無線パラメータ更新部202とは収集部20aを構成し、無線パラメータ更新部202は検出部20bおよび識別部20dを構成し、無線パラメータ更新部202と無線パラメータ設定部303とは干渉回避制御部20cおよび初期値設定部20eを構成している。
また、端末無線品質情報の保存と無線パラメータの更新処理とを各基地局において分散的に実行する場合、端末無線品質情報収集部302と無線パラメータ設定部303とは収集部50aを構成し、無線パラメータ設定部303は検出部50b、干渉回避制御部50c、識別部50dおよび初期値設定部50eを構成している。端末無線品質情報の保存と無線パラメータの更新処理とを各基地局において分散的に実行する場合、以下の説明で無線パラメータ更新部202が行っている処理は、無線パラメータ設定部303が代わりに行うことになる。
図6に無線端末から収集する端末無線品質情報500の例を示す。ここに示す例は、文献「3GPP TS 36.331,“Radio Resource Control (RRC); Protocol specification (Release 8)”,Sec.6.3.5.Measurement information elements」のE-UTRA(Evolved Universal Terrestrial Radio Access)の仕様において規定される測定情報に基づいている。ただし、測定情報フォーマットは、必ずしもE-UTRAの仕様でなくても良い。
端末無線品質情報500は、端末無線品質測定識別子(measId)510と、帰属する無線セルに対するサービングセル(Serving Cell)無線品質測定結果(measResultServCell)520と、周辺セル無線品質測定結果(measResultNeighCells)530,540,550とから構成される。サービングセル無線品質測定結果520には、さらにリファレンス信号受信電界強度(rsrpResult)521と、リファレンス信号受信品質(rsrqResult)522とが含まれる。周辺セル無線品質測定結果530,540,550には、さらに周辺セル識別子531と、リファレンス信号受信電界強度532と、リファレンス信号受信品質533とが含まれる。
図7に無線セルB1に関してネットワーク管理装置21の端末無線品質情報DB203が格納する時系列の端末無線品質情報600の例を示す。図7の例では、MM月DD日の0時0分から0時45分まで、15分間隔で取得された統計情報を示している。端末無線品質情報600は、全報告数Saと、サービングセル弱電界報告数Sfと、セルA1全報告数A1aと、セルA1干渉報告数A1fと、セルA2全報告数A2aと、セルA2干渉報告数A2fと、セルB2全報告数B2aと、セルB2干渉報告数B2fと、セルB3全報告数B3aと、セルB3干渉報告数B3fとを含む。この端末無線品質情報600は、無線セルB1を担当する基地局60と無線リンクを介して接続している無線端末から収集した情報に基づくものである。
図7に示す各情報の添え字[t]は、統計取得日における0時からの経過時間を15分で割った値を示している。例えばSa[0]は0時0分の全報告数であり、Sa[3]は0時45分の全報告数である。
なお、以下の説明において、周辺セルとは、処理対象のセルの周辺に位置する無線セルのうち、対象セルを担当する基地局とは別の基地局が担当する無線セルのことを言う。
なお、以下の説明において、周辺セルとは、処理対象のセルの周辺に位置する無線セルのうち、対象セルを担当する基地局とは別の基地局が担当する無線セルのことを言う。
全報告数Saは、サービングセルB1内において、サービングセルB1を担当する基地局と接続している無線端末から受信した全ての無線品質報告の数である。
サービングセル弱電界報告数Sfは、式(1)のようにサービングセルB1のリファレンス信号受信電界強度(Reference Signal Received Power:RSRP)が所定の閾値Ts[dBm]を下回ったことを示す無線品質報告の数である。
RSRP(B1)<Ts ・・・(1)
サービングセル弱電界報告数Sfは、式(1)のようにサービングセルB1のリファレンス信号受信電界強度(Reference Signal Received Power:RSRP)が所定の閾値Ts[dBm]を下回ったことを示す無線品質報告の数である。
RSRP(B1)<Ts ・・・(1)
セルA1全報告数A1aは、周辺セルA1の無線品質測定結果が含まれている無線品質報告の数である。
セルA1干渉報告数A1fは、周辺セルA1の無線品質測定結果のうち、式(2)のように周辺セルA1のRSRP値をサービングセルB1のRSRP値で割った値が所定値Tn[dB]を超えたことを示す無線品質報告の数である。
RSRP(A1)/RSRP(B1)>Tn ・・・(2)
セルA1干渉報告数A1fは、周辺セルA1の無線品質測定結果のうち、式(2)のように周辺セルA1のRSRP値をサービングセルB1のRSRP値で割った値が所定値Tn[dB]を超えたことを示す無線品質報告の数である。
RSRP(A1)/RSRP(B1)>Tn ・・・(2)
セルA2全報告数A2aは、周辺セルA2の無線品質測定結果が含まれている無線品質報告の数である。
セルA2干渉報告数A2fは、周辺セルA2の無線品質測定結果のうち、式(3)のように周辺セルA2のRSRP値をサービングセルB1のRSRP値で割った値が所定値Tn[dB]を超えたことを示す無線品質報告の数である。
RSRP(A2)/RSRP(B1)>Tn ・・・(3)
セルA2干渉報告数A2fは、周辺セルA2の無線品質測定結果のうち、式(3)のように周辺セルA2のRSRP値をサービングセルB1のRSRP値で割った値が所定値Tn[dB]を超えたことを示す無線品質報告の数である。
RSRP(A2)/RSRP(B1)>Tn ・・・(3)
セルB2全報告数B2aは、周辺セルB2の無線品質測定結果が含まれている無線品質報告の数である。
セルB2干渉報告数B2fは、周辺セルB2の無線品質測定結果のうち、式(4)のように周辺セルB2のRSRP値をサービングセルB1のRSRP値で割った値が所定値Tn[dB]を超えたことを示す無線品質報告の数である。
RSRP(B2)/RSRP(B1)>Tn ・・・(4)
セルB2干渉報告数B2fは、周辺セルB2の無線品質測定結果のうち、式(4)のように周辺セルB2のRSRP値をサービングセルB1のRSRP値で割った値が所定値Tn[dB]を超えたことを示す無線品質報告の数である。
RSRP(B2)/RSRP(B1)>Tn ・・・(4)
セルB3全報告数B3aは、周辺セルB3の無線品質測定結果が含まれている無線品質報告の数である。
セルB3干渉報告数B3fは、周辺セルB3の無線品質測定結果のうち、式(5)のように周辺セルB3のRSRP値をサービングセルB1のRSRP値で割った値が所定値Tn[dB]を超えたことを示す無線品質報告の数である。
RSRP(B3)/RSRP(B1)>Tn ・・・(5)
セルB3干渉報告数B3fは、周辺セルB3の無線品質測定結果のうち、式(5)のように周辺セルB3のRSRP値をサービングセルB1のRSRP値で割った値が所定値Tn[dB]を超えたことを示す無線品質報告の数である。
RSRP(B3)/RSRP(B1)>Tn ・・・(5)
さらに、端末無線品質情報DB203は、無線セルB1配下の無線端末よりセルA1,A2,B2,B3以外の周辺セルの検出結果が報告された際には、図7に示した情報に加えて、新たに報告された周辺セルに関しても全報告数と干渉報告数とを保持することになる。以上のような端末無線品質情報600が、対象とするサービングセルの各々について保存される。ネットワーク管理装置21の例で言えば、無線セルB1,B2,B3,B4,B5の各々について端末無線品質情報600が保存されることになる。
なお、以下では、周辺セルXi全報告数をXia、周辺セルXi干渉報告数をXifと表現する。
なお、以下では、周辺セルXi全報告数をXia、周辺セルXi干渉報告数をXifと表現する。
次に図8を用いて、ネットワーク管理装置20の無線パラメータ更新部202が行う無線パラメータ更新処理について説明する。
無線パラメータ更新部202は、無線パラメータ更新処理を開始すると(ステップS100)、まず無線パラメータ更新処理の対象となるセルが新規に運用を開始したセルか否かを調べる(ステップS101)。対象セルが新規に運用を開始したセルか否かは、対象セルの運用開始からの経過時間Uptimeが所定の閾値Th0未満であるか否かによって判定することができる。
無線パラメータ更新部202は、無線パラメータ更新処理を開始すると(ステップS100)、まず無線パラメータ更新処理の対象となるセルが新規に運用を開始したセルか否かを調べる(ステップS101)。対象セルが新規に運用を開始したセルか否かは、対象セルの運用開始からの経過時間Uptimeが所定の閾値Th0未満であるか否かによって判定することができる。
無線パラメータ更新部202は、経過時間Uptimeが閾値Th0未満であれば、対象セルが新規に運用を開始したセルであると判定し(ステップS101においてYES)、無線パラメータの初期値設定を行い(ステップS102)、無線パラメータ更新処理を終了する(ステップS103)。
また、無線パラメータ更新部202は、経過時間Uptimeが閾値Th0以上であれば、対象セルが新規に運用を開始したセルではないと判定し(ステップS101においてNO)、自装置の端末無線品質情報DB203から対象セルの端末無線品質情報600を取得する(ステップS104)。
続いて、無線パラメータ更新部202は、取得した端末無線品質情報600に基づいて、対象セル内が弱電界であることを示す無線品質報告の割合Sf[t]/Sa[t]をサービングセル弱電界率として求め、このサービングセル弱電界率が所定の閾値Th1を超えるか否かを判定する(ステップS105)。ここで、Sa[t]は対象セルの最新の全報告数、Sf[t]は最新のサービングセル弱電界報告数である。
無線パラメータ更新部202は、サービングセル弱電界率が閾値Th1を超える場合(ステップS105においてYES)、対象セル内が弱電界であると判定し、対象セルを担当する基地局の送信電力をΔP1増加して(ステップS106)、無線パラメータ更新処理を終了する(ステップS107)。ステップS106の処理では、無線パラメータ更新部202からの指示を受けて、対象セルを担当する基地局の無線パラメータ設定部303が送信電力をΔP1増加させることになる。
なお、ステップS106において、対象セルを担当する基地局の送信電力を増加する代わりに、この基地局のアンテナのダウンチルト角を減少させるようにしても良い。この場合、基地局の無線パラメータ設定部303は、無線パラメータ更新部202からの指示を受けてアンテナのダウンチルト角を減少させる。
また、無線パラメータ更新部202は、サービングセル弱電界率が閾値Th1を超えなかった場合(ステップS105においてNO)、対象セルに対する周辺セルXiからの干渉があることを示す無線品質報告の割合Xif[t]/Xia[t]を干渉検出率として求め、この干渉検出率が所定の閾値Th2を超えた周辺セルXiを順番に抽出する(ステップS108)。
無線パラメータ更新部202は、干渉検出率が閾値Th2を超えた周辺セルXiを抽出できた場合(ステップS108においてYES)、抽出した周辺セルXiについて、測定情報の時間的変化から周辺セルXiにおける干渉回避制御を検出し、周辺セルXiの干渉検出率が減少したか否かを判定する(ステップS110)。この干渉回避制御は、周辺セルXiを担当する基地局が行うものである。周辺セルXiの干渉検出率が減少したか否かは、干渉検出率の変化量Xif[t-1]/Xia[t-1]-Xif[t]/Xia[t]を計算し、干渉検出率の変化量と所定の閾値Th3とを比較することによって判定することができる。
ここで、Xia[t]は、対象セルの端末無線品質情報600の一部として保存されている、周辺セルXiの最新の全報告数、Xia[t-1]は周辺セルXiの直前の時間帯の全報告数である。また、Xif[t]は、対象セルの端末無線品質情報600の一部として保存されている、周辺セルXiの最新の干渉報告数、Xif[t-1]は周辺セルXiの直前の時間帯の干渉報告数である。
無線パラメータ更新部202は、干渉検出率の変化量が閾値Th3を超える場合(ステップS110においてYES)、周辺セルXiにおける干渉回避制御を検出したと見なして、対象セルを担当する基地局の送信電力をΔP2だけ減少させる(ステップS111)。また、無線パラメータ更新部202は、干渉検出率の変化量が閾値Th3以下の場合(ステップS110においてNO)、周辺セルXiにおける干渉回避制御を検出できなかったと見なして、対象セルを担当する基地局の送信電力をΔP3だけ減少させる(ステップS112)。ステップS111,S112の処理では、無線パラメータ更新部202からの指示を受けて、対象セルを担当する基地局の無線パラメータ設定部303が送信電力をΔP2またはΔP3だけ減少させることになる。
ここで、ΔP2>ΔP3、すなわちΔP2をΔP3に対して十分大きく設定しておくことにより、周辺セルXiが干渉回避制御を行っている場合には、対象セルの干渉回避制御を促進することができる。
なお、ステップS111およびS112において、対象セルを担当する基地局の送信電力を減少させる代わりに、この基地局のアンテナのダウンチルト角を増加させるようにしても良い。
なお、ステップS111およびS112において、対象セルを担当する基地局の送信電力を減少させる代わりに、この基地局のアンテナのダウンチルト角を増加させるようにしても良い。
次に、無線パラメータ更新部202は、ステップS108に戻り、干渉検出率が閾値Th2を超える周辺セルXiのうち、ステップS110~S112の処理を実施していない周辺セルXiが存在するかどうかを判定する。無線パラメータ更新部202は、未処理の周辺セルXiが存在する場合には、ステップS110に進む。また、無線パラメータ更新部202は、未処理の周辺セルXiが存在せず、干渉検出率が閾値Th2を超える全ての周辺セルXiの抽出が完了した場合には(ステップS108においてNO)、無線パラメータ更新処理を終了する(ステップS109)。
なお、上記のステップS110の処理では、干渉検出率の閾値超過の有無に基づき周辺セルの干渉回避制御を検出しているが、検出の方法としては、これに限定されることなく他の方法も考えられる。例えば、端末無線品質情報DB203において、図6のフォーマットで無線端末から報告された測定値をそのままの形で保存しておくことが可能であれば、報告された周辺セルのRSRPや周辺セルのリファレンス信号受信品質(Reference Signal Received Quality:RSRQ)の中央値または上位X%点の値の時間的な変化量に基づき、周辺セルの干渉回避制御を検出するようにしても良い。つまり、周辺セルのRSRPの中央値または上位X%点の値の時間的な変化量RSRP[t-1]-RSRP[t]が所定の閾値を超える場合、周辺セルにおける干渉回避制御を検出したと見なせばよい。周辺セルのRSRQを用いる場合も同様である。
図9および図10に、無線セルB1を対象セルとして無線パラメータを更新したときのカバレッジの中間状態および最適化後の最終状態を示す。無線パラメータ更新に伴うカバレッジ変化の中間状態(図9)では、ネットワーク管理装置21の無線パラメータ更新部202は、セルB1の弱電界エリアを解消するように一時的にセルB1のカバレッジを拡大した結果、セルB1に対する周辺セルA4,A3,A8,A13,A14,A6からの干渉を検出する。
時間の経過と共に、ネットワーク管理装置21の無線パラメータ更新部202は、干渉回避制御を行った結果、セルB1のカバレッジを縮小し、図10に示すカバレッジの最適化状態になると送信電力の低減を止める。ネットワーク管理装置21の無線パラメータ更新部202は、干渉回避制御の最中において、周辺セルにおける干渉回避制御を検出すると、セルB1の干渉回避制御を促進することにより、早期にセルB1のカバレッジを適正化し、自律的に干渉回避を図ることができる。
[第2実施例]
次に、図11を参照して、本発明の第2実施例におけるネットワーク管理装置の無線パラメータ更新部が行う無線パラメータ更新処理について説明する。本実施例においても、無線網、ネットワーク管理装置および基地局の構成は第1実施例と同様であるので、図1、図2、図5の符号を用いて説明する。
まず、無線パラメータ更新部202が行う無線パラメータ更新処理のうち、図11のステップS120~S129の処理については第1実施例におけるステップS100~S109と同様であるので、説明は省略する。
次に、図11を参照して、本発明の第2実施例におけるネットワーク管理装置の無線パラメータ更新部が行う無線パラメータ更新処理について説明する。本実施例においても、無線網、ネットワーク管理装置および基地局の構成は第1実施例と同様であるので、図1、図2、図5の符号を用いて説明する。
まず、無線パラメータ更新部202が行う無線パラメータ更新処理のうち、図11のステップS120~S129の処理については第1実施例におけるステップS100~S109と同様であるので、説明は省略する。
次に、無線パラメータ更新部202は、干渉検出率が閾値Th2を超えた周辺セルXiを抽出できた場合(ステップS128においてYES)、抽出した周辺セルXiが無線パラメータ更新処理の対象となるセルと同じ管理ドメインに属するか否かを識別する(ステップS130)。周辺セルXiが対象セルと同じ管理ドメインに属するか否かの識別は、例えばセル識別子の数値の範囲を管理ドメイン毎にあらかじめ規定しておくことで実現することができる。
無線パラメータ更新部202は、周辺セルXiが対象セルと同じ管理ドメインに属する場合(ステップS130においてYES)、対象セルを担当する基地局の送信電力をΔP4だけ減少させるか、または周辺セルXiを担当する基地局に対して干渉回避を要求する(ステップS131)。このように、周辺セルXiが対象セルと同じ管理ドメインに属する場合には、国際公開WO2009/152978、国際公開WO2008/107425に開示された干渉回避技術を用いてかまわない。
また、無線パラメータ更新部202は、周辺セルXiが対象セルと異なる管理ドメインに属する場合(ステップS130においてNO)、測定情報の時間的変化から周辺セルXiにおける干渉回避制御を検出し、周辺セルXiの干渉検出率が減少したか否かを判定する(ステップS132)。このステップS132の処理は、第1実施例におけるステップS110の処理と同様である。
無線パラメータ更新部202は、干渉検出率の変化量が閾値Th3を超える場合(ステップS132においてYES)、対象セルを担当する基地局の送信電力をΔP2だけ減少させる(ステップS134)。また、無線パラメータ更新部202は、干渉検出率の変化量が閾値Th3以下の場合(ステップS132においてNO)、対象セルを担当する基地局の送信電力をΔP3だけ減少させる(ステップS135)。このステップS134,S135の処理は、第1実施例におけるステップS111,S112の処理と同様である。
次に、無線パラメータ更新部202は、ステップS128に戻り、干渉検出率が閾値Th2を超える周辺セルXiのうち、ステップS130~S135の処理を実施していない周辺セルXiが存在するかどうかを判定する。無線パラメータ更新部202は、未処理の周辺セルXiが存在する場合には、ステップS130に進む。また、無線パラメータ更新部202は、未処理の周辺セルXiが存在せず、干渉検出率が閾値Th2を超える全ての周辺セルXiの抽出が完了した場合には(ステップS128においてNO)、無線パラメータ更新処理を終了する(ステップS129)。
このように、本実施例では、周辺セルが対象セルと異なる管理ドメインに属する場合にのみ、第1実施例と同様な測定情報の時間的変化に基づく干渉回避制御を行うことにより、管理ドメイン内の干渉回避制御をより効率的に行うことができる。干渉回避制御を効率的に行うことができる理由は、管理ドメイン内であれば、各セルにおける無線品質測定結果の共有や、周辺セルにおける干渉回避制御の有無の確認が容易にできるため、周辺セルからの干渉の測定結果の時間的変化を用いなくとも、干渉回避制御を行うことが可能だからである。
[第3実施例]
次に、図12を参照して、本発明の第3実施例におけるネットワーク管理装置の無線パラメータ更新部が行う無線パラメータ初期値設定処理について説明する。本実施例においても、無線網、ネットワーク管理装置および基地局の構成は第1実施例と同様であるので、図1、図2、図5の符号を用いて説明する。
次に、図12を参照して、本発明の第3実施例におけるネットワーク管理装置の無線パラメータ更新部が行う無線パラメータ初期値設定処理について説明する。本実施例においても、無線網、ネットワーク管理装置および基地局の構成は第1実施例と同様であるので、図1、図2、図5の符号を用いて説明する。
無線パラメータ更新部202は、図8のステップS102または図11のステップS122の処理を開始、すなわち無線パラメータ初期値設定処理を開始すると(ステップS140)、自装置の端末無線品質情報DB203から対象セルの端末無線品質情報を取得する(ステップS141)。
続いて、無線パラメータ更新部202は、無線パラメータ初期値設定処理の対象セルについて全報告数Sa[t]が所定値Th4を上回るかどうかによって、初期値決定に必要な数の端末無線品質情報が存在するか否かを調べる(ステップS142)。無線パラメータ更新部202は、対象セルの全報告数Sa[t]が所定値Th4以下の場合(ステップS142においてNO)、報告数が不足と判断し、対象セルを担当する基地局の送信電力およびアンテナチルト角をデフォルト値に設定し(ステップS143)、無線パラメータ初期値設定処理を終了する(ステップS144)。ステップS143の処理では、無線パラメータ更新部202からの指示を受けて、対象セルを担当する基地局の無線パラメータ設定部303が送信電力およびアンテナチルト角をデフォルト値に設定することになる。
また、無線パラメータ更新部202は、対象セルの全報告数Sa[t]が所定値Th4を上回る場合(ステップS142においてYES)、初期値決定に必要な数の端末無線品質情報が存在すると判断し、干渉検出率が最も高い周辺セルXiを抽出する(ステップS145)。干渉検出率の計算方法は、第1実施例で説明したとおりである。
無線パラメータ更新部202は、干渉検出率が最も高い周辺セルXiを抽出した後、この周辺セルXiの最新の全報告数Xia[t]と最新の干渉報告数Xif[t]とを用いて、対象セルを担当する基地局の送信電力Pを次式のように計算して、送信電力Pを増加させ(ステップS146)、無線パラメータ初期値設定処理を終了する(ステップS147)。
P=Median(Pmax,Pmin+α×Xif[t]/Xia[t],Pmin) ・・・(6)
P=Median(Pmax,Pmin+α×Xif[t]/Xia[t],Pmin) ・・・(6)
式(6)において、αは定数、Pminは送信電力のあらかじめ定められた最小値、Pmaxは送信電力のあらかじめ定められた最大値である。Median(x,y,z)は引数x,y,zの中央値を取る関数である。式(6)は、対象セルの送信電力Pを、周辺セルXiの干渉検出率に比例して増加するように更新することを意味する。なお、対象セルの送信電力の初期値を、周辺セルからの干渉の程度に応じて設定した後は、同様の初期化は再び行わない。
このように、本実施例では、周辺セルからの干渉の程度が大きいほど対象セルの送信電力の初期値を大きくとることにより、既存の周辺セルのカバレッジがある程度広い場合にも、対象セルのカバレッジが小さく抑えられるのを防ぐことができ、セルのカバレッジの釣り合いをとることが可能となる。
[第4実施例]
次に、図13を参照して、本発明の第4実施例におけるネットワーク管理装置の無線パラメータ更新部が行う無線パラメータ初期値設定処理について説明する。本実施例においても、無線網、ネットワーク管理装置および基地局の構成は第1実施例と同様であるので、図1、図2、図5の符号を用いて説明する。
次に、図13を参照して、本発明の第4実施例におけるネットワーク管理装置の無線パラメータ更新部が行う無線パラメータ初期値設定処理について説明する。本実施例においても、無線網、ネットワーク管理装置および基地局の構成は第1実施例と同様であるので、図1、図2、図5の符号を用いて説明する。
無線パラメータ更新部202は、図8のステップS102または図11のステップS122の処理を開始、すなわち無線パラメータ初期値設定処理を開始すると(ステップS160)、自装置の端末無線品質情報DB203から対象セルの端末無線品質情報を取得する(ステップS161)。図13のステップS162~S164の処理については第3実施例におけるステップS142~S144と同様であるので、説明は省略する。
次に、無線パラメータ更新部202は、無線パラメータ初期値設定処理の対象となるセルと同じ管理ドメインに属する周辺セルのうち、干渉検出率が最も高い周辺セルXiを抽出する(ステップS165)。
無線パラメータ更新部202は、干渉検出率が最も高い周辺セルXiを抽出した後、この周辺セルXiの最新の全報告数Xia[t]と最新の干渉報告数Xif[t]とを用いて、対象セルを担当する基地局の送信電力Pを次式のように計算して、送信電力Pを減少させ(ステップS166)、無線パラメータ初期値設定処理を終了する(ステップS167)。
P=Median(Pmax,Pmax-β*Xif[t]/Xia[t],Pmin) ・・・(7)
P=Median(Pmax,Pmax-β*Xif[t]/Xia[t],Pmin) ・・・(7)
式(7)において、βは定数である。式(7)は、対象セルの送信電力Pを、周辺セルXiの干渉検出率に比例して減少するように更新することを意味する。
このように、本実施例では、同じ管理ドメインに属する周辺セルからの干渉の程度のみを考慮して対象セルの送信電力を決定することにより、異なる管理ドメインに属する既存の周辺セルのカバレッジがある程度広い場合にも、対象セルのカバレッジが小さく抑えられるのを防ぐことができ、セルのカバレッジの釣り合いをとることが可能となる。
このように、本実施例では、同じ管理ドメインに属する周辺セルからの干渉の程度のみを考慮して対象セルの送信電力を決定することにより、異なる管理ドメインに属する既存の周辺セルのカバレッジがある程度広い場合にも、対象セルのカバレッジが小さく抑えられるのを防ぐことができ、セルのカバレッジの釣り合いをとることが可能となる。
なお、第1実施例~第4実施例で説明したネットワーク管理装置の構成のうち、少なくとも端末無線品質情報収集部201と無線パラメータ更新部202と端末無線品質情報DB203と基地局構成情報DB204の一部は、CPU、記憶装置及びインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。同様に、第1実施例~第4実施例で説明した基地局の構成のうち、少なくとも呼制御部301と端末無線品質情報収集部302と無線パラメータ設定部303の一部は、CPU、記憶装置及びインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。各装置のCPUは、記憶装置に格納されたプログラムに従って第1実施例~第4実施例で説明した処理を実行する。
上記の実施例の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)干渉回避制御の対象となる対象無線セルの無線基地局と接続されている無線端末から、対象無線セルの周辺に位置する周辺無線セルの無線品質の測定値を収集する収集手段と、周辺無線セルの無線品質の測定値の時間的変化から周辺無線セルにおける干渉回避制御を検出する検出手段と、周辺無線セルにおける干渉回避制御を検出したか否かに応じて、対象無線セルの干渉回避制御を行う干渉回避制御手段とを備えることを特徴とする無線通信システム。
(付記2)付記1に記載の無線通信システムにおいて、周辺無線セルが対象無線セルと異なる管理ドメインに属するか否かを識別する識別手段をさらに備え、検出手段は、対象無線セルと異なる管理ドメインに属する周辺無線セルにおける干渉回避制御を検出し、干渉回避制御手段は、対象無線セルと異なる管理ドメインに属する周辺無線セルにおける干渉回避制御を検出したか否かに応じて、対象無線セルの干渉回避制御を行うことを特徴とする無線通信システム。
(付記3)付記1に記載の無線通信システムにおいて、無線端末から収集した周辺無線セルの無線品質の測定値と正の相関をなすように、対象無線セルを担当する無線基地局の送信電力の初期値を設定する初期値設定手段をさらに備えることを特徴とする無線通信システム。
(付記4)付記2に記載の無線通信システムにおいて、無線端末から収集した周辺無線セルの無線品質の測定値のうち、対象無線セルと同じ管理ドメインに属する周辺無線セルに関する測定値に基づいて、対象無線セルを担当する無線基地局の送信電力の初期値を設定する初期値設定手段をさらに備えることを特徴とする無線通信システム。
(付記5)付記1に記載の無線通信システムにおいて、無線品質の測定値は、周辺無線セルを担当する無線基地局から送信されるリファレンス信号の受信電力、またはリファレンス信号の受信電力に対する総受信電力の比によって定義されるリファレンス信号の受信品質であることを特徴とする無線通信システム。
(付記6)付記1に記載の無線通信システムにおいて、干渉回避制御手段は、対象無線セルを担当する無線基地局の、リファレンス信号を含む総送信電力の低減、または対象無線セルを担当する無線基地局のアンテナのダウンチルト角の増加により、対象無線セルの干渉回避制御を行うことを特徴とする無線通信システム。
(付記7)付記1に記載の無線通信システムにおいて、干渉回避制御手段は、周辺無線セルにおける干渉回避制御を検出した場合の対象無線セルの干渉回避制御量を、周辺無線セルにおける干渉回避制御を検出しなかった場合の対象無線セルの干渉回避制御量よりも大きくすることを特徴とする無線通信システム。
(付記8)自局と接続されている無線端末から、自局が担当する対象無線セルの周辺に位置する周辺無線セルの無線品質の測定値を収集する収集手段と、周辺無線セルの無線品質の測定値の時間的変化から周辺無線セルにおける干渉回避制御を検出する検出手段と、周辺無線セルにおける干渉回避制御を検出したか否かに応じて、対象無線セルの干渉回避制御を行う干渉回避制御手段とを備えることを特徴とする無線基地局。
(付記9)干渉回避制御の対象となる対象無線セルの無線基地局と接続されている無線端末から、対象無線セルの周辺に位置する周辺無線セルの無線品質の測定値を収集する収集手段と、周辺無線セルの無線品質の測定値の時間的変化から周辺無線セルにおける干渉回避制御を検出する検出手段と、周辺無線セルにおける干渉回避制御を検出したか否かに応じて、対象無線セルの干渉回避制御を行う干渉回避制御手段とを備えることを特徴とするネットワーク管理装置。
(付記10)干渉回避制御の対象となる対象無線セルの無線基地局と接続されている無線端末から、対象無線セルの周辺に位置する周辺無線セルの無線品質の測定値を収集する収集ステップと、周辺無線セルの無線品質の測定値の時間的変化から周辺無線セルにおける干渉回避制御を検出する検出ステップと、周辺無線セルにおける干渉回避制御を検出したか否かに応じて、対象無線セルの干渉回避制御を行う干渉回避制御ステップとを備えることを特徴とする無線通信方法。
以上、上記実施例を参照して本発明を説明したが、本発明は、上記実施例だけに限定されるものではない。本発明の構成や詳細は、上記実施例を適宜組み合わせて用いてもよく、さらに本発明の請求の範囲内において、適宜変更することもできる。
この出願は、2010年11月29日に出願された日本出願特願2010-264748号を基礎とする優先権を主張し、その開示の内容を全てここに取り込む。
この出願は、2010年11月29日に出願された日本出願特願2010-264748号を基礎とする優先権を主張し、その開示の内容を全てここに取り込む。
本発明の活用例として、移動通信におけるセルのカバレッジの自律最適化を行う自己管理ネットワーク(Self Organizing Network)に対応した基地局およびネットワーク管理装置が挙げられる。
A1~A15,B1~B5…無線セル、10,11…有線網、20,21…ネットワーク管理装置、20a,50a…収集部、20b,50b…検出部、20c,50c…干渉回避制御部、20d,50d…識別部、20e,50e…初期値設定部、30,31…有線リンク、50~54,60~64…基地局、70,71,72…無線端末、200,300…送受信部、201,302…端末無線品質情報収集部、202…無線パラメータ更新部、203…端末無線品質情報データベース、204…基地局構成情報データベース、301…呼制御部、303… 無線パラメータ設定部。
Claims (10)
- 干渉回避制御の対象となる対象無線セルの無線基地局と接続されている無線端末から、前記対象無線セルの周辺に位置する周辺無線セルの無線品質の測定値を収集する収集手段と、
前記周辺無線セルの無線品質の測定値の時間的変化から前記周辺無線セルにおける干渉回避制御を検出する検出手段と、
前記周辺無線セルにおける干渉回避制御を検出したか否かに応じて、前記対象無線セルの干渉回避制御を行う干渉回避制御手段とを備えることを特徴とする無線通信システム。 - 請求項1に記載の無線通信システムにおいて、
前記周辺無線セルが前記対象無線セルと異なる管理ドメインに属するか否かを識別する識別手段をさらに備え、
前記検出手段は、前記対象無線セルと異なる管理ドメインに属する周辺無線セルにおける干渉回避制御を検出し、
前記干渉回避制御手段は、前記対象無線セルと異なる管理ドメインに属する周辺無線セルにおける干渉回避制御を検出したか否かに応じて、前記対象無線セルの干渉回避制御を行うことを特徴とする無線通信システム。 - 請求項1に記載の無線通信システムにおいて、
前記無線端末から収集した前記周辺無線セルの無線品質の測定値と正の相関をなすように、前記対象無線セルを担当する無線基地局の送信電力の初期値を設定する初期値設定手段をさらに備えることを特徴とする無線通信システム。 - 請求項2に記載の無線通信システムにおいて、
前記無線端末から収集した前記周辺無線セルの無線品質の測定値のうち、前記対象無線セルと同じ管理ドメインに属する周辺無線セルに関する測定値に基づいて、前記対象無線セルを担当する無線基地局の送信電力の初期値を設定する初期値設定手段をさらに備えることを特徴とする無線通信システム。 - 請求項1に記載の無線通信システムにおいて、
前記無線品質の測定値は、前記周辺無線セルを担当する無線基地局から送信されるリファレンス信号の受信電力、または前記リファレンス信号の受信電力に対する総受信電力の比によって定義されるリファレンス信号の受信品質であることを特徴とする無線通信システム。 - 請求項1に記載の無線通信システムにおいて、
前記干渉回避制御手段は、前記対象無線セルを担当する無線基地局の、リファレンス信号を含む総送信電力の低減、または前記対象無線セルを担当する無線基地局のアンテナのダウンチルト角の増加により、前記対象無線セルの干渉回避制御を行うことを特徴とする無線通信システム。 - 請求項1に記載の無線通信システムにおいて、
前記干渉回避制御手段は、前記周辺無線セルにおける干渉回避制御を検出した場合の前記対象無線セルの干渉回避制御量を、前記周辺無線セルにおける干渉回避制御を検出しなかった場合の前記対象無線セルの干渉回避制御量よりも大きくすることを特徴とする無線通信システム。 - 自局と接続されている無線端末から、自局が担当する対象無線セルの周辺に位置する周辺無線セルの無線品質の測定値を収集する収集手段と、
前記周辺無線セルの無線品質の測定値の時間的変化から前記周辺無線セルにおける干渉回避制御を検出する検出手段と、
前記周辺無線セルにおける干渉回避制御を検出したか否かに応じて、前記対象無線セルの干渉回避制御を行う干渉回避制御手段とを備えることを特徴とする無線基地局。 - 干渉回避制御の対象となる対象無線セルの無線基地局と接続されている無線端末から、前記対象無線セルの周辺に位置する周辺無線セルの無線品質の測定値を収集する収集手段と、
前記周辺無線セルの無線品質の測定値の時間的変化から前記周辺無線セルにおける干渉回避制御を検出する検出手段と、
前記周辺無線セルにおける干渉回避制御を検出したか否かに応じて、前記対象無線セルの干渉回避制御を行う干渉回避制御手段とを備えることを特徴とするネットワーク管理装置。 - 干渉回避制御の対象となる対象無線セルの無線基地局と接続されている無線端末から、前記対象無線セルの周辺に位置する周辺無線セルの無線品質の測定値を収集する収集ステップと、
前記周辺無線セルの無線品質の測定値の時間的変化から前記周辺無線セルにおける干渉回避制御を検出する検出ステップと、
前記周辺無線セルにおける干渉回避制御を検出したか否かに応じて、前記対象無線セルの干渉回避制御を行う干渉回避制御ステップとを備えることを特徴とする無線通信方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-264748 | 2010-11-29 | ||
JP2010264748 | 2010-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012073953A1 true WO2012073953A1 (ja) | 2012-06-07 |
Family
ID=46171882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/077530 WO2012073953A1 (ja) | 2010-11-29 | 2011-11-29 | 無線通信システム、無線基地局、ネットワーク管理装置および無線通信方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012073953A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013255163A (ja) * | 2012-06-08 | 2013-12-19 | Softbank Mobile Corp | 通信管理システム及び統合管理サーバ |
JP5542229B1 (ja) * | 2013-03-25 | 2014-07-09 | ソフトバンクモバイル株式会社 | 通知サーバ、通知方法、及びコンピュータプログラム |
JP2016165093A (ja) * | 2015-03-06 | 2016-09-08 | 富士通株式会社 | 監視装置、監視方法及び監視プログラム |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006135673A (ja) * | 2004-11-05 | 2006-05-25 | Ntt Docomo Inc | 基地局および移動通信システム並びに送信電力制御方法 |
JP2007306407A (ja) * | 2006-05-12 | 2007-11-22 | Ntt Docomo Inc | 基地局装置およびセル形成制御方法 |
-
2011
- 2011-11-29 WO PCT/JP2011/077530 patent/WO2012073953A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006135673A (ja) * | 2004-11-05 | 2006-05-25 | Ntt Docomo Inc | 基地局および移動通信システム並びに送信電力制御方法 |
JP2007306407A (ja) * | 2006-05-12 | 2007-11-22 | Ntt Docomo Inc | 基地局装置およびセル形成制御方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013255163A (ja) * | 2012-06-08 | 2013-12-19 | Softbank Mobile Corp | 通信管理システム及び統合管理サーバ |
JP5542229B1 (ja) * | 2013-03-25 | 2014-07-09 | ソフトバンクモバイル株式会社 | 通知サーバ、通知方法、及びコンピュータプログラム |
JP2014187611A (ja) * | 2013-03-25 | 2014-10-02 | Softbank Mobile Corp | 通知サーバ、通知方法、及びコンピュータプログラム |
JP2016165093A (ja) * | 2015-03-06 | 2016-09-08 | 富士通株式会社 | 監視装置、監視方法及び監視プログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2538766C2 (ru) | Способ и система для получения информации по сети радиодоступа при сотовой связи | |
US9301166B2 (en) | Base station, radio communications system, base station control method, radio communications method and base station control program | |
US8774823B2 (en) | Cellular network load balancing | |
US9923700B2 (en) | Method and system for localizing interference in spectrum co-existence network | |
EP2117135A1 (en) | Base station device, user device, and method used in mobile communication system | |
WO2018121149A1 (zh) | 一种基于beam的移动性管理方法及其网元 | |
EP3082359B1 (en) | Wireless parameter control device, wireless parameter control method, wireless base station and wireless parameter control program | |
US9220102B2 (en) | Low power base station and communication control method | |
WO2015147707A1 (en) | Method and network node for providing overlap information in a cellular network | |
CN104869586B (zh) | 一种动态信道检测的处理方法及接入点设备 | |
MX2012013881A (es) | Metodo y arreglo para reducir la interferencia y mejorar la cobertura. | |
US8923866B2 (en) | Handover management apparatus, base station, and handover management method | |
US20190261257A1 (en) | System Information Update Method and Apparatus | |
Saad et al. | Handover and load balancing self-optimization models in 5G mobile networks | |
WO2012073953A1 (ja) | 無線通信システム、無線基地局、ネットワーク管理装置および無線通信方法 | |
WO2013089058A1 (ja) | 無線パラメータ制御システム、無線パラメータ制御装置、無線基地局、無線パラメータ制御方法及びプログラム | |
CN102340818B (zh) | 家庭基站的功率控制方法和设备 | |
CN103906127A (zh) | 长期演进网络同频邻小区测量的方法与系统 | |
CN108260166B (zh) | 一种负载均衡方法及装置 | |
JP2013121087A (ja) | 無線基地局装置、無線端末装置、通信制御方法および通信制御プログラム | |
WO2013084704A1 (ja) | 無線基地局装置、無線端末装置、通信制御方法および通信制御プログラム | |
CN104540205A (zh) | 一种基站发射功率配置方法及装置 | |
KR101687501B1 (ko) | 무선 기지국 장치 및 통신 방법 | |
US20230028383A1 (en) | Beam optimization based on signal measurements in neighboring cells | |
KR101941038B1 (ko) | 군용 분산형 기지국 및 그의 간섭인지 기반 적응적 전송 전력 제어 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11845095 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11845095 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |