WO2012073951A1 - Base station device and mobile body communication system - Google Patents

Base station device and mobile body communication system Download PDF

Info

Publication number
WO2012073951A1
WO2012073951A1 PCT/JP2011/077526 JP2011077526W WO2012073951A1 WO 2012073951 A1 WO2012073951 A1 WO 2012073951A1 JP 2011077526 W JP2011077526 W JP 2011077526W WO 2012073951 A1 WO2012073951 A1 WO 2012073951A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
base station
lte
communication
Prior art date
Application number
PCT/JP2011/077526
Other languages
French (fr)
Japanese (ja)
Inventor
大成 末満
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012546883A priority Critical patent/JP5409932B2/en
Publication of WO2012073951A1 publication Critical patent/WO2012073951A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a base station apparatus that performs wireless communication with a plurality of mobile communication terminal apparatuses, and a mobile communication system including the mobile communication terminal apparatus and the base station apparatus.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-advanced
  • the LTE system is an advanced version of the W-CDMA (Wideband Code Division Multiple Access) system, which is one of the third generation (Third Generation: 3G) communication systems.
  • W-CDMA Wideband Code Division Multiple Access
  • 3G Third Generation
  • CS circuit switched
  • CS fallback (abbreviation: CSFB) is performed.
  • the CSFB process is also performed when the mobile communication terminal desires voice communication in the W-CDMA system.
  • Non-Patent Documents 1 to 5 Through CSFB processing, communication in the communication system after LTE is switched to communication in the W-CDMA system. This enables circuit-switched communication of mobile communication terminals residing in a mobile communication system using a communication method after LTE (see Non-Patent Documents 1 to 5).
  • Patent Documents 1 to 4 Techniques relating to CSFB processing are disclosed in, for example, Patent Documents 1 to 4.
  • the application according to Patent Document 2 is a divisional application of the application according to Patent Document 1.
  • the application according to Patent Document 4 is a divisional application of the application according to Patent Document 3.
  • Patent Documents 1 and 2 disclose a technology for regulating circuit-switched communication of a mobile communication terminal started by CSFB processing in order to avoid a system failure due to traffic concentration or the like.
  • CSFB processing when switching from LTE communication to 3G communication is attempted by CSFB processing, when circuit-switched communication is restricted by 3G communication. Does not perform CSFB processing.
  • Patent Documents 3 and 4 disclose techniques for enabling a mobile communication terminal compatible with CSFB processing to appropriately receive a voice call service.
  • the communication network set to preferentially exist when performing data communication is changed from communication in LTE system to communication in 3G system by CSFB processing.
  • Switchable judging means for judging whether or not the communication network can be switched to.
  • the mobile communication terminal is controlled to be located in the 3G communication network so that only the 3G communication is performed from the beginning when the switchable determination means determines that the communication network is not switched.
  • 3GPP TS 23.060 V10.1.0
  • 3GPP TS 23.401 V10.1.0
  • 3GPP TS23.221 V9.4.0
  • 3GPP TS 23.272 V10.1.0
  • base station since the base station device (hereinafter sometimes simply referred to as “base station”) must always operate both functions of the 3G scheme and the LTE scheme. There is a problem that power consumption increases compared to the case where only one function is operated.
  • the base station As a method for reducing the power consumption of the base station, for example, in the techniques disclosed in Patent Documents 3 and 4, when the mobile communication terminal is controlled to perform only the 3G communication, the base station is It is conceivable to operate only with 3G function. However, this method does not work unless all mobile communication terminals support both LTE and 3G systems. For example, if another mobile communication terminal communicating with the same base station supports only the LTE system, the base station must operate both functions of the 3G system and the LTE system. Can not be reduced.
  • An object of the present invention is to provide a base station apparatus capable of suppressing power consumption when communicating with a mobile communication terminal apparatus when supporting a plurality of communication methods, and a mobile communication system including the base station apparatus. is there.
  • a base station apparatus is a base station apparatus capable of wireless communication with a mobile communication terminal apparatus using different first and second communication methods, and is transmitted and received from the mobile communication terminal apparatus Receiving signal analyzing means for analyzing the received signal, and based on an analysis result by the received signal analyzing means, either one of the first and second communication methods with the mobile communication terminal device; When it is determined that only communication of the communication method is performed, the communication operation of the other communication method is stopped.
  • the mobile communication system of the present invention includes the base station apparatus of the present invention and a mobile communication terminal apparatus capable of wireless communication with the base station apparatus of the present invention.
  • the received signal transmitted from the mobile communication terminal apparatus and received is analyzed by the received signal analyzing means. Based on the analysis result, when it is determined that only one of the communication methods of the first and second communication methods different from each other is being performed with the mobile communication terminal device, the other The communication operation of this communication method is stopped. Thereby, the power consumption when the base station apparatus communicates with the mobile communication terminal apparatus can be suppressed.
  • the mobile communication system is configured by including the base station apparatus of the present invention capable of suppressing power consumption when communicating with the mobile communication terminal device as described above. . Thereby, the power consumption of the entire mobile communication system can be suppressed.
  • FIG. 2 is a block diagram showing specific configurations of a first DFE unit 31, a second DFE unit 32, and an OFDMA unit 35 and an LTE channel coding unit 36 of the LTE circuit unit 13 shown in FIG. It is a block diagram which shows the detailed structure of the 1st transmission process part 111 and its peripheral part. It is a block diagram which shows the detailed structure of the 2nd transmission process part 113 and its peripheral part. It is a block diagram which shows the detailed structure of the data storage RAM112 for 1st antennas before IFFT, and its peripheral part.
  • FIG. 1 It is a block diagram which shows the detailed structure of the data storage RAM114 for 2nd antennas, and its periphery part. It is a block diagram which shows the detailed structure of the 1st built-in processor 115, PDSCH modulation part 116, PBCH modulation part 117, and those peripheral parts. It is a block diagram which shows the detailed structure of the 1st built-in processor 115, PDSCH modulation part 116, PBCH modulation part 117, and those peripheral parts. It is a block diagram which shows the detailed structure of the 1st built-in processor 115, PDSCH modulation part 116, PBCH modulation part 117, and those peripheral parts. FIG.
  • FIG. 3 is a block diagram showing detailed configurations of a PCFICH modulation unit 118, a PDCCH modulation unit 119, and a PHICH modulation unit 120.
  • FIG. 3 is a block diagram showing detailed configurations of a PCFICH modulation unit 118, a PDCCH modulation unit 119, and a PHICH modulation unit 120.
  • 4 is a block diagram showing detailed configurations of an RS resource mapping unit 121, an SS resource mapping unit 122, and a second embedded processor 123.
  • FIG. FIG. 2 is a block diagram showing specific configurations of a first DFE unit 31, a second DFE unit 32, an SC-FDMA unit 37, and a built-in DSP / L1 engine unit 33 of the LTE circuit unit 13 shown in FIG.
  • FIG. 3 is a block diagram showing a detailed configuration of a PUCCH demodulation unit 316.
  • FIG. FIG. 3 is a block diagram showing detailed configurations of a PRACH detection unit 317 and an SRS demodulation unit 318. It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system. It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system. It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system. It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system.
  • FIG. 1 It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. It is a flowchart which shows the process sequence of the FP classification analysis process in a downstream FP termination process.
  • FIG. 1 It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system.
  • FIG. 53 is a flowchart showing a processing procedure of a downlink control frame process started by the process of step a3 shown in FIG. 52.
  • FIG. 53 is a flowchart showing a processing procedure of HS-DSCH processing started by the processing of step a5 shown in FIG. 52.
  • FIG. 53 is a flowchart showing a processing procedure for uplink control frame processing started by the processing in step a7 shown in FIG. 52.
  • FIG. 53 is a flowchart showing a processing procedure for DL-DCH / CCH processing started by the processing in step a6 shown in FIG. 52. It is a flowchart which shows the process sequence of the whole uplink FP termination process.
  • FIG. 58 is a flowchart showing a processing procedure of EUL FP processing started by the processing of step f7 shown in FIG. 57. It is a block diagram which shows the structure of the base station apparatus 2 which is the modification 1 of the 1st Embodiment of this invention. It is a block diagram which shows the structure of the base station apparatus 3 which is the modification 2 of the 1st Embodiment of this invention. It is a block diagram which shows the detailed structure of the DFE circuit part 12 of the base station apparatus 1 in 1st Embodiment shown in FIG. 1, and its peripheral part. It is a figure which shows the state of the signal in the 1st Embodiment of this invention.
  • FIG. 64 is a diagram illustrating a state of signals in the example illustrated in FIG. 63.
  • FIG. 64 is a diagram illustrating a state of signals in the example illustrated in FIG. 63.
  • It is a block diagram which shows the structure of a part of base station apparatus when not applying DFE.
  • It is a block diagram which shows the structure of the mobile communication system 6 which is the 2nd Embodiment of this invention.
  • It is a sequence diagram which shows the procedure of the incoming call relevant to CSFB.
  • TA tracking area
  • LA local area
  • FIG. 1 is a block diagram showing a configuration of a base station apparatus 1 according to the first embodiment of the present invention.
  • the base station apparatus 1 includes a radio frequency (abbreviation: RF) unit 11, a digital front end (abbreviation: DFE) circuit unit 12, an LTE circuit unit 13, a 3G circuit unit 14, and a CPU (Central Processing Unit). 15, a system clock supply unit 16, a first antenna 17, and a second antenna 18.
  • RF radio frequency
  • DFE digital front end
  • LTE circuit unit 13 LTE circuit unit 13
  • 3G circuit unit 14 is described as “3GC”.
  • the system clock supply unit 16 is described as “SCP”.
  • the first antenna 17 and the second antenna 18 are described as “AT”.
  • the RF unit 11 includes a first duplexer (abbreviation: DUP) unit 21, a first switch unit 22, a first radio transmission unit 23, a first radio reception unit 24, a first downlink radio reception unit 25, a second duplexer ( DUP) unit 26, second switch unit 27, second radio transmission unit 28, second radio reception unit 29, and second downlink radio reception unit 30.
  • DUP first duplexer
  • the first radio transmission unit 23 and the second radio transmission unit 28 are described as “TR”.
  • the first radio reception unit 24 and the second radio reception unit 29 are described as “RE”.
  • the first downlink radio reception unit 25 and the second downlink radio reception unit 30 are described as “DRE”.
  • the DFE circuit unit 12 includes a first DFE unit 31 and a second DFE unit 32.
  • the DFE circuit unit 12 is mounted on a field programmable gate array (abbreviation: FPGA) or an application specific integrated circuit (abbreviation: ASIC).
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the LTE circuit unit 13 includes a built-in digital signal processor (abbreviation: DSP) / L1 engine unit 33 and a built-in CPU 34.
  • the built-in DSP / L1 engine unit 33 includes an Orthogonal Frequency Division Multiple Access (abbreviation: OFDMA) unit 35, an LTE channel coding unit 36, and a single-wave frequency division multiple access (Single Carrier-Frequency Division Multiple Access). ; Abbreviation: SC-FDMA) unit 37, LTE channel decoding unit 38, and LTE radio parameter acquisition unit 39.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-wave frequency division multiple access
  • LTE channel decoding unit 38 LTE radio parameter acquisition unit 39.
  • the built-in DSP / L1 engine unit 33 is described as “BDSP / L1E”.
  • the built-in CPU 34 is described as “BCPU”.
  • the LTE channel coding unit 36 is described as “CHC”.
  • RLC radio link control
  • MAC medium access control
  • PDCP packet data convergence protocol
  • GTP-U General Packet Radio Service Tunneling Protocol
  • AP LTE application
  • PF LTE platform
  • network parameter acquisition unit 46 Universal Plug and Play (Universal Plug and Play) And Play (abbreviation: UPnP) unit 47, data offload unit 48, and system clock correction unit 49.
  • the LTE AP unit 44 and the LTE PF unit 45 include reception signal analysis means and transmission signal analysis means.
  • the network parameter acquisition unit 46 is described as “NWPA”.
  • the data offload unit 48 is described as “DO”.
  • the system clock correction unit 49 is described as “SCC”.
  • the 3G circuit unit 14 includes a spread modulation unit 50, a 3G channel coding unit 51, a despread demodulation unit 52, and a 3G channel decoding unit 53.
  • the spread modulation unit 50 is described as “SM”.
  • the 3G channel coding unit 51 is described as “CHC”.
  • the despreading demodulation unit 52 is described as “BDDDEM”.
  • the 3G channel decoding unit 53 is described as “CHDEC”.
  • the CPU 15 has a medium access control (Medium Access Control-HSDPA; abbreviation: MAC-hs) 54 for high speed downlink packet access (High Speed Downlink Packet Access; abbreviation: HSDPA), an enhanced uplink (abbreviation: EUL).
  • the FP termination portion 56 is described as “FPT”.
  • the 3G wireless parameter acquisition unit 57 is described as “WLPA”.
  • the RF unit 11 and the DFE circuit unit 12 constitute a wireless transmission / reception unit 71.
  • the wireless transmission / reception unit 71 is described as “WTR”.
  • the radio transmission / reception unit 71 converts a baseband transmission signal to be transmitted into a radio frequency signal. Further, the wireless transmission / reception unit 71 converts the received radio frequency signal received into a reception baseband signal.
  • the wireless transmission / reception unit 71 includes a circuit and an RF component mounted on an FPGA or ASIC.
  • the built-in DSP / L1 engine unit 33, the RLC / MAC unit 40 and the PDCP / GTP-U unit 41 of the built-in CPU 34 constitute an LTE baseband unit 72.
  • the LTE baseband unit 72 is described as “BB”.
  • the LTE AP unit 44, the LTE PF unit 45, and the network parameter acquisition unit 46 of the built-in CPU 34 constitute an evolved base station (abbreviated as eNB) control unit 73.
  • eNB control unit 73 is described as “eNBC”.
  • the eNB control unit 73 controls a part that functions as an eNB that is a base station in the LTE mobile communication system, and performs call processing, call processing monitoring, line setting and management, maintenance monitoring, state management, and the like regarding the LTE function. Do.
  • the 3G circuit unit 14, the MAC-hs unit 54, the MAC-e unit 55, the FP termination unit 56 and the 3G wireless parameter acquisition unit 57 of the CPU 15 constitute a 3G baseband unit 74.
  • the 3G baseband unit 74 functions as a W-CDMA baseband unit in the present embodiment. In FIG. 1 and other drawings, the 3G baseband portion 74 is described as “BB”.
  • the 3G AP section 61 and the 3G PF section 62 of the CPU 15 constitute an NB control section 75.
  • the NB control unit 75 is described as “NBC”.
  • the NB control unit 75 controls a part that functions as an NB (hereinafter also referred to as “Node B”) as a base station in a 3G mobile communication system, and performs call control, call processing monitoring, and line setting related to 3G functions. And management, maintenance monitoring, and status management.
  • the LTE IP unit 42 and the LTE IPsec unit 43 of the built-in CPU 34 of the LTE circuit unit 13, and the 3G IP unit 58, the 3G IPsec unit 59, and the PPPoE unit 60 of the CPU 15 constitute a wired side termination unit 76.
  • the wired side termination unit 76 is described as “WTN”.
  • the wired-side termination unit 76 terminates Ethernet (registered trademark) and IP signals.
  • the wired terminal unit 76 also has an IPsec function, an operation system (operation system; abbreviation: OPS), a device reset function when receiving an emergency (emergency: abbreviation: EM) signal from a host device such as an AP, PF, or core network. It corresponds to.
  • the system clock correction unit 49 of the built-in CPU 34 of the LTE circuit unit 13 and the system clock supply unit 16 connected to the system clock correction unit 49 constitute a clock unit 77.
  • the clock unit 77 is described as “CLK”.
  • the clock unit 77 generates a reference clock signal used in the radio transmission / reception unit 71, the LTE baseband unit 72, the 3G baseband unit 74, and the like, and a global positioning system (abbreviation: GPS).
  • a highly stable reference timing is generated by introducing a correction method using a network time protocol (abbreviation: NTP) server or the like.
  • NTP network time protocol
  • the first DUP unit 21 of the RF unit 71 is connected to the first antenna 17.
  • the first DUP unit 21 is an antenna duplexer for realizing transmission of a transmission signal and reception of a reception signal by one antenna, specifically, the first antenna 17.
  • the first DUP unit 21 includes a transmission filter that passes only signals in a frequency band used for transmission in a predetermined frequency band, and a reception filter that passes only signals in a frequency band used for reception.
  • the first switch unit 22 switches between an RF signal transmission process of downlink user data output from the first radio transmission unit 23 and an RF signal reception process of the downlink frequency band by the first downlink radio reception unit 25.
  • the first wireless transmission unit 23 generates an RF signal of downlink user data based on the signal given from the first DFE unit 31, and the generated RF signal is transmitted to the first switch unit 22, the first DUP unit 21, and the first antenna. 17 to transmit.
  • the first radio reception unit 24 receives the reception signal given from the first DUP unit 21 via the first antenna 17 and gives it to the first DFE unit 31.
  • the first downlink radio reception unit 25 generates an RF signal in the downlink frequency band based on the reception signal received from the first antenna 17 and given from the first DUP unit 21, and the generated RF signal is used as the first DFE unit. 31.
  • the second DUP unit 26 of the RF unit 11 is connected to the second antenna 18.
  • the second DUP unit 26 is an antenna duplexer for realizing transmission of a transmission signal and reception of a reception signal by one antenna, specifically, the second antenna 18.
  • the second DUP unit 26 includes a transmission filter that passes only signals in a frequency band used for transmission in a predetermined frequency band, and a reception filter that passes only signals in a frequency band used for reception.
  • the second switch unit 27 switches between a downlink user data RF signal transmission process output from the second radio transmission unit 28 and a downlink frequency band RF signal reception process by the second downlink radio reception unit 30.
  • the second wireless transmission unit 28 generates an RF signal of downlink user data based on the signal given from the second DFE unit 32, and the generated RF signal is transmitted to the second switch unit 27, the second DUP unit 26, and the second antenna. 18 to transmit.
  • the second radio reception unit 29 receives the reception signal given from the second DUP unit 26 via the second antenna 18 and gives it to the second DFE unit 32.
  • the second downlink radio reception unit 30 generates an RF signal in the downlink frequency band based on the reception signal received from the second antenna 18 and given from the second DUP unit 26, and the generated RF signal is used as the second DFE unit. 32.
  • the first DFE unit 31 and the second DFE unit 32 of the DFE circuit unit 12 are realized by a digital filter such as a finite impulse response (FIR) filter.
  • the second DFE unit 32 is a baseband signal frequency band for signals corresponding to the 3G system (hereinafter also referred to as “3G signal”) and signals corresponding to the LTE system (hereinafter also referred to as “LTE signal”). Perform bandwidth limitation.
  • the first DFE unit 31 takes out the 3G signal and the LET signal in a state where the frequency separation can be performed between the 3G signal and the LTE signal even when the frequency becomes high.
  • the first DFE unit 31 is a signal obtained by down-converting a wideband signal including a 3G signal region and an LTE signal region at a high frequency into a baseband region by the second wireless reception unit 29 of the RF unit 11.
  • the 3G signal band and the LTE signal band are separated by a digital filter to extract the 3G signal and the LET signal, respectively.
  • the first DFE unit 31 and the second DFE unit 32 are connected to the OFDMA unit 35, the SC-FDMA unit 37, and the LTE radio parameter acquisition unit 39 of the built-in DSP / L1 engine unit 33 of the LTE circuit unit 13, respectively.
  • the second DFE unit 32 is connected to the spread modulation unit 50 and the despread demodulation unit 52 of the 3G circuit unit 14 and the 3G wireless parameter acquisition unit 57 of the CPU 15.
  • the built-in DSP of the engine unit 33 is a digital signal processor built in the LTE circuit unit 13.
  • the DSP is equipped with a software program and can execute processing suitable for digital signal processing.
  • L1 Engine is a coprocessor that processes the Layer 1 function defined in Non-Patent Documents 6 to 8 below.
  • Non-Patent Document 6 3GPP TS36.211 V9.1.0
  • Non-Patent Document 7 3GPP TS36.212 V9.3.0
  • Non-Patent Document 8 3GPP TS36.213 V9.3.0
  • the OFDMA unit 35 performs modulation processing (demodulation processing in the case of a mobile communication terminal device) for OFDMA.
  • the OFDMA unit 35 has a modulation function (a demodulation function in the case of a mobile communication terminal device) mainly defined in Non-Patent Documents 6 and 8.
  • the LTE channel coding unit 36 performs channel coding, specifically, error correction coding.
  • the SC-FDMA unit 37 performs demodulation processing for SC-FDMA (modulation processing in the case of a mobile communication terminal device).
  • the SC-FDMA unit 37 mainly has a demodulation function (modulation processing in the case of a mobile communication terminal device) defined in Non-Patent Documents 6 and 8.
  • the LTE channel decoding unit 38 decode
  • the LTE radio parameter acquisition unit 39 acquires downlink data acquired from at least one of the first and second antennas 17 and 18 and down-converted by the first downlink radio reception unit 25 and the second downlink radio reception unit 30. Measure the amplitude intensity or power intensity. Further, the LTE radio parameter acquisition unit 39 demodulates and decodes data, and analyzes the contents of broadcast information and the like, thereby acquiring environment information of both 3G and LTE neighboring cells such as electric field strength from adjacent base stations. .
  • the built-in CPU 34 is a CPU built in the LTE circuit unit 13.
  • the built-in CPU 34 is equipped with a software program and can execute the software program.
  • the RLC / MAC unit 40 performs radio link control (RLC) and media access control (MAC).
  • the PDCP / GTP-U unit 41 performs PDCP processing and GTP-U processing.
  • the LTE IP unit 42 performs IP processing on the LTE signal.
  • the LTE IP unit 42 provides the LTE IPsec unit 43 with data generated by performing IP processing on the LTE signal.
  • the LTE IPsec unit 43 has a security function for encrypting data given from the LTE IP unit 42.
  • the LTE IPsec unit 43 implements the security function using a dedicated coprocessor built in the LTE circuit unit 13. As a result, the frequency of the CPU core that requires a high frequency only by software processing can be kept low, and the power consumption can be kept low.
  • the LTE IPsec unit 43 gives the encrypted data to the PPPoE unit 60 of the CPU 15.
  • the LTE AP unit 44 has an application function for controlling the LTE function of the base station device 1.
  • the LTE PF unit 45 has a platform function for controlling the LTE-side function of the base station apparatus 1.
  • the network parameter acquisition unit 46 is network information on the higher side than the interface between the base station device 1 and higher-level devices such as mobility management entity (Mobility Management Entity; abbreviation: MME) and serving gateway (Serving Gateway; abbreviation: SGW). It has the function to acquire.
  • MME Mobility Management Entity
  • SGW Serving Gateway
  • the UPnP unit 47 performs processing for communication by UPnP.
  • the data offload unit 48 has a data offload function.
  • the data offload function is a function that reduces traffic load by using an Internet line when transmitting data without going through a normal cellular phone network. Since the data offload function is configured to be realized entirely by software, the function can be added or reduced by updating the software by remote upgrade.
  • the system clock correction unit 49 is a clock whose voltage can be changed by voltage control, such as a voltage-controlled oscillator (Voltage-Controlled-Xtal-Oscillator; abbreviation: VCXO) and a temperature-compensated crystal oscillator (Temperature-Compensated-Xtal-Oscillator; abbreviation: TCXO).
  • VCXO Voltage-Controlled-Xtal-Oscillator
  • TCXO temperature-compensated crystal oscillator
  • the MAC-hs unit 54 of the CPU 15 is a layer 2 MAC scheduling function required when performing HSDPA.
  • the MAC-e unit 55 is a layer 2 MAC scheduling function required when performing HSUPA (EUL).
  • the FP termination unit 56 performs FP termination processing.
  • the FP termination unit 56 mainly performs a FP format framing function defined in the following non-patent documents 9 and 10 as an FP termination process, specifically a function for creating an FP format and a function for canceling the FP format.
  • the FP termination processing may be performed by the 3G circuit unit 14.
  • the 3G circuit unit 14 is configured by a 3G-LSI which is a 3G large scale integrated circuit (abbreviation: LSI) realized by, for example, an FPGA or an ASIC.
  • LSI 3G large scale integrated circuit
  • Non-Patent Document 9 3GPP TS25.427 V9.0.0
  • Non-Patent Document 10 3GPP TS25.435 V9.3.0
  • the 3G radio parameter acquisition unit 57 measures the amplitude strength or power strength of the downlink data acquired from the second antenna 18, demodulates and decodes the data, analyzes the content of the broadcast information,
  • the environmental information of 3G-type peripheral cells, such as the electric field strength of, is acquired.
  • data from one antenna, specifically, the second antenna 18 is input to the 3G wireless parameter acquisition unit 57 and analyzed.
  • the data from the first antenna 17 is also 3G.
  • the data may be input to the wireless parameter acquisition unit 57 and analyzed from the two antennas.
  • the environment information of the peripheral cells can be obtained more accurately by the diversity effect.
  • the 3G IP unit 58 has a function of processing layer 3 IP frame data (hereinafter also referred to as “framing”).
  • the 3G IP unit 58 provides the IP frame data to the 3G IPsec unit 59.
  • the 3G IPsec unit 59 has a security function for encrypting the IP frame data given from the 3G IP unit 58.
  • the 3G IPsec unit 59 implements the security function by using a dedicated coprocessor built in the CPU 15. As a result, the frequency of the CPU core that requires a high frequency only by software processing can be kept low, and the power consumption can be kept low.
  • the 3G IPsec unit 59 provides the encrypted IP frame data to the PPPoE unit 60.
  • the PPPoE unit 60 performs processing corresponding to the PPPoE protocol on the data given from the LTE IPsec unit 43 and the data given from the 3G IPsec unit 59.
  • the PPPoE unit 60 is connected to the MME and the SGW via the S1 interface that is an interface on the LTE side.
  • the PPPoE unit 60 is connected to a base station controller (Radio Network Controller; abbreviated name: RNC) via an Iub interface or an Iuh interface that is an interface on the 3G side.
  • RNC Radio Network Controller
  • the 3G AP section 61 has an application function for controlling the 3G function of the base station.
  • the 3G PF unit 62 has a platform function for controlling the 3G function of the base station.
  • the spread modulation unit 50 of the 3G circuit unit 14 performs spread modulation processing.
  • the 3G channel coding unit 51 performs channel coding, specifically, error correction coding.
  • the despread demodulator 52 performs a despread demodulation process that demodulates by despreading.
  • the 3G channel decoding unit 53 decodes the reception channel.
  • the spread modulation unit 50 and the despread demodulation unit 52 mainly have functions defined in the following non-patent documents 11 to 13.
  • the 3G channel coding unit 51 and the 3G channel decoding unit 53 mainly have functions defined in Non-Patent Document 14.
  • Non-Patent Document 11 3GPP TS25.211
  • Non-Patent Document 12 3GPP TS25.213
  • Non-Patent Document 13 3GPP TS25.214
  • Non-Patent Document 14 3GPP TS25.212
  • the base station apparatus 1 shown in FIG. 1 is a shared base station apparatus (hereinafter sometimes referred to as “dual base station apparatus”) that supports both the 3G system, specifically the W-CDMA system and the LTE system. .
  • a part having a function corresponding to the 3G system includes the second antenna 18, the second DUP part 26 of the RF part 11, the second switch part 27, Second radio transmission unit 28, second radio reception unit 29 and second downlink radio reception unit 30, second DFE unit 32 of DFE circuit unit 12, 3G circuit unit W-CDMA spread modulation unit 50, 3G channel Coding section 51, despread demodulation section 52 and 3G channel decoding section 53, MAC-hs 54 of CPU 15, MAC-e section 55, FP termination section 56, 3G wireless parameter acquisition section 57, 3G IP section 58, 3G It is configured to include an IPsec unit 59, a PPPoE unit 60, a 3G AP unit 61, and a 3G PF unit 62.
  • LTE side functional parts The parts having functions corresponding to the LTE system (hereinafter sometimes referred to as “LTE side functional parts”) are the first antenna 17, the first DUP part 21 of the RF part 11, the first switch part 22, and the first wireless transmission part 23.
  • the DFE circuit unit 12 arranges or separates signal bands of different methods in the digital baseband region.
  • the base station device 1 can be reduced in size and price.
  • lines connecting the functional parts mainly indicate data signal lines.
  • the LTE AP unit 44, the LTE PF unit 45, the 3G AP unit 61, and the 3G PF unit 62 should be connected to each function to be controlled, but signal lines are not shown.
  • the signal line connecting the 3G PF unit 62 and the LTE PF unit 45 is a signal line for realizing a function related to the cooperative operation between the 3G function such as CS fallback and the LTE function, and thus omitted. Not done.
  • the LTE circuit unit 13 in the present embodiment has a flexible configuration that can implement software processing such as the built-in DSP and the built-in CPU 34.
  • software processing such as the built-in DSP and the built-in CPU 34.
  • the 3G circuit unit 14 can be made LSI (ASIC), thereby realizing reduction in power consumption, size reduction, and price reduction.
  • the DFE (Digital Front End) function is mounted on the DFE circuit unit 12 mounted on an FPGA or ASIC, so that a total of three RF systems of 3G RF1 and LTE RF2 are required. Two systems can be formed. As a result, it is possible to reduce the device price, reduce the power consumption, and reduce the size of the device.
  • DFE is a 3G / LTE band digital separation / combination technology.
  • 3G / LTE band digital separation / combination technology By adaptively allocating / combining 3G / LTE bands to transmission / reception signals, one of the two RF systems can be shared by 3G / LTE as described above.
  • the base station apparatus 1 of the present embodiment includes a built-in DSP in the LTE circuit unit 13 suitable for arithmetic processing, and an L1 engine (FFT, DFT, LLR, cyclic redundancy check (Cyclic Redundancy) that is also mounted in the LTE circuit unit 13.
  • Checksum abbreviation: CRC
  • turbo / viterbi layer 1 function coprocessor such as decoder
  • OFDMA OFDMA
  • SC-FDMA channel coding
  • radio parameter acquisition function etc. It can be realized by mounting.
  • the wireless parameter acquisition function performs reception processing in the LTE circuit while both 3G / LTE functions are out of service.
  • the system clock correction function in the built-in CPU 34 built in the LTE circuit unit 13, the fluctuation of the base station generated clock pulse by the NTP server correction method is reduced, the price of the reference oscillator is reduced, and the frequency accuracy reliability Can be realized.
  • the system clock supply function TCXO and VCXO, which are inexpensive reference oscillators, can be employed. Thereby, a reduction in device cost can be realized.
  • the home appliance and the base station can be linked.
  • the main function of the LTE function and the main function of the 3G function are made independent at the hardware level, so that the 3G circuit unit 14 having the 3G baseband function is mounted. Since the CPU 15 is not mounted, the base station apparatus 1 can be configured only for the LTE system dedicated function. In this case, only a minor change such as transplantation of the wired side termination unit 76 shared by the LTE-side functional part and the 3G-side functional part to the LTE-side functional part and a change of software such as BSP (Board Support Package) It is possible. As a result, the change to the LTE-dedicated configuration can be easily performed with a small number of development man-hours, so that the number of test processes during manufacturing can be reduced. Therefore, the price can be reduced.
  • BSP Battery Support Package
  • the main function of the LTE function and the main function of the 3G function are made independent at the hardware level, so that the function of one of the two different communication systems can be easily stopped. it can. More specifically, in the present embodiment, as shown in FIG. 1 described above, the LTE circuit unit 13 responsible for the main functions of the LTE function and the 3G circuit 14 responsible for the main functions of the 3G function are independently provided. Is provided. As a result, the function of one of the LTE scheme and the 3G scheme can be easily stopped.
  • the LTE circuit unit 13 responsible for the main function of the LTE function and the 3G circuit unit 14 responsible for the main function of the 3G function are both detachably provided. As a result, the LTE circuit unit 13 or the 3G circuit unit 14 can be prevented from being mounted. As described above, since the LTE circuit unit 13 and the 3G circuit unit 14 are provided independently, even if either the LTE circuit unit 13 or the 3G circuit unit 14 is removed, communication is performed using the other communication method. be able to.
  • FIG. 2 is a block diagram showing a specific configuration of the first DFE unit 31, the second DFE unit 32, the OFDMA unit 35 of the LTE circuit unit 13, and the LTE channel coding unit 36 shown in FIG.
  • FIG. 2 the structure of the part related to the downlink signal processing of LTE layer 1 is shown.
  • FIG. 2 also shows the configuration of the part related to the downlink signal processing of the LTE layer 1 in the built-in CPU 34 of the LTE circuit unit 13.
  • the LTE circuit unit 101 includes a first transmission processing unit 111, a first antenna inverse fast Fourier transform (Inverse Fastier Transform; abbreviated as IFFT) data storage random access memory (Random Access Memory; abbreviated as RAM) 112, a second Transmission processor 113, second antenna pre-IFFT data storage RAM 114, first built-in processor 115, physical downlink shared channel (abbreviation: PDSCH) modulator 116, physical broadcast channel (abbreviation: PBCH) ) Modulator 117, physical control channel format indicator channel (Physical Control Format Indicator Indicator Channel; abbreviated as PCFICH) modulator 118, physical downlink control channel (Physical Downlink Control Channel; abbreviated as PDCCH) modulator 119, physical HARQ indicator channel (Physical Hybrid ARQ Indicator Channel; abbreviation: PHICH) modulation section 120, reference signal (Reference Signal; abbreviation: RS) resource mapping section 121, synchronization signal
  • the first transmission processing unit 111 and the second transmission processing unit 113 are described as “TRP”.
  • the first antenna pre-IFFT data storage RAM 112 and the second antenna pre-IFFT data storage RAM 114 are described as “RAM”.
  • the first built-in processor 115 and the second built-in processor 123 are described as “BP”.
  • the PDSCH modulation unit 116 is described as “PDSCH MOD”.
  • the PBCH modulation unit 117 is described as “PBCH MOD”.
  • the PCFICH modulation unit 118 is described as “PCFICH MOD”.
  • the PDCCH modulation unit 119 is described as “PDCCH MOD”.
  • the PHICH modulation unit 120 is described as “PHICH MOD”.
  • the RS resource mapping unit 121 is described as “RSRM”.
  • the SS resource mapping unit 122 is described as “SSRM”.
  • the downlink shared channel (Downlink Shared Channel) is described as “DL-SCH”.
  • the broadcast channel (Broadcast Channel) is described as “BCH”.
  • the broadcast control channel (Broadcast Control Channel) is described as “BCCH”.
  • the control channel format indicator (Control Format Indicator) is described as “CFI”.
  • the HARQ indicator is described as “HI”.
  • the RS resource mapping unit 121 includes a first resource element mapping unit 124 and a second resource element mapping unit 125.
  • the SS resource mapping unit 122 includes a third resource element mapping unit 126 and a fourth resource element mapping unit 127.
  • the first resource element mapping unit 124, the second resource element mapping unit 125, the third resource element mapping unit 126, and the fourth resource element mapping unit 127 are described as “REM”.
  • Non-Patent Documents 11, 12, and 14 The channels such as PDSCH are described in Non-Patent Documents 15, and 16 below.
  • Non-Patent Document 15 Takeshi Hattori, Tomoo Morohashi, Masanobu Fujioka (supervised), "All of 3G Evolution-HSPA Mobile Broadband Technology and LTE Basic Technology", Maruzen Corporation, November 30, 2009
  • Non-Patent Document 16 Hattori Take, Morohashi, Masanobu Fujioka (translated by), “All of 3G Evolution—LTE Mobile Broadband Technology”, Maruzen Co., Ltd., December 25, 2009
  • the built-in CPU 102 includes a master information block 131, A control channel format indicator (abbreviation: CCFI) generation unit 132, a downlink control information (abbreviation: DCI) generation unit 133, and an ACK / NACK (Acknowledgement / Negative Acknowledgement) unit 134 are provided.
  • CCFI generation unit 132 is described as “CCFIG”.
  • the DCI generation unit 133 is described as “DCIG”.
  • the first transmission processing unit 111 is provided between the first digital / analog (abbreviation: D / A) conversion unit 103 and the first antenna pre-IFFT data storage RAM 112, and the first D / A
  • the converter 103 and the first antenna pre-IFFT data storage RAM 112 are connected to each other.
  • the second transmission processing unit 113 is provided between the second D / A conversion unit 104 and the second antenna IFFT pre-data storage RAM 114, and stores the second D / A conversion unit 104 and the second antenna pre-IFFT data storage. Each is connected to the RAM 114.
  • FIG. 3 to 12 are block diagrams showing the detailed configuration of each unit shown in FIG.
  • FIG. 3 is a block diagram showing a detailed configuration of the first transmission processing unit 111 and its peripheral part.
  • FIG. 4 is a block diagram showing a detailed configuration of the second transmission processing unit 113 and its peripheral part.
  • FIG. 5 is a block diagram showing a detailed configuration of the first pre-IFFT data storage RAM 112 for the first antenna and its peripheral part.
  • FIG. 6 is a block diagram showing a detailed configuration of the second antenna pre-IFFT data storage RAM 114 and its peripheral portion. 5 and 6 are connected by a boundary line L4.
  • FIG. 7 to 9 are block diagrams showing detailed configurations of the first built-in processor 115, the PDSCH modulation unit 116, the PBCH modulation unit 117, and their peripheral units. 7 and 8 are connected by a boundary line L1. 8 and 9 are connected by a boundary line L3. 10 and 11 are block diagrams showing detailed configurations of the PCFICH modulation unit 118, the PDCCH modulation unit 119, and the PHICH modulation unit 120. 10 and 11 are connected by a boundary line L2.
  • FIG. 12 is a block diagram illustrating detailed configurations of the RS resource mapping unit 121, the SS resource mapping unit 122, and the second embedded processor 123.
  • the first transmission processing unit 111 includes a first DFE unit 141, a second DFE unit 142, a first RAM 143, a second RAM 144, a first time window processing unit 145, and a second time window (Time window). ) Processing unit 146, third RAM 147, fourth RAM 148, first OFDM signal generation unit 149, and fifth RAM 150.
  • the first time window processing unit 145 and the second time window processing unit 146 are described as “TWP”.
  • the first OFDM signal generation unit 149 is described as “OFDM SG”.
  • the I signal is described as “I”.
  • the Q signal is described as “Q”.
  • the first DFE unit 141 is connected to the D / A conversion unit 105 for I signal of the first D / A conversion unit 103.
  • the second DFE unit 142 is connected to the Q signal D / A conversion unit 106 of the first D / A conversion unit 103.
  • the first DFE unit 141 and the second DFE unit 142 each include a digital filter such as an APC and an FIR filter.
  • the first OFDM signal generation unit 149 performs processing for adding IFFT and cyclic prefix (Cyclic Prefix; abbreviated as CP).
  • the second transmission processing unit 113 includes a third DFE unit 151, a fourth DFE unit 152, a sixth RAM 153, a seventh RAM 154, a third time window processing unit 155, and a fourth time window (Time window).
  • a processing unit 156, an eighth RAM 157, a ninth RAM 158, a second OFDM signal generation unit 159, and a tenth RAM 160 are provided.
  • the third time window processing unit 155 and the fourth time window processing unit 156 are described as “TWP”.
  • the second OFDM signal generation unit 159 is described as “OFDM SG”.
  • the third DFE unit 151 is connected to the I / D signal D / A conversion unit 107 of the second D / A conversion unit 104, and the fourth DFE unit 152 is the Q signal D / A conversion unit 108 of the second D / A conversion unit 104. Connected to.
  • the third DFE unit 151 and the fourth DFE unit 152 each include a digital filter such as an APC and an FIR filter.
  • Second OFDM signal generation section 159 performs IFFT and CP addition processing.
  • I) signal and quadrature (abbreviation: Q) signal one set of I signal and Q signal is input to the first antenna pre-IFFT data storage RAM 112 and the other set of I signal and Q signal Is input to the pre-IFFT data storage RAM 114 for the second antenna.
  • the I signal is a component in phase with the reference phase of the carrier wave
  • the Q signal is a component orthogonal to the reference phase of the carrier wave.
  • the I signal is the real part of the complex signal
  • the Q signal is the imaginary part of the complex signal.
  • one set of I signal and Q signal is input to the first-antenna IFFT data storage RAM 112, and the other set of I signal and Q signal is the second antenna IFFT. It is input to the previous data storage RAM 114.
  • the first built-in processor 115 includes a power setting unit 194 and a PDSCH resource allocation unit 195.
  • the power setting unit 194 is described as “PWC”.
  • the PDSCH resource allocation unit 195 is described as “PDSCH RA”.
  • the PDSCH modulation unit 116 includes an amplitude adjustment unit 161, a resource element mapping unit 162, a precoding unit 163, a layer mapping unit 169, a first modulation unit 174, a second modulation unit 175, 1 scrambling unit 178, second scrambling unit 179, first code block concatenation unit 180, second code block concatenation unit 181, first rate matching unit 182, second rate matching unit 183, first channel coding unit 186, Second channel coding unit 187, first code block division & code block CRC addition unit 190, second code block division & code block CRC addition unit 191, first transport block CRC addition unit 192, second transport block CRC addition Part 193 and first It includes first 8RAM168,173,176,177,184,185,188,189.
  • the first to eighth RAMs 168, 173, 176, 177, 184, 185, 188, and 189 are described outside the frame showing the PDSCH modulation unit 116 in FIGS. 7 and 8 for easy understanding. Is actually included in the PDSCH modulation unit 116.
  • the process on the left side of the third RAM 173 is a process for each resource block (abbreviation: RBP).
  • the process on the right side of the third RAM 173 is a process for each user (abbreviation: USP).
  • the processing for each user is performed by time division processing. In the process for each user, the two circuits operate in parallel, so that the operation speed is limited.
  • the amplitude adjustment unit 161 is described as “AA”.
  • the resource element mapping unit 162 is described as “REM”.
  • the precoding unit 163 is described as “PCOD”.
  • the layer mapping unit 169 is described as “LM”.
  • the first modulation unit 174 and the second modulation unit 175 are described as “MOD”.
  • the first scrambling unit 178 and the second scrambling unit 179 are described as “SCR”.
  • the first code block connecting unit 180 and the second code block connecting unit 181 are described as “CBC”.
  • the first rate matching unit 182 and the second rate matching unit 183 are described as “RM”.
  • the first channel coding unit 186 and the second channel coding unit 187 are described as “CHC”.
  • First code block division & code block CRC adding section 190 and second code block division & code block CRC adding section 191 are described as “CBD / CBA”.
  • first transport block CRC adding unit 192 and the second transport block CRC adding unit 193 are described as “TBA”.
  • the signal output from the first rate matching unit 182 is input to the first code block connection unit 180 in a time division manner.
  • the signal output from the first code block concatenation unit 180 is input to the first scrambling unit 178 in a time division manner.
  • the signal output from the second rate matching unit 183 is input to the second code block concatenation unit 181 in a time division manner.
  • the signal output from the second code block concatenation unit 181 is input to the second scrambling unit 179 in a time division manner.
  • the I signal and Q signal output from the first modulation unit 174 are input to the layer mapping unit 169 in a time division manner.
  • the I signal and the Q signal output from the second modulation unit 175 are input to the layer mapping unit 169 in a time division manner.
  • the precoding unit 163 also functions as an antenna mapping unit.
  • Precoding section 163 includes single antenna port transmission section 164, cell-specific RS spatial multiplexing section 165, user-specific RS spatial multiplexing section 166, and diversity transmission section 167.
  • the layer mapping unit 169 includes a single antenna port transmission unit 170, a spatial multiplexing unit 171 and a diversity transmission unit 172.
  • the single antenna port transmission units 164 and 170 are described as “SAPTR”.
  • the cell-specific RS spatial multiplexing section 165 is described as “CSMP”.
  • the user-specific RS spatial multiplexing unit 166 is described as “USMP”.
  • Diversity transmitters 167 and 172 are described as “DTR”.
  • the spatial multiplexing unit 171 is described as “SMP”.
  • the layer mapping unit 169 converts the I signal and Q signal of the first layer and the I signal and Q signal of the second layer from the I signal and Q signal input from the first modulation unit 174 and the second modulation unit 175. Generated and output to the precoding unit 163.
  • the I signal of the first layer is described as “FLI”.
  • the Q signal of the first layer is described as “FLQ”.
  • the I signal of the second layer is described as “SLI”.
  • the Q signal of the second layer is described as “SLQ”.
  • the precoding unit 163 receives the I signal and Q signal for the first antenna 17, the I signal for the second antenna 18, and the I signal and Q signal from the first and second layers input from the layer mapping unit 169. Q signal is generated and output to the resource element mapping unit 162.
  • the I signal for the first antenna 17 is described as “FAI”.
  • the Q signal for the first antenna 17 is described as “FAQ”.
  • the I signal for the second antenna 18 is described as “SAI”.
  • the Q signal for the second antenna 18 is described as “SAQ”.
  • the PBCH modulation unit 117 includes an amplitude adjustment unit 201, a resource element mapping unit 202, a precoding unit 203, a layer mapping unit 207, a modulation unit 211, a scrambling unit 213, and a rate matching unit 214.
  • the first to fifth RAMs 206, 210, 212, 215, and 217 are described outside the frame showing the PBCH modulation unit 117 in FIGS. 7 and 8 for ease of understanding. It is included in PBCH modulation section 117.
  • the precoding unit 203 includes a single antenna port transmission unit 204 and a diversity transmission unit 205.
  • the layer mapping unit 207 includes a single antenna port transmission unit 208 and a diversity transmission unit 209.
  • the amplitude adjustment unit 201 is described as “AA”.
  • the resource element mapping unit 202 is described as “REM”.
  • the precoding unit 203 is described as “PCOD”.
  • the layer mapping unit 207 is described as “LM”.
  • the modulation unit 211 is described as “MOD”.
  • the scrambling unit 213 is described as “SCR”.
  • the rate matching unit 214 describes “RM”.
  • the channel coding unit 216 describes “CHC”.
  • the CRC adding unit 218 is described as “CRCA”.
  • Single antenna port transmitters 204 and 208 are described as “SAPTR”.
  • Diversity transmitters 205 and 209 are described as “DTR”.
  • the PCFICH modulation unit 118 includes an amplitude adjustment unit 221, a resource element mapping unit 222, a precoding unit 223, a layer mapping unit 227, a modulation unit 231, a scrambling unit 233, and a channel coding unit 235. , And first to fifth RAMs 226, 230, 232, 234, and 236. In FIG. 10 and FIG. 11, the first to fourth RAMs 226, 230, 232, and 234 are described outside the frame showing the PCFICH modulation unit 118 for easy understanding, but actually, the PCFICH modulation is performed. Part 118 is included.
  • the precoding unit 223 includes a single antenna port transmission unit 224 and a diversity transmission unit 225.
  • the layer mapping unit 227 includes a single antenna port transmission unit 228 and a diversity transmission unit 229.
  • PDCCH modulation section 119 includes amplitude adjustment section 241, resource element mapping section 242, precoding section 243, layer mapping section 247, modulation section 251, multiplexing & scrambling section 253, rate matching section 254, channel coding section 256, CRC.
  • An addition unit 257 and first to fifth RAMs 246, 250, 252, 255, and 258 are provided.
  • the first to fifth RAMs 246, 250, 252, 255, and 258 are described outside the frame showing the PDCCH modulation unit 119 in FIG. 10 and FIG. 11 for ease of understanding. It is included in PDCCH modulation section 119.
  • the precoding unit 243 includes a single antenna port transmission unit 244 and a diversity transmission unit 245.
  • the layer mapping unit 247 includes a single antenna port transmission unit 248 and a diversity transmission unit 249.
  • the PHICH modulation unit 120 includes an amplitude adjustment unit 261, a resource element mapping unit 262, a precoding unit 263, a layer mapping unit 267, a modulation unit 271, a channel coding unit 273, and first to fourth RAMs 266, 270, 272, and 274. .
  • the first to third RAMs 266, 270, and 272 are described outside the frame showing the PHICH modulation unit 120 in FIG. 10 and FIG. 11 for easy understanding, but actually, the PHICH modulation unit 120 is shown.
  • the precoding unit 263 includes a single antenna port transmission unit 264 and a diversity transmission unit 265.
  • the layer mapping unit 267 includes a single antenna port transmission unit 268 and a diversity transmission unit 269.
  • the amplitude adjusters 221, 241, 261 are described as “AA”.
  • the resource element mapping units 222, 242, and 262 are described as “REM”.
  • the precoding units 223, 243, and 263 are described as “PCOD”.
  • the layer mapping units 227, 247, and 267 are described as “LM”.
  • the single antenna port transmission units 224, 228, 244, 248, 264, 268 are described as “SAPTR”.
  • Diversity transmitters 225, 229, 245, 249, 265, and 269 are described as “DTR”.
  • the modulation units 231, 251, and 271 are described as “MOD”.
  • the scrambling unit 233 is described as “SCR”.
  • Channel coding sections 235, 256, and 273 are described as “CHC”.
  • the multiplexing & scrambling unit 253 is described as “MUX / SCR”.
  • the rate matching unit 254 is described as “RM”.
  • the CRC adding unit 257 is described as “CRCA”.
  • the second built-in processor 123 includes a first amplitude adjustment unit 281, a second amplitude adjustment unit 282, a reference signal generation unit 283, a third amplitude adjustment unit 291, and a fourth amplitude adjustment unit. 292 and a synchronization signal generation unit 293.
  • the reference signal generation unit 283 includes a cell-specific RS (abbreviation: CS-RS) unit 284 and a position adjustment RS (abbreviation: P-RS) unit 285.
  • the synchronization signal generation unit 293 includes a first synchronization signal (Primary SS; abbreviated as P-SS) unit 294 and a second synchronization signal (Secondary SS; abbreviated as S-SS) unit 295.
  • the cell-specific RS unit 284, the position adjustment RS unit 285, the P-SS unit 294, and the S-SS unit 295 include sequence generation units 286, 287, 296, and 297, respectively.
  • Each of the amplitude adjustment units 281, 282, 291, 292 and the reference signal generation unit 283 is realized by software processing of the second built-in processor (built-in DSP) 123.
  • the first amplitude adjustment unit 281, the second amplitude adjustment unit 282, the third amplitude adjustment unit 291 and the fourth amplitude adjustment unit 292 are referred to as “AA”.
  • the reference signal generation unit 283 is described as “RSG”.
  • the synchronization signal generation unit 293 is described as “SSG”.
  • the sequence generation units 286, 287, 296, and 297 are described as “SEQG”.
  • Cell-specific RS unit 284, position adjustment RS unit 285, P-SS unit 294, and S-SS unit 295 are antenna common I signals as I signals and Q signals common to first and second antennas 17 and 18, respectively.
  • the antenna common Q signal is output and supplied to the corresponding amplitude adjusting units 281, 282, 291, and 292.
  • Each of the amplitude adjustment units 281, 282, 291, and 292 adjusts and outputs the amplitudes of the given antenna common I signal and antenna common Q signal, and provides them to the corresponding resource element mapping units 124, 125, 126, and 127.
  • the antenna common I signal is described as “ATCI”.
  • the antenna common Q signal is described as “ATCQ”.
  • the PDSCH modulating unit 116 includes first to eighth RAMs 168, 173, 176, 177, 184, 185, 188, 189, code block division & code block CRC adding units 190, 191, and the like. Between channel coding units 186 and 187, between channel coding units 186 and 187 and rate matching 182 and 183, between scrambling units 178 and 179 and modulation units 174 and 175, layer mapping unit 169, and precoding unit Each connection to H.163 ensures primary storage of user data and prevents a decrease in transmission rate due to data retention.
  • the control of the amplitude adjustment unit 161 and the resource element mapping unit 162 of the PDSCH modulation unit 116 is performed by the power setting unit 194 and the PDSCH resource allocation unit 195 of the first built-in processor (built-in DSP) 115.
  • the power setting unit 194 and the PDSCH resource allocation unit 195 are realized by software processing of the first built-in processor (built-in DSP) 115.
  • the first to fifth RAMs 206, 210, 212, 215, and 217 are arranged between the CRC adding unit 218 and the channel coding unit 216, between the channel coding unit 216 and the rate matching unit 214, and a scrambling unit.
  • the first to fifth RAMs 226, 230, 232, 234, and 236 are arranged between the CCFI generation unit 132 and the channel coding unit 235 of the built-in CPU 102, between the channel coding unit 235 and the scrambling 233 unit, By connecting the scrambling unit 233 and the modulation unit 231 to the layer mapping 227 and the precoding unit 223, primary storage of user data is ensured, and a decrease in transmission rate due to data retention is prevented.
  • the first to fifth RAMs 246, 250, 252, 255, and 258 are connected between the CRC adding unit 257 and the channel coding unit 256, between the channel coding unit 256 and the rate matching unit 254, multiplexed &
  • the scrambling unit 253 and the modulation unit 251 are connected to the layer mapping unit 247 and the precoding unit 243 respectively, primary storage of user data is ensured, and a decrease in transmission rate due to data retention is prevented.
  • the storage means does not necessarily have to be realized by the RAM, and is realized by a circuit register such as a flip-flop (Flip Flop; abbreviation: FF). May be.
  • the first antenna is provided between each of the modulation units 117 to 120, the RS resource mapping unit 121 and the SS resource mapping unit 122, and each of the OFDM signals generation units 149 and 159 of the transmission processing units 111 and 113.
  • the pre-IFFT data storage RAM 112 and the second antenna pre-IFFT data storage RAM 114 are arranged, and the pre-IFFT data is temporarily stored in the memory.
  • the difference between the operating frequency of the IFFT circuit in each of the OFDM signal generation units 149 and 159 and the operating frequency of each of the modulation units 117 to 120, the RS resource mapping unit 121, and the SS resource mapping unit 122 is absorbed.
  • the IFFT circuit cannot process the data and the data is discarded. Can be prevented. Accordingly, it is possible to prevent the transmission rate from the built-in CPU 34 of the LTE circuit unit 13 to the built-in DSP / L1 engine unit 33 from being lowered without being maintained due to the data discarding.
  • the OFDM signal generation units 149, 159, the time window processing units 145, 146, 155, 156, and the DFE units 141, 142, 151 of the transmission processing units 111, 113 are used.
  • , 152 are connected to RAMs 143 to 150 and 153 to 160 for the purpose of primary storage of data by processing, respectively, so that data is not discarded by each processing.
  • FIG. 13 is a block diagram showing a specific configuration of the first DFE unit 31, the second DFE unit 32, the SC-FDMA unit 37, and the built-in DSP / L1 engine unit 33 of the LTE circuit unit 13 shown in FIG.
  • FIG. 13 shows a configuration of a part related to uplink signal processing of LTE layer 1.
  • FIG. 13 also shows the configuration of the part related to the uplink signal processing of the LTE layer 1 in the built-in CPU 34 of the LTE circuit unit 13.
  • 14 to 23 are block diagrams showing the detailed configuration of each unit shown in FIG.
  • the LTE circuit unit 301 includes a first reception processing unit 311, a second reception processing unit 313, a physical uplink shared channel (Physical Uplink Shared Channel; abbreviation: PUSCH) demodulation unit 315, a physical uplink control channel ( Physical Uplink Control Channel; abbreviation: PUCCH) demodulator 316, physical random access channel (abbreviation: PRACH) detector 317, sound reference signal (Sounding Reference Signal; abbreviation: SRS) demodulator 318, first RAM 319, A second RAM 320, a third RAM 321 and a channel separation unit 322 are provided.
  • the channel separation unit 322 includes a first-antenna fast Fourier transform (Fast Transform; abbreviation: FFT) post-FFT data RAM 312 and a second antenna post-FFT data RAM 314.
  • FFT fast Fourier transform
  • the first reception processing unit 311 and the second reception processing unit 313 are described as “REP”.
  • the first antenna post-FFT data RAM 312 and the second antenna post-FFT data RAM 314 are referred to as “RAM”.
  • the PUSCH demodulator 315 is described as “PUSCH DEM”.
  • the PUCCH demodulation unit 316 is described as “PUCCH DEM”.
  • the PRACH detection unit 317 is described as “PRACHD”.
  • the SRS demodulator 318 is described as “SRS DEM”.
  • the built-in CPU 302 includes a physical resource demapping unit 331, a MAC unit 332, a scheduler 333, a signal power-to-interference power ratio (abbreviation: SIR) estimation unit 334 and a calculation unit 335.
  • the physical resource demapping unit 331 describes “PRD”.
  • the SIR estimation unit 334 is described as “SIRP”.
  • the calculation unit 335 is described as “CLC”.
  • the first reception processing unit 311 is provided between the first analog / digital (abbreviation: A / D) conversion unit 303 and the first post-FFT data storage RAM 312 for the first antenna.
  • the converter 303 and the first antenna post-FFT data storage RAM 312 are connected to each other.
  • the second reception processing unit 313 is provided between the second A / D conversion unit 304 and the second antenna post-FFT data storage RAM 314, and stores the second A / D conversion unit 304 and the second antenna post-FFT data storage. Each is connected to the RAM 314.
  • FIG. 14 is a block diagram showing a detailed configuration of the first reception processing unit 311 and its peripheral units.
  • FIG. 15 is a block diagram showing a detailed configuration of the second reception processing unit 313 and its peripheral part.
  • FIGS. 16 to 21 are block diagrams showing detailed configurations of the first antenna post-FFT data storage RAM 312, the second antenna post-FFT data storage RAM 314, the PUSCH demodulator 315 and the PUCCH demodulator 316, and their peripheral parts. It is. 16 and 17 are connected by a boundary line L5. 16 and 18 are connected by a boundary line L6. 18 and 19 are connected by a boundary line L7. 19 and 20 are connected by a boundary line L8. 18 and 21 are connected by a boundary line L9.
  • 22 and 23 are block diagrams illustrating detailed configurations of the PRACH detection unit 317, the SRS demodulation unit 318, and their peripheral portions. 22 and FIG. 23 are connected by a boundary line L10. In FIG. 14 to FIG. 23, in order to facilitate understanding, a RAM may be described outside the frame indicating each part, but the RAM is actually included in each part.
  • the first reception processing unit 311 includes a first DFE unit 341, a second DFE unit 342, a first RAM 343, a second RAM 344, and an SC-FDMA frequency domain signal generation (frequency / domain / signal / generator) unit 345 other than the first PRACH. , A third RAM 346, a first PRACH SC-FDMA frequency domain signal generator 347, and a fourth RAM 348.
  • the first DFE unit 341 is connected to the I signal A / D conversion unit 305 of the first A / D conversion unit 303.
  • the second DFE unit 342 is connected to the Q signal A / D conversion unit 306 of the first A / D conversion unit 303.
  • the first DFE unit 341 and the second DFE unit 342 include digital filters such as AGC and FIR, respectively.
  • SC-FDMA frequency domain signal generation section 345 for first non-PRACH and SC-FDMA frequency domain signal generation section 347 for first PRACH perform CP removal and FFT processing, respectively.
  • the SC-FDMA frequency domain signal generation unit 345 for the first non-PRACH is described as “SC-FDMA FDSG for other than PRACH”.
  • the first PRACH SC-FDMA frequency domain signal generator 347 is described as “PRACH SC-FDMA FDSG”.
  • the channel separation unit 322 is described as “CHS”.
  • the second reception processing unit 313 includes the third DFE unit 351, the fourth DFE unit 352, the fifth RAM 353, the sixth RAM 354, the SC-FDMA frequency domain signal generation unit 355 other than the second PRACH, the seventh RAM 356, the second PRACH.
  • SC-FDMA frequency domain signal generator 357 and eighth RAM 358 are provided.
  • the third DFE unit 351 is connected to the I signal A / D conversion unit 307 of the second A / D conversion unit 304.
  • the fourth DFE unit 352 is connected to the Q signal A / D conversion unit 308 of the second A / D conversion unit 304.
  • the third DFE unit 351 and the fourth DFE unit 352 include digital filters such as AGC and FIR, respectively.
  • the SC-FDMA frequency domain signal generation unit 355 for other than the second PRACH and the SC-FDMA frequency domain signal generation unit 357 for the second PRACH perform CP removal and FFT processing, respectively.
  • the SC-FDMA frequency domain signal generation unit 355 other than the second PRACH is described as “SC-FDMA FDSG for other than PRACH”.
  • the second PRACH SC-FDMA frequency domain signal generator 357 is described as “PRACH SC-FDMA FDSG”.
  • the PUSCH demodulator 315 includes a predecoding unit 361, a built-in processor 362, a SinCos Table unit 367, and a log likelihood ratio (abbreviation: LLR) unit 375.
  • the LLR unit 375 also functions as a demodulation unit.
  • the fourth channel decoding unit 386 performs forward error correction (abbreviation: FEC).
  • the predecoding unit 361 is described as “PCOD”.
  • the built-in processor 362 is described as “BP”.
  • the SinCos Table part 367 is described as “SCT”.
  • the LLR (demodulation) unit 375 is described as “LLR (DEM)”.
  • the first channel decoding unit 394, the second channel decoding unit 395, the third channel decoding unit 396, and the fourth channel decoding unit 386 are described as “CHDEC”.
  • the code block CRC check / code block concatenation unit 388 is described as “CBCRCC / CBC”.
  • the transport block CRC check unit 389 is described as “TBCRCC”.
  • the rank indicator is described as “RI”.
  • the predecoding unit 361 includes a frequency domain equalizer (abbreviation: FDE) 363, a DATA rotation unit 365, and an inverse discrete Fourier transform (Inverse / Discrete / Fourier / Transform). IDFT) unit 368.
  • FDE frequency domain equalizer
  • IDFT inverse discrete Fourier transform
  • FIG. 18 and other drawings the DATA rotating unit 365 is described as “DATAAR”.
  • the built-in processor 362 includes a replica multiplication unit 370, a sequence reproduction unit 371, a channel estimation unit 372, and a SinCos Table unit 373.
  • the sequence playback unit 371 also functions as a replica generation unit.
  • the replica multiplier 370 is described as “RMUL”.
  • the sequence reproduction unit 371 is described as “SEQRG”.
  • the channel estimation unit 372 is described as “CHP”.
  • the SinCos Table part 373 is described as “SCT”.
  • the CHSEP unit 376 includes a descrambling unit (hereinafter also referred to as “descramble unit”) 377, a channel deinterleaving unit (hereinafter also simply referred to as “deinterleaving unit”). 379 and a data & control information separator 380.
  • the descrambling unit 377 is described as “DSCR” or “DSC”.
  • the channel deinterleaving unit 379 is described as “CHDI” or “DI”.
  • the data & control information separation unit 380 is described as “D / CISEP” or “DEMUX”.
  • the uplink shared channel (Uplink Shared channel) is described as “UL-SCH”.
  • the uplink control information (Uplink Control Information) is described as “UCI”.
  • the CHDEC_DATA unit 381 includes a code block dividing unit 382 and a rate dematching unit 384.
  • the code block dividing unit 382 is described as “CBP”.
  • the rate dematching unit 384 is described as “RDM”.
  • the PUCCH demodulation unit 316 includes a first RAM 401, an LLR unit 402, a second RAM 405, and a channel decoding unit 406.
  • the LLR unit 402 also functions as a demodulation unit.
  • the LLR unit 402 includes a first format unit 403 and a second format unit 404.
  • the first format unit 403 holds format 1, format 1a, and format 1b as PUCCH formats.
  • the second format unit 404 holds format 2, format 2a, and format 2b as PUCCH formats.
  • the channel decoding unit 406 includes a hybrid automatic retransmission request (abbreviation: HARQ) -ACK unit 407, a scheduling request unit 408, a channel quality indicator (abbreviation: CQI) unit 409, and a CQI & HARQ-ACK unit. 410.
  • HARQ hybrid automatic retransmission request
  • CQI channel quality indicator
  • the LLR (demodulation) unit 402 is described as “LLR (DEM)”.
  • the format may be described as “F”.
  • the channel decoding unit 406 is described as “CHDEC”.
  • the scheduling request unit 408 and the scheduling request are described as “SCHR”.
  • the PRACH detection unit 317 includes an R2BF (Radix2 Butter Fly) unit 411, a first RAM 415, a PD unit 416, and a second RAM 420.
  • the R2BF unit 411 includes a preamble multiplying unit 412, a preamble sequence reproducing unit 413, and an IFFT unit 414.
  • the PD unit 416 includes an interpolation unit 417, a preamble power combining unit (hereinafter also simply referred to as “power combining unit”) 418, and a branch combining unit 419.
  • the preamble multiplication unit 412 is described as “MUL”.
  • the preamble sequence playback unit 413 is described as “PRERG”.
  • the interpolation unit 417 is described as “IPL”.
  • the preamble power combining unit 418 is described as “PWS”.
  • the branch composition unit 419 is described as “BRS”.
  • the SRS demodulation unit 318 includes a calculation unit 421 and a RAM 424.
  • the calculation unit 421 includes a multiplication unit 422 and a sequence playback unit 423.
  • the multiplication unit 422 is described as “MUL”.
  • the sequence reproduction unit 423 is described as “SEQRG”.
  • the calculation unit 335 of the built-in CPU 302 includes a peak detection unit 431, a first interference power calculation unit 432, a second interference power calculation unit 433, and a signal power calculation unit 434.
  • the peak detection unit 431, the first interference power calculation unit 432, the second interference power calculation unit 433, and the signal power calculation unit 434 are each connected to the scheduler 333.
  • the peak detector 431 is described as “PD”.
  • the first interference power calculation unit 432 and the second interference power calculation unit 433 are described as “IPC”.
  • the signal power calculation unit 434 is described as “SPC”.
  • the peak detection unit 431 is connected to the branch synthesis unit 419 of the PD unit 416 of the PRACH detection unit 317 via the first RAM 319.
  • the first interference power calculation unit 432 is connected to the SRS demodulation unit 318 via the second RAM 320.
  • the second interference power calculation unit 433 and the signal power calculation unit 434 are each connected to the calculation unit 421 of the SRS demodulation unit 318 via the third RAM 321.
  • the first to twelfth RAMs 364, 366, 369, 374, 378, 383, 385, 387, 390 to 393 are replaced with the FDE unit 363 and the DATA rotation.
  • a first RAM 401 is connected between the IDFT unit 368 and the LLR unit 402 of the PUCCH demodulation unit 316.
  • replica multiplication section 370 in PUSCH demodulation section 315, replica multiplication section 370, channel estimation section 372, sequence playback section 371, and SinCos Table section 373 are mounted in built-in processor 362, but may be realized by a circuit. I do not care.
  • the replica multiplier 370 is connected to the SIR estimator 334 of the built-in CPU 302.
  • the SIR estimator 334 may be mounted in the built-in processor 362 of the PUSCH demodulator 315 or may be realized by a circuit. Absent.
  • the PUCCH demodulation unit 316 secures the primary storage of the PUCCH signal by connecting the second RAM 405, which is a semiconductor RAM, between the LLR unit 402 and the channel decoding unit 406, and retains data. This prevents the transmission rate from decreasing.
  • FDE, DATA rotation, and IDFT processing using Demodulation RS can be shared by the precoding unit 361 of the PUSCH demodulator 315, so that the circuit scale can be reduced and the size can be reduced. Can be realized.
  • the first and second RAMs 415 and 420 are connected to the preamble multiplication unit 412 of the R2BF unit 411 and the preamble power combining unit 418 of the PD unit 416, respectively.
  • a first RAM 319 is connected between the branch synthesis unit 419 and the peak detection unit 431 of the calculation unit 335 of the built-in CPU 302.
  • the branch combination unit 419 is connected to the peak detection unit 431 of the calculation unit 335 of the built-in CPU 302, but the peak detection unit 431 is replaced with the preamble power combination unit of the PRACH detection unit 317. 418 may be included.
  • the RAM 424 is connected to the arithmetic unit 421 to ensure the primary storage of the SRS signal and prevent the transmission rate from being lowered due to data retention.
  • the SRS demodulation unit 318 is connected to the first interference power calculation unit 432, the second interference power calculation unit 433, and the signal power calculation unit 434 of the calculation unit 335 of the built-in CPU 302.
  • the first interference power calculation unit 432, the second interference power calculation unit 433, and the signal power calculation unit 434 may be included in the SRS demodulation unit 318.
  • the received signals converted into digital signals by the A / D converters 305 to 308 are assigned to the LTE system by band limitation of the DFE units 341, 342, 351, and 352. Only signals that occupy the same band can pass.
  • the passed LTE signal is subjected to CP removal and FFT processing by each SC-FDMA frequency domain signal generator 345, 347, 355, 357.
  • Only the PRACH signal is processed by each PRACH SC-FDMA frequency domain signal generator 347, 357, which is a PRACH SC-FDMA frequency domain signal generator.
  • the received signals processed by the SC-FDMA frequency domain signal generators 345, 347, 355, and 357 are stored in the RAMs 312 and 314 of the channel separator 322, respectively.
  • the PUSCH demodulator 315, the PRACH detector 317, and the SRS demodulator 318 acquire signals in the corresponding band from the signals stored in the RAMs 312 and 314 of the channel separator 322, and perform the respective processes.
  • Each SC-FDMA frequency domain signal generation unit 345, 347, 355, 357 mainly performs the functions defined in 3GPP TS 36.211.
  • RAMs 346, 348, 356, and 358 are connected to the SC-FDMA frequency domain signal generation units 345, 347, 355, and 357, respectively, thereby performing primary storage of signals before FFT. To prevent a decrease in transmission rate due to data retention.
  • the channel separation unit 322 includes memories of a first antenna post-FFT data storage RAM 312 and a second antenna post-FFT data storage RAM 314.
  • FIG. 24 is a block diagram illustrating a configuration of a portion related to processing higher than FFT in the portion related to the uplink signal processing of LTE layer 1 shown in FIG.
  • FIG. 24 mainly shows a configuration of a part related to the demodulation process.
  • 25 to 28 are block diagrams showing the detailed configuration of each unit shown in FIG. 25 and 26 are block diagrams showing the detailed configuration of the PUSCH demodulator 315. 25 and FIG. 26 are connected by a boundary line L11.
  • FIG. 27 is a block diagram illustrating a detailed configuration of the PUCCH demodulation unit 316.
  • FIG. 28 is a block diagram illustrating detailed configurations of the PRACH detection unit 317 and the SRS demodulation unit 318. 24 to 28, parts corresponding to those shown in FIGS. 13 to 23 are given the same reference numerals, and description thereof will be omitted.
  • Channel separation system 441 includes an FFT unit 442 and a user / channel (CH) separation unit 443.
  • the FFT unit 442 corresponds to a part that performs the FFT processing of each of the SC-FDMA frequency domain signal generation units 345, 347, 355, and 357 shown in FIGS.
  • the user / CH separation unit 443 corresponds to the channel separation unit 322 shown in FIG. In FIG. 24 and other drawings, the channel separation system 441 is described as “CHSEPS”.
  • the user / CH separation unit 443 is described as “US / CHSEP”.
  • the PUSCH demodulation unit 315 includes a replica multiplication unit 370, a replica generation unit 371, a channel estimation unit 372, an RS / user separation unit 451, an SIR estimation unit 453, a SinCos Table unit 367, 373, as shown in FIGS. DATA rotation unit 365, IDFT unit 368, FDE unit 363, LLR unit 375, CHSEP unit 376, CHDEC_DATA unit 381, CHDEC_CQI unit 501, CHDEC_FEC unit 503, FEC_ACK unit 507, FEC_RI unit 508, FEC_DATA unit 494, filler bit R (FIL ) Section 495 and CRC_DATA section 496.
  • DATA rotation unit 365 IDFT unit 368, FDE unit 363, LLR unit 375
  • CHSEP unit 376 CHDEC_DATA unit 381, CHDEC_CQI unit 501, CHDEC_FEC unit 503, FEC_ACK unit 507, FEC_RI unit 508, FEC_DATA unit 4
  • the DATA rotation unit 365 functions as a complex conjugate multiplication unit that performs complex conjugate multiplication.
  • the FEC_ACK unit 507 and the FEC_RI unit 508 function as a deinterleave unit.
  • the FEC DATA unit 494 performs decoding processing such as Turbo decoding on the signal provided from the rate dematching unit 384 of the CHDEC_DATA unit 381, and provides the signal to the FILL_RMV unit 495.
  • the FILL_RMV unit 495 performs filler bit removal processing on the signal provided from the FEC DATA unit 494 and outputs the result to the CRC_DATA unit 496.
  • the CRC_DATA unit 496 obtains a CRC result (abbreviation: CRCR), an error bit (abbreviation: ERB), and the like from the signal given from the FEC DATA unit 494, and outputs it.
  • the replica generation unit 371 is described as “REPG”.
  • the RS / user separation unit 451 is described as “RS / USSEP”.
  • the SIR estimation unit 453 is described as “SIRP”.
  • the DATA rotation (complex conjugate multiplication) unit 365 is described as “DATAR (CCMUL)”.
  • the FEC_ACK (deinterleave) unit 507 is described as “FEC ACK (DI)”.
  • the FEC_RI (deinterleave) unit 508 is described as “FEC RI (DI)”.
  • the RS / user separation unit 451 includes a resource block (abbreviation: RB) averaging unit 452.
  • the channel estimation unit 372 includes a phase rotation amount detection unit 461, an RS phase rotation unit 462, a frequency deviation detection unit 463, an RS frequency deviation correction unit 464, and a t-axis average unit 465.
  • the channel estimation unit 372 corresponds to estimation means.
  • the RB average unit 452 is described as “RBAV”.
  • the phase rotation amount detection unit 461 is described as “PHRD”.
  • the RS phase rotation unit 462 is described as “RSPHR”.
  • the frequency deviation detector 463 is described as “FDD”.
  • the RS frequency deviation correction unit 464 is described as “RSFDC”.
  • the t-axis average unit 465 is described as “tAAV”.
  • the SIR estimation unit 453 includes a signal power calculation unit 454, an addition / subtraction unit 455, and a variance / covariance calculation unit 456.
  • the variance-covariance calculation unit 456 includes an RS complex conjugate multiplication unit 457 and an I 2 + Q 2 calculation unit 458.
  • the signal power calculation unit 454 is described as “SPG”.
  • the variance-covariance calculation unit 456 is described as “DCCLC”.
  • the RS complex conjugate multiplier 457 is described as “CCMUL”.
  • the signal power calculation unit 454 calculates the value of I 2 + Q 2 by performing complex multiplication.
  • the signal power calculation unit 454 gives the calculated I 2 + Q 2 value to the addition / subtraction unit 455 as a value to be subtracted, that is, adds a minus ( ⁇ ) to the calculated I 2 + Q 2 value.
  • the RS complex conjugate multiplier 457 multiplies the complex conjugates of the branch 0 and branch 1 RSs.
  • the FDE unit 363 includes an FDE weight calculation unit 471, a moving average unit 472, a synchronous detection unit 473, and an interference power calculation unit 474.
  • the interference power calculation unit 474 includes a selection unit 475 and an average unit 476.
  • the synchronous detection unit 473 corresponds to synchronous detection means.
  • the synchronous detection unit 473 functions as a complex multiplication unit that performs complex multiplication.
  • the average unit 476 calculates the average of the branch 0 and the branch 1.
  • the FDE weight calculation unit 471 is described as “FDEWC”.
  • the moving average unit 472 is described as “MA”.
  • the synchronous detection (complex multiplication) unit 473 is described as “SD (CMUL)”.
  • the interference power calculation unit 474 is described as “IPC”.
  • the selection unit 475 is described as “SEL”.
  • the average part 476 is described as “AVE”. “Covariance” is described as “COV”.
  • the LLR unit 375 includes a shift amount calculation unit 481, an amplitude calculation unit 482, a signal-to-interference noise power ratio (Signal to Interference plus Noise power Ratio; abbreviation: SINR) calculation unit 483, and an LLR calculation unit 484. Is provided.
  • the LLR calculation unit 484 includes a QPSK unit 485, a 16QAM unit 486, and a 64QAM unit 487.
  • the shift amount calculation unit 481 is described as “SAC”.
  • the amplitude calculation unit 482 is described as “ACAL”.
  • the SINR calculation unit 483 is described as “SINRC”.
  • the LLR calculation unit 484 is described as “LLRC”.
  • “Interference power” is described as “IP”. “Signal power” is described as “SP”.
  • the CHSEP unit 376 includes a Gold sequence generation unit 490, a descrambling unit 377, a deinterleaving unit 379, and a demultiplex (abbreviation: DEMUX) unit 380.
  • the Gold sequence generation unit 490 describes “GSEQG”.
  • the CHDEC_DATA unit 381 includes a frequency distribution calculation unit 491, a HARQ synthesis unit 492, a sub-block deinterleaving unit 493, and a rate dematching unit 384.
  • the frequency distribution calculation unit 491 is described as “FDC”.
  • the HARQ combining unit 492 is described as “HARQS”.
  • the sub-block deinterleaving unit 493 is described as “SBDI”.
  • the CHDEC_CQI unit 501 includes a rate matching unit 502.
  • the rate matching unit 502 is described as “RM”.
  • the CHDEC_FEC unit 503 includes a Reed-Muller decoding unit 504, a Viterbi decoding unit 505, and a selection unit 506.
  • the Reed-Muller decoding unit 504 is described as “RMDEC”.
  • the Viterbi decoding unit 505 is described as “VDEC”.
  • the selection unit 506 is described as “SEL”.
  • PUCCH demodulation section 316 includes channel estimation section 511, synchronous detection section 520, orthogonal sequence despreading section 521, ZC (Zadoff Chu) sequence despreading section 522, symbol demapping section 523, and PUCCH decoding section. 526 and a SEL UCI (Uplink Control Information; abbreviation: UCI) section 528.
  • the synchronous detector 520 functions as a complex conjugate multiplier that performs complex conjugate multiplication.
  • the channel estimation unit 511 is described as “CHP”.
  • the synchronous detection (complex conjugate multiplication) unit 520 is described as “SD (CCMUL)”.
  • SD complex conjugate multiplication
  • the orthogonal sequence despreading unit 521 is described as “QSBD”.
  • the ZC sequence despreading unit 522 is described as “ZCSBD”.
  • the ZC series is described as “ZCS”.
  • the symbol demapping unit 523 describes “SDM”.
  • the PUCCH decoding unit 526 is described as “PUCCH DEC”.
  • the channel estimation unit 511 includes an RS extraction unit 512, a multiplication unit 513, a ZC sequence generation unit 514, an ACK / NACK determination unit 515, an RS phase correction unit 516, an in-phase addition unit 517, and a plurality of in-slot RS data integration units 518. And an SIR estimation unit 519.
  • the RS extraction unit 512 is described as “RSEXT”.
  • the ZC sequence generation unit 514 is described as “ZCSG”.
  • the ACK / NACK determination unit 515 is described as “ACK / NACK DET”.
  • the RS phase correction unit 516 is described as “RSPHA”.
  • the in-phase addition unit 517 is described as “IMPHA”.
  • the in-slot multiple RS data integration unit 518 is described as “RSDINT”.
  • the SIR estimation unit 519 is described as “SIRP”.
  • the symbol demapping unit 523 includes a descrambling unit 524 and a symbol demapping unit 525.
  • the PUCCH decoding unit 526 includes a Reed-Muller decoding unit 527.
  • the descrambling unit 524 is described as “DSCR”.
  • the symbol demapping unit 525 is described as “SDM”.
  • the Reed-Muller decoding unit 527 is described as “RMDEC”.
  • the SRS demodulator 318 includes an SRS extractor 531, a replica multiplier 422, a ZC sequence generator 532, a first interference power calculator 432, a second interference power calculator 433, and a signal power calculator 434. And a selector 533.
  • FIG. 28 shows a case where the SRS demodulator 318 includes the first interference power calculator 432, the second interference power calculator 433, and the signal power calculator 434 of the calculator 335 of the built-in CPU 302 shown in FIG. ing.
  • the SRS extraction unit 531 is described as “SRSEXT”.
  • the ZC sequence generation unit 532 is described as “ZCSG”.
  • the selection unit 533 is described as “SEL”.
  • the PRACH detection unit 317 includes a DDC2 unit 534, an R2BF unit 411, a PD unit 416, and a peak detection unit 431.
  • FIG. 28 shows a case where the peak detection unit 431 of the calculation unit 335 of the built-in CPU 302 shown in FIG. 23 is included in the PRACH detection unit 317.
  • the peak detection unit 431 functions as a threshold determination unit that performs threshold determination.
  • the R2BF unit 411 includes an FFT unit 535, a ZC sequence generation unit (hereinafter also referred to as “ZC sequence unit”) 536, a multiplication unit 412 and an IFFT unit 414.
  • the PD unit 416 includes an interpolation unit 417 and a power combining unit 418.
  • the power combiner 418 calculates the value of the square root of I 2 + Q 2 ( ⁇ (I 2 + Q 2 )).
  • the PD unit 416 further includes a branch combining unit 419 as shown in FIG. In FIG. 28, the description of the branch composition unit 419 is omitted for easy understanding.
  • the units constituted by the DDC 2 unit 534, the R2BF unit 411, and the interpolation unit 417 of the PD unit 416, which are indicated by reference numeral “500”, are provided for the number of antenna branches.
  • the DDC2 unit 534 is described as “DDC2”.
  • the ZC series part 536 is described as “ZCSG”.
  • the peak detection (threshold determination) unit 431 describes “PD (THDET)”.
  • the PUSCH demodulating unit 315, the PUCCH demodulating unit 316, the SRS demodulating unit 318, and the PRACH detecting unit 317 are allocated to each from the user / CH separating unit 443 corresponding to the memory.
  • the signal of the resource block (Resource Block; abbreviated as RB) that is the band thus obtained is taken out, and the demodulation units 315, 316, 318 and the detection unit 317 of each channel perform processing.
  • RB Resource Block
  • the detailed functions of the demodulation units 315, 316, 318 and the detection unit 317 of each channel will be mainly described with reference to FIGS.
  • the replica generation unit 371, the replica multiplication unit 372, and the RS / user separation unit 451 will be described.
  • the replica generator 371 In the PUSCH demodulator 315, the replica generator 371 generates a PUSCH RS signal.
  • the replica multiplier 370 the RS signal of the received signal is subjected to complex conjugate multiplication on the generated PUSCH RS signal. This is because all the multiplied results are brought to the same quadrant of the I and Q planes, specifically the first quadrant.
  • the result of complex conjugate multiplication is calculated for each RB, and added and averaged over a plurality of RBs in the RB averaging unit 452 of the RS / user separation unit 451.
  • a subcarrier average unit may be provided instead of the RB average unit 452, and the result of complex conjugate multiplication may be calculated for each subcarrier, added over a plurality of subcarriers, and averaged.
  • the signals averaged and output by RB averaging section 452 are provided to signal power calculation section 454 of SIR estimation section 453 and phase rotation amount detection section 461 of channel estimation section 372, respectively.
  • the signal power calculation unit 454 performs complex multiplication on the signal averaged by the RB averaging unit 452 of the RS / user separation unit 451 and the RB known signal sequence output from the replica generation unit 371.
  • the multiplication result by signal power calculation unit 454 is subtracted from the signal that has not been subjected to replica multiplication, that is, the RB signal that has been taken out from user / CH separation unit 443.
  • the subtracted signal is given to the variance-covariance calculation unit 456.
  • the variance covariance calculation unit 456 outputs I 2 + Q 2 of the signal subtracted by the addition / subtraction unit 455 by the I 2 + Q 2 calculation unit 458 as interference power (IP). Since reception is performed with two antenna branches, the RS complex conjugate multiplier 457 outputs the complex conjugate multiplication of RS after subtraction of branch 0 and branch 1 as covariance (COV). Note that the signal power calculation unit 454 may calculate I 2 + Q 2 based on the signal output from the RB averaging unit 452 and output the calculation result as signal power (SP).
  • SP signal power
  • PUSCH demodulating section 315 is configured, and covariance, interference power and signal power are obtained by variance covariance calculation section 456 using data after RB averaging is performed by RB averaging section 452
  • the base station apparatus 1 shown in FIG. 1 can be reduced in size.
  • the base station device 1 is mass-produced as a femtocell base station device (Home Node B, Home eNode B)
  • variation in mass production can be prevented, and signal power, interference power, and SIR can be estimated with stable accuracy.
  • a femtocell base station apparatus can be provided.
  • the phase rotation amount detection unit 461 detects the phase rotation amount, and the RS phase rotation unit 462 corrects the RS phase rotation amount.
  • the frequency deviation detection unit 463 obtains a frequency deviation by obtaining a phase difference with a signal having a time difference such as RB of the next time, and the RS frequency deviation unit 464 Then, correction is made to restore the frequency deviation.
  • SinCos Table parts 367 and 373 are used for angular rotation.
  • the t-axis average unit 465 performs an average process between symbols.
  • the signal after the average processing between symbols in t-axis averaging section 465 is output to SINR calculation section 483 of LLR section 375 and FDE weight calculation section 471 of FDE section 363, respectively.
  • the FDE unit 363 performs frequency domain equalization processing. Specifically, first, the selection unit 475 of the interference power calculation unit 474 selects an appropriate value as interference power from the covariance and interference power output from the variance / covariance calculation unit 457 of the SIR estimation unit 453. To do. The selected value is input to the FDE weight calculation unit 471 as an interference power value. Further, the channel estimation value subjected to the averaging process by the t-axis averaging unit 465 of the channel estimation unit 372 is input to the FDE weight calculation unit 471. The FDE weight calculation unit 471 performs matrix calculation as shown in Expression (1) using the interference power value input from the selection unit 475 and the channel estimation value input from the t-axis average unit 465.
  • Equation (1) X and A to D are calculated from the interference power value and the channel estimation value.
  • the calculation result by the FDE weight calculation unit 471 is given to the moving average unit 472 and the SINR calculation unit 483 in the LLR unit 375.
  • the FDE unit 363 performs a moving average by a moving average unit 472 in units of several subcarriers.
  • a value obtained by moving average by the moving average unit 472 (hereinafter sometimes referred to as “moving average value”) is given to the synchronous detection unit 473.
  • FDE weighting when the moving average value output from the moving average unit 472 is taken is performed on the PUSCH reception data after FFT acquired from the user / CH separation unit 443. The weighting is performed by complex multiplication in the synchronous detection unit 473.
  • the post-FFT PUSCH reception data synchronously detected by the synchronous detection unit 473 is provided to the DATA rotation unit 365.
  • the FDE unit 363 calculates the weight using the information of the radio transmission path and the interference component for each frequency component, it is possible to accurately perform the optimal synchronous detection for each frequency.
  • the post-FFT PUSCH reception data synchronously detected by the synchronous detection unit 473 of the FDE unit 363 is complex-conjugate-multiplied by the channel estimation value output from the channel estimation unit 372 and corrected for frequency deviation in the DATA rotation unit 365.
  • the DATA rotation unit 365 may perform processing for correcting only the phase rotation amount of the channel estimation value instead of the estimated transmission path characteristic value that is the channel estimation value including both the amplitude information and the phase information.
  • the process of correcting only the phase rotation of the channel estimation value corresponds to the process of restoring the signal phase that has been rotated due to the distortion of the wireless transmission path.
  • the process of converting the rotated phase angle into I and Q signals is performed by the SinCos Table units 367 and 373.
  • the PUSCH received data after the FFT subjected to complex conjugate multiplication in the DATA rotation unit 365 is given to the IDFT unit 368, and is subjected to IDFT to be converted into a time domain signal.
  • the converted signal is sent to the LLR calculation unit 484 of the LLR unit 375.
  • the LLR is a logarithmic value of the ratio between the reliability information at which each received data necessary for soft decision decoding is 0 and the likelihood at which it is 1.
  • the LLR is calculated from the posterior probability obtained from the received signal, and represents the reliability of the received signal.
  • the received signal output from the IDFT unit 368 is extracted from the signal magnitude information by the shift amount calculation unit 481 and the amplitude calculation unit 482, and the SINR (SIR) value calculated by the SINR calculation unit 483 is used.
  • the LLR calculation unit 484 performs demodulation (mapping) based on modulation information such as the QPSK unit 485, the 16QAM unit 486, the 64QAM unit 487QPSK, 16QAM, and 64QAM.
  • the SINR calculation unit 483 calculates the SINR (1) by calculating the channel estimation value output from the t-axis average unit 465 and the FDE weight output from the FDE weight calculation unit 471 by complex multiplication / (1-complex multiplication). The value of (SIR) is obtained.
  • the output signal from the LLR calculation unit 484 has the following format.
  • the CHSEP unit 376 descrambles the Gold sequence generation unit 490 that generates a sequence defined by 3GPP TS36.212, the reception data output from the LLR calculation unit 484, and the Gold sequence output from the Gold sequence generation unit 490.
  • the CHDEC DATA unit 381 performs HARQ synthesis on the data output from the DEMUX unit 380 of the CHSEP unit 376, that is, DATA rather than CQI, in the HARQ synthesis unit 492, and the frequency distribution calculation unit 491 and the sub-block deinterleave unit 493 And give the result.
  • the frequency distribution calculation unit 491 calculates the frequency distribution of the soft decision bit sequence in units of code blocks (Code Block). Based on the received data deinterleaved by the sub-block deinterleaving unit 493 and the frequency distribution calculated by the frequency distribution calculating unit 491, the rate dematching unit 384 performs rate dematching.
  • the rate-dematched signal is subjected to decoding processing such as Turbo decoding in the FEC DATA unit 494.
  • the PUSCH demodulation process is as described above.
  • the operation of the PUCCH demodulation unit 316 will be described.
  • processing other than ACK / NACK determination can be omitted by using the result of channel estimation performed by the PUSCH demodulator 315.
  • the circuit scale can be reduced, and miniaturization and power saving can be realized.
  • the channel estimation of the PUSCH demodulation unit 315 can be omitted by using the channel estimation result of the PUCCH demodulation unit 316. This also makes it possible to reduce the circuit scale and achieve downsizing and power saving.
  • the operation of the channel estimation unit 511 of the PUCCH demodulation unit 316 will be described.
  • the PUCCH demodulation unit 316 extracts data corresponding to the PUCCH from the received data after FFT stored in the user / CH separation unit 443, and the RS extraction unit 512 of the channel estimation unit 511 receives an RS (Reference signal) corresponding to the PUCCH. ).
  • the extracted RS signal is subjected to complex conjugate multiplication in the multiplication unit 513 and the ZC sequence generated by the ZC sequence generation unit 514 (see 3GPP TS 36.211).
  • PUCCH demodulation section 316 decodes the control signal portion other than the PUCCH RS signal, using the result of multiplication by multiplication section 513.
  • the ACK / NACK determination unit 515 performs ACK / NACK determination of PUCCH. If the format is other than 2a / 2b, data integration of a plurality of RSs in the slot is performed for each slot, and the result is given to the synchronous detection unit 520. Moreover, SIR estimation is performed regardless of the format.
  • the RS phase correction unit 516 performs phase correction
  • the in-phase addition unit 517 performs in-phase addition. The in-phase addition unit 517 gives the calculation result to the synchronous detection unit 520.
  • the remaining PUCCH signal from which the RS is extracted by the RS extraction unit 512 and the signal output from the in-slot multiple RS data integration unit 518 or the in-phase addition unit 517 are input to the synchronous detection unit 520, where synchronous detection, Specifically, complex conjugate multiplication is performed.
  • the PUCCH control signal after synchronous detection is descrambled in the direct sequence despreading section 521 in the same manner as the descrambling section 377 in the PUSCH demodulation section 315.
  • the signal is despread in ZC sequence despreading section 522 using the ZC sequence from ZC sequence generation section 514, and the resulting signal is provided to symbol demapping section 523.
  • the control signal is decoded in the order of the symbol demapping unit 523 and the PUCCH decoding unit 526 to become UCI (control signal).
  • the SIR output from the SIR estimation unit 519 is separated for each user, Given.
  • Other processes such as the symbol demapping unit 523 and the PUCCH decoding unit 526 are as described above.
  • the SRS demodulator 318 When the same RB is not frequency-division duplexed (Frequency Division Duplex; FDD) in a plurality of mobile communication terminal devices, the SRS demodulator 318 performs SRS reception signals after FFT in the second interference power calculator 432 The interference power is calculated from When the same RB is FDD-multiplexed by a plurality of mobile communication terminal devices, the first interference power calculation unit 433 calculates interference power from the signal after the complex conjugate multiplication of the ZC sequence generated by the ZC sequence generation unit 532 I do. Other processing is as described above.
  • the PRACH detection unit 317 is as described above.
  • 29 to 39 are diagrams illustrating the flow of downlink signal data in the physical layer 1 of the LTE scheme. 29 to 39 show changes in the data format at each signal processing stage.
  • FIGS. 29 to 39 are examples in which the number of users is 2, the first user transmits 2 codewords, and the second user transmits 1 codewords at the same time.
  • the lines indicated by reference signs A1 to A4, B1, B2, C1, and C2 correspond to the respective lines in FIG.
  • TTI is a transmission time interval (Transmission Time Interval).
  • the MIB is a master information block (Master Information Block).
  • SFBC is spatial frequency block coding.
  • ⁇ 3”, “ ⁇ 16”, and the like indicate several times the number of bits. For example, “ ⁇ 3” means “the number of bits ⁇ 3 times”.
  • CCE is a control channel element (Control Channel Element).
  • ICP indicates an I component.
  • QCP indicates a Q component.
  • AT indicates an antenna.
  • CE indicates cyclic extension.
  • FIG. 36 and 37 show a case of 100 RB in the 20 MHz system band.
  • FIG. 36 shows a case where user # 0 (User # 0) is the first user.
  • FIG. 37 shows a case where user # 1 (User # 1) is the second user.
  • codeword # 0 codeword # 0
  • Codeword # 1 Codeword # 1
  • it is one of codeword # 0 (Codeword # 0).
  • “16 bits to 74888 bits” indicates that the minimum value is 16 bits and the maximum value is 74888 bits.
  • “2 ⁇ 2 MIMO” indicates that 2 ⁇ 2 MIMO matrix operation is performed.
  • “MAX 6144 bits” indicates that the maximum is 6144 bits.
  • “MIN 16 bits” indicates that the minimum value is 16 bits.
  • “MAX74888bit” indicates that the maximum value is 74888bit.
  • DFE shown in FIGS. 38 and 39 includes a digital filter.
  • the layer mapping shown in FIGS. 29 to 39 is performed according to the following equations (2) and (3).
  • Expression (2) is defined in 3GPP TS36.211.66.3.3.3.
  • Expression (3) is defined in 3GPP TS36.211.66.3.4.3.
  • space frequency block coding (abbreviation: SFBC)
  • SFBC space frequency block coding
  • 40 to 51 are diagrams showing the flow of uplink signal data in the physical layer 1 of the LTE scheme.
  • 42A and 42B show the arrangement of the signal data shown in FIG. 41 in each format.
  • FIG. 42A shows a case where the format is 2, 2a or 2b (2 / 2a / 2b).
  • FIG. 42B shows a case where the format (format) is 1, 1a or 1b (1 / 1a / 1b).
  • 44 and 45 are connected by a connection line L12.
  • 46 and 47 are connected by a connection line L13.
  • FIGS. 40 to 51 show the transition of the data format at each signal processing stage. 40 to 51, the number of users is 4, user # 0 and user # 1 are transmitting and receiving packet data, user # 2 is only communicating control signals, and user # 3 transmits PRACH In this example, user # 0 is also transmitting Sounding ⁇ RS. Arrows D1 to D7, E1, and E2 shown in FIGS. 40, 41, 43, 45, 47 to 49, and 51 correspond to the arrows in FIG. Each data process shown in FIGS. 29 to 51 corresponds to each functional block shown in FIGS.
  • “MAXPN ( ⁇ 1200)” indicates a maximum prime number of 1200 or less.
  • I and Q of the ZC sequence (ZCS) are fixed at 12 bits.
  • “NCE” indicates “no cyclic extension”.
  • “MAX SL” indicates the maximum sequence length of SRS.
  • I and Q of cyclic extension (CE) are multiples of 24 and a maximum of 600 bits.
  • a solid rectangle below cyclic extension (CE) indicates that a symbol is present (symbol is present), and a broken-line rectangle indicates that a symbol is not present (no symbol is present).
  • the transport block has a minimum value of 16 bits and a maximum value of 36696 bits when the bandwidth is 10 MHz and 50 RB, and a maximum of 75376 bits when the bandwidth is 50 Mbps and the bandwidth is 20 MHz and 100 RB.
  • “Scheduling Request” is data coming from an upper layer (Layer).
  • PS indicates a preamble sequence.
  • CIRS indicates a cyclic shift.
  • FIG. 50 “6RB” indicates that it is fixed at 6RB.
  • the points I and Q with IFFT and CP shown in FIG. 50 are values at a bandwidth of 20 MHz.
  • “15 [OFDM symbol]” shown in FIG. 50 is 14 OFDM symbol + CP.
  • “DFE” shown in FIG. 50 includes a digital filter.
  • FIG. 52 to 56 are flowcharts showing the processing procedure of the downlink FP termination process in the base station apparatus 1 shown in FIG. 52 to 56 show processing procedures when the FP termination processing is realized by execution of the software program by the built-in CPU 34 and the CPU 15.
  • FIG. 52 is a flowchart showing a processing procedure of FP type analysis processing in downstream FP termination processing. Each process of the flowchart shown in FIG. 52 is executed by the built-in CPU 34 and the CPU 15. The processing of the flowchart shown in FIG. 52 is started when the 3G IP unit 58 transmits FP data to the FP termination unit 56 and issues an event corresponding to a trigger for starting the FP type analysis processing. Transition.
  • the FP termination unit 56 analyzes the FP format of the FP data and determines whether or not the FT area of the FP format is 0 (zero), more specifically, whether the FT area is 0 or 1. Determine if there is. If the FP termination unit 56 determines that the FT area is 0 in step a1, the FP termination unit 56 determines that the FT area is a data frame (DATA Frame) and proceeds to step a2. If the FP termination unit 56 determines that the FT region is not 0, that is, the FT region is 1, the FP termination unit 56 determines that the FT region is a control frame (Control Frame) and proceeds to step a3.
  • DATA Frame data frame
  • step a3 the FP termination unit 56 calls a downstream control frame processing function, and ends all processing procedures.
  • the downlink control frame processing function is called in this way, the downlink control frame processing shown in FIG. 53 is started.
  • the FP termination unit 56 determines whether or not it is a high-speed downlink shared channel (abbreviation: HS-DSCH). Since the DCH and the HS-DSCH cannot be distinguished from the FP header, the FP termination unit 56 obtains an IP number or a femtocell base station (Femto Access Point; abbreviated as FAP) number from the 3G IP unit 58. Based on the acquired IP number or FAP number, it is determined whether it is HS-DSCH.
  • FAP femtocell base station
  • the IP number is an IP address such as “10.xxx.xx.xx”, for example.
  • the FAP number is a management number distinguished for each user and for each transport channel (Transport Channel; abbreviated as TrCH). If the FP termination unit 56 determines in step a2 that it is HS-DSCH, the FP termination unit 56 proceeds to step a5. If it is determined that it is not HS-DSCH, the FP termination unit 56 proceeds to step a4.
  • step a5 the FP termination unit 56 calls an HS-DSCH processing function and ends all processing procedures.
  • the HS-DSCH processing function is called in this way, the HS-DSCH processing shown in FIG. 54 is started.
  • the FP termination unit 56 calculates the arrival time (Time of Arrival; ToA) of the FP frame, and the calculated arrival time is a time window (Time Window) (hereinafter, referred to as a receivable time range). It is determined whether it is within a receiving window (sometimes referred to as a receiving window). In other words, the FP termination unit 56 determines whether or not the ToA of the FP frame is a timing at which the base station apparatus 1 can transmit data after taking into account the delay in the transmission process. In step a4, the FP termination unit 56 proceeds to step a6 when determining that the ToA of the FP frame is within the time window, and proceeds to step a7 when determining that the ToA is not within the time window.
  • ToA Time of Arrival
  • a receivable time range a time window
  • the FP termination unit 56 determines whether or not the ToA of the FP frame is a timing at which the base station apparatus 1 can transmit data after taking into account the delay in the transmission process.
  • step a6 the FP termination unit 56 calls a DL-DCH / CCH processing function and ends all processing procedures.
  • the DL-DCH / CCH processing function is called in this way, the DL-DCH / CCH processing shown in FIG. 56 is started.
  • step a7 the FP termination unit 56 calls an upstream control frame processing function and ends all processing procedures.
  • the uplink control frame processing function is called in this way, the uplink control frame processing shown in FIG. 55 is started.
  • FIG. 53 is a flowchart showing the processing procedure of the downlink control frame process started by the process of step a3 shown in FIG.
  • Each process of the flowchart shown in FIG. 53 is executed by the FP termination unit 56.
  • the processing of the flowchart shown in FIG. 53 is started when a downstream control frame processing function is called at step a7 of the flowchart shown in FIG. 52, and the processing proceeds to step b1.
  • step b1 the FP termination unit 56 calculates a header cyclic redundancy check (Header Cyclic Redundancy Checksum; abbreviation: Header CRC). After calculating Header CRC, the process proceeds to step b2.
  • Header CRC a header cyclic redundancy check
  • step b2 the FP termination unit 56 determines whether or not an error has been detected based on the calculation result of Header CRC in step b1. Specifically, the FP termination unit 56 indicates that the calculated header CRC indicates that no error was detected and reception was successful (hereinafter sometimes referred to as “reception OK”), or an error was detected. It is then determined whether or not an error has been detected by determining whether or not the reception is not successful (hereinafter sometimes referred to as “reception NG”). If the FP termination unit 56 determines in step b2 that the header CRC indicates “reception OK”, the FP termination unit 56 determines that no error has been detected, proceeds to step b3, and the header CRC indicates “reception NG”. If it is determined, it is determined that an error has been detected, and the process proceeds to step b4.
  • step b3 the FP termination unit 56 calculates a payload cyclic redundancy check (CRC). After calculating the payload CRC, the process proceeds to step b5. In step b4, the FP termination unit 56 discards the FP data and ends all processing procedures.
  • CRC payload cyclic redundancy check
  • step b5 the FP termination unit 56 determines whether or not an error is detected based on the calculation result of the payload CRC in step b3. Specifically, the FP termination unit 56 determines whether an error is not detected by determining whether the calculated payload CRC indicates “reception OK” or “reception NG”. . If the FP termination unit 56 determines in step b5 that the payload CRC indicates “reception OK”, the FP termination unit 56 determines that no error has been detected and proceeds to step b6, and the payload CRC indicates “reception NG”. If it is determined, it is determined that an error has been detected, and the process proceeds to step b4.
  • step b6 the FP termination unit 56 determines whether or not there is an instruction to transmit the downlink data from the higher rank in the uplink direction (hereinafter also referred to as “return instruction”).
  • the FP terminal unit 56 proceeds to step b8 when determining that there is a return instruction in step b6, and proceeds to step b7 when determining that there is no return instruction.
  • step b7 the FP termination unit 56 cuts out TrCH data and sets the start address and data length of the data stored in the memory in the circuit. After the processing of step b7 is completed, all processing procedures are completed.
  • step b8 the FP termination unit 56 loops back the designated channel such as TrCH in the upstream direction, and issues an event for the uplink dedicated channel (abbreviation: UL-DCH) processing. Specifically, an event corresponding to a trigger for starting UL-DCH processing is issued. After the processing of step b8 is completed, all processing procedures are completed.
  • UL-DCH uplink dedicated channel
  • FIG. 54 is a flowchart showing the processing procedure of HS-DSCH processing started by the processing of step a5 shown in FIG.
  • Each process of the flowchart shown in FIG. 54 is executed by the FP termination unit 56.
  • the process of the flowchart shown in FIG. 54 is started when the function of the upstream control frame process is called in step a7 of the flowchart shown in FIG. 52, and the process proceeds to step c1.
  • the flowchart shown in FIG. 54 is similar to the flowchart shown in FIG. 53 described above. Therefore, the same steps are denoted by the same step numbers and common description is omitted.
  • step c1 the FP termination unit 56 determines whether the frame sequence numbers (Frame (Sequence Number) of the received FP frames are consecutive.
  • the FP termination unit 56 proceeds to step c2 when determining that the frame sequence numbers are consecutive in step c1, and proceeds to step b4 when determining that the frame sequence numbers are not consecutive.
  • step c2 the FP termination unit 56 cuts out scheduling information from the received FP frame and provides it to the scheduler that performs MAC scheduling.
  • the portion functioning as the scheduling information cutout unit of the FP termination unit 56 performs calculation of Average Data Rate, calculation of the MAC-hs buffer retention amount, calculation of frequency (Frequency), and the like.
  • step c3 the FP terminal unit 56 cuts out PDU data by a portion functioning as a protocol data unit (Protocol Data Unit; abbreviated as PDU) data cut-out unit, and starts the address and data of the data stored in the memory. Set the length to the circuit.
  • PDU Protocol Data Unit
  • FIG. 55 is a flowchart showing a processing procedure of uplink control frame processing started by the processing of step a7 shown in FIG.
  • Each process of the flowchart shown in FIG. 55 is executed by the FP termination unit 56.
  • the process of the flowchart shown in FIG. 55 is started when an upstream control frame process function is called in step a7 of the flowchart shown in FIG. 52, and the process proceeds to step d1.
  • step d1 the FP termination unit 56 performs a frame cyclic redundancy check (CRC) calculation. After calculating the frame CRC, the process proceeds to step d2.
  • CRC frame cyclic redundancy check
  • step d2 the FP termination unit 56 determines whether or not an error has been detected based on the calculation result of the frame CRC in step d1. Specifically, the FP termination unit 56 determines whether an error is not detected by determining whether the calculated frame CRC indicates “reception OK” or “reception NG”. If it is determined in step d2 that the frame CRC indicates “reception OK”, the FP termination unit 56 determines that no error has been detected and proceeds to step d3, and if the frame CRC indicates “reception NG”. If it is determined, it is determined that an error has been detected, and the process proceeds to step d4.
  • step d3 the FP termination unit 56 cuts out control data other than the header of the FP frame. After the process of step d3 is complete
  • step d5 the FP termination unit 56 determines whether to perform downlink synchronization (DL (Synchronization) or uplink node synchronization (UL Node Synchronization) based on the extracted control data. If it is determined in step d5 that downlink synchronization or uplink node synchronization is performed, the FP termination unit 56 proceeds to step d7 and determines not to perform downlink synchronization and uplink node synchronization. If so, the process proceeds to step d6.
  • DL Synchronization
  • UL Node Synchronization uplink node synchronization
  • step d6 the FP termination unit 56 gives control information to the scheduler. After the processing of step d6 is completed, all processing procedures are completed.
  • step d7 the FP termination unit 56 performs downlink synchronization or uplink node synchronization processing. Whether to perform downlink synchronization or uplink node synchronization is determined based on the control data extracted in step d5. After the processing of step d7 is completed, all processing procedures are completed.
  • FIG. 56 is a flowchart showing a processing procedure of DL-DCH / CCH processing started by the processing of step a6 shown in FIG. Each process of the flowchart shown in FIG. 56 is executed by the FP termination unit 56. The processing of the flowchart shown in FIG. 56 is started when the DL-DCH / CCH processing function is called in step a7 of the flowchart shown in FIG. 52, and the processing proceeds to step e1.
  • step e1 the FP termination unit 56 calculates the CRC of the uplink control frame (UL Control Frame) (hereinafter also referred to as “uplink control frame CRC”). After calculating the uplink control frame CRC, the process proceeds to step e2.
  • uplink control frame CRC the uplink control frame
  • step e2 the FP terminal unit 56 assembles information such as ToA (Time Of Arrival) into the FP control frame (FP Control Frame) format by the FP data assembly unit.
  • ToA Time Of Arrival
  • FP control frame FP Control Frame
  • FIG. 57 and 58 are flowcharts showing the processing procedure of the uplink FP termination process in the base station apparatus 1 shown in FIG. 57 and 58 show a processing procedure when the FP termination process is realized by executing the software program by the built-in CPU 34 and the CPU 15.
  • FIG. 57 is a flowchart showing the processing procedure of the entire upstream FP termination processing. Each process of the flowchart shown in FIG. 57 is executed by the built-in CPU 34 and the CPU 15. The process of the flowchart shown in FIG. 57 is started when a return event is issued from the DL-DCH / CCH process or when a 2 ms interrupt signal from a circuit such as an FPGA is given, and the process proceeds to step f1.
  • step f1 the FP termination unit 56 performs demultiplex processing. Specifically, a set number of transport blocks (Transport Block) are collected and connected. When the demultiplex process is performed in this way, the process proceeds to step f2.
  • Transport Block Transport Block
  • step f2 the FP termination unit 56 calculates a quality evaluation (Quality Estimate; QE) value representing communication quality, adds it to the frame data, and proceeds to step f3.
  • QE Quality Estimate
  • step f3 the FP terminating unit 56 calculates the CRC of the FP frame, adds a CRCI (CRC Indicator) indicating the calculated CRC to the frame data, and proceeds to step f4.
  • CRC CRC Indicator
  • step f4 the FP termination unit 56 calculates the payload CRC of the FP frame, adds the calculated payload CRC to the frame data, and proceeds to step f5.
  • step f5 the FP termination unit 56 adds the connection frame number (Connection Frame Number; abbreviation: CFN), transport format indicator (Transport Format Indicator; abbreviation: TFI), propagation delay (Propagation delay) information, and the like to the FP frame.
  • connection frame number Connection Frame Number; abbreviation: CFN
  • transport format indicator Transport Format Indicator; abbreviation: TFI
  • propagation delay Propagation delay
  • step f6 the FP termination unit 56 calculates the header CRC of the FP frame, adds the calculated header CRC to the frame data, and proceeds to step f7.
  • step f7 the FP termination unit 56 issues an event to the EUL FP process. Specifically, an event corresponding to the trigger of the EUL FP process is issued. After the processing of step f7 is completed, all processing procedures are completed.
  • FIG. 58 is a flowchart showing the processing procedure of the EUL FP process started by the process of step f7 shown in FIG.
  • Each process of the flowchart shown in FIG. 58 is executed by the FP termination unit 56.
  • the process of the flowchart shown in FIG. 58 is started when an event is issued and the EUL FP process is started in step f7 of the flowchart shown in FIG. 57, and the process proceeds to step g1.
  • step g1 the FP termination unit 56 performs demultiplex processing. Specifically, MAC-es PDUs are collected for the set number and connected. The MAC-es PDU is unit data of the MAC-es layer (MAC-enhanced sublayer). When the demultiplex process is performed in this way, the process proceeds to step g2.
  • step g2 the FP termination unit 56 calculates the payload CRC of the FP frame, adds the calculated payload CRC to the frame data, and proceeds to step g3.
  • step g3 the FP termination unit 56 increments the frame sequence number of the FP frame, adds it to the frame data, and proceeds to step g4.
  • step g4 the FP termination unit 56 adds the number of CFN and HARQ retransmissions (Number of HARQ Retransmissions), the MAC-es PDU subframe number (0 to 15), and the data description indicator (DATA Description Indicator), Control goes to step g5.
  • step g5 the FP termination unit 56 calculates the header CRC of the FP frame, adds it to the FP frame, and proceeds to step g6.
  • step g6 the FP termination unit 56 issues an event to the IP processing. Specifically, an event corresponding to a trigger for starting IP processing is issued. This starts IP processing. After the processing of step g6 is completed, all processing procedures are completed.
  • the base station device can simultaneously communicate using different communication methods.
  • the communication function corresponding to one communication method is stopped when all users are communicating only with one communication method or when the base station apparatus recognizes that communication is performed.
  • the base station apparatus can guide the mobile communication terminal apparatus and the higher-level network so as to intentionally execute only one communication method for the user in order to keep power consumption low.
  • a certain base station apparatus is in communication with four mobile communication terminal apparatuses, three of which are communicating with the same communication method, and only the remaining one mobile communication terminal apparatus is connected to the other three.
  • the base station apparatus determines that communication is performed using a communication method different from that of one mobile communication terminal apparatus.
  • the base station device, the mobile communication terminal device, or the upper network controls or guides the communication method of the one mobile communication terminal device so that the communication method is the same as the other three mobile communication terminal devices. be able to.
  • the base station apparatus determines that all user mobile communication terminal apparatuses are communicating with only one communication system, and stops the functional operation of the communication system that is not being used.
  • the base station apparatus can realize a reduction in power consumption, which eliminates the need for heat dissipation by fins and the like, and can achieve downsizing by employing a small casing.
  • the reason why power consumption can be reduced by guiding all users' mobile communication terminal devices to one communication method is as follows. When two communication methods are realized under the control of different operation systems (OPS) or when different applications (APs) are installed, even one user's mobile communication terminal device is different from the other If communication is performed using a communication method, it is necessary to operate user-common functions such as the basic operation and maintenance function of OPS and AP. Therefore, power consumption can be reduced by guiding the mobile communication terminal devices of all users to one communication method as described above.
  • OPS operation systems
  • APs applications
  • FIG. 59 is a block diagram showing a configuration of a base station apparatus 2 which is a first modification of the first embodiment of the present invention. Since the configuration of the base station apparatus 2 in the present modification is similar to the configuration of the base station apparatus 1 of the first embodiment shown in FIG. 1 described above, it corresponds to the first embodiment shown in FIG. The same reference numerals are assigned to the parts to be described, and the common description is omitted.
  • the base station apparatus 2 of this modification includes an RF unit 11, a DFE circuit unit 12, an LTE circuit unit 13A, a system clock supply unit 16, a first antenna 17, a second antenna 18, a first 3G circuit unit 81, a second 3G circuit unit 82, CPU 83, and IPsec dedicated circuit unit 84.
  • the first 3G circuit portion 81 is described as “F3GC”.
  • the second 3G circuit unit 82 is described as “S3GC”.
  • the IPsec dedicated circuit unit 84 is described as “IPsecDCC”.
  • the RF unit 11 and the DFE circuit unit 12 have the same configuration as the RF unit 11 and the DFE circuit unit 12 of the base station apparatus 1 in the first embodiment.
  • the first 3G circuit unit 81 has the same configuration as the 3G circuit unit 14 of the base station apparatus 1 in the first embodiment.
  • the LTE circuit unit 13A is configured by removing the system clock correction unit 49 from the LTE circuit unit 13 of the base station apparatus 1 in the first embodiment.
  • the FP termination unit 56, the 3G IP unit 58, the 3G IPsec unit 59, and the PPPoE unit 60 are realized by the CPU 15 as shown in FIG. 1 in the first embodiment, but in this modification, This is realized by the second 3G circuit unit 82 and the IPsec dedicated circuit unit 84 which are hardware circuits. That is, in this modification, the FP termination unit 56, the 3G IP unit 58, the IPsec unit 59, and the PPPoE unit 60 are configured as a circuit different from the CPU 83.
  • the second 3G circuit unit 82 includes an FP termination unit 56, a 3G IP unit 58, a PPPoE unit 60, and a changeover switch unit 85.
  • the first 3G circuit unit 13A and the second 3G circuit unit 82 may be the same circuit.
  • the IPsec dedicated circuit unit 84 includes a 3G IPsec unit 59.
  • the changeover switch unit 85 switches the connection destination of the PPPoE unit 60 to the 3G IPsec unit 59 of the IPsec dedicated circuit 84 or the LTE IPsec unit 43 of the built-in CPU 34A of the LTE circuit unit 13A.
  • the second 3G circuit unit 82 and the IPsec dedicated circuit unit 84 are realized by a circuit such as an ASIC such as FPGA or LSI.
  • the CPU 83 includes a MAC-hs unit 54, a MAC-e unit 55, a 3G wireless parameter acquisition unit 57, a 3G AP unit 61, a 3G PF unit 62, and a system clock correction unit 49.
  • the RF unit 11 and the DFE circuit unit 12 constitute a wireless transmission / reception unit 71.
  • the built-in DSP / L1 engine unit of the LTE circuit unit 13A and the RLC / MAC unit 40 and the PDCP / GTP-U unit 41 of the built-in CPU 34A constitute an LTE baseband unit 72.
  • the LTE baseband unit 72 includes LTE IFFT and FFT, channel coding and channel decoding data processing defined in Non-Patent Documents 6 to 8 and the like, multiple input multiple output (abbreviation: MIMO) Processing and scheduling processing are performed.
  • the LTE AP unit 44, the LTE PF unit 45, and the network parameter acquisition unit 46 of the built-in CPU 34A constitute an eNB control unit 73.
  • the first 3G circuit unit 81, the MAC-hs unit 54, the MAC-e unit 55, the 3G wireless parameter acquisition unit 57 of the CPU 83, and the FP termination unit 56 of the second 3G circuit unit 82 are based on the 3G base.
  • the band unit 74A is configured.
  • the 3G baseband unit 74A performs W-CDMA baseband signal processing defined in 3GPP TS25.211 to 214.
  • the 3G AP section 61 and the 3G PF section 62 of the CPU 83 constitute an NB control section 75.
  • the IPsec unit 59 constitutes a wired end unit 76A.
  • the system clock correction unit 49 of the CPU 83 and the system clock supply unit 16 connected to the system clock correction unit 49 constitute a clock unit 77A.
  • the configuration of the LTE-side functional part is the same as that shown in FIG. 1 described above except that the system clock correction unit 49 is moved from the LTE circuit unit 13 to the CPU 83 in the first embodiment. This is the same as the configuration in the embodiment.
  • the configuration of the 3G-side functional part is different from the configuration in the first embodiment shown in FIG. Specifically, the 3G-side functional part includes the second antenna 18, the second DUP unit 26, the second switch unit 27, the second radio transmission unit 28, the second radio reception unit 29, and the second downlink radio of the RF unit 11.
  • the FP termination unit 56, the 3G IP unit 58, the IPsec unit 59, and the PPPoE unit 60 are realized by hardware circuits, the MAC-hs unit 54 and the MAC-e unit 55 are provided. Instead of user data continuity, parameters can be acquired and only scheduling functions such as transmission rate control can be performed. As a result, as shown in FIG. 59, the user data path on the 3G side can be configured only by a circuit, so that the load of software processing can be reduced. In this modification, the same effect as that of the first embodiment described above can be achieved.
  • FIG. 60 is a block diagram showing a configuration of a base station apparatus 3 which is a second modification of the first embodiment of the present invention. Since the configuration of the base station apparatus 3 in the present modification is similar to the configuration of the base station apparatus 2 in the second modification of the first embodiment shown in FIG. 59 described above, the first implementation shown in FIG. The portions corresponding to the second modification of the embodiment are denoted by the same reference numerals, and the common description is omitted.
  • the base station apparatus 3 of this modification includes an RF unit 11A, an LTE circuit unit 13A, a system clock supply unit 16, a first antenna 17, a second antenna 18, a first 3G circuit unit 81, and a second 3G circuit unit 82.
  • the CPU 83 and the IPsec dedicated circuit unit 84 are provided.
  • the LTE circuit unit 13A, the first 3G circuit unit 81, the second 3G circuit unit 82, the CPU 83, and the IPsec dedicated circuit unit 84 are the LTE circuit unit 13A of the base station apparatus 2 according to the second modification of the first embodiment.
  • the first 3G circuit unit 81, the second 3G circuit unit 82, the CPU 83, and the IPsec dedicated circuit unit 84 have the same configuration.
  • the first 3G circuit unit 81 and the second 3G circuit unit 82 may be the same circuit.
  • the RF unit 11A of this modification includes a first DUP unit 21, a first switch unit 22, a first radio transmission unit 23, a first radio reception unit 24, a first downlink radio reception unit 25, a second DUP unit 26, and a second switch. 27, second wireless transmission unit 28, second wireless reception unit 29, second downlink wireless reception unit 30, combining unit 91, first distribution unit 92, second distribution unit 93, 3G wireless transmission unit 94, for 3G A wireless receiving unit 95 and a 3G downlink wireless receiving unit 96 are provided.
  • the RF unit 11A of this modification constitutes a wireless transmission / reception unit 71A.
  • the synthesis unit 91 is described as “SYN”.
  • the first distribution unit 92 and the second distribution unit 93 are described as “DIS”.
  • the 3G wireless transmission unit 94 is described as “3GTR”.
  • the 3G wireless reception unit 95 is described as “3GRE”.
  • the 3G downlink radio reception unit 96 is described as “3GDRE”.
  • the base station device 3 of the present modification has the same configuration as the base station device 2 in the first modification of the first embodiment described above, except for the RF unit 11A that configures the wireless transmission / reception unit 71A.
  • the RF unit 11 of the present modification has no DFE.
  • the two distribution units 93, the 3G radio transmission unit 94, the 3G radio reception unit 95, and the 3G downlink radio reception unit 96 are configured.
  • the 3G wireless transmission unit 94 up-converts the signal after W-CDMA spread modulation to an RF signal.
  • the 3G wireless reception unit 95 down-converts the W-CDMA RF signal and performs A / D conversion.
  • the 3G downlink radio reception unit 96 down-converts the W-CDMA downlink frequency RF signal and performs A / D conversion.
  • the synthesizing unit 91 does not overlap the frequency band of the LTE RF signal output from the second wireless transmission unit 28 and the W-CDMA RF signal output from the 3G wireless transmission unit 94, This is an analog filter having a band limiting function for arranging frequencies side by side.
  • the first and second distributors 92 and 93 are analog filters that separate the RF signal into a signal passing through the 3G band and a signal passing through the LTE band.
  • the FP termination unit 56, the 3G IP unit 58, the IPsec unit 59, and the PPPoE unit 60 are different from the CPU 83, as in the first modification of the first embodiment. Since it is configured as a circuit, the MAC-hs unit 54 and the MAC-e unit 55 can be configured not to conduct user data but to acquire parameters and perform only scheduling functions such as transmission rate control. . As a result, as shown in FIG. 60, the user data path on the 3G side can be configured only by a circuit, so that the load of software processing can be reduced.
  • the DFE unit 31 is used for synthesizing or distributing in the digital baseband frequency band, whereas in this modification, the DFE circuit unit is used.
  • the 3G signal and the LTE signal are synthesized or distributed by analog high frequency (RF).
  • RF analog high frequency
  • FIG. 61 is a block diagram showing a detailed configuration of the DFE circuit unit 12 and its peripheral part of the base station apparatus 1 in the first embodiment shown in FIG.
  • FIG. 62 is a diagram showing signal states in the first embodiment of the present invention.
  • the first embodiment shown in FIG. 1 will be described.
  • the detailed configuration of the unit is the configuration shown in FIG. 61 as in the first embodiment.
  • LTE signals are allocated to a frequency band of -5 MHz to +10 MHz
  • W-CDMA signals are allocated to a frequency band of -10 MHz to -5 MHz.
  • the LTE system signal and the W-CDMA system signal can be separated and combined by DFE processing without necessarily having such an assignment.
  • the center frequency is the frequency of the baseband signal.
  • the LTE baseband frequency is 30.72 MHz.
  • the center frequency is 30.72 MHz which is the baseband frequency of the LTE system, the frequency band is considered with reference to this frequency.
  • the center frequency is adjusted to the baseband frequency of the LTE system.
  • the number of antennas is two. However, the number is not necessarily two, and may be one or three.
  • the base station apparatus 1 includes a first antenna 701, a first duplexer (abbreviation: DUP) unit 702, a first RF-IC unit 707, a transmission DFE unit 716, an LTE baseband signal processing unit 717, and a second antenna 721.
  • the reception DFE unit 741 corresponds to a reception processing unit
  • the transmission DFE unit 716 corresponds to a transmission processing unit.
  • the transmission DFE unit 716 is described as “SDFE”.
  • the LTE baseband signal processing unit 717 is described as “LTE_BBSP”.
  • the reception DFE unit 741 is described as “RDFE”.
  • the W-CDMA baseband signal processing unit 742 is described as “W-CDMA_BBSP”.
  • the first antenna 701 shown in FIG. 61 corresponds to the first antenna 17 of FIG.
  • the second antenna 721 corresponds to the second antenna 18 of FIG.
  • the first DUP 702, the second DUP unit 722, the first RF-IC circuit 707, and the second RF-IC unit 727 correspond to the RF unit 11 in FIG.
  • the transmission DFE unit 716 and the reception DFE unit 741 correspond to the DFE circuit 12 in FIG.
  • the first DUP 702 corresponds to the first DUP unit 21 in FIG.
  • the second DUP unit 722 corresponds to the second DUP unit 26 in FIG.
  • the first RF-IC circuit 707 corresponds to the first radio transmission unit 23, the first radio reception unit 24, and the first downlink radio reception unit 25 in FIG.
  • the second RF-IC unit 727 corresponds to the second radio transmission unit 28, the second radio reception unit 29, and the second downlink radio reception unit 30 of FIG.
  • the LTE baseband signal processing unit 717 corresponds to the LTE baseband unit 72 of FIG.
  • the W-CDMA baseband signal processing unit 742 corresponds to the 3G baseband unit 74 which is the baseband unit for W-CDMA in FIG.
  • the first RF-IC unit 707 includes a first up-conversion unit 703, a first down-conversion unit 704, a first D / A conversion unit 705, and a first A / D conversion unit 706.
  • the second RF-IC unit 727 includes a second up-conversion unit 723, a second down-conversion unit 724, a second D / A conversion unit 725, and a second A / D conversion unit 726.
  • the first up-conversion unit 703 and the second up-conversion unit 723 are described as “UC”.
  • the first down conversion unit 704 and the second down conversion unit 724 are described as “DC”.
  • the transmission DFE unit 716 is a DFE unit corresponding to a transmission signal, and includes a first combining unit 708, a second combining unit 709, a first LTE frequency converting unit 710, a second LTE frequency converting unit 711, and a first W-CDMA use.
  • a frequency converter 712, a second W-CDMA frequency converter 713, a first rate converter 714, and a second rate converter 715 are provided.
  • the transmission DFE unit 716 corresponds to a part that performs transmission signal processing in the first first DFE unit 31 and the second DFE unit 32 shown in FIG.
  • the first LTE frequency converter 710, the second LTE frequency converter 711, the first W-CDMA frequency converter 712, and the second W-CDMA frequency converter 713 are described as “FC”. To do.
  • the first rate conversion unit 714 and the second rate conversion unit 715 are described as “RC”.
  • the reception DFE unit 741 is a DFE unit corresponding to the received signal, and includes a separation unit 728, a third LTE frequency conversion unit 729, a fourth LTE frequency conversion unit 730, a third W-CDMA frequency conversion unit 731 and a fourth W- A CDMA frequency converter 732, a first digital filter 733, a second digital filter 734, a third digital filter 735, a fourth digital filter 736, a first automatic gain control (abbreviation: AGC) unit 737, a second AGC Part 738, third AGC part 739 and fourth AGC part 740.
  • the receiving DFE unit 741 corresponds to a part that performs processing of a received signal in the first first DFE unit 31 and the second DFE unit 32 shown in FIG.
  • the separation unit 728 is described as “SEP”.
  • the third LTE frequency converter 729, the fourth LTE frequency converter 730, the third W-CDMA frequency converter 731 and the fourth W-CDMA frequency converter 732 are described as “FC”.
  • the first digital filter 733, the second digital filter 734, the third digital filter 735, and the fourth digital filter 736 are described as “DFI”.
  • the first DUP unit 702 is connected to the first antenna 701, and combines and / or separates transmission signals and / or reception signals.
  • the second DUP unit 722 is connected to the second antenna 721 and combines and / or separates a transmission signal and / or a reception signal.
  • the first up-conversion unit 703 and the second up-conversion unit 723 convert a baseband frequency of, for example, 30.72 MHz into a high frequency of, for example, 2 GHz.
  • the first up-conversion unit 703 and the second up-conversion unit 723 may carry a signal by performing phase modulation on a carrier wave.
  • the first down conversion unit 704 and the second down conversion unit 724 convert a high frequency signal into a baseband frequency. If the system is to place a signal by phase-modulating the carrier wave, the first down-conversion unit 704 and the second down-conversion unit 724 may extract the phase-modulated component from the carrier wave.
  • the first D / A converter 705 and the second D / A converter 725 convert the digital signal into an analog signal.
  • the first A / D conversion unit 706 and the second A / D conversion unit 726 convert an analog signal into a digital signal.
  • the first combining unit 708 arranges the LTE signal band signal provided from the first LTE frequency conversion unit 710 and the W-CDMA signal band signal provided from the first W-CDMA frequency conversion unit 712 to arrange the 20 MHz band. Combine into one signal.
  • the second synthesizing unit 709 arranges the LTE system signal band signal provided from the second LTE frequency conversion unit 711 and the W-CDMA system signal band signal provided from the second W-CDMA frequency conversion unit 713, and arranges the 20 MHz band. Combine into one signal.
  • the first and second LTE frequency converters 710 and 711 convert the 15 MHz LTE signal to a frequency of ⁇ 5 MHz to 10 MHz in the usable 20 MHz frequency bandwidth.
  • the first and second W-CDMA frequency converters 712 and 713 convert the frequency of the 5 MHz W-CDMA system signal to a frequency of ⁇ 10 MHz to ⁇ 5 MHz in the usable 20 MHz frequency bandwidth.
  • the first and second rate conversion units 714 and 715 convert the W-CDMA system signal sampling frequency, for example, 7.68 MHz, to the LTE system signal sampling frequency, for example, 30.72 MHz, so that they can be combined.
  • the LTE baseband signal processing unit 717 performs processing such as LTE modulation / demodulation, encoding, and decoding.
  • the demultiplexing unit 728 demultiplexes the digital signal that has been A / D converted by the first A / D conversion unit 706 and provides the demultiplexed signal to the third LTE frequency conversion unit 729 and the third W-CDMA frequency conversion unit 731.
  • Separation section 728 separates the digital signal that has been A / D converted by second A / D conversion section 726 and provides the digital signal to fourth LTE frequency conversion section 730 and fourth W-CDMA frequency conversion section 732.
  • Third and fourth LTE frequency converters 729 and 730 convert a signal of ⁇ 5 MHz to +10 MHz, which is assigned as a frequency of the LTE system signal, from ⁇ 7.5 MHz to +7.5 MHz among the signals supplied from separator 728. The frequency is converted so that the frequency band becomes.
  • the first and second digital filters 733 and 734 are low-pass filters (Low Pass Filter; abbreviation: LPF) that extract only signals in a desired frequency band from the signals output from the third and fourth LTE frequency converters 729 and 730. ).
  • LPF Low Pass Filter
  • the third and fourth W-CDMA frequency converters 731 and 732 among the signals separated and given by the separator 728, signals of ⁇ 10 MHz to ⁇ 5 MHz assigned as the frequency of the W-CDMA system signal, -Frequency conversion is performed so that the frequency band is from -2.5 MHz to +2.5 MHz.
  • the third and fourth digital filters 735 and 736 function as LPFs that extract only signals in a desired frequency band from the signals output from the third and fourth W-CDMA frequency converters 731 and 732.
  • the first to fourth AGC units 737 to 740 suppress the amplitude of the digital signal.
  • the W-CDMA system baseband signal processing unit 742 performs processing such as W-CDMA type modulation / demodulation, encoding, and decoding.
  • the first to fourth AGC units 737 to 740 are used when the first and second A / D conversion units 706 and 726 do not have a sufficient bit width for the purpose of reducing the size and price of a digital signal. Necessary. When the first and second A / D conversion units 706 and 726 can have a sufficient bit width, the first to fourth AGC units 737 to 740 may not be provided.
  • the first RF-IC unit 707 including the first up-conversion unit 703, the first down-conversion unit 704, the first D / A conversion unit 705, and the first A / D conversion unit 706 is an RF-chip that is a single RF dedicated chip. It can be realized by an IC or the like.
  • the second RF-IC unit 727 including the second up-conversion unit 723, the second down-conversion unit 724, the second D / A conversion unit 725, and the second A / D conversion unit 726 is a single RF dedicated chip. It can be realized by a certain RF-IC or the like.
  • a signal in the 20 MHz band including both the W-CDMA scheme and the LTE scheme received by the first and second antennas 701 and 721 is sent to the first and second down conversion units 704 via the first and second DUP units 702 and 722. , 724.
  • a high-frequency signal such as 2 GHz is converted into a baseband signal such as 61.44 MHz, and the first and second A / D conversion units 706 and 726 are converted. Is input.
  • the analog signal is converted into a digital signal and input to the separation unit 728.
  • the -5 MHz to +10 MHz portion is allocated to the LTE signal and the -10 MHz to -5 MHz portion is allocated to the W-CDMA signal in the 20 MHz wide frequency band as described above. It is assumed that the system is such that. Therefore, as shown in FIG. 62, the state of the signal 743 input to the separation unit 728 is that the LTE signal occupies a portion of ⁇ 5 MHz to +10 MHz in the 20 MHz-wide frequency band, and ⁇ 10 MHz to The state of ⁇ 5 MHz is occupied by the W-CDMA system signal.
  • Separation section 728 sends a signal of 20 MHz band to third and fourth LTE frequency conversion sections 729 and 730 and third and fourth W-CDMA frequency conversion sections 731 and 732, or transmits a signal of ⁇ 5 MHz to +10 MHz band
  • the signal is cut out and sent to the third and fourth LTE frequency converters 729 and 730, and the signal in the ⁇ 10 MHz to ⁇ 5 MHz band is cut out and sent to the third and fourth W-CDMA frequency converters 731 and 732. It is preferable to cut and send it because it is possible to prevent a signal of another method from entering when performing multiplication for phase rotation by frequency conversion.
  • the first to fourth digital filters 733 to 736 perform processing for removing signals of other methods, so that only the signals of the communication method to be taken out can be taken out.
  • the third and fourth LTE frequency converters 729 and 730 convert the LTE system signal in the ⁇ 5 MHz to +10 MHz band into a signal in the frequency band centered on 0 MHz in the ⁇ 7.5 MHz to +7.5 MHz band. Perform phase rotation by complex multiplication.
  • the first and second digital filters 733 and 734 are signals other than the band of ⁇ 7.5 MHz to +7.5 MHz generated by the phase rotation by the complex multiplication performed in the third and fourth LTE frequency converters 729 and 730. The components are removed, and only the ⁇ 7.5 MHz to +7.5 MHz band signal components are extracted. That is, the first and second digital filters 733 and 734 serve as a low-pass filter that removes harmonic components.
  • Third and fourth W-CDMA frequency converters 731 and 732 convert a W-CDMA system signal in the ⁇ 10 MHz to ⁇ 5 MHz band into a signal in a band centered on 0 MHz in the ⁇ 2.5 MHz to +2.5 MHz band. In order to achieve this, phase rotation by complex multiplication or the like is performed.
  • the third and fourth digital filters 735 and 736 are other than the ⁇ 2.5 MHz to +2.5 MHz bands generated by the phase rotation by the complex multiplication performed in the third and fourth W-CDMA frequency converters 731 and 732. Are removed, and only the ⁇ 2.5 MHz to +2.5 MHz band signal component is extracted. That is, the third and fourth digital filters 735 and 736 serve as low-pass filters that remove harmonic components.
  • the first to fourth AGC units 737 to 740 suppress the fluctuation of the amplitude of the signal component and suppress the necessary bit width.
  • the LTE system signal is input to the LTE system baseband signal processing unit 717 through processing in the first and second AGC units 737 and 738.
  • the W-CDMA system signal is input to the W-CDMA system baseband signal processing unit 742 through processing in the third and fourth AGC units 739 and 740.
  • the LTE modulation signal output from the LTE baseband signal processing unit 717 is input to the first and second LTE frequency converters 710 and 711.
  • the first and second LTE frequency converters 710 and 711 perform frequency conversion from a signal band of ⁇ 7.5 MHz to +7.5 MHz to a signal band of ⁇ 5 MHz to +10 MHz.
  • the W-CDMA modulation signal output from the W-CDMA baseband signal processing unit 742 is input to the first and second rate conversion units 714 and 715.
  • the baseband frequency of 7.68 MHz is converted to the same frequency of 30.72 MHz as the LTE system signal.
  • the first and second W-CDMA frequency converters 712 and 713 are input.
  • the first and second W-CDMA frequency converters 712 and 713 perform frequency conversion from a signal band of ⁇ 2.5 MHz to +2.5 MHz to a signal band of ⁇ 10 MHz to ⁇ 5 MHz.
  • ⁇ 2.5 MHz to +2.5 MHz and ⁇ 10 MHz to ⁇ 5 MHz are relative frequency bands when the center frequency is 0 MHz, and the center frequency is actually 30.72 MHz.
  • the LTE system signals output from the first and second LTE frequency converters 710 and 711 are input to the first combiner 708.
  • the W-CDMA system signals output from the first and second W-CDMA frequency conversion units 712 and 713 are input to the second synthesis unit 709.
  • the LTE system signal and the W-CDMA system signal are combined and arranged in a 20 MHz bandwidth signal as shown in FIG. That is, as shown in FIG. 62, the signal 718 output from the first and second synthesis units 708 and 709 has a portion of ⁇ 5 MHz to +10 MHz out of the frequency band of 20 MHz, and the LTE system signal occupies it. The signal of ⁇ 10 MHz to ⁇ 5 MHz is occupied by the W-CDMA system signal.
  • the first and second D / A converters 705 and 725 convert the analog signal
  • the first and second up-conversion units 703 and 723 convert the baseband frequency to a high-frequency signal such as 2 GHz.
  • the high-frequency signal is radiated from the first and second antennas 701 and 721 to the air via the first and second DUP units 702 and 722.
  • DFE digital filter
  • the configuration in which DFE is applied to both antennas has been described.
  • DFE is applied to only one antenna, and the other antenna transmits and receives only the LTE scheme or the W-CDMA scheme. It is good also as a structure.
  • RF antenna
  • Even in such a configuration, only the antenna (RF) system to which DFE is applied can reduce the number of high-frequency components such as the RF-IC unit. As a result, the base station device can be reduced in size, reduced in power consumption, and reduced in price.
  • FIG. 63 is a block diagram showing a configuration of a DFE circuit unit of a base station apparatus and its peripheral part when DFE is applied to only one antenna.
  • 64 and 65 are diagrams showing signal states in the example shown in FIG. 63.
  • the configuration of the DFE circuit portion and its peripheral portion in the example shown in FIG. 63 is similar to the configuration of the first embodiment shown in FIG. 61 described above, and therefore corresponds to the first embodiment shown in FIG.
  • the same reference numerals are assigned to the parts to be described, and the common description is omitted.
  • the base station apparatus shown in FIG. 63 includes a first antenna 701, a first duplexer (DUP) unit 702, a first RF-IC unit 707, an LTE baseband signal processing unit 717, a second antenna 721, a second duplexer ( DUP) unit 722, second RF-IC unit 727, receiving DFE unit 741, W-CDMA baseband signal processing unit 742, first synthesis unit 751, third RF-IC unit 754, second synthesis unit 755, and fourth RF -An IC unit 758 is provided.
  • DUP duplexer
  • the third RF-IC unit 754 includes a third up-conversion unit 752 and a third D / A conversion unit 753.
  • the fourth RF-IC unit 758 includes a fourth up-conversion unit 756 and a fourth D / A conversion unit 757.
  • the third up-conversion unit 752 and the fourth up-conversion unit 756 are described as “UC”.
  • DFE is applied only to the reception process, and the transmission process converts the analog front end (Analog) in the first and second synthesis units 751 and 755 to a signal frequency-converted to a high-frequency component after up-conversion.
  • Front End (abbreviation: AFE) is performed, and the first and second antennas 701 and 721 are radiated via the first and second duplexers 702 and 722.
  • AFE combining process is a process of assigning an LTE system signal and a W-CDMA system signal to bands allocated in the LTE system and the W-CDMA system, respectively.
  • the LTE system signal 759 input from the LTE system baseband signal processing unit 717 to the first and second RF-IC units 707 and 727 is ⁇ 7.5 MHz to +7 as shown in FIG. Occupies a frequency band of 5 MHz.
  • a W-CDMA system signal 760 input from the W-CDMA system baseband signal processing unit 742 to the third and fourth RF-IC units 754 and 757 has a frequency of ⁇ 2.5 MHz to +2.5 MHz. Exclusive frequency band.
  • the state of the signal 743 input to the separation unit 728 is as shown in FIG. 62, in the 20 MHz wide frequency band, the ⁇ 5 MHz to +10 MHz portion is the LTE signal. And the W-CDMA system signal is in the exclusive state of ⁇ 10 MHz to ⁇ 5 MHz.
  • AFE is applied to all two antennas and DFE is applied to reception. Only the antenna may be shared by the LTE system and the W-CDMA system, and the antenna on the other side may be dedicated to the LTE system or the W-CDMA system. In that case, the AFE and DFE combining processing and separation processing are performed only on one antenna side. Even in such a case, it is possible to reduce high-frequency (RF) -related parts such as the RF-IC part as compared with the case where DFE is not performed, so that the base station apparatus can be reduced in price, power consumption and size. Can be realized.
  • RF radio frequency
  • FIG. 66 is a block diagram illustrating a partial configuration of the base station apparatus when DFE is not applied.
  • the configuration shown in FIG. 66 corresponds to the detailed configuration of radio transmission / reception unit 11A and its peripheral portion of base station apparatus 3 in Modification 2 of the first embodiment shown in FIG.
  • the configuration of the example shown in FIG. 66 is similar to the configuration of the first embodiment shown in FIG. 61 and the example shown in FIG. 63, so the first embodiment and the diagram shown in FIG.
  • the portions corresponding to the example shown in 63 are denoted by the same reference numerals, and common description is omitted.
  • 66 includes a first antenna 701, a first duplexer (DUP) unit 702, a first RF-IC unit 707, an LTE baseband signal processing unit 717, a second antenna 721, a second duplexer ( DUP) unit 722, second RF-IC unit 727, W-CDMA baseband signal processing unit 742, first synthesis unit 751, second synthesis unit 755, first separation (AFE) unit 761, second separation (AFE) Part 762, a third RF-IC part 765, and a fourth RF-IC part 768.
  • DUP duplexer
  • AFE first separation
  • AFE separation
  • AFE AFE
  • the third RF-IC unit 765 includes a third up-conversion unit 752, a third D / A conversion unit 753, a third down-conversion unit 763, and a third A / D conversion unit 764.
  • the fourth RF-IC unit 768 includes a fourth up-conversion unit 756, a fourth D / A conversion unit 757, a fourth down-conversion unit 766, and a fourth A / D conversion unit 767.
  • the third down conversion unit 763 and the fourth down conversion unit 766 are described as “DC”.
  • the interference component included in the signal component is surely suppressed to be small compared to the case where the DFE, specifically, the DFE having a low method separation accuracy such as reducing the number of filter taps in order to reduce the circuit scale is provided. be able to.
  • a DFE circuit is unnecessary, a low-priced device such as an FPGA can be selected, and downsizing and low power consumption of the base station apparatus can be realized.
  • Radio signals received by the first and second antennas 701 and 721 are input to the first and second separation units 761 and 762 via the first and second DUP units 702 and 722, respectively.
  • the first separation unit 761 extracts LTE signal components from the LTE signal band and sends them to the first and third down conversion units 704 and 763 for the LTE method.
  • Second demultiplexing section 762 extracts W-CDMA signal components from the W-CDMA system signal band and sends them to second and fourth down-conversion sections 724 and 766 for W-CDMA system.
  • the LTE system signal component becomes a baseband signal and is converted into a digital signal by the first and third A / D conversion units 706 and 764, and the LTE system The signal is input to the baseband signal processing unit 717.
  • the W-CDMA system signal component becomes a baseband signal and is converted into a digital signal by the second and fourth A / D conversion units 726 and 767. And input to the W-CDMA baseband signal processing unit 742.
  • the LTE system signal 759 input from the LTE baseband signal processing unit 717 to the first and second RF-IC units 707 and 727 is ⁇ 7.5 MHz to +7 as shown in FIG. Occupies a frequency band of 5 MHz.
  • a W-CDMA system signal 760 input from the W-CDMA system baseband signal processing unit 742 to the third and fourth RF-IC units 754 and 757 has a frequency of ⁇ 2.5 MHz to +2.5 MHz. Exclusive frequency band.
  • AFE is applied to each of transmission processing and reception processing, but is applied to only one antenna, and the other antenna transmits and receives only the LTE scheme or only the W-CDMA scheme. It may be configured to do.
  • AFE can be reduced, and the number of RF-related parts can be reduced because only one of the RF-related parts is provided.
  • the base station apparatus can be reduced in price, power consumption and size.
  • FIG. 67 is a block diagram showing a configuration of the mobile communication system 6 according to the second embodiment of the present invention.
  • the mobile communication system 6 includes a base station device 4 and mobile communication terminal devices (User Equipment; hereinafter may be referred to as “mobile communication terminals” or “UE”) 5a to 5c.
  • the mobile communication system 6 includes three mobile communication terminals, specifically, a first mobile communication terminal 5a, a second mobile communication terminal 5b, and a third mobile communication terminal 5c.
  • the base station apparatus 4 is realized by any of the base station apparatuses 1 to 3 of the first embodiment described above or the modifications 1 and 2 thereof.
  • the base station apparatus 4 is a base station apparatus that shares two different systems.
  • the base station apparatus 4 is a femtocell base station apparatus.
  • the base station apparatus 4 may be referred to as “shared femtocell base station apparatus” or “dual femtocell base station apparatus”.
  • the base station apparatus 4 is a 3G / LTE shared femtocell base station apparatus that shares the 3G scheme, specifically, the W-CDMA scheme and the LTE scheme.
  • the base station apparatus 4 includes a 3G-side functional part 601, an LTE-side functional part 602, a power supply unit 603, a first antenna 604, and a second antenna 605.
  • the 3G side functional part 601 has functions such as baseband signal processing corresponding to the 3G (W-CDMA) system.
  • the LTE side functional part 602 has functions such as baseband signal processing corresponding to the LTE system.
  • the power supply unit 603 supplies power to the 3G-side functional part 601 and the LTE-side functional part 602 mounted on the base station apparatus 4.
  • the 3G side functional part 601 is described as “3G_FS”.
  • the LTE-side functional part 602 is described as “LTE_FS”. 67 indicates that the base station device 4 and the mobile communication terminal devices 5a to 5c are in a communication state.
  • the first mobile communication terminal 5a corresponds to the LTE system.
  • the second mobile communication terminal 5b corresponds to the LTE system.
  • the third mobile communication terminal 5c supports both 3G and LTE systems. Therefore, in FIG. 67, the first mobile communication terminal 5a and the second mobile communication terminal 5b are described as “LTE compatible registration UE”, and the third mobile communication terminal 5c is described as “LTE / 3G compatible registration UE”. .
  • Each mobile communication terminal 5a to 5c includes two antennas 611 to 616, respectively.
  • each mobile communication terminal 5a to 5c is registered so as to be able to communicate with the base station apparatus 4, and the base station apparatus 4 is in communication with each mobile communication terminal 5a to 5c.
  • the base station apparatus 4 determines that all of the mobile communication terminals 5a to 5c in the communication state are mobile communication terminals compatible with the LTE system (hereinafter sometimes referred to as “LTE compatible terminals”), the base station apparatus 4
  • the registered UE identification signal (abbreviation: UEIS) is output to the power supply unit 603.
  • the registered UE identification number is an identification signal indicating whether all UEs are LTE-compatible terminals.
  • the power supply unit 603 When the power supply unit 603 receives the registration UE identification signal from the LTE-side functional part 602, the power supply unit 603 stops supplying power to the 3G-side functional part 601. As a result, the power consumption can be reduced by the amount that the power is not supplied to the 3G-side functional part, so that the power consumption of the base station apparatus 4 as a whole can be kept low.
  • the following method can be cited as a method for identifying whether all mobile communication terminals are communicating only by the LTE system.
  • LTE reception is performed by the SC-FDMA method or the like defined by 3GPP, and decoding is performed by the CHSEP unit 376, the CHDEC_DATA unit 381, and the channel decoding (FEC) unit 386 shown in FIGS.
  • the CRC check by the code block CRC check / code block concatenation unit 388 and the transport block CRC check unit 389 shown in FIGS. 13 to 23 determines whether or not there is an error. This makes it possible to determine whether all mobile communication terminals are communicating only with the LTE scheme. Specifically, when there is no CRC error, it can be determined that communication is performed using only the LTE scheme.
  • the 3G-side functional part 601 is despread by the W-CDMA method, it can also be determined that the RACH preamble path corresponding to the PRACH shown in FIG. 49 is not detected. Specifically, if a path is not detected, it can be determined that communication is performed using only the LTE method. In that case, a registration UE identification signal is also sent from the 3G-side functional part 601 to the power supply unit 603, and the power supply part 603 performs an operation of stopping power supply to the 3G-side functional part 601.
  • the 3G-side functional part 603 that sends the registered UE identification number to the power supply unit 603 is connected to the PF part in the 3G-side functional part of the base station devices 1, 2, and 3 shown in FIG. 1, FIG. 59, and FIG. Equivalent to.
  • the above-mentioned “path is not detected” is defined such that the power does not exceed a certain threshold even if the RACH preamble signal is subjected to correlation calculation with a spreading code. Can do.
  • the base station apparatus 4 communicates with all of the mobile communication terminals 5a to 5c in communication with the base station apparatus using only one method, here, only the LTE method.
  • the power supply to the part that executes the functional processing, for example, the circuit and the software program is stopped. Thereby, the power consumption of the whole base station apparatus 4 can be suppressed low.
  • the LTE method is stopped.
  • the channel estimation unit 372 shown in FIGS. 13 to 28 if the obtained channel estimation value is equal to or larger than a certain size (hereinafter referred to as “threshold”), it is determined that the LTE reception is not suitable, and the 3G communication is performed. It is conceivable that a signal is output from the PF unit shown in FIG. 1, FIG. 59 and FIG. Accordingly, when communication with all mobile communication terminals is switched to 3G communication, it is possible to perform control for performing an operation of stopping power supply to the LTE-side functional unit 602.
  • the base station apparatus 4 controls all the mobile communication terminals in communication with its own apparatus to communicate with only one method, here the 3G method, and after that is realized,
  • the LTE method for example, the circuit and the software program
  • the power consumption of the dual base station apparatus 4 is reduced by performing the above operation as the apparatus operation during CS fallback. be able to.
  • the 3G-side power supply is turned off except during CSFB.
  • the power consumption of the dual base station apparatus 4 can be reduced.
  • a heat dissipation measure for the device casing becomes unnecessary, so that the casing can be made relatively small and the base station apparatus can be downsized.
  • the heat dissipation measures include providing fins in the casing or enlarging the metal casing for natural air cooling.
  • the base station apparatus of the present embodiment has the same configuration as that of the base station apparatuses 1 to 3 of the first embodiment or the modifications 1 and 2 described above, illustration and description thereof are omitted.
  • the base station apparatus when receiving an extended service request or the like, the base station apparatus turns on the power of the 3G-side functional part in advance in consideration of the execution of CSFB.
  • the base station apparatus may be referred to as “eNodeB”.
  • FIG. 68 is a sequence diagram showing an incoming call procedure related to CSFB.
  • an initial address message (Initial Address Message; abbreviated as IAM) is notified to the G-MSC (Gateway Mobile Service Services Switching Center).
  • IAM Initial Address Message
  • the G-MSC in step S12, sends a home subscriber server (Home Subscriber Server; abbreviation: HSS) and a mobile switching center / local network subscriber management register (Mobile-services Switching Center). / Visitor Location Register (abbreviation: MSC / VLR) and SRI (Send Routing Information) procedure.
  • HSS Home Subscriber Server
  • MSC Visitor Location Register
  • SRI Send Routing Information
  • step S13 the G-MSC transmits the IAM to the MSC / VLR via the HSS. Sending an IAM is equivalent to calling in the 3G system.
  • step S14 the MSC / VLR that has received the IAM transmitted from the G-MSC sends it to the MME via the radio network controller / base station controller (RadioRadNetwork Controller / Base Station Controller; abbreviation: RNC / BSC). , Send a paging request message.
  • RNC / BSC RadioRadNetwork Controller / Base Station Controller
  • the MME that has received the paging request message transmitted from the MSC / VLR transmits the paging message to the eNodeB in step S15.
  • the paging message transmitted to the eNodeB in step S15 includes a core network domain indicator (Core Network Domain Indicator).
  • the eNodeB that has received the paging message transmitted from the MME transmits the paging message to the UE in step S16.
  • the paging message transmitted to the UE in step S16 includes a core network domain indicator.
  • the UE which received the paging message transmitted from eNodeB transmits an extended service request (Extended
  • the extended service request transmitted to the eNodeB and the MME in step S17 includes a CS fallback indicator (CS Fallback Indicator).
  • the extended service request includes an indicator (Indicator) indicating that the mobile communication terminal is in the idle mode (Idle Mode).
  • an indicator indicating that the mobile communication terminal (UE) is in the idle mode is used. It is assumed that the calling party waits for a long time.
  • step S18 the MME that has received the extended service request message transmitted from the UE transmits an extended service request message to the MSC / VLR via the RNC / BSC. Receiving this extended service request stops the re-transmission of the paging message via the MSC SGs interface.
  • the MME that has received the extended service request message transmitted from the UE transmits an initial UE context setup (Initial-UE-Cortext-Setup) message to the eNodeB in step S19.
  • the initial UE context setup message includes a CS fallback indicator.
  • FIG. 69 is a sequence diagram showing an attach procedure related to CSFB.
  • the UE transmits an attach request message to the MME.
  • the attach request message includes a combined EPS / IMSI (Evolved Packet System / International Mobile Subscriber Identity) attach message and a CSFB mobile communication terminal capability (UE Capability).
  • EPS / IMSI Evolved Packet System / International Mobile Subscriber Identity
  • the UE, MME, MSC / VLR, and HSS perform the first attach procedure (Attach Procedure (1)). Specifically, as the first attach procedure, the identification request and response between the new MME and the previous MME when the connected MME is changed, or the UE is not recognized by the new MME Authentication request and response between MME and UE, authentication and security between UE, MME and HSS, encryption request and response, session erase request and response, location update, and session creation request and response Etc. are performed.
  • the first attach procedure corresponds to steps 3 to 16 of the attach procedure defined in 3GPP TS23.401.
  • step S23 the MME acquires a VLR number.
  • step S24 the MME transmits a location update request (Location Update Request) message to the MSC / VLR.
  • Location Update Request Location Update Request
  • step S25 the MSC / VLR generates SGs association.
  • step S26 the MSC / VLR and the HSS perform location update (Location Update) in the CS domain.
  • step S27 the MSC / VLR transmits a location update accept (Location Update Accept) message to the MME.
  • step S28 the UE, MME, MSC / VLR, and HSS perform the second attach procedure (Attach Procedure (2)). Specifically, as the second attach procedure, an initial setting request, an attach accept message transmission, an RRC connection establishment, a bearer modification request and a response, and the like are performed.
  • the second attach procedure corresponds to steps 17 to 26 of the attach procedure defined in 3GPP TS23.401.
  • FIG. 70 is a sequence diagram showing a procedure for updating the combined tracking area (TA) and local area (LA) related to CSFB.
  • FIG. 70 shows a sequence when the LTE side, that is, the TA side is updated.
  • step S31 the UE determines to perform a tracking area update (Tracking Area Update: abbreviated as TAU) for updating the tracking area.
  • step S32 the UE transmits a TAU request (TAU ⁇ ⁇ Request) message to a newly connected MME (new MME).
  • a newly connected MME may be referred to as a “new MME”.
  • step S33 the UE, the new MME, the previously connected MME (old MME), MSC / VLR, and HSS perform a TAU procedure (TAU procedure).
  • the TAU procedure is specified in 3GPP TS 23.401.
  • a previously connected MME may be referred to as a “previous MME”.
  • step S34 the new MME transmits a location update request message to the MSC / VLR via the previous MME.
  • step S35 the MSC / VLR and the HSS perform location update (Location Update) in the CS domain.
  • step S36 the MSC / VLR transmits a location update accept message to the new MME via the previous MME.
  • the new MME that has received the location update accept message sent from the MSC / VLR sends a TAU accept message to the UE in step S37.
  • the UE that has received the TAU accept message transmitted from the new MME transmits a TAU Complete message to the new MME in step S38.
  • FIG. 71 is a sequence diagram showing a calling procedure related to CSFB.
  • the UE / MS Mobile Station transmits an Extended Service Request message to the MME via the eNodeB.
  • step S42 the MME that has received the extended service request message transmitted from the UE / MS transmits an S1-AP (S1-Application protocol) request message (Request message) including a CSFB indicator to the eNodeB.
  • S1-AP Application protocol
  • the eNodeB that has received the S1-AP request message transmits an S1-AP response message (Response message) to the MME in step S43.
  • step S44 the UE / MS, eNodeB, and base station subsystem / radio network subsystem (Base Station Subsystem / Radio Network Subsystem; abbreviation: BSS / RNS) perform arbitrary measurement reports (Optional Measurement Report Solicitation).
  • BSS / RNS Base Station Subsystem / Radio Network Subsystem
  • step S45 the UE / MS, eNodeB, BSS / RNS, MME, MSC, and packet access control node (Serving GPRS Support Node; abbreviated as SGSN) are handed over in the PS (Packet Switch) domain from LTE to 3G (hereinafter referred to as "Packet Switch”). (It may be called “PS HO”).
  • PS HO Packet Switch
  • the PS HO process in step S45 corresponds to a PS HO preparation stage and an execution start stage.
  • the PS HO process in step S45 is defined in 3GPP TS 23.401.
  • step S46 the UE / MS transmits a Suspend message to the SGSN.
  • step S47 the SGSN that has received the Suspend message receives the serving gateway (Serving GW) and the packet data network gateway / packet gateway node (Packet Data Network Gateway / Gateway General Gateway packet service ratio Support Node); abbreviation: P-GW / An update bearer (Update Bearer (s)) is transmitted to the GGSN.
  • serving gateway Serving GW
  • packet data network gateway / packet gateway node Packet Data Network Gateway / Gateway General Gateway packet service ratio Support Node
  • P-GW / An update bearer (Update Bearer (s)) is transmitted to the GGSN.
  • step S48 the UE / MS, eNodeB, BSS / RNS, MME, and MSC perform location area update (Location Area Update) or combined routing area / location area (Routing Area / Location Area; abbreviated as RA / LA) update (Update). )I do.
  • Location Area Update Location Area Update
  • RA / LA routing Area / Location Area
  • Update Update
  • step S49 the UE / MS transmits a connection management (Connection Management; abbreviated to CM) service request message to the BSS / RNS via the eNodeB.
  • CM Connection Management
  • step S50 the BSS / RNS that has received the CM service request message from the UE / MS sends an A / lu-cs message (A / lu-cs message) including a CM service request message to the MSC via the MME. cs message).
  • step S51 includes each process of step S52 and step S53.
  • step S52 the MSC transmits a CM service reject (CM Service Reject) message to the BSS / RNS via the MME and also sends a CM service reject (CM) to the UE / MS via the BSS / RNS and the eNodeB.
  • CM Service Reject CM service reject
  • Service (Reject) message is sent.
  • step S53 the UE / MS, eNodeB, BSS / RNS, MME and MSC perform location area update (Location Area Update) or combined RA / LA update (Combined RA / LA Update).
  • step S54 the UE / MS, eNodeB, BSS / RNS, MME, and MSC perform a CS call setup procedure (CS call establishment procedure).
  • step S55 the UE / MS, eNodeB, BSS / RNS, MME, MSC, SGSN, and Serving GW perform PS HO.
  • the PS HO process of step S55 corresponds to the PS HO execution continuation stage.
  • the PS HO process in step S55 is defined in 3GPP TS 23.401.
  • an extended service request is notified in the order of UE, eNodeB, and MME.
  • the base station apparatus is notified of the extended service request (Extended Service Request) to the LTE-side functional part, which is a part functioning as an eNodeB
  • the base station apparatus starts from that point and starts the 3G side, specifically the W-CDMA system side.
  • the power supply of the 3G side functional part which is a functional part is started.
  • the CSFB can be performed without delay by turning on the power of the circuits and devices that are the functional parts of the 3G side in advance. Also, by not turning on the circuit and device that are the 3G-side functional parts until an extended service request (Extended Service Request) is notified, the power consumption of the base station apparatus is reduced and power saving is realized. be able to.
  • the extended service request is a CS fallback indicator (CS Fallback Indicator) sent from the mobile communication terminal (UE) to the MME via the base station apparatus (eNB) in the sequences of FIG. 68 and FIG. 71. .
  • the CS fallback indicator indicates to the MME to perform CS fallback (CS Fallback).
  • the mobile communication terminal transmits the CS fallback indicator to the MME only when it is attached to the CS domain by the combined EPS / IMSI attach message and cannot make a call through the IMS voice (IMS voice) session. For example, if the mobile communication terminal is not a registered IMS or if the IMS voice service is not supported by the IP-CAN service in a home public mobile communication network (home Public Land Mobile Network; abbreviation: home PLMN) The communication terminal transmits a CS fallback indicator to the MME.
  • home public mobile communication network home Public Land Mobile Network; abbreviation: home PLMN
  • the sequence shown in FIG. 68 and FIG. 71 is defined by 3GPP TS 23.272, 23.018, 23.401, and the like. According to this sequence, an extended service request (Extended ⁇ Service Request) message is transmitted to the MME via the base station apparatus (eNodeB). Therefore, the base station apparatus knows that the mobile communication terminal has transmitted an extended service request (Extended Service Request) to the MME by performing processing for analyzing the extended service request message (Extended Service Request) in the base station apparatus. be able to.
  • the LTE AP unit 44 can know that the mobile communication terminal (UE) has transmitted an extended service request (Extended Service Request) to the MME. Thereby, the base station apparatus can determine whether or not CS fallback (CS Fallback) is about to be performed.
  • CS Fallback CS fallback
  • the base station apparatus waits for the outgoing or incoming call sequence to proceed, and then identifies the CS fallback (CS Fallback) based on the extended service request (Extended Service Request) issued there. Alternatively, it may be identified by using information of an attach sequence or a combined TA / LA update procedure.
  • “Use attach sequence information” means, for example, use of attach type (Attach ⁇ ⁇ ⁇ ⁇ Type) information included in the attach request (Attach Request) in step S21 of FIG.
  • Attach type information is information that can instruct the MME whether the mobile communication terminal is dedicated to a short message service (abbreviation: SMS) or can use CS fallback.
  • SMS short message service
  • “Use the combined TA / LA update procedure information” means that, for example, in the TAU accept message in step S37 of FIG. 70, “CS fallback (CS fallback) is executed with“ SMS dedicated support ”from the network.
  • the LTE PF unit 45 shown in FIG. 1, FIG. 59 and FIG. 60 analyzes the information indicating whether “None” is instructed or “CS fallback (CS Fallback) and SMS are supported”. At the time of the analysis, there is a usage method in which control is performed without turning off the power supply of the 3G-side functional part.
  • ⁇ Fourth embodiment> In the present embodiment, a case will be described in which the installation location of the base station apparatus is compatible with VoIP (Voice over Internet Protocol).
  • VoIP Voice over Internet Protocol
  • VoIP is a technology for packetizing voice data and transmitting it in real time over an IP network.
  • “Compatible with VoIP” means that voice communication is possible in the LTE system even if CSFB (CS Fallback) does not function.
  • the 3G / LTE shared base station apparatus 4 shown in FIG. 67 described above inquires of the core network whether or not the installation location is compatible with VoIP.
  • the base station apparatus 4 Since CSFB is not used for voice calls if it is compatible with VoIP, the base station apparatus 4 turns on the power supply of the 3G-side functional part 601 if all the registered mobile communication terminals (UE) are compatible with LTE. Always off. For example, even if the UE is a dual function compatible terminal of LTE and 3G like the third mobile communication terminal 5c, the base station device 4 always turns off the power of the 3G side functional part 601.
  • the base station apparatus 4 has a function of turning on the power of the 3G-side functional part 601 when using SMS.
  • SMS usage information Information indicating whether or not SMS is used (hereinafter sometimes referred to as “SMS usage information”) can be obtained from the sequence information shown in FIGS.
  • SMS usage information is included in the attach request message in step S21, and in FIG. 70, the TAU accept message in step S37 is included.
  • the base station apparatus analyzes the SMS usage information thus obtained by the LTE PF unit 45 shown in FIGS. 1, 59, and 60 described above, and determines whether to use SMS.
  • power saving of the base station apparatus 4 is realized by turning on / off the power of the 3G-side functional unit 601 depending on whether it is compatible with VoIP and whether SMS is used. Can do.

Abstract

An objective of the present invention is to provide a base station device with which it is possible to reduce power consumption when carrying out communication with a mobile communication terminal device when supporting a plurality of communication schemes, and a mobile body communication system comprising same. According to the present invention, a base station device is capable of wireless communication with a mobile communication terminal device with two communication schemes, the LTE scheme and the W-CDMA scheme. The base station device analyzes, with either an LTE platform unit or an LTE application unit, a reception signal which is transmitted and received from the mobile communication terminal device. If it is determined, on the basis of the result of the analysis, that communication with the mobile communication terminal device is being carried out with only one communication scheme of either the LTE scheme or the W-CDMA scheme, a communication operation with the other communication scheme is halted. Specifically, the supply of power to a site which carries out the communication operation of the other communication scheme is halted.

Description

基地局装置および移動体通信システムBase station apparatus and mobile communication system
 本発明は、複数の移動通信端末装置と相互に無線通信を行う基地局装置、および移動通信端末装置と基地局装置とを含む移動体通信システムに関する。 The present invention relates to a base station apparatus that performs wireless communication with a plurality of mobile communication terminal apparatuses, and a mobile communication system including the mobile communication terminal apparatus and the base station apparatus.
 移動体通信システムの規格化団体である3GPP(3rd Generation Partnership Project)では、第3.9世代(3.9th Generation;略称:3.9G)の通信方式として、ロングタームエボリューション(Long Term Evolution;略称:LTE)方式が規定されている。またLTE方式を高度化したLTEアドバンスド(LTE-Advanced)方式も規定されている。 In 3GPP (3rd Generation Partnership Project), which is a standardization organization for mobile communication systems, Long Term Evolution (abbreviation: Long Term Evolution) is used as the 3.9th generation (3.9th generation; abbreviation: 3.9G) communication system. (LTE) system is defined. In addition, an LTE-advanced (LTE-Advanced) system that is an advanced version of the LTE system is also defined.
 LTE方式は、第3世代(Third Generation;略称:3G)の通信方式の1つであるW-CDMA(Wideband Code division Multiple Access)方式を高度化したものである。W-CDMA方式の移動体通信システムでは、回線交換(Circuit Switched;略称:CS)通信が提供されているが、LTE方式およびLTEアドバンスド方式などのLTE以降の通信方式の移動体通信システムでは、回線交換通信は提供されていない。 The LTE system is an advanced version of the W-CDMA (Wideband Code Division Multiple Access) system, which is one of the third generation (Third Generation: 3G) communication systems. In a W-CDMA mobile communication system, circuit switched (abbreviation: CS) communication is provided. In a mobile communication system of an LTE or later communication system such as the LTE system and the LTE advanced system, a circuit is used. Switched communication is not provided.
 したがって、たとえば、LTE以降の通信方式の移動体通信システムに在圏している移動通信端末装置(以下「移動通信端末」という場合がある)の音声通信がW-CDMA方式にしか対応していない場合には、CSフォールバック(CS Fallback;略称:CSFB)と呼ばれる処理が行われる。移動通信端末がW-CDMA方式での音声通信を所望する場合にも、CSFB処理が行われる。 Therefore, for example, voice communication of a mobile communication terminal apparatus (hereinafter also referred to as “mobile communication terminal”) located in a mobile communication system of a communication system after LTE is only compatible with the W-CDMA system. In this case, a process called CS fallback (abbreviation: CSFB) is performed. The CSFB process is also performed when the mobile communication terminal desires voice communication in the W-CDMA system.
 CSFB処理によって、LTE以降の通信方式での通信が、W-CDMA方式での通信に切り替えられる。これによって、LTE以降の通信方式の移動体通信システムに在圏している移動通信端末の回線交換通信が可能となる(非特許文献1~5参照)。 Through CSFB processing, communication in the communication system after LTE is switched to communication in the W-CDMA system. This enables circuit-switched communication of mobile communication terminals residing in a mobile communication system using a communication method after LTE (see Non-Patent Documents 1 to 5).
 CSFB処理に関する技術は、たとえば特許文献1~4に開示されている。特許文献2に係る出願は、特許文献1に係る出願の分割出願である。特許文献4に係る出願は、特許文献3に係る出願の分割出願である。 Techniques relating to CSFB processing are disclosed in, for example, Patent Documents 1 to 4. The application according to Patent Document 2 is a divisional application of the application according to Patent Document 1. The application according to Patent Document 4 is a divisional application of the application according to Patent Document 3.
 特許文献1,2には、トラフィック集中等によるシステム障害を回避するために、CSFB処理によって開始される移動通信端末の回線交換通信を規制する技術が開示されている。特許文献1,2に開示される技術では、CSFB処理によってLTE方式での通信から3G方式での通信へ遷移しようとするときに、3G方式での通信で回線交換通信が規制されている場合には、CSFB処理を行わないようにしている。 Patent Documents 1 and 2 disclose a technology for regulating circuit-switched communication of a mobile communication terminal started by CSFB processing in order to avoid a system failure due to traffic concentration or the like. In the technologies disclosed in Patent Documents 1 and 2, when switching from LTE communication to 3G communication is attempted by CSFB processing, when circuit-switched communication is restricted by 3G communication. Does not perform CSFB processing.
 特許文献3,4には、CSFB処理に対応した移動通信端末が、音声通話サービスを適切に受けられるようにするための技術が開示されている。特許文献3,4に開示される移動通信端末は、データ通信を行う場合に優先的に在圏するように設定されている通信網が、CSFB処理によってLTE方式での通信から3G方式での通信へ切替えられる通信網であるか否かを判断する切替可能判断手段を備えている。移動通信端末は、切替可能判断手段によって、切替えられる通信網でないと判断された場合には、最初から3G方式での通信のみを行うように、3G方式の通信網に在圏するように制御される。 Patent Documents 3 and 4 disclose techniques for enabling a mobile communication terminal compatible with CSFB processing to appropriately receive a voice call service. In the mobile communication terminals disclosed in Patent Documents 3 and 4, the communication network set to preferentially exist when performing data communication is changed from communication in LTE system to communication in 3G system by CSFB processing. Switchable judging means for judging whether or not the communication network can be switched to. The mobile communication terminal is controlled to be located in the 3G communication network so that only the 3G communication is performed from the beginning when the switchable determination means determines that the communication network is not switched. The
特許第4429363号公報Japanese Patent No. 4429363 特開2010-93838号公報JP 2010-93838 A 特許第4417423号公報Japanese Patent No. 4417423 特開2010-63151号公報JP 2010-63151 A
 特許文献1,2に開示される技術では、基地局装置(以下、単に「基地局」という場合がある)は、常に、3G方式とLTE方式との両方の機能を動作させなければならないので、一方の機能のみを動作させる場合に比べて、消費電力が増加するという問題がある。 In the techniques disclosed in Patent Documents 1 and 2, since the base station device (hereinafter sometimes simply referred to as “base station”) must always operate both functions of the 3G scheme and the LTE scheme. There is a problem that power consumption increases compared to the case where only one function is operated.
 基地局の消費電力を低減するための方法としては、たとえば特許文献3,4に開示される技術において、移動通信端末が3G方式での通信のみを行うように制御される場合に、基地局を3G方式の機能のみで動作させることが考えられる。しかし、この方法は、全ての移動通信端末がLTEおよび3Gの両方式に対応していないと成り立たない。たとえば、同じ基地局と通信している別の移動通信端末がLTE方式のみに対応していた場合、基地局は、3G方式とLTE方式との両方の機能を動作させなければならないので、消費電力を低減することはできない。 As a method for reducing the power consumption of the base station, for example, in the techniques disclosed in Patent Documents 3 and 4, when the mobile communication terminal is controlled to perform only the 3G communication, the base station is It is conceivable to operate only with 3G function. However, this method does not work unless all mobile communication terminals support both LTE and 3G systems. For example, if another mobile communication terminal communicating with the same base station supports only the LTE system, the base station must operate both functions of the 3G system and the LTE system. Can not be reduced.
 本発明の目的は、複数の通信方式に対応する場合に、移動通信端末装置と通信を行うときの消費電力を抑えることができる基地局装置、およびそれを備える移動体通信システムを提供することである。 An object of the present invention is to provide a base station apparatus capable of suppressing power consumption when communicating with a mobile communication terminal apparatus when supporting a plurality of communication methods, and a mobile communication system including the base station apparatus. is there.
 本発明の基地局装置は、移動通信端末装置との間で、互いに異なる第1および第2の通信方式で無線通信可能な基地局装置であって、前記移動通信端末装置から送信されて受信した受信信号を解析する受信信号解析手段を備え、前記受信信号解析手段による解析結果に基づいて、前記移動通信端末装置との間で、前記第1および第2の通信方式のうち、いずれか一方の通信方式の通信のみが行われていると判断すると、他方の通信方式の通信動作を停止することを特徴とする。 A base station apparatus according to the present invention is a base station apparatus capable of wireless communication with a mobile communication terminal apparatus using different first and second communication methods, and is transmitted and received from the mobile communication terminal apparatus Receiving signal analyzing means for analyzing the received signal, and based on an analysis result by the received signal analyzing means, either one of the first and second communication methods with the mobile communication terminal device; When it is determined that only communication of the communication method is performed, the communication operation of the other communication method is stopped.
 また本発明の移動体通信システムは、前記本発明の基地局装置と、前記本発明の基地局装置と無線通信可能な移動通信端末装置とを備えることを特徴とする。 The mobile communication system of the present invention includes the base station apparatus of the present invention and a mobile communication terminal apparatus capable of wireless communication with the base station apparatus of the present invention.
 本発明の基地局装置によれば、移動通信端末装置から送信されて受信した受信信号が、受信信号解析手段によって解析される。その解析結果に基づいて、移動通信端末装置との間で、互いに異なる第1および第2の通信方式のうち、いずれか一方の通信方式の通信のみが行われていると判断されると、他方の通信方式の通信動作が停止される。これによって、基地局装置が移動通信端末装置と通信を行うときの消費電力を抑えることができる。 According to the base station apparatus of the present invention, the received signal transmitted from the mobile communication terminal apparatus and received is analyzed by the received signal analyzing means. Based on the analysis result, when it is determined that only one of the communication methods of the first and second communication methods different from each other is being performed with the mobile communication terminal device, the other The communication operation of this communication method is stopped. Thereby, the power consumption when the base station apparatus communicates with the mobile communication terminal apparatus can be suppressed.
 本発明の移動体通信システムによれば、前述のように移動通信端末装置と通信を行うときの消費電力を抑えることができる本発明の基地局装置を備えて、移動体通信システムが構成される。これによって、移動体通信システム全体の消費電力を抑えることができる。 According to the mobile communication system of the present invention, the mobile communication system is configured by including the base station apparatus of the present invention capable of suppressing power consumption when communicating with the mobile communication terminal device as described above. . Thereby, the power consumption of the entire mobile communication system can be suppressed.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
本発明の第1の実施の形態である基地局装置1の構成を示すブロック図である。It is a block diagram which shows the structure of the base station apparatus 1 which is the 1st Embodiment of this invention. 図1に示す第1DFE部31、第2DFE部32、ならびにLTE回路部13のOFDMA部35およびLTE用チャネルコーディング部36の具体的な構成を示すブロック図である。FIG. 2 is a block diagram showing specific configurations of a first DFE unit 31, a second DFE unit 32, and an OFDMA unit 35 and an LTE channel coding unit 36 of the LTE circuit unit 13 shown in FIG. 第1送信処理部111およびその周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the 1st transmission process part 111 and its peripheral part. 第2送信処理部113およびその周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the 2nd transmission process part 113 and its peripheral part. 第1アンテナ用IFFT前データ格納RAM112およびその周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the data storage RAM112 for 1st antennas before IFFT, and its peripheral part. 第2アンテナ用IFFT前データ格納RAM114およびその周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the data storage RAM114 for 2nd antennas, and its periphery part. 第1内蔵プロセッサ115、PDSCH変調部116およびPBCH変調部117、ならびにそれらの周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the 1st built-in processor 115, PDSCH modulation part 116, PBCH modulation part 117, and those peripheral parts. 第1内蔵プロセッサ115、PDSCH変調部116およびPBCH変調部117、ならびにそれらの周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the 1st built-in processor 115, PDSCH modulation part 116, PBCH modulation part 117, and those peripheral parts. 第1内蔵プロセッサ115、PDSCH変調部116およびPBCH変調部117、ならびにそれらの周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the 1st built-in processor 115, PDSCH modulation part 116, PBCH modulation part 117, and those peripheral parts. PCFICH変調部118、PDCCH変調部119およびPHICH変調部120の詳細な構成を示すブロック図である。FIG. 3 is a block diagram showing detailed configurations of a PCFICH modulation unit 118, a PDCCH modulation unit 119, and a PHICH modulation unit 120. PCFICH変調部118、PDCCH変調部119およびPHICH変調部120の詳細な構成を示すブロック図である。FIG. 3 is a block diagram showing detailed configurations of a PCFICH modulation unit 118, a PDCCH modulation unit 119, and a PHICH modulation unit 120. RSリソースマッピング部121、SSリソースマッピング部122および第2内蔵プロセッサ123の詳細な構成を示すブロック図である。4 is a block diagram showing detailed configurations of an RS resource mapping unit 121, an SS resource mapping unit 122, and a second embedded processor 123. FIG. 図1に示す第1DFE部31、第2DFE部32、SC-FDMA部37、およびLTE回路部13の内蔵DSP/L1エンジン部33の具体的な構成を示すブロック図である。FIG. 2 is a block diagram showing specific configurations of a first DFE unit 31, a second DFE unit 32, an SC-FDMA unit 37, and a built-in DSP / L1 engine unit 33 of the LTE circuit unit 13 shown in FIG. 第1受信処理部311およびその周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the 1st reception process part 311 and its peripheral part. 第2受信処理部313およびその周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the 2nd reception process part 313 and its peripheral part. 第1アンテナ用FFT後データ格納RAM312、第2アンテナ用FFT後データ格納RAM314、PUSCH復調部315およびPUCCH復調部316、ならびにそれらの周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of 1st post-FFT data storage RAM312, the 2nd post-FFT data storage RAM314, PUSCH demodulation part 315, PUCCH demodulation part 316, and those peripheral parts. 第1アンテナ用FFT後データ格納RAM312、第2アンテナ用FFT後データ格納RAM314、PUSCH復調部315およびPUCCH復調部316、ならびにそれらの周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of 1st post-FFT data storage RAM312, the 2nd post-FFT data storage RAM314, PUSCH demodulation part 315, PUCCH demodulation part 316, and those peripheral parts. 第1アンテナ用FFT後データ格納RAM312、第2アンテナ用FFT後データ格納RAM314、PUSCH復調部315およびPUCCH復調部316、ならびにそれらの周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of 1st post-FFT data storage RAM312, the 2nd post-FFT data storage RAM314, PUSCH demodulation part 315, PUCCH demodulation part 316, and those peripheral parts. 第1アンテナ用FFT後データ格納RAM312、第2アンテナ用FFT後データ格納RAM314、PUSCH復調部315およびPUCCH復調部316、ならびにそれらの周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of 1st post-FFT data storage RAM312, the 2nd post-FFT data storage RAM314, PUSCH demodulation part 315, PUCCH demodulation part 316, and those peripheral parts. 第1アンテナ用FFT後データ格納RAM312、第2アンテナ用FFT後データ格納RAM314、PUSCH復調部315およびPUCCH復調部316、ならびにそれらの周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of 1st post-FFT data storage RAM312, the 2nd post-FFT data storage RAM314, PUSCH demodulation part 315, PUCCH demodulation part 316, and those peripheral parts. 第1アンテナ用FFT後データ格納RAM312、第2アンテナ用FFT後データ格納RAM314、PUSCH復調部315およびPUCCH復調部316、ならびにそれらの周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of 1st post-FFT data storage RAM312, the 2nd post-FFT data storage RAM314, PUSCH demodulation part 315, PUCCH demodulation part 316, and those peripheral parts. PRACH検出部317およびSRS復調部318、ならびにそれらの周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the PRACH detection part 317, the SRS demodulation part 318, and those peripheral parts. PRACH検出部317およびSRS復調部318、ならびにそれらの周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the PRACH detection part 317, the SRS demodulation part 318, and those peripheral parts. 図13に示すLTEレイヤ1の上り信号処理に関係する部分のうち、FFTよりも上位側の処理に関係する部分の構成を示すブロック図である。It is a block diagram which shows the structure of the part relevant to the process of the higher rank side from FFT among the parts relevant to the uplink signal process of LTE layer 1 shown in FIG. PUSCH復調部315の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the PUSCH demodulation part 315. PUSCH復調部315の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the PUSCH demodulation part 315. PUCCH復調部316の詳細な構成を示すブロック図である。3 is a block diagram showing a detailed configuration of a PUCCH demodulation unit 316. FIG. PRACH検出部317およびSRS復調部318の詳細な構成を示すブロック図である。FIG. 3 is a block diagram showing detailed configurations of a PRACH detection unit 317 and an SRS demodulation unit 318. LTE方式の物理レイヤ1の下り信号データの流れを示す図である。It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の下り信号データの流れを示す図である。It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の下り信号データの流れを示す図である。It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の下り信号データの流れを示す図である。It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の下り信号データの流れを示す図である。It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の下り信号データの流れを示す図である。It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の下り信号データの流れを示す図である。It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の下り信号データの流れを示す図である。It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の下り信号データの流れを示す図である。It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の下り信号データの流れを示す図である。It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の下り信号データの流れを示す図である。It is a figure which shows the flow of the downlink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の上り信号データの流れを示す図である。It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の上り信号データの流れを示す図である。It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の上り信号データの流れを示す図である。It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の上り信号データの流れを示す図である。It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の上り信号データの流れを示す図である。It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の上り信号データの流れを示す図である。It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の上り信号データの流れを示す図である。It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の上り信号データの流れを示す図である。It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の上り信号データの流れを示す図である。It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の上り信号データの流れを示す図である。It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の上り信号データの流れを示す図である。It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. LTE方式の物理レイヤ1の上り信号データの流れを示す図である。It is a figure which shows the flow of the uplink signal data of the physical layer 1 of a LTE system. 下りのFP終端処理におけるFP種別解析処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the FP classification analysis process in a downstream FP termination process. 図52に示すステップa3の処理によって開始される下りの制御フレーム処理の処理手順を示すフローチャートである。FIG. 53 is a flowchart showing a processing procedure of a downlink control frame process started by the process of step a3 shown in FIG. 52. FIG. 図52に示すステップa5の処理によって開始されるHS-DSCH処理の処理手順を示すフローチャートである。53 is a flowchart showing a processing procedure of HS-DSCH processing started by the processing of step a5 shown in FIG. 52. 図52に示すステップa7の処理によって開始される上りの制御フレーム処理の処理手順を示すフローチャートである。FIG. 53 is a flowchart showing a processing procedure for uplink control frame processing started by the processing in step a7 shown in FIG. 52. FIG. 図52に示すステップa6の処理によって開始されるDL-DCH/CCH処理の処理手順を示すフローチャートである。53 is a flowchart showing a processing procedure for DL-DCH / CCH processing started by the processing in step a6 shown in FIG. 52. 上りのFP終端処理全体の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the whole uplink FP termination process. 図57に示すステップf7の処理によって開始されるEUL FP処理の処理手順を示すフローチャートである。58 is a flowchart showing a processing procedure of EUL FP processing started by the processing of step f7 shown in FIG. 57. 本発明の第1の実施の形態の変形例1である基地局装置2の構成を示すブロック図である。It is a block diagram which shows the structure of the base station apparatus 2 which is the modification 1 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の変形例2である基地局装置3の構成を示すブロック図である。It is a block diagram which shows the structure of the base station apparatus 3 which is the modification 2 of the 1st Embodiment of this invention. 図1に示す第1の実施の形態における基地局装置1のDFE回路部12およびその周辺部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the DFE circuit part 12 of the base station apparatus 1 in 1st Embodiment shown in FIG. 1, and its peripheral part. 本発明の第1の実施の形態における信号の状態を示す図である。It is a figure which shows the state of the signal in the 1st Embodiment of this invention. 一方のアンテナのみにDFEを適用する場合の基地局装置のDFE回路部およびその周辺部の構成を示すブロック図である。It is a block diagram which shows the structure of the DFE circuit part of the base station apparatus in the case of applying DFE only to one antenna, and its peripheral part. 図63に示す例における信号の状態を示す図である。FIG. 64 is a diagram illustrating a state of signals in the example illustrated in FIG. 63. 図63に示す例における信号の状態を示す図である。FIG. 64 is a diagram illustrating a state of signals in the example illustrated in FIG. 63. DFEを適用しない場合の基地局装置の一部の構成を示すブロック図である。It is a block diagram which shows the structure of a part of base station apparatus when not applying DFE. 本発明の第2の実施の形態である移動体通信システム6の構成を示すブロック図である。It is a block diagram which shows the structure of the mobile communication system 6 which is the 2nd Embodiment of this invention. CSFBに関連する着呼の手順を示すシーケンス図である。It is a sequence diagram which shows the procedure of the incoming call relevant to CSFB. CSFBに関連するアタッチの手順を示すシーケンス図である。It is a sequence diagram which shows the procedure of the attachment relevant to CSFB. CSFBに関連する、結合したトラッキングエリア(TA)およびローカルエリア(LA)のアップデートの手順を示すシーケンス図である。It is a sequence diagram which shows the procedure of the update of the combined tracking area (TA) and local area (LA) relevant to CSFB. CSFBに関連する発呼の手順を示すシーケンス図である。It is a sequence diagram which shows the procedure of the outgoing call relevant to CSFB.
 <第1の実施の形態>
 図1は、本発明の第1の実施の形態である基地局装置1の構成を示すブロック図である。基地局装置1は、高周波(Radio Frequency;略称:RF)部11、ディジタルフロントエンド(Digital Front End;略称:DFE)回路部12、LTE回路部13、3G回路部14、CPU(Central Processing Unit)15、システムクロック供給部16、第1アンテナ17および第2アンテナ18を備えて構成される。図1およびその他の図面において、DFE回路部12は、「DFEC」と記載する。LTE回路部13は、「LTEC」と記載する。3G回路部14は、「3GC」と記載する。システムクロック供給部16は、「SCP」と記載する。第1アンテナ17および第2アンテナ18は、「AT」と記載する。
<First Embodiment>
FIG. 1 is a block diagram showing a configuration of a base station apparatus 1 according to the first embodiment of the present invention. The base station apparatus 1 includes a radio frequency (abbreviation: RF) unit 11, a digital front end (abbreviation: DFE) circuit unit 12, an LTE circuit unit 13, a 3G circuit unit 14, and a CPU (Central Processing Unit). 15, a system clock supply unit 16, a first antenna 17, and a second antenna 18. In FIG. 1 and other drawings, the DFE circuit unit 12 is described as “DFEC”. The LTE circuit unit 13 is described as “LTEC”. The 3G circuit unit 14 is described as “3GC”. The system clock supply unit 16 is described as “SCP”. The first antenna 17 and the second antenna 18 are described as “AT”.
 RF部11は、第1デュプレクサ(duplexer;略称:DUP)部21、第1スイッチ部22、第1無線送信部23、第1無線受信部24、第1下り無線受信部25、第2デュプレクサ(DUP)部26、第2スイッチ部27、第2無線送信部28、第2無線受信部29および第2下り無線受信部30を備える。図1およびその他の図面において、第1無線送信部23および第2無線送信部28は、「TR」と記載する。第1無線受信部24および第2無線受信部29は、「RE」と記載する。第1下り無線受信部25および第2下り無線受信部30は、「DRE」と記載する。 The RF unit 11 includes a first duplexer (abbreviation: DUP) unit 21, a first switch unit 22, a first radio transmission unit 23, a first radio reception unit 24, a first downlink radio reception unit 25, a second duplexer ( DUP) unit 26, second switch unit 27, second radio transmission unit 28, second radio reception unit 29, and second downlink radio reception unit 30. In FIG. 1 and other drawings, the first radio transmission unit 23 and the second radio transmission unit 28 are described as “TR”. The first radio reception unit 24 and the second radio reception unit 29 are described as “RE”. The first downlink radio reception unit 25 and the second downlink radio reception unit 30 are described as “DRE”.
 DFE回路部12は、第1DFE部31および第2DFE部32を備える。DFE回路部12は、フィールドプログラマブルゲートアレイ(Field Programmable Gate Array;略称:FPGA)、または特定用途向け集積回路(application specific integrated circuits;略称:ASIC)などに実装される。 The DFE circuit unit 12 includes a first DFE unit 31 and a second DFE unit 32. The DFE circuit unit 12 is mounted on a field programmable gate array (abbreviation: FPGA) or an application specific integrated circuit (abbreviation: ASIC).
 LTE回路部13は、内蔵ディジタルシグナルプロセッサ(Digital Signal Processor;略称:DSP)/L1エンジン(Engine)部33および内蔵CPU34を備える。内蔵DSP/L1エンジン部33は、直交周波数分割多重アクセス(Orthogonal Frequency Division Multiple Access;略称:OFDMA)部35、LTE用チャネルコーディング部36、単一波周波数分割多重アクセス(Single Carrier-Frequency Division Multiple Access;略称:SC-FDMA)部37、LTE用チャネルデコーディング部38およびLTE用無線パラメータ取得部39を備える。図1およびその他の図面において、内蔵DSP/L1エンジン部33は、「BDSP/L1E」と記載する。内蔵CPU34は、「BCPU」と記載する。LTE用チャネルコーディング部36は、「CHC」と記載する。LTE用チャネルデコーディング部38は、「CHDEC」と記載する。LTE用無線パラメータ取得部39は、「WLPA」と記載する。 The LTE circuit unit 13 includes a built-in digital signal processor (abbreviation: DSP) / L1 engine unit 33 and a built-in CPU 34. The built-in DSP / L1 engine unit 33 includes an Orthogonal Frequency Division Multiple Access (abbreviation: OFDMA) unit 35, an LTE channel coding unit 36, and a single-wave frequency division multiple access (Single Carrier-Frequency Division Multiple Access). ; Abbreviation: SC-FDMA) unit 37, LTE channel decoding unit 38, and LTE radio parameter acquisition unit 39. In FIG. 1 and other drawings, the built-in DSP / L1 engine unit 33 is described as “BDSP / L1E”. The built-in CPU 34 is described as “BCPU”. The LTE channel coding unit 36 is described as “CHC”. The LTE channel decoding unit 38 is described as “CHDEC”. The LTE wireless parameter acquisition unit 39 is described as “WLPA”.
 内蔵CPU34は、無線リンク制御(Radio Link Control;略称:RLC)/メディアアクセス制御(Medium Access Control;略称:MAC)部40、パケットデータ収束プロトコル(Packet Data Convergence Protocol;略称:PDCP)/ユーザプレーン用汎用パケット無線サービストンネリングプロトコル(General Packet Radio Service Tunneling Protocol-User;略称:GTP-U)部41、LTE用インターネットプロトコル(Internet Protocol;略称:IP)部42、LTE用インターネットプロトコルセキュリティ(IP Security;略称:IPsec)部43、LTE用アプリケーション(application;略称:AP)部44、LTE用プラットフォーム(platform;略称:PF)部45、ネットワークパラメータ取得部46、ユニバーサルプラグアンドプレイ(Universal Plug and Play;略称:UPnP)部47、データオフロード部48およびシステムクロック補正部49を備える。LTE用AP部44およびLTE用PF部45は、受信信号解析手段および送信信号解析手段を含む。図1およびその他の図面において、ネットワークパラメータ取得部46は、「NWPA」と記載する。データオフロード部48は、「DO」と記載する。システムクロック補正部49は、「SCC」と記載する。 Built-in CPU 34 is a radio link control (abbreviation: RLC) / medium access control (abbreviation: MAC) unit 40, packet data convergence protocol (packet data conversion protocol: abbreviation: PDCP) / user plane. General Packet Radio Service Tunneling Protocol (General Packet Radio Service Tunneling Protocol-User; abbreviation: GTP-U) 41, LTE Internet Protocol (Internet Protocol; abbreviation: IP) 42, LTE Internet Protocol Security (IP Security; : IPsec) unit 43, LTE application (abbreviation: AP) unit 44, LTE platform (abbreviation: PF) unit 45, network parameter acquisition unit 46, Universal Plug and Play (Universal Plug and Play) And Play (abbreviation: UPnP) unit 47, data offload unit 48, and system clock correction unit 49. The LTE AP unit 44 and the LTE PF unit 45 include reception signal analysis means and transmission signal analysis means. In FIG. 1 and other drawings, the network parameter acquisition unit 46 is described as “NWPA”. The data offload unit 48 is described as “DO”. The system clock correction unit 49 is described as “SCC”.
 3G回路部14は、拡散変調部50、3G用チャネルコーディング部51、逆拡散復調部52、3G用チャネルデコーディング部53を備える。図1およびその他の図面において、拡散変調部50は、「SM」と記載する。3G用チャネルコーディング部51は、「CHC」と記載する。逆拡散復調部52は、「BDDEM」と記載する。3G用チャネルデコーディング部53は、「CHDEC」と記載する。 The 3G circuit unit 14 includes a spread modulation unit 50, a 3G channel coding unit 51, a despread demodulation unit 52, and a 3G channel decoding unit 53. In FIG. 1 and other drawings, the spread modulation unit 50 is described as “SM”. The 3G channel coding unit 51 is described as “CHC”. The despreading demodulation unit 52 is described as “BDDDEM”. The 3G channel decoding unit 53 is described as “CHDEC”.
 CPU15は、高速下り回線パケットアクセス(High Speed Downlink Packet Access;略称:HSDPA)用メディアアクセス制御(Medium Access Control-HSDPA;略称:MAC-hs)部54、エンハンストアップリンク(Enhanced Uplink;略称:EUL)用メディアアクセス制御(Medium Access Control-EUL;略称:MAC-e)部55、フレームプロトコル(Frame Protocol;略称:FP)終端部56、3G用無線パラメータ取得部57、3G用IP部58、3G用IPsec部59、イーサネット(登録商標)経由ポイントツーポイントプロトコル(Point to Point Protocol over Ethernet(登録商標);略称:PPPoE)部60、3G用AP部61および3G用PF部62を備える。図1およびその他の図面において、FP終端部56は、「FPT」と記載する。3G用無線パラメータ取得部57は、「WLPA」と記載する。 The CPU 15 has a medium access control (Medium Access Control-HSDPA; abbreviation: MAC-hs) 54 for high speed downlink packet access (High Speed Downlink Packet Access; abbreviation: HSDPA), an enhanced uplink (abbreviation: EUL). Media Access Control (Medium Access Control-EUL; abbreviation: MAC-e) 55, Frame Protocol (abbreviation: FP) termination 56, 3G wireless parameter acquisition unit 57, 3G IP 58, 3G An IPsec unit 59, a point-to-point protocol via Ethernet (registered trademark), an Ethernet (registered trademark); abbreviation: PPPoE) unit 60, a 3G AP unit 61, and a 3G PF unit 62 are provided. In FIG. 1 and other drawings, the FP termination portion 56 is described as “FPT”. The 3G wireless parameter acquisition unit 57 is described as “WLPA”.
 RF部11とDFE回路部12とは、無線送受信部71を構成する。図1およびその他の図面において、無線送受信部71は、「WTR」と記載する。無線送受信部71は、送信するべきベースバンド送信信号を無線周波数信号に変換する。また無線送受信部71は、受信した受信無線周波数信号を受信ベースバンド信号に変換する。無線送受信部71は、FPGAまたはASICに実装した回路およびRF部品によって構成される。 The RF unit 11 and the DFE circuit unit 12 constitute a wireless transmission / reception unit 71. In FIG. 1 and other drawings, the wireless transmission / reception unit 71 is described as “WTR”. The radio transmission / reception unit 71 converts a baseband transmission signal to be transmitted into a radio frequency signal. Further, the wireless transmission / reception unit 71 converts the received radio frequency signal received into a reception baseband signal. The wireless transmission / reception unit 71 includes a circuit and an RF component mounted on an FPGA or ASIC.
 LTE回路部13のうち、内蔵DSP/L1エンジン部33と、内蔵CPU34のRLC/MAC部40およびPDCP/GTP-U部41とは、LTE用ベースバンド部72を構成する。図1およびその他の図面において、LTE用ベースバンド部72は、「BB」と記載する。 Of the LTE circuit unit 13, the built-in DSP / L1 engine unit 33, the RLC / MAC unit 40 and the PDCP / GTP-U unit 41 of the built-in CPU 34 constitute an LTE baseband unit 72. In FIG. 1 and other drawings, the LTE baseband unit 72 is described as “BB”.
 LTE回路部13のうち、内蔵CPU34のLTE用AP部44、LTE用PF部45およびネットワークパラメータ取得部46は、発展型基地局(Evolved Node Base Station;略称:eNB)制御部73を構成する。図1およびその他の図面において、eNB制御部73は、「eNBC」と記載する。eNB制御部73は、LTE方式の移動体通信システムにおける基地局であるeNBとして機能する部位を制御し、LTE機能に関する呼処理、呼処理監視、回線設定および管理、保守監視、ならびに状態管理などを行う。 Among the LTE circuit unit 13, the LTE AP unit 44, the LTE PF unit 45, and the network parameter acquisition unit 46 of the built-in CPU 34 constitute an evolved base station (abbreviated as eNB) control unit 73. In FIG. 1 and other drawings, the eNB control unit 73 is described as “eNBC”. The eNB control unit 73 controls a part that functions as an eNB that is a base station in the LTE mobile communication system, and performs call processing, call processing monitoring, line setting and management, maintenance monitoring, state management, and the like regarding the LTE function. Do.
 3G回路部14と、CPU15のMAC-hs部54、MAC-e部55、FP終端部56および3G用無線パラメータ取得部57とは、3G用ベースバンド部74を構成する。3G用ベースバンド部74は、本実施の形態では、W-CDMA用のベースバンド部として機能する。図1およびその他の図面において、3G用ベースバンド部74は、「BB」と記載する。 The 3G circuit unit 14, the MAC-hs unit 54, the MAC-e unit 55, the FP termination unit 56 and the 3G wireless parameter acquisition unit 57 of the CPU 15 constitute a 3G baseband unit 74. The 3G baseband unit 74 functions as a W-CDMA baseband unit in the present embodiment. In FIG. 1 and other drawings, the 3G baseband portion 74 is described as “BB”.
 CPU15の3G用AP部61および3G用PF部62は、NB制御部75を構成する。図1およびその他の図面において、NB制御部75は、「NBC」と記載する。NB制御部75は、3G方式の移動体通信システムにおける基地局であるNB(以下「Node B」という場合がある)として機能する部位を制御し、3G機能に関する呼制御、呼処理監視、回線設定および管理、保守監視、ならびに状態管理などを行う。 The 3G AP section 61 and the 3G PF section 62 of the CPU 15 constitute an NB control section 75. In FIG. 1 and other drawings, the NB control unit 75 is described as “NBC”. The NB control unit 75 controls a part that functions as an NB (hereinafter also referred to as “Node B”) as a base station in a 3G mobile communication system, and performs call control, call processing monitoring, and line setting related to 3G functions. And management, maintenance monitoring, and status management.
 LTE回路部13の内蔵CPU34のLTE用IP部42およびLTE用IPsec部43と、CPU15の3G用IP部58、3G用IPsec部59およびPPPoE部60とは、有線側終端部76を構成する。図1およびその他の図面において、有線側終端部76は、「WTN」と記載する。有線側終端部76は、イーサネット(Ethernet:登録商標)およびIPの信号を終端する。また有線側終端部76は、IPsec機能、オペレーションシステム(operation system;略称:OPS)、AP、PF、コアネットワークなどの上位装置などからの緊急(emergency;略称:EM)信号受信時の装置リセット機能に対応している。 The LTE IP unit 42 and the LTE IPsec unit 43 of the built-in CPU 34 of the LTE circuit unit 13, and the 3G IP unit 58, the 3G IPsec unit 59, and the PPPoE unit 60 of the CPU 15 constitute a wired side termination unit 76. In FIG. 1 and other drawings, the wired side termination unit 76 is described as “WTN”. The wired-side termination unit 76 terminates Ethernet (registered trademark) and IP signals. The wired terminal unit 76 also has an IPsec function, an operation system (operation system; abbreviation: OPS), a device reset function when receiving an emergency (emergency: abbreviation: EM) signal from a host device such as an AP, PF, or core network. It corresponds to.
 LTE回路部13の内蔵CPU34のシステムクロック補正部49は、システムクロック補正部49に接続されるシステムクロック供給部16とともに、クロック部77を構成する。図1およびその他の図面において、クロック部77は、「CLK」と記載する。クロック部77は、無線送受信部71、LTE用ベースバンド部72および3G用ベースバンド部74などで使用される基準クロック信号を生成するために、全地球測位システム(Global Positioning System;略称:GPS)またはネットワークタイムプロトコル(Network Time Protocol;略称:NTP)サーバなどを用いた補正方式を導入し、高安定な基準タイミングを生成している。 The system clock correction unit 49 of the built-in CPU 34 of the LTE circuit unit 13 and the system clock supply unit 16 connected to the system clock correction unit 49 constitute a clock unit 77. In FIG. 1 and other drawings, the clock unit 77 is described as “CLK”. The clock unit 77 generates a reference clock signal used in the radio transmission / reception unit 71, the LTE baseband unit 72, the 3G baseband unit 74, and the like, and a global positioning system (abbreviation: GPS). Alternatively, a highly stable reference timing is generated by introducing a correction method using a network time protocol (abbreviation: NTP) server or the like.
 RF部71の第1DUP部21は、第1アンテナ17に接続されている。第1DUP部21は、送信信号の送信と受信信号の受信とを1つのアンテナ、具体的には第1アンテナ17によって実現するためのアンテナ共用器である。第1DUP部21は、予め定める周波数帯域のうち、送信に用いられる周波数帯域の信号のみを通過させる送信フィルタと、受信に用いられる周波数帯域の信号のみを通過させる受信フィルタとを備える。 The first DUP unit 21 of the RF unit 71 is connected to the first antenna 17. The first DUP unit 21 is an antenna duplexer for realizing transmission of a transmission signal and reception of a reception signal by one antenna, specifically, the first antenna 17. The first DUP unit 21 includes a transmission filter that passes only signals in a frequency band used for transmission in a predetermined frequency band, and a reception filter that passes only signals in a frequency band used for reception.
 第1スイッチ部22は、第1無線送信部23から出力される下りユーザデータのRF信号の送信処理と、第1下り無線受信部25による下り周波数帯域のRF信号の受信処理とを切替える。 The first switch unit 22 switches between an RF signal transmission process of downlink user data output from the first radio transmission unit 23 and an RF signal reception process of the downlink frequency band by the first downlink radio reception unit 25.
 第1無線送信部23は、第1DFE部31から与えられる信号に基づいて、下りユーザデータのRF信号を生成し、生成したRF信号を、第1スイッチ部22、第1DUP部21および第1アンテナ17を介して送信する。 The first wireless transmission unit 23 generates an RF signal of downlink user data based on the signal given from the first DFE unit 31, and the generated RF signal is transmitted to the first switch unit 22, the first DUP unit 21, and the first antenna. 17 to transmit.
 第1無線受信部24は、第1アンテナ17を介して、第1DUP部21から与えられる受信信号を受信し、第1DFE部31に与える。 The first radio reception unit 24 receives the reception signal given from the first DUP unit 21 via the first antenna 17 and gives it to the first DFE unit 31.
 第1下り無線受信部25は、第1アンテナ17を介して受信され、第1DUP部21から与えられる受信信号に基づいて、下り周波数帯域のRF信号を生成し、生成したRF信号を第1DFE部31に与える。 The first downlink radio reception unit 25 generates an RF signal in the downlink frequency band based on the reception signal received from the first antenna 17 and given from the first DUP unit 21, and the generated RF signal is used as the first DFE unit. 31.
 RF部11の第2DUP部26は、第2アンテナ18に接続されている。第2DUP部26は、送信信号の送信と受信信号の受信とを1つのアンテナ、具体的には第2アンテナ18によって実現するためのアンテナ共用器である。第2DUP部26は、予め定める周波数帯域のうち、送信に用いられる周波数帯域の信号のみを通過させる送信フィルタと、受信に用いられる周波数帯域の信号のみを通過させる受信フィルタとを備える。 The second DUP unit 26 of the RF unit 11 is connected to the second antenna 18. The second DUP unit 26 is an antenna duplexer for realizing transmission of a transmission signal and reception of a reception signal by one antenna, specifically, the second antenna 18. The second DUP unit 26 includes a transmission filter that passes only signals in a frequency band used for transmission in a predetermined frequency band, and a reception filter that passes only signals in a frequency band used for reception.
 第2スイッチ部27は、第2無線送信部28から出力される下りユーザデータのRF信号の送信処理と、第2下り無線受信部30による下り周波数帯域のRF信号の受信処理とを切替える。 The second switch unit 27 switches between a downlink user data RF signal transmission process output from the second radio transmission unit 28 and a downlink frequency band RF signal reception process by the second downlink radio reception unit 30.
 第2無線送信部28は、第2DFE部32から与えられる信号に基づいて、下りユーザデータのRF信号を生成し、生成したRF信号を、第2スイッチ部27、第2DUP部26および第2アンテナ18を介して送信する。 The second wireless transmission unit 28 generates an RF signal of downlink user data based on the signal given from the second DFE unit 32, and the generated RF signal is transmitted to the second switch unit 27, the second DUP unit 26, and the second antenna. 18 to transmit.
 第2無線受信部29は、第2アンテナ18を介して、第2DUP部26から与えられる受信信号を受信し、第2DFE部32に与える。 The second radio reception unit 29 receives the reception signal given from the second DUP unit 26 via the second antenna 18 and gives it to the second DFE unit 32.
 第2下り無線受信部30は、第2アンテナ18を介して受信され、第2DUP部26から与えられる受信信号に基づいて、下り周波数帯域のRF信号を生成し、生成したRF信号を第2DFE部32に与える。 The second downlink radio reception unit 30 generates an RF signal in the downlink frequency band based on the reception signal received from the second antenna 18 and given from the second DUP unit 26, and the generated RF signal is used as the second DFE unit. 32.
 DFE回路部12の第1DFE部31および第2DFE部32は、有限インパルス応答(Finite Impulse Response Filter;略称:FIR)フィルタなどのディジタルフィルタによって実現される。第2DFE部32は、ベースバンド信号の周波数帯域で、3G方式に対応する信号(以下「3G信号」という場合がある)およびLTE方式に対応する信号(以下「LTE信号」という場合がある)の帯域制限を行う。第1DFE部31は、送信処理では、高周波になっても、3G信号とLTE信号とに周波数分離ができた状態にして、3G信号およびLET信号をそれぞれ取り出す。第1DFE部31は、受信処理では、高周波で3G信号領域とLTE信号領域とを含む広帯域の信号を、RF部11の第2無線受信部29でベースバンド領域にダウンコンバージョンして得られた信号に対して、ディジタルフィルタで3G信号帯域とLTE信号帯域とを分離する処理を施して、3G信号およびLET信号をそれぞれ取り出す。 The first DFE unit 31 and the second DFE unit 32 of the DFE circuit unit 12 are realized by a digital filter such as a finite impulse response (FIR) filter. The second DFE unit 32 is a baseband signal frequency band for signals corresponding to the 3G system (hereinafter also referred to as “3G signal”) and signals corresponding to the LTE system (hereinafter also referred to as “LTE signal”). Perform bandwidth limitation. In the transmission process, the first DFE unit 31 takes out the 3G signal and the LET signal in a state where the frequency separation can be performed between the 3G signal and the LTE signal even when the frequency becomes high. In the reception process, the first DFE unit 31 is a signal obtained by down-converting a wideband signal including a 3G signal region and an LTE signal region at a high frequency into a baseband region by the second wireless reception unit 29 of the RF unit 11. On the other hand, the 3G signal band and the LTE signal band are separated by a digital filter to extract the 3G signal and the LET signal, respectively.
 第1DFE部31および第2DFE部32は、LTE回路部13の内蔵DSP/L1エンジン部33のOFDMA部35、SC-FDMA部37およびLTE用無線パラメータ取得部39にそれぞれ接続されている。また第2DFE部32は、3G回路部14の拡散変調部50および逆拡散復調部52、ならびにCPU15の3G用無線パラメータ取得部57に接続されている。 The first DFE unit 31 and the second DFE unit 32 are connected to the OFDMA unit 35, the SC-FDMA unit 37, and the LTE radio parameter acquisition unit 39 of the built-in DSP / L1 engine unit 33 of the LTE circuit unit 13, respectively. The second DFE unit 32 is connected to the spread modulation unit 50 and the despread demodulation unit 52 of the 3G circuit unit 14 and the 3G wireless parameter acquisition unit 57 of the CPU 15.
 内蔵DSP/L1 エンジン部33の内蔵DSPとは、LTE回路部13に内蔵されたディジタルシグナルプロセッサ(Digital Signal Processor)である。DSPは、ソフトウェアプログラムを搭載し、ディジタル信号処理に適した処理を実行することができる。L1 Engineとは、以下の非特許文献6~8において定義されるレイヤ1(Layer1)機能を処理するコプロセッサである。 Built-in DSP / L1 The built-in DSP of the engine unit 33 is a digital signal processor built in the LTE circuit unit 13. The DSP is equipped with a software program and can execute processing suitable for digital signal processing. L1 Engine is a coprocessor that processes the Layer 1 function defined in Non-Patent Documents 6 to 8 below.
  非特許文献6:3GPP TS36.211 V9.1.0
  非特許文献7:3GPP TS36.212 V9.3.0
  非特許文献8:3GPP TS36.213 V9.3.0
 OFDMA部35は、OFDMAのための変調処理(移動通信端末装置であれば復調処理)を行う。OFDMA部35は、主に非特許文献6,8で定義された変調機能(移動通信端末装置であれば復調機能)を有する。LTE用チャネルコーディング部36は、チャネル符号化、具体的には、誤り訂正符号化を行う。SC-FDMA部37は、SC-FDMAのための復調処理(移動通信端末装置であれば変調処理)を行う。SC-FDMA部37は、主に非特許文献6,8で定義された復調機能(移動通信端末装置であれば変調処理)を有する。LTE用チャネルデコーディング部38は、受信チャネルの復号化を行う。
Non-Patent Document 6: 3GPP TS36.211 V9.1.0
Non-Patent Document 7: 3GPP TS36.212 V9.3.0
Non-Patent Document 8: 3GPP TS36.213 V9.3.0
The OFDMA unit 35 performs modulation processing (demodulation processing in the case of a mobile communication terminal device) for OFDMA. The OFDMA unit 35 has a modulation function (a demodulation function in the case of a mobile communication terminal device) mainly defined in Non-Patent Documents 6 and 8. The LTE channel coding unit 36 performs channel coding, specifically, error correction coding. The SC-FDMA unit 37 performs demodulation processing for SC-FDMA (modulation processing in the case of a mobile communication terminal device). The SC-FDMA unit 37 mainly has a demodulation function (modulation processing in the case of a mobile communication terminal device) defined in Non-Patent Documents 6 and 8. The LTE channel decoding unit 38 decodes the reception channel.
 LTE用無線パラメータ取得部39は、第1および第2アンテナ17,18の少なくともいずれか一方のアンテナから取得し、第1下り無線受信部25および第2下り無線受信部30によってダウンコンバージョンした下りデータの振幅強度または電力強度を測定する。またLTE用無線パラメータ取得部39は、データを復調および復号し、報知情報などの内容を解析することによって、隣接基地局からの電界強度などの3GおよびLTE両方の周辺セルの環境情報を取得する。 The LTE radio parameter acquisition unit 39 acquires downlink data acquired from at least one of the first and second antennas 17 and 18 and down-converted by the first downlink radio reception unit 25 and the second downlink radio reception unit 30. Measure the amplitude intensity or power intensity. Further, the LTE radio parameter acquisition unit 39 demodulates and decodes data, and analyzes the contents of broadcast information and the like, thereby acquiring environment information of both 3G and LTE neighboring cells such as electric field strength from adjacent base stations. .
 内蔵CPU34は、LTE回路部13に内蔵されたCPUである。内蔵CPU34は、ソフトウェアプログラムを搭載し、このソフトウェアプログラムを実行することができる。RLC/MAC部40は、無線リンク制御(RLC)およびメディアアクセス制御(MAC)を行う。PDCP/GTP-U部41は、PDCP処理およびGTP-U処理を行う。LTE用IP部42は、LTE信号に対してIP処理を行う。LTE用IP部42は、LTE信号に対してIP処理を行って生成したデータをLTE用IPsec部43に与える。 The built-in CPU 34 is a CPU built in the LTE circuit unit 13. The built-in CPU 34 is equipped with a software program and can execute the software program. The RLC / MAC unit 40 performs radio link control (RLC) and media access control (MAC). The PDCP / GTP-U unit 41 performs PDCP processing and GTP-U processing. The LTE IP unit 42 performs IP processing on the LTE signal. The LTE IP unit 42 provides the LTE IPsec unit 43 with data generated by performing IP processing on the LTE signal.
 LTE用IPsec部43は、LTE用IP部42から与えられたデータを暗号化するセキュリティ機能を有する。LTE用IPsec部43は、LTE回路部13内に内蔵された専用のコプロセッサを用いて、前記セキュリティ機能を実現する。これによって、ソフトウェア処理のみでは高い周波数を必要とするCPUコアの周波数を低く抑えることができ、消費電力を低く抑えることができる。LTE用IPsec部43は、暗号化したデータを、CPU15のPPPoE部60に与える。 The LTE IPsec unit 43 has a security function for encrypting data given from the LTE IP unit 42. The LTE IPsec unit 43 implements the security function using a dedicated coprocessor built in the LTE circuit unit 13. As a result, the frequency of the CPU core that requires a high frequency only by software processing can be kept low, and the power consumption can be kept low. The LTE IPsec unit 43 gives the encrypted data to the PPPoE unit 60 of the CPU 15.
 LTE用AP部44は、基地局装置1のLTE側機能を制御するアプリケーション機能を有する。LTE用PF部45は、基地局装置1のLTE側機能を制御するプラットフォーム機能を有する。 The LTE AP unit 44 has an application function for controlling the LTE function of the base station device 1. The LTE PF unit 45 has a platform function for controlling the LTE-side function of the base station apparatus 1.
 ネットワークパラメータ取得部46は、基地局装置1と、移動管理エンティティ(Mobility Management Entity;略称:MME)およびサービングゲートウェイ(Serving Gateway;略称:SGW)などの上位装置とのインタフェースよりも上位側のネットワーク情報を取得する機能を有する。 The network parameter acquisition unit 46 is network information on the higher side than the interface between the base station device 1 and higher-level devices such as mobility management entity (Mobility Management Entity; abbreviation: MME) and serving gateway (Serving Gateway; abbreviation: SGW). It has the function to acquire.
 UPnP部47は、UPnPによる通信のための処理を行う。データオフロード部48は、データオフロード機能を有する。データオフロード機能とは、データを伝送するときに、通常の携帯電話網を経由せずに、インターネット回線を利用することによって、トラヒックの負荷を軽減する機能である。データオフロード機能は、全てソフトウェアで実現する構成とするので、リモートアップグレードによるソフトウェアの更新によって、機能を追加または削減することができる。 The UPnP unit 47 performs processing for communication by UPnP. The data offload unit 48 has a data offload function. The data offload function is a function that reduces traffic load by using an Internet line when transmitting data without going through a normal cellular phone network. Since the data offload function is configured to be realized entirely by software, the function can be added or reduced by updating the software by remote upgrade.
 システムクロック補正部49は、電圧制御発振器(Voltage Controlled Xtal Oscillator;略称:VCXO)および温度補償型水晶発振器(Temperature Compensated Xtal Oscillator;略称:TCXO)などの、電圧制御で周波数を変更することができるクロック発信源であるシステムクロック供給部16に対して、GPSおよびNTPサーバなどからの精確な時刻情報を、システムクロック供給部16が出力する時刻情報と比較し、ある一定の差分を超えていたら、システムクロック供給部16の電圧制御を行い、精確な時刻情報になるようにクロック周波数を補正する。 The system clock correction unit 49 is a clock whose voltage can be changed by voltage control, such as a voltage-controlled oscillator (Voltage-Controlled-Xtal-Oscillator; abbreviation: VCXO) and a temperature-compensated crystal oscillator (Temperature-Compensated-Xtal-Oscillator; abbreviation: TCXO). Compare accurate time information from the GPS and NTP server to the system clock supply unit 16 which is a transmission source with the time information output from the system clock supply unit 16, and if the difference exceeds a certain difference, the system The voltage of the clock supply unit 16 is controlled to correct the clock frequency so that accurate time information is obtained.
 CPU15のMAC-hs部54は、HSDPAを行うときに必要なレイヤ2のMACスケジューリング機能である。MAC-e部55は、HSUPA(EUL)を行うときに必要なレイヤ2のMACスケジューリング機能である。 The MAC-hs unit 54 of the CPU 15 is a layer 2 MAC scheduling function required when performing HSDPA. The MAC-e unit 55 is a layer 2 MAC scheduling function required when performing HSUPA (EUL).
 FP終端部56は、FP終端処理を行う。FP終端部56は、FP終端処理として、主に以下の非特許文献9,10で定義されたFPフォーマットのフレーミングを行う機能、具体的にはFPフォーマットを作成する機能およびFPフォーマットを解除する機能を有する。本実施の形態とは異なるが、FP終端処理を3G回路部14で行ってもよい。3G回路部14は、たとえばFPGAまたはASICで実現される3G用大規模集積回路(Large Scale Integration;略称:LSI)である3G-LSIで構成される。 FP termination unit 56 performs FP termination processing. The FP termination unit 56 mainly performs a FP format framing function defined in the following non-patent documents 9 and 10 as an FP termination process, specifically a function for creating an FP format and a function for canceling the FP format. Have Although different from the present embodiment, the FP termination processing may be performed by the 3G circuit unit 14. The 3G circuit unit 14 is configured by a 3G-LSI which is a 3G large scale integrated circuit (abbreviation: LSI) realized by, for example, an FPGA or an ASIC.
  非特許文献9:3GPP TS25.427 V9.0.0
  非特許文献10:3GPP TS25.435 V9.3.0
 3G用無線パラメータ取得部57は、第2アンテナ18から取得した下りデータの振幅強度または電力強度を測定し、またデータを復調および復号し、報知情報の内容を解析することによって、隣接基地局からの電界強度などの3G方式の周辺セルの環境情報を取得する。図1では、アンテナ1本、具体的には第2アンテナ18からのデータを3G用無線パラメータ取得部57に入力して解析したが、LTE側と同様に、第1アンテナ17からのデータも3G用無線パラメータ取得部57に入力して、アンテナ2本からのデータを解析してもよい。これにより、ダイバーシチ効果で、より正確に周辺セルの環境情報を得ることができる。
Non-Patent Document 9: 3GPP TS25.427 V9.0.0
Non-Patent Document 10: 3GPP TS25.435 V9.3.0
The 3G radio parameter acquisition unit 57 measures the amplitude strength or power strength of the downlink data acquired from the second antenna 18, demodulates and decodes the data, analyzes the content of the broadcast information, The environmental information of 3G-type peripheral cells, such as the electric field strength of, is acquired. In FIG. 1, data from one antenna, specifically, the second antenna 18 is input to the 3G wireless parameter acquisition unit 57 and analyzed. However, similarly to the LTE side, the data from the first antenna 17 is also 3G. The data may be input to the wireless parameter acquisition unit 57 and analyzed from the two antennas. As a result, the environment information of the peripheral cells can be obtained more accurately by the diversity effect.
 3G用IP部58は、レイヤ3のIPフレームデータを処理(以下「フレーミング」という場合がある)を行う機能を有する。3G用IP部58は、IPフレームデータを3G用IPsec部59に与える。 The 3G IP unit 58 has a function of processing layer 3 IP frame data (hereinafter also referred to as “framing”). The 3G IP unit 58 provides the IP frame data to the 3G IPsec unit 59.
 3G用IPsec部59は、3G用IP部58から与えられたIPフレームデータを暗号化するセキュリティ機能を有する。3G用IPsec部59は、CPU15に内蔵の専用コプロセッサを用いて、前記セキュリティ機能を実現する。これによって、ソフトウェア処理のみでは高い周波数を必要とするCPUコアの周波数を低く抑えることができ、消費電力を低く抑えることができる。3G用IPsec部59は、暗号化したIPフレームデータを、PPPoE部60に与える。 The 3G IPsec unit 59 has a security function for encrypting the IP frame data given from the 3G IP unit 58. The 3G IPsec unit 59 implements the security function by using a dedicated coprocessor built in the CPU 15. As a result, the frequency of the CPU core that requires a high frequency only by software processing can be kept low, and the power consumption can be kept low. The 3G IPsec unit 59 provides the encrypted IP frame data to the PPPoE unit 60.
 PPPoE部60は、LTE用IPsec部43から与えられたデータと、3G用IPsec部59から与えられたデータとに対して、PPPoEプロトコルに対応した処理を行う。PPPoE部60は、LTE側のインタフェースであるS1インタフェースを介して、MMEおよびSGWと接続される。またPPPoE部60は、3G側のインタフェースであるIubインタフェースまたはIuhインタフェースを介して、基地局制御装置(Radio Network Controller;略称:RNC)と接続される。 The PPPoE unit 60 performs processing corresponding to the PPPoE protocol on the data given from the LTE IPsec unit 43 and the data given from the 3G IPsec unit 59. The PPPoE unit 60 is connected to the MME and the SGW via the S1 interface that is an interface on the LTE side. The PPPoE unit 60 is connected to a base station controller (Radio Network Controller; abbreviated name: RNC) via an Iub interface or an Iuh interface that is an interface on the 3G side.
 3G用AP部61は、基地局の3G側機能を制御するアプリケーション機能を有する。3G用PF部62は、基地局の3G側機能を制御するプラットフォーム機能を有する。 The 3G AP section 61 has an application function for controlling the 3G function of the base station. The 3G PF unit 62 has a platform function for controlling the 3G function of the base station.
 3G回路部14の拡散変調部50は、拡散変調処理を行う。3G用チャネルコーディング部51は、チャネル符号化、具体的には誤り訂正符号化を行う。逆拡散復調部52は、逆拡散によって復調する逆拡散復調処理を行う。3G用チャネルデコーディング部53は、受信チャネルの復号化を行う。 The spread modulation unit 50 of the 3G circuit unit 14 performs spread modulation processing. The 3G channel coding unit 51 performs channel coding, specifically, error correction coding. The despread demodulator 52 performs a despread demodulation process that demodulates by despreading. The 3G channel decoding unit 53 decodes the reception channel.
 拡散変調部50および逆拡散復調部52は、主に以下の非特許文献11~13で定義される機能を有する。3G用チャネルコーディング部51および3G用チャネルデコーティング部53は、主に非特許文献14で定義される機能を有する。 The spread modulation unit 50 and the despread demodulation unit 52 mainly have functions defined in the following non-patent documents 11 to 13. The 3G channel coding unit 51 and the 3G channel decoding unit 53 mainly have functions defined in Non-Patent Document 14.
  非特許文献11:3GPP TS25.211
  非特許文献12:3GPP TS25.213
  非特許文献13:3GPP TS25.214
  非特許文献14:3GPP TS25.212
 図1に示す基地局装置1は、3G方式、具体的にはW-CDMA方式と、LTE方式との両方に対応する共用基地局装置(以下「デュアル基地局装置」という場合がある)である。
Non-Patent Document 11: 3GPP TS25.211
Non-Patent Document 12: 3GPP TS25.213
Non-Patent Document 13: 3GPP TS25.214
Non-Patent Document 14: 3GPP TS25.212
The base station apparatus 1 shown in FIG. 1 is a shared base station apparatus (hereinafter sometimes referred to as “dual base station apparatus”) that supports both the 3G system, specifically the W-CDMA system and the LTE system. .
 基地局装置1において、3G方式に対応する機能を有する部位(以下「3G側機能部位」という場合がある)は、第2アンテナ18、RF部11の第2DUP部26、第2スイッチ部27、第2無線送信部28、第2無線受信部29および第2下り無線受信部30、DFE回路部12の第2DFE部32、3G回路部14のW-CDMA方式の拡散変調部50、3G用チャネルコーディング部51、逆拡散復調部52および3G用チャネルデコーディング部53、CPU15のMAC-hs54、MAC-e部55、FP終端部56、3G用無線パラメータ取得部57、3G用IP部58、3G用IPsec部59、PPPoE部60、3G用AP部61および3G用PF部62を備えて構成される。 In the base station apparatus 1, a part having a function corresponding to the 3G system (hereinafter sometimes referred to as “3G side functional part”) includes the second antenna 18, the second DUP part 26 of the RF part 11, the second switch part 27, Second radio transmission unit 28, second radio reception unit 29 and second downlink radio reception unit 30, second DFE unit 32 of DFE circuit unit 12, 3G circuit unit W-CDMA spread modulation unit 50, 3G channel Coding section 51, despread demodulation section 52 and 3G channel decoding section 53, MAC-hs 54 of CPU 15, MAC-e section 55, FP termination section 56, 3G wireless parameter acquisition section 57, 3G IP section 58, 3G It is configured to include an IPsec unit 59, a PPPoE unit 60, a 3G AP unit 61, and a 3G PF unit 62.
 LTE方式に対応する機能を有する部位(以下「LTE側機能部位」という場合がある)は、第1アンテナ17、RF部11の第1DUP部21、第1スイッチ部22、第1無線送信部23、第1無線受信部24、第1下り無線受信部25、DFE回路部12の第1DFE部31、LTE回路部13を構成するOFDMA部35、LTE用チャネルコーディング部36、SC-FDMA部37、LTE用チャネルデコーディング部38、LTE用無線パラメータ取得部39、RLC/MAC部40、PDCP/GTP-U部41、LTE用IP部42、LTE用IPsec部43、LTE用AP部44、LTE用PF部45、ネットワークパラメータ取得部46、UPnP部47、データオフロード部48およびシステムクロック補正部49を備えて構成される。 The parts having functions corresponding to the LTE system (hereinafter sometimes referred to as “LTE side functional parts”) are the first antenna 17, the first DUP part 21 of the RF part 11, the first switch part 22, and the first wireless transmission part 23. , First radio reception unit 24, first downlink radio reception unit 25, first DFE unit 31 of DFE circuit unit 12, OFDMA unit 35 constituting LTE circuit unit 13, LTE channel coding unit 36, SC-FDMA unit 37, LTE channel decoding unit 38, LTE radio parameter acquisition unit 39, RLC / MAC unit 40, PDCP / GTP-U unit 41, LTE IP unit 42, LTE IPsec unit 43, LTE AP unit 44, LTE PF unit 45, network parameter acquisition unit 46, UPnP unit 47, data offload unit 48, and system clock correction unit 4 Configured to include a.
 以上のように本実施の形態では、DFE回路部12によって、ディジタルベースバンド領域で、異なる方式の信号の帯域を並べたり、切り離したりする。 As described above, in this embodiment, the DFE circuit unit 12 arranges or separates signal bands of different methods in the digital baseband region.
 高周波(RF)の処理としては、本来、LTE方式で2系統、3G方式で1系統の合計3系統が必要であるが、本実施の形態では前述のようにディジタルベースバンド領域で処理するので、処理に必要な系統を2系統で済ませることができる。 As a process of high frequency (RF), a total of 3 systems of 2 systems in LTE system and 1 system in 3G system are necessary, but in this embodiment, since processing is performed in the digital baseband region as described above, Two systems required for processing can be completed.
 このように高周波(RF)の処理系統の数を減らすことによって、RF部11において消費する電力、たとえばアンプなどの消費電力を低減することができる。また、基地局装置1の小型化および低価格化も実現することができる。 Thus, by reducing the number of high-frequency (RF) processing systems, power consumed in the RF unit 11, for example, power consumed by an amplifier or the like can be reduced. In addition, the base station device 1 can be reduced in size and price.
 図1において、各機能部位同士をつないだ線は、主にデータ信号線を示している。LTE用AP部44、LTE用PF部45、3G用AP部61および3G用PF部62は、制御すべき各機能に接続されるはずであるが、信号線の図示を省略している。ただし、3G用PF部62とLTE用PF部45とを接続する信号線は、CSフォールバックなどの3G機能とLTE機能との連携動作に関わる機能を実現するための信号線であるので、省略していない。 In FIG. 1, lines connecting the functional parts mainly indicate data signal lines. The LTE AP unit 44, the LTE PF unit 45, the 3G AP unit 61, and the 3G PF unit 62 should be connected to each function to be controlled, but signal lines are not shown. However, the signal line connecting the 3G PF unit 62 and the LTE PF unit 45 is a signal line for realizing a function related to the cooperative operation between the 3G function such as CS fallback and the LTE function, and thus omitted. Not done.
 また本実施の形態におけるLTE回路部13は、内蔵DSPおよび内蔵CPU34などのソフトウェア処理を実装できるような柔軟な構成である。これによって、LSI化(ASIC化)することによって、仕様変更に柔軟に対応できる状態を持ちつつ、消費電力の低減、小型化および低価格化を実現することができる。3G回路部14も同様に、LSI化(ASIC化)することによって、消費電力の低減、小型化および低価格化を実現することができる。 In addition, the LTE circuit unit 13 in the present embodiment has a flexible configuration that can implement software processing such as the built-in DSP and the built-in CPU 34. As a result, by adopting LSI (ASIC), it is possible to realize a reduction in power consumption, size reduction, and price reduction while maintaining a state that can flexibly cope with specification changes. Similarly, the 3G circuit unit 14 can be made LSI (ASIC), thereby realizing reduction in power consumption, size reduction, and price reduction.
 また本実施の形態では、FPGAまたはASICなどに実装されるDFE回路部12に、DFE(Digital Front End)機能を実装することによって、3G RF1系統、LTE RF2系統の合計RF3系統が必要なところを、2系統化することができる。これによって、装置価格の低減、低消費電力および装置の小型化を実現することができる。 In the present embodiment, the DFE (Digital Front End) function is mounted on the DFE circuit unit 12 mounted on an FPGA or ASIC, so that a total of three RF systems of 3G RF1 and LTE RF2 are required. Two systems can be formed. As a result, it is possible to reduce the device price, reduce the power consumption, and reduce the size of the device.
 DFEは、3G/LTE帯域のディジタル分離/結合技術である。送受信信号に対して、3G/LTEの帯域振り分け/結合を適応的に行うことで、前述のようにRF2系統のうち1系統を3G/LTEで共用化することができる。 DFE is a 3G / LTE band digital separation / combination technology. By adaptively allocating / combining 3G / LTE bands to transmission / reception signals, one of the two RF systems can be shared by 3G / LTE as described above.
 本実施の形態の基地局装置1は、演算処理に適したLTE回路部13内の内蔵DSPと、同じくLTE回路部13に実装されたL1 Engine(FFT、DFT、LLR、巡回冗長検査(Cyclic Redundancy Checksum;略称:CRC)、ターボ(Turbo)/ビタビ(Viterbi)デコーダ(decoder)などのレイヤ1機能のコプロセッサ)に、OFDMA、SC-FDMA、チャネルコーディング、チャネルデコーディング、無線パラメータ取得機能などを実装することで実現することができる。なお、無線パラメータ取得機能は、3G/LTE両機能がサービス休止中にLTE回路で受信処理を行う。 The base station apparatus 1 of the present embodiment includes a built-in DSP in the LTE circuit unit 13 suitable for arithmetic processing, and an L1 engine (FFT, DFT, LLR, cyclic redundancy check (Cyclic Redundancy) that is also mounted in the LTE circuit unit 13. Checksum (abbreviation: CRC), turbo / viterbi (layer 1 function coprocessor such as decoder), OFDMA, SC-FDMA, channel coding, channel decoding, radio parameter acquisition function, etc. It can be realized by mounting. The wireless parameter acquisition function performs reception processing in the LTE circuit while both 3G / LTE functions are out of service.
 またLTE回路部13に内蔵した内蔵CPU34に、システムクロック補正機能を実装することで、NTPサーバ補正方式による基地局生成クロックパルスの揺らぎ低減を行い、基準発振器の低価格化と、周波数精度信頼性を実現することができる。システムクロック供給機能としては、安価な基準発振器であるTCXOおよびVCXOを採用することができる。これによって、装置コストの低減を実現することができる。 In addition, by implementing the system clock correction function in the built-in CPU 34 built in the LTE circuit unit 13, the fluctuation of the base station generated clock pulse by the NTP server correction method is reduced, the price of the reference oscillator is reduced, and the frequency accuracy reliability Can be realized. As the system clock supply function, TCXO and VCXO, which are inexpensive reference oscillators, can be employed. Thereby, a reduction in device cost can be realized.
 さらに、CPU15またはLTE回路部13の内蔵CPU34に、ホームゲートウェイ接続機能を設けることによって、家電と基地局とを連携させることができるようになる。 Furthermore, by providing the CPU 15 or the built-in CPU 34 of the LTE circuit unit 13 with a home gateway connection function, the home appliance and the base station can be linked.
 さらに、本実施の形態では、図1に示すように、LTE機能の主要機能と3G機能の主要機能とをハードウェアレベルで独立させているので、3G用ベースバンド機能を搭載する3G回路部14およびCPU15を非搭載とすることによって、基地局装置1を、LTE方式専用機能のみの構成とすることが可能となっている。この場合、LTE側機能部位と3G側機能部位とで共有している有線側終端部76のLTE側機能部位への移植、BSP(Board Support Package)などのソフトウェアの変更などの軽微な変更のみで対応可能である。これによって、LTE専用構成への変更を、少ない開発工数で容易に行うことができるので、製造時の試験工程数を減らすことができる。したがって、低価格化を実現することができる。 Furthermore, in this embodiment, as shown in FIG. 1, the main function of the LTE function and the main function of the 3G function are made independent at the hardware level, so that the 3G circuit unit 14 having the 3G baseband function is mounted. Since the CPU 15 is not mounted, the base station apparatus 1 can be configured only for the LTE system dedicated function. In this case, only a minor change such as transplantation of the wired side termination unit 76 shared by the LTE-side functional part and the 3G-side functional part to the LTE-side functional part and a change of software such as BSP (Board Support Package) It is possible. As a result, the change to the LTE-dedicated configuration can be easily performed with a small number of development man-hours, so that the number of test processes during manufacturing can be reduced. Therefore, the price can be reduced.
 また前述のようにLTE機能の主要機能と3G機能の主要機能とをハードウェアレベルで独立させていることによって、異なる2つの通信方式のうちの一方の通信方式の機能を容易に停止させることができる。具体的に述べると、本実施の形態では、前述の図1に示すようにLTE機能の主要機能を担うLTE回路部13と、3G機能の主要機能を担う3G用回路14とが、独立して設けられている。これによって、LTE方式および3G方式のうちの一方の通信方式の機能を容易に停止させることができる。 Further, as described above, the main function of the LTE function and the main function of the 3G function are made independent at the hardware level, so that the function of one of the two different communication systems can be easily stopped. it can. More specifically, in the present embodiment, as shown in FIG. 1 described above, the LTE circuit unit 13 responsible for the main functions of the LTE function and the 3G circuit 14 responsible for the main functions of the 3G function are independently provided. Is provided. As a result, the function of one of the LTE scheme and the 3G scheme can be easily stopped.
 また本実施の形態では、LTE機能の主要機能を担うLTE回路部13、および3G機能の主要機能を担う3G回路部14は、いずれも、取外し可能に設けられている。これによって、LTE回路部13または3G回路部14を搭載しないようにすることができる。前述のようにLTE回路部13と3G回路部14とは、独立して設けられているので、LTE回路部13および3G回路部14のいずれかを取り除いても、もう一方の通信方式で通信することができる。 In the present embodiment, the LTE circuit unit 13 responsible for the main function of the LTE function and the 3G circuit unit 14 responsible for the main function of the 3G function are both detachably provided. As a result, the LTE circuit unit 13 or the 3G circuit unit 14 can be prevented from being mounted. As described above, since the LTE circuit unit 13 and the 3G circuit unit 14 are provided independently, even if either the LTE circuit unit 13 or the 3G circuit unit 14 is removed, communication is performed using the other communication method. be able to.
 図2は、図1に示す第1DFE部31、第2DFE部32、ならびにLTE回路部13のOFDMA部35およびLTE用チャネルコーディング部36の具体的な構成を示すブロック図である。図2では、LTEレイヤ1の下り信号処理に関係する部分の構成を示す。また図2では、LTE回路部13の内蔵CPU34のうち、LTEレイヤ1の下り信号処理に関係する部分の構成を併せて示す。 FIG. 2 is a block diagram showing a specific configuration of the first DFE unit 31, the second DFE unit 32, the OFDMA unit 35 of the LTE circuit unit 13, and the LTE channel coding unit 36 shown in FIG. In FIG. 2, the structure of the part related to the downlink signal processing of LTE layer 1 is shown. FIG. 2 also shows the configuration of the part related to the downlink signal processing of the LTE layer 1 in the built-in CPU 34 of the LTE circuit unit 13.
 LTE回路部101は、第1送信処理部111、第1アンテナ用逆高速フーリエ変換(Inverse Fast Fourier Transform;略称:IFFT)前データ格納ランダムアクセスメモリ(Random Access Memory;略称:RAM)112、第2送信処理部113、第2アンテナ用IFFT前データ格納RAM114、第1内蔵プロセッサ115、物理下り共有チャネル(Physical Downlink Shared Channel;略称:PDSCH)変調部116、物理報知チャネル(Physical Broadcast Channel;略称:PBCH)変調部117、物理制御チャネルフォーマットインジケータチャネル(Physical Control Format Indicator Channel;略称:PCFICH)変調部118、物理下り制御チャネル(Physical Downlink Control Channel;略称:PDCCH)変調部119、物理HARQインジケータチャネル(Physical Hybrid ARQ Indicator Channel;略称:PHICH)変調部120、リファレンス信号(Reference Signal;略称:RS)リソースマッピング部121、同期信号(Synchronization Signal;略称:SS)リソースマッピング部122、および第2内蔵プロセッサ123を備える。 The LTE circuit unit 101 includes a first transmission processing unit 111, a first antenna inverse fast Fourier transform (Inverse Fastier Transform; abbreviated as IFFT) data storage random access memory (Random Access Memory; abbreviated as RAM) 112, a second Transmission processor 113, second antenna pre-IFFT data storage RAM 114, first built-in processor 115, physical downlink shared channel (abbreviation: PDSCH) modulator 116, physical broadcast channel (abbreviation: PBCH) ) Modulator 117, physical control channel format indicator channel (Physical Control Format Indicator Indicator Channel; abbreviated as PCFICH) modulator 118, physical downlink control channel (Physical Downlink Control Channel; abbreviated as PDCCH) modulator 119, physical HARQ indicator channel (Physical Hybrid ARQ Indicator Channel; abbreviation: PHICH) modulation section 120, reference signal (Reference Signal; abbreviation: RS) resource mapping section 121, synchronization signal (Synchronization Signal; abbreviation: SS) resource mapping section 122, and second built-in processor 123.
 図2およびその他の図面において、第1送信処理部111および第2送信処理部113は、「TRP」と記載する。第1アンテナ用IFFT前データ格納RAM112および第2アンテナ用IFFT前データ格納RAM114は、「RAM」と記載する。第1内蔵プロセッサ115および第2内蔵プロセッサ123は、「BP」と記載する。PDSCH変調部116は、「PDSCH MOD」と記載する。PBCH変調部117は、「PBCH MOD」と記載する。PCFICH変調部118は、「PCFICH MOD」と記載する。PDCCH変調部119は、「PDCCH MOD」と記載する。PHICH変調部120は、「PHICH MOD」と記載する。RSリソースマッピング部121は、「RSRM」と記載する。SSリソースマッピング部122は、「SSRM」と記載する。下りリンク共有チャネル(Downlink Shared Channel)は、「DL-SCH」と記載する。報知チャネル(Broadcast Channel)は、「BCH」と記載する。報知制御チャネル(Broadcast Control Channel)は、「BCCH」と記載する。制御チャネルフォーマットインジケータ(Control Format Indicator)は、「CFI」と記載する。HARQインジケータ(HARQ indicator)は、「HI」と記載する。 2 and other drawings, the first transmission processing unit 111 and the second transmission processing unit 113 are described as “TRP”. The first antenna pre-IFFT data storage RAM 112 and the second antenna pre-IFFT data storage RAM 114 are described as “RAM”. The first built-in processor 115 and the second built-in processor 123 are described as “BP”. The PDSCH modulation unit 116 is described as “PDSCH MOD”. The PBCH modulation unit 117 is described as “PBCH MOD”. The PCFICH modulation unit 118 is described as “PCFICH MOD”. The PDCCH modulation unit 119 is described as “PDCCH MOD”. The PHICH modulation unit 120 is described as “PHICH MOD”. The RS resource mapping unit 121 is described as “RSRM”. The SS resource mapping unit 122 is described as “SSRM”. The downlink shared channel (Downlink Shared Channel) is described as “DL-SCH”. The broadcast channel (Broadcast Channel) is described as “BCH”. The broadcast control channel (Broadcast Control Channel) is described as “BCCH”. The control channel format indicator (Control Format Indicator) is described as “CFI”. The HARQ indicator is described as “HI”.
 RSリソースマッピング部121は、第1リソースエレメントマッピング部124および第2リソースエレメントマッピング部125を備える。SSリソースマッピング部122は、第3リソースエレメントマッピング部126および第4リソースエレメントマッピング部127を備える。図2およびその他の図面において、第1リソースエレメントマッピング部124、第2リソースエレメントマッピング部125、第3リソースエレメントマッピング部126および第4リソースエレメントマッピング部127は、「REM」と記載する。 The RS resource mapping unit 121 includes a first resource element mapping unit 124 and a second resource element mapping unit 125. The SS resource mapping unit 122 includes a third resource element mapping unit 126 and a fourth resource element mapping unit 127. In FIG. 2 and other drawings, the first resource element mapping unit 124, the second resource element mapping unit 125, the third resource element mapping unit 126, and the fourth resource element mapping unit 127 are described as “REM”.
 PDSCHなどのチャネルに関しては、前述の非特許文献11,12,14および、以下の非特許文献15,16に記載されている。 The channels such as PDSCH are described in Non-Patent Documents 11, 12, and 14 and Non-Patent Documents 15 and 16 below.
  非特許文献15:服部武、諸橋知雄、藤岡雅宣(監訳)、「3G Evolutionのすべて-HSPAモバイルブロードバンド技術とLTE基本技術」、丸善株式会社、平成21年11月30日
  非特許文献16:服部武、諸橋知雄、藤岡雅宣(監訳)、「3G Evolutionのすべて-LTEモバイルブロード方式技術」、丸善株式会社、平成21年12月25日
 内蔵CPU102は、マスター情報ブロック(Master Information Block)部131、制御チャネルフォーマットインジケータ(Control Channel Format Indicator;略称:CCFI)生成部132、下り制御情報(Downlink Control Information;略称:DCI)生成部133、およびACK/NACK(Acknowledgement/Negative Acknowledgement)部134を備える。図2およびその他の図面において、CCFI生成部132は、「CCFIG」と記載する。DCI生成部133は、「DCIG」と記載する。
Non-Patent Document 15: Takeshi Hattori, Tomoo Morohashi, Masanobu Fujioka (supervised), "All of 3G Evolution-HSPA Mobile Broadband Technology and LTE Basic Technology", Maruzen Corporation, November 30, 2009 Non-Patent Document 16: Hattori Take, Morohashi, Masanobu Fujioka (translated by), “All of 3G Evolution—LTE Mobile Broadband Technology”, Maruzen Co., Ltd., December 25, 2009 The built-in CPU 102 includes a master information block 131, A control channel format indicator (abbreviation: CCFI) generation unit 132, a downlink control information (abbreviation: DCI) generation unit 133, and an ACK / NACK (Acknowledgement / Negative Acknowledgement) unit 134 are provided. In FIG. 2 and other drawings, the CCFI generation unit 132 is described as “CCFIG”. The DCI generation unit 133 is described as “DCIG”.
 第1送信処理部111は、第1ディジタル/アナログ(Digital/Analog;略称:D/A)変換部103と第1アンテナ用IFFT前データ格納RAM112との間に設けられており、第1D/A変換部103および第1アンテナ用IFFT前データ格納RAM112にそれぞれ接続されている。 The first transmission processing unit 111 is provided between the first digital / analog (abbreviation: D / A) conversion unit 103 and the first antenna pre-IFFT data storage RAM 112, and the first D / A The converter 103 and the first antenna pre-IFFT data storage RAM 112 are connected to each other.
 第2送信処理部113は、第2D/A変換部104と第2アンテナ用IFFT前データ格納RAM114との間に設けられており、第2D/A変換部104および第2アンテナ用IFFT前データ格納RAM114にそれぞれ接続されている。 The second transmission processing unit 113 is provided between the second D / A conversion unit 104 and the second antenna IFFT pre-data storage RAM 114, and stores the second D / A conversion unit 104 and the second antenna pre-IFFT data storage. Each is connected to the RAM 114.
 図3~図12は、図2に示す各部の詳細な構成を示すブロック図である。図3は、第1送信処理部111およびその周辺部の詳細な構成を示すブロック図である。図4は、第2送信処理部113およびその周辺部の詳細な構成を示すブロック図である。図5は、第1アンテナ用IFFT前データ格納RAM112およびその周辺部の詳細な構成を示すブロック図である。図6は、第2アンテナ用IFFT前データ格納RAM114およびその周辺部の詳細な構成を示すブロック図である。図5と図6とは、境界線L4で接続されている。 3 to 12 are block diagrams showing the detailed configuration of each unit shown in FIG. FIG. 3 is a block diagram showing a detailed configuration of the first transmission processing unit 111 and its peripheral part. FIG. 4 is a block diagram showing a detailed configuration of the second transmission processing unit 113 and its peripheral part. FIG. 5 is a block diagram showing a detailed configuration of the first pre-IFFT data storage RAM 112 for the first antenna and its peripheral part. FIG. 6 is a block diagram showing a detailed configuration of the second antenna pre-IFFT data storage RAM 114 and its peripheral portion. 5 and 6 are connected by a boundary line L4.
 図7~図9は、第1内蔵プロセッサ115、PDSCH変調部116およびPBCH変調部117、ならびにそれらの周辺部の詳細な構成を示すブロック図である。図7と図8とは、境界線L1で接続されている。図8と図9とは、境界線L3で接続されている。図10および図11は、PCFICH変調部118、PDCCH変調部119およびPHICH変調部120の詳細な構成を示すブロック図である。図10と図11とは、境界線L2で接続されている。図12は、RSリソースマッピング部121、SSリソースマッピング部122および第2内蔵プロセッサ123の詳細な構成を示すブロック図である。 7 to 9 are block diagrams showing detailed configurations of the first built-in processor 115, the PDSCH modulation unit 116, the PBCH modulation unit 117, and their peripheral units. 7 and 8 are connected by a boundary line L1. 8 and 9 are connected by a boundary line L3. 10 and 11 are block diagrams showing detailed configurations of the PCFICH modulation unit 118, the PDCCH modulation unit 119, and the PHICH modulation unit 120. 10 and 11 are connected by a boundary line L2. FIG. 12 is a block diagram illustrating detailed configurations of the RS resource mapping unit 121, the SS resource mapping unit 122, and the second embedded processor 123.
 図3に示すように、第1送信処理部111は、第1DFE部141、第2DFE部142、第1RAM143、第2RAM144、第1時間窓(Time Window)処理部145、第2時間窓(Time Window)処理部146、第3RAM147、第4RAM148、第1OFDM信号生成(signal generation)部149および第5RAM150を備える。図3およびその他の図面において、第1時間窓処理部145および第2時間窓処理部146は、「TWP」と記載する。第1OFDM信号生成部149は、「OFDM SG」と記載する。I信号は、「I」と記載する。Q信号は、「Q」と記載する。 As shown in FIG. 3, the first transmission processing unit 111 includes a first DFE unit 141, a second DFE unit 142, a first RAM 143, a second RAM 144, a first time window processing unit 145, and a second time window (Time window). ) Processing unit 146, third RAM 147, fourth RAM 148, first OFDM signal generation unit 149, and fifth RAM 150. In FIG. 3 and other drawings, the first time window processing unit 145 and the second time window processing unit 146 are described as “TWP”. The first OFDM signal generation unit 149 is described as “OFDM SG”. The I signal is described as “I”. The Q signal is described as “Q”.
 第1DFE部141は、第1D/A変換部103のI信号用D/A変換部105に接続される。第2DFE部142は、第1D/A変換部103のQ信号用D/A変換部106に接続される。第1DFE部141および第2DFE部142は、それぞれ、APC、およびFIRフィルタなどのディジタルフィルタを含む。第1OFDM信号生成部149は、IFFTおよびサイクリックプリフィックス(Cyclic Prefix;略称:CP)付加の処理を行う。 The first DFE unit 141 is connected to the D / A conversion unit 105 for I signal of the first D / A conversion unit 103. The second DFE unit 142 is connected to the Q signal D / A conversion unit 106 of the first D / A conversion unit 103. The first DFE unit 141 and the second DFE unit 142 each include a digital filter such as an APC and an FIR filter. The first OFDM signal generation unit 149 performs processing for adding IFFT and cyclic prefix (Cyclic Prefix; abbreviated as CP).
 図4に示すように、第2送信処理部113は、第3DFE部151、第4DFE部152、第6RAM153、第7RAM154、第3時間窓(Time Window)処理部155、第4時間窓(Time Window)処理部156、第8RAM157、第9RAM158、第2OFDM信号生成(signal generation)部159および第10RAM160を備える。図4およびその他の図面において、第3時間窓処理部155および第4時間窓処理部156は、「TWP」と記載する。第2OFDM信号生成部159は、「OFDM SG」と記載する。 4, the second transmission processing unit 113 includes a third DFE unit 151, a fourth DFE unit 152, a sixth RAM 153, a seventh RAM 154, a third time window processing unit 155, and a fourth time window (Time window). ) A processing unit 156, an eighth RAM 157, a ninth RAM 158, a second OFDM signal generation unit 159, and a tenth RAM 160 are provided. In FIG. 4 and other drawings, the third time window processing unit 155 and the fourth time window processing unit 156 are described as “TWP”. The second OFDM signal generation unit 159 is described as “OFDM SG”.
 第3DFE部151は、第2D/A変換部104のI信号用D/A変換部107に接続され、第4DFE部152は、第2D/A変換部104のQ信号用D/A変換部108に接続される。第3DFE部151および第4DFE部152は、それぞれ、APC、およびFIRフィルタなどのディジタルフィルタを含む。第2OFDM信号生成部159は、IFFTおよびCP付加の処理を行う。 The third DFE unit 151 is connected to the I / D signal D / A conversion unit 107 of the second D / A conversion unit 104, and the fourth DFE unit 152 is the Q signal D / A conversion unit 108 of the second D / A conversion unit 104. Connected to. The third DFE unit 151 and the fourth DFE unit 152 each include a digital filter such as an APC and an FIR filter. Second OFDM signal generation section 159 performs IFFT and CP addition processing.
 図5および図6に示すように、PDSCH変調部116、PBCH変調部117、PCFICH変調部118、PDCCH変調部119、およびPHICH変調部120からそれぞれ出力される2組の同相(In-phase;略称:I)信号および直交(Quadrature;略称:Q)信号のうち、一方の組のI信号およびQ信号は、第1アンテナ用IFFT前データ格納RAM112に入力され、他方の組のI信号およびQ信号は、第2アンテナ用IFFT前データ格納RAM114に入力される。I信号は、搬送波の基準位相と同相の成分であり、Q信号は、搬送波の基準位相と直交する成分である。I信号は、複素信号の実数部分であり、Q信号は、複素信号の虚数部分である。 As shown in FIGS. 5 and 6, two sets of in-phase (abbreviated names) respectively output from the PDSCH modulation unit 116, the PBCH modulation unit 117, the PCFICH modulation unit 118, the PDCCH modulation unit 119, and the PHICH modulation unit 120. : I) signal and quadrature (abbreviation: Q) signal, one set of I signal and Q signal is input to the first antenna pre-IFFT data storage RAM 112 and the other set of I signal and Q signal Is input to the pre-IFFT data storage RAM 114 for the second antenna. The I signal is a component in phase with the reference phase of the carrier wave, and the Q signal is a component orthogonal to the reference phase of the carrier wave. The I signal is the real part of the complex signal, and the Q signal is the imaginary part of the complex signal.
 RSリソースマッピング部121の第1リソースエレメントマッピング部124および第2リソースエレメントマッピング部125、ならびにSSリソースマッピング部122の第3リソースエレメントマッピング部126および第4リソースエレメントマッピング部127からそれぞれ出力される2組のI信号およびQ信号のうち、一方の組のI信号およびQ信号は、第1アンテナ用IFFT前データ格納RAM112に入力され、他方の組のI信号およびQ信号は、第2アンテナ用IFFT前データ格納RAM114に入力される。 2 output from the first resource element mapping unit 124 and the second resource element mapping unit 125 of the RS resource mapping unit 121 and from the third resource element mapping unit 126 and the fourth resource element mapping unit 127 of the SS resource mapping unit 122, respectively. Among the I signal and Q signal of the set, one set of I signal and Q signal is input to the first-antenna IFFT data storage RAM 112, and the other set of I signal and Q signal is the second antenna IFFT. It is input to the previous data storage RAM 114.
 図7に示すように、第1内蔵プロセッサ115は、電力設定部194およびPDSCHのリソース割当て部195を備える。図7およびその他の図面において、電力設定部194は、「PWC」と記載する。PDSCHのリソース割当て部195は、「PDSCH RA」と記載する。 As shown in FIG. 7, the first built-in processor 115 includes a power setting unit 194 and a PDSCH resource allocation unit 195. In FIG. 7 and other drawings, the power setting unit 194 is described as “PWC”. The PDSCH resource allocation unit 195 is described as “PDSCH RA”.
 図7~図9に示すように、PDSCH変調部116は、振幅調整部161、リソースエレメントマッピング部162、プリコーディング部163、レイヤマッピング部169、第1変調部174、第2変調部175、第1スクランブリング部178、第2スクランブリング部179、第1コードブロック連結部180、第2コードブロック連結部181、第1レートマッチング部182、第2レートマッチング部183、第1チャネルコーディング部186、第2チャネルコーディング部187、第1コードブロック分割&コードブロックCRC付加部190、第2コードブロック分割&コードブロックCRC付加部191、第1トランスポートブロックCRC付加部192、第2トランスポートブロックCRC付加部193、および第1~第8RAM168,173,176,177,184,185,188,189を備える。 7 to 9, the PDSCH modulation unit 116 includes an amplitude adjustment unit 161, a resource element mapping unit 162, a precoding unit 163, a layer mapping unit 169, a first modulation unit 174, a second modulation unit 175, 1 scrambling unit 178, second scrambling unit 179, first code block concatenation unit 180, second code block concatenation unit 181, first rate matching unit 182, second rate matching unit 183, first channel coding unit 186, Second channel coding unit 187, first code block division & code block CRC addition unit 190, second code block division & code block CRC addition unit 191, first transport block CRC addition unit 192, second transport block CRC addition Part 193 and first It includes first 8RAM168,173,176,177,184,185,188,189.
 第1~第8RAM168,173,176,177,184,185,188,189は、図7および図8では、理解を容易にするために、PDSCH変調部116を示す枠の外に記載されているが、実際には、PDSCH変調部116に含まれる。図8において、第3RAM173よりも左側の処理は、リソースブロック毎処理(略称:RBP)である。第3RAM173よりも右側の処理は、ユーザ毎処理(略称:USP)である。ユーザ毎処理は、時分割処理で行われ。ユーザ毎処理では、2つの回路が並列して動作するので、動作速度に制約がある。 The first to eighth RAMs 168, 173, 176, 177, 184, 185, 188, and 189 are described outside the frame showing the PDSCH modulation unit 116 in FIGS. 7 and 8 for easy understanding. Is actually included in the PDSCH modulation unit 116. In FIG. 8, the process on the left side of the third RAM 173 is a process for each resource block (abbreviation: RBP). The process on the right side of the third RAM 173 is a process for each user (abbreviation: USP). The processing for each user is performed by time division processing. In the process for each user, the two circuits operate in parallel, so that the operation speed is limited.
 図7およびその他の図面において、振幅調整部161は、「AA」と記載する。リソースエレメントマッピング部162は、「REM」と記載する。プリコーディング部163は、「PCOD」と記載する。レイヤマッピング部169は、「LM」と記載する。 7 and other drawings, the amplitude adjustment unit 161 is described as “AA”. The resource element mapping unit 162 is described as “REM”. The precoding unit 163 is described as “PCOD”. The layer mapping unit 169 is described as “LM”.
 図8およびその他の図面において、第1変調部174および第2変調部175は、「MOD」と記載する。第1スクランブリング部178および第2スクランブリング部179は、「SCR」と記載する。第1コードブロック連結部180および第2コードブロック連結部181は、「CBC」と記載する。第1レートマッチング部182および第2レートマッチング部183は、「RM」と記載する。第1チャネルコーディング部186および第2チャネルコーディング部187は、「CHC」と記載する。第1コードブロック分割&コードブロックCRC付加部190および第2コードブロック分割&コードブロックCRC付加部191は、「CBD/CBA」と記載する。 8 and other drawings, the first modulation unit 174 and the second modulation unit 175 are described as “MOD”. The first scrambling unit 178 and the second scrambling unit 179 are described as “SCR”. The first code block connecting unit 180 and the second code block connecting unit 181 are described as “CBC”. The first rate matching unit 182 and the second rate matching unit 183 are described as “RM”. The first channel coding unit 186 and the second channel coding unit 187 are described as “CHC”. First code block division & code block CRC adding section 190 and second code block division & code block CRC adding section 191 are described as “CBD / CBA”.
 図9およびその他の図面において、第1トランスポートブロックCRC付加部192および第2トランスポートブロックCRC付加部193は、「TBA」と記載する。 In FIG. 9 and other drawings, the first transport block CRC adding unit 192 and the second transport block CRC adding unit 193 are described as “TBA”.
 第1レートマッチング部182から出力される信号は、時分割で、第1コードブロック連結部180に入力される。第1コードブロック連結部180から出力される信号は、時分割で、第1スクランブリング部178に入力される。同様に、第2レートマッチング部183から出力される信号は、時分割で、第2コードブロック連結部181に入力される。第2コードブロック連結部181から出力される信号は、時分割で、第2スクランブリング部179に入力される。 The signal output from the first rate matching unit 182 is input to the first code block connection unit 180 in a time division manner. The signal output from the first code block concatenation unit 180 is input to the first scrambling unit 178 in a time division manner. Similarly, the signal output from the second rate matching unit 183 is input to the second code block concatenation unit 181 in a time division manner. The signal output from the second code block concatenation unit 181 is input to the second scrambling unit 179 in a time division manner.
 第1変調部174から出力されるI信号およびQ信号は、時分割で、レイヤマッピング部169に入力される。同様に、第2変調部175から出力されるI信号およびQ信号は、時分割で、レイヤマッピング部169に入力される。 The I signal and Q signal output from the first modulation unit 174 are input to the layer mapping unit 169 in a time division manner. Similarly, the I signal and the Q signal output from the second modulation unit 175 are input to the layer mapping unit 169 in a time division manner.
 プリコーディング部163は、アンテナマッピング部としても機能する。プリコーディング部163は、シングルアンテナポート送信部164、セル固有のRSの空間多重部165、ユーザ固有のRSの空間多重部166、およびダイバーシチ送信部167を備える。レイヤマッピング部169は、シングルアンテナポート送信部170、空間多重部171およびダイバーシチ送信部172を備える。図7およびその他の図面において、シングルアンテナポート送信部164,170は、「SAPTR」と記載する。セル固有のRSの空間多重部165は、「CSMP」と記載する。ユーザ固有のRSの空間多重部166は、「USMP」と記載する。ダイバーシチ送信部167,172は、「DTR」と記載する。空間多重部171は、「SMP」と記載する。 The precoding unit 163 also functions as an antenna mapping unit. Precoding section 163 includes single antenna port transmission section 164, cell-specific RS spatial multiplexing section 165, user-specific RS spatial multiplexing section 166, and diversity transmission section 167. The layer mapping unit 169 includes a single antenna port transmission unit 170, a spatial multiplexing unit 171 and a diversity transmission unit 172. In FIG. 7 and other drawings, the single antenna port transmission units 164 and 170 are described as “SAPTR”. The cell-specific RS spatial multiplexing section 165 is described as “CSMP”. The user-specific RS spatial multiplexing unit 166 is described as “USMP”. Diversity transmitters 167 and 172 are described as “DTR”. The spatial multiplexing unit 171 is described as “SMP”.
 レイヤマッピング部169は、第1変調部174および第2変調部175から入力されるI信号およびQ信号から、第1レイヤのI信号およびQ信号と、第2レイヤのI信号およびQ信号とを生成し、プリコーディング部163に出力する。図7およびその他の図面において、第1レイヤのI信号は、「FLI」と記載する。第1レイヤのQ信号は、「FLQ」と記載する。第2レイヤのI信号は、「SLI」と記載する。第2レイヤのQ信号は、「SLQ」と記載する。 The layer mapping unit 169 converts the I signal and Q signal of the first layer and the I signal and Q signal of the second layer from the I signal and Q signal input from the first modulation unit 174 and the second modulation unit 175. Generated and output to the precoding unit 163. In FIG. 7 and other drawings, the I signal of the first layer is described as “FLI”. The Q signal of the first layer is described as “FLQ”. The I signal of the second layer is described as “SLI”. The Q signal of the second layer is described as “SLQ”.
 プリコーディング部163は、レイヤマッピング部169から入力される第1および第2レイヤのI信号およびQ信号から、第1アンテナ17用のI信号およびQ信号と、第2アンテナ18用のI信号およびQ信号とを生成し、リソースエレメントマッピング部162に出力する。図7およびその他の図面において、第1アンテナ17用のI信号は、「FAI」と記載する。第1アンテナ17用のQ信号は、「FAQ」と記載する。第2アンテナ18用のI信号は、「SAI」と記載する。第2アンテナ18用のQ信号は、「SAQ」と記載する。 The precoding unit 163 receives the I signal and Q signal for the first antenna 17, the I signal for the second antenna 18, and the I signal and Q signal from the first and second layers input from the layer mapping unit 169. Q signal is generated and output to the resource element mapping unit 162. In FIG. 7 and other drawings, the I signal for the first antenna 17 is described as “FAI”. The Q signal for the first antenna 17 is described as “FAQ”. The I signal for the second antenna 18 is described as “SAI”. The Q signal for the second antenna 18 is described as “SAQ”.
 図7および図8に示すように、PBCH変調部117は、振幅調整部201、リソースエレメントマッピング部202、プリコーディング部203、レイヤマッピング部207、変調部211、スクランブリング部213、レートマッチング部214、チャネルコーディング部216、CRC付加部218、および第1~第5RAM206,210,212,215,217を備える。第1~第5RAM206,210,212,215,217は、図7および図8では、理解を容易にするために、PBCH変調部117を示す枠の外に記載されているが、実際には、PBCH変調部117に含まれる。プリコーディング部203は、シングルアンテナポート送信部204およびダイバーシチ送信部205を備える。レイヤマッピング部207は、シングルアンテナポート送信部208およびダイバーシチ送信部209を備える。 As shown in FIGS. 7 and 8, the PBCH modulation unit 117 includes an amplitude adjustment unit 201, a resource element mapping unit 202, a precoding unit 203, a layer mapping unit 207, a modulation unit 211, a scrambling unit 213, and a rate matching unit 214. A channel coding unit 216, a CRC adding unit 218, and first to fifth RAMs 206, 210, 212, 215, and 217. The first to fifth RAMs 206, 210, 212, 215, and 217 are described outside the frame showing the PBCH modulation unit 117 in FIGS. 7 and 8 for ease of understanding. It is included in PBCH modulation section 117. The precoding unit 203 includes a single antenna port transmission unit 204 and a diversity transmission unit 205. The layer mapping unit 207 includes a single antenna port transmission unit 208 and a diversity transmission unit 209.
 図7およびその他の図面において、振幅調整部201は、「AA」と記載する。リソースエレメントマッピング部202は、「REM」と記載する。プリコーディング部203は、「PCOD」と記載する。レイヤマッピング部207は、「LM」と記載する。変調部211は、「MOD」と記載する。スクランブリング部213は、「SCR」と記載する。レートマッチング部214は、「RM」と記載する。チャネルコーディング部216は、「CHC」と記載する。CRC付加部218は、「CRCA」と記載する。シングルアンテナポート送信部204,208は、「SAPTR」と記載する。ダイバーシチ送信部205,209は、「DTR」と記載する。 7 and other drawings, the amplitude adjustment unit 201 is described as “AA”. The resource element mapping unit 202 is described as “REM”. The precoding unit 203 is described as “PCOD”. The layer mapping unit 207 is described as “LM”. The modulation unit 211 is described as “MOD”. The scrambling unit 213 is described as “SCR”. The rate matching unit 214 describes “RM”. The channel coding unit 216 describes “CHC”. The CRC adding unit 218 is described as “CRCA”. Single antenna port transmitters 204 and 208 are described as “SAPTR”. Diversity transmitters 205 and 209 are described as “DTR”.
 図10および図11に示すように、PCFICH変調部118は、振幅調整部221、リソースエレメントマッピング部222、プリコーディング部223、レイヤマッピング部227、変調部231、スクランブリング部233、チャネルコーディング部235、および第1~第5RAM226,230,232,234,236を備える。第1~第4RAM226,230,232,234は、図10および図11では、理解を容易にするために、PCFICH変調部118を示す枠の外に記載されているが、実際には、PCFICH変調部118に含まれる。プリコーディング部223は、シングルアンテナポート送信部224およびダイバーシチ送信部225を備える。レイヤマッピング部227は、シングルアンテナポート送信部228およびダイバーシチ送信部229を備える。 10 and 11, the PCFICH modulation unit 118 includes an amplitude adjustment unit 221, a resource element mapping unit 222, a precoding unit 223, a layer mapping unit 227, a modulation unit 231, a scrambling unit 233, and a channel coding unit 235. , And first to fifth RAMs 226, 230, 232, 234, and 236. In FIG. 10 and FIG. 11, the first to fourth RAMs 226, 230, 232, and 234 are described outside the frame showing the PCFICH modulation unit 118 for easy understanding, but actually, the PCFICH modulation is performed. Part 118 is included. The precoding unit 223 includes a single antenna port transmission unit 224 and a diversity transmission unit 225. The layer mapping unit 227 includes a single antenna port transmission unit 228 and a diversity transmission unit 229.
 PDCCH変調部119は、振幅調整部241、リソースエレメントマッピング部242、プリコーディング部243、レイヤマッピング部247、変調部251、マルチプレクシング&スクランブリング部253、レートマッチング部254、チャネルコーディング部256、CRC付加部257、および第1~第5RAM246,250,252,255,258を備える。第1~第5RAM246,250,252,255,258は、図10および図11では、理解を容易にするために、PDCCH変調部119を示す枠の外に記載されているが、実際には、PDCCH変調部119に含まれる。プリコーディング部243は、シングルアンテナポート送信部244およびダイバーシチ送信部245を備える。レイヤマッピング部247は、シングルアンテナポート送信部248およびダイバーシチ送信部249を備える。 PDCCH modulation section 119 includes amplitude adjustment section 241, resource element mapping section 242, precoding section 243, layer mapping section 247, modulation section 251, multiplexing & scrambling section 253, rate matching section 254, channel coding section 256, CRC. An addition unit 257 and first to fifth RAMs 246, 250, 252, 255, and 258 are provided. The first to fifth RAMs 246, 250, 252, 255, and 258 are described outside the frame showing the PDCCH modulation unit 119 in FIG. 10 and FIG. 11 for ease of understanding. It is included in PDCCH modulation section 119. The precoding unit 243 includes a single antenna port transmission unit 244 and a diversity transmission unit 245. The layer mapping unit 247 includes a single antenna port transmission unit 248 and a diversity transmission unit 249.
 PHICH変調部120は、振幅調整部261、リソースエレメントマッピング部262、プリコーディング部263、レイヤマッピング部267、変調部271、チャネルコーディング部273、および第1~第4RAM266,270,272,274を備える。第1~第3RAM266,270,272は、図10および図11では、理解を容易にするために、PHICH変調部120を示す枠の外に記載されているが、実際には、PHICH変調部120に含まれる。プリコーディング部263は、シングルアンテナポート送信部264およびダイバーシチ送信部265を備える。レイヤマッピング部267は、シングルアンテナポート送信部268およびダイバーシチ送信部269を備える。 The PHICH modulation unit 120 includes an amplitude adjustment unit 261, a resource element mapping unit 262, a precoding unit 263, a layer mapping unit 267, a modulation unit 271, a channel coding unit 273, and first to fourth RAMs 266, 270, 272, and 274. . The first to third RAMs 266, 270, and 272 are described outside the frame showing the PHICH modulation unit 120 in FIG. 10 and FIG. 11 for easy understanding, but actually, the PHICH modulation unit 120 is shown. include. The precoding unit 263 includes a single antenna port transmission unit 264 and a diversity transmission unit 265. The layer mapping unit 267 includes a single antenna port transmission unit 268 and a diversity transmission unit 269.
 図10およびその他の図面において、振幅調整部221,241,261は、「AA」と記載する。リソースエレメントマッピング部222,242,262は、「REM」と記載する。プリコーディング部223,243,263は、「PCOD」と記載する。レイヤマッピング部227,247,267は、「LM」と記載する。シングルアンテナポート送信部224,228,244,248,264,268は、「SAPTR」と記載する。ダイバーシチ送信部225,229,245,249,265,269は、「DTR」と記載する。 10 and other drawings, the amplitude adjusters 221, 241, 261 are described as “AA”. The resource element mapping units 222, 242, and 262 are described as “REM”. The precoding units 223, 243, and 263 are described as “PCOD”. The layer mapping units 227, 247, and 267 are described as “LM”. The single antenna port transmission units 224, 228, 244, 248, 264, 268 are described as “SAPTR”. Diversity transmitters 225, 229, 245, 249, 265, and 269 are described as “DTR”.
 図11およびその他の図面において、変調部231,251,271は、「MOD」と記載する。スクランブリング部233は、「SCR」と記載する。チャネルコーディング部235,256,273は、「CHC」と記載する。マルチプレクシング&スクランブリング部253は、「MUX/SCR」と記載する。レートマッチング部254は、「RM」と記載する。CRC付加部257は、「CRCA」と記載する。 11 and other drawings, the modulation units 231, 251, and 271 are described as “MOD”. The scrambling unit 233 is described as “SCR”. Channel coding sections 235, 256, and 273 are described as “CHC”. The multiplexing & scrambling unit 253 is described as “MUX / SCR”. The rate matching unit 254 is described as “RM”. The CRC adding unit 257 is described as “CRCA”.
 図12に示すように、第2内蔵プロセッサ123は、第1振幅調整部281、第2振幅調整部282、リファレンス信号(Reference Signal)生成部283、第3振幅調整部291、第4振幅調整部292および同期信号(Synchronization Signal)生成部293を備える。リファレンス信号生成部283は、セル固有RS(Cell-specific RS;略称:CS-RS)部284および位置調整RS(Positioning RS;略称:P-RS)部285を備える。同期信号生成部293は、第1同期信号(Primary SS;略称:P-SS)部294および第2同期信号(Secondary SS;略称:S-SS)部295を備える。 As illustrated in FIG. 12, the second built-in processor 123 includes a first amplitude adjustment unit 281, a second amplitude adjustment unit 282, a reference signal generation unit 283, a third amplitude adjustment unit 291, and a fourth amplitude adjustment unit. 292 and a synchronization signal generation unit 293. The reference signal generation unit 283 includes a cell-specific RS (abbreviation: CS-RS) unit 284 and a position adjustment RS (abbreviation: P-RS) unit 285. The synchronization signal generation unit 293 includes a first synchronization signal (Primary SS; abbreviated as P-SS) unit 294 and a second synchronization signal (Secondary SS; abbreviated as S-SS) unit 295.
 セル固有RS部284、位置調整RS部285、P-SS部294およびS-SS部295は、それぞれシーケンス生成部286,287,296,297を備える。各振幅調整部281,282,291,292およびリファレンス信号生成部283は、第2内蔵プロセッサ(内蔵DSP)123のソフトウェア処理によって実現される。 The cell-specific RS unit 284, the position adjustment RS unit 285, the P-SS unit 294, and the S-SS unit 295 include sequence generation units 286, 287, 296, and 297, respectively. Each of the amplitude adjustment units 281, 282, 291, 292 and the reference signal generation unit 283 is realized by software processing of the second built-in processor (built-in DSP) 123.
 図12およびその他の図面において、第1振幅調整部281、第2振幅調整部282、第3振幅調整部291および第4振幅調整部292は、「AA」と記載する。リファレンス信号生成部283は、「RSG」と記載する。同期信号生成部293は、「SSG」と記載する。シーケンス生成部286,287,296,297は、「SEQG」と記載する。 12 and other drawings, the first amplitude adjustment unit 281, the second amplitude adjustment unit 282, the third amplitude adjustment unit 291 and the fourth amplitude adjustment unit 292 are referred to as “AA”. The reference signal generation unit 283 is described as “RSG”. The synchronization signal generation unit 293 is described as “SSG”. The sequence generation units 286, 287, 296, and 297 are described as “SEQG”.
 セル固有RS部284、位置調整RS部285、P-SS部294およびS-SS部295は、それぞれ、第1および第2アンテナ17,18に共通のI信号およびQ信号として、アンテナ共通I信号およびアンテナ共通Q信号を出力し、対応する振幅調整部281,282,291,292に与える。各振幅調整部281,282,291,292は、与えられたアンテナ共通I信号およびアンテナ共通Q信号の振幅を調整して出力し、対応するリソースエレメントマッピング部124,125,126,127に与える。図12およびその他の図面において、アンテナ共通I信号は、「ATCI」と記載する。アンテナ共通Q信号は、「ATCQ」と記載する。 Cell-specific RS unit 284, position adjustment RS unit 285, P-SS unit 294, and S-SS unit 295 are antenna common I signals as I signals and Q signals common to first and second antennas 17 and 18, respectively. The antenna common Q signal is output and supplied to the corresponding amplitude adjusting units 281, 282, 291, and 292. Each of the amplitude adjustment units 281, 282, 291, and 292 adjusts and outputs the amplitudes of the given antenna common I signal and antenna common Q signal, and provides them to the corresponding resource element mapping units 124, 125, 126, and 127. In FIG. 12 and other drawings, the antenna common I signal is described as “ATCI”. The antenna common Q signal is described as “ATCQ”.
 図7~図9に示すように、PDSCH変調部116では、第1~第8RAM168,173,176,177,184,185,188,189を、コードブロック分割&コードブロックCRC付加部190,191とチャネルコーディング部186,187との間、チャネルコーディング部186,187とレートマッチング182,183との間、スクランブリング部178,179と変調部174,175との間、レイヤマッピング部169、プリコーディング部163にそれぞれ接続することで、ユーザデータの一次格納を確保し、データの滞留による伝送レートの低下を防止している。 As shown in FIGS. 7 to 9, the PDSCH modulating unit 116 includes first to eighth RAMs 168, 173, 176, 177, 184, 185, 188, 189, code block division & code block CRC adding units 190, 191, and the like. Between channel coding units 186 and 187, between channel coding units 186 and 187 and rate matching 182 and 183, between scrambling units 178 and 179 and modulation units 174 and 175, layer mapping unit 169, and precoding unit Each connection to H.163 ensures primary storage of user data and prevents a decrease in transmission rate due to data retention.
 PDSCH変調部116の振幅調整部161およびリソースエレメントマッピング部162の制御は、第1内蔵プロセッサ(内蔵DSP)115の電力設定部194およびPDSCHのリソース割当て部195によって行われる。電力設定部194およびPDSCHのリソース割当て部195は、第1内蔵プロセッサ(内蔵DSP)115のソフトウェア処理によって実現される。 The control of the amplitude adjustment unit 161 and the resource element mapping unit 162 of the PDSCH modulation unit 116 is performed by the power setting unit 194 and the PDSCH resource allocation unit 195 of the first built-in processor (built-in DSP) 115. The power setting unit 194 and the PDSCH resource allocation unit 195 are realized by software processing of the first built-in processor (built-in DSP) 115.
 PBCH変調部117では、第1~第5RAM206,210,212,215,217を、CRC付加部218とチャネルコーディング部216との間、チャネルコーディング部216とレートマッチング部214との間、スクランブリング部213と変調部211との間、レイヤマッピング部207、プリコーディング部203にそれぞれ接続することで、ユーザデータの一次格納を確保し、データの滞留による伝送レートの低下を防止している。 In the PBCH modulation unit 117, the first to fifth RAMs 206, 210, 212, 215, and 217 are arranged between the CRC adding unit 218 and the channel coding unit 216, between the channel coding unit 216 and the rate matching unit 214, and a scrambling unit. By connecting the 213 and the modulation unit 211 to the layer mapping unit 207 and the precoding unit 203, primary storage of user data is ensured, and a decrease in transmission rate due to data retention is prevented.
 PCFICH変調部118では、第1~第5RAM226,230,232,234,236を、内蔵CPU102のCCFI生成部132とチャネルコーディング部235との間、チャネルコーディング部235とスクランブリング233部との間、スクランブリング部233と変調部231との間、レイヤマッピング227、プリコーディング部223にそれぞれ接続することで、ユーザデータの一次格納を確保し、データの滞留による伝送レートの低下を防止している。 In the PCFICH modulation unit 118, the first to fifth RAMs 226, 230, 232, 234, and 236 are arranged between the CCFI generation unit 132 and the channel coding unit 235 of the built-in CPU 102, between the channel coding unit 235 and the scrambling 233 unit, By connecting the scrambling unit 233 and the modulation unit 231 to the layer mapping 227 and the precoding unit 223, primary storage of user data is ensured, and a decrease in transmission rate due to data retention is prevented.
 PDCCH変調部119では、第1~第5RAM246,250,252,255,258を、CRC付加部257とチャネルコーディング256部との間、チャネルコーディング部256とレートマッチング部254との間、マルチプレクシング&スクランブリング部253と変調部251との間、レイヤマッピング部247、プリコーディング部243にそれぞれ接続することで、ユーザデータの一次格納を確保し、データの滞留による伝送レートの低下を防止している。記憶手段である第5RAM258に格納されるデータの大きさは比較的小さいので、記憶手段は、必ずしもRAMによって実現されなくてもよく、フリップフロップ(Flip Flop;略称:FF)などの回路レジスタによって実現されてもよい。 In the PDCCH modulation unit 119, the first to fifth RAMs 246, 250, 252, 255, and 258 are connected between the CRC adding unit 257 and the channel coding unit 256, between the channel coding unit 256 and the rate matching unit 254, multiplexed & By connecting the scrambling unit 253 and the modulation unit 251 to the layer mapping unit 247 and the precoding unit 243 respectively, primary storage of user data is ensured, and a decrease in transmission rate due to data retention is prevented. . Since the size of the data stored in the fifth RAM 258 as the storage means is relatively small, the storage means does not necessarily have to be realized by the RAM, and is realized by a circuit register such as a flip-flop (Flip Flop; abbreviation: FF). May be.
 本実施の形態では、各変調部117~120、RSリソースマッピング部121およびSSリソースマッピング部122と、各送信処理部111,113の各OFDM signal generation部149,159との間に、第1アンテナ用IFFT前データ格納RAM112および第2アンテナ用IFFT前データ格納RAM114を配置し、IFFT前のデータを一旦メモリに格納する。これによって、各OFDM signal generation部149,159内のIFFT回路の動作周波数と、各変調部117~120、RSリソースマッピング部121およびSSリソースマッピング部122の各動作周波数との差分を吸収する。 In the present embodiment, the first antenna is provided between each of the modulation units 117 to 120, the RS resource mapping unit 121 and the SS resource mapping unit 122, and each of the OFDM signals generation units 149 and 159 of the transmission processing units 111 and 113. The pre-IFFT data storage RAM 112 and the second antenna pre-IFFT data storage RAM 114 are arranged, and the pre-IFFT data is temporarily stored in the memory. Thus, the difference between the operating frequency of the IFFT circuit in each of the OFDM signal generation units 149 and 159 and the operating frequency of each of the modulation units 117 to 120, the RS resource mapping unit 121, and the SS resource mapping unit 122 is absorbed.
 これによって、各変調部117~120、RSリソースマッピング部121およびSSリソースマッピング部122の各動作周波数がIFFT回路の動作周波数より速い場合に、IFFT回路でデータを処理しきれずに、データが破棄されることを防ぐことができる。したがって、データ破棄に起因して、LTE回路部13の内蔵CPU34から内蔵DSP/L1エンジン部33への伝送レートが維持されずに低下してしまうことを防止することができる。 As a result, when the operating frequencies of the modulation units 117 to 120, the RS resource mapping unit 121, and the SS resource mapping unit 122 are faster than the operating frequency of the IFFT circuit, the IFFT circuit cannot process the data and the data is discarded. Can be prevented. Accordingly, it is possible to prevent the transmission rate from the built-in CPU 34 of the LTE circuit unit 13 to the built-in DSP / L1 engine unit 33 from being lowered without being maintained due to the data discarding.
 また本実施の形態では、各送信処理部111,113の各OFDM信号生成(signal generation)部149,159、各時間窓処理部145,146,155,156、および各DFE部141,142,151,152には、処理によるデータの一次格納を目的として、それぞれRAM143~150,153~160が接続され、各処理によるデータ破棄が無いようにしている。以上の構成によって、LTE機能において、高い伝送速度を満足することができる。 In this embodiment, the OFDM signal generation units 149, 159, the time window processing units 145, 146, 155, 156, and the DFE units 141, 142, 151 of the transmission processing units 111, 113 are used. , 152 are connected to RAMs 143 to 150 and 153 to 160 for the purpose of primary storage of data by processing, respectively, so that data is not discarded by each processing. With the above configuration, a high transmission rate can be satisfied in the LTE function.
 図13は、図1に示す第1DFE部31、第2DFE部32、SC-FDMA部37、およびLTE回路部13の内蔵DSP/L1エンジン部33の具体的な構成を示すブロック図である。図13では、LTEレイヤ1の上り信号処理に関係する部分の構成を示す。また図13では、LTE回路部13の内蔵CPU34のうち、LTEレイヤ1の上り信号処理に関係する部分の構成を併せて示す。図14~図23は、図13に示す各部の詳細な構成を示すブロック図である。 FIG. 13 is a block diagram showing a specific configuration of the first DFE unit 31, the second DFE unit 32, the SC-FDMA unit 37, and the built-in DSP / L1 engine unit 33 of the LTE circuit unit 13 shown in FIG. FIG. 13 shows a configuration of a part related to uplink signal processing of LTE layer 1. FIG. 13 also shows the configuration of the part related to the uplink signal processing of the LTE layer 1 in the built-in CPU 34 of the LTE circuit unit 13. 14 to 23 are block diagrams showing the detailed configuration of each unit shown in FIG.
 図13に示すように、LTE回路部301は、第1受信処理部311、第2受信処理部313、物理上り共有チャネル(Physical Uplink Shared Channel;略称:PUSCH)復調部315、物理上り制御チャネル(Physical Uplink Control Channel;略称:PUCCH)復調部316、物理ランダムアクセスチャネル(Physical Random Access Channel;略称:PRACH)検出部317、サウンドリファレンス信号(Sounding Reference Signal;略称:SRS)復調部318、第1RAM319、第2RAM320、第3RAM321およびチャネル分離部322を備える。チャネル分離部322は、第1アンテナ用高速フーリエ変換(Fast Fourier Transform;略称:FFT)後データRAM312および第2アンテナ用FFT後データRAM314を備える。 As illustrated in FIG. 13, the LTE circuit unit 301 includes a first reception processing unit 311, a second reception processing unit 313, a physical uplink shared channel (Physical Uplink Shared Channel; abbreviation: PUSCH) demodulation unit 315, a physical uplink control channel ( Physical Uplink Control Channel; abbreviation: PUCCH) demodulator 316, physical random access channel (abbreviation: PRACH) detector 317, sound reference signal (Sounding Reference Signal; abbreviation: SRS) demodulator 318, first RAM 319, A second RAM 320, a third RAM 321 and a channel separation unit 322 are provided. The channel separation unit 322 includes a first-antenna fast Fourier transform (Fast Transform; abbreviation: FFT) post-FFT data RAM 312 and a second antenna post-FFT data RAM 314.
 図13およびその他の図面において、第1受信処理部311および第2受信処理部313は、「REP」と記載する。第1アンテナ用FFT後データRAM312および第2アンテナ用FFT後データRAM314は、「RAM」と記載する。PUSCH復調部315は、「PUSCH DEM」と記載する。PUCCH復調部316は、「PUCCH DEM」と記載する。PRACH検出部317は、「PRACHD」と記載する。SRS復調部318は、「SRS DEM」と記載する。 13 and other drawings, the first reception processing unit 311 and the second reception processing unit 313 are described as “REP”. The first antenna post-FFT data RAM 312 and the second antenna post-FFT data RAM 314 are referred to as “RAM”. The PUSCH demodulator 315 is described as “PUSCH DEM”. The PUCCH demodulation unit 316 is described as “PUCCH DEM”. The PRACH detection unit 317 is described as “PRACHD”. The SRS demodulator 318 is described as “SRS DEM”.
 内蔵CPU302は、物理リソースデマッピング部331、MAC部332、スケジューラ333、信号電力対干渉電力比(Signal power-to-Interference power Ratio;略称:SIR)推定部334および計算部335を備える。図13およびその他の図面において、物理リソースデマッピング部331は、「PRD」と記載する。SIR推定部334は、「SIRP」と記載する。計算部335は、「CLC」と記載する。 The built-in CPU 302 includes a physical resource demapping unit 331, a MAC unit 332, a scheduler 333, a signal power-to-interference power ratio (abbreviation: SIR) estimation unit 334 and a calculation unit 335. In FIG. 13 and other drawings, the physical resource demapping unit 331 describes “PRD”. The SIR estimation unit 334 is described as “SIRP”. The calculation unit 335 is described as “CLC”.
 第1受信処理部311は、第1アナログ/ディジタル(Analog/Digital;略称:A/D)変換部303と第1アンテナ用FFT後データ格納RAM312との間に設けられており、第1A/D変換部303および第1アンテナ用FFT後データ格納RAM312にそれぞれ接続されている。 The first reception processing unit 311 is provided between the first analog / digital (abbreviation: A / D) conversion unit 303 and the first post-FFT data storage RAM 312 for the first antenna. The converter 303 and the first antenna post-FFT data storage RAM 312 are connected to each other.
 第2受信処理部313は、第2A/D変換部304と第2アンテナ用FFT後データ格納RAM314との間に設けられており、第2A/D変換部304および第2アンテナ用FFT後データ格納RAM314にそれぞれ接続されている。 The second reception processing unit 313 is provided between the second A / D conversion unit 304 and the second antenna post-FFT data storage RAM 314, and stores the second A / D conversion unit 304 and the second antenna post-FFT data storage. Each is connected to the RAM 314.
 図14は、第1受信処理部311およびその周辺部の詳細な構成を示すブロック図である。図15は、第2受信処理部313およびその周辺部の詳細な構成を示すブロック図である。図16~図21は、第1アンテナ用FFT後データ格納RAM312、第2アンテナ用FFT後データ格納RAM314、PUSCH復調部315およびPUCCH復調部316、ならびにそれらの周辺部の詳細な構成を示すブロック図である。図16と図17とは、境界線L5で接続されている。図16と図18とは、境界線L6で接続されている。図18と図19とは、境界線L7で接続されている。図19と図20とは、境界線L8で接続されている。図18と図21とは、境界線L9で接続されている。図22および図23は、PRACH検出部317およびSRS復調部318、ならびにそれらの周辺部の詳細な構成を示すブロック図である。図22と図23とは、境界線L10で接続されている。図14~図23では、理解を容易にするために、各部を示す枠の外にRAMを記載している場合があるが、RAMは、実際には各部に含まれる。 FIG. 14 is a block diagram showing a detailed configuration of the first reception processing unit 311 and its peripheral units. FIG. 15 is a block diagram showing a detailed configuration of the second reception processing unit 313 and its peripheral part. FIGS. 16 to 21 are block diagrams showing detailed configurations of the first antenna post-FFT data storage RAM 312, the second antenna post-FFT data storage RAM 314, the PUSCH demodulator 315 and the PUCCH demodulator 316, and their peripheral parts. It is. 16 and 17 are connected by a boundary line L5. 16 and 18 are connected by a boundary line L6. 18 and 19 are connected by a boundary line L7. 19 and 20 are connected by a boundary line L8. 18 and 21 are connected by a boundary line L9. 22 and 23 are block diagrams illustrating detailed configurations of the PRACH detection unit 317, the SRS demodulation unit 318, and their peripheral portions. 22 and FIG. 23 are connected by a boundary line L10. In FIG. 14 to FIG. 23, in order to facilitate understanding, a RAM may be described outside the frame indicating each part, but the RAM is actually included in each part.
 図14に示すように、第1受信処理部311は、第1DFE部341、第2DFE部342、第1RAM343、第2RAM344、第1PRACH以外用SC-FDMA周波数ドメイン信号発生(frequency domain signal generator)部345、第3RAM346、第1PRACH用SC-FDMA周波数ドメイン信号発生部347および第4RAM348を備える。第1DFE部341は、第1A/D変換部303のI信号用A/D変換部305に接続される。第2DFE部342は、第1A/D変換部303のQ信号用A/D変換部306に接続される。 As shown in FIG. 14, the first reception processing unit 311 includes a first DFE unit 341, a second DFE unit 342, a first RAM 343, a second RAM 344, and an SC-FDMA frequency domain signal generation (frequency / domain / signal / generator) unit 345 other than the first PRACH. , A third RAM 346, a first PRACH SC-FDMA frequency domain signal generator 347, and a fourth RAM 348. The first DFE unit 341 is connected to the I signal A / D conversion unit 305 of the first A / D conversion unit 303. The second DFE unit 342 is connected to the Q signal A / D conversion unit 306 of the first A / D conversion unit 303.
 第1DFE部341および第2DFE部342は、それぞれ、AGC、およびFIRなどのディジタルフィルタを含む。第1PRACH以外用SC-FDMA周波数ドメイン信号発生部345および第1PRACH用SC-FDMA周波数ドメイン信号発生部347は、それぞれ、CP除去およびFFTの処理を行う。 The first DFE unit 341 and the second DFE unit 342 include digital filters such as AGC and FIR, respectively. SC-FDMA frequency domain signal generation section 345 for first non-PRACH and SC-FDMA frequency domain signal generation section 347 for first PRACH perform CP removal and FFT processing, respectively.
 図14およびその他の図面において、第1PRACH以外用SC-FDMA周波数ドメイン信号発生部345は、「PRACH以外用SC-FDMA FDSG」と記載する。第1PRACH用SC-FDMA周波数ドメイン信号発生部347は、「PRACH用SC-FDMA FDSG」と記載する。チャネル分離部322は、「CHS」と記載する。 14 and other drawings, the SC-FDMA frequency domain signal generation unit 345 for the first non-PRACH is described as “SC-FDMA FDSG for other than PRACH”. The first PRACH SC-FDMA frequency domain signal generator 347 is described as “PRACH SC-FDMA FDSG”. The channel separation unit 322 is described as “CHS”.
 図15に示すように、第2受信処理部313は、第3DFE部351、第4DFE部352、第5RAM353、第6RAM354、第2PRACH以外用SC-FDMA周波数ドメイン信号発生部355、第7RAM356、第2PRACH用SC-FDMA周波数ドメイン信号発生部357および第8RAM358を備える。第3DFE部351は、第2A/D変換部304のI信号用A/D変換部307に接続される。第4DFE部352は、第2A/D変換部304のQ信号用A/D変換部308に接続される。 As shown in FIG. 15, the second reception processing unit 313 includes the third DFE unit 351, the fourth DFE unit 352, the fifth RAM 353, the sixth RAM 354, the SC-FDMA frequency domain signal generation unit 355 other than the second PRACH, the seventh RAM 356, the second PRACH. SC-FDMA frequency domain signal generator 357 and eighth RAM 358 are provided. The third DFE unit 351 is connected to the I signal A / D conversion unit 307 of the second A / D conversion unit 304. The fourth DFE unit 352 is connected to the Q signal A / D conversion unit 308 of the second A / D conversion unit 304.
 第3DFE部351および第4DFE部352は、それぞれ、AGC、およびFIRなどのディジタルフィルタを含む。第2PRACH以外用SC-FDMA周波数ドメイン信号発生部355および第2PRACH用SC-FDMA周波数ドメイン信号発生部357は、それぞれ、CP除去およびFFTの処理を行う。 The third DFE unit 351 and the fourth DFE unit 352 include digital filters such as AGC and FIR, respectively. The SC-FDMA frequency domain signal generation unit 355 for other than the second PRACH and the SC-FDMA frequency domain signal generation unit 357 for the second PRACH perform CP removal and FFT processing, respectively.
 図15およびその他の図面において、第2PRACH以外用SC-FDMA周波数ドメイン信号発生部355は、「PRACH以外用SC-FDMA FDSG」と記載する。第2PRACH用SC-FDMA周波数ドメイン信号発生部357は、「PRACH用SC-FDMA FDSG」と記載する。 15 and other drawings, the SC-FDMA frequency domain signal generation unit 355 other than the second PRACH is described as “SC-FDMA FDSG for other than PRACH”. The second PRACH SC-FDMA frequency domain signal generator 357 is described as “PRACH SC-FDMA FDSG”.
 図16および図18~図20に示すように、PUSCH復調部315は、プリデコーディング部361、内蔵プロセッサ362、SinCos Table部367、対数尤度比(Log-Likelihood Ratio;略称:LLR)部375、チャネル分離(Channel Separate;略称:CHSEP)部376、CHDEC_DATA部381、第1チャネルデコーディング部394、第2チャネルデコーディング部395、第3チャネルデコーディング部396、第4チャネルデコーディング部386、コードブロックCRCチェック/コードブロック連結部388、トランスポートブロックCRCチェック部389、および第1~第12RAM364,366,369,374,378,383,385,387,390~393を備える。LLR部375は、復調部としても機能する。第4チャネルデコーディング部386は、前方誤り訂正(Forward Error Correction;略称:FEC)を行う。 As shown in FIGS. 16 and 18 to 20, the PUSCH demodulator 315 includes a predecoding unit 361, a built-in processor 362, a SinCos Table unit 367, and a log likelihood ratio (abbreviation: LLR) unit 375. Channel separation (abbreviation: CHSEP) unit 376, CHDEC_DATA unit 381, first channel decoding unit 394, second channel decoding unit 395, third channel decoding unit 396, fourth channel decoding unit 386, A code block CRC check / code block coupling unit 388, a transport block CRC check unit 389, and first to twelfth RAMs 364, 366, 369, 374, 378, 383, 385, 387, 390 to 393 are provided. The LLR unit 375 also functions as a demodulation unit. The fourth channel decoding unit 386 performs forward error correction (abbreviation: FEC).
 図16および図18~図20、ならびにその他の図面において、プリデコーディング部361は、「PCOD」と記載する。内蔵プロセッサ362は、「BP」と記載する。SinCos Table部367は、「SCT」と記載する。LLR(復調)部375は、「LLR(DEM)」と記載する。第1チャネルデコーディング部394、第2チャネルデコーディング部395、第3チャネルデコーディング部396および第4チャネルデコーディング部386は、「CHDEC」と記載する。コードブロックCRCチェック/コードブロック連結部388は、「CBCRCC/CBC」と記載する。トランスポートブロックCRCチェック部389は、「TBCRCC」と記載する。ランク指標(rank indication)は、「RI」と記載する。 16 and FIGS. 18 to 20 and other drawings, the predecoding unit 361 is described as “PCOD”. The built-in processor 362 is described as “BP”. The SinCos Table part 367 is described as “SCT”. The LLR (demodulation) unit 375 is described as “LLR (DEM)”. The first channel decoding unit 394, the second channel decoding unit 395, the third channel decoding unit 396, and the fourth channel decoding unit 386 are described as “CHDEC”. The code block CRC check / code block concatenation unit 388 is described as “CBCRCC / CBC”. The transport block CRC check unit 389 is described as “TBCRCC”. The rank indicator is described as “RI”.
 図16および図18に示すように、プリデコーディング部361は、周波数領域等化器(Frequency Domain Equalizer;略称:FDE)363、DATA回転部365および逆離散フーリエ変換(Inverse Discrete Fourier Transform;略称:IDFT)部368を備える。図18およびその他の図面において、DATA回転部365は、「DATAR」と記載する。 As shown in FIGS. 16 and 18, the predecoding unit 361 includes a frequency domain equalizer (abbreviation: FDE) 363, a DATA rotation unit 365, and an inverse discrete Fourier transform (Inverse / Discrete / Fourier / Transform). IDFT) unit 368. In FIG. 18 and other drawings, the DATA rotating unit 365 is described as “DATAAR”.
 図16に示すように、内蔵プロセッサ362は、レプリカ乗算部370、シーケンス再生部371、チャネル推定部372およびSinCos Table部373を備える。シーケンス再生部371は、レプリカ生成部としても機能する。図16およびその他の図面において、レプリカ乗算部370は、「RMUL」と記載する。シーケンス再生部371は、「SEQRG」と記載する。チャネル推定部372は、「CHP」と記載する。SinCos Table部373は、「SCT」と記載する。 As shown in FIG. 16, the built-in processor 362 includes a replica multiplication unit 370, a sequence reproduction unit 371, a channel estimation unit 372, and a SinCos Table unit 373. The sequence playback unit 371 also functions as a replica generation unit. In FIG. 16 and other drawings, the replica multiplier 370 is described as “RMUL”. The sequence reproduction unit 371 is described as “SEQRG”. The channel estimation unit 372 is described as “CHP”. The SinCos Table part 373 is described as “SCT”.
 図18および図19に示すように、CHSEP部376は、デスクランブリング部(以下「デスクランブル部」という場合がある)377、チャネルデインタリーブ部(以下、単に「デインタリーブ部」という場合がある)379およびデータ&制御情報分離部380を備える。図18および図19、ならびにその他の図面において、デスクランブリング部377は、「DSCR」または「DSC」と記載する。チャネルデインタリーブ部379は、「CHDI」または「DI」と記載する。データ&制御情報分離部380は、「D/CISEP」または「DEMUX」と記載する。上りリンク共有チャネル(Uplink Shared channel)は、「UL-SCH」と記載する。上り制御情報(Uplink Control Information)は、「UCI」と記載する。 As shown in FIGS. 18 and 19, the CHSEP unit 376 includes a descrambling unit (hereinafter also referred to as “descramble unit”) 377, a channel deinterleaving unit (hereinafter also simply referred to as “deinterleaving unit”). 379 and a data & control information separator 380. 18 and 19 and other drawings, the descrambling unit 377 is described as “DSCR” or “DSC”. The channel deinterleaving unit 379 is described as “CHDI” or “DI”. The data & control information separation unit 380 is described as “D / CISEP” or “DEMUX”. The uplink shared channel (Uplink Shared channel) is described as “UL-SCH”. The uplink control information (Uplink Control Information) is described as “UCI”.
 図19に示すように、CHDEC_DATA部381は、コードブロック分割部382およびレートデマッチング部384を備える。図19およびその他の図面において、コードブロック分割部382は、「CBP」と記載する。レートデマッチング部384は、「RDM」と記載する。 As shown in FIG. 19, the CHDEC_DATA unit 381 includes a code block dividing unit 382 and a rate dematching unit 384. In FIG. 19 and other drawings, the code block dividing unit 382 is described as “CBP”. The rate dematching unit 384 is described as “RDM”.
 図21に示すように、PUCCH復調部316は、第1RAM401、LLR部402、第2RAM405およびチャネルデコーディング部406を備える。LLR部402は、復調部としても機能する。LLR部402は、第1フォーマット部403および第2フォーマット部404を備える。第1フォーマット部403は、PUCCHのフォーマットとして、フォーマット1、フォーマット1aおよびフォーマット1bを保持する。第2フォーマット部404は、PUCCHのフォーマットとして、フォーマット2、フォーマット2aおよびフォーマット2bを保持する。チャネルデコーディング部406は、ハイブリッド自動再送要求(Hybrid Automatic Repeat Request;略称:HARQ)-ACK部407、スケジューリングリクエスト部408、チャネル品質インジケータ(Channel Quality Indicator;略称:CQI)部409およびCQI&HARQ-ACK部410を備える。 As shown in FIG. 21, the PUCCH demodulation unit 316 includes a first RAM 401, an LLR unit 402, a second RAM 405, and a channel decoding unit 406. The LLR unit 402 also functions as a demodulation unit. The LLR unit 402 includes a first format unit 403 and a second format unit 404. The first format unit 403 holds format 1, format 1a, and format 1b as PUCCH formats. The second format unit 404 holds format 2, format 2a, and format 2b as PUCCH formats. The channel decoding unit 406 includes a hybrid automatic retransmission request (abbreviation: HARQ) -ACK unit 407, a scheduling request unit 408, a channel quality indicator (abbreviation: CQI) unit 409, and a CQI & HARQ-ACK unit. 410.
 図21およびその他の図面において、LLR(復調)部402は、「LLR(DEM)」と記載する。フォーマットは、「F」と記載する場合がある。チャネルデコーディング部406は、「CHDEC」と記載する。スケジューリングリクエスト部408およびスケジューリングリクエストは、「SCHR」と記載する。 21 and other drawings, the LLR (demodulation) unit 402 is described as “LLR (DEM)”. The format may be described as “F”. The channel decoding unit 406 is described as “CHDEC”. The scheduling request unit 408 and the scheduling request are described as “SCHR”.
 図22に示すように、PRACH検出部317は、R2BF(Radix2 Butter Fly)部411、第1RAM415、PD部416および第2RAM420を備える。R2BF部411は、プリアンブル乗算部412、プリアンブルシーケンス再生部413およびIFFT部414を備える。PD部416は、補間部417、プリアンブル電力合成部(以下、単に「電力合成部」という場合がある)418およびブランチ合成部419を備える。 22, the PRACH detection unit 317 includes an R2BF (Radix2 Butter Fly) unit 411, a first RAM 415, a PD unit 416, and a second RAM 420. The R2BF unit 411 includes a preamble multiplying unit 412, a preamble sequence reproducing unit 413, and an IFFT unit 414. The PD unit 416 includes an interpolation unit 417, a preamble power combining unit (hereinafter also simply referred to as “power combining unit”) 418, and a branch combining unit 419.
 図22およびその他の図面において、プリアンブル乗算部412は、「MUL」と記載する。プリアンブルシーケンス再生部413は、「PRESRG」と記載する。補間部417は、「IPL」と記載する。プリアンブル電力合成部418は、「PWS」と記載する。ブランチ合成部419は、「BRS」と記載する。 In FIG. 22 and other drawings, the preamble multiplication unit 412 is described as “MUL”. The preamble sequence playback unit 413 is described as “PRERG”. The interpolation unit 417 is described as “IPL”. The preamble power combining unit 418 is described as “PWS”. The branch composition unit 419 is described as “BRS”.
 SRS復調部318は、演算部421およびRAM424を備える。演算部421は、乗算部422およびシーケンス再生部423を備える。図21およびその他の図面において、乗算部422は、「MUL」と記載する。シーケンス再生部423は、「SEQRG」と記載する。 The SRS demodulation unit 318 includes a calculation unit 421 and a RAM 424. The calculation unit 421 includes a multiplication unit 422 and a sequence playback unit 423. In FIG. 21 and other drawings, the multiplication unit 422 is described as “MUL”. The sequence reproduction unit 423 is described as “SEQRG”.
 図23に示すように、内蔵CPU302の計算部335は、ピーク検出部431、第1干渉電力計算部432、第2干渉電力計算部433および信号電力計算部434を備える。ピーク検出部431、第1干渉電力計算部432、第2干渉電力計算部433および信号電力計算部434は、それぞれスケジューラ333に接続される。図23およびその他の図面において、ピーク検出部431は、「PD」と記載する。第1干渉電力計算部432および第2干渉電力計算部433は、「IPC」と記載する。信号電力計算部434は、「SPC」と記載する。 23, the calculation unit 335 of the built-in CPU 302 includes a peak detection unit 431, a first interference power calculation unit 432, a second interference power calculation unit 433, and a signal power calculation unit 434. The peak detection unit 431, the first interference power calculation unit 432, the second interference power calculation unit 433, and the signal power calculation unit 434 are each connected to the scheduler 333. In FIG. 23 and other drawings, the peak detector 431 is described as “PD”. The first interference power calculation unit 432 and the second interference power calculation unit 433 are described as “IPC”. The signal power calculation unit 434 is described as “SPC”.
 ピーク検出部431は、第1RAM319を介して、PRACH検出部317のPD部416のブランチ合成部419に接続される。第1干渉電力計算部432は、第2RAM320を介して、SRS復調部318に接続される。第2干渉電力計算部433および信号電力計算部434は、それぞれ、第3RAM321を介して、SRS復調部318の演算部421に接続される。 The peak detection unit 431 is connected to the branch synthesis unit 419 of the PD unit 416 of the PRACH detection unit 317 via the first RAM 319. The first interference power calculation unit 432 is connected to the SRS demodulation unit 318 via the second RAM 320. The second interference power calculation unit 433 and the signal power calculation unit 434 are each connected to the calculation unit 421 of the SRS demodulation unit 318 via the third RAM 321.
 図16、図18~図20に示すように、PUSCH復調部315では、第1~第12RAM364,366,369,374,378,383,385,387,390~393を、FDE部363、DATA回転部365、IDFT部368、IDFT部368とLLR部375との間、デスクランブリング部377とチャネルデインタリーブ部379との間、コードブロック分割部382とレートデマッチング部384との間、レートデマッチング部384と第4チャネルデコーディング部386との間、第4チャネルデコーディング部386とコードブロックCRCチェック/コードブロック連結部388との間、トランスポートブロックCRCチェック部389、データ&制御情報分離部380とCQIに対応する第1チャネルデコーディング部394との間、データ&制御情報分離部380とHARQ-ACKに対応する第2チャネルデコーディング部395との間、データ&制御情報分離部380とRIに対応する第3チャネルデコーディング部396との間にそれぞれ接続している。またIDFT部368とPUCCH復調部316のLLR部402との間に第1RAM401を接続している。これによって、ユーザデータの一次格納を確保し、データの滞留による伝送レートの低下を防止している。 As shown in FIGS. 16 and 18 to 20, in the PUSCH demodulator 315, the first to twelfth RAMs 364, 366, 369, 374, 378, 383, 385, 387, 390 to 393 are replaced with the FDE unit 363 and the DATA rotation. Unit 365, IDFT unit 368, between IDFT unit 368 and LLR unit 375, between descrambling unit 377 and channel deinterleaving unit 379, between code block division unit 382 and rate dematching unit 384, rate dematching Unit 384 and the fourth channel decoding unit 386, between the fourth channel decoding unit 386 and the code block CRC check / code block concatenation unit 388, a transport block CRC check unit 389, a data & control information separation unit 380 and first channel data corresponding to CQI Between the coding unit 394, between the data & control information separating unit 380 and the second channel decoding unit 395 corresponding to HARQ-ACK, and between the data & control information separating unit 380 and the third channel decoding unit corresponding to RI 396 and 396, respectively. A first RAM 401 is connected between the IDFT unit 368 and the LLR unit 402 of the PUCCH demodulation unit 316. As a result, primary storage of user data is ensured, and a decrease in transmission rate due to data retention is prevented.
 本実施の形態では、PUSCH復調部315において、レプリカ乗算部370、チャネル推定部372、シーケンス再生部371およびSinCos Table部373は、内蔵プロセッサ362内に搭載しているが、回路で実現しても構わない。またレプリカ乗算部370は、内蔵CPU302のSIR推定部334に接続されているが、SIR推定部334をPUSCH復調部315の内蔵プロセッサ362内に搭載しても構わないし、回路で実現しても構わない。 In the present embodiment, in PUSCH demodulation section 315, replica multiplication section 370, channel estimation section 372, sequence playback section 371, and SinCos Table section 373 are mounted in built-in processor 362, but may be realized by a circuit. I do not care. The replica multiplier 370 is connected to the SIR estimator 334 of the built-in CPU 302. However, the SIR estimator 334 may be mounted in the built-in processor 362 of the PUSCH demodulator 315 or may be realized by a circuit. Absent.
 図21に示すように、PUCCH復調部316では、半導体RAMである第2RAM405をLLR部402とチャネルデコーディング部406との間に接続することで、PUCCH信号の一次格納を確保し、データの滞留による伝送レートの低下を防止している。また、Demodulation RSを用いたFDE、DATA回転、IDFT処理を、PUSCH復調部315のプリコーディング部361で共通化することにより、回路規模の削減、小型化を実現することができるので、低消費電力化を実現することができる。 As shown in FIG. 21, the PUCCH demodulation unit 316 secures the primary storage of the PUCCH signal by connecting the second RAM 405, which is a semiconductor RAM, between the LLR unit 402 and the channel decoding unit 406, and retains data. This prevents the transmission rate from decreasing. In addition, FDE, DATA rotation, and IDFT processing using Demodulation RS can be shared by the precoding unit 361 of the PUSCH demodulator 315, so that the circuit scale can be reduced and the size can be reduced. Can be realized.
 図22に示すように、PRACH検出部317では、第1および第2RAM415,420を、R2BF部411のプリアンブル乗算部412、PD部416のプリアンブル電力合成部418にそれぞれ接続している。またブランチ合成部419と内蔵CPU302の計算部335のピーク検出部431との間に第1RAM319を接続している。これによって、PRACH信号の一次格納を確保し、データの滞留による伝送レートの低下を防止している。 22, in the PRACH detection unit 317, the first and second RAMs 415 and 420 are connected to the preamble multiplication unit 412 of the R2BF unit 411 and the preamble power combining unit 418 of the PD unit 416, respectively. A first RAM 319 is connected between the branch synthesis unit 419 and the peak detection unit 431 of the calculation unit 335 of the built-in CPU 302. As a result, primary storage of the PRACH signal is secured, and a decrease in transmission rate due to data retention is prevented.
 本実施の形態では、PRACH検出部317において、ブランチ合成部419は、内蔵CPU302の計算部335のピーク検出部431に接続されているが、ピーク検出部431をPRACH検出部317のプリアンブル電力合成部418に含めても構わない。 In the present embodiment, in the PRACH detection unit 317, the branch combination unit 419 is connected to the peak detection unit 431 of the calculation unit 335 of the built-in CPU 302, but the peak detection unit 431 is replaced with the preamble power combination unit of the PRACH detection unit 317. 418 may be included.
 図22に示すように、SRS復調部318では、RAM424を演算部421に接続することで、SRS信号の一次格納を確保し、データの滞留による伝送レートの低下を防止している。本実施の形態では、SRS復調部318は、内蔵CPU302の計算部335の第1干渉電力計算部432、第2干渉電力計算部433、信号電力計算部434にそれぞれ接続されているが、それら第1干渉電力計算部432、第2干渉電力計算部433、信号電力計算部434をSRS復調部318に含めても構わない。 As shown in FIG. 22, in the SRS demodulator 318, the RAM 424 is connected to the arithmetic unit 421 to ensure the primary storage of the SRS signal and prevent the transmission rate from being lowered due to data retention. In this embodiment, the SRS demodulation unit 318 is connected to the first interference power calculation unit 432, the second interference power calculation unit 433, and the signal power calculation unit 434 of the calculation unit 335 of the built-in CPU 302. The first interference power calculation unit 432, the second interference power calculation unit 433, and the signal power calculation unit 434 may be included in the SRS demodulation unit 318.
 図14および図15に示すように、各A/D変換部305~308によってディジタル信号に変換された受信信号は、各DFE部341,342,351,352の帯域制限によって、LTE方式に割当てられた帯域を占有している信号のみ通過することができる。通過したLTE方式の信号は、各SC-FDMA周波数ドメイン信号発生部345,347,355,357によって、CP除去およびFFTの処理が施される。PRACH信号のみ、PRACH用のSC-FDMA周波数ドメイン信号発生部である各PRACH用SC-FDMA周波数ドメイン信号発生部347,357で処理される。 As shown in FIGS. 14 and 15, the received signals converted into digital signals by the A / D converters 305 to 308 are assigned to the LTE system by band limitation of the DFE units 341, 342, 351, and 352. Only signals that occupy the same band can pass. The passed LTE signal is subjected to CP removal and FFT processing by each SC-FDMA frequency domain signal generator 345, 347, 355, 357. Only the PRACH signal is processed by each PRACH SC-FDMA frequency domain signal generator 347, 357, which is a PRACH SC-FDMA frequency domain signal generator.
 各SC-FDMA周波数ドメイン信号発生部345,347,355,357で処理された受信信号は、チャネル分離部322の各RAM312,314に格納される。PUSCH復調部315、PRACH検出部317、SRS復調部318は、チャネル分離部322の各RAM312,314に格納された信号のうち、該当する帯域の信号を取得し、それぞれの処理を行う。 The received signals processed by the SC-FDMA frequency domain signal generators 345, 347, 355, and 357 are stored in the RAMs 312 and 314 of the channel separator 322, respectively. The PUSCH demodulator 315, the PRACH detector 317, and the SRS demodulator 318 acquire signals in the corresponding band from the signals stored in the RAMs 312 and 314 of the channel separator 322, and perform the respective processes.
 各SC-FDMA周波数ドメイン信号発生部345,347,355,357は、主に、3GPP TS36.211に定義された機能を行う。また各受信処理部311,313では、各SC-FDMA周波数ドメイン信号発生部345,347,355,357に、それぞれRAM346,348,356,358を接続することで、FFT前の信号の一次格納を確保し、データの滞留による伝送レートの低下を防止している。 Each SC-FDMA frequency domain signal generation unit 345, 347, 355, 357 mainly performs the functions defined in 3GPP TS 36.211. In each reception processing unit 311, 313, RAMs 346, 348, 356, and 358 are connected to the SC-FDMA frequency domain signal generation units 345, 347, 355, and 357, respectively, thereby performing primary storage of signals before FFT. To prevent a decrease in transmission rate due to data retention.
 チャネル分離部322は、第1アンテナ用FFT後データ格納RAM312および第2アンテナ用FFT後データ格納RAM314のメモリで構成される。 The channel separation unit 322 includes memories of a first antenna post-FFT data storage RAM 312 and a second antenna post-FFT data storage RAM 314.
 図24は、図13に示すLTEレイヤ1の上り信号処理に関係する部分のうち、FFTよりも上位側の処理に関係する部分の構成を示すブロック図である。図24では、主に、復調処理に関係する部分の構成を示す。図25~図28は、図24に示す各部の詳細な構成を示すブロック図である。図25および図26は、PUSCH復調部315の詳細な構成を示すブロック図である。図25と図26とは、境界線L11で接続されている。図27は、PUCCH復調部316の詳細な構成を示すブロック図である。図28は、PRACH検出部317およびSRS復調部318の詳細な構成を示すブロック図である。図24~図28において、前述の図13~図23に示す各部に相当する部分には、同一の参照符号を付して、説明を省略する。 FIG. 24 is a block diagram illustrating a configuration of a portion related to processing higher than FFT in the portion related to the uplink signal processing of LTE layer 1 shown in FIG. FIG. 24 mainly shows a configuration of a part related to the demodulation process. 25 to 28 are block diagrams showing the detailed configuration of each unit shown in FIG. 25 and 26 are block diagrams showing the detailed configuration of the PUSCH demodulator 315. 25 and FIG. 26 are connected by a boundary line L11. FIG. 27 is a block diagram illustrating a detailed configuration of the PUCCH demodulation unit 316. FIG. 28 is a block diagram illustrating detailed configurations of the PRACH detection unit 317 and the SRS demodulation unit 318. 24 to 28, parts corresponding to those shown in FIGS. 13 to 23 are given the same reference numerals, and description thereof will be omitted.
 図13に示すLTEレイヤ1の上り信号処理に関係する部分のうち、FFTよりも上位側の処理に関係する部分は、図24に示すように、チャネル分離系441、PUSCH復調部315、PUCCH復調部316、PRACH検出部317およびSRS復調部318を備える。チャネル分離系441は、FFT部442とユーザ/チャネル(CH)分離部443とを含む。FFT部442は、前述の図14および図15に示す各SC-FDMA周波数ドメイン信号発生部345,347,355,357のFFT処理を施す部分に相当する。ユーザ/CH分離部443は、前述の図13に示すチャネル分離部322に相当する。図24およびその他の図面において、チャネル分離系441は、「CHSEPS」と記載する。ユーザ/CH分離部443は、「US/CHSEP」と記載する。 Of the parts related to the uplink signal processing of LTE layer 1 shown in FIG. 13, the parts related to the processing on the higher side than FFT are as shown in FIG. 24, the channel separation system 441, the PUSCH demodulator 315, the PUCCH demodulation. 316, PRACH detector 317, and SRS demodulator 318. Channel separation system 441 includes an FFT unit 442 and a user / channel (CH) separation unit 443. The FFT unit 442 corresponds to a part that performs the FFT processing of each of the SC-FDMA frequency domain signal generation units 345, 347, 355, and 357 shown in FIGS. The user / CH separation unit 443 corresponds to the channel separation unit 322 shown in FIG. In FIG. 24 and other drawings, the channel separation system 441 is described as “CHSEPS”. The user / CH separation unit 443 is described as “US / CHSEP”.
 PUSCH復調部315は、図25および図26に示すように、レプリカ乗算部370、レプリカ生成部371、チャネル推定部372、RS/ユーザ分離部451、SIR推定部453、SinCos Table部367,373、DATA回転部365、IDFT部368、FDE部363、LLR部375、CHSEP部376、CHDEC_DATA部381、CHDEC_CQI部501、CHDEC_FEC部503、FEC_ACK部507、FEC_RI部508、FEC_DATA部494、フィラービット除去(FILL_RMV)部495およびCRC_DATA部496を備える。 The PUSCH demodulation unit 315 includes a replica multiplication unit 370, a replica generation unit 371, a channel estimation unit 372, an RS / user separation unit 451, an SIR estimation unit 453, a SinCos Table unit 367, 373, as shown in FIGS. DATA rotation unit 365, IDFT unit 368, FDE unit 363, LLR unit 375, CHSEP unit 376, CHDEC_DATA unit 381, CHDEC_CQI unit 501, CHDEC_FEC unit 503, FEC_ACK unit 507, FEC_RI unit 508, FEC_DATA unit 494, filler bit R (FIL ) Section 495 and CRC_DATA section 496.
 DATA回転部365は、複素共役乗算を行う複素共役乗算部として機能する。FEC_ACK部507およびFEC_RI部508は、デインタリーブ部として機能する。FEC DATA部494は、CHDEC_DATA部381のレートデマッチング部384から与えられる信号に、Turbo復号などの復号処理を行い、FILL_RMV部495に与える。FILL_RMV部495は、FEC DATA部494から与えられる信号に、フィラービット除去の処理を行い、CRC_DATA部496に出力する。CRC_DATA部496は、FEC DATA部494から与えられる信号から、CRC結果(略称:CRCR)、エラービット(略称:ERB)などを求め、出力する。 The DATA rotation unit 365 functions as a complex conjugate multiplication unit that performs complex conjugate multiplication. The FEC_ACK unit 507 and the FEC_RI unit 508 function as a deinterleave unit. The FEC DATA unit 494 performs decoding processing such as Turbo decoding on the signal provided from the rate dematching unit 384 of the CHDEC_DATA unit 381, and provides the signal to the FILL_RMV unit 495. The FILL_RMV unit 495 performs filler bit removal processing on the signal provided from the FEC DATA unit 494 and outputs the result to the CRC_DATA unit 496. The CRC_DATA unit 496 obtains a CRC result (abbreviation: CRCR), an error bit (abbreviation: ERB), and the like from the signal given from the FEC DATA unit 494, and outputs it.
 図25および図26、ならびにその他の図面において、レプリカ生成部371は、「REPG」と記載する。RS/ユーザ分離部451は、「RS/USSEP」と記載する。SIR推定部453は、「SIRP」と記載する。DATA回転(複素共役乗算)部365は、「DATAR(CCMUL)」と記載する。FEC_ACK(デインタリーブ)部507は、「FEC ACK(DI)」と記載する。FEC_RI(デインタリーブ)部508は、「FEC RI(DI)」と記載する。 25 and 26, and other drawings, the replica generation unit 371 is described as “REPG”. The RS / user separation unit 451 is described as “RS / USSEP”. The SIR estimation unit 453 is described as “SIRP”. The DATA rotation (complex conjugate multiplication) unit 365 is described as “DATAR (CCMUL)”. The FEC_ACK (deinterleave) unit 507 is described as “FEC ACK (DI)”. The FEC_RI (deinterleave) unit 508 is described as “FEC RI (DI)”.
 図25に示すように、RS/ユーザ分離部451は、リソースブロック(Resource Block;略称:RB)平均部452を備える。チャネル推定部372は、位相回転量検出部461、RS位相回転部462、周波数偏差検出部463、RS周波数偏差補正部464およびt軸平均部465を備える。チャネル推定部372は、推定手段に相当する。 25, the RS / user separation unit 451 includes a resource block (abbreviation: RB) averaging unit 452. The channel estimation unit 372 includes a phase rotation amount detection unit 461, an RS phase rotation unit 462, a frequency deviation detection unit 463, an RS frequency deviation correction unit 464, and a t-axis average unit 465. The channel estimation unit 372 corresponds to estimation means.
 図25およびその他の図面において、RB平均部452は、「RBAV」と記載する。位相回転量検出部461は、「PHRD」と記載する。RS位相回転部462は、「RSPHR」と記載する。周波数偏差検出部463は、「FDD」と記載する。RS周波数偏差補正部464は、「RSFDC」と記載する。t軸平均部465は、「tAAV」と記載する。 25 and other drawings, the RB average unit 452 is described as “RBAV”. The phase rotation amount detection unit 461 is described as “PHRD”. The RS phase rotation unit 462 is described as “RSPHR”. The frequency deviation detector 463 is described as “FDD”. The RS frequency deviation correction unit 464 is described as “RSFDC”. The t-axis average unit 465 is described as “tAAV”.
 SIR推定部453は、信号電力計算部454、加減算部455および分散共分散計算部456を備える。分散共分散計算部456は、RSの複素共役乗算部457およびI2+Q2計算部458を備える。図25およびその他の図面において、信号電力計算部454は、「SPG」と記載する。分散共分散計算部456は、「DCCLC」と記載する。RSの複素共役乗算部457は、「CCMUL」と記載する。 The SIR estimation unit 453 includes a signal power calculation unit 454, an addition / subtraction unit 455, and a variance / covariance calculation unit 456. The variance-covariance calculation unit 456 includes an RS complex conjugate multiplication unit 457 and an I 2 + Q 2 calculation unit 458. In FIG. 25 and other drawings, the signal power calculation unit 454 is described as “SPG”. The variance-covariance calculation unit 456 is described as “DCCLC”. The RS complex conjugate multiplier 457 is described as “CCMUL”.
 信号電力計算部454は、複素乗算して、I2+Q2の値を算出する。信号電力計算部454は、算出したI2+Q2値を、減算する値として、すなわち算出したI2+Q2の値にマイナス(-)を付けて、加減算部455に与える。RSの複素共役乗算部457は、ブランチ0およびブランチ1のRSの複素共役を乗算する。 The signal power calculation unit 454 calculates the value of I 2 + Q 2 by performing complex multiplication. The signal power calculation unit 454 gives the calculated I 2 + Q 2 value to the addition / subtraction unit 455 as a value to be subtracted, that is, adds a minus (−) to the calculated I 2 + Q 2 value. The RS complex conjugate multiplier 457 multiplies the complex conjugates of the branch 0 and branch 1 RSs.
 FDE部363は、FDE重み計算部471、移動平均部472、同期検波部473および干渉電力計算部474を備える。干渉電力計算部474は、選択部475および平均部476を備える。同期検波部473は、同期検波手段に相当する。同期検波部473は、複素乗算を行う複素乗算部として機能する。平均部476は、ブランチ0とブランチ1との平均を求める。 The FDE unit 363 includes an FDE weight calculation unit 471, a moving average unit 472, a synchronous detection unit 473, and an interference power calculation unit 474. The interference power calculation unit 474 includes a selection unit 475 and an average unit 476. The synchronous detection unit 473 corresponds to synchronous detection means. The synchronous detection unit 473 functions as a complex multiplication unit that performs complex multiplication. The average unit 476 calculates the average of the branch 0 and the branch 1.
 図25およびその他の図面において、FDE重み計算部471は、「FDEWC」と記載する。移動平均部472は、「MA」と記載する。同期検波(複素乗算)部473は、「SD(CMUL)」と記載する。干渉電力計算部474は、「IPC」と記載する。選択部475は、「SEL」と記載する。平均部476は、「AVE」と記載する。「共分散」は、「COV」と記載する。 25 and other drawings, the FDE weight calculation unit 471 is described as “FDEWC”. The moving average unit 472 is described as “MA”. The synchronous detection (complex multiplication) unit 473 is described as “SD (CMUL)”. The interference power calculation unit 474 is described as “IPC”. The selection unit 475 is described as “SEL”. The average part 476 is described as “AVE”. “Covariance” is described as “COV”.
 図26に示すように、LLR部375は、シフト量計算部481、振幅計算部482、信号対干渉雑音電力比(Signal to Interference plus Noise power Ratio;略称:SINR)計算部483およびLLR計算部484を備える。LLR計算部484は、QPSK部485、16QAM部486および64QAM部487を備える。図26およびその他の図面において、シフト量計算部481は、「SAC」と記載する。振幅計算部482は、「ACAL」と記載する。SINR計算部483は、「SINRC」と記載する。LLR計算部484は、「LLRC」と記載する。「干渉電力」は、「IP」と記載する。「信号電力」は、「SP」と記載する。 26, the LLR unit 375 includes a shift amount calculation unit 481, an amplitude calculation unit 482, a signal-to-interference noise power ratio (Signal to Interference plus Noise power Ratio; abbreviation: SINR) calculation unit 483, and an LLR calculation unit 484. Is provided. The LLR calculation unit 484 includes a QPSK unit 485, a 16QAM unit 486, and a 64QAM unit 487. In FIG. 26 and other drawings, the shift amount calculation unit 481 is described as “SAC”. The amplitude calculation unit 482 is described as “ACAL”. The SINR calculation unit 483 is described as “SINRC”. The LLR calculation unit 484 is described as “LLRC”. “Interference power” is described as “IP”. “Signal power” is described as “SP”.
 CHSEP部376は、Goldシーケンス生成部490、デスクランブル部377、デインタリーブ部379およびデマルチプレックス(demultiplex;略称:DEMUX)部380を備える。図26およびその他の図面において、Goldシーケンス生成部490は、「GSEQG」と記載する。 The CHSEP unit 376 includes a Gold sequence generation unit 490, a descrambling unit 377, a deinterleaving unit 379, and a demultiplex (abbreviation: DEMUX) unit 380. In FIG. 26 and other drawings, the Gold sequence generation unit 490 describes “GSEQG”.
 CHDEC_DATA部381は、度数分布計算部491、HARQ合成部492、サブブロックデインタリーブ部493およびレートデマッチング部384を備える。図26およびその他の図面において、度数分布計算部491は、「FDC」と記載する。HARQ合成部492は、「HARQS」と記載する。サブブロックデインタリーブ部493は、「SBDI」と記載する。 The CHDEC_DATA unit 381 includes a frequency distribution calculation unit 491, a HARQ synthesis unit 492, a sub-block deinterleaving unit 493, and a rate dematching unit 384. In FIG. 26 and other drawings, the frequency distribution calculation unit 491 is described as “FDC”. The HARQ combining unit 492 is described as “HARQS”. The sub-block deinterleaving unit 493 is described as “SBDI”.
 CHDEC_CQI部501は、レートマッチング部502を備える。図26およびその他の図面において、レートマッチング部502は、「RM」と記載する。 The CHDEC_CQI unit 501 includes a rate matching unit 502. In FIG. 26 and other drawings, the rate matching unit 502 is described as “RM”.
 CHDEC_FEC部503は、リード・ミュラー復号部504、ビタビ復号部505および選択部506を備える。図26およびその他の図面において、リード・ミュラー復号部504は、「RMDEC」と記載する。ビタビ復号部505は、「VDEC」と記載する。選択部506は、「SEL」と記載する。 The CHDEC_FEC unit 503 includes a Reed-Muller decoding unit 504, a Viterbi decoding unit 505, and a selection unit 506. In FIG. 26 and other drawings, the Reed-Muller decoding unit 504 is described as “RMDEC”. The Viterbi decoding unit 505 is described as “VDEC”. The selection unit 506 is described as “SEL”.
 図27に示すように、PUCCH復調部316は、チャネル推定部511、同期検波部520、直交系列逆拡散部521、ZC(Zadoff Chu)系列逆拡散部522、シンボルデマッピング部523、PUCCH復号部526およびSEL UCI(Uplink Control Information;略称:UCI)部528を備える。同期検波部520は、複素共役乗算を行う複素共役乗算部として機能する。 As shown in FIG. 27, PUCCH demodulation section 316 includes channel estimation section 511, synchronous detection section 520, orthogonal sequence despreading section 521, ZC (Zadoff Chu) sequence despreading section 522, symbol demapping section 523, and PUCCH decoding section. 526 and a SEL UCI (Uplink Control Information; abbreviation: UCI) section 528. The synchronous detector 520 functions as a complex conjugate multiplier that performs complex conjugate multiplication.
 図27およびその他の図面において、チャネル推定部511は、「CHP」と記載する。同期検波(複素共役乗算)部520は、「SD(CCMUL)」と記載する。直交系列逆拡散部521は、「QSBD」と記載する。ZC系列逆拡散部522は、「ZCSBD」と記載する。ZC系列は、「ZCS」と記載する。シンボルデマッピング部523は、「SDM」と記載する。PUCCH復号部526は、「PUCCH DEC」と記載する。 27 and other drawings, the channel estimation unit 511 is described as “CHP”. The synchronous detection (complex conjugate multiplication) unit 520 is described as “SD (CCMUL)”. The orthogonal sequence despreading unit 521 is described as “QSBD”. The ZC sequence despreading unit 522 is described as “ZCSBD”. The ZC series is described as “ZCS”. The symbol demapping unit 523 describes “SDM”. The PUCCH decoding unit 526 is described as “PUCCH DEC”.
 チャネル推定部511は、RS抜出し部512、乗算部513、ZC系列生成部514、ACK/NACK判定部515、RS位相修正部516、同相加算部517、スロット(slot)内複数RSデータ積分部518およびSIR推定部519を備える。 The channel estimation unit 511 includes an RS extraction unit 512, a multiplication unit 513, a ZC sequence generation unit 514, an ACK / NACK determination unit 515, an RS phase correction unit 516, an in-phase addition unit 517, and a plurality of in-slot RS data integration units 518. And an SIR estimation unit 519.
 図27およびその他の図面において、RS抜出し部512は、「RSEXT」と記載する。ZC系列生成部514は、「ZCSG」と記載する。ACK/NACK判定部515は、「ACK/NACK DET」と記載する。RS位相修正部516は、「RSPHA」と記載する。同相加算部517は、「INPHA」と記載する。スロット内複数RSデータ積分部518は、「RSDINT」と記載する。SIR推定部519は、「SIRP」と記載する。 27 and other drawings, the RS extraction unit 512 is described as “RSEXT”. The ZC sequence generation unit 514 is described as “ZCSG”. The ACK / NACK determination unit 515 is described as “ACK / NACK DET”. The RS phase correction unit 516 is described as “RSPHA”. The in-phase addition unit 517 is described as “IMPHA”. The in-slot multiple RS data integration unit 518 is described as “RSDINT”. The SIR estimation unit 519 is described as “SIRP”.
 シンボルデマッピング部523は、デスクランブリング部524およびシンボルデマッピング部525を備える。PUCCH復号部526は、リード・ミュラー復号部527を備える。図27およびその他の図面において、デスクランブリング部524は、「DSCR」と記載する。シンボルデマッピング部525は、「SDM」と記載する。リード・ミュラー復号部527は、「RMDEC」と記載する。 The symbol demapping unit 523 includes a descrambling unit 524 and a symbol demapping unit 525. The PUCCH decoding unit 526 includes a Reed-Muller decoding unit 527. In FIG. 27 and other drawings, the descrambling unit 524 is described as “DSCR”. The symbol demapping unit 525 is described as “SDM”. The Reed-Muller decoding unit 527 is described as “RMDEC”.
 図28に示すように、SRS復調部318は、SRS抜出し部531、レプリカ乗算部422、ZC系列生成部532、第1干渉電力計算部432、第2干渉電力計算部433、信号電力計算部434および選択部533を備える。図28では、前述の図23に示す内蔵CPU302の計算部335の第1干渉電力計算部432、第2干渉電力計算部433および信号電力計算部434を、SRS復調部318に含めた場合を示している。 As shown in FIG. 28, the SRS demodulator 318 includes an SRS extractor 531, a replica multiplier 422, a ZC sequence generator 532, a first interference power calculator 432, a second interference power calculator 433, and a signal power calculator 434. And a selector 533. FIG. 28 shows a case where the SRS demodulator 318 includes the first interference power calculator 432, the second interference power calculator 433, and the signal power calculator 434 of the calculator 335 of the built-in CPU 302 shown in FIG. ing.
 図28およびその他の図面において、SRS抜出し部531は、「SRSEXT」と記載する。ZC系列生成部532は、「ZCSG」と記載する。選択部533は、「SEL」と記載する。 28 and other drawings, the SRS extraction unit 531 is described as “SRSEXT”. The ZC sequence generation unit 532 is described as “ZCSG”. The selection unit 533 is described as “SEL”.
 PRACH検出部317は、DDC2部534、R2BF部411、PD部416およびピーク検出部431を備える。図28では、前述の図23に示す内蔵CPU302の計算部335のピーク検出部431を、PRACH検出部317に含めた場合を示している。ピーク検出部431は、閾値判定を行う閾値判定部として機能する。 The PRACH detection unit 317 includes a DDC2 unit 534, an R2BF unit 411, a PD unit 416, and a peak detection unit 431. FIG. 28 shows a case where the peak detection unit 431 of the calculation unit 335 of the built-in CPU 302 shown in FIG. 23 is included in the PRACH detection unit 317. The peak detection unit 431 functions as a threshold determination unit that performs threshold determination.
 R2BF部411は、FFT部535、ZC系列生成部(以下「ZC系列部」という場合がある)536、乗算部412およびIFFT部414を備える。PD部416は、補間部417および電力合成部418を備える。電力合成部418は、I2+Q2の平方根(√(I2+Q2))の値を算出する。PD部416は、前述の図22に示すように、ブランチ合成部419をさらに備える。図28では、理解を容易にするために、ブランチ合成部419の記載を省略している。参照符号「500」で示される、DDC2部534、R2BF部411およびPD部416の補間部417で構成されるユニットは、アンテナブランチ数分設けられる。 The R2BF unit 411 includes an FFT unit 535, a ZC sequence generation unit (hereinafter also referred to as “ZC sequence unit”) 536, a multiplication unit 412 and an IFFT unit 414. The PD unit 416 includes an interpolation unit 417 and a power combining unit 418. The power combiner 418 calculates the value of the square root of I 2 + Q 2 (√ (I 2 + Q 2 )). The PD unit 416 further includes a branch combining unit 419 as shown in FIG. In FIG. 28, the description of the branch composition unit 419 is omitted for easy understanding. The units constituted by the DDC 2 unit 534, the R2BF unit 411, and the interpolation unit 417 of the PD unit 416, which are indicated by reference numeral “500”, are provided for the number of antenna branches.
 図28およびその他の図面において、DDC2部534は、「DDC2」と記載する。ZC系列部536は、「ZCSG」と記載する。ピーク検出(閾値判定)部431は、「PD(THDET)」と記載する。 28 and other drawings, the DDC2 unit 534 is described as “DDC2”. The ZC series part 536 is described as “ZCSG”. The peak detection (threshold determination) unit 431 describes “PD (THDET)”.
 図24に示すように、FFT部442によるFFT後、メモリに相当するユーザ/CH分離部443から、PUSCH復調部315、PUCCH復調部316、SRS復調部318、PRACH検出部317が、それぞれに割り当てられた帯域であるリソースブロック(Resource Block;略称:RB)の信号を取り出し、各チャネルの復調部315,316,318および検出部317が処理を行う。RBについては、3GPP TS36.211で定義されている。各チャネルの復調部315,316,318および検出部317に関して、図25~図28を用いて、詳細な機能を主に説明する。 As shown in FIG. 24, after the FFT by the FFT unit 442, the PUSCH demodulating unit 315, the PUCCH demodulating unit 316, the SRS demodulating unit 318, and the PRACH detecting unit 317 are allocated to each from the user / CH separating unit 443 corresponding to the memory. The signal of the resource block (Resource Block; abbreviated as RB) that is the band thus obtained is taken out, and the demodulation units 315, 316, 318 and the detection unit 317 of each channel perform processing. RB is defined in 3GPP TS 36.211. The detailed functions of the demodulation units 315, 316, 318 and the detection unit 317 of each channel will be mainly described with reference to FIGS.
 図25および図26に示すPUSCH復調部315の動作を説明する。まずレプリカ生成部371、レプリカ乗算部372、RS/ユーザ分離部451の動作を説明する。PUSCH復調部315において、レプリカ生成部371により、PUSCHのRS信号を生成する。生成したPUSCHのRS信号を、レプリカ乗算部370において、受信した信号のRSの信号に複素共役乗算する。これは、乗算された結果を、全てI,Q平面の同一象限、具体的には第一象限に持ってくるためである。 The operation of the PUSCH demodulator 315 shown in FIGS. 25 and 26 will be described. First, operations of the replica generation unit 371, the replica multiplication unit 372, and the RS / user separation unit 451 will be described. In the PUSCH demodulator 315, the replica generator 371 generates a PUSCH RS signal. In the replica multiplier 370, the RS signal of the received signal is subjected to complex conjugate multiplication on the generated PUSCH RS signal. This is because all the multiplied results are brought to the same quadrant of the I and Q planes, specifically the first quadrant.
 複素共役乗算した結果をRB毎に算出し、RS/ユーザ分離部451のRB平均部452において、複数のRBに渡って、加算し、平均化する。あるいは、RB平均部452に代えてサブキャリア平均部を設けて、複素共役乗算した結果を1サブキャリア毎に算出し、複数のサブキャリアに渡って、加算し、平均化してもよい。RB平均部452で平均化されて出力された信号は、SIR推定部453の信号電力計算部454、およびチャネル推定部372の位相回転量検出部461にそれぞれ与えられる。 The result of complex conjugate multiplication is calculated for each RB, and added and averaged over a plurality of RBs in the RB averaging unit 452 of the RS / user separation unit 451. Alternatively, a subcarrier average unit may be provided instead of the RB average unit 452, and the result of complex conjugate multiplication may be calculated for each subcarrier, added over a plurality of subcarriers, and averaged. The signals averaged and output by RB averaging section 452 are provided to signal power calculation section 454 of SIR estimation section 453 and phase rotation amount detection section 461 of channel estimation section 372, respectively.
 次にSIR推定部453の動作を説明する。RS/ユーザ分離部451のRB平均部452で平均化された信号と、レプリカ生成部371から出力されるRB既知信号系列とを、信号電力計算部454において複素乗算する。加減算部455において、信号電力計算部454による乗算結果を、レプリカ乗算していない信号、すなわちユーザ/CH分離部443から取り出したままのRB信号から減算する。減算された信号は、分散共分散計算部456に与えられる。 Next, the operation of the SIR estimation unit 453 will be described. The signal power calculation unit 454 performs complex multiplication on the signal averaged by the RB averaging unit 452 of the RS / user separation unit 451 and the RB known signal sequence output from the replica generation unit 371. In addition / subtraction unit 455, the multiplication result by signal power calculation unit 454 is subtracted from the signal that has not been subjected to replica multiplication, that is, the RB signal that has been taken out from user / CH separation unit 443. The subtracted signal is given to the variance-covariance calculation unit 456.
 分散共分散計算部456は、I2+Q2計算部458によって、加減算部455で減算された信号のI2+Q2を干渉電力(IP)として出力する。また、受信を2アンテナブランチとしているので、RSの複素共役乗算部457によって、ブランチ0およびブランチ1の減算後におけるRSの複素共役乗算を共分散(COV)として出力する。なお、信号電力計算部454において、RB平均部452から出力された信号に基づいてI2+Q2の演算を行い、この演算結果を信号電力(SP)として出力してもよい。 The variance covariance calculation unit 456 outputs I 2 + Q 2 of the signal subtracted by the addition / subtraction unit 455 by the I 2 + Q 2 calculation unit 458 as interference power (IP). Since reception is performed with two antenna branches, the RS complex conjugate multiplier 457 outputs the complex conjugate multiplication of RS after subtraction of branch 0 and branch 1 as covariance (COV). Note that the signal power calculation unit 454 may calculate I 2 + Q 2 based on the signal output from the RB averaging unit 452 and output the calculation result as signal power (SP).
 以上に述べたようにPUSCH復調部315を構成し、RB平均部452でRB平均化を行った後のデータを用いて、分散共分散計算部456で共分散、干渉電力および信号電力を求めることによって、前述の図1に示す基地局装置1を小型化することができる。また基地局装置1をフェムトセル基地局装置(Home Node B、Home eNode B)として大量生産する場合に、量産のばらつきを防ぎ、安定した精度で信号電力、干渉電力、SIRを推定することができるフェムトセル基地局装置を提供することができる。 As described above, PUSCH demodulating section 315 is configured, and covariance, interference power and signal power are obtained by variance covariance calculation section 456 using data after RB averaging is performed by RB averaging section 452 Thus, the base station apparatus 1 shown in FIG. 1 can be reduced in size. Further, when the base station device 1 is mass-produced as a femtocell base station device (Home Node B, Home eNode B), variation in mass production can be prevented, and signal power, interference power, and SIR can be estimated with stable accuracy. A femtocell base station apparatus can be provided.
 チャネル推定部372の動作を説明する。RB平均部452より出力された信号について、位相回転量検出部461において、位相回転量を検出し、RS位相回転部462において、RSの位相回転量を補正する。RS位相回転部462から出力された信号について、周波数偏差検出部463において、次の時間のRBなど、時間差の付いた信号との位相差を求めることで周波数偏差を求め、RS周波数偏差部464において、周波数の偏差分を元に戻す補正を行う。 The operation of the channel estimation unit 372 will be described. With respect to the signal output from the RB average unit 452, the phase rotation amount detection unit 461 detects the phase rotation amount, and the RS phase rotation unit 462 corrects the RS phase rotation amount. With respect to the signal output from the RS phase rotation unit 462, the frequency deviation detection unit 463 obtains a frequency deviation by obtaining a phase difference with a signal having a time difference such as RB of the next time, and the RS frequency deviation unit 464 Then, correction is made to restore the frequency deviation.
 角度回転には、SinCos Table部367,373を用いる。RS周波数偏差補正部464から出力された信号について、t軸平均部465において、シンボル間の平均処理を行う。t軸平均部465において、シンボル間の平均処理を行った後の信号は、LLR部375のSINR計算部483、およびFDE部363のFDE重み計算部471にそれぞれ出力される。 SinCos Table parts 367 and 373 are used for angular rotation. With respect to the signal output from the RS frequency deviation correction unit 464, the t-axis average unit 465 performs an average process between symbols. The signal after the average processing between symbols in t-axis averaging section 465 is output to SINR calculation section 483 of LLR section 375 and FDE weight calculation section 471 of FDE section 363, respectively.
 このようなチャネル推定処理を行うことによって、周波数偏差を補正した精度の高いRS(Reference Signal)の復元を行うことができる。すなわち、無線伝送路を経由することによる歪みを推定した推定伝送路特性や、移動通信端末装置と基地局装置1との源信クロックの周波数のずれから生じる周波数オフセットを精度よく推定することができる。推定伝送路特性から周波数オフセット成分を除去することによって、高精度な伝送路特性の推定を行うことができる。 By performing such channel estimation processing, it is possible to restore a highly accurate RS (Reference Signal) with a corrected frequency deviation. That is, it is possible to accurately estimate an estimated transmission path characteristic in which distortion caused by passing through a wireless transmission path is estimated and a frequency offset caused by a frequency shift of a source clock between the mobile communication terminal apparatus and the base station apparatus 1. By removing the frequency offset component from the estimated transmission line characteristic, it is possible to estimate the transmission line characteristic with high accuracy.
 FDE(Frequency Domain Equalizer)部363の動作を説明する。FDE部363は、周波数領域の等化処理を行う。具体的には、まず干渉電力計算部474の選択部475によって、SIR推定部453の分散/共分散計算部457より出力された共分散および干渉電力の中から、干渉電力として適切な値を選択する。選択された値は、干渉電力値として、FDE重み計算部471に入力される。またFDE重み計算部471には、チャネル推定部372のt軸平均部465によって平均処理が行われたチャネル推定値が入力される。FDE重み計算部471によって、選択部475から入力された干渉電力値と、t軸平均部465から入力されたチャネル推定値とを用いて、式(1)に示すような行列演算を行う。 The operation of the FDE (Frequency Domain Equalizer) unit 363 will be described. The FDE unit 363 performs frequency domain equalization processing. Specifically, first, the selection unit 475 of the interference power calculation unit 474 selects an appropriate value as interference power from the covariance and interference power output from the variance / covariance calculation unit 457 of the SIR estimation unit 453. To do. The selected value is input to the FDE weight calculation unit 471 as an interference power value. Further, the channel estimation value subjected to the averaging process by the t-axis averaging unit 465 of the channel estimation unit 372 is input to the FDE weight calculation unit 471. The FDE weight calculation unit 471 performs matrix calculation as shown in Expression (1) using the interference power value input from the selection unit 475 and the channel estimation value input from the t-axis average unit 465.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、X,A~Dは、干渉電力値とチャネル推定値とから算出される。FDE重み計算部471による計算結果は、移動平均部472と、LLR部375内のSINR計算部483とに与えられる。 In Equation (1), X and A to D are calculated from the interference power value and the channel estimation value. The calculation result by the FDE weight calculation unit 471 is given to the moving average unit 472 and the SINR calculation unit 483 in the LLR unit 375.
 次いで、FDE部363は、移動平均部472によって、数サブキャリア単位などで移動平均を行う。移動平均部472によって移動平均して得た値(以下「移動平均値」という場合がある)は、同期検波部473に与えられる。同期検波部473において、移動平均部472から出力される移動平均値を取ったときのFDE重み付けを、ユーザ/CH分離部443から取得したFFT後のPUSCH受信データに対して行う。重み付けは、同期検波部473において、複素乗算により行われる。同期検波部473で同期検波されたFFT後のPUSCH受信データは、DATA回転部365に与えられる。 Next, the FDE unit 363 performs a moving average by a moving average unit 472 in units of several subcarriers. A value obtained by moving average by the moving average unit 472 (hereinafter sometimes referred to as “moving average value”) is given to the synchronous detection unit 473. In the synchronous detection unit 473, FDE weighting when the moving average value output from the moving average unit 472 is taken is performed on the PUSCH reception data after FFT acquired from the user / CH separation unit 443. The weighting is performed by complex multiplication in the synchronous detection unit 473. The post-FFT PUSCH reception data synchronously detected by the synchronous detection unit 473 is provided to the DATA rotation unit 365.
 このようにFDE部363は、周波数成分ごとに無線伝送路や干渉成分の情報を用いて重み付けを算出するので、周波数ごとに最適な同期検波を精度良く行うことができる。 As described above, since the FDE unit 363 calculates the weight using the information of the radio transmission path and the interference component for each frequency component, it is possible to accurately perform the optimal synchronous detection for each frequency.
 FDE部363の同期検波部473で同期検波されたFFT後のPUSCH受信データは、DATA回転部365において、チャネル推定部372から出力される、周波数偏差補正されたチャネル推定値と複素共役乗算される。DATA回転部365は、振幅情報および位相情報の両方が入ったチャネル推定値である推定伝送路特性値の代わりに、チャネル推定値の位相回転分のみを補正する処理を行なってもよい。チャネル推定値の位相回転分のみを補正する処理は、無線伝送路の歪みによって、回転してしまった信号位相を元に戻す処理に相当する。回転した位相角度をI,Q信号に変換する処理は、SinCos Table部367,373で行われる。 The post-FFT PUSCH reception data synchronously detected by the synchronous detection unit 473 of the FDE unit 363 is complex-conjugate-multiplied by the channel estimation value output from the channel estimation unit 372 and corrected for frequency deviation in the DATA rotation unit 365. . The DATA rotation unit 365 may perform processing for correcting only the phase rotation amount of the channel estimation value instead of the estimated transmission path characteristic value that is the channel estimation value including both the amplitude information and the phase information. The process of correcting only the phase rotation of the channel estimation value corresponds to the process of restoring the signal phase that has been rotated due to the distortion of the wireless transmission path. The process of converting the rotated phase angle into I and Q signals is performed by the SinCos Table units 367 and 373.
 DATA回転部365において複素共役乗算されたFFT後のPUSCH受信データは、IDFT部368に与えられ、IDFTされて時間領域の信号に変換される。変換された信号は、LLR部375のLLR計算部484に送られる。 The PUSCH received data after the FFT subjected to complex conjugate multiplication in the DATA rotation unit 365 is given to the IDFT unit 368, and is subjected to IDFT to be converted into a time domain signal. The converted signal is sent to the LLR calculation unit 484 of the LLR unit 375.
 LLR部375の動作を説明する。LLRは、軟判定復号において必要な各受信データが0となる信頼度情報と1になる尤度との比の対数値である。LLRは、受信信号より求めた事後確率から算出されるものであり、その受信信号の信頼性を表している。IDFT部368より出力された受信信号は、シフト量計算部481および振幅計算部482によって、信号の大きさの情報を抽出され、SINR計算部483により算出されたSINR(SIR)の値を用いて、LLR計算部484により、QPSK部485、16QAM部486、64QAM部487QPSK、16QAM、64QAMなどの変調情報に基づいた復調(マッピング)が行われる。 The operation of the LLR unit 375 will be described. The LLR is a logarithmic value of the ratio between the reliability information at which each received data necessary for soft decision decoding is 0 and the likelihood at which it is 1. The LLR is calculated from the posterior probability obtained from the received signal, and represents the reliability of the received signal. The received signal output from the IDFT unit 368 is extracted from the signal magnitude information by the shift amount calculation unit 481 and the amplitude calculation unit 482, and the SINR (SIR) value calculated by the SINR calculation unit 483 is used. The LLR calculation unit 484 performs demodulation (mapping) based on modulation information such as the QPSK unit 485, the 16QAM unit 486, the 64QAM unit 487QPSK, 16QAM, and 64QAM.
 SINR計算部483では、t軸平均部465から出力されるチャネル推定値と、FDE重み計算部471から出力されるFDE重みとを、複素乗算÷(1-複素乗算)で計算することによってSINR(SIR)の値を求める。LLR計算部484からの出力信号は、以下のようなフォーマットとなる。 The SINR calculation unit 483 calculates the SINR (1) by calculating the channel estimation value output from the t-axis average unit 465 and the FDE weight output from the FDE weight calculation unit 471 by complex multiplication / (1-complex multiplication). The value of (SIR) is obtained. The output signal from the LLR calculation unit 484 has the following format.
  QPSK(bit0,bit1,0,0,0,0)
  16QAM(bit0,bit1,bit2,bit3,0,0)
  64QAM(bit0,bit1,bit2,bit3,bit4,bit5)
 CHSEP部376は、3GPP TS36.212により定義されたシーケンスを生成するGoldシーケンス生成部490と、LLR計算部484から出力された受信データとGoldシーケンス生成部490から出力されるGoldシーケンスとをデスクランブルするデスクランブル部377と、デインタリーブを行うデインタリーブ部379と、DATA/CQIの分離を行うDEMUX部380とを備える。
QPSK (bit0, bit1,0,0,0,0)
16QAM (bit0, bit1, bit2, bit3, 0, 0)
64QAM (bit0, bit1, bit2, bit3, bit4, bit5)
The CHSEP unit 376 descrambles the Gold sequence generation unit 490 that generates a sequence defined by 3GPP TS36.212, the reception data output from the LLR calculation unit 484, and the Gold sequence output from the Gold sequence generation unit 490. A descrambling unit 377, a deinterleaving unit 379 that performs deinterleaving, and a DEMUX unit 380 that performs DATA / CQI separation.
 CHDEC DATA部381は、CHSEP部376のDEMUX部380から出力されたデータ、すなわちCQIではなくDATAの方を、HARQ合成部492において、HARQ合成し、度数分布計算部491とサブブロックデインタリーブ部493とに結果を与える。度数分布計算部491では、コードブロック(Code Block)単位で軟判定ビット系列の度数分布を計算する。サブブロックデインタリーブ部493でデインタリーブされた受信データと、度数分布計算部491によって計算された度数分布とを元に、レートデマッチング部384において、レートデマッチングが行われる。レートデマッチングされた信号は、FEC DATA部494において、Turbo復号などの復号処理がなされる。PUSCH復調処理は、前述の通りである。 The CHDEC DATA unit 381 performs HARQ synthesis on the data output from the DEMUX unit 380 of the CHSEP unit 376, that is, DATA rather than CQI, in the HARQ synthesis unit 492, and the frequency distribution calculation unit 491 and the sub-block deinterleave unit 493 And give the result. The frequency distribution calculation unit 491 calculates the frequency distribution of the soft decision bit sequence in units of code blocks (Code Block). Based on the received data deinterleaved by the sub-block deinterleaving unit 493 and the frequency distribution calculated by the frequency distribution calculating unit 491, the rate dematching unit 384 performs rate dematching. The rate-dematched signal is subjected to decoding processing such as Turbo decoding in the FEC DATA unit 494. The PUSCH demodulation process is as described above.
 PUCCH復調部316の動作の説明を行う。PUCCHのデータのチャネル推定は、PUSCH復調部315で行われるチャネル推定の結果を用いることで、ACK/NACK判定以外の処理を省略することができる。これにより、回路規模を削減し、小型化、省電力化を実現することができる。逆に、PUCCH復調部316のチャネル推定の結果を用いて、PUSCH復調部315のチャネル推定を省略することができる。これによっても、回路規模を削減し、小型化、省電力化を実現することができる。 The operation of the PUCCH demodulation unit 316 will be described. For channel estimation of PUCCH data, processing other than ACK / NACK determination can be omitted by using the result of channel estimation performed by the PUSCH demodulator 315. Thereby, the circuit scale can be reduced, and miniaturization and power saving can be realized. On the contrary, the channel estimation of the PUSCH demodulation unit 315 can be omitted by using the channel estimation result of the PUCCH demodulation unit 316. This also makes it possible to reduce the circuit scale and achieve downsizing and power saving.
 PUCCH復調部316のチャネル推定部511の動作の説明を行う。PUCCH復調部316は、ユーザ/CH分離部443に格納されたFFT後の受信データより、PUCCHに該当するデータを取り出し、チャネル推定部511のRS抜出し部512において、PUCCHに対応したRS(Reference Signal)を取り出す。取り出したRS信号は、乗算部513において、ZC系列生成部514で生成されたZC系列(3GPP TS36.211参照)と複素共役乗算される。PUCCH復調部316は、乗算部513で乗算された結果を用いて、PUCCHのRS信号以外の制御信号の部分の復号を行う。 The operation of the channel estimation unit 511 of the PUCCH demodulation unit 316 will be described. The PUCCH demodulation unit 316 extracts data corresponding to the PUCCH from the received data after FFT stored in the user / CH separation unit 443, and the RS extraction unit 512 of the channel estimation unit 511 receives an RS (Reference signal) corresponding to the PUCCH. ). The extracted RS signal is subjected to complex conjugate multiplication in the multiplication unit 513 and the ZC sequence generated by the ZC sequence generation unit 514 (see 3GPP TS 36.211). PUCCH demodulation section 316 decodes the control signal portion other than the PUCCH RS signal, using the result of multiplication by multiplication section 513.
 PUCCHのフォーマット(format)が2a/2bであれば、ACK/NACK判定部515において、PUCCHのACK/NACK判定を行う。フォーマット(format)が2a/2b以外であれば、スロット(slot)毎にスロット内の複数RSのデータ積分を行い、結果を同期検波部520に与える。また、どちらのフォーマットであったとしても、SIR推定を行う。ACK/NACK判定後、RS位相修正部516において、位相補正を行い、同相加算部517で同相加算を行う。同相加算部517は、演算結果を同期検波部520に与える。RS抜出し部512にてRSを抜き出された残りのPUCCH信号と、スロット内複数RSデータ積分部518もしくは同相加算部517から出力される信号とは、同期検波部520に入力され、同期検波、具体的には複素共役乗算される。 If the PUCCH format is 2a / 2b, the ACK / NACK determination unit 515 performs ACK / NACK determination of PUCCH. If the format is other than 2a / 2b, data integration of a plurality of RSs in the slot is performed for each slot, and the result is given to the synchronous detection unit 520. Moreover, SIR estimation is performed regardless of the format. After the ACK / NACK determination, the RS phase correction unit 516 performs phase correction, and the in-phase addition unit 517 performs in-phase addition. The in-phase addition unit 517 gives the calculation result to the synchronous detection unit 520. The remaining PUCCH signal from which the RS is extracted by the RS extraction unit 512 and the signal output from the in-slot multiple RS data integration unit 518 or the in-phase addition unit 517 are input to the synchronous detection unit 520, where synchronous detection, Specifically, complex conjugate multiplication is performed.
 同期検波後のPUCCH制御信号は、直行系列逆拡散部521において、PUSCH復調部315にあるデスクランブル部377と同様に、デスクランブリングが行われる。その信号は、ZC系列逆拡散部522において、ZC系列生成部514からのZC系列を用いて逆拡散され、その結果の信号はシンボルデマッピング部523に与えられる。シンボルデマッピング部523、PUCCH復号部526の順に制御信号は復号され、UCI(制御信号)となり、SEL UCI部528において、SIR推定部519から出力されるSIRと共に、ユーザごとに分離され、上位に与えられる。シンボルデマッピング部523、PUCCH復号部526などのその他の処理は、前述の通りである。 The PUCCH control signal after synchronous detection is descrambled in the direct sequence despreading section 521 in the same manner as the descrambling section 377 in the PUSCH demodulation section 315. The signal is despread in ZC sequence despreading section 522 using the ZC sequence from ZC sequence generation section 514, and the resulting signal is provided to symbol demapping section 523. The control signal is decoded in the order of the symbol demapping unit 523 and the PUCCH decoding unit 526 to become UCI (control signal). In the SEL UCI unit 528, the SIR output from the SIR estimation unit 519 is separated for each user, Given. Other processes such as the symbol demapping unit 523 and the PUCCH decoding unit 526 are as described above.
 SRS復調部318は、複数の移動通信端末装置で同一のRBを周波数分割複信(Frequency Division Duplex;略称:FDD)しない場合は、第2干渉電力計算部432において、FFTした後のSRS受信信号から干渉電力を計算する。複数の移動通信端末装置で同一のRBをFDD多重する場合は、第1干渉電力計算部433によって、ZC系列生成部532で生成されたZC系列を複素共役乗算した後の信号から干渉電力の計算を行う。その他処理は、前述の通りである。PRACH検出部317は、前述の通りである。 When the same RB is not frequency-division duplexed (Frequency Division Duplex; FDD) in a plurality of mobile communication terminal devices, the SRS demodulator 318 performs SRS reception signals after FFT in the second interference power calculator 432 The interference power is calculated from When the same RB is FDD-multiplexed by a plurality of mobile communication terminal devices, the first interference power calculation unit 433 calculates interference power from the signal after the complex conjugate multiplication of the ZC sequence generated by the ZC sequence generation unit 532 I do. Other processing is as described above. The PRACH detection unit 317 is as described above.
 図29~図39は、LTE方式の物理レイヤ1の下り信号データの流れを示す図である。図29~図39では、各信号処理の段階でのデータフォーマットの変遷を示す。図29~図39は、ユーザ数が2であり、1番目のユーザがコードワード数2で、2番目のユーザがコードワード数1で、同時送信する場合の例である。図29~図32、図36および図37において、参照符A1~A4、B1、B2、C1、C2で示す線は、図38の各線に対応する。 29 to 39 are diagrams illustrating the flow of downlink signal data in the physical layer 1 of the LTE scheme. 29 to 39 show changes in the data format at each signal processing stage. FIGS. 29 to 39 are examples in which the number of users is 2, the first user transmits 2 codewords, and the second user transmits 1 codewords at the same time. In FIG. 29 to FIG. 32, FIG. 36 and FIG. 37, the lines indicated by reference signs A1 to A4, B1, B2, C1, and C2 correspond to the respective lines in FIG.
 図29~図39において、TTIとは、送信時間間隔(Transmission Time Interval)のことである。MIBとは、マスター情報ブロック(Master Information Block)のことである。SFBCとは、空間周波数ブロック符号化のことである。「×3」、「×16」などは、ビット(bit)数の何倍かを示す。たとえば、「×3」は、「bit数×3倍」を意味する。「CCE」とは、制御チャネルエレメント(Control Channel Element)のことである。「ICP」は、I成分を示す。「QCP」は、Q成分を示す。「AT」は、アンテナ(antenna)を示す。「CE」は、巡回拡張を示す。 29 to 39, TTI is a transmission time interval (Transmission Time Interval). The MIB is a master information block (Master Information Block). SFBC is spatial frequency block coding. “× 3”, “× 16”, and the like indicate several times the number of bits. For example, “× 3” means “the number of bits × 3 times”. “CCE” is a control channel element (Control Channel Element). “ICP” indicates an I component. “QCP” indicates a Q component. “AT” indicates an antenna. “CE” indicates cyclic extension.
 図36および図37は、20MHzシステム帯域で100RBの場合を示す。図36は、1番目のユーザとして、ユーザ#0(User#0)の場合である。図37は、2番目のユーザとして、ユーザ#1(User#1)の場合である。図36に示すユーザ#0の場合、コードワード#0(Codeword#0)およびコードワード#1(Codeword#1)の2つである。図37に示すユーザ#0の場合、コードワード#0(Codeword#0)の1つである。 36 and 37 show a case of 100 RB in the 20 MHz system band. FIG. 36 shows a case where user # 0 (User # 0) is the first user. FIG. 37 shows a case where user # 1 (User # 1) is the second user. In the case of the user # 0 shown in FIG. 36, there are two codewords # 0 (Codeword # 0) and Codeword # 1 (Codeword # 1). In the case of user # 0 shown in FIG. 37, it is one of codeword # 0 (Codeword # 0).
 図36および図37において、「16bit~74888bit」は、最小値が16bitであり、最大値が74888bitであることを示す。「2×2MIMO」は、2×2MIMOの行列演算を行うことを示す。図36において、「MAX6144bit」は、最大6144bitであることを示す。図37において、「MIN16bit」は、最小値が16bitであることを示す。「MAX74888bit」は、最大値が74888bitであることを示す。図38および図39に示す「DFE」は、ディジタルフィルタを含む。 36 and 37, “16 bits to 74888 bits” indicates that the minimum value is 16 bits and the maximum value is 74888 bits. “2 × 2 MIMO” indicates that 2 × 2 MIMO matrix operation is performed. In FIG. 36, “MAX 6144 bits” indicates that the maximum is 6144 bits. In FIG. 37, “MIN 16 bits” indicates that the minimum value is 16 bits. “MAX74888bit” indicates that the maximum value is 74888bit. “DFE” shown in FIGS. 38 and 39 includes a digital filter.
 図29~図39に示すレイヤマッピングは、以下の式(2)および(3)に従って行われる。式(2)は、3GPP TS36.211.6.3.3.3で定義されている。式(3)は、3GPP TS36.211.6.3.4.3で定義されている。 The layer mapping shown in FIGS. 29 to 39 is performed according to the following equations (2) and (3). Expression (2) is defined in 3GPP TS36.211.66.3.3.3. Expression (3) is defined in 3GPP TS36.211.66.3.4.3.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 本実施の形態では、空間周波数ブロックコーディング(space frequency block coding;略称:SFBC)であるので、2つのシンボルが、同一のレイヤの隣合うサブキャリアに配置される。また制御チャネルはSFBCを適用した場合、コードワード(Codeword)が1つであるので、1シンボルずつ交互にレイヤ0,1に割り当てられていく。 In this embodiment, since space frequency block coding (abbreviation: SFBC) is used, two symbols are arranged on adjacent subcarriers in the same layer. In addition, when SFBC is applied to the control channel, there is one codeword (Codeword), and therefore, the symbols are alternately assigned to layers 0 and 1 one symbol at a time.
 図40~図51は、LTE方式の物理レイヤ1の上り信号データの流れを示す図である。図42(a)および図42(b)は、図41に示す信号データの各フォーマットにおける配置を示す。図42(a)は、フォーマット(format)が2、2aまたは2b(2/2a/2b)の場合を示す。図42(b)は、フォーマット(format)が1、1aまたは1b(1/1a/1b)の場合を示す。図44と図45とは、接続線L12で接続されている。図46と図47とは、接続線L13で接続されている。 40 to 51 are diagrams showing the flow of uplink signal data in the physical layer 1 of the LTE scheme. 42A and 42B show the arrangement of the signal data shown in FIG. 41 in each format. FIG. 42A shows a case where the format is 2, 2a or 2b (2 / 2a / 2b). FIG. 42B shows a case where the format (format) is 1, 1a or 1b (1 / 1a / 1b). 44 and 45 are connected by a connection line L12. 46 and 47 are connected by a connection line L13.
 図40~図51では、各信号処理の段階でのデータフォーマットの変遷を示す。図40~図51は、ユーザ数が4であり、ユーザ#0およびユーザ#1がパケットデータを送受中であり、ユーザ#2が制御信号のみを通信中であり、ユーザ#3がPRACHを送信中であり、ユーザ#0がSounding RSも送信中の場合の例である。図40、図41、図43、図45、図47~図49および図51に示す矢符D1~D7、E1、E2は、図50の各矢符に対応する。図29~図51に示す各データ処理は、前述の図2~図28に示す各機能ブロックに対応している。 FIGS. 40 to 51 show the transition of the data format at each signal processing stage. 40 to 51, the number of users is 4, user # 0 and user # 1 are transmitting and receiving packet data, user # 2 is only communicating control signals, and user # 3 transmits PRACH In this example, user # 0 is also transmitting Sounding 送信 RS. Arrows D1 to D7, E1, and E2 shown in FIGS. 40, 41, 43, 45, 47 to 49, and 51 correspond to the arrows in FIG. Each data process shown in FIGS. 29 to 51 corresponds to each functional block shown in FIGS.
 図40において、「MAXPN(≦1200)」は、1200以下の最大素数を示す。図41において、ZC系列(ZCS)のI,Qは、12bitで固定である。図41において、「NCE」は、「巡回拡張無し」を示す。図43において、「MAX SL」は、SRSの最大系列長を示す。図43において、巡回拡張(CE)のI,Qは、24の倍数であり、最大600bitである。図43において、巡回拡張(CE)の下の実線の四角形は、シンボルが有ること(シンボル有)を示し、破線の四角形は、シンボルが無いこと(シンボル無)を示す。 40, “MAXPN (≦ 1200)” indicates a maximum prime number of 1200 or less. In FIG. 41, I and Q of the ZC sequence (ZCS) are fixed at 12 bits. In FIG. 41, “NCE” indicates “no cyclic extension”. In FIG. 43, “MAX SL” indicates the maximum sequence length of SRS. In FIG. 43, I and Q of cyclic extension (CE) are multiples of 24 and a maximum of 600 bits. In FIG. 43, a solid rectangle below cyclic extension (CE) indicates that a symbol is present (symbol is present), and a broken-line rectangle indicates that a symbol is not present (no symbol is present).
 図46および図46において、トランスポートブロックは、帯域が10MHzで50RBの場合には、最小値が16bit、最大値が36696bitであり、50Mbps、帯域が20MHzで100RBの場合には、最大75376bitである。図48において、「Scheduling Request」は、上位レイヤ(Layer)から来るデータである。図49において、「PS」は、プリアンブル系列を示す。「CIRS」は、巡回シフトを示す。図49および図50において、「6RB」は、6RBで固定であることを示す。図50に示すIFFT,CP付加のI,Qのポイント(point)は、帯域20MHz時の値である。図50に示す「15[OFDMsymbol]」は、14OFDMsymbol+CP分である。図50に示す「DFE」は、ディジタルフィルタを含む。 46 and 46, the transport block has a minimum value of 16 bits and a maximum value of 36696 bits when the bandwidth is 10 MHz and 50 RB, and a maximum of 75376 bits when the bandwidth is 50 Mbps and the bandwidth is 20 MHz and 100 RB. . In FIG. 48, “Scheduling Request” is data coming from an upper layer (Layer). In FIG. 49, “PS” indicates a preamble sequence. “CIRS” indicates a cyclic shift. 49 and FIG. 50, “6RB” indicates that it is fixed at 6RB. The points I and Q with IFFT and CP shown in FIG. 50 are values at a bandwidth of 20 MHz. “15 [OFDM symbol]” shown in FIG. 50 is 14 OFDM symbol + CP. “DFE” shown in FIG. 50 includes a digital filter.
 図52~図56は、図1に示す基地局装置1における下りのFP終端処理の処理手順を示すフローチャートである。図52~図56では、内蔵CPU34およびCPU15によるソフトウェアプログラムの実行によってFP終端処理を実現する場合の処理手順を示す。 52 to 56 are flowcharts showing the processing procedure of the downlink FP termination process in the base station apparatus 1 shown in FIG. 52 to 56 show processing procedures when the FP termination processing is realized by execution of the software program by the built-in CPU 34 and the CPU 15.
 図52は、下りのFP終端処理におけるFP種別解析処理の処理手順を示すフローチャートである。図52に示すフローチャートの各処理は、内蔵CPU34およびCPU15によって実行される。図52に示すフローチャートの処理は、3G用IP部58によって、FPデータがFP終端部56へ送信され、FP種別解析処理を開始するトリガに相当するイベント発行が行われると開始され、ステップa1に移行する。 FIG. 52 is a flowchart showing a processing procedure of FP type analysis processing in downstream FP termination processing. Each process of the flowchart shown in FIG. 52 is executed by the built-in CPU 34 and the CPU 15. The processing of the flowchart shown in FIG. 52 is started when the 3G IP unit 58 transmits FP data to the FP termination unit 56 and issues an event corresponding to a trigger for starting the FP type analysis processing. Transition.
 ステップa1において、FP終端部56は、FPデータのFPフォーマットを解析し、FPフォーマットのFT領域が0(零)であるか否か、さらに具体的には、FT領域が0であるか1であるかを判断する。FP終端部56は、ステップa1において、FT領域が0であると判断した場合は、FT領域がデータフレーム(DATA Frame)であると判断してステップa2に移行する。FP終端部56は、FT領域が0ではない、すなわちFT領域が1であると判断した場合は、FT領域が制御フレーム(Control Frame)であると判断してステップa3に移行する。 In step a1, the FP termination unit 56 analyzes the FP format of the FP data and determines whether or not the FT area of the FP format is 0 (zero), more specifically, whether the FT area is 0 or 1. Determine if there is. If the FP termination unit 56 determines that the FT area is 0 in step a1, the FP termination unit 56 determines that the FT area is a data frame (DATA Frame) and proceeds to step a2. If the FP termination unit 56 determines that the FT region is not 0, that is, the FT region is 1, the FP termination unit 56 determines that the FT region is a control frame (Control Frame) and proceeds to step a3.
 ステップa3において、FP終端部56は、下りの制御フレーム処理の関数を呼び出し、全ての処理手順を終了する。このようにして下りの制御フレーム処理の関数が呼び出されると、図53に示す下りの制御フレーム処理が開始される。 In step a3, the FP termination unit 56 calls a downstream control frame processing function, and ends all processing procedures. When the downlink control frame processing function is called in this way, the downlink control frame processing shown in FIG. 53 is started.
 ステップa2において、FP終端部56は、高速下り共有チャネル(High Speed Downlink Shared Channel;略称:HS-DSCH)であるか否かを判断する。FPヘッダからは、DCHとHS-DSCHとを区別できないので、FP終端部56は、3G用IP部58からIP番号またはフェムトセル用基地局(Femto Access Point;略称:FAP)番号を取得し、取得したIP番号またはFAP番号に基づいて、HS-DSCHであるか否かを判断する。 In step a2, the FP termination unit 56 determines whether or not it is a high-speed downlink shared channel (abbreviation: HS-DSCH). Since the DCH and the HS-DSCH cannot be distinguished from the FP header, the FP termination unit 56 obtains an IP number or a femtocell base station (Femto Access Point; abbreviated as FAP) number from the 3G IP unit 58. Based on the acquired IP number or FAP number, it is determined whether it is HS-DSCH.
 IP番号は、たとえば「10.xxx.xx.xx」などのIPアドレスである。FAP番号は、ユーザ毎、トランスポートチャネル(Transport Channel;略称:TrCH)毎に区別した管理番号である。FP終端部56は、ステップa2において、HS-DSCHであると判断した場合は、ステップa5に移行し、HS-DSCHではないと判断した場合は、ステップa4に移行する。 The IP number is an IP address such as “10.xxx.xx.xx”, for example. The FAP number is a management number distinguished for each user and for each transport channel (Transport Channel; abbreviated as TrCH). If the FP termination unit 56 determines in step a2 that it is HS-DSCH, the FP termination unit 56 proceeds to step a5. If it is determined that it is not HS-DSCH, the FP termination unit 56 proceeds to step a4.
 ステップa5において、FP終端部56は、HS-DSCH処理の関数を呼び出し、全ての処理手順を終了する。このようにしてHS-DSCH処理の関数が呼び出されると、図54に示すHS-DSCH処理が開始される。 In step a5, the FP termination unit 56 calls an HS-DSCH processing function and ends all processing procedures. When the HS-DSCH processing function is called in this way, the HS-DSCH processing shown in FIG. 54 is started.
 ステップa4において、FP終端部56は、FPフレームの到達時間(Time of Arrival;略称:ToA)を計算し、算出した到達時間が、受信可能な時間範囲である時間窓(Time Window)(以下、受信窓(Receiving Window)という場合がある)内か否かを判断する。換言すれば、FP終端部56は、FPフレームのToAが、基地局装置1が送信処理の装置内遅延を考慮に入れた上で、データを送信可能なタイミングであるか否かを判断する。FP終端部56は、ステップa4において、FPフレームのToAが時間窓内であると判断した場合は、ステップa6に移行し、時間窓内ではないと判断した場合は、ステップa7に移行する。 In step a4, the FP termination unit 56 calculates the arrival time (Time of Arrival; ToA) of the FP frame, and the calculated arrival time is a time window (Time Window) (hereinafter, referred to as a receivable time range). It is determined whether it is within a receiving window (sometimes referred to as a receiving window). In other words, the FP termination unit 56 determines whether or not the ToA of the FP frame is a timing at which the base station apparatus 1 can transmit data after taking into account the delay in the transmission process. In step a4, the FP termination unit 56 proceeds to step a6 when determining that the ToA of the FP frame is within the time window, and proceeds to step a7 when determining that the ToA is not within the time window.
 ステップa6において、FP終端部56は、DL-DCH/CCH処理の関数を呼び出し、全ての処理手順を終了する。このようにしてDL-DCH/CCH処理の関数が呼び出されると、図56に示すDL-DCH/CCH処理が開始される。 In step a6, the FP termination unit 56 calls a DL-DCH / CCH processing function and ends all processing procedures. When the DL-DCH / CCH processing function is called in this way, the DL-DCH / CCH processing shown in FIG. 56 is started.
 ステップa7において、FP終端部56は、上りの制御フレーム処理の関数を呼び出し、全ての処理手順を終了する。このようにして上りの制御フレーム処理の関数が呼び出されると、図55に示す上りの制御フレーム処理が開始される。 In step a7, the FP termination unit 56 calls an upstream control frame processing function and ends all processing procedures. When the uplink control frame processing function is called in this way, the uplink control frame processing shown in FIG. 55 is started.
 図53は、図52に示すステップa3の処理によって開始される下りの制御フレーム処理の処理手順を示すフローチャートである。図53に示すフローチャートの各処理は、FP終端部56によって実行される。図53に示すフローチャートの処理は、図52に示すフローチャートのステップa7において、下りの制御フレーム処理の関数が呼び出されると開始され、ステップb1に移行する。 FIG. 53 is a flowchart showing the processing procedure of the downlink control frame process started by the process of step a3 shown in FIG. Each process of the flowchart shown in FIG. 53 is executed by the FP termination unit 56. The processing of the flowchart shown in FIG. 53 is started when a downstream control frame processing function is called at step a7 of the flowchart shown in FIG. 52, and the processing proceeds to step b1.
 ステップb1において、FP終端部56は、ヘッダ巡回冗長検査(Header Cyclic Redundancy Checksum;略称:Header CRC)の計算を行う。Header CRCの計算を行った後は、ステップb2に移行する。 In step b1, the FP termination unit 56 calculates a header cyclic redundancy check (Header Cyclic Redundancy Checksum; abbreviation: Header CRC). After calculating Header CRC, the process proceeds to step b2.
 ステップb2において、FP終端部56は、ステップb1のHeader CRCの計算結果に基づいて、誤りが検出されなかったかどうかを判断する。具体的には、FP終端部56は、算出したヘッダCRCが、誤りが検出されず、受信が正常にできたこと(以下「受信OK」という場合がある)を示すか、または、誤りが検出され、受信が正常にできなかったこと(以下「受信NG」という場合がある)を示すかを判断することによって、誤りが検出されなかったかどうかを判断する。FP終端部56は、ステップb2において、ヘッダCRCが「受信OK」を示すと判断した場合は、誤りが検出されなかったと判断してステップb3に移行し、ヘッダCRCが「受信NG」を示すと判断した場合は、誤りが検出されたと判断してステップb4に移行する。 In step b2, the FP termination unit 56 determines whether or not an error has been detected based on the calculation result of Header CRC in step b1. Specifically, the FP termination unit 56 indicates that the calculated header CRC indicates that no error was detected and reception was successful (hereinafter sometimes referred to as “reception OK”), or an error was detected. It is then determined whether or not an error has been detected by determining whether or not the reception is not successful (hereinafter sometimes referred to as “reception NG”). If the FP termination unit 56 determines in step b2 that the header CRC indicates “reception OK”, the FP termination unit 56 determines that no error has been detected, proceeds to step b3, and the header CRC indicates “reception NG”. If it is determined, it is determined that an error has been detected, and the process proceeds to step b4.
 ステップb3において、FP終端部56は、ペイロード(Payload)巡回冗長検査(CRC)の計算を行う。ペイロードCRCの計算を行った後は、ステップb5に移行する。ステップb4において、FP終端部56は、FPデータを破棄して、全ての処理手順を終了する。 In step b3, the FP termination unit 56 calculates a payload cyclic redundancy check (CRC). After calculating the payload CRC, the process proceeds to step b5. In step b4, the FP termination unit 56 discards the FP data and ends all processing procedures.
 ステップb5において、FP終端部56は、ステップb3のペイロードCRCの計算結果に基づいて、誤りが検出されなかったかどうかを判断する。具体的には、FP終端部56は、算出したペイロードCRCが、「受信OK」を示すか、または「受信NG」を示すかを判断することによって、誤りが検出されなかったか否かを判断する。FP終端部56は、ステップb5において、ペイロードCRCが「受信OK」を示すと判断した場合は、誤りが検出されなかったと判断してステップb6に移行し、ペイロードCRCが「受信NG」を示すと判断した場合は、誤りが検出されたと判断してステップb4に移行する。 In step b5, the FP termination unit 56 determines whether or not an error is detected based on the calculation result of the payload CRC in step b3. Specifically, the FP termination unit 56 determines whether an error is not detected by determining whether the calculated payload CRC indicates “reception OK” or “reception NG”. . If the FP termination unit 56 determines in step b5 that the payload CRC indicates “reception OK”, the FP termination unit 56 determines that no error has been detected and proceeds to step b6, and the payload CRC indicates “reception NG”. If it is determined, it is determined that an error has been detected, and the process proceeds to step b4.
 ステップb6において、FP終端部56は、上位からの下りデータを、上り方向へ折り返して送信する指示(以下「折返し指示」という場合がある)があったか否かを判断する。FP終端部56は、ステップb6において、折返し指示があったと判断した場合は、ステップb8に移行し、折返し指示がなかったと判断した場合はステップb7に移行する。 In step b6, the FP termination unit 56 determines whether or not there is an instruction to transmit the downlink data from the higher rank in the uplink direction (hereinafter also referred to as “return instruction”). The FP terminal unit 56 proceeds to step b8 when determining that there is a return instruction in step b6, and proceeds to step b7 when determining that there is no return instruction.
 ステップb7において、FP終端部56は、TrCHデータの切り出しを行い、メモリに格納されたデータの先頭アドレスおよびデータ長を回路に設定する。ステップb7の処理の終了後は、全ての処理手順を終了する。 In step b7, the FP termination unit 56 cuts out TrCH data and sets the start address and data length of the data stored in the memory in the circuit. After the processing of step b7 is completed, all processing procedures are completed.
 ステップb8において、FP終端部56は、指定されたTrCHなどのチャネルを上り方向に折り返し、上り個別チャネル(Uplink Dedicated Channel;略称:UL-DCH)処理にイベント発行を行う。具体的には、UL-DCH処理を開始するトリガに相当するイベントを発行する。ステップb8の処理の終了後は、全ての処理手順を終了する。 In step b8, the FP termination unit 56 loops back the designated channel such as TrCH in the upstream direction, and issues an event for the uplink dedicated channel (abbreviation: UL-DCH) processing. Specifically, an event corresponding to a trigger for starting UL-DCH processing is issued. After the processing of step b8 is completed, all processing procedures are completed.
 図54は、図52に示すステップa5の処理によって開始されるHS-DSCH処理の処理手順を示すフローチャートである。図54に示すフローチャートの各処理は、FP終端部56によって実行される。図54に示すフローチャートの処理は、図52に示すフローチャートのステップa7において、上りの制御フレーム処理の関数が呼び出されると開始され、ステップc1に移行する。図54に示すフローチャートは、前述の図53に示すフローチャートと類似しているので、同一のステップについては、同一のステップ番号を付して、共通する説明を省略する。 FIG. 54 is a flowchart showing the processing procedure of HS-DSCH processing started by the processing of step a5 shown in FIG. Each process of the flowchart shown in FIG. 54 is executed by the FP termination unit 56. The process of the flowchart shown in FIG. 54 is started when the function of the upstream control frame process is called in step a7 of the flowchart shown in FIG. 52, and the process proceeds to step c1. The flowchart shown in FIG. 54 is similar to the flowchart shown in FIG. 53 described above. Therefore, the same steps are denoted by the same step numbers and common description is omitted.
 HS-DSCH処理では、FP終端部56は、ステップb5においてペイロードCRCが「受信OK」を示す、すなわち誤りが検出されなかったと判断すると、ステップc1に移行する。ステップc1において、FP終端部56は、受信したFPフレームのフレームシーケンス番号(Frame Sequence Number)が連続しているか否かを判断する。FP終端部56は、ステップc1において、フレームシーケンス番号が連続していると判断した場合は、ステップc2に移行し、フレームシーケンス番号が連続していないと判断した場合は、ステップb4に移行する。 In the HS-DSCH process, when the FP termination unit 56 determines in step b5 that the payload CRC indicates “reception OK”, that is, no error has been detected, the FP termination unit 56 proceeds to step c1. In step c1, the FP termination unit 56 determines whether the frame sequence numbers (Frame (Sequence Number) of the received FP frames are consecutive. The FP termination unit 56 proceeds to step c2 when determining that the frame sequence numbers are consecutive in step c1, and proceeds to step b4 when determining that the frame sequence numbers are not consecutive.
 ステップc2において、FP終端部56は、受信したFPフレームから、スケジューリング情報を切り出して、MACスケジューリングを行うスケジューラに与える。FP終端部56のスケジューリング情報切出部として機能する部分は、Average Data Rateの計算、MAC-hsバッファ滞留量の算出、および周波数(Frequency)の算出などを行う。ステップc2の処理の終了後は、ステップc3に移行する。 In step c2, the FP termination unit 56 cuts out scheduling information from the received FP frame and provides it to the scheduler that performs MAC scheduling. The portion functioning as the scheduling information cutout unit of the FP termination unit 56 performs calculation of Average Data Rate, calculation of the MAC-hs buffer retention amount, calculation of frequency (Frequency), and the like. After the process of step c2 is completed, the process proceeds to step c3.
 ステップc3において、FP終端部56は、プロトコルデータユニット(Protocol Data Unit;略称:PDU)データ切出部として機能する部分によって、PDUデータの切り出しを行い、メモリに格納されたデータの先頭アドレスおよびデータ長を回路に設定する。ステップc3の処理の終了後は、全ての処理手順を終了する。 In step c3, the FP terminal unit 56 cuts out PDU data by a portion functioning as a protocol data unit (Protocol Data Unit; abbreviated as PDU) data cut-out unit, and starts the address and data of the data stored in the memory. Set the length to the circuit. After the processing of step c3 is completed, all processing procedures are completed.
 図55は、図52に示すステップa7の処理によって開始される上りの制御フレーム処理の処理手順を示すフローチャートである。図55に示すフローチャートの各処理は、FP終端部56によって実行される。図55に示すフローチャートの処理は、図52に示すフローチャートのステップa7において、上りの制御フレーム処理の関数が呼び出されると開始され、ステップd1に移行する。 FIG. 55 is a flowchart showing a processing procedure of uplink control frame processing started by the processing of step a7 shown in FIG. Each process of the flowchart shown in FIG. 55 is executed by the FP termination unit 56. The process of the flowchart shown in FIG. 55 is started when an upstream control frame process function is called in step a7 of the flowchart shown in FIG. 52, and the process proceeds to step d1.
 ステップd1において、FP終端部56は、フレーム(Frame)巡回冗長検査(CRC)の計算を行う。フレームCRCの計算を行った後は、ステップd2に移行する。 In step d1, the FP termination unit 56 performs a frame cyclic redundancy check (CRC) calculation. After calculating the frame CRC, the process proceeds to step d2.
 ステップd2において、FP終端部56は、ステップd1のフレームCRCの計算結果に基づいて、誤りが検出されなかったかどうかを判断する。具体的には、FP終端部56は、算出したフレームCRCが、「受信OK」を示すか、または「受信NG」を示すかを判断することによって、誤りが検出されなかったかどうかを判断する。FP終端部56は、ステップd2において、フレームCRCが「受信OK」を示すと判断した場合は、誤りが検出されなかったと判断してステップd3に移行し、フレームCRCが「受信NG」を示すと判断した場合は、誤りが検出されたと判断してステップd4に移行する。 In step d2, the FP termination unit 56 determines whether or not an error has been detected based on the calculation result of the frame CRC in step d1. Specifically, the FP termination unit 56 determines whether an error is not detected by determining whether the calculated frame CRC indicates “reception OK” or “reception NG”. If it is determined in step d2 that the frame CRC indicates “reception OK”, the FP termination unit 56 determines that no error has been detected and proceeds to step d3, and if the frame CRC indicates “reception NG”. If it is determined, it is determined that an error has been detected, and the process proceeds to step d4.
 ステップd3において、FP終端部56は、FPフレームのヘッダ以外の制御データの切り出しを行う。ステップd3の処理の終了後は、ステップd5に移行する。ステップd4において、FP終端部56は、FP制御フレーム(FP Control Frame)データを破棄する。ステップd4の処理の終了後は、全ての処理手順を終了する。 In step d3, the FP termination unit 56 cuts out control data other than the header of the FP frame. After the process of step d3 is complete | finished, it transfers to step d5. In step d4, the FP termination unit 56 discards FP control frame (FP Control Frame) data. After the processing of step d4 is completed, all processing procedures are completed.
 ステップd5において、FP終端部56は、切り出した制御データに基づいて、下りリンク同期化(DL Synchronization)または上りリンクノード同期化(UL Node Synchronization)を行うか否かを判断する。FP終端部56は、ステップd5において、下りリンク同期化または上りリンクノード同期化を行うと判断した場合は、ステップd7に移行し、下りリンク同期化および上りリンクノード同期化を行わないと判断した場合は、ステップd6に移行する。 In step d5, the FP termination unit 56 determines whether to perform downlink synchronization (DL (Synchronization) or uplink node synchronization (UL Node Synchronization) based on the extracted control data. If it is determined in step d5 that downlink synchronization or uplink node synchronization is performed, the FP termination unit 56 proceeds to step d7 and determines not to perform downlink synchronization and uplink node synchronization. If so, the process proceeds to step d6.
 ステップd6において、FP終端部56は、スケジューラに制御情報を与える。ステップd6の処理の終了後は、全ての処理手順を終了する。 In step d6, the FP termination unit 56 gives control information to the scheduler. After the processing of step d6 is completed, all processing procedures are completed.
 ステップd7において、FP終端部56は、下りリンク同期化または上りリンクノード同期化の処理を行う。下りリンク同期化および上りリンクノード同期化のいずれの処理を行うかは、ステップd5で切り出された制御データに基づいて判断される。ステップd7の処理の終了後は、全ての処理手順を終了する。 In step d7, the FP termination unit 56 performs downlink synchronization or uplink node synchronization processing. Whether to perform downlink synchronization or uplink node synchronization is determined based on the control data extracted in step d5. After the processing of step d7 is completed, all processing procedures are completed.
 図56は、図52に示すステップa6の処理によって開始されるDL-DCH/CCH処理の処理手順を示すフローチャートである。図56に示すフローチャートの各処理は、FP終端部56によって実行される。図56に示すフローチャートの処理は、図52に示すフローチャートのステップa7において、DL-DCH/CCH処理の関数が呼び出されると開始され、ステップe1に移行する。 FIG. 56 is a flowchart showing a processing procedure of DL-DCH / CCH processing started by the processing of step a6 shown in FIG. Each process of the flowchart shown in FIG. 56 is executed by the FP termination unit 56. The processing of the flowchart shown in FIG. 56 is started when the DL-DCH / CCH processing function is called in step a7 of the flowchart shown in FIG. 52, and the processing proceeds to step e1.
 ステップe1において、FP終端部56は、上り制御フレーム(UL Control Frame)のCRC(以下「上り制御フレームCRC」という場合がある)の計算を行う。上り制御フレームCRCの計算を行った後は、ステップe2に移行する。 In step e1, the FP termination unit 56 calculates the CRC of the uplink control frame (UL Control Frame) (hereinafter also referred to as “uplink control frame CRC”). After calculating the uplink control frame CRC, the process proceeds to step e2.
 ステップe2において、FP終端部56は、FPデータ組立て部によって、ToA(Time Of Arrival)などの情報をFP制御フレーム(FP Control Frame)フォーマットに組み立てる。ステップe2の処理の終了後は、全ての処理手順を終了する。 In step e2, the FP terminal unit 56 assembles information such as ToA (Time Of Arrival) into the FP control frame (FP Control Frame) format by the FP data assembly unit. After the processing of step e2 is completed, all processing procedures are completed.
 図57および図58は、図1に示す基地局装置1における上りのFP終端処理の処理手順を示すフローチャートである。図57および図58では、内蔵CPU34およびCPU15によるソフトウェアプログラムの実行によってFP終端処理を実現する場合の処理手順を示す。 57 and 58 are flowcharts showing the processing procedure of the uplink FP termination process in the base station apparatus 1 shown in FIG. 57 and 58 show a processing procedure when the FP termination process is realized by executing the software program by the built-in CPU 34 and the CPU 15.
 図57は、上りのFP終端処理全体の処理手順を示すフローチャートである。図57に示すフローチャートの各処理は、内蔵CPU34およびCPU15によって実行される。図57に示すフローチャートの処理は、DL-DCH/CCH処理からの折り返しイベント発行、またはFPGAなどの回路からの2ms割り込み信号が与えられると開始され、ステップf1に移行する。 FIG. 57 is a flowchart showing the processing procedure of the entire upstream FP termination processing. Each process of the flowchart shown in FIG. 57 is executed by the built-in CPU 34 and the CPU 15. The process of the flowchart shown in FIG. 57 is started when a return event is issued from the DL-DCH / CCH process or when a 2 ms interrupt signal from a circuit such as an FPGA is given, and the process proceeds to step f1.
 ステップf1において、FP終端部56は、デマルチプレックス処理を行う。具体的には、トランスポートブロック(Transport Block)を設定数分集めて連結する。このようにしてデマルチプレックス処理を行うと、ステップf2に移行する。 In step f1, the FP termination unit 56 performs demultiplex processing. Specifically, a set number of transport blocks (Transport Block) are collected and connected. When the demultiplex process is performed in this way, the process proceeds to step f2.
 ステップf2において、FP終端部56は、通信品質を表す品質評価(Quality Estimate;略称:QE)値を計算して、フレームデータに付加し、ステップf3に移行する。 In step f2, the FP termination unit 56 calculates a quality evaluation (Quality Estimate; QE) value representing communication quality, adds it to the frame data, and proceeds to step f3.
 ステップf3において、FP終端部56は、FPフレームのCRCを計算し、算出したCRCを示すインジケータであるCRCI(CRC Indicator)をフレームデータに付加し、ステップf4に移行する。 In step f3, the FP terminating unit 56 calculates the CRC of the FP frame, adds a CRCI (CRC Indicator) indicating the calculated CRC to the frame data, and proceeds to step f4.
 ステップf4において、FP終端部56は、FPフレームのペイロードCRCを計算して、算出したペイロードCRCをフレームデータに付加し、ステップf5に移行する。 In step f4, the FP termination unit 56 calculates the payload CRC of the FP frame, adds the calculated payload CRC to the frame data, and proceeds to step f5.
 ステップf5において、FP終端部56は、FPフレームに、接続フレーム番号(Connection Frame Number;略称:CFN)、転送フォーマットインジケータ(Transport Format Indicator;略称:TFI)、および伝播遅延(Propagation delay)情報などを付加し、ステップf6に移行する。 In step f5, the FP termination unit 56 adds the connection frame number (Connection Frame Number; abbreviation: CFN), transport format indicator (Transport Format Indicator; abbreviation: TFI), propagation delay (Propagation delay) information, and the like to the FP frame. Add to step f6.
 ステップf6において、FP終端部56は、FPフレームのヘッダCRCを計算して、算出したヘッダCRCをフレームデータに付加し、ステップf7に移行する。 In step f6, the FP termination unit 56 calculates the header CRC of the FP frame, adds the calculated header CRC to the frame data, and proceeds to step f7.
 ステップf7において、FP終端部56は、EUL FP処理にイベントを発行する。具体的には、EUL FP処理のトリガに相当するイベントを発行する。ステップf7の処理の終了後は、全ての処理手順を終了する。 In step f7, the FP termination unit 56 issues an event to the EUL FP process. Specifically, an event corresponding to the trigger of the EUL FP process is issued. After the processing of step f7 is completed, all processing procedures are completed.
 図58は、図57に示すステップf7の処理によって開始されるEUL FP処理の処理手順を示すフローチャートである。図58に示すフローチャートの各処理は、FP終端部56によって実行される。図58に示すフローチャートの処理は、図57に示すフローチャートのステップf7において、イベントが発行されて、EUL FP処理が起動されると開始され、ステップg1に移行する。 FIG. 58 is a flowchart showing the processing procedure of the EUL FP process started by the process of step f7 shown in FIG. Each process of the flowchart shown in FIG. 58 is executed by the FP termination unit 56. The process of the flowchart shown in FIG. 58 is started when an event is issued and the EUL FP process is started in step f7 of the flowchart shown in FIG. 57, and the process proceeds to step g1.
 ステップg1において、FP終端部56は、デマルチプレックス処理を行う。具体的には、MAC-es PDUを設定数分集めて連結する。MAC-es PDUは、MAC-es層(MAC-enhanced sub layer)の単位データである。このようにしてデマルチプレックス処理を行うと、ステップg2に移行する。 In step g1, the FP termination unit 56 performs demultiplex processing. Specifically, MAC-es PDUs are collected for the set number and connected. The MAC-es PDU is unit data of the MAC-es layer (MAC-enhanced sublayer). When the demultiplex process is performed in this way, the process proceeds to step g2.
 ステップg2において、FP終端部56は、FPフレームのペイロードCRCを計算して、算出したペイロードCRCをフレームデータに付加し、ステップg3に移行する。 In step g2, the FP termination unit 56 calculates the payload CRC of the FP frame, adds the calculated payload CRC to the frame data, and proceeds to step g3.
 ステップg3において、FP終端部56は、FPフレームのフレームシーケンス番号を増加(インクリメント)させてフレームデータに付加し、ステップg4に移行する。 In step g3, the FP termination unit 56 increments the frame sequence number of the FP frame, adds it to the frame data, and proceeds to step g4.
 ステップg4において、FP終端部56は、CFN、HARQの再送回数(Number of HARQ Retransmissions)、MAC-es PDUのサブフレーム数(0~15)、データ記述インジケータ(DATA Description Indicator)の付加を行い、ステップg5に移行する。 In step g4, the FP termination unit 56 adds the number of CFN and HARQ retransmissions (Number of HARQ Retransmissions), the MAC-es PDU subframe number (0 to 15), and the data description indicator (DATA Description Indicator), Control goes to step g5.
 ステップg5において、FP終端部56は、FPフレームのヘッダCRCを計算してFPフレームに付加し、ステップg6に移行する。 In step g5, the FP termination unit 56 calculates the header CRC of the FP frame, adds it to the FP frame, and proceeds to step g6.
 ステップg6において、FP終端部56は、IP処理にイベントを発行する。具体的には、IP処理を開始するトリガに相当するイベントの発行を行う。これによってIP処理が起動する。ステップg6の処理の終了後は、全ての処理手順を終了する。 In step g6, the FP termination unit 56 issues an event to the IP processing. Specifically, an event corresponding to a trigger for starting IP processing is issued. This starts IP processing. After the processing of step g6 is completed, all processing procedures are completed.
 同じ基地局装置と通信状態にある複数の移動通信端末装置のうち、あるユーザの移動通信端末装置が、別のユーザの移動通信端末装置とは異なる通信方式で通信している場合、基地局装置は、同時に、異なる通信方式での通信を行うことができる。その際、一方の通信方式に対応した通信機能を停止するのは、全てのユーザが一方の通信方式のみで通信をしている、あるいは通信をすることを基地局装置が認知した場合とする。この場合、基地局装置は、消費電力を低く抑えるために、あえてユーザに一方の通信方式の通信のみを実行するように、移動通信端末装置および上位ネットワークを誘導することができる。 Among a plurality of mobile communication terminal devices in communication with the same base station device, when a user's mobile communication terminal device communicates with a different user's mobile communication terminal device using a different communication method, the base station device Can simultaneously communicate using different communication methods. At this time, the communication function corresponding to one communication method is stopped when all users are communicating only with one communication method or when the base station apparatus recognizes that communication is performed. In this case, the base station apparatus can guide the mobile communication terminal apparatus and the higher-level network so as to intentionally execute only one communication method for the user in order to keep power consumption low.
 たとえば、ある基地局装置が4つの移動通信端末装置と通信状態にあり、そのうちの3つの移動通信端末装置が同じ通信方式で通信しており、残りの1つの移動通信端末装置だけが他の3つの移動通信端末装置とは異なる通信方式で通信していると基地局装置が判断した場合を考える。この場合、基地局装置、移動通信端末装置、または、上位ネットワークは、その1つの移動通信端末装置の通信方式を、他の3つの移動通信端末装置と同じ通信方式になるように制御あるいは誘導することができる。 For example, a certain base station apparatus is in communication with four mobile communication terminal apparatuses, three of which are communicating with the same communication method, and only the remaining one mobile communication terminal apparatus is connected to the other three. Consider a case where the base station apparatus determines that communication is performed using a communication method different from that of one mobile communication terminal apparatus. In this case, the base station device, the mobile communication terminal device, or the upper network controls or guides the communication method of the one mobile communication terminal device so that the communication method is the same as the other three mobile communication terminal devices. be able to.
 そして、基地局装置は、全てのユーザの移動通信端末装置が一方の通信方式のみで通信していると判断して、使用していない通信方式の機能動作を停止する。これによって、基地局装置は、消費電力の低減を実現することが可能となり、それにより、フィンなどによる放熱も不要となるので、小さい筐体を採用することで小型化を実現することができる。 Then, the base station apparatus determines that all user mobile communication terminal apparatuses are communicating with only one communication system, and stops the functional operation of the communication system that is not being used. As a result, the base station apparatus can realize a reduction in power consumption, which eliminates the need for heat dissipation by fins and the like, and can achieve downsizing by employing a small casing.
 全てのユーザの移動通信端末装置を一方の通信方式に誘導することによって、消費電力を低減することができるという効果が得られる理由は、以下のとおりである。2つの通信方式がそれぞれ別々のオペレーションシステム(OPS)の管理下で実現されていたり、別々のアプリケーション(AP)が搭載されていたりした場合に、ユーザの移動通信端末装置が1つでも他と異なる通信方式で通信していると、それだけで、OPSおよびAPの基底動作、保守機能などのユーザ共通の機能を動作させなければならなくなる。したがって、前述のように全てのユーザの移動通信端末装置を一方の通信方式に誘導することによって、消費電力を低減することができる。 The reason why power consumption can be reduced by guiding all users' mobile communication terminal devices to one communication method is as follows. When two communication methods are realized under the control of different operation systems (OPS) or when different applications (APs) are installed, even one user's mobile communication terminal device is different from the other If communication is performed using a communication method, it is necessary to operate user-common functions such as the basic operation and maintenance function of OPS and AP. Therefore, power consumption can be reduced by guiding the mobile communication terminal devices of all users to one communication method as described above.
 <第1の実施の形態 変形例1>
 図59は、本発明の第1の実施の形態の変形例1である基地局装置2の構成を示すブロック図である。本変形例における基地局装置2の構成は、前述の図1に示す第1の実施の形態の基地局装置1の構成と類似しているので、図1に示す第1の実施の形態に対応する部分については、同一の参照符を付して、共通する説明を省略する。
<First Embodiment Modification 1>
FIG. 59 is a block diagram showing a configuration of a base station apparatus 2 which is a first modification of the first embodiment of the present invention. Since the configuration of the base station apparatus 2 in the present modification is similar to the configuration of the base station apparatus 1 of the first embodiment shown in FIG. 1 described above, it corresponds to the first embodiment shown in FIG. The same reference numerals are assigned to the parts to be described, and the common description is omitted.
 本変形例の基地局装置2は、RF部11、DFE回路部12、LTE回路部13A、システムクロック供給部16、第1アンテナ17、第2アンテナ18、第1の3G回路部81、第2の3G回路部82、CPU83およびIPsec専用回路部84を備えて構成される。 The base station apparatus 2 of this modification includes an RF unit 11, a DFE circuit unit 12, an LTE circuit unit 13A, a system clock supply unit 16, a first antenna 17, a second antenna 18, a first 3G circuit unit 81, a second 3G circuit unit 82, CPU 83, and IPsec dedicated circuit unit 84.
 図59およびその他の図面において、第1の3G回路部81は、「F3GC」と記載する。第2の3G回路部82は、「S3GC」と記載する。IPsec専用回路部84は、「IPsecDCC」と記載する。 In FIG. 59 and other drawings, the first 3G circuit portion 81 is described as “F3GC”. The second 3G circuit unit 82 is described as “S3GC”. The IPsec dedicated circuit unit 84 is described as “IPsecDCC”.
 RF部11およびDFE回路部12は、第1の実施の形態における基地局装置1のRF部11およびDFE回路部12と同一の構成である。第1の3G回路部81は、第1の実施の形態における基地局装置1の3G回路部14と同一の構成である。LTE回路部13Aは、第1の実施の形態における基地局装置1のLTE回路部13からシステムクロック補正部49を除いた構成である。 The RF unit 11 and the DFE circuit unit 12 have the same configuration as the RF unit 11 and the DFE circuit unit 12 of the base station apparatus 1 in the first embodiment. The first 3G circuit unit 81 has the same configuration as the 3G circuit unit 14 of the base station apparatus 1 in the first embodiment. The LTE circuit unit 13A is configured by removing the system clock correction unit 49 from the LTE circuit unit 13 of the base station apparatus 1 in the first embodiment.
 FP終端部56、3G用IP部58、3G用IPsec部59およびPPPoE部60は、前述の第1の実施の形態では、図1に示すようにCPU15によって実現されるが、本変形例では、ハードウェア回路である第2の3G回路部82およびIPsec専用回路部84によって実現される。つまり、本変形例では、FP終端部56、3G用IP部58、IPsec部59およびPPPoE部60は、CPU83とは別の回路として構成される。 The FP termination unit 56, the 3G IP unit 58, the 3G IPsec unit 59, and the PPPoE unit 60 are realized by the CPU 15 as shown in FIG. 1 in the first embodiment, but in this modification, This is realized by the second 3G circuit unit 82 and the IPsec dedicated circuit unit 84 which are hardware circuits. That is, in this modification, the FP termination unit 56, the 3G IP unit 58, the IPsec unit 59, and the PPPoE unit 60 are configured as a circuit different from the CPU 83.
 第2の3G回路部82は、FP終端部56、3G用IP部58、PPPoE部60および切替スイッチ部85を備える。第1の3G回路部13Aおよび第2の3G回路部82は、同一回路としてもよい。IPsec専用回路部84は、3G用IPsec部59を備える。切替スイッチ部85は、PPPoE部60の接続先を、IPsec専用回路84の3G用IPsec部59、またはLTE回路部13Aの内蔵CPU34AのLTE用IPsec部43に切り替える。第2の3G回路部82およびIPsec専用回路部84は、FPGAまたはLSIなどのASICなどの回路によって実現される。 The second 3G circuit unit 82 includes an FP termination unit 56, a 3G IP unit 58, a PPPoE unit 60, and a changeover switch unit 85. The first 3G circuit unit 13A and the second 3G circuit unit 82 may be the same circuit. The IPsec dedicated circuit unit 84 includes a 3G IPsec unit 59. The changeover switch unit 85 switches the connection destination of the PPPoE unit 60 to the 3G IPsec unit 59 of the IPsec dedicated circuit 84 or the LTE IPsec unit 43 of the built-in CPU 34A of the LTE circuit unit 13A. The second 3G circuit unit 82 and the IPsec dedicated circuit unit 84 are realized by a circuit such as an ASIC such as FPGA or LSI.
 CPU83は、MAC-hs部54、MAC-e部55、3G用無線パラメータ取得部57、3G用AP部61、3G用PF部62およびシステムクロック補正部49を備える。 The CPU 83 includes a MAC-hs unit 54, a MAC-e unit 55, a 3G wireless parameter acquisition unit 57, a 3G AP unit 61, a 3G PF unit 62, and a system clock correction unit 49.
 RF部11とDFE回路部12とは、無線送受信部71を構成する。LTE回路部13Aの内蔵DSP/L1エンジン部と、内蔵CPU34AのRLC/MAC部40およびPDCP/GTP-U部41とは、LTE用ベースバンド部72を構成する。LTE用ベースバンド部72は、非特許文献6~8などで定義されたLTE方式のIFFTおよびFFT、チャネルコーディングおよびチャネルデコーディングのデータ処理、多入力多出力(Multiple Input Multiple Output;略称:MIMO)処理、ならびにスケジューリング処理などを行う。 The RF unit 11 and the DFE circuit unit 12 constitute a wireless transmission / reception unit 71. The built-in DSP / L1 engine unit of the LTE circuit unit 13A and the RLC / MAC unit 40 and the PDCP / GTP-U unit 41 of the built-in CPU 34A constitute an LTE baseband unit 72. The LTE baseband unit 72 includes LTE IFFT and FFT, channel coding and channel decoding data processing defined in Non-Patent Documents 6 to 8 and the like, multiple input multiple output (abbreviation: MIMO) Processing and scheduling processing are performed.
 内蔵CPU34AのLTE用AP部44、LTE用PF部45およびネットワークパラメータ取得部46は、eNB制御部73を構成する。第1の3G回路部81と、CPU83のMAC-hs部54、MAC-e部55および3G用無線パラメータ取得部57と、第2の3G回路部82のFP終端部56とは、3G用ベースバンド部74Aを構成する。3G用ベースバンド部74Aは、3GPP TS25.211~214などで定義されたW-CDMA方式のベースバンド信号処理を行う。 The LTE AP unit 44, the LTE PF unit 45, and the network parameter acquisition unit 46 of the built-in CPU 34A constitute an eNB control unit 73. The first 3G circuit unit 81, the MAC-hs unit 54, the MAC-e unit 55, the 3G wireless parameter acquisition unit 57 of the CPU 83, and the FP termination unit 56 of the second 3G circuit unit 82 are based on the 3G base. The band unit 74A is configured. The 3G baseband unit 74A performs W-CDMA baseband signal processing defined in 3GPP TS25.211 to 214.
 CPU83の3G用AP部61および3G用PF部62は、NB制御部75を構成する。LTE回路部13AのLTE用IP部42およびLTE用IPsec部43と、第2の3G回路部82の3G用IP部58、PPPoE部60および切替スイッチ部85と、IPsec専用回路部84の3G用IPsec部59とは、有線側終端部76Aを構成する。CPU83のシステムクロック補正部49と、システムクロック補正部49に接続されるシステムクロック供給部16とは、クロック部77Aを構成する。 The 3G AP section 61 and the 3G PF section 62 of the CPU 83 constitute an NB control section 75. LTE circuit section LTE LTE section 42 and LTE IPsec section 43 of LTE circuit section 13A, second 3G circuit section 3G IP section 58, PPPoE section 60 and changeover switch section 85, and IPsec dedicated circuit section 84 for 3G The IPsec unit 59 constitutes a wired end unit 76A. The system clock correction unit 49 of the CPU 83 and the system clock supply unit 16 connected to the system clock correction unit 49 constitute a clock unit 77A.
 本変形例において、LTE側機能部位の構成は、前述の第1の実施の形態におけるLTE回路部13からシステムクロック補正部49がCPU83に移動されたこと以外は、前述の図1に示す第1の実施の形態における構成と同じである。 In the present modification, the configuration of the LTE-side functional part is the same as that shown in FIG. 1 described above except that the system clock correction unit 49 is moved from the LTE circuit unit 13 to the CPU 83 in the first embodiment. This is the same as the configuration in the embodiment.
 3G側機能部位の構成は、前述の図1に示す第1の実施形態における構成と異なる。具体的には、3G側機能部位は、第2アンテナ18と、RF部11の第2DUP部26、第2スイッチ部27、第2無線送信部28、第2無線受信部29および第2下り無線受信部30と、DFE回路部12の第2DFE部32と、第1の3G回路部81のW-CDMA方式の拡散変調部50、3G用チャネルコーディング部51、逆拡散復調部52および3G用チャネルデコーディング部53と、第2の3G回路部82のFP終端部56、3G用IP部58、3G用IPsec部59、PPPoE部60および切替スイッチ部85と、CPU83のMAC-hs部54、MAC-e部55、3G用無線パラメータ取得部57、3G用AP部61、3G用PF部62およびシステムクロック補正部49とを備えて構成される。 The configuration of the 3G-side functional part is different from the configuration in the first embodiment shown in FIG. Specifically, the 3G-side functional part includes the second antenna 18, the second DUP unit 26, the second switch unit 27, the second radio transmission unit 28, the second radio reception unit 29, and the second downlink radio of the RF unit 11. The receiving unit 30, the second DFE unit 32 of the DFE circuit unit 12, the W-CDMA spread modulation unit 50 of the first 3G circuit unit 81, the 3G channel coding unit 51, the despreading demodulation unit 52, and the 3G channel Decoding unit 53, FP termination unit 56 of second 3G circuit unit 82, 3G IP unit 58, 3G IPsec unit 59, PPPoE unit 60 and changeover switch unit 85, MAC-hs unit 54 of CPU 83, MAC - E section 55, 3G wireless parameter acquisition section 57, 3G AP section 61, 3G PF section 62, and system clock correction section 49.
 以上のように本変形例では、FP終端部56、3G用IP部58、IPsec部59およびPPPoE部60は、ハードウェア回路によって実現されるので、MAC-hs部54およびMAC-e部55を、ユーザデータの導通ではなく、パラメータを取得し、伝送速度の制御などのスケジューリング機能のみを行うように構成することができる。これによって、図59に示すように、3G側のユーザデータの通路を回路のみで構成することができるので、ソフトウェア処理の負荷を軽減することができる。また本変形例では、前述の第1の実施の形態と同様の効果を達成することができる。 As described above, in this modification, since the FP termination unit 56, the 3G IP unit 58, the IPsec unit 59, and the PPPoE unit 60 are realized by hardware circuits, the MAC-hs unit 54 and the MAC-e unit 55 are provided. Instead of user data continuity, parameters can be acquired and only scheduling functions such as transmission rate control can be performed. As a result, as shown in FIG. 59, the user data path on the 3G side can be configured only by a circuit, so that the load of software processing can be reduced. In this modification, the same effect as that of the first embodiment described above can be achieved.
 <第1の実施の形態 変形例2>
 図60は、本発明の第1の実施の形態の変形例2である基地局装置3の構成を示すブロック図である。本変形例における基地局装置3の構成は、前述の図59に示す第1の実施の形態の変形例2における基地局装置2の構成と類似しているので、図2に示す第1の実施の形態の変形例2に対応する部分については、同一の参照符を付して、共通する説明を省略する。
<First Embodiment Modification 2>
FIG. 60 is a block diagram showing a configuration of a base station apparatus 3 which is a second modification of the first embodiment of the present invention. Since the configuration of the base station apparatus 3 in the present modification is similar to the configuration of the base station apparatus 2 in the second modification of the first embodiment shown in FIG. 59 described above, the first implementation shown in FIG. The portions corresponding to the second modification of the embodiment are denoted by the same reference numerals, and the common description is omitted.
 本変形例の基地局装置3は、RF部11A、LTE回路部13A、システムクロック供給部16、第1アンテナ17、第2アンテナ18、第1の3G回路部81、第2の3G回路部82、CPU83およびIPsec専用回路部84を備えて構成される。LTE回路部13A、第1の3G回路部81、第2の3G回路部82、CPU83およびIPsec専用回路部84は、第1の実施の形態の変形例2における基地局装置2のLTE回路部13A、第1の3G回路部81、第2の3G回路部82、CPU83およびIPsec専用回路部84と同一の構成である。第1の3G回路部81および第2の3G回路部82は、同一回路としてもよい。 The base station apparatus 3 of this modification includes an RF unit 11A, an LTE circuit unit 13A, a system clock supply unit 16, a first antenna 17, a second antenna 18, a first 3G circuit unit 81, and a second 3G circuit unit 82. The CPU 83 and the IPsec dedicated circuit unit 84 are provided. The LTE circuit unit 13A, the first 3G circuit unit 81, the second 3G circuit unit 82, the CPU 83, and the IPsec dedicated circuit unit 84 are the LTE circuit unit 13A of the base station apparatus 2 according to the second modification of the first embodiment. The first 3G circuit unit 81, the second 3G circuit unit 82, the CPU 83, and the IPsec dedicated circuit unit 84 have the same configuration. The first 3G circuit unit 81 and the second 3G circuit unit 82 may be the same circuit.
 本変形例のRF部11Aは、第1DUP部21、第1スイッチ部22、第1無線送信部23、第1無線受信部24、第1下り無線受信部25、第2DUP部26、第2スイッチ部27、第2無線送信部28、第2無線受信部29、第2下り無線受信部30、合成部91、第1分配部92、第2分配部93、3G用無線送信部94、3G用無線受信部95および3G用下り無線受信部96を備える。本変形例のRF部11Aは、無線送受信部71Aを構成する。 The RF unit 11A of this modification includes a first DUP unit 21, a first switch unit 22, a first radio transmission unit 23, a first radio reception unit 24, a first downlink radio reception unit 25, a second DUP unit 26, and a second switch. 27, second wireless transmission unit 28, second wireless reception unit 29, second downlink wireless reception unit 30, combining unit 91, first distribution unit 92, second distribution unit 93, 3G wireless transmission unit 94, for 3G A wireless receiving unit 95 and a 3G downlink wireless receiving unit 96 are provided. The RF unit 11A of this modification constitutes a wireless transmission / reception unit 71A.
 図60およびその他の図面において、合成部91は、「SYN」と記載する。第1分配部92および第2分配部93は、「DIS」と記載する。3G用無線送信部94は、「3GTR」と記載する。3G用無線受信部95は、「3GRE」と記載する。3G用下り無線受信部96は、「3GDRE」と記載する。 In FIG. 60 and other drawings, the synthesis unit 91 is described as “SYN”. The first distribution unit 92 and the second distribution unit 93 are described as “DIS”. The 3G wireless transmission unit 94 is described as “3GTR”. The 3G wireless reception unit 95 is described as “3GRE”. The 3G downlink radio reception unit 96 is described as “3GDRE”.
 本変形例の基地局装置3は、無線送受信部71Aを構成するRF部11A以外は、前述の第1の実施の形態の変形例1における基地局装置2と同じ構成である。本変形例のRF部11は、DFEが無い。 The base station device 3 of the present modification has the same configuration as the base station device 2 in the first modification of the first embodiment described above, except for the RF unit 11A that configures the wireless transmission / reception unit 71A. The RF unit 11 of the present modification has no DFE.
 本変形例では、第1アンテナ17、第2アンテナ18、第1デュプレクサ(duplexer;略称:DUP)部21、第1スイッチ部22、第1無線送信部23、第1無線受信部24、第1下り無線受信部25、第2DUP部26、第2スイッチ部27、第2無線送信部28、第2無線受信部29、第2下り無線受信部30、合成部91、第1分配部92、第2分配部93、3G用無線送信部94、3G用無線受信部95および3G用下り無線受信部96を備えて構成される。 In this modification, the first antenna 17, the second antenna 18, the first duplexer (abbreviation: DUP) unit 21, the first switch unit 22, the first radio transmission unit 23, the first radio reception unit 24, the first Downlink radio reception unit 25, second DUP unit 26, second switch unit 27, second radio transmission unit 28, second radio reception unit 29, second downlink radio reception unit 30, synthesis unit 91, first distribution unit 92, first distribution unit 92 The two distribution units 93, the 3G radio transmission unit 94, the 3G radio reception unit 95, and the 3G downlink radio reception unit 96 are configured.
 3G用無線送信部94は、W-CDMA方式の拡散変調後の信号をRF信号にアップコンバージョンする。3G用無線受信部95は、W-CDMA方式のRF信号をダウンコンバージョンして、A/D変換する。3G用下り無線受信部96は、W-CDMA方式の下り周波数のRF信号をダウンコンバージョンして、A/D変換する。 The 3G wireless transmission unit 94 up-converts the signal after W-CDMA spread modulation to an RF signal. The 3G wireless reception unit 95 down-converts the W-CDMA RF signal and performs A / D conversion. The 3G downlink radio reception unit 96 down-converts the W-CDMA downlink frequency RF signal and performs A / D conversion.
 合成部91は、第2無線送信部28から出力されるLTE方式のRF信号と、3G用無線送信部94から出力されるW-CDMA方式のRF信号とを、周波数帯域を重複させること無く、周波数を並べて配置する帯域制限機能を有するアナログフィルタである。第1および第2分配部92,93は、RF信号を、3G帯域を通過する信号とLTE帯域を通過する信号とに分離するアナログフィルタである。 The synthesizing unit 91 does not overlap the frequency band of the LTE RF signal output from the second wireless transmission unit 28 and the W-CDMA RF signal output from the 3G wireless transmission unit 94, This is an analog filter having a band limiting function for arranging frequencies side by side. The first and second distributors 92 and 93 are analog filters that separate the RF signal into a signal passing through the 3G band and a signal passing through the LTE band.
 以上のように本変形例では、前述の第1の実施の形態の変形例1と同様に、FP終端部56、3G用IP部58、IPsec部59およびPPPoE部60が、CPU83とは別の回路として構成されるので、MAC-hs部54およびMAC-e部55を、ユーザデータの導通ではなく、パラメータを取得し、伝送速度の制御などのスケジューリング機能のみを行うように構成することができる。これによって、図60に示すように、3G側のユーザデータの通路を回路のみで構成することができるので、ソフトウェア処理の負荷を軽減することができる。 As described above, in the present modification, the FP termination unit 56, the 3G IP unit 58, the IPsec unit 59, and the PPPoE unit 60 are different from the CPU 83, as in the first modification of the first embodiment. Since it is configured as a circuit, the MAC-hs unit 54 and the MAC-e unit 55 can be configured not to conduct user data but to acquire parameters and perform only scheduling functions such as transmission rate control. . As a result, as shown in FIG. 60, the user data path on the 3G side can be configured only by a circuit, so that the load of software processing can be reduced.
 また、前述の第1の実施の形態の変形例1ではDFE部31を用いて、ディジタルベースバンド周波数帯域で合成または分配を行う構成であるのに対し、本変形例では、DFE回路部を用いずに、アナログ高周波(RF)で3G信号およびLTE信号の合成または分配を行っている。これによって、ディジタルベースバンド周波数帯域で合成または分配を行う場合に比べて、合成時には誤差の拡大を防ぐことができる。また分配時には、ダウンコンバージョン前に3G信号とLTE信号とを分離するので、ダウンコンバージョン時の干渉波の混入および雑音の混入を防ぐことができる。 In the first modification of the first embodiment, the DFE unit 31 is used for synthesizing or distributing in the digital baseband frequency band, whereas in this modification, the DFE circuit unit is used. In addition, the 3G signal and the LTE signal are synthesized or distributed by analog high frequency (RF). As a result, it is possible to prevent an error from being enlarged during the synthesis compared to the case where the synthesis or distribution is performed in the digital baseband frequency band. Further, at the time of distribution, the 3G signal and the LTE signal are separated before down-conversion, so that it is possible to prevent mixing of interference waves and noise during down-conversion.
 本変形例では、RFを1系統少なくすることができるという前述の第1の実施の形態における効果は得られないが、それ以外は、前述の第1の実施の形態と同様の効果を達成することができる。 In this modification, the effect in the first embodiment described above that RF can be reduced by one system cannot be obtained, but other than that, the same effect as in the first embodiment is achieved. be able to.
 前述の第1の実施の形態およびその変形例1,2におけるDFE処理に関して、さらに詳細に説明する。図61は、図1に示す第1の実施の形態における基地局装置1のDFE回路部12およびその周辺部の詳細な構成を示すブロック図である。図62は、本発明の第1の実施の形態における信号の状態を示す図である。図61に示す例では、前述の図1に示す第1の実施の形態について説明するが、前述の図59に示す第1の実施の形態の変形例1についても、DFE回路部12およびその周辺部の詳細な構成は、第1の実施の形態と同様に図61に示す構成となる。 The DFE processing in the first embodiment and its modifications 1 and 2 will be described in more detail. FIG. 61 is a block diagram showing a detailed configuration of the DFE circuit unit 12 and its peripheral part of the base station apparatus 1 in the first embodiment shown in FIG. FIG. 62 is a diagram showing signal states in the first embodiment of the present invention. In the example shown in FIG. 61, the first embodiment shown in FIG. 1 will be described. However, in the first modification shown in FIG. The detailed configuration of the unit is the configuration shown in FIG. 61 as in the first embodiment.
 図61に示す例では、-5MHz~+10MHzの周波数帯域の部分にLTE方式の信号が割り当てられ、-10MHz~-5MHzの周波数帯域の部分にW-CDMA方式の信号が割り当てられるようなシステムを想定して説明するが、必ずしもこのような割り当てにしなくても、DFEの処理によるLTE方式信号とW-CDMA方式信号との分離および結合は成立する。 In the example shown in FIG. 61, a system is assumed in which LTE signals are allocated to a frequency band of -5 MHz to +10 MHz, and W-CDMA signals are allocated to a frequency band of -10 MHz to -5 MHz. As will be described, the LTE system signal and the W-CDMA system signal can be separated and combined by DFE processing without necessarily having such an assignment.
 ここで、「-5MHz~+10MHz」および「-10MHz~-5MHz」とは、中心周波数を0MHzとした場合の相対的な周波数であり、実際には、中心周波数は、ベースバンド信号の周波数となる。たとえば、LTE方式のベースバンド周波数が30.72MHzである場合を想定する。この場合、中心周波数は、LTE方式のベースバンド周波数である30.72MHzとなるので、この周波数を基準として、周波数帯域を考える。W-CDMA方式のベースバンド周波数がLTE方式のベースバンド周波数と異なっていても、中心周波数は、LTE方式のベースバンド周波数に合わせる。図61に示す例ではアンテナの数を2本としているが、必ずしも2本である必要はなく、1本でもよいし、3本でもよい。 Here, “−5 MHz to +10 MHz” and “−10 MHz to −5 MHz” are relative frequencies when the center frequency is set to 0 MHz. Actually, the center frequency is the frequency of the baseband signal. . For example, it is assumed that the LTE baseband frequency is 30.72 MHz. In this case, since the center frequency is 30.72 MHz which is the baseband frequency of the LTE system, the frequency band is considered with reference to this frequency. Even if the baseband frequency of the W-CDMA system is different from the baseband frequency of the LTE system, the center frequency is adjusted to the baseband frequency of the LTE system. In the example shown in FIG. 61, the number of antennas is two. However, the number is not necessarily two, and may be one or three.
 基地局装置1は、第1アンテナ701、第1デュプレクサ(duplexer;略称:DUP)部702、第1RF-IC部707、送信用DFE部716、LTE方式ベースバンド信号処理部717、第2アンテナ721、第2デュプレクサ(DUP)部722、第2RF-IC部727、受信用DFE部741およびW-CDMA方式ベースバンド信号処理部742を備えて構成される。受信用DFE部741は、受信処理手段に相当し、送信用DFE部716は、送信処理手段に相当する。 The base station apparatus 1 includes a first antenna 701, a first duplexer (abbreviation: DUP) unit 702, a first RF-IC unit 707, a transmission DFE unit 716, an LTE baseband signal processing unit 717, and a second antenna 721. A second duplexer (DUP) unit 722, a second RF-IC unit 727, a receiving DFE unit 741, and a W-CDMA baseband signal processing unit 742. The reception DFE unit 741 corresponds to a reception processing unit, and the transmission DFE unit 716 corresponds to a transmission processing unit.
 図61およびその他の図面において、送信用DFE部716は、「SDFE」と記載する。LTE方式ベースバンド信号処理部717は、「LTE_BBSP」と記載する。受信用DFE部741は、「RDFE」と記載する。W-CDMA方式ベースバンド信号処理部742は、「W-CDMA_BBSP」と記載する。 61 and other drawings, the transmission DFE unit 716 is described as “SDFE”. The LTE baseband signal processing unit 717 is described as “LTE_BBSP”. The reception DFE unit 741 is described as “RDFE”. The W-CDMA baseband signal processing unit 742 is described as “W-CDMA_BBSP”.
 図61に示す第1アンテナ701は、図1の第1アンテナ17に相当する。第2アンテナ721は、図1の第2アンテナ18に相当する。第1DUP702、第2DUP部722、第1RF-IC回路707および第2RF-IC部727は、図1のRF部11に相当する。送信用DFE部716および受信用DFE部741は、図1のDFE回路12に相当する。具体的には、第1DUP702は、図1の第1DUP部21に相当する。第2DUP部722は、図1の第2DUP部26に相当する。第1RF-IC回路707は、図1の第1無線送信部23、第1無線受信部24および第1下り無線受信部25に相当する。第2RF-IC部727は、図1の第2無線送信部28、第2無線受信部29および第2下り無線受信部30に相当する。LTE方式ベースバンド信号処理部717は、図1のLTE用ベースバンド部72に相当する。W-CDMA方式ベースバンド信号処理部742は、図1のW-CDMA用のベースバンド部である3G用ベースバンド部74に相当する。 The first antenna 701 shown in FIG. 61 corresponds to the first antenna 17 of FIG. The second antenna 721 corresponds to the second antenna 18 of FIG. The first DUP 702, the second DUP unit 722, the first RF-IC circuit 707, and the second RF-IC unit 727 correspond to the RF unit 11 in FIG. The transmission DFE unit 716 and the reception DFE unit 741 correspond to the DFE circuit 12 in FIG. Specifically, the first DUP 702 corresponds to the first DUP unit 21 in FIG. The second DUP unit 722 corresponds to the second DUP unit 26 in FIG. The first RF-IC circuit 707 corresponds to the first radio transmission unit 23, the first radio reception unit 24, and the first downlink radio reception unit 25 in FIG. The second RF-IC unit 727 corresponds to the second radio transmission unit 28, the second radio reception unit 29, and the second downlink radio reception unit 30 of FIG. The LTE baseband signal processing unit 717 corresponds to the LTE baseband unit 72 of FIG. The W-CDMA baseband signal processing unit 742 corresponds to the 3G baseband unit 74 which is the baseband unit for W-CDMA in FIG.
 第1RF-IC部707は、第1アップコンバージョン部703、第1ダウンコンバージョン部704、第1D/A変換部705および第1A/D変換部706を備える。第2RF-IC部727は、第2アップコンバージョン部723、第2ダウンコンバージョン部724、第2D/A変換部725および第2A/D変換部726を備える。図61およびその他の図面において、第1アップコンバージョン部703および第2アップコンバージョン部723は、「UC」と記載する。第1ダウンコンバージョン部704および第2ダウンコンバージョン部724は、「DC」と記載する。 The first RF-IC unit 707 includes a first up-conversion unit 703, a first down-conversion unit 704, a first D / A conversion unit 705, and a first A / D conversion unit 706. The second RF-IC unit 727 includes a second up-conversion unit 723, a second down-conversion unit 724, a second D / A conversion unit 725, and a second A / D conversion unit 726. In FIG. 61 and other drawings, the first up-conversion unit 703 and the second up-conversion unit 723 are described as “UC”. The first down conversion unit 704 and the second down conversion unit 724 are described as “DC”.
 送信用DFE部716は、送信信号に対応したDFE部であり、第1合成部708、第2合成部709、第1LTE用周波数変換部710、第2LTE用周波数変換部711、第1W-CDMA用周波数変換部712、第2W-CDMA用周波数変換部713、第1レート変換部714および第2レート変換部715を備える。送信用DFE部716は、前述の図1に示す第1第1DFE部31および第2DFE部32の中で、送信信号の処理を行う部分に相当する。 The transmission DFE unit 716 is a DFE unit corresponding to a transmission signal, and includes a first combining unit 708, a second combining unit 709, a first LTE frequency converting unit 710, a second LTE frequency converting unit 711, and a first W-CDMA use. A frequency converter 712, a second W-CDMA frequency converter 713, a first rate converter 714, and a second rate converter 715 are provided. The transmission DFE unit 716 corresponds to a part that performs transmission signal processing in the first first DFE unit 31 and the second DFE unit 32 shown in FIG.
 図61およびその他の図面において、第1LTE用周波数変換部710、第2LTE用周波数変換部711、第1W-CDMA用周波数変換部712および第2W-CDMA用周波数変換部713は、「FC」と記載する。第1レート変換部714および第2レート変換部715は、「RC」と記載する。 In FIG. 61 and other drawings, the first LTE frequency converter 710, the second LTE frequency converter 711, the first W-CDMA frequency converter 712, and the second W-CDMA frequency converter 713 are described as “FC”. To do. The first rate conversion unit 714 and the second rate conversion unit 715 are described as “RC”.
 受信用DFE部741は、受信信号に対応したDFE部であり、分離部728、第3LTE用周波数変換部729、第4LTE用周波数変換部730、第3W-CDMA用周波数変換部731、第4W-CDMA用周波数変換部732、第1ディジタルフィルタ733、第2ディジタルフィルタ734、第3ディジタルフィルタ735、第4ディジタルフィルタ736、第1自動利得制御(Automatic Gain Control;略称:AGC)部737、第2AGC部738、第3AGC部739および第4AGC部740を備える。受信用DFE部741は、前述の図1に示す第1第1DFE部31および第2DFE部32の中で、受信信号の処理を行う部分に相当する。 The reception DFE unit 741 is a DFE unit corresponding to the received signal, and includes a separation unit 728, a third LTE frequency conversion unit 729, a fourth LTE frequency conversion unit 730, a third W-CDMA frequency conversion unit 731 and a fourth W- A CDMA frequency converter 732, a first digital filter 733, a second digital filter 734, a third digital filter 735, a fourth digital filter 736, a first automatic gain control (abbreviation: AGC) unit 737, a second AGC Part 738, third AGC part 739 and fourth AGC part 740. The receiving DFE unit 741 corresponds to a part that performs processing of a received signal in the first first DFE unit 31 and the second DFE unit 32 shown in FIG.
 図61およびその他の図面において、分離部728は、「SEP」と記載する。第3LTE用周波数変換部729、第4LTE用周波数変換部730、第3W-CDMA用周波数変換部731および第4W-CDMA用周波数変換部732は、「FC」と記載する。第1ディジタルフィルタ733、第2ディジタルフィルタ734、第3ディジタルフィルタ735および第4ディジタルフィルタ736は、「DFI」と記載する。 61 and other drawings, the separation unit 728 is described as “SEP”. The third LTE frequency converter 729, the fourth LTE frequency converter 730, the third W-CDMA frequency converter 731 and the fourth W-CDMA frequency converter 732 are described as “FC”. The first digital filter 733, the second digital filter 734, the third digital filter 735, and the fourth digital filter 736 are described as “DFI”.
 第1DUP部702は、第1アンテナ701に接続されており、送信信号および/または受信信号を結合および/または分離する。第2DUP部722は、第2アンテナ721に接続されており、送信信号および/または受信信号を結合および/または分離する。 The first DUP unit 702 is connected to the first antenna 701, and combines and / or separates transmission signals and / or reception signals. The second DUP unit 722 is connected to the second antenna 721 and combines and / or separates a transmission signal and / or a reception signal.
 第1アップコンバージョン部703および第2アップコンバージョン部723は、たとえば30.72MHzのベースバンド周波数を、たとえば2GHzの高周波に変換する。第1アップコンバージョン部703および第2アップコンバージョン部723は、搬送波に位相変調することで信号を乗せてもよい。 The first up-conversion unit 703 and the second up-conversion unit 723 convert a baseband frequency of, for example, 30.72 MHz into a high frequency of, for example, 2 GHz. The first up-conversion unit 703 and the second up-conversion unit 723 may carry a signal by performing phase modulation on a carrier wave.
 第1ダウンコンバージョン部704および第2ダウンコンバージョン部724は、高周波の信号をベースバンド周波数に変換する。搬送波に位相変調することで信号を乗せるシステムであるならば、第1ダウンコンバージョン部704および第2ダウンコンバージョン部724は、搬送波から位相変調された変調成分を取り出してもよい。 The first down conversion unit 704 and the second down conversion unit 724 convert a high frequency signal into a baseband frequency. If the system is to place a signal by phase-modulating the carrier wave, the first down-conversion unit 704 and the second down-conversion unit 724 may extract the phase-modulated component from the carrier wave.
 第1D/A変換部705および第2D/A変換部725は、ディジタル信号をアナログ信号に変換する。第1A/D変換部706および第2A/D変換部726は、アナログ信号をディジタル信号に変換する。 The first D / A converter 705 and the second D / A converter 725 convert the digital signal into an analog signal. The first A / D conversion unit 706 and the second A / D conversion unit 726 convert an analog signal into a digital signal.
 第1合成部708は、第1LTE用周波数変換部710から与えられるLTE方式信号帯域信号と、第1W-CDMA用周波数変換部712から与えられるW-CDMA方式信号帯域信号とを並べ、20MHz帯域の1つの信号に合成する。第2合成部709は、第2LTE用周波数変換部711から与えられるLTE方式信号帯域信号と、第2W-CDMA用周波数変換部713から与えられるW-CDMA方式信号帯域信号とを並べ、20MHz帯域の1つの信号に合成する。 The first combining unit 708 arranges the LTE signal band signal provided from the first LTE frequency conversion unit 710 and the W-CDMA signal band signal provided from the first W-CDMA frequency conversion unit 712 to arrange the 20 MHz band. Combine into one signal. The second synthesizing unit 709 arranges the LTE system signal band signal provided from the second LTE frequency conversion unit 711 and the W-CDMA system signal band signal provided from the second W-CDMA frequency conversion unit 713, and arranges the 20 MHz band. Combine into one signal.
 第1および第2LTE用周波数変換部710,711は、15MHzのLTE方式信号を、使用可能な20MHzの周波数帯域幅のうちの-5MHz~10MHzの周波数に周波数変換する。第1および第2W-CDMA用周波数変換部712,713は、5MHzのW-CDMA方式信号を、使用可能な20MHzの周波数帯域幅のうちの-10MHz~-5MHzの周波数に周波数変換する。 The first and second LTE frequency converters 710 and 711 convert the 15 MHz LTE signal to a frequency of −5 MHz to 10 MHz in the usable 20 MHz frequency bandwidth. The first and second W- CDMA frequency converters 712 and 713 convert the frequency of the 5 MHz W-CDMA system signal to a frequency of −10 MHz to −5 MHz in the usable 20 MHz frequency bandwidth.
 第1および第2レート変換部714,715は、W-CDMA方式信号サンプリング周波数たとえば7.68MHzを、LTE方式信号サンプリング周波数たとえば30.72MHzに変換して、合成可能な状態にする。LTE方式ベースバンド信号処理部717は、LTE方式の変復調、符号化および復号化などの処理を行う。 The first and second rate conversion units 714 and 715 convert the W-CDMA system signal sampling frequency, for example, 7.68 MHz, to the LTE system signal sampling frequency, for example, 30.72 MHz, so that they can be combined. The LTE baseband signal processing unit 717 performs processing such as LTE modulation / demodulation, encoding, and decoding.
 分離部728は、第1A/D変換部706でA/D変換されたディジタル信号を分離して、第3LTE用周波数変換部729および第3W-CDMA用周波数変換部731に与える。また分離部728は、第2A/D変換部726でA/D変換されたディジタル信号を分離して、第4LTE用周波数変換部730および第4W-CDMA用周波数変換部732に与える。 The demultiplexing unit 728 demultiplexes the digital signal that has been A / D converted by the first A / D conversion unit 706 and provides the demultiplexed signal to the third LTE frequency conversion unit 729 and the third W-CDMA frequency conversion unit 731. Separation section 728 separates the digital signal that has been A / D converted by second A / D conversion section 726 and provides the digital signal to fourth LTE frequency conversion section 730 and fourth W-CDMA frequency conversion section 732.
 第3および第4LTE用周波数変換部729,730は、分離部728から与えられた信号のうち、LTE方式信号の周波数として割り当てられた-5MHz~+10MHzの信号を、-7.5MHz~+7.5MHzの周波数帯域になるように周波数変換する。 Third and fourth LTE frequency converters 729 and 730 convert a signal of −5 MHz to +10 MHz, which is assigned as a frequency of the LTE system signal, from −7.5 MHz to +7.5 MHz among the signals supplied from separator 728. The frequency is converted so that the frequency band becomes.
 第3および第4LTE用周波数変換部729,730による周波数変換後には、計算上、所望の周波数帯域よりも高い周波数の信号も出力される。第1および第2ディジタルフィルタ733,734は、第3および第4LTE用周波数変換部729,730から出力される信号から、所望の周波数帯域の信号のみを取り出すローパスフィルタ(Low Pass Filter;略称:LPF)として機能する。 After the frequency conversion by the third and fourth LTE frequency converters 729 and 730, a signal having a frequency higher than the desired frequency band is also output for calculation. The first and second digital filters 733 and 734 are low-pass filters (Low Pass Filter; abbreviation: LPF) that extract only signals in a desired frequency band from the signals output from the third and fourth LTE frequency converters 729 and 730. ).
 第3および第4W-CDMA用周波数変換部731,732は、分離部728によって分離されて与えられた信号のうち、W-CDMA方式信号の周波数として割り当てられた-10MHz~-5MHzの信号を、-2.5MHz~+2.5MHzの周波数帯域になるように周波数変換する。 The third and fourth W- CDMA frequency converters 731 and 732, among the signals separated and given by the separator 728, signals of −10 MHz to −5 MHz assigned as the frequency of the W-CDMA system signal, -Frequency conversion is performed so that the frequency band is from -2.5 MHz to +2.5 MHz.
 第3および第4W-CDMA用周波数変換部731,732による周波数変換後には、計算上、所望の周波数帯域よりも高い周波数の信号も出力される。第3および第4ディジタルフィルタ735,736は、第3および第4W-CDMA用周波数変換部731,732から出力される信号から、所望の周波数帯域の信号のみを取り出すLPFとして機能する。 After the frequency conversion by the third and fourth W- CDMA frequency converters 731 and 732, a signal having a frequency higher than the desired frequency band is also output in calculation. The third and fourth digital filters 735 and 736 function as LPFs that extract only signals in a desired frequency band from the signals output from the third and fourth W- CDMA frequency converters 731 and 732.
 第1~第4AGC部737~740は、ディジタル信号の振幅を抑える。W-CDMA方式ベースバンド信号処理部742は、W-CDMA型式の変復調、符号化および復号化などの処理を行う。 The first to fourth AGC units 737 to 740 suppress the amplitude of the digital signal. The W-CDMA system baseband signal processing unit 742 performs processing such as W-CDMA type modulation / demodulation, encoding, and decoding.
 第1~第4AGC部737~740は、ディジタル信号において、小型化および低価格化を実現する目的で、第1および第2A/D変換部706,726などで十分なビット幅を持てない場合に必要となる。第1および第2A/D変換部706,726などで十分なビット幅を持てる場合には、第1~第4AGC部737~740は設けなくてもよい。 The first to fourth AGC units 737 to 740 are used when the first and second A / D conversion units 706 and 726 do not have a sufficient bit width for the purpose of reducing the size and price of a digital signal. Necessary. When the first and second A / D conversion units 706 and 726 can have a sufficient bit width, the first to fourth AGC units 737 to 740 may not be provided.
 第1アップコンバージョン部703、第1ダウンコンバージョン部704、第1D/A変換部705および第1A/D変換部706で構成される第1RF-IC部707は、1つのRF専用チップであるRF-ICなどで実現することができる。同様に、第2アップコンバージョン部723、第2ダウンコンバージョン部724、第2D/A変換部725および第2A/D変換部726で構成される第2RF-IC部727は、1つのRF専用チップであるRF-ICなどで実現することができる。 The first RF-IC unit 707 including the first up-conversion unit 703, the first down-conversion unit 704, the first D / A conversion unit 705, and the first A / D conversion unit 706 is an RF-chip that is a single RF dedicated chip. It can be realized by an IC or the like. Similarly, the second RF-IC unit 727 including the second up-conversion unit 723, the second down-conversion unit 724, the second D / A conversion unit 725, and the second A / D conversion unit 726 is a single RF dedicated chip. It can be realized by a certain RF-IC or the like.
 次に、受信処理の動作を説明する。第1および第2アンテナ701,721で受信したW-CDMA方式およびLTE方式の両方を含む20MHz帯域の信号は、第1および第2DUP部702,722を介して第1および第2ダウンコンバージョン部704,724に入力される。 Next, the operation of the reception process will be described. A signal in the 20 MHz band including both the W-CDMA scheme and the LTE scheme received by the first and second antennas 701 and 721 is sent to the first and second down conversion units 704 via the first and second DUP units 702 and 722. , 724.
 第1および第2ダウンコンバージョン部704,724において、2GHzなどの高周波(Radio Frequency)の信号は、61.44MHzなどのベースバンド信号に周波数変換され、第1および第2A/D変換部706,726に入力される。第1および第2A/D変換部706,726において、アナログ信号がディジタル信号に変換され、分離部728に入力される。 In the first and second down- conversion units 704 and 724, a high-frequency signal such as 2 GHz is converted into a baseband signal such as 61.44 MHz, and the first and second A / D conversion units 706 and 726 are converted. Is input. In the first and second A / D conversion units 706 and 726, the analog signal is converted into a digital signal and input to the separation unit 728.
 図61に示す例では、前述のように20MHz幅の周波数帯域のうち、-5MHz~+10MHzの部分がLTE方式の信号に割り当てられ、-10MHz~-5MHzの部分がW-CDMA方式の信号に割り当てられるようなシステムである場合を想定している。したがって、分離部728に入力される信号743の状態は、図62に示すように、20MHz幅の周波数帯域のうち、-5MHz~+10MHzの部分をLTE方式の信号が専有しており、-10MHz~-5MHzの部分をW-CDMA方式の信号が専有している状態となる。 In the example shown in FIG. 61, the -5 MHz to +10 MHz portion is allocated to the LTE signal and the -10 MHz to -5 MHz portion is allocated to the W-CDMA signal in the 20 MHz wide frequency band as described above. It is assumed that the system is such that. Therefore, as shown in FIG. 62, the state of the signal 743 input to the separation unit 728 is that the LTE signal occupies a portion of −5 MHz to +10 MHz in the 20 MHz-wide frequency band, and −10 MHz to The state of −5 MHz is occupied by the W-CDMA system signal.
 分離部728は、第3および第4LTE用周波数変換部729,730ならびに第3および第4W-CDMA用周波数変換部731,732に、20MHz帯域の信号を送るか、あるいは、-5MHz~+10MHz帯域の信号を切り出して第3および第4LTE用周波数変換部729,730に送り、-10MHz~-5MHz帯域の信号を切り出して第3および第4W-CDMA用周波数変換部731,732に送る。切り出して送った方が、周波数変換で位相回転のための乗算を行うときに、別方式の信号が入り込むことを未然に防ぐことができるので好ましい。切り出さずに送る場合は、第1~第4ディジタルフィルタ733~736によって、別方式の信号を取り除く処理を行うことによって、取り出したい通信方式の信号のみを取り出すことができる。 Separation section 728 sends a signal of 20 MHz band to third and fourth LTE frequency conversion sections 729 and 730 and third and fourth W-CDMA frequency conversion sections 731 and 732, or transmits a signal of −5 MHz to +10 MHz band The signal is cut out and sent to the third and fourth LTE frequency converters 729 and 730, and the signal in the −10 MHz to −5 MHz band is cut out and sent to the third and fourth W- CDMA frequency converters 731 and 732. It is preferable to cut and send it because it is possible to prevent a signal of another method from entering when performing multiplication for phase rotation by frequency conversion. In the case of sending without cutting out, the first to fourth digital filters 733 to 736 perform processing for removing signals of other methods, so that only the signals of the communication method to be taken out can be taken out.
 第3および第4LTE用周波数変換部729,730は、-5MHz~+10MHz帯域のLTE方式信号を、-7.5MHz~+7.5MHz帯域の0MHzを中心とした周波数帯域の信号に変換するために、複素乗算などによる位相回転を行う。 The third and fourth LTE frequency converters 729 and 730 convert the LTE system signal in the −5 MHz to +10 MHz band into a signal in the frequency band centered on 0 MHz in the −7.5 MHz to +7.5 MHz band. Perform phase rotation by complex multiplication.
 第1および第2ディジタルフィルタ733,734は、第3および第4LTE用周波数変換部729,730において行われた複素乗算などによる位相回転で生じた、-7.5MHz~+7.5MHz帯域以外の信号成分を除去し、-7.5MHz~+7.5MHz帯域信号成分のみを取り出す。すなわち、第1および第2ディジタルフィルタ733,734は、高調波成分を取り除くローパスフィルタの役割を果たしている。 The first and second digital filters 733 and 734 are signals other than the band of −7.5 MHz to +7.5 MHz generated by the phase rotation by the complex multiplication performed in the third and fourth LTE frequency converters 729 and 730. The components are removed, and only the −7.5 MHz to +7.5 MHz band signal components are extracted. That is, the first and second digital filters 733 and 734 serve as a low-pass filter that removes harmonic components.
 第3および第4W-CDMA用周波数変換部731,732は、-10MHz~-5MHz帯域のW-CDMA方式信号を、-2.5MHz~+2.5MHz帯域の0MHzを中心とした帯域の信号に変換するために、複素乗算などによる位相回転を行う。 Third and fourth W- CDMA frequency converters 731 and 732 convert a W-CDMA system signal in the −10 MHz to −5 MHz band into a signal in a band centered on 0 MHz in the −2.5 MHz to +2.5 MHz band. In order to achieve this, phase rotation by complex multiplication or the like is performed.
 第3および第4ディジタルフィルタ735,736は、第3および第4W-CDMA用周波数変換部731,732において行われた複素乗算などによる位相回転で生じた、-2.5MHz~+2.5MHz帯域以外の信号成分を除去し、-2.5MHz~+2.5MHz帯域信号成分のみを取り出す。すなわち、第3および第4ディジタルフィルタ735,736は、高調波成分を取り除くローパスフィルタの役割を果たしている。 The third and fourth digital filters 735 and 736 are other than the −2.5 MHz to +2.5 MHz bands generated by the phase rotation by the complex multiplication performed in the third and fourth W- CDMA frequency converters 731 and 732. Are removed, and only the −2.5 MHz to +2.5 MHz band signal component is extracted. That is, the third and fourth digital filters 735 and 736 serve as low-pass filters that remove harmonic components.
 信号成分の振幅の変動を表現するためには、多くのビット幅が必要となる。これを避けるために、第1~第4AGC部737~740は、信号成分の振幅の変動を抑えて、必要とするビット幅を小さく抑える。LTE方式信号は、第1および第2AGC部737,738での処理を経て、LTE方式ベースバンド信号処理部717へ入力される。W-CDMA方式信号は、第3および第4AGC部739,740での処理を経て、W-CDMA方式ベースバンド信号処理部742へ入力される。 A lot of bit width is required to express the fluctuation of signal component amplitude. In order to avoid this, the first to fourth AGC units 737 to 740 suppress the fluctuation of the amplitude of the signal component and suppress the necessary bit width. The LTE system signal is input to the LTE system baseband signal processing unit 717 through processing in the first and second AGC units 737 and 738. The W-CDMA system signal is input to the W-CDMA system baseband signal processing unit 742 through processing in the third and fourth AGC units 739 and 740.
 次に、送信処理の動作を説明する。LTE方式ベースバンド信号処理部717から出力されたLTE方式の変調信号は、第1および第2LTE用周波数変換部710,711に入力される。第1および第2LTE用周波数変換部710,711では、-7.5MHz~+7.5MHzの信号帯域から、-5MHz~+10MHzの信号帯域に周波数変換される。 Next, the operation of the transmission process will be described. The LTE modulation signal output from the LTE baseband signal processing unit 717 is input to the first and second LTE frequency converters 710 and 711. The first and second LTE frequency converters 710 and 711 perform frequency conversion from a signal band of −7.5 MHz to +7.5 MHz to a signal band of −5 MHz to +10 MHz.
 W-CDMA方式ベースバンド信号処理部742から出力されたW-CDMA方式の変調信号は、第1および第2レート変換部714,715に入力される。第1および第2レート変換部714,715では、3.84MHzもしくは、2倍オーバサンプリングされているのであれば、7.68MHzのベースバンド周波数から、LTE方式信号と同じ周波数30.72MHzに変換され、第1および第2W-CDMA用周波数変換部712,713に入力される。 The W-CDMA modulation signal output from the W-CDMA baseband signal processing unit 742 is input to the first and second rate conversion units 714 and 715. In the first and second rate conversion units 714 and 715, if 3.84 MHz or double oversampling is performed, the baseband frequency of 7.68 MHz is converted to the same frequency of 30.72 MHz as the LTE system signal. The first and second W- CDMA frequency converters 712 and 713 are input.
 第1および第2W-CDMA用周波数変換部712,713では、-2.5MHz~+2.5MHzの信号帯域から、-10MHz~-5MHzの信号帯域に周波数変換される。ここで、-2.5MHz~+2.5MHzおよび-10MHz~-5MHzは、中心周波数を0MHzとした場合の相対周波数帯域であり、実際には、中心周波数は30.72MHzである。 The first and second W- CDMA frequency converters 712 and 713 perform frequency conversion from a signal band of −2.5 MHz to +2.5 MHz to a signal band of −10 MHz to −5 MHz. Here, −2.5 MHz to +2.5 MHz and −10 MHz to −5 MHz are relative frequency bands when the center frequency is 0 MHz, and the center frequency is actually 30.72 MHz.
 第1および第2LTE用周波数変換部710,711から出力されたLTE方式信号は、第1合成部708に入力される。第1および第2W-CDMA用周波数変換部712,713から出力されたW-CDMA方式信号は、第2合成部709に入力される。 The LTE system signals output from the first and second LTE frequency converters 710 and 711 are input to the first combiner 708. The W-CDMA system signals output from the first and second W-CDMA frequency conversion units 712 and 713 are input to the second synthesis unit 709.
 第1および第2合成部708,709では、LTE方式信号とW-CDMA方式信号とが合成され、図62に示すように、20MHz帯域幅の信号に並べられる。つまり、第1および第2合成部708,709から出力される信号718は、図62に示すように、20MHz幅の周波数帯域のうち、-5MHz~+10MHzの部分をLTE方式の信号が専有し、-10MHz~-5MHzの部分をW-CDMA方式の信号が専有する状態となる。 In the first and second combining sections 708 and 709, the LTE system signal and the W-CDMA system signal are combined and arranged in a 20 MHz bandwidth signal as shown in FIG. That is, as shown in FIG. 62, the signal 718 output from the first and second synthesis units 708 and 709 has a portion of −5 MHz to +10 MHz out of the frequency band of 20 MHz, and the LTE system signal occupies it. The signal of −10 MHz to −5 MHz is occupied by the W-CDMA system signal.
 その後、第1および第2D/A変換部705,725において、アナログ信号に変換され、第1および第2アップコンバージョン部703,723において、ベースバンド周波数から、2GHzなどの高周波の信号に変換される。そして、高周波の信号は、第1および第2DUP部702,722を経由して、第1および第2アンテナ701,721から空中に放射される。 Thereafter, the first and second D / A converters 705 and 725 convert the analog signal, and the first and second up- conversion units 703 and 723 convert the baseband frequency to a high-frequency signal such as 2 GHz. . The high-frequency signal is radiated from the first and second antennas 701 and 721 to the air via the first and second DUP units 702 and 722.
 このように、ディジタル信号処理によって、2つの異なる通信方式の信号を帯域分離または結合することによって、異なる2つの通信方式の信号を、1つのアンテナにつき、1つのRF系統で同時に送受信することが可能である。これによって、第1および第2RF-IC部707,727などの高周波部品の部品点数を減らすことができるので、基地局装置の小型化、低消費電力化、低価格化を実現することができる。また、部品点数の削減および低消費電力化を図ることによって、比較的小さな筐体を採用することができるので、ファンおよびフィンが不要となり、基地局装置の小型化および低価格化を実現することができる。 In this way, by dividing or combining the signals of two different communication systems by digital signal processing, signals of two different communication systems can be simultaneously transmitted and received by one RF system per antenna. It is. As a result, the number of high-frequency components such as the first and second RF- IC units 707 and 727 can be reduced, so that the base station apparatus can be reduced in size, reduced in power consumption, and reduced in price. Also, by reducing the number of parts and reducing power consumption, a relatively small housing can be adopted, so fans and fins are not required, and the base station device can be reduced in size and price. Can do.
 図61に示す例では、2本のアンテナ共にDFEを適用する構成について説明したが、一方のアンテナのみに、DFEを適用し、他方のアンテナはLTE方式またはW-CDMA方式のみを送受信するような構成としてもよい。このような構成の場合でも、DFEを適用したアンテナ(RF)系統のみ、RF-IC部などの高周波部品の部品点数を減らすことができる。これによって、基地局装置の小型化、低消費電力化および低価格化を実現することができる。 In the example shown in FIG. 61, the configuration in which DFE is applied to both antennas has been described. However, DFE is applied to only one antenna, and the other antenna transmits and receives only the LTE scheme or the W-CDMA scheme. It is good also as a structure. Even in such a configuration, only the antenna (RF) system to which DFE is applied can reduce the number of high-frequency components such as the RF-IC unit. As a result, the base station device can be reduced in size, reduced in power consumption, and reduced in price.
 図63は、一方のアンテナのみにDFEを適用する場合の基地局装置のDFE回路部およびその周辺部の構成を示すブロック図である。図64および図65は、図63に示す例における信号の状態を示す図である。図63に示す例におけるDFE回路部およびその周辺部の構成は、前述の図61に示す第1の実施の形態の構成と類似しているので、図61に示す第1の実施の形態に対応する部分については、同一の参照符を付して、共通する説明を省略する。 FIG. 63 is a block diagram showing a configuration of a DFE circuit unit of a base station apparatus and its peripheral part when DFE is applied to only one antenna. 64 and 65 are diagrams showing signal states in the example shown in FIG. 63. The configuration of the DFE circuit portion and its peripheral portion in the example shown in FIG. 63 is similar to the configuration of the first embodiment shown in FIG. 61 described above, and therefore corresponds to the first embodiment shown in FIG. The same reference numerals are assigned to the parts to be described, and the common description is omitted.
 図63に示す例の基地局装置は、第1アンテナ701、第1デュプレクサ(DUP)部702、第1RF-IC部707、LTE方式ベースバンド信号処理部717、第2アンテナ721、第2デュプレクサ(DUP)部722、第2RF-IC部727、受信用DFE部741、W-CDMA方式ベースバンド信号処理部742、第1合成部751、第3RF-IC部754、第2合成部755および第4RF-IC部758を備えて構成される。 The base station apparatus shown in FIG. 63 includes a first antenna 701, a first duplexer (DUP) unit 702, a first RF-IC unit 707, an LTE baseband signal processing unit 717, a second antenna 721, a second duplexer ( DUP) unit 722, second RF-IC unit 727, receiving DFE unit 741, W-CDMA baseband signal processing unit 742, first synthesis unit 751, third RF-IC unit 754, second synthesis unit 755, and fourth RF -An IC unit 758 is provided.
 第3RF-IC部754は、第3アップコンバージョン部752および第3D/A変換部753を備える。第4RF-IC部758は、第4アップコンバージョン部756および第4D/A変換部757を備える。図63およびその他の図面において、第3アップコンバージョン部752および第4アップコンバージョン部756は、「UC」と記載する。 The third RF-IC unit 754 includes a third up-conversion unit 752 and a third D / A conversion unit 753. The fourth RF-IC unit 758 includes a fourth up-conversion unit 756 and a fourth D / A conversion unit 757. In FIG. 63 and other drawings, the third up-conversion unit 752 and the fourth up-conversion unit 756 are described as “UC”.
 図63に示す例では、受信処理のみDFEを適用して、送信処理は、アップコンバージョン後の高周波成分に周波数変換された信号に、第1および第2合成部751,755でアナログフロントエンド(Analog Front End;略称:AFE)の合成処理を行い、第1および第2デュプレクサ部702,722を経由して、第1および第2アンテナ701,721から放射するという構成である。ここで、AFEの合成処理とは、LTE方式およびW-CDMA方式のそれぞれのシステムで割り当てられた帯域に、LTE方式信号およびW-CDMA方式信号をそれぞれ割り当てる処理である。 In the example shown in FIG. 63, DFE is applied only to the reception process, and the transmission process converts the analog front end (Analog) in the first and second synthesis units 751 and 755 to a signal frequency-converted to a high-frequency component after up-conversion. Front End (abbreviation: AFE) is performed, and the first and second antennas 701 and 721 are radiated via the first and second duplexers 702 and 722. Here, the AFE combining process is a process of assigning an LTE system signal and a W-CDMA system signal to bands allocated in the LTE system and the W-CDMA system, respectively.
 図63に示す例において、LTE方式ベースバンド信号処理部717から第1および第2RF-IC部707,727に入力されるLTE方式信号759は、図64に示すように、-7.5MHz~+7.5MHzの周波数帯域を専有する。W-CDMA方式ベースバンド信号処理部742から第3および第4RF-IC部754,757に入力されるW-CDMA方式信号760は、図65に示すように、-2.5MHz~+2.5MHzの周波数帯域を専有する。 In the example shown in FIG. 63, the LTE system signal 759 input from the LTE system baseband signal processing unit 717 to the first and second RF- IC units 707 and 727 is −7.5 MHz to +7 as shown in FIG. Occupies a frequency band of 5 MHz. As shown in FIG. 65, a W-CDMA system signal 760 input from the W-CDMA system baseband signal processing unit 742 to the third and fourth RF- IC units 754 and 757 has a frequency of −2.5 MHz to +2.5 MHz. Exclusive frequency band.
 分離部728に入力される信号743の状態は、前述の図61に示す例と同様に、図62に示すように、20MHz幅の周波数帯域のうち、-5MHz~+10MHzの部分をLTE方式の信号が専有し、-10MHz~-5MHzの部分をW-CDMA方式の信号が専有する状態となる。 As in the example shown in FIG. 61 described above, the state of the signal 743 input to the separation unit 728 is as shown in FIG. 62, in the 20 MHz wide frequency band, the −5 MHz to +10 MHz portion is the LTE signal. And the W-CDMA system signal is in the exclusive state of −10 MHz to −5 MHz.
 図63に示す例では、送信処理においては、ベースバンドディジタル信号の段階では、周波数の変換は行わない。これによって、前述の図61に示す第1の実施の形態のようにRF-IC部707,727が、送信と受信とでそれぞれ個別に存在するような場合に、受信側のRF-IC部を減らすことができる。したがって、部品点数を減らし、基地局装置の低消費電力化、低価格化および小型化を実現することができる。 In the example shown in FIG. 63, in the transmission process, frequency conversion is not performed at the stage of the baseband digital signal. As a result, when the RF- IC units 707 and 727 exist separately for transmission and reception as in the first embodiment shown in FIG. 61, the RF-IC unit on the receiving side is changed. Can be reduced. Therefore, the number of parts can be reduced, and the base station apparatus can be reduced in power consumption, price, and size.
 図63に示す例では、送信処理にDFEのディジタル信号処理部が存在しないので、前述の図61に示す第1の実施の形態の構成と比較して、回路の規模を小さくすることができるという利点がある。 In the example shown in FIG. 63, since there is no DFE digital signal processing unit in the transmission process, the circuit scale can be reduced as compared with the configuration of the first embodiment shown in FIG. There are advantages.
 また図63に示す例では、前述の図61に示す第1の実施の形態と同様に、2本のアンテナ全てに送信ではAFEを適用し、受信ではDFEを適用しているが、一方側のアンテナだけをLTE方式およびW-CDMA方式で共用して、他方側のアンテナをLTE方式またはW-CDMA方式専用としてもよい。その場合は、一方のアンテナ側にだけ、AFEおよびDFEの合成処理、分離処理を行うことになる。このような場合でも、DFEを行わない場合に比べて、RF-IC部などの高周波(RF)関連の部品を削減することができるので、基地局装置の低価格化、低消費電力化および小型化を実現することができる。 In the example shown in FIG. 63, as in the first embodiment shown in FIG. 61 described above, AFE is applied to all two antennas and DFE is applied to reception. Only the antenna may be shared by the LTE system and the W-CDMA system, and the antenna on the other side may be dedicated to the LTE system or the W-CDMA system. In that case, the AFE and DFE combining processing and separation processing are performed only on one antenna side. Even in such a case, it is possible to reduce high-frequency (RF) -related parts such as the RF-IC part as compared with the case where DFE is not performed, so that the base station apparatus can be reduced in price, power consumption and size. Can be realized.
 図66は、DFEを適用しない場合の基地局装置の一部の構成を示すブロック図である。図66に示す構成は、前述の図60に示す第1の実施の形態の変形例2における基地局装置3の無線送受信部11Aおよびその周辺部の詳細な構成に相当する。図66に示す例の構成は、前述の図61に示す第1の実施の形態および前述の図63に示す例の構成と類似しているので、図61に示す第1の実施の形態および図63に示す例に対応する部分については、同一の参照符を付して、共通する説明を省略する。 FIG. 66 is a block diagram illustrating a partial configuration of the base station apparatus when DFE is not applied. The configuration shown in FIG. 66 corresponds to the detailed configuration of radio transmission / reception unit 11A and its peripheral portion of base station apparatus 3 in Modification 2 of the first embodiment shown in FIG. The configuration of the example shown in FIG. 66 is similar to the configuration of the first embodiment shown in FIG. 61 and the example shown in FIG. 63, so the first embodiment and the diagram shown in FIG. The portions corresponding to the example shown in 63 are denoted by the same reference numerals, and common description is omitted.
 図66に示す例の基地局装置は、第1アンテナ701、第1デュプレクサ(DUP)部702、第1RF-IC部707、LTE方式ベースバンド信号処理部717、第2アンテナ721、第2デュプレクサ(DUP)部722、第2RF-IC部727、W-CDMA方式ベースバンド信号処理部742、第1合成部751、第2合成部755、第1分離(AFE)部761、第2分離(AFE)部762、第3RF-IC部765および第4RF-IC部768を備えて構成される。 66 includes a first antenna 701, a first duplexer (DUP) unit 702, a first RF-IC unit 707, an LTE baseband signal processing unit 717, a second antenna 721, a second duplexer ( DUP) unit 722, second RF-IC unit 727, W-CDMA baseband signal processing unit 742, first synthesis unit 751, second synthesis unit 755, first separation (AFE) unit 761, second separation (AFE) Part 762, a third RF-IC part 765, and a fourth RF-IC part 768.
 第3RF-IC部765は、第3アップコンバージョン部752、第3D/A変換部753、第3ダウンコンバージョン部763および第3A/D変換部764を備える。第4RF-IC部768は、第4アップコンバージョン部756、第4D/A変換部757、第4ダウンコンバージョン部766および第4A/D変換部767を備える。図66およびその他の図面において、第3ダウンコンバージョン部763および第4ダウンコンバージョン部766は、「DC」と記載する。 The third RF-IC unit 765 includes a third up-conversion unit 752, a third D / A conversion unit 753, a third down-conversion unit 763, and a third A / D conversion unit 764. The fourth RF-IC unit 768 includes a fourth up-conversion unit 756, a fourth D / A conversion unit 757, a fourth down-conversion unit 766, and a fourth A / D conversion unit 767. In FIG. 66 and other drawings, the third down conversion unit 763 and the fourth down conversion unit 766 are described as “DC”.
 図66に示す例では、DFEを使用せず、送信処理におけるLTE方式およびW-CDMA方式の合成処理も、受信処理におけるLTE方式およびW-CDMA方式の分離処理も、共にAFEを行う場合を想定している。この場合には、RF-IC部などのRF関連部品を、LTE方式信号およびW-CDMA方式信号で共用することによって削減することはできない。しかし、高周波の段階で、LTE方式信号およびW-CDMA方式信号の合成および分離を行うので、LTE方式およびW-CDMA方式の両方の通信方式の信号同士が混ざる可能性を低くすることができる。 In the example shown in FIG. 66, it is assumed that DFE is not used, and that the AFE is performed in both the LTE and W-CDMA combining processing in the transmission processing and the LTE and W-CDMA separation processing in the receiving processing. is doing. In this case, RF-related parts such as the RF-IC unit cannot be reduced by sharing the LTE system signal and the W-CDMA system signal. However, since the LTE system signal and the W-CDMA system signal are combined and separated at the high frequency stage, it is possible to reduce the possibility of mixing signals of both the LTE system and the W-CDMA system.
 これによって、信号成分に含まれる干渉成分を、DFE、具体的には、回路規模を小さくするためにフィルタのタップ数を減らすなど方式分離精度が低いDFEを備える場合に比べて、確実に小さく抑えることができる。また図66に示す例では、DFE回路が不要であるので、FPGAなどの低価格のデバイスを選定することができ、基地局装置の小型化および低消費電力化を実現することができる。 As a result, the interference component included in the signal component is surely suppressed to be small compared to the case where the DFE, specifically, the DFE having a low method separation accuracy such as reducing the number of filter taps in order to reduce the circuit scale is provided. be able to. In the example shown in FIG. 66, since a DFE circuit is unnecessary, a low-priced device such as an FPGA can be selected, and downsizing and low power consumption of the base station apparatus can be realized.
 図66に示す例における送信処理の動作に関しては、図63に示す例と同様であるので、共通する説明を省略する。図66に示す例における受信処理の動作に関して、以下に説明する。 66. The operation of the transmission process in the example shown in FIG. 66 is the same as that in the example shown in FIG. The operation of the reception process in the example shown in FIG. 66 will be described below.
 第1および第2アンテナ701,721で受信した無線信号は、第1および第2DUP部702,722を介して、第1および第2分離部761,762に入力される。 Radio signals received by the first and second antennas 701 and 721 are input to the first and second separation units 761 and 762 via the first and second DUP units 702 and 722, respectively.
 第1分離部761では、LTE方式信号帯域からLTE方式の信号成分を取り出し、LTE方式用の第1および第3ダウンコンバージョン部704,763に送る。第2分離部762では、W-CDMA方式信号帯域からW-CDMA方式の信号成分を取り出し、W-CDMA方式用の第2および第4ダウンコンバージョン部724,766に送る。 The first separation unit 761 extracts LTE signal components from the LTE signal band and sends them to the first and third down conversion units 704 and 763 for the LTE method. Second demultiplexing section 762 extracts W-CDMA signal components from the W-CDMA system signal band and sends them to second and fourth down- conversion sections 724 and 766 for W-CDMA system.
 LTE方式信号を処理する第1および第3ダウンコンバージョン部704,763において、LTE方式信号成分はベースバンド信号となり、第1および第3A/D変換部706,764でディジタル信号に変換され、LTE方式ベースバンド信号処理部717に入力される。 In the first and third down- conversion units 704 and 763 that process the LTE system signal, the LTE system signal component becomes a baseband signal and is converted into a digital signal by the first and third A / D conversion units 706 and 764, and the LTE system The signal is input to the baseband signal processing unit 717.
 W-CDMA方式信号を処理する第2および第4ダウンコンバージョン部724,766において、W-CDMA方式信号成分はベースバンド信号となり、第2および第4A/D変換部726,767でディジタル信号に変換され、W-CDMA方式ベースバンド信号処理部742に入力される。 In the second and fourth down- conversion units 724 and 766 that process the W-CDMA system signal, the W-CDMA system signal component becomes a baseband signal and is converted into a digital signal by the second and fourth A / D conversion units 726 and 767. And input to the W-CDMA baseband signal processing unit 742.
 図66に示す例において、LTE方式ベースバンド信号処理部717から第1および第2RF-IC部707,727に入力されるLTE方式信号759は、図64に示すように、-7.5MHz~+7.5MHzの周波数帯域を専有する。W-CDMA方式ベースバンド信号処理部742から第3および第4RF-IC部754,757に入力されるW-CDMA方式信号760は、図65に示すように、-2.5MHz~+2.5MHzの周波数帯域を専有する。 In the example shown in FIG. 66, the LTE system signal 759 input from the LTE baseband signal processing unit 717 to the first and second RF- IC units 707 and 727 is −7.5 MHz to +7 as shown in FIG. Occupies a frequency band of 5 MHz. As shown in FIG. 65, a W-CDMA system signal 760 input from the W-CDMA system baseband signal processing unit 742 to the third and fourth RF- IC units 754 and 757 has a frequency of −2.5 MHz to +2.5 MHz. Exclusive frequency band.
 図66に示す例では、AFEを送信処理および受信処理のそれぞれに適用したが、一方側のアンテナだけに適用して、他方側のアンテナは、LTE方式だけ、あるいは、W-CDMA方式だけを送受信するという構成にしてもよい。この場合は、AFEを減らすことができ、また、RF関連部品をどちらか一方の方式分だけ備えればよいので、RF関連部品の部品点数を減らすことができる。これによって、両方のアンテナでAFEを実現した場合に比べて、基地局装置の低価格化、低消費電力化および小型化を実現することができる。 In the example shown in FIG. 66, AFE is applied to each of transmission processing and reception processing, but is applied to only one antenna, and the other antenna transmits and receives only the LTE scheme or only the W-CDMA scheme. It may be configured to do. In this case, AFE can be reduced, and the number of RF-related parts can be reduced because only one of the RF-related parts is provided. As a result, compared to the case where AFE is realized with both antennas, the base station apparatus can be reduced in price, power consumption and size.
 図61、図63および図66に示す各例では、基地局装置における2つの異なる通信方式での送受信について説明したが、移動通信端末装置においても、同様に適用することができる。 In each example shown in FIG. 61, FIG. 63, and FIG. 66, transmission / reception in two different communication schemes in the base station apparatus has been described, but the present invention can be similarly applied to a mobile communication terminal apparatus.
 <第2の実施の形態>
 図67は、本発明の第2の実施の形態である移動体通信システム6の構成を示すブロック図である。移動体通信システム6は、基地局装置4と、移動通信端末装置(User Equipment;以下「移動通信端末」または「UE」という場合がある)5a~5cとを備える。本実施の形態では、移動体通信システム6は、3つの移動通信端末、具体的には、第1移動通信端末5a、第2移動通信端末5bおよび第3移動通信端末5cを備える。基地局装置4は、前述の第1の実施の形態またはその変形例1,2のいずれかの基地局装置1~3によって実現される。
<Second Embodiment>
FIG. 67 is a block diagram showing a configuration of the mobile communication system 6 according to the second embodiment of the present invention. The mobile communication system 6 includes a base station device 4 and mobile communication terminal devices (User Equipment; hereinafter may be referred to as “mobile communication terminals” or “UE”) 5a to 5c. In the present embodiment, the mobile communication system 6 includes three mobile communication terminals, specifically, a first mobile communication terminal 5a, a second mobile communication terminal 5b, and a third mobile communication terminal 5c. The base station apparatus 4 is realized by any of the base station apparatuses 1 to 3 of the first embodiment described above or the modifications 1 and 2 thereof.
 基地局装置4は、異なる2つの方式を共用する基地局装置である。基地局装置4は、フェムトセルの基地局装置である。以下、基地局装置4を、「共用フェムトセル基地局装置」または「デュアルフェムトセル基地局装置」という場合がある。本実施の形態では、基地局装置4は、3G方式、具体的にはW-CDMA方式と、LTE方式との2つの方式を共用する3G/LTE共用フェムトセル基地局装置である。 The base station apparatus 4 is a base station apparatus that shares two different systems. The base station apparatus 4 is a femtocell base station apparatus. Hereinafter, the base station apparatus 4 may be referred to as “shared femtocell base station apparatus” or “dual femtocell base station apparatus”. In the present embodiment, the base station apparatus 4 is a 3G / LTE shared femtocell base station apparatus that shares the 3G scheme, specifically, the W-CDMA scheme and the LTE scheme.
 基地局装置4は、3G側機能部位601、LTE側機能部位602、電源部603、第1アンテナ604および第2アンテナ605を備えて構成される。3G側機能部位601は、3G(W-CDMA)方式に対応するベースバンド信号処理などの機能を有する。LTE側機能部位602は、LTE方式に対応するベースバンド信号処理などの機能を有する。電源部603は、基地局装置4に実装された3G側機能部位601およびLTE側機能部位602に対し、電源を供給する。 The base station apparatus 4 includes a 3G-side functional part 601, an LTE-side functional part 602, a power supply unit 603, a first antenna 604, and a second antenna 605. The 3G side functional part 601 has functions such as baseband signal processing corresponding to the 3G (W-CDMA) system. The LTE side functional part 602 has functions such as baseband signal processing corresponding to the LTE system. The power supply unit 603 supplies power to the 3G-side functional part 601 and the LTE-side functional part 602 mounted on the base station apparatus 4.
 図67およびその他の図面において、3G側機能部位601は、「3G_FS」と記載する。LTE側機能部位602は、「LTE_FS」と記載する。図67に示す破線は、基地局装置4と移動通信端末装置5a~5cとが通信状態であることを意味する。 67 and other drawings, the 3G side functional part 601 is described as “3G_FS”. The LTE-side functional part 602 is described as “LTE_FS”. 67 indicates that the base station device 4 and the mobile communication terminal devices 5a to 5c are in a communication state.
 第1移動通信端末5aは、LTE方式に対応する。第2移動通信端末5bは、LTE方式に対応する。第3移動通信端末5cは、3G方式およびLTE方式の両方式に対応する。したがって、図67では、第1移動通信端末5aおよび第2移動通信端末5bを、「LTE対応登録UE」と記載し、第3移動通信端末5cを、「LTE/3G対応登録UE」と記載する。各移動通信端末5a~5cは、それぞれ、2つのアンテナ611~616を備える。 The first mobile communication terminal 5a corresponds to the LTE system. The second mobile communication terminal 5b corresponds to the LTE system. The third mobile communication terminal 5c supports both 3G and LTE systems. Therefore, in FIG. 67, the first mobile communication terminal 5a and the second mobile communication terminal 5b are described as “LTE compatible registration UE”, and the third mobile communication terminal 5c is described as “LTE / 3G compatible registration UE”. . Each mobile communication terminal 5a to 5c includes two antennas 611 to 616, respectively.
 各移動通信端末5a~5cが、基地局装置4と通信することができるように登録されており、基地局装置4が、各移動通信端末5a~5cと互いに通信状態にある場合を考える。 Consider a case where each mobile communication terminal 5a to 5c is registered so as to be able to communicate with the base station apparatus 4, and the base station apparatus 4 is in communication with each mobile communication terminal 5a to 5c.
 基地局装置4は、通信状態にある移動通信端末5a~5cが全てLTE方式に対応する移動通信端末(以下「LTE対応端末」という場合がある)であると判断すると、LTE側機能部位602から、電源部603に対して、登録UE識別信号(略称:UEIS)を出力する。登録UE識別番号とは、全UEがLTE対応端末か否かを示す識別信号である。 When the base station apparatus 4 determines that all of the mobile communication terminals 5a to 5c in the communication state are mobile communication terminals compatible with the LTE system (hereinafter sometimes referred to as “LTE compatible terminals”), the base station apparatus 4 The registered UE identification signal (abbreviation: UEIS) is output to the power supply unit 603. The registered UE identification number is an identification signal indicating whether all UEs are LTE-compatible terminals.
 電源部603は、LTE側機能部位602から、登録UE識別信号を受信すると、3G側機能部位601に対して、電源の供給を停止する。これによって、3G側機能部位に電源が供給されなくなった分、消費電力を小さくすることができるので、基地局装置4全体の消費電力を低く抑えることができる。 When the power supply unit 603 receives the registration UE identification signal from the LTE-side functional part 602, the power supply unit 603 stops supplying power to the 3G-side functional part 601. As a result, the power consumption can be reduced by the amount that the power is not supplied to the 3G-side functional part, so that the power consumption of the base station apparatus 4 as a whole can be kept low.
 全ての移動通信端末が、LTE方式だけで通信しているかどうかの識別方法としては、以下の方法が挙げられる。3GPPで規定されるSC-FDMA方式などでLTE受信を実施し、前述の図13~図23に示すCHSEP部376、CHDEC_DATA部381、チャネルデコーディング(FEC)部386で復号を行う。次いで、図13~図23に示すコードブロックCRCチェック/コードブロック連結部388、トランスポートブロックCRCチェック部389によるCRCチェックで、誤りが無いか否かを判断する。これによって、全ての移動通信端末が、LTE方式だけで通信しているかどうかを判断することができる。具体的には、CRC誤りが無い場合は、LTE方式だけで通信していると判断することができる。 The following method can be cited as a method for identifying whether all mobile communication terminals are communicating only by the LTE system. LTE reception is performed by the SC-FDMA method or the like defined by 3GPP, and decoding is performed by the CHSEP unit 376, the CHDEC_DATA unit 381, and the channel decoding (FEC) unit 386 shown in FIGS. Next, the CRC check by the code block CRC check / code block concatenation unit 388 and the transport block CRC check unit 389 shown in FIGS. 13 to 23 determines whether or not there is an error. This makes it possible to determine whether all mobile communication terminals are communicating only with the LTE scheme. Specifically, when there is no CRC error, it can be determined that communication is performed using only the LTE scheme.
 また、3G側機能部位601で、W-CDMA方式で逆拡散しても、前述の図49に示すPRACHに相当するRACHプリアンブル(Preamble)のパスが検出されないことなどでも判断することができる。具体的には、パスが検出されなければ、LTE方式だけで通信していると判断することができる。その場合は、3G側機能部位601からも登録UE識別信号を電源部603に送出し、電源部603において、3G側機能部位601に対する電源供給を停止する動作を行う。ここで電源部603に登録UE識別番号を送出する3G側機能部位603は、前述の図1、図59および図60に示す基地局装置1,2,3の3G側機能部位内のPF部に相当する。 Further, even if the 3G-side functional part 601 is despread by the W-CDMA method, it can also be determined that the RACH preamble path corresponding to the PRACH shown in FIG. 49 is not detected. Specifically, if a path is not detected, it can be determined that communication is performed using only the LTE method. In that case, a registration UE identification signal is also sent from the 3G-side functional part 601 to the power supply unit 603, and the power supply part 603 performs an operation of stopping power supply to the 3G-side functional part 601. Here, the 3G-side functional part 603 that sends the registered UE identification number to the power supply unit 603 is connected to the PF part in the 3G-side functional part of the base station devices 1, 2, and 3 shown in FIG. 1, FIG. 59, and FIG. Equivalent to.
 前述の「パスが検出されない」とは、3GPP TS25.213に記載されるように、RACHプリアンブル信号を拡散コードで相関計算しても、電力が、ある一定の閾値を超えないなどで定義することができる。 As described in 3GPP TS25.213, the above-mentioned “path is not detected” is defined such that the power does not exceed a certain threshold even if the RACH preamble signal is subjected to correlation calculation with a spreading code. Can do.
 このようにして、基地局装置4は、自装置と通信状態にある移動通信端末5a~5cが、全て、ある一方の方式、ここではLTE方式のみで通信している場合、もう一方の方式の機能処理、たとえば回路およびソフトウェアプログラムを実行する部位に対する電源供給を停止する。これによって、基地局装置4全体の消費電力を低く抑えることができる。 In this way, when the base station apparatus 4 communicates with all of the mobile communication terminals 5a to 5c in communication with the base station apparatus using only one method, here, only the LTE method, The power supply to the part that executes the functional processing, for example, the circuit and the software program is stopped. Thereby, the power consumption of the whole base station apparatus 4 can be suppressed low.
 次に、前述の例とは逆に、LTE方式を停止する例を示す。図13~図28に示すチャネル推定部372において、求めたチャネル推定値が、ある一定の大きさ(以下「閾値」という)以上であれば、LTE方式の受信は適さないとして、3G方式の通信に切り替えるように、図1、図59および図60に示すPF部などから、基地局装置1,2,3の上位装置に信号を出すことが考えられる。これによって、全ての移動通信端末との通信が3G方式の通信に切り替わったら、LTE側機能部位602に対する電源供給を停止する動作を行う制御もできる。 Next, in contrast to the above example, an example in which the LTE method is stopped is shown. In the channel estimation unit 372 shown in FIGS. 13 to 28, if the obtained channel estimation value is equal to or larger than a certain size (hereinafter referred to as “threshold”), it is determined that the LTE reception is not suitable, and the 3G communication is performed. It is conceivable that a signal is output from the PF unit shown in FIG. 1, FIG. 59 and FIG. Accordingly, when communication with all mobile communication terminals is switched to 3G communication, it is possible to perform control for performing an operation of stopping power supply to the LTE-side functional unit 602.
 このように基地局装置4は、自装置と通信状態にある移動通信端末を、全てある一方の方式、ここでは3G方式のみで通信させるように制御した上で、それが実現した後に、もう一方の方式、ここではLTE方式の機能処理、たとえば回路およびソフトウェアプログラムを実行する部位に対する電源供給を停止することによって、基地局装置4全体の消費電力を低く抑えることができる。 In this way, the base station apparatus 4 controls all the mobile communication terminals in communication with its own apparatus to communicate with only one method, here the 3G method, and after that is realized, By stopping the power supply to the part that executes the functional processing of the above-mentioned method, here, the LTE method, for example, the circuit and the software program, the power consumption of the base station apparatus 4 as a whole can be kept low.
 以上のように本実施の形態によれば、デュアル基地局装置4において、CSフォールバック時の装置動作に、以上のような動作を行うことによって、デュアル基地局装置4の低消費電力化を図ることができる。 As described above, according to the present embodiment, in the dual base station apparatus 4, the power consumption of the dual base station apparatus 4 is reduced by performing the above operation as the apparatus operation during CS fallback. be able to.
 具体的には、本実施の形態では、Closedモードで動作中のデュアル基地局装置4において、登録UEが全てLTE対応であれば、CSFB時以外は、3G側の電源をOFFする。これによって、デュアル基地局装置4の消費電力を低減することができる。また、消費電力が小さくなると、たとえば、装置筐体の放熱対策がその分不要となるので、筐体を比較的小さくすることができ、基地局装置の小型化を実現することができる。放熱対策とは、筐体にフィンを設けたり、自然空冷のために金属筐体を大きくしたりすることなどである。消費電力が小さくなると、このように筐体を比較的小さくすることができるので、基地局装置の小型化および軽量化を図ることができる。したがって、デュアル基地局装置4全体を小型化および軽量化することができる。 Specifically, in this embodiment, in the dual base station apparatus 4 operating in the Closed mode, if all the registered UEs are LTE-compliant, the 3G-side power supply is turned off except during CSFB. Thereby, the power consumption of the dual base station apparatus 4 can be reduced. Further, when the power consumption is reduced, for example, a heat dissipation measure for the device casing becomes unnecessary, so that the casing can be made relatively small and the base station apparatus can be downsized. The heat dissipation measures include providing fins in the casing or enlarging the metal casing for natural air cooling. When the power consumption is reduced, the casing can be made relatively small in this way, and thus the base station apparatus can be reduced in size and weight. Therefore, the entire dual base station apparatus 4 can be reduced in size and weight.
 <第3の実施の形態>
 本実施の形態の基地局装置は、前述の第1の実施の形態またはその変形例1,2の基地局装置1~3と同様の構成であるので、図示および説明を省略する。本実施の形態では、基地局装置は、拡張サービスリクエスト(Extended Service Request)などを受信した場合、CSFBが実行されることを考慮して、事前に3G側機能部位の電源をONする。以下では、基地局装置を「eNodeB」という場合がある。
<Third Embodiment>
Since the base station apparatus of the present embodiment has the same configuration as that of the base station apparatuses 1 to 3 of the first embodiment or the modifications 1 and 2 described above, illustration and description thereof are omitted. In this embodiment, when receiving an extended service request or the like, the base station apparatus turns on the power of the 3G-side functional part in advance in consideration of the execution of CSFB. Hereinafter, the base station apparatus may be referred to as “eNodeB”.
 図68は、CSFBに関連する着呼の手順を示すシーケンス図である。ステップS11において、G-MSC(Gateway Mobile-services Switching Center)に、初期アドレスメッセージ(Initial Address Message;略称:IAM)が通知される。 FIG. 68 is a sequence diagram showing an incoming call procedure related to CSFB. In step S11, an initial address message (Initial Address Message; abbreviated as IAM) is notified to the G-MSC (Gateway Mobile Service Services Switching Center).
 ステップS11においてIAMが通知されると、G-MSCは、ステップS12において、ホーム加入者サーバ(Home Subscriber Server;略称:HSS)および移動交換局/在圏網加入者管理レジスタ(Mobile-services Switching Center/Visitor Location Register;略称:MSC/VLR)とともに、SRI(Send Routeing Information)プロシージャを行う。SRIプロシージャは、移動通信端末の場所を問う検索に関する手続である。SRIプロシージャは、3GPP TS23.018に規定される。 When the IAM is notified in step S11, the G-MSC, in step S12, sends a home subscriber server (Home Subscriber Server; abbreviation: HSS) and a mobile switching center / local network subscriber management register (Mobile-services Switching Center). / Visitor Location Register (abbreviation: MSC / VLR) and SRI (Send Routing Information) procedure. The SRI procedure is a procedure related to a search for inquiring about the location of the mobile communication terminal. The SRI procedure is defined in 3GPP TS 23.018.
 ステップS13において、G-MSCは、HSSを経由してMSC/VLRに、IAMを送信する。IAMを送信することは、3G方式で呼び出すことに相当する。G-MSCから送信されたIAMを受信したMSC/VLRは、ステップS14において、無線ネットワーク制御装置/基地局制御装置(Radio Network Controller/Base Station Controller;略称:RNC/BSC)を経由してMMEに、ページングリクエスト(Paging Request)メッセージを送信する。 In step S13, the G-MSC transmits the IAM to the MSC / VLR via the HSS. Sending an IAM is equivalent to calling in the 3G system. In step S14, the MSC / VLR that has received the IAM transmitted from the G-MSC sends it to the MME via the radio network controller / base station controller (RadioRadNetwork Controller / Base Station Controller; abbreviation: RNC / BSC). , Send a paging request message.
 MSC/VLRから送信されたページングリクエストメッセージを受信したMMEは、ステップS15において、eNodeBにページングメッセージを送信する。ステップS15においてeNodeBに送信されるページングメッセージには、コアネットワークドメインインジケータ(Core Network Domain Indicator)が含まれる。 The MME that has received the paging request message transmitted from the MSC / VLR transmits the paging message to the eNodeB in step S15. The paging message transmitted to the eNodeB in step S15 includes a core network domain indicator (Core Network Domain Indicator).
 MMEから送信されたページングメッセージを受信したeNodeBは、ステップS16において、UEにページングメッセージを送信する。ステップS16においてUEに送信されるページングメッセージには、コアネットワークドメインインジケータが含まれる。 The eNodeB that has received the paging message transmitted from the MME transmits the paging message to the UE in step S16. The paging message transmitted to the UE in step S16 includes a core network domain indicator.
 eNodeBから送信されたページングメッセージを受信したUEは、ステップS17において、eNodeBおよびMMEに拡張サービスリクエスト(Extended Service Request)メッセージを送信する。ステップS17においてeNodeBおよびMMEに送信される拡張サービスリクエストには、CSフォールバックインジケータ(CS Fallback Indicator)が含まれる。 UE which received the paging message transmitted from eNodeB transmits an extended service request (Extended | Service * Request) message to eNodeB and MME in step S17. The extended service request transmitted to the eNodeB and the MME in step S17 includes a CS fallback indicator (CS Fallback Indicator).
 また拡張サービスリクエストは、移動通信端末がアイドルモード(Idle Mode)であったことを示すインジケータ(Indicator)を含む。発呼側が長時間の無音状態となる可能性を回避するために、移動通信端末(UE)がアイドルモードであったことを示すインジケータを用いる。発呼側は、長時間待たされることが想定されている。 Also, the extended service request includes an indicator (Indicator) indicating that the mobile communication terminal is in the idle mode (Idle Mode). In order to avoid the possibility that the calling side is in a silent state for a long time, an indicator indicating that the mobile communication terminal (UE) is in the idle mode is used. It is assumed that the calling party waits for a long time.
 UEから送信された拡張サービスリクエストメッセージを受信したMMEは、ステップS18において、RNC/BSCを経由してMSC/VLRに、拡張サービスリクエスト(Service Request)メッセージを送信する。この拡張サービスリクエストの受信によって、MSCのSGsインタフェースを介したページングメッセージの再送が止められる。 In step S18, the MME that has received the extended service request message transmitted from the UE transmits an extended service request message to the MSC / VLR via the RNC / BSC. Receiving this extended service request stops the re-transmission of the paging message via the MSC SGs interface.
 また、UEから送信された拡張サービスリクエストメッセージを受信したMMEは、ステップS19において、eNodeBに、初期UEコンテキストセットアップ(Initial UE Cortext Setup)メッセージを送信する。初期UEコンテキストセットアップメッセージには、CSフォールバックインジケータが含まれる。 In addition, the MME that has received the extended service request message transmitted from the UE transmits an initial UE context setup (Initial-UE-Cortext-Setup) message to the eNodeB in step S19. The initial UE context setup message includes a CS fallback indicator.
 図69は、CSFBに関連するアタッチの手順を示すシーケンス図である。ステップS21において、UEは、MMEにアタッチリクエスト(Attach Request)メッセージを送信する。アタッチリクエストメッセージには、結合EPS/IMSI(Evolved Packet System/International Mobile Subscriber Identity)アタッチメッセージ、およびCSFBの移動通信端末の能力(UE Capability)が含まれている。 FIG. 69 is a sequence diagram showing an attach procedure related to CSFB. In step S21, the UE transmits an attach request message to the MME. The attach request message includes a combined EPS / IMSI (Evolved Packet System / International Mobile Subscriber Identity) attach message and a CSFB mobile communication terminal capability (UE Capability).
 ステップS22において、UE、MME、MSC/VLRおよびHSSは、第1のアタッチプロシージャ(Attach Procedure(1))を行う。第1のアタッチプロシージャとしては、具体的には、接続されるMMEが変更される場合の新たなMMEと以前のMMEとの間の識別要求および応答、新たなMMEにUEが認識されていない場合のMMEとUEとの間の認証要求および応答、UE、MMEおよびHSSの間の認証および安全確保、暗号化要求および応答、セッションの消去要求および応答、位置の更新、ならびにセッションの生成要求および応答などが行われる。第1のアタッチプロシージャは、3GPP TS23.401に規定されるアタッチプロシージャのステップ3~ステップ16に相当する。 In step S22, the UE, MME, MSC / VLR, and HSS perform the first attach procedure (Attach Procedure (1)). Specifically, as the first attach procedure, the identification request and response between the new MME and the previous MME when the connected MME is changed, or the UE is not recognized by the new MME Authentication request and response between MME and UE, authentication and security between UE, MME and HSS, encryption request and response, session erase request and response, location update, and session creation request and response Etc. are performed. The first attach procedure corresponds to steps 3 to 16 of the attach procedure defined in 3GPP TS23.401.
 ステップS23において、MMEは、VLR番号を取得する。ステップS24において、MMEは、MSC/VLRに、ロケーションアップデートリクエスト(Location Update Request)メッセージを送信する。 In step S23, the MME acquires a VLR number. In step S24, the MME transmits a location update request (Location Update Request) message to the MSC / VLR.
 ステップS25において、MSC/VLRは、SGs associationを生成する。ステップS26において、MSC/VLRおよびHSSは、CSドメインにおけるロケーションアップデート(Location Update)を行う。 In step S25, the MSC / VLR generates SGs association. In step S26, the MSC / VLR and the HSS perform location update (Location Update) in the CS domain.
 ステップS27において、MSC/VLRは、MMEに、ロケーションアップデートアクセプト(Location Update Accept)メッセージを送信する。 In step S27, the MSC / VLR transmits a location update accept (Location Update Accept) message to the MME.
 ステップS28において、UE、MME、MSC/VLRおよびHSSは、第2のアタッチプロシージャ(Attach Procedure(2))を行う。第2のアタッチプロシージャとしては、具体的には、初期設定要求、アタッチアクセプトメッセージの送信、RRC接続の確立、ベアラの修正要求および応答などが行われる。第2のアタッチプロシージャは、3GPP TS23.401に規定されるアタッチプロシージャのステップ17~ステップ26に相当する。 In step S28, the UE, MME, MSC / VLR, and HSS perform the second attach procedure (Attach Procedure (2)). Specifically, as the second attach procedure, an initial setting request, an attach accept message transmission, an RRC connection establishment, a bearer modification request and a response, and the like are performed. The second attach procedure corresponds to steps 17 to 26 of the attach procedure defined in 3GPP TS23.401.
 図70は、CSFBに関連する、結合したトラッキングエリア(TA)およびローカルエリア(LA)のアップデートの手順を示すシーケンス図である。図70では、LTE側、すなわちTA側がアップデートされた場合のシーケンスを示す。 FIG. 70 is a sequence diagram showing a procedure for updating the combined tracking area (TA) and local area (LA) related to CSFB. FIG. 70 shows a sequence when the LTE side, that is, the TA side is updated.
 ステップS31において、UEは、トラッキングエリアを更新するトラッキングエリアアップデート(Tracking Area Update;略称:TAU)を実行することを決定する。ステップS32において、UEは、新たに接続されるMME(new MME)に、TAUリクエスト(TAU Request)メッセージを送信する。以下の説明において、新たに接続されるMMEを「新たなMME」という場合がある。 In step S31, the UE determines to perform a tracking area update (Tracking Area Update: abbreviated as TAU) for updating the tracking area. In step S32, the UE transmits a TAU request (TAU 新 た Request) message to a newly connected MME (new MME). In the following description, a newly connected MME may be referred to as a “new MME”.
 ステップS33において、UE、新たなMME、以前に接続されていたMME(old MME)、MSC/VLRおよびHSSは、TAUプロシージャ(TAU procedure)を行う。TAUプロシージャは、3GPP TS23.401に規定される。以下の説明において、以前に接続されていたMMEを「以前のMME」という場合がある。 In step S33, the UE, the new MME, the previously connected MME (old MME), MSC / VLR, and HSS perform a TAU procedure (TAU procedure). The TAU procedure is specified in 3GPP TS 23.401. In the following description, a previously connected MME may be referred to as a “previous MME”.
 ステップS34において、新たなMMEは、以前のMMEを経由してMSC/VLRに、ロケーションアップデートリクエスト(Location Update Request)メッセージを送信する。 In step S34, the new MME transmits a location update request message to the MSC / VLR via the previous MME.
 ステップS35において、MSC/VLRおよびHSSは、CSドメインにおけるロケーションアップデート(Location Update)を行う。 In step S35, the MSC / VLR and the HSS perform location update (Location Update) in the CS domain.
 ステップS36において、MSC/VLRは、以前のMMEを経由して新たなMMEに、ロケーションアップデートアクセプト(Location Update Accept)メッセージを送信する。 In step S36, the MSC / VLR transmits a location update accept message to the new MME via the previous MME.
 MSC/VLRから送信されたロケーションアップデートアクセプトメッセージを受信した、新たなMMEは、ステップS37において、UEに、TAUアクセプト(TAU Accept)メッセージを送信する。 The new MME that has received the location update accept message sent from the MSC / VLR sends a TAU accept message to the UE in step S37.
 新たなMMEから送信されたTAUアクセプトメッセージを受信したUEは、ステップS38において、新たなMMEに、TAUコンプリート(TAU Complete)メッセージを送信する。 The UE that has received the TAU accept message transmitted from the new MME transmits a TAU Complete message to the new MME in step S38.
 図71は、CSFBに関連する発呼の手順を示すシーケンス図である。ステップS41において、UE/MS(Mobile Station)は、eNodeBを経由してMMEに、拡張サービスリクエスト(Extended Service Request)メッセージを送信する。 FIG. 71 is a sequence diagram showing a calling procedure related to CSFB. In step S41, the UE / MS (Mobile Station) transmits an Extended Service Request message to the MME via the eNodeB.
 UE/MSから送信された拡張サービスリクエストメッセージを受信したMMEは、ステップS42において、eNodeBに、CSFBインジケータを含むS1-AP(S1-Application Protocol)リクエストメッセージ(Request message)を送信する。 In step S42, the MME that has received the extended service request message transmitted from the UE / MS transmits an S1-AP (S1-Application protocol) request message (Request message) including a CSFB indicator to the eNodeB.
 S1-APリクエストメッセージを受信したeNodeBは、ステップS43において、MMEに、S1-APレスポンスメッセージ(Response message)を送信する。 The eNodeB that has received the S1-AP request message transmits an S1-AP response message (Response message) to the MME in step S43.
 ステップS44において、UE/MS、eNodeB、および基地局サブシステム/無線ネットワークサブシステム(Base Station Subsystem/ Radio Network Subsystem;略称:BSS/RNS)は、任意の測定報告(Optional Measurement Report Solicitation)を行う。 In step S44, the UE / MS, eNodeB, and base station subsystem / radio network subsystem (Base Station Subsystem / Radio Network Subsystem; abbreviation: BSS / RNS) perform arbitrary measurement reports (Optional Measurement Report Solicitation).
 ステップS45において、UE/MS、eNodeB、BSS/RNS、MME、MSC、およびパケットアクセス制御ノード(Serving GPRS Support Node;略称:SGSN)は、LTEから3GへのPS(Packet Switch)ドメインのハンドオーバ(以下「PS HO」という場合がある)処理を行う。ステップS45のPS HO処理は、PS HOの準備段階および実行開始段階に相当する。ステップS45のPS HO処理は、3GPP TS23.401に規定される。 In step S45, the UE / MS, eNodeB, BSS / RNS, MME, MSC, and packet access control node (Serving GPRS Support Node; abbreviated as SGSN) are handed over in the PS (Packet Switch) domain from LTE to 3G (hereinafter referred to as "Packet Switch"). (It may be called “PS HO”). The PS HO process in step S45 corresponds to a PS HO preparation stage and an execution start stage. The PS HO process in step S45 is defined in 3GPP TS 23.401.
 ステップS46において、UE/MSは、SGSNに対して、一時停止(Suspend)メッセージを送信する。 In step S46, the UE / MS transmits a Suspend message to the SGSN.
 一時停止(Suspend)メッセージを受信したSGSNは、ステップS47において、サービングゲートウェイ(ServingGW)およびパケットデータネットワークゲートウェイ/パケットゲートウェイノード(Packet Data Network Gateway/ Gateway General packet ratio service Support Node;略称:P-GW/GGSN)に、アップデートベアラ(Update Bearer(s))を送信する。 In step S47, the SGSN that has received the Suspend message receives the serving gateway (Serving GW) and the packet data network gateway / packet gateway node (Packet Data Network Gateway / Gateway General Gateway packet service ratio Support Node); abbreviation: P-GW / An update bearer (Update Bearer (s)) is transmitted to the GGSN.
 ステップS48において、UE/MS、eNodeB、BSS/RNS、MMEおよびMSCは、ロケーションエリアアップデート(Location Area Update)または結合ルーティングエリア/ロケーションエリア(Routing Area/Location Area;略称:RA/LA)アップデート(Update)を行う。 In step S48, the UE / MS, eNodeB, BSS / RNS, MME, and MSC perform location area update (Location Area Update) or combined routing area / location area (Routing Area / Location Area; abbreviated as RA / LA) update (Update). )I do.
 ステップS49において、UE/MSは、eNodeBを経由してBSS/RNSに、コネクション管理(Connection Management;略称:CM)サービスリクエスト(Service Request)メッセージを送信する。 In step S49, the UE / MS transmits a connection management (Connection Management; abbreviated to CM) service request message to the BSS / RNS via the eNodeB.
 UE/MSからCMサービスリクエストメッセージを受信したBSS/RNSは、ステップS50において、MMEを経由してMSCに、CMサービスリクエスト(CM Service Request)メッセージを含むA/lu-csメッセージ(A/lu-cs message)を送信する。 In step S50, the BSS / RNS that has received the CM service request message from the UE / MS sends an A / lu-cs message (A / lu-cs message) including a CM service request message to the MSC via the MME. cs message).
 MSCが変化した場合は、次のステップS51の処理を行う。ステップS51の処理は、ステップS52およびステップS53の各処理を含む。 If the MSC has changed, the next step S51 is performed. The process of step S51 includes each process of step S52 and step S53.
 ステップS52において、MSCは、MMEを経由してBSS/RNSに、CMサービスリジェクト(CM Service Reject)メッセージを送信するとともに、BSS/RNSおよびeNodeBを経由してUE/MSに、CMサービスリジェクト(CM Service Reject)メッセージを送信する。 In step S52, the MSC transmits a CM service reject (CM Service Reject) message to the BSS / RNS via the MME and also sends a CM service reject (CM) to the UE / MS via the BSS / RNS and the eNodeB. Service (Reject) message is sent.
 ステップS53において、UE/MS、eNodeB、BSS/RNS、MMEおよびMSCは、ロケーションエリアアップデート(Location Area Update)または結合RA/LAアップデート(Combined RA/LA Update)を行う。 In step S53, the UE / MS, eNodeB, BSS / RNS, MME and MSC perform location area update (Location Area Update) or combined RA / LA update (Combined RA / LA Update).
 ステップS54において、UE/MS、eNodeB、BSS/RNS、MMEおよびMSCは、CS呼出し設定プロシージャ(CS call establishment procedure)を行う。 In step S54, the UE / MS, eNodeB, BSS / RNS, MME, and MSC perform a CS call setup procedure (CS call establishment procedure).
 ステップS55において、UE/MS、eNodeB、BSS/RNS、MME、MSC、SGSNおよびServingGWは、PS HOを行う。ステップS55のPS HO処理は、PS HOの実行継続段階に相当する。ステップS55のPS HO処理は、3GPP TS23.401に規定される。 In step S55, the UE / MS, eNodeB, BSS / RNS, MME, MSC, SGSN, and Serving GW perform PS HO. The PS HO process of step S55 corresponds to the PS HO execution continuation stage. The PS HO process in step S55 is defined in 3GPP TS 23.401.
 着呼の場合、図68および図71に示すように、UE、eNodeB、MMEの順に、拡張サービスリクエスト(Extended Service Request)が通知される。基地局装置は、eNodeBとして機能する部位であるLTE側機能部位に、拡張サービスリクエスト(Extended Service Request)が通知されると、それを起点として、3G側、具体的にはW-CDMA方式側の機能部位である3G側機能部位の電源を起動する。3G側機能部位である回路およびデバイスの電源を事前に投入することによって、CSFBを遅延無く行わせることができる。また、拡張サービスリクエスト(Extended Service Request)が通知されるまで、3G側機能部位である回路およびデバイスの電源を投入しないことによって、基地局装置の消費電力を低減して、省電力化を実現することができる。 In the case of an incoming call, as shown in FIGS. 68 and 71, an extended service request is notified in the order of UE, eNodeB, and MME. When the base station apparatus is notified of the extended service request (Extended Service Request) to the LTE-side functional part, which is a part functioning as an eNodeB, the base station apparatus starts from that point and starts the 3G side, specifically the W-CDMA system side. The power supply of the 3G side functional part which is a functional part is started. The CSFB can be performed without delay by turning on the power of the circuits and devices that are the functional parts of the 3G side in advance. Also, by not turning on the circuit and device that are the 3G-side functional parts until an extended service request (Extended Service Request) is notified, the power consumption of the base station apparatus is reduced and power saving is realized. be able to.
 拡張サービスリクエスト(Extended Service Request)は、図68および図71のシーケンスにおいて、移動通信端末(UE)が基地局装置(eNB)を経由してMMEに送るCSフォールバックインジケータ(CS Fallback Indicator)である。CSフォールバックインジケータは、CSフォールバック(CS Fallback)を実行するためにMMEへ示すものである。 The extended service request (Extended Service Request) is a CS fallback indicator (CS Fallback Indicator) sent from the mobile communication terminal (UE) to the MME via the base station apparatus (eNB) in the sequences of FIG. 68 and FIG. 71. . The CS fallback indicator indicates to the MME to perform CS fallback (CS Fallback).
 移動通信端末は、結合EPS/IMSIアタッチメッセージによってCSドメインにアタッチされており、かつIMSヴォイス(IMS voice)のセッションを介して通話ができない場合にのみ、CSフォールバックインジケータをMMEに送信する。たとえば、移動通信端末が、登録されたIMSでない、またはIP-CANサービスによって、家庭用公衆移動通信網(home Public Land Mobile Network;略称:home PLMN)で、IMSボイスサービスがサポートされない場合に、移動通信端末は、CSフォールバックインジケータをMMEに送信する。 The mobile communication terminal transmits the CS fallback indicator to the MME only when it is attached to the CS domain by the combined EPS / IMSI attach message and cannot make a call through the IMS voice (IMS voice) session. For example, if the mobile communication terminal is not a registered IMS or if the IMS voice service is not supported by the IP-CAN service in a home public mobile communication network (home Public Land Mobile Network; abbreviation: home PLMN) The communication terminal transmits a CS fallback indicator to the MME.
 前述の図68および図71に示すシーケンスは、3GPP TS23.272、23.018、23.401などによって定義されている。このシーケンスによれば、拡張サービスリクエスト(Extended Service Request)のメッセージは、基地局装置(eNodeB)を経由してMMEへ送信される。したがって基地局装置は、基地局装置内で、拡張サービスリクエスト(Extended Service Request)メッセージを解析する処理を行うことによって、移動通信端末が拡張サービスリクエスト(Extended Service Request)をMMEに送信したことを知ることができる。 The sequence shown in FIG. 68 and FIG. 71 is defined by 3GPP TS 23.272, 23.018, 23.401, and the like. According to this sequence, an extended service request (Extended へ Service Request) message is transmitted to the MME via the base station apparatus (eNodeB). Therefore, the base station apparatus knows that the mobile communication terminal has transmitted an extended service request (Extended Service Request) to the MME by performing processing for analyzing the extended service request message (Extended Service Request) in the base station apparatus. be able to.
 具体的には、前述の図1、図59および図60に示す第1の実施の形態またはその変形例1,2における基地局装置1,2,3のLTE用PF(プラットフォーム)部45、またはLTE用AP部44において、移動通信端末(UE)が拡張サービスリクエスト(Extended Service Request)をMMEに送信したことを知ることができる。それによって、基地局装置は、CSフォールバック(CS Fallback)が行われようとしているか否かの判断を行うことができる。 Specifically, the LTE PF (platform) unit 45 of the base station apparatus 1, 2, 3 in the first embodiment shown in FIG. 1, FIG. 59 and FIG. The LTE AP unit 44 can know that the mobile communication terminal (UE) has transmitted an extended service request (Extended Service Request) to the MME. Thereby, the base station apparatus can determine whether or not CS fallback (CS Fallback) is about to be performed.
 図69に示すアタッチシーケンス、および図70に示す結合TA/LAアップデート(Update)手順では、拡張サービスリクエスト(Extended Service Request)が存在しない。この場合、基地局装置は、発呼または着呼シーケンスが進むのを待ってから、そこで発行される拡張サービスリクエスト(Extended Service Request)を元に、CSフォールバック(CS Fallback)を識別してもよいし、アタッチシーケンス、または結合したTA/LA Update手順の情報を用いて識別してもよい。 69. In the attach sequence shown in FIG. 69 and the combined TA / LA update (Update) procedure shown in FIG. 70, there is no Extended Service Request (Extended Service Request). In this case, the base station apparatus waits for the outgoing or incoming call sequence to proceed, and then identifies the CS fallback (CS Fallback) based on the extended service request (Extended Service Request) issued there. Alternatively, it may be identified by using information of an attach sequence or a combined TA / LA update procedure.
 「アタッチシーケンスの情報を用いる」とは、たとえば、図69のステップS21のアタッチリクエスト(Attach Request)に含まれるアタッチタイプ(Attach Type)の情報を用いるなどである。アタッチタイプ(Attach Type)の情報は、移動通信端末が、ショートメッセージサービス(Short Message Service;略称:SMS)専用なのか、CSフォールバックを使用可能なのかをMMEに指示できる情報である。アタッチタイプの情報を図1、図59および図60に示すLTE用PF部45で解析し、その解析した時点では、3G側機能部位の電源をオフ(OFF)しない制御を行うといった使用方法がある。 “Use attach sequence information” means, for example, use of attach type (Attach リ ク エ ス ト Type) information included in the attach request (Attach Request) in step S21 of FIG. Attach type information is information that can instruct the MME whether the mobile communication terminal is dedicated to a short message service (abbreviation: SMS) or can use CS fallback. There is a usage method in which the attach type information is analyzed by the LTE PF unit 45 shown in FIGS. 1, 59 and 60, and at the time of the analysis, control is performed so that the power of the 3G side functional part is not turned off. .
 「結合したTA/LA Update手順の情報を用いる」とは、たとえば、図70のステップS37のTAUアクセプト(TAU Accept)メッセージにおいて、ネットワークから「SMS専用支持」で「CSフォールバック(CS Fallback)実行なし」と指示されているか、または「CSフォールバック(CS Fallback)とSMSを支持」するように指示されているかの情報を、図1、図59および図60に示すLTE用PF部45で解析して、その解析した時点では、3G側機能部位の電源をオフ(OFF)しない制御を行うといった使用方法がある。 “Use the combined TA / LA update procedure information” means that, for example, in the TAU accept message in step S37 of FIG. 70, “CS fallback (CS fallback) is executed with“ SMS dedicated support ”from the network. The LTE PF unit 45 shown in FIG. 1, FIG. 59 and FIG. 60 analyzes the information indicating whether “None” is instructed or “CS fallback (CS Fallback) and SMS are supported”. At the time of the analysis, there is a usage method in which control is performed without turning off the power supply of the 3G-side functional part.
 以上に述べた制御方法を、受信したデータの無線伝送路状態だけを見て、3G側機能部位だけを用いることにしたり、LTE側機能部位だけを用いることにしたりする制御方法に加えることによって、3G側機能部位の電源をオフ(OFF)にしても、その後すぐにオン(ON)しなければならないような切り替えの増える無駄な制御を減らすことができる。 By adding the control method described above to a control method that only looks at the state of the wireless transmission path of the received data and decides to use only the 3G-side functional part or only the LTE-side functional part, Even if the power of the 3G-side functional part is turned off (OFF), it is possible to reduce useless control that increases switching that must be turned on immediately after that.
 <第4の実施の形態>
 本実施の形態では、基地局装置の設置場所が、VoIP(Voice over Internet Protocol)対応である場合について説明する。「VoIP」とは、音声データをパケット化してIPネットワークでリアルタイムに伝送する技術である。「VoIP対応である」とは、CSFB(CS Fallback)が機能しなくても、LTEシステムで音声通話が可能であることを意味する。
<Fourth embodiment>
In the present embodiment, a case will be described in which the installation location of the base station apparatus is compatible with VoIP (Voice over Internet Protocol). “VoIP” is a technology for packetizing voice data and transmitting it in real time over an IP network. “Compatible with VoIP” means that voice communication is possible in the LTE system even if CSFB (CS Fallback) does not function.
 この場合、前述の図67に示す3G/LTE共用基地局装置4は、設置場所がVoIP対応であるか否かを、コアネットワークへ問い合わせる。 In this case, the 3G / LTE shared base station apparatus 4 shown in FIG. 67 described above inquires of the core network whether or not the installation location is compatible with VoIP.
 VoIP対応であれば、音声通話のためにはCSFBは使用されないので、基地局装置4は、登録されている移動通信端末(UE)が全てLTE対応であれば、3G側機能部位601の電源を常にオフ(OFF)する。たとえば、UEが第3移動通信端末5cのように、LTEと3Gとのデュアル機能対応端末であったとしても、基地局装置4は、3G側機能部位601の電源を常にオフする。 Since CSFB is not used for voice calls if it is compatible with VoIP, the base station apparatus 4 turns on the power supply of the 3G-side functional part 601 if all the registered mobile communication terminals (UE) are compatible with LTE. Always off. For example, even if the UE is a dual function compatible terminal of LTE and 3G like the third mobile communication terminal 5c, the base station device 4 always turns off the power of the 3G side functional part 601.
 このようにVoIP対応であれば、CSFBの手順は、音声通話のためには使用されないが、UE同士で数十文字程度の文字数から成る比較的短い文字メッセージを送受信可能なサービスであるショートメッセージサービス(Short Message Service;略称:SMS)を利用する場合にも用いられる。したがって、基地局装置4は、SMSを利用する場合には、3G側機能部位601の電源をオン(ON)する機能を有する。 In this way, if it is VoIP-compatible, the CSFB procedure is not used for voice calls, but a short message service (a service that can transmit and receive relatively short character messages consisting of several tens of characters between UEs) It is also used when using Short Message Service (abbreviation: SMS). Therefore, the base station apparatus 4 has a function of turning on the power of the 3G-side functional part 601 when using SMS.
 SMSを利用するかどうかを表す情報(以下「SMS利用情報」という場合がある)は、前述の図68~図71に示すシーケンスの情報から入手することができる。たとえば、前述の図69では、ステップS21のアタッチリクエスト(Attach Request)メッセージ、図70では、ステップS37のTAUアクセプト(TAU Accept)メッセージの中に、SMS利用情報が含まれる。 Information indicating whether or not SMS is used (hereinafter sometimes referred to as “SMS usage information”) can be obtained from the sequence information shown in FIGS. For example, in FIG. 69 described above, the SMS use information is included in the attach request message in step S21, and in FIG. 70, the TAU accept message in step S37 is included.
 基地局装置は、このようにして得たSMS利用情報を、前述の図1、図59および図60に示すLTE用PF部45によって解析し、SMSを利用するかどうかを判断する。 The base station apparatus analyzes the SMS usage information thus obtained by the LTE PF unit 45 shown in FIGS. 1, 59, and 60 described above, and determines whether to use SMS.
 このようにVoIP対応であるか否か、およびSMSを利用するか否かに応じて、3G側機能部位601の電源をオン、オフすることによって、基地局装置4の省電力化を実現することができる。 As described above, power saving of the base station apparatus 4 is realized by turning on / off the power of the 3G-side functional unit 601 depending on whether it is compatible with VoIP and whether SMS is used. Can do.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 1,2,3 基地局装置、11,11A RF部、12 DFE回路部、13,13A LTE回路部、14 3G回路部、15,83 CPU、16 システムクロック供給部、17 第1アンテナ、18 第2アンテナ、21 第1DUP部、22 第1スイッチ部、23 第1無線送信部、24 第1無線受信部、25 第1下り無線受信部、26 第2DUP部、27 第2スイッチ部、28 第2無線送信部、29 第2無線受信部、30 第2下り無線受信部、31 第1DFE部、32 第2DFE部、33 内蔵DSP/L1エンジン部、34,34A 内蔵CPU、35 OFDMA部、36 LTE用チャネルコーディング部、37 SC-FDMA部、38 LTE用チャネルデコーディング部、39 LTE用無線パラメータ取得部、40 RLC/MAC部、41 PDCP/GTP-U部、42 LTE用IP部、43 LTE用IPsec部、44 LTE用AP部、45 LTE用PF部、46 ネットワークパラメータ取得部、47 UPnP部、48 データオフロード部、49 システムクロック補正部、50 拡散変調部、51 3G用チャネルコーディング部、52 逆拡散復調部、53 3G用チャネルデコーディング部、54 MAC-hs部、55 MAC-e部、56 FP終端部、57 3G用無線パラメータ取得部、58 3G用IP部、59 3G用IPsec部、60 PPPoE部、61 3G用AP部、62 3G用PF部、71,71A 無線送受信部、72 LTE用ベースバンド部、73 eNB制御部、74,74A 3G用ベースバンド部、75 NB制御部、76,76A 有線側終端部、77,77A クロック部、81 第1の3G回路部、82 第2の3G回路部、84 IPsec専用回路部、91 合成部、92 第1分配部、93 第2分配部、94 3G用無線送信部、95 3G用無線受信部、96 3G用下り無線受信部。 1, 2, 3 base station device, 11, 11A RF unit, 12 DFE circuit unit, 13, 13A LTE circuit unit, 14 3G circuit unit, 15, 83 CPU, 16 system clock supply unit, 17 first antenna, 18th antenna 2 antennas, 21 first DUP section, 22 first switch section, 23 first wireless transmission section, 24 first wireless reception section, 25 first downlink wireless reception section, 26 second DUP section, 27 second switch section, 28 second Wireless transmitter, 29 2nd wireless receiver, 30 2nd downlink wireless receiver, 31 1st DFE unit, 32 2nd DFE unit, 33 built-in DSP / L1 engine unit, 34, 34A built-in CPU, 35 OFDMA unit, 36 for LTE Channel coding part, 37 SC-FDMA part, 38 LTE channel decoding part, 39 LTE none Parameter acquisition unit, 40 RLC / MAC unit, 41 PDCP / GTP-U unit, 42 LTE IP unit, 43 LTE IPsec unit, 44 LTE AP unit, 45 LTE PF unit, 46 network parameter acquisition unit, 47 UPnP Section, 48 data offload section, 49 system clock correction section, 50 spread modulation section, 51 3G channel coding section, 52 despread demodulation section, 53 3G channel decoding section, 54 MAC-hs section, 55 MAC-e Part, 56 FP termination part, 57 3G wireless parameter acquisition part, 58 3G IP part, 59 3G IPsec part, 60 PPPoE part, 61 3G AP part, 62 3G PF part, 71, 71A wireless transmission / reception part, 72 LTE baseband unit, 73 eNB control unit 74, 74A 3G baseband section, 75 NB control section, 76, 76A wired side termination section, 77, 77A clock section, 81 first 3G circuit section, 82 second 3G circuit section, 84 IPsec dedicated circuit section, 91 combining unit, 92 first distributing unit, 93 second distributing unit, 94 3G wireless transmitting unit, 95 3G wireless receiving unit, 96 3G downlink wireless receiving unit.

Claims (15)

  1.  移動通信端末装置との間で、互いに異なる第1および第2の通信方式で無線通信可能な基地局装置であって、
     前記移動通信端末装置から送信されて受信した受信信号を解析する受信信号解析手段を備え、
     前記受信信号解析手段による解析結果に基づいて、前記移動通信端末装置との間で、前記第1および第2の通信方式のうち、いずれか一方の通信方式の通信のみが行われていると判断すると、他方の通信方式の通信動作を停止することを特徴とする基地局装置。
    A base station apparatus capable of wireless communication with a mobile communication terminal apparatus using different first and second communication methods,
    Comprising a received signal analyzing means for analyzing a received signal transmitted from the mobile communication terminal device;
    Based on the analysis result by the received signal analysis means, it is determined that only one of the first and second communication methods is being communicated with the mobile communication terminal device. Then, the base station apparatus which stops the communication operation of the other communication system.
  2.  前記受信信号解析手段は、前記受信信号について、信号電力対干渉電力比を求めることを特徴とする請求項1に記載の基地局装置。 The base station apparatus according to claim 1, wherein the received signal analyzing means obtains a signal power to interference power ratio for the received signal.
  3.  前記受信信号解析手段は、前記受信信号の復号後の巡回冗長検査結果に基づいて、前記第1および第2の通信方式のうち、いずれの通信方式の信号を受信しているかを識別することを特徴とする請求項1または2に記載の基地局装置。 The received signal analyzing means identifies, based on a cyclic redundancy check result after decoding of the received signal, which of the first and second communication methods is received. The base station apparatus according to claim 1 or 2, characterized in that:
  4.  前記移動通信端末装置から前記基地局装置を経由して前記基地局装置の上位装置に送信される送信信号を解析する送信信号解析手段を備え、
     前記送信信号解析手段による解析結果に基づいて、停止している通信方式の通信動作を再開するべきであると判断すると、停止している通信方式の通信動作を再開することを特徴とする請求項1~3のいずれか1つに記載の基地局装置。
    A transmission signal analyzing means for analyzing a transmission signal transmitted from the mobile communication terminal device to a host device of the base station device via the base station device;
    The communication operation of the stopped communication system is restarted when it is determined that the communication operation of the stopped communication system should be restarted based on the analysis result by the transmission signal analyzing means. 4. The base station apparatus according to any one of 1 to 3.
  5.  前記移動通信端末装置から前記基地局装置を経由して前記基地局装置の上位装置に送信される送信信号を解析する送信信号解析手段を備え、
     前記受信信号解析手段による解析結果に基づいて、前記第1および第2の通信方式のうち、いずれか一方の通信方式の通信のみが行われていると判断され、かつ前記送信信号解析手段による解析結果に基づいて、他方の通信方式の通信動作が停止可能であると判断されると、前記他方の通信方式の通信動作を停止することを特徴とする請求項1~4のいずれか1つに記載の基地局装置。
    A transmission signal analyzing means for analyzing a transmission signal transmitted from the mobile communication terminal device to a host device of the base station device via the base station device;
    Based on the analysis result by the received signal analysis means, it is determined that only one of the first and second communication methods is being communicated, and the analysis by the transmission signal analysis means 5. The communication operation of the other communication method is stopped when it is determined that the communication operation of the other communication method can be stopped based on the result. The base station apparatus as described.
  6.  前記移動通信端末装置が、前記第1および第2の通信方式のうち、いずれの通信方式の通信動作も可能であるか否かを判断する判断手段を備え、
     前記判断手段によって、前記移動通信端末装置が、一方の通信方式の通信動作のみ可能であると判断すると、他方の通信方式の通信動作を停止することを特徴とする請求項1~5のいずれか1つに記載の基地局装置。
    The mobile communication terminal device includes a determination unit that determines whether the communication operation of any one of the first and second communication methods is possible,
    6. The communication operation according to any one of claims 1 to 5, wherein when the determination means determines that the mobile communication terminal apparatus can perform only the communication operation of one communication method, the communication operation of the other communication method is stopped. The base station apparatus as described in one.
  7.  前記第1および第2の通信方式のうちの一方は、ロングタームエボリューション(LTE)方式であることを特徴とする請求項1~6のいずれか1つに記載の基地局装置。 The base station apparatus according to any one of claims 1 to 6, wherein one of the first and second communication schemes is a long term evolution (LTE) scheme.
  8.  フレームプロトコルに関する処理およびインターネットプロトコルに関する処理を行う処理手段を備え、
     前記処理手段は、ソフトウェアプログラムによって実現されることを特徴とする請求項1~7のいずれか1つに記載の基地局装置。
    A processing means for performing processing related to the frame protocol and processing related to the Internet protocol;
    The base station apparatus according to any one of claims 1 to 7, wherein the processing means is realized by a software program.
  9.  アンテナを介して受信した受信信号から、前記第1および第2の通信方式に対応する信号をそれぞれ取出す受信処理手段と、
     前記第1および第2の通信方式に対応する信号を合成して送信信号を生成し、前記アンテナを介して送信する送信処理手段とを備えることを特徴とする請求項1~8のいずれか1つに記載の基地局装置。
    Receiving processing means for extracting signals corresponding to the first and second communication methods from the received signal received via the antenna;
    9. Transmission processing means for synthesizing signals corresponding to the first and second communication methods to generate a transmission signal and transmitting the signal via the antenna. Base station apparatus as described in one.
  10.  前記第1の通信方式の通信動作を行う第1の通信手段と、前記第2の通信方式の通信動作を行う第2の通信手段とは、互いに独立して設けられることを特徴とする請求項1~9のいずれか1つに記載の基地局装置。 The first communication unit that performs the communication operation of the first communication method and the second communication unit that performs the communication operation of the second communication method are provided independently of each other. 10. The base station apparatus according to any one of 1 to 9.
  11.  前記第1の通信手段および前記第2の通信手段のうち、少なくとも一方は、取外し可能に設けられることを特徴とする請求項10に記載の基地局装置。 The base station apparatus according to claim 10, wherein at least one of the first communication unit and the second communication unit is detachably provided.
  12.  前記移動通信端末装置から送信されて受信した受信信号を同期検波する同期検波手段を備え、
     前記同期検波手段は、前記受信信号の周波数成分ごとに、無線伝送路および干渉成分の情報を用いて重み付けを算出し、前記重み付けに基づいて前記周波数成分ごとに同期検波を行うことを特徴とする請求項1~11のいずれか1つに記載の基地局装置。
    Comprising synchronous detection means for synchronously detecting a received signal transmitted from the mobile communication terminal device;
    The synchronous detection unit calculates weighting for each frequency component of the received signal using information on a radio transmission path and an interference component, and performs synchronous detection for each frequency component based on the weighting. The base station apparatus according to any one of claims 1 to 11.
  13.  前記移動通信端末装置から送信されて受信した受信信号から無線伝送路特性を推定する推定手段を備え、
     前記推定手段は、前記移動通信端末装置とのクロック周波数のずれから生じる周波数オフセット成分を除去して、前記無線伝送特性を推定することを特徴とする請求項1~12のいずれか1つに記載の基地局装置。
    Comprising estimation means for estimating a radio transmission line characteristic from a received signal transmitted from the mobile communication terminal device;
    13. The estimation unit according to claim 1, wherein the estimation unit estimates a radio transmission characteristic by removing a frequency offset component generated due to a clock frequency deviation from the mobile communication terminal apparatus. Base station equipment.
  14.  請求項1~13のいずれか1つに記載の基地局装置と、前記基地局装置と無線通信可能な移動通信端末装置とを備えることを特徴とする移動体通信システム。 14. A mobile communication system comprising: the base station apparatus according to claim 1; and a mobile communication terminal apparatus capable of wireless communication with the base station apparatus.
  15.  複数の前記移動通信端末装置が前記基地局装置との間で通信を行うとき、全ての移動通信端末装置が、同一の通信方式で通信するように制御することを特徴とする請求項14に記載の移動体通信システム。 15. When a plurality of mobile communication terminal apparatuses communicate with the base station apparatus, control is performed so that all mobile communication terminal apparatuses communicate using the same communication method. Mobile communication system.
PCT/JP2011/077526 2010-11-30 2011-11-29 Base station device and mobile body communication system WO2012073951A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012546883A JP5409932B2 (en) 2010-11-30 2011-11-29 Base station apparatus and mobile communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-266509 2010-11-30
JP2010266509 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073951A1 true WO2012073951A1 (en) 2012-06-07

Family

ID=46171880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077526 WO2012073951A1 (en) 2010-11-30 2011-11-29 Base station device and mobile body communication system

Country Status (2)

Country Link
JP (1) JP5409932B2 (en)
WO (1) WO2012073951A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517746A (en) * 2012-05-04 2015-06-22 中▲興▼通▲訊▼股▲フン▼有限公司 Base station standard release model processing method and apparatus, terminal, base station
JP2016116110A (en) * 2014-12-16 2016-06-23 富士通株式会社 Communication apparatus
WO2019167754A1 (en) * 2018-03-01 2019-09-06 日本電気株式会社 Wireless communication device, received signal processing method, and non-transitory computer readable medium in which program is stored
CN112911697A (en) * 2019-12-03 2021-06-04 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication
CN113543319A (en) * 2020-04-15 2021-10-22 大唐移动通信设备有限公司 De-channel multiplexing method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180205A (en) * 2002-11-29 2004-06-24 Toshiba Corp Soft handover control method and mobile communication terminal
JP2004187242A (en) * 2002-12-06 2004-07-02 Canon Inc Radio communication system
JP2007300420A (en) * 2006-04-28 2007-11-15 Toshiba Corp Mobile communications system and radio terminal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003236274A1 (en) * 2003-04-07 2004-11-01 Fujitsu Limited Dual mode system and dual mode radio termial
CN102187718A (en) * 2008-10-15 2011-09-14 日本电气株式会社 Wireless base station device and power supply control method therefor
JP5578082B2 (en) * 2008-11-26 2014-08-27 日本電気株式会社 Base station, base station transmission power control method, processing apparatus, program, and communication system
KR101327138B1 (en) * 2009-03-03 2013-11-07 닛본 덴끼 가부시끼가이샤 Radio communication system, radio base station apparatus, and their control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180205A (en) * 2002-11-29 2004-06-24 Toshiba Corp Soft handover control method and mobile communication terminal
JP2004187242A (en) * 2002-12-06 2004-07-02 Canon Inc Radio communication system
JP2007300420A (en) * 2006-04-28 2007-11-15 Toshiba Corp Mobile communications system and radio terminal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517746A (en) * 2012-05-04 2015-06-22 中▲興▼通▲訊▼股▲フン▼有限公司 Base station standard release model processing method and apparatus, terminal, base station
JP2016116110A (en) * 2014-12-16 2016-06-23 富士通株式会社 Communication apparatus
WO2019167754A1 (en) * 2018-03-01 2019-09-06 日本電気株式会社 Wireless communication device, received signal processing method, and non-transitory computer readable medium in which program is stored
JPWO2019167754A1 (en) * 2018-03-01 2021-02-04 日本電気株式会社 Wireless communication device, received signal processing method and program
US11343036B2 (en) 2018-03-01 2022-05-24 Nec Corporaton Radio communication apparatus, method of processing reception signal, and non-transitory computer readable medium storing program
CN112911697A (en) * 2019-12-03 2021-06-04 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication
CN113543319A (en) * 2020-04-15 2021-10-22 大唐移动通信设备有限公司 De-channel multiplexing method and device
CN113543319B (en) * 2020-04-15 2023-06-23 大唐移动通信设备有限公司 De-channel multiplexing method and device

Also Published As

Publication number Publication date
JPWO2012073951A1 (en) 2014-05-19
JP5409932B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
US11825340B2 (en) Mitigation of negative delay via half CP shift
JP5580921B2 (en) Sounding reference signal configuration
JP5795375B2 (en) Power headroom for simultaneous voice and long term evolution
JP6356110B2 (en) System and method for resource allocation in extended bandwidth
JP6391581B2 (en) Method and apparatus for communication mode selection based on content type
US9179329B2 (en) Apparatus and method for interference mitigation
RU2534033C2 (en) Method and apparatus for inferring user equipment interference suppression capability from measurements report
KR101413671B1 (en) Method and apparatus for managing downlink transmission power in a heterogeneous network
JP5666709B2 (en) Method, apparatus and computer program product for facilitating use of LTE channelization structures and waveforms for peer-to-peer communication
JP5710628B2 (en) Mapping of downlink and uplink resource elements for carrier extension
JP6553190B2 (en) Single TTI Transmission of Control Data in Wireless Communication
JP6208078B2 (en) Mechanism for exchanging information across cells facilitating reception in heterogeneous networks
JP6469714B2 (en) Apparatus and method for full-duplex communication
JP2013501416A (en) Method and apparatus for interference reduction / erasure techniques
JP2018522449A (en) Method and apparatus for adjusting the flow rate of a transmission received by a device
JP2014533046A (en) A hybrid approach for physical downlink shared channel elimination
JP5409932B2 (en) Base station apparatus and mobile communication system
JP6522734B2 (en) Pseudo-randomization of unused resources in medium access control (MAC) layer
TW201342969A (en) Digital filter control for filter tracking speedup

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845510

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012546883

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845510

Country of ref document: EP

Kind code of ref document: A1