WO2012073811A1 - Display panel substrate and substrate exposure method - Google Patents

Display panel substrate and substrate exposure method Download PDF

Info

Publication number
WO2012073811A1
WO2012073811A1 PCT/JP2011/077158 JP2011077158W WO2012073811A1 WO 2012073811 A1 WO2012073811 A1 WO 2012073811A1 JP 2011077158 W JP2011077158 W JP 2011077158W WO 2012073811 A1 WO2012073811 A1 WO 2012073811A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pattern
display panel
exposure
panel substrate
Prior art date
Application number
PCT/JP2011/077158
Other languages
French (fr)
Japanese (ja)
Inventor
宏樹 胡内
田中 茂樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012073811A1 publication Critical patent/WO2012073811A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line

Definitions

  • the present invention relates to a display panel substrate and a substrate exposure method. More specifically, the present invention relates to a display panel substrate suitable for scanning exposure performed in a photo-alignment processing step of an alignment film, and an exposure method for the substrate.
  • the alignment film formed on the surfaces of the TFT array substrate and the color filter substrate of the liquid crystal display panel is subjected to an alignment process in order to align liquid crystal molecules in a predetermined direction.
  • rubbing with a fiber material has been generally used as a method for this alignment treatment, but recently, a photo-alignment treatment has been used as an alternative alignment treatment method.
  • the photo-alignment process is a process that gives predetermined alignment characteristics to the surface of the alignment film by irradiating the alignment film with light from a predetermined direction.
  • “light” is not limited to visible light, but includes ultraviolet light (ultraviolet light) that is an electromagnetic wave having a shorter wavelength than visible light.
  • an exposure method in the photo-alignment treatment for example, a method in which a mask provided with an opening having a predetermined shape is arranged so as to cover the entire surface of the substrate, and light is irradiated from above the mask.
  • an exposure method has been proposed in which a substrate is moved while irradiating light on a partial region of the substrate surface using a small mask having slit-shaped openings (Patent Document 1). 2).
  • a specific region on the substrate surface is exposed in a stripe shape.
  • the pattern formed on the surface of the substrate is photographed, and the position of the actual illumination is monitored using the photographed image. To do.
  • the area that is actually exposed does not deviate from the area to be exposed, and correction is performed when the area does not deviate.
  • the target pattern may be misrecognized or not detected.
  • the exposure position cannot be controlled based on the pattern, there may be a shift in the exposure position called “following failure”.
  • FIG. 1 is a schematic perspective view showing a state in which scanning exposure is performed on a substrate.
  • the display area 11 is scanned and exposed by moving the substrate 10 with respect to the mask 50 while photographing the pattern on the substrate 10 with a camera. Is corrected as appropriate according to the position and orientation of the pattern photographed in step (b).
  • An arrow in FIG. 1 indicates the moving direction of the substrate 10.
  • the pattern to be an imaging target include a gate signal line, a source signal line, and a black matrix.
  • the boundary between the inside and outside of the pattern is recognized based on the luminance difference, the number of edges of the pattern is further measured, and the shooting target should be determined by whether or not the number of edges exceeds a set threshold.
  • FIG. 2 is a diagram for explaining a method for determining an imaging target based on whether or not the number of edges of a pattern exceeds a threshold value.
  • the upper side of FIG. 2 shows a pattern to be evaluated.
  • the lower side of FIG. 2 shows an edge detection result.
  • the edges A and A ′ can be detected appropriately.
  • variations in luminance occur in each region of the substrate, and depending on the region, the number of edges A and A ′ is not detected up to level P, and the edges A and A ′ are the patterns to be taken as imaging targets. It may not be recognized.
  • FIGS. 3 and 4 are diagrams illustrating detection results when the threshold value for determining whether or not the target is an imaging target is changed.
  • FIG. 3 shows a pattern detection result when level Q (Q ⁇ P) is a threshold
  • FIG. 4 shows a pattern detection result when level R (R ⁇ Q) is a threshold. Show.
  • level Q or level R is the threshold value of the number of edges
  • edges A, A ′, B, B ′ are detected as patterns to be targeted
  • edges A, A 'Only the pattern that should be the shooting target cannot be recognized.
  • edge A and the edge B and the distance between the edge A ′ and the edge B ′ are short, the edge A and the edge B or the edge A ′ and the edge B ′ cannot be accurately distinguished and counted depending on the region. is there.
  • pattern misrecognition and detection errors may occur depending on the shape and dimensions of the pattern.
  • the cause of pattern misrecognition and detection error is the case where there is a similar pattern in the vicinity of the pattern serving as the shooting target and the width of the pattern serving as the shooting target is not uniform. It turns out that there are cases.
  • FIGS. 5 and 6 show examples of two similar patterns that can cause misrecognition or misdetection.
  • Two similar patterns shown in FIG. 5 differ in the repetition pitch of pattern elements in the mask movement direction (vertical direction in the figure) (left in the figure: large pitch, right in the figure: The pattern width is the same in the direction (lateral direction in the drawing) perpendicular to the moving direction of the mask.
  • the two types of patterns are recognized as the same linear pattern P in the image recognition by the camera, as indicated by the broken line in the drawing.
  • the two similar patterns shown in FIG. 6 are continuous (left in the figure) or intermittent (right in the figure) in the mask moving direction (vertical direction in the figure).
  • the width of the pattern is the same in the direction perpendicular to the moving direction of the mask (the horizontal direction in the figure). Even in this case, the two types of patterns are recognized as the same linear pattern P as shown by the broken line in the drawing in the image recognition by the camera.
  • the black portion or the white portion as a similar pattern in the vicinity of the target black portion (light-shielding portion) or white portion (translucent portion) pattern, and the number of edges is It has been found that the presence of those within ⁇ 30 and the pattern width within ⁇ 5 ⁇ m may cause erroneous recognition or detection error.
  • FIG. 7 shows an example of a non-uniform width pattern that can cause misrecognition or misdetection.
  • the wide portion indicated by the dotted line in the drawing is thin. Since the difference in width is smaller than that in the portion (for example, the difference is within 5 ⁇ m) and the number of edges included in the pattern is the same, there is a possibility that a wide portion may be erroneously recognized as an imaging target.
  • the present invention has been made in view of the above-described present situation, and an object of the present invention is to provide a display panel substrate and a substrate exposure method capable of performing exposure accurately by preventing erroneous recognition and undetection of patterns. To do.
  • the present inventors have disclosed an exposure method (in other words, scanning exposure) in which a substrate is moved while irradiating light onto a partial region of the substrate surface using a small mask having slit-like openings formed therein.
  • an exposure method in other words, scanning exposure
  • the pattern for confirming the irradiation position may not be erroneously recognized or detected, which may reduce the exposure accuracy.
  • the present inventors have (1) a main part of a pattern extending along the pixel arrangement direction (that is, a certain width). (2) The length of the main part is 20% or more and less than 100% of the length of the picture element.
  • the present invention is a display panel substrate having a display area in which a plurality of picture elements are arranged, In the display area, provided with a pattern extending along the arrangement direction of the picture elements,
  • the pattern is a display panel substrate that includes a main portion having a certain width and other portions, and has no corners at positions within ⁇ 5 ⁇ m from a line parallel to both ends of the main portion.
  • the present invention is also a display panel substrate having a display area in which a plurality of picture elements are arranged, In the display area, provided with a pattern extending along the arrangement direction of the picture elements,
  • the pattern includes a main part having a certain width and other parts, and the main part is also a display panel substrate having a length of 20% or more and less than 100% with respect to the length of the picture element. .
  • the present invention further relates to a substrate exposure method for scanning and exposing a display panel substrate placed on the stage by an exposure machine including a light source, a photomask, a stage and a camera
  • the display panel substrate has a display area in which a plurality of picture elements are arranged, and has a pattern extending along the arrangement direction of the picture elements in the display area.
  • the pattern includes a main portion having a certain width and another portion.
  • the scanning exposure is performed for the display panel while adjusting the position and / or orientation of the photomask so that the extending direction of the pattern read by the camera and the moving direction of the photomask are kept parallel. It is also a substrate exposure method that irradiates the display area with light emitted from the light source through a light transmitting portion provided in the photomask while moving at least one of the substrate and the photomask.
  • the said pattern should just be the thing which can read the information regarding a position and direction with a camera,
  • the shape and material are not specifically limited.
  • the pattern is made of wiring
  • the pattern is made of a black matrix.
  • the wiring include a gate signal line and a source signal line.
  • substrate for display panels is a board
  • the display panel substrate and the substrate exposure method using the same it is possible to prevent erroneous recognition and undetection of the pattern, so that the substrate can be accurately exposed.
  • FIG. 1 It is a perspective schematic diagram which shows the state which is performing the scanning exposure with respect to a board
  • FIG. 10 is a schematic plan view showing a follow-up pattern formed on a display panel substrate according to Embodiment 2.
  • FIG. 6 is a schematic plan view showing a follow-up pattern formed on a display panel substrate according to Embodiment 3.
  • FIG. 6 is a schematic perspective view showing a state during exposure of a display area in the exposure methods according to Embodiments 1 to 3.
  • FIG. 10 is a schematic plan view showing a follow-up pattern formed on the display panel substrate according to Embodiment 1.
  • FIG. 10 is a schematic plan view showing a follow-up pattern formed on a display panel substrate according to Embodiment 2.
  • FIG. 6 is a schematic plan view showing a follow-up pattern formed on a display panel substrate according to Embodiment 3.
  • FIG. 6 is a schematic perspective view showing a state during exposure of a display area in the exposure methods according to Embodiments 1 to 3.
  • FIG. 5 is a side view conceptually showing the structure of the main part of an exposure apparatus according to Embodiments 1 to 3.
  • FIG. 6 is a diagram schematically showing a photo-alignment process for an array substrate using the exposure method according to Embodiments 1 to 3.
  • FIG. 5 is a diagram schematically showing a photo-alignment process for a color filter substrate using the exposure method according to Embodiments 1 to 3. It is the figure which showed typically the orientation direction of the liquid crystal molecule in each pixel about the liquid crystal display panel comprised by bonding the array substrate shown in FIG. 13, and the color filter substrate shown in FIG.
  • FIG. 6 is a schematic plan view showing the configuration of an array substrate photomask used in the exposure methods according to Embodiments 1 to 3.
  • FIG. 5 is a diagram showing the relationship between dimensions and positions of a color filter substrate photomask used in the exposure method according to Embodiments 1 to 3 and a pattern formed on the color filter substrate.
  • FIG. 8 is a schematic plan view showing a follow-up pattern formed on the display panel substrate according to the first embodiment.
  • a lattice pattern corresponding to the arrangement of picture elements is formed in the display area of the display panel substrate.
  • the width difference W between the portion with the large line width and the portion with the small line width is 5 ⁇ m or more. Therefore, even when the exposure machine is used as a pattern for photographing, the exposure machine has a large line width and the line width. Don't confuse small parts.
  • the exposure apparatus accurately recognizes the portion having a small line width as a follow-up pattern (the main part of the pattern), and extends along the line P including the pattern (shown by a broken line in the drawing) in the entire display area.
  • the exposure is performed with high accuracy.
  • the width difference W between the large line width portion and the small line width portion is set to 5 ⁇ m or more.
  • the exposure apparatus camera has a direction perpendicular to the extending direction of the follow-up pattern.
  • the resolution is Y ⁇ m (usually 1 to 2 ⁇ m)
  • erroneous recognition or detection errors of the pattern can be prevented if the resolution is 2 Y ⁇ m or more.
  • the resolution of the camera is determined according to the magnification of the lens of the camera, the conveyance speed of the substrate, and the like.
  • Embodiment 2 shows another example of the follow-up pattern.
  • FIG. 9 is a schematic plan view showing a follow-up pattern formed on the display panel substrate according to the second embodiment.
  • the width difference W between the portion having the large line width and the portion having the small line width is small, and is less than 5 ⁇ m (less than 2 Y ⁇ m).
  • the exposure machine may confuse a portion having a large line width with a portion having a small line width when used as a pattern for photographing.
  • FIG. 9 is a schematic plan view showing a follow-up pattern formed on the display panel substrate according to the second embodiment.
  • the length of the portion with the small line width is 20% or more with respect to the length of the picture element, and therefore, this is a case where it is used as a pattern for photographing.
  • the exposure machine does not confuse the part with the large line width with the part with the small line width. Therefore, the exposure apparatus accurately recognizes the portion having a small line width as a follow-up pattern (the main part of the pattern), and extends along the line P including the pattern (shown by a broken line in the drawing) in the entire display area. On the other hand, the exposure is performed with high accuracy.
  • the length of the portion having a small line width is set to 20% or more with respect to the length of the picture element.
  • the resolution of the exposure machine camera with respect to the extending direction of the follow pattern is X ⁇ m (normally 10 to 20 ⁇ m)
  • the difference (A ⁇ ) is obtained by subtracting the length B of the portion with the large line width (the other portion of the picture element) from the length A of the portion with the small line width (the main portion of the pattern). If B) is 4 ⁇ ⁇ m or more, pattern misrecognition or detection error can be prevented.
  • FIG. 10 is a schematic plan view showing a follow-up pattern formed on the display panel substrate according to the third embodiment.
  • a grid-like black portion (light-shielding portion) corresponding to the arrangement of picture elements is formed in the display area of the display panel substrate, and in the vertical direction in the figure.
  • a slit-like light transmitting portion is provided at the center of the light shielding portion.
  • the distance D between the light transmitting parts is 5 ⁇ m or more (2 Y ⁇ m or more), and there is no pattern similar to the light transmitting part between the adjacent light transmitting parts.
  • the exposure apparatus accurately recognizes the slit-like light transmitting part as a follow-up pattern (the main part of the pattern), and the entire display area along the line P (shown by a broken line in the figure) including this pattern.
  • the exposure is performed with high accuracy.
  • the configuration in which the slit-like light transmitting portion is provided at the center of the light shielding portion is suitable, for example, when two source signal lines are arranged as one set.
  • the patterns shown in the first to third embodiments are only required to extend along the arrangement direction of the picture elements, and may be provided around the picture elements (between adjacent picture elements). However, it may be provided inside the picture element.
  • a black matrix can be used if the display panel substrate is a color filter substrate, and if the display panel substrate is an array substrate, wiring such as gate signal lines and source signal lines can be used. Can be used.
  • the member constituting the pattern may be a member that the display panel substrate originally has for other uses or may be a dedicated member for image recognition, but prevents a decrease in the aperture ratio. From the viewpoint, the former is preferable.
  • the pattern is preferably a plurality of parallel patterns provided corresponding to each exposure unit.
  • FIG. 11 is a schematic perspective view showing a state during exposure of the display area in the exposure methods according to the first to third embodiments.
  • the substrate exposure methods according to the first to third embodiments use a so-called “scanning exposure” method.
  • a mother glass substrate 10 is moved while irradiating ultraviolet rays onto the surface of the mother glass substrate 10 through the light transmitting portion of the mask 50 using a mask 50 in which a slit-like light transmitting portion is formed.
  • An arrow in FIG. 11 indicates the moving direction of the mother glass substrate 10.
  • the exposure methods according to the first to third embodiments are applied to a step of performing a photo-alignment process on the alignment film formed on the mother glass substrate 10.
  • the mother glass substrate is for manufacturing an array substrate or a color filter substrate of a liquid crystal display panel, and six array substrates or color filter substrates can be cut out from one mother glass substrate.
  • the mother glass substrate 10 is described as an example of the display panel substrate.
  • the display panel substrate of the present invention may be a single array substrate or a single color filter substrate.
  • the mother glass substrate 10 is provided with six display areas 11 corresponding to each array substrate or color filter substrate.
  • the source signal lines and the gate signal lines intersecting each other are formed in a mesh pattern, and the thin film transistor and the pixel electrode are formed in each pixel region partitioned by the source signal line and the gate signal line. Is formed.
  • a black matrix is formed in a mesh shape, and a color filter is formed in each pixel area partitioned by the black matrix.
  • An alignment film to which a photo-alignment process can be applied is formed on the surface of the mother glass substrate 10.
  • An alignment mark 13 is provided in the outer peripheral region (frame region) of the mother glass substrate 10.
  • This alignment mark 13 is used to adjust the position and orientation of the mask 50 in advance in accordance with the position and orientation of the substrate 10 before starting the exposure to the display area 11 in the execution of the exposure method according to the present embodiment. belongs to.
  • the mask 50 is not suddenly largely displaced at the time of starting exposure on the display area 11, the accuracy of the exposure position can be improved, and the occurrence of exposure unevenness can be prevented.
  • the pattern in the display area 11 is complicated, it is easy to fail to recognize a predetermined follow-up pattern in the display area 11 at the start of exposure to the display area 11, but it is arranged at a predetermined position in the frame area. Preliminary adjustment by the alignment mark 13 can improve the tracking pattern capture accuracy.
  • FIG. 12 is a side view conceptually showing the structure of the main part of the exposure apparatus according to the first to third embodiments.
  • the exposure machine includes an exposure unit 51 that irradiates the substrate 10 with ultraviolet rays, and a stage 55 for placing and moving the substrate 10.
  • the exposure unit 51 includes an ultraviolet light source that emits ultraviolet light, and is configured to irradiate the surface of the substrate 10 with ultraviolet light at a predetermined irradiation angle via the mask 50. What is necessary is just to select a light source suitably according to irradiation object, and the light source which emits visible light may be sufficient.
  • Each exposure unit 51 includes a camera (imaging unit) 53, a storage unit, a collating unit, and a mask moving unit.
  • the camera 53 can photograph the surface of the substrate 10.
  • the storage means can store a reference image serving as a reference for exposure alignment.
  • the collating unit compares and collates the image captured by the camera 53 with the reference image, and calculates a difference between the position where the exposure is actually performed and the position where the exposure is to be performed.
  • the mask moving unit corrects the position and / or angle of the mask 50 based on the shift calculation result by the collating unit.
  • the collating means can similarly correct the position and angle of the mask 50 by a method of comparing and collating the result of imaging the substrate 10 and the result of imaging the mask 50 instead of using the reference image.
  • the mask 50 is, for example, a plate-like member, and a light-transmitting portion having a predetermined dimension is provided at a predetermined location. Therefore, when the substrate 10 is transported and passes directly under the mask 50, only the region that has passed directly under the light transmitting portion of the mask 50 is exposed. As a result, a predetermined elongated linear area on the surface of the substrate 10 is exposed.
  • the light transmitting portion is not particularly limited as long as it can transmit light (ultraviolet rays in the present embodiment).
  • the light transmitting portion may be an opening provided in a mask or a portion where a transparent film is formed. Also good.
  • the exposure apparatus includes a plurality of masks 50 (in other words, exposure units 51). Then, the exposure units 51 are arranged perpendicular to the traveling direction of the substrate 10. Thereby, it can expose by one scan over the full width of the board
  • the substrate 10 is placed on the stage 55. At this time, the substrate 10 is placed so that the alignment mark 13 is positioned in the forefront in the traveling direction of the substrate 10 by the stage 55 (the direction indicated by the arrow in FIG. 11).
  • the alignment mark 13 formed on the surface of the substrate 10 enters the field of view of the camera 53 of each exposure unit 51, and the camera 53 takes an image thereof.
  • the collating unit compares and collates the image of the alignment mark 13 photographed by the camera 53 with the reference image stored in the storage unit, and calculates a deviation between the position to be exposed and the actually exposed position.
  • the correcting means corrects the position of the mask 50 (particularly, the position perpendicular to the traveling direction of the substrate 10) and the angle (particularly the angle relative to the traveling direction of the substrate 10) based on the calculation result.
  • the alignment mark 13 When the alignment mark 13 reaches a position where it can be photographed by the camera 53, the display area 11 of the substrate 10 does not reach directly below the mask 50. That is, the exposure is not yet started. Therefore, even if the mask 50 is largely moved by the correction using the alignment mark 13, the exposure on the display area 11 is not affected at all.
  • the display area 11 of the substrate 10 enters the field of view of the camera 53. Then, the camera 53 can photograph the follow-up pattern formed in the display area 11, and the position and angle of the mask 50 are corrected based on the follow-up pattern. At almost the same time, the display area 11 of the substrate 10 reaches a position where it is exposed. As described above, the position and angle of the mask 50 are corrected by the alignment mark 13 until the substrate 10 reaches this position. Therefore, when this position is reached, the position and angle of the mask 50 do not change significantly. As a result, it is possible to improve the accuracy of the exposure position in the vicinity of the exposure start position with respect to the display area 11, and to prevent the occurrence of exposure unevenness.
  • the exposure method according to this embodiment is applied to a step of performing a photo-alignment process.
  • the photo-alignment treatment can be applied to liquid crystal display panels of various display modes, and is particularly suitable for a liquid crystal display panel of a twisted nematic vertical alignment (vertical alignment twisted nematic (VATN)) mode.
  • VATN vertical alignment twisted nematic
  • FIG. 13 is a diagram schematically showing a photo-alignment process for the array substrate using the exposure method according to the first to third embodiments.
  • the structure of the applied picture element is not particularly limited.
  • a pixel element 21 is formed in a region surrounded by the source signal line 19 and the gate signal line 17, and a pixel having a general configuration in which driving of the pixel is controlled by a thin film transistor will be described as an example.
  • the array substrate as shown in FIG. 13, two regions formed by being divided into two in the middle of the source signal lines 19 on both sides (line A in the drawing) are assumed in each picture element.
  • each region is irradiated with ultraviolet rays from a direction inclined by a predetermined angle ⁇ with respect to the normal of the surface of the picture element.
  • the direction of the irradiation of ultraviolet rays with respect to each region is such that, when the optical axes of the irradiated ultraviolet rays are projected onto the surface of the picture element, the projected optical axes are parallel to the source signal lines 19 and differ from each other by 180 °. To do.
  • FIG. 14 is a view schematically showing a photo-alignment process for the color filter substrate using the exposure method according to the first to third embodiments.
  • a black matrix 23 is formed in a lattice shape, and a color filter layer is formed in each picture element divided by the lattice.
  • the color filter substrate is formed by being divided into two substantially at the middle (line B in the figure) of the two sides constituting the boundary of the picture element, which is parallel to the gate signal line 17 of the array substrate when bonded to the array substrate. Assume two regions to be used. Then, each region is irradiated with ultraviolet rays from a direction inclined by a predetermined angle ⁇ with respect to the normal of the surface of the picture element.
  • the direction of the irradiation of ultraviolet rays with respect to each region is such that, when the optical axes of the irradiated ultraviolet rays are projected onto the surface of the picture element, the projected optical axes are parallel to the gate signal lines 17 of the array substrate and 180 to each other. ° Different orientation.
  • FIG. 15 is a diagram schematically showing the alignment direction of liquid crystal molecules in each pixel for a liquid crystal display panel formed by bonding the array substrate shown in FIG. 13 and the color filter substrate shown in FIG. is there.
  • the liquid crystal display panel is configured by bonding the substrates subjected to the alignment treatment as described above, the liquid crystal molecules filled between the two substrates are applied to each region of each substrate as shown in FIG. Alignment is performed according to the direction of the alignment treatment, that is, the irradiation direction of ultraviolet rays. As a result, a plurality of domain regions having different orientation directions of liquid crystal molecules are formed in each picture element.
  • the arrows in FIG. 15 indicate the orientation directions of the liquid crystal molecules located at the same distance from both substrate surfaces.
  • FIG. 16 is a schematic plan view showing the configuration of an array substrate photomask used in the exposure methods according to the first to third embodiments.
  • FIG. 17 is a diagram showing the relationship between the size and position of the photomask of FIG. 16 and the pattern formed on the array substrate.
  • the array substrate photomask 60 is a substantially rectangular plate-shaped member.
  • a plurality of slit-like translucent portions 61 through which ultraviolet rays can pass are formed in parallel at a predetermined pitch Px.
  • the pitch Px is set equal to the pitch of the source signal lines 19 formed on the array substrate.
  • the width (dimension on the short side) Lx of the translucent portion 61 is set to a dimension that is approximately 1 ⁇ 2 of the pitch of the source signal lines 19.
  • FIG. 18 is a diagram showing the relationship between the dimensions and positions of the color filter substrate photomask used in the exposure methods according to Embodiments 1 to 3 and the pattern formed on the color filter substrate.
  • the color filter substrate photomask 70 has substantially the same configuration as the array substrate photomask 60 (see FIG. 16). That is, a plurality of slit-like light transmitting portions 71 through which ultraviolet rays can pass are formed in parallel at a predetermined pitch Py.
  • the pitch Py is set to be equal to the pitch of the black matrix 23 formed on the color filter substrate (here, the pitch of the side parallel to the gate signal line 17 of the array substrate when superimposed on the array substrate).
  • the width (dimension on the short side) Ly of the translucent part 71 is set to a dimension that is about 1 ⁇ 2 of the pitch of the black matrix 23.
  • the array substrate is exposed while moving the substrate in the extending direction of the source signal line.
  • the array substrate is exposed while moving in the extending direction of the gate signal line. Also good.
  • the position where the alignment mark is formed may be changed, and the “gate signal line” and the “source signal line” in the above description may be read.
  • the step of performing the photo-alignment process has been exemplified.
  • the display panel substrate and the exposure method using the substrate according to the present invention are applied to the manufacture of a color filter substrate and the array substrate. May be. Even in those cases, the same effect can be obtained by applying the present invention to the follow-up pattern.
  • Examples of producing a color filter substrate include exposure for forming a black matrix pattern and exposure for forming a color filter pattern of each color.
  • the color of the color filter is not particularly limited, and may be three colors of red, green, and blue, or may be four colors of red, green, blue, and yellow.
  • the light irradiation angle ( ⁇ ) is not particularly limited, and may be 0 °.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The present invention provides a display panel substrate and substrate exposure method whereby exposure can be performed accurately by preventing misrecognition or failure of detection of a pattern. A display panel substrate according to the present invention has a display region in which are arranged a plurality of picture elements and is provided with a pattern extending along the direction of arrangement of the picture elements in this display region. This pattern includes a main section having a fixed width and other portions, and has corners in positions within ±5 µm from a line parallel with the two edges of this main section. Alternatively, this main section has a length of at least 20% but less than 100% with respect to the length of the picture elements.

Description

表示パネル用基板及び基板露光方法Display panel substrate and substrate exposure method
本発明は、表示パネル用基板及び基板露光方法に関する。より詳しくは、配向膜の光配向処理工程等で行われる走査露光に適した表示パネル用の基板、及び、当該基板に対する露光方法に関するものである。 The present invention relates to a display panel substrate and a substrate exposure method. More specifically, the present invention relates to a display panel substrate suitable for scanning exposure performed in a photo-alignment processing step of an alignment film, and an exposure method for the substrate.
液晶表示パネルのTFTアレイ基板及びカラーフィルタ基板の表面に形成される配向膜には、液晶分子を所定の向きに配向させるために配向処理が施される。この配向処理の方法として、従来一般には、繊維材料によるラビングが用いられてきたが、最近では、これに代わる配向処理の方法として、光配向処理が用いられるようになってきている。 The alignment film formed on the surfaces of the TFT array substrate and the color filter substrate of the liquid crystal display panel is subjected to an alignment process in order to align liquid crystal molecules in a predetermined direction. Conventionally, rubbing with a fiber material has been generally used as a method for this alignment treatment, but recently, a photo-alignment treatment has been used as an alternative alignment treatment method.
光配向処理は、配向膜に所定の方向から光を照射することにより、配向膜の表面に所定の配向特性を与える処理である。なお、本明細書において「光」とは、可視光線に限定されるものではなく、可視光線よりも波長の短い電磁波である紫外線(紫外光)を含むものである。光配向処理における露光方法としては、例えば、所定の形状の開口部が設けられたマスクを基板全面に覆いかぶせるように配置し、そのマスクの上方から光を照射するという方法が挙げられる。 The photo-alignment process is a process that gives predetermined alignment characteristics to the surface of the alignment film by irradiating the alignment film with light from a predetermined direction. In this specification, “light” is not limited to visible light, but includes ultraviolet light (ultraviolet light) that is an electromagnetic wave having a shorter wavelength than visible light. As an exposure method in the photo-alignment treatment, for example, a method in which a mask provided with an opening having a predetermined shape is arranged so as to cover the entire surface of the substrate, and light is irradiated from above the mask.
そのような露光方法では、基板サイズの大型化に伴ってマスクのサイズも大きくする必要があり、マスクの高価格化を招く。また、マスクが大型化すると、撓みによる開口部の位置ずれが生じやすくなる。 In such an exposure method, it is necessary to increase the size of the mask as the substrate size increases, leading to an increase in the cost of the mask. Further, when the mask is enlarged, the position of the opening is likely to be displaced due to bending.
これに対して、スリット状の開口部が形成された小形のマスクを用いて基板表面の一部の領域に光を照射しつつ、基板を移動させるという露光方法が提案されている(特許文献1、2参照)。この露光方法によれば、基板表面の特定の領域がストライプ状に露光される。また、この露光方法においては、光を照射しつつ基板を移動させている間は、基板の表面に形成されたパターンを撮影し、撮影された画像を用いて実際に照射している位置を監視する。これにより、実際に露光される領域が露光すべき領域から外れないようにし、また、外れた場合には補正する。 On the other hand, an exposure method has been proposed in which a substrate is moved while irradiating light on a partial region of the substrate surface using a small mask having slit-shaped openings (Patent Document 1). 2). According to this exposure method, a specific region on the substrate surface is exposed in a stripe shape. Also, in this exposure method, while moving the substrate while irradiating light, the pattern formed on the surface of the substrate is photographed, and the position of the actual illumination is monitored using the photographed image. To do. As a result, the area that is actually exposed does not deviate from the area to be exposed, and correction is performed when the area does not deviate.
特開2007-41175号公報JP 2007-41175 A 国際公開第2007/113933号International Publication No. 2007/113933
しかしながら、実際には、対象となるパターンを誤認識したり、検出できないことがあった。そのような場合にはパターンに基づいて露光位置を制御できないため、「追従不良」と呼ばれる露光位置のずれが生じることがある。パターンの誤認識、未検出の原因に関する本発明者らの検討結果を以下に図1~7を参照して説明する。 In practice, however, the target pattern may be misrecognized or not detected. In such a case, since the exposure position cannot be controlled based on the pattern, there may be a shift in the exposure position called “following failure”. The results of investigations by the present inventors regarding the causes of pattern misrecognition and non-detection will be described below with reference to FIGS.
図1は、基板に対して走査露光を行っている状態を示す斜視模式図である。図1に示す例では、基板10上のパターンをカメラで撮影しながら、マスク50に対して基板10を移動させることにより表示領域11を走査露光しており、マスク50の位置及び向きは、カメラで撮影されたパターンの位置及び向きに応じて適宜補正される。図1中の矢印が、基板10の移動方向を示している。撮影ターゲットとなるパターンとしては、例えばゲート信号線、ソース信号線、ブラックマトリックスが挙げられる。 FIG. 1 is a schematic perspective view showing a state in which scanning exposure is performed on a substrate. In the example shown in FIG. 1, the display area 11 is scanned and exposed by moving the substrate 10 with respect to the mask 50 while photographing the pattern on the substrate 10 with a camera. Is corrected as appropriate according to the position and orientation of the pattern photographed in step (b). An arrow in FIG. 1 indicates the moving direction of the substrate 10. Examples of the pattern to be an imaging target include a gate signal line, a source signal line, and a black matrix.
露光機による撮影ターゲットの認識方法としては、輝度差に基づきパターン内外の境界を認識し、更にパターンのエッジ数を測定し、エッジ数が設定した閾値を超えるか否かで、撮影ターゲットとすべきパターンであるか否かの判定を行う方法がある。 As a method of recognizing a shooting target by an exposure machine, the boundary between the inside and outside of the pattern is recognized based on the luminance difference, the number of edges of the pattern is further measured, and the shooting target should be determined by whether or not the number of edges exceeds a set threshold. There is a method for determining whether or not a pattern is present.
図2は、パターンのエッジ数が閾値を超えるか否かによって撮影ターゲットを判定する方法を説明する図である。図2の上側には、評価対象としたパターンを示している。図2の下側には、エッジの検出結果を示している。図2の下側に示したように、レベルPをエッジ数の閾値としたときには、適切にエッジA、A’を検出することができる。ところが、実際の走査露光時には、基板の領域ごとに輝度のばらつきが生じ、領域によってはエッジA、A’ の数がレベルPまで検出されず、エッジA、A’が撮影ターゲットとすべきパターンとして認識されないことがある。 FIG. 2 is a diagram for explaining a method for determining an imaging target based on whether or not the number of edges of a pattern exceeds a threshold value. The upper side of FIG. 2 shows a pattern to be evaluated. The lower side of FIG. 2 shows an edge detection result. As shown in the lower side of FIG. 2, when the level P is set as the threshold value of the number of edges, the edges A and A ′ can be detected appropriately. However, during actual scanning exposure, variations in luminance occur in each region of the substrate, and depending on the region, the number of edges A and A ′ is not detected up to level P, and the edges A and A ′ are the patterns to be taken as imaging targets. It may not be recognized.
そこで、エッジ数の閾値を下げることも考えられるが、その場合には、エッジA、A’とエッジB、B’とが混同され、撮影ターゲットとすべきパターンを特定できなくなってしまう。図3、4は、撮影ターゲットか否かを判定するための閾値を変更したときの検出結果を示す図である。図3には、レベルQ(Q<P)を閾値としたときのパターンの検出結果を示しており、図4には、レベルR(R<Q)を閾値としたときのパターンの検出結果を示している。図3及び4に示したように、レベルQ又はレベルRをエッジ数の閾値としたときには、エッジA、A’、 B、B’がターゲットとすべきパターンとして検出されており、エッジA、A’のみを撮影ターゲットとすべきパターンとして認識できない。 Therefore, it is conceivable to reduce the threshold value of the number of edges. In this case, however, the edges A and A ′ and the edges B and B ′ are confused, and it becomes impossible to specify the pattern to be the imaging target. 3 and 4 are diagrams illustrating detection results when the threshold value for determining whether or not the target is an imaging target is changed. FIG. 3 shows a pattern detection result when level Q (Q <P) is a threshold, and FIG. 4 shows a pattern detection result when level R (R <Q) is a threshold. Show. As shown in FIGS. 3 and 4, when level Q or level R is the threshold value of the number of edges, edges A, A ′, B, B ′ are detected as patterns to be targeted, and edges A, A 'Only the pattern that should be the shooting target cannot be recognized.
更に、エッジAとエッジBの距離、エッジA’とエッジB’の距離が短いと、領域によってはエッジAとエッジB、又は、エッジA’とエッジB’を的確に区別してカウントできないことがある。 Furthermore, if the distance between the edge A and the edge B and the distance between the edge A ′ and the edge B ′ are short, the edge A and the edge B or the edge A ′ and the edge B ′ cannot be accurately distinguished and counted depending on the region. is there.
これに対して、パターンの線幅(A―A’間の距離)を検出の閾値として設定すれば、上述したような問題は解決可能である。 On the other hand, if the line width of the pattern (distance between A and A ') is set as a detection threshold, the above-described problem can be solved.
しかしながら、線幅を検出の閾値として設定した場合であっても、パターンの形状及び寸法によっては、パターンの誤認識や検出ミスが発生し得る。本発明者らの検討の結果、パターンの誤認識や検出ミスの原因となるのは、撮影ターゲットとなるパターンの近傍に類似するパターンが存在する場合と、撮影ターゲットとなるパターンの幅が均一でない場合とがあることが分かった。 However, even when the line width is set as a detection threshold, pattern misrecognition and detection errors may occur depending on the shape and dimensions of the pattern. As a result of the study by the present inventors, the cause of pattern misrecognition and detection error is the case where there is a similar pattern in the vicinity of the pattern serving as the shooting target and the width of the pattern serving as the shooting target is not uniform. It turns out that there are cases.
まず、前者の原因に関して、図5及び6は、誤認識又は検出ミスを引き起こし得る、類似する2種のパターンの例を示している。図5に示した類似する2種のパターンは、マスクの移動方向(図中の縦方向)において、パターン要素の繰り返しピッチが異なっている点(図中の左:ピッチ大、図中の右:ピッチ小)でのみ相違しており、マスクの移動方向に対して垂直な方向(図中の横方向)において、パターンの幅が同一である。この場合、2種のパターンは、カメラによる画像認識では、図中に破線で示したように、同一の直線状のパターンPとして認識されることになる。図6に示した類似する2種のパターンは、マスクの移動方向(図中の縦方向)において、パターンが連続的であるか(図中の左)、断続的であるか(図中の右)でのみ相違しており、マスクの移動方向に対して垂直な方向(図中の横方向)において、パターンの幅が同一である。この場合でも、2種のパターンは、カメラによる画像認識では、図中に破線で示したように、同一の直線状のパターンPとして認識されることになる。 First, regarding the former cause, FIGS. 5 and 6 show examples of two similar patterns that can cause misrecognition or misdetection. Two similar patterns shown in FIG. 5 differ in the repetition pitch of pattern elements in the mask movement direction (vertical direction in the figure) (left in the figure: large pitch, right in the figure: The pattern width is the same in the direction (lateral direction in the drawing) perpendicular to the moving direction of the mask. In this case, the two types of patterns are recognized as the same linear pattern P in the image recognition by the camera, as indicated by the broken line in the drawing. The two similar patterns shown in FIG. 6 are continuous (left in the figure) or intermittent (right in the figure) in the mask moving direction (vertical direction in the figure). ), And the width of the pattern is the same in the direction perpendicular to the moving direction of the mask (the horizontal direction in the figure). Even in this case, the two types of patterns are recognized as the same linear pattern P as shown by the broken line in the drawing in the image recognition by the camera.
本発明者らの検討によれば、ターゲットとなる黒色部(遮光部)又は白色部(透光部)のパターンの近傍に、類似するパターンとして、黒色部又は白色部であって、エッジ数が±30以内、かつパターン幅が±5μm以内のものが存在すると、誤認識又は検出ミスを引き起こし得ることが分かった。 According to the study by the present inventors, the black portion or the white portion as a similar pattern in the vicinity of the target black portion (light-shielding portion) or white portion (translucent portion) pattern, and the number of edges is It has been found that the presence of those within ± 30 and the pattern width within ± 5 μm may cause erroneous recognition or detection error.
次に、後者の原因に関して、図7は、誤認識又は検出ミスを引き起こし得る、幅が均一でないパターンの例を示している。図7に示すパターンでは、図中に破線で示した幅の細い部分を撮影ターゲットとなるパターンPとしてカメラに認識させようとしても、図中に点線で示した幅の広い部分が、幅の細い部分と比べて、幅の差が小さく(例えば、差が5μm以内)、パターンに含まれるエッジの数も同数であるため、幅の広い部分を撮影ターゲットとして誤認識する可能性がある。 Next, with respect to the latter cause, FIG. 7 shows an example of a non-uniform width pattern that can cause misrecognition or misdetection. In the pattern shown in FIG. 7, even if the thin portion indicated by the broken line in the drawing is to be recognized by the camera as the pattern P serving as the imaging target, the wide portion indicated by the dotted line in the drawing is thin. Since the difference in width is smaller than that in the portion (for example, the difference is within 5 μm) and the number of edges included in the pattern is the same, there is a possibility that a wide portion may be erroneously recognized as an imaging target.
本発明は、上記現状に鑑みてなされたものであり、パターンの誤認識、未検出を防止して、正確に露光を行うことができる表示パネル用基板及び基板露光方法を提供することを目的とするものである。 The present invention has been made in view of the above-described present situation, and an object of the present invention is to provide a display panel substrate and a substrate exposure method capable of performing exposure accurately by preventing erroneous recognition and undetection of patterns. To do.
本発明者らは、スリット状の開口部が形成された小形のマスクを用いて基板表面の一部の領域に光を照射しつつ、基板を移動させるという露光方法(言い換えれば、走査露光)について種々検討した結果、照射位置を確認するためのパターンを誤認識したり、検出することができないことがあり、このために露光の精度が低下することがあることに着目した。そこで、本発明者らは、パターンの誤認識、未検出を防止し得るパターンについて鋭意検討した結果、(1)絵素の配列方向に沿って伸びるパターンの主体となる部分(すなわち、一定の幅を有する主部)の両端に平行な線から±5μm以内の位置に角を有さないパターンとすること、(2)主部を絵素の長さに対して20%以上100%未満の長さとすること、(3)露光機が備えるカメラの移動方向の分解能がXμmであり、上記カメラの前記移動方向とは垂直な方向の分解能がYμmであるときに、上記主部の両端に平行な線から±2Yμm以内の位置に角を有さないものであること、(4)上記主部の長さから上記絵素の他の部分の長さを引いた差が4Xμm以上であることにより、パターンの誤認識、未検出を効果的に防止できることを見いだした。そして、上記(1)~(4)の少なくとも1つの手段を用いれば、上記課題をみごとに解決することができることに想到した結果、本発明に到達したものである。 The present inventors have disclosed an exposure method (in other words, scanning exposure) in which a substrate is moved while irradiating light onto a partial region of the substrate surface using a small mask having slit-like openings formed therein. As a result of various investigations, attention was paid to the fact that the pattern for confirming the irradiation position may not be erroneously recognized or detected, which may reduce the exposure accuracy. Accordingly, as a result of intensive studies on patterns that can prevent pattern misrecognition and non-detection, the present inventors have (1) a main part of a pattern extending along the pixel arrangement direction (that is, a certain width). (2) The length of the main part is 20% or more and less than 100% of the length of the picture element. (3) When the resolution in the moving direction of the camera provided in the exposure apparatus is X μm and the resolution in the direction perpendicular to the moving direction of the camera is Y μm, the resolution is parallel to both ends of the main part. (4) The difference obtained by subtracting the length of the other part of the picture element from the length of the main part is 4X μm or more. The ability to effectively prevent pattern misrecognition and non-detection Found it was. As a result, the inventors have arrived at the present invention as a result of conceiving that the above-mentioned problems can be solved brilliantly by using at least one of the means (1) to (4).
すなわち、本発明は、複数の絵素が配列された表示領域を有する表示パネル用基板であって、
上記表示領域内に、絵素の配列方向に沿って伸びるパターンを備え、
上記パターンは、一定の幅を有する主部と他の部分とを含み、上記主部の両端に平行な線から±5μm以内の位置に角を有さない表示パネル用基板である。
That is, the present invention is a display panel substrate having a display area in which a plurality of picture elements are arranged,
In the display area, provided with a pattern extending along the arrangement direction of the picture elements,
The pattern is a display panel substrate that includes a main portion having a certain width and other portions, and has no corners at positions within ± 5 μm from a line parallel to both ends of the main portion.
本発明はまた、複数の絵素が配列された表示領域を有する表示パネル用基板であって、
上記表示領域内に、絵素の配列方向に沿って伸びるパターンを備え、
上記パターンは、一定の幅を有する主部と他の部分とを含み、上記主部は、上記絵素の長さに対して20%以上100%未満の長さを有する表示パネル用基板でもある。
The present invention is also a display panel substrate having a display area in which a plurality of picture elements are arranged,
In the display area, provided with a pattern extending along the arrangement direction of the picture elements,
The pattern includes a main part having a certain width and other parts, and the main part is also a display panel substrate having a length of 20% or more and less than 100% with respect to the length of the picture element. .
本発明は更に、光源、フォトマスク、ステージ及びカメラを備える露光機により、上記ステージ上に載置した表示パネル用基板を走査露光する基板露光方法であって、
上記表示パネル用基板は、複数の絵素が配列された表示領域を有し、かつ上記表示領域内に、絵素の配列方向に沿って伸びるパターンを備えるものであり、
上記カメラの上記移動方向の分解能がXμmであり、上記カメラの上記移動方向とは垂直な方向の分解能がYμmであるときに、上記パターンは、一定の幅を有する主部と他の部分とを含み、上記主部の両端に平行な線から±2Yμm以内の位置に角を有さないものであるか、又は、上記主部の長さから上記他の部分の長さを引いた差が4Xμm以上であり、
上記走査露光は、上記カメラによって読み取られた上記パターンの延伸方向と上記フォトマスクの移動方向とが平行を保ち続けるように、上記フォトマスクの位置及び/又は向きを調整しながら、上記表示パネル用基板及び上記フォトマスクの少なくとも一方を移動させつつ、上記フォトマスクに設けられた透光部を通じて、上記光源から放出された光を前記表示領域に照射するものである基板露光方法でもある。
The present invention further relates to a substrate exposure method for scanning and exposing a display panel substrate placed on the stage by an exposure machine including a light source, a photomask, a stage and a camera,
The display panel substrate has a display area in which a plurality of picture elements are arranged, and has a pattern extending along the arrangement direction of the picture elements in the display area.
When the resolution in the moving direction of the camera is X μm and the resolution in the direction perpendicular to the moving direction of the camera is Y μm, the pattern includes a main portion having a certain width and another portion. Including a portion having no corner at a position within ± 2 Yμm from a line parallel to both ends of the main portion, or a difference obtained by subtracting the length of the other portion from the length of the main portion is 4 × μm That's it,
The scanning exposure is performed for the display panel while adjusting the position and / or orientation of the photomask so that the extending direction of the pattern read by the camera and the moving direction of the photomask are kept parallel. It is also a substrate exposure method that irradiates the display area with light emitted from the light source through a light transmitting portion provided in the photomask while moving at least one of the substrate and the photomask.
なお、上記パターンは、カメラによって位置及び向きに関する情報を読み取ることができるものであればよく、その形状及び材質は特に限定されない。例えば、本発明の一形態として、上記パターンが配線からなる形態、上記パターンがブラックマトリックスからなる形態が挙げられる。上記配線としては、例えば、ゲート信号線、ソース信号線が挙げられる。 In addition, the said pattern should just be the thing which can read the information regarding a position and direction with a camera, The shape and material are not specifically limited. For example, as an embodiment of the present invention, there are an embodiment in which the pattern is made of wiring, and an embodiment in which the pattern is made of a black matrix. Examples of the wiring include a gate signal line and a source signal line.
本発明の一形態として、上記表示パネル用基板は、液晶表示パネルに用いられる基板であり、配向膜を備える形態が挙げられる。光配向処理における露光状態は、液晶表示装置の表示品位に強く関連することから、上記パターンにより光配向処理における露光の正確性を向上させれば、液晶表示装置の表示品位を優れたものとすることができる。 As one form of this invention, the said board | substrate for display panels is a board | substrate used for a liquid crystal display panel, and the form provided with an alignment film is mentioned. Since the exposure state in the photo-alignment process is strongly related to the display quality of the liquid crystal display device, if the exposure accuracy in the photo-alignment process is improved by the above pattern, the display quality of the liquid crystal display device will be excellent. be able to.
本発明に係る表示パネル用基板、及び、それを用いた基板露光方法によれば、パターンの誤認識、未検出を防止することができるので、基板に対して精度よく露光を行うことができる。 According to the display panel substrate and the substrate exposure method using the same according to the present invention, it is possible to prevent erroneous recognition and undetection of the pattern, so that the substrate can be accurately exposed.
基板に対して走査露光を行っている状態を示す斜視模式図である。It is a perspective schematic diagram which shows the state which is performing the scanning exposure with respect to a board | substrate. パターンのエッジ数が閾値を超えるか否かによって撮影ターゲットを判定する方法を説明する図であり、図の上側には、評価対象としたパターンを示し、図の下側には、エッジの検出結果を示している。It is a figure explaining the method of judging a photography target by whether the number of edges of a pattern exceeds a threshold, the pattern used as the evaluation object is shown on the upper side of the figure, and the edge detection result is shown on the lower side of the figure Is shown. 撮影ターゲットか否かを判定するための閾値をレベルQに設定したときの検出結果を示す図である。It is a figure which shows a detection result when the threshold value for determining whether it is a photography target is set to the level Q. 撮影ターゲットか否かを判定するための閾値をレベルRに設定したときの検出結果を示す図である。It is a figure which shows a detection result when the threshold value for determining whether it is a photography target is set to the level R. 誤認識又は検出ミスを引き起こし得る、類似する2種のパターンの例を示す図である。It is a figure which shows the example of two types of similar patterns which can cause a misrecognition or a detection mistake. 誤認識又は検出ミスを引き起こし得る、類似する2種のパターンの別の例を示す図である。It is a figure which shows another example of two types of similar patterns which can cause a misrecognition or a detection mistake. 誤認識又は検出ミスを引き起こし得る、幅が均一でないパターンの例を示す図である。It is a figure which shows the example of the pattern whose width | variety is not uniform which may cause a misrecognition or a detection mistake. 実施形態1に係る表示パネル用基板に形成された追従用のパターンを示した平面模式図である。3 is a schematic plan view showing a follow-up pattern formed on the display panel substrate according to Embodiment 1. FIG. 実施形態2に係る表示パネル用基板に形成された追従用のパターンを示した平面模式図である。10 is a schematic plan view showing a follow-up pattern formed on a display panel substrate according to Embodiment 2. FIG. 実施形態3に係る表示パネル用基板に形成された追従用のパターンを示した平面模式図である。6 is a schematic plan view showing a follow-up pattern formed on a display panel substrate according to Embodiment 3. FIG. 実施形態1~3に係る露光方法において、表示領域への露光中の状態を示す斜視模式図である。FIG. 6 is a schematic perspective view showing a state during exposure of a display area in the exposure methods according to Embodiments 1 to 3. 実施形態1~3に係る露光機の要部の構成を概念的に示した側方図である。FIG. 5 is a side view conceptually showing the structure of the main part of an exposure apparatus according to Embodiments 1 to 3. 実施形態1~3に係る露光方法を用いたアレイ基板に対する光配向処理を模式的に示した図である。FIG. 6 is a diagram schematically showing a photo-alignment process for an array substrate using the exposure method according to Embodiments 1 to 3. 実施形態1~3に係る露光方法を用いたカラーフィルタ基板に対する光配向処理を模式的に示した図である。FIG. 5 is a diagram schematically showing a photo-alignment process for a color filter substrate using the exposure method according to Embodiments 1 to 3. 図13に示したアレイ基板と図14に示したカラーフィルタ基板とを貼り合わせて構成した液晶表示パネルについて、各絵素内における液晶分子の配向方向を模式的に示した図である。It is the figure which showed typically the orientation direction of the liquid crystal molecule in each pixel about the liquid crystal display panel comprised by bonding the array substrate shown in FIG. 13, and the color filter substrate shown in FIG. 実施形態1~3に係る露光方法に用いられるアレイ基板用フォトマスクの構成を示した平面模式図である。FIG. 6 is a schematic plan view showing the configuration of an array substrate photomask used in the exposure methods according to Embodiments 1 to 3. 図16のフォトマスクとアレイ基板に形成されたパターンとの寸法及び位置の関係を示した図である。It is the figure which showed the relationship of the dimension and position of the photomask of FIG. 16, and the pattern formed in the array substrate. 実施形態1~3に係る露光方法に用いられるカラーフィルタ基板用フォトマスクと、カラーフィルタ基板に形成されたパターンとの寸法及び位置の関係を示した図である。FIG. 5 is a diagram showing the relationship between dimensions and positions of a color filter substrate photomask used in the exposure method according to Embodiments 1 to 3 and a pattern formed on the color filter substrate.
実施形態1
図8は、実施形態1に係る表示パネル用基板に形成された追従用のパターンを示した平面模式図である。図8に示したように、本実施形態では、表示パネル用基板の表示領域に、絵素の配列に対応した格子状のパターンが形成されており、図中の縦方向において、パターンには線幅が大きい部分と線幅が小さい部分とが存在している。線幅が大きい部分と線幅が小さい部分との幅の差Wは、5μm以上あり、このため撮影用のパターンとして用いた場合であっても、露光機は線幅が大きい部分と線幅が小さい部分とを混同しない。したがって、露光機は線幅が小さい部分を追従用のパターン(パターンの主部)として正確に認識し、このパターンを含むラインP(図中に破線で図示)に沿って表示領域内の全体に対して露光が精度よく行われる。なお、本実施形態では、線幅が大きい部分と線幅が小さい部分との幅の差Wは5μm以上としたが、追従用のパターンの延伸方向に対して垂直な方向に対する露光機のカメラの分解能がYμm(通常では1~2μm)である場合には、2Yμm以上であればパターンの誤認識又は検出ミスを防止することができる。カメラの分解能は、カメラのレンズの倍率、基板の搬送速度等に応じて決まる。
Embodiment 1
FIG. 8 is a schematic plan view showing a follow-up pattern formed on the display panel substrate according to the first embodiment. As shown in FIG. 8, in the present embodiment, a lattice pattern corresponding to the arrangement of picture elements is formed in the display area of the display panel substrate. There are a portion having a large width and a portion having a small line width. The width difference W between the portion with the large line width and the portion with the small line width is 5 μm or more. Therefore, even when the exposure machine is used as a pattern for photographing, the exposure machine has a large line width and the line width. Don't confuse small parts. Therefore, the exposure apparatus accurately recognizes the portion having a small line width as a follow-up pattern (the main part of the pattern), and extends along the line P including the pattern (shown by a broken line in the drawing) in the entire display area. On the other hand, the exposure is performed with high accuracy. In this embodiment, the width difference W between the large line width portion and the small line width portion is set to 5 μm or more. However, the exposure apparatus camera has a direction perpendicular to the extending direction of the follow-up pattern. When the resolution is Y μm (usually 1 to 2 μm), erroneous recognition or detection errors of the pattern can be prevented if the resolution is 2 Y μm or more. The resolution of the camera is determined according to the magnification of the lens of the camera, the conveyance speed of the substrate, and the like.
実施形態2
本実施形態は、追従用のパターンの別の一例を示すものである。図9は、実施形態2に係る表示パネル用基板に形成された追従用のパターンを示した平面模式図である。本実施形態では、図8に示したパターンと比べて、線幅が大きい部分と線幅が小さい部分との幅の差Wが小さく、5μm未満(2Yμm未満)である。このように線幅の差Wが小さいと撮影用のパターンとして用いた場合に、露光機は線幅が大きい部分と線幅が小さい部分とを混同する可能性がある。しかし、本実施形態では、図9に示したように、線幅が小さい部分の長さが、絵素の長さに対して20%以上あり、このため撮影用のパターンとして用いた場合であっても、露光機は線幅が大きい部分と線幅が小さい部分とを混同しない。したがって、露光機は線幅が小さい部分を追従用のパターン(パターンの主部)として正確に認識し、このパターンを含むラインP(図中に破線で図示)に沿って表示領域内の全体に対して露光が精度よく行われる。なお、本実施形態では、線幅が小さい部分の長さは絵素の長さに対して20%以上としたが、追従用のパターンの延伸方向に対する露光機のカメラの分解能がXμm(通常では10~20μm)である場合には、線幅が小さい部分(パターンの主部)の長さAから線幅が大きい部分(絵素の他の部分)の長さBを引いた差(A-B)が4Xμm以上であればパターンの誤認識又は検出ミスを防止することができる。
Embodiment 2
The present embodiment shows another example of the follow-up pattern. FIG. 9 is a schematic plan view showing a follow-up pattern formed on the display panel substrate according to the second embodiment. In the present embodiment, as compared with the pattern shown in FIG. 8, the width difference W between the portion having the large line width and the portion having the small line width is small, and is less than 5 μm (less than 2 Y μm). When the line width difference W is small as described above, the exposure machine may confuse a portion having a large line width with a portion having a small line width when used as a pattern for photographing. However, in the present embodiment, as shown in FIG. 9, the length of the portion with the small line width is 20% or more with respect to the length of the picture element, and therefore, this is a case where it is used as a pattern for photographing. However, the exposure machine does not confuse the part with the large line width with the part with the small line width. Therefore, the exposure apparatus accurately recognizes the portion having a small line width as a follow-up pattern (the main part of the pattern), and extends along the line P including the pattern (shown by a broken line in the drawing) in the entire display area. On the other hand, the exposure is performed with high accuracy. In this embodiment, the length of the portion having a small line width is set to 20% or more with respect to the length of the picture element. However, the resolution of the exposure machine camera with respect to the extending direction of the follow pattern is X μm (normally 10 to 20 μm), the difference (A−) is obtained by subtracting the length B of the portion with the large line width (the other portion of the picture element) from the length A of the portion with the small line width (the main portion of the pattern). If B) is 4 × μm or more, pattern misrecognition or detection error can be prevented.
実施形態3
本実施形態は、追従用のパターンの別の一例を示すものである。図10は、実施形態3に係る表示パネル用基板に形成された追従用のパターンを示した平面模式図である。図10に示したように、本実施形態では、表示パネル用基板の表示領域に、絵素の配列に対応した格子状の黒色部(遮光部)が形成されており、図中の縦方向において、遮光部の中心にスリット状の透光部が設けられている。透光部同士の間隔Dは5μm以上(2Yμm以上)あり、隣接する透光部間に、透光部と類似するパターンもない。このため撮影用のパターンとして用いた場合であっても、露光機は隣接する透光部を混同しない。したがって、露光機はスリット状の透光部を追従用のパターン(パターンの主部)として正確に認識し、このパターンを含むラインP(図中に破線で図示)に沿って表示領域内の全体に対して露光が精度よく行われる。このように遮光部の中心にスリット状の透光部を設ける形態は、例えば、2本のソース信号線を1組として配置する場合に好適である。
Embodiment 3
The present embodiment shows another example of the follow-up pattern. FIG. 10 is a schematic plan view showing a follow-up pattern formed on the display panel substrate according to the third embodiment. As shown in FIG. 10, in this embodiment, a grid-like black portion (light-shielding portion) corresponding to the arrangement of picture elements is formed in the display area of the display panel substrate, and in the vertical direction in the figure. A slit-like light transmitting portion is provided at the center of the light shielding portion. The distance D between the light transmitting parts is 5 μm or more (2 Y μm or more), and there is no pattern similar to the light transmitting part between the adjacent light transmitting parts. For this reason, even if it is a case where it uses as a pattern for imaging | photography, an exposure machine does not confuse the adjacent translucent part. Therefore, the exposure apparatus accurately recognizes the slit-like light transmitting part as a follow-up pattern (the main part of the pattern), and the entire display area along the line P (shown by a broken line in the figure) including this pattern. The exposure is performed with high accuracy. In this manner, the configuration in which the slit-like light transmitting portion is provided at the center of the light shielding portion is suitable, for example, when two source signal lines are arranged as one set.
以上の実施形態1~3に示したパターンは、絵素の配列方向に沿って伸びるものであればよく、絵素の周囲(互いに隣接する絵素の間)に設けられるものであってもよいし、絵素の内部に設けられるものであってもよい。また、上記パターンとしては、表示パネル用基板がカラーフィルタ基板であれば、ブラックマトリックスを用いることができるし、表示パネル用基板がアレイ基板であれば、ゲート信号線、ソース信号線等の配線を用いることができる。上記パターンを構成する部材は、表示パネル用基板が他の用途のために元々備える部材であってもよいし、画像認識させるための専用の部材であってもよいが、開口率の低下を防ぐ観点からは、前者が好適である。また、複数の露光ユニットを用いて露光する場合には、上記パターンは、各露光ユニットに対応して設けられた、複数本の互いに平行なパターンであることが好ましい。 The patterns shown in the first to third embodiments are only required to extend along the arrangement direction of the picture elements, and may be provided around the picture elements (between adjacent picture elements). However, it may be provided inside the picture element. As the pattern, a black matrix can be used if the display panel substrate is a color filter substrate, and if the display panel substrate is an array substrate, wiring such as gate signal lines and source signal lines can be used. Can be used. The member constituting the pattern may be a member that the display panel substrate originally has for other uses or may be a dedicated member for image recognition, but prevents a decrease in the aperture ratio. From the viewpoint, the former is preferable. When exposure is performed using a plurality of exposure units, the pattern is preferably a plurality of parallel patterns provided corresponding to each exposure unit.
以上の実施形態1~3に係る表示パネル用基板、及び、その基板を用いた露光方法について、図11~18を参照して更に説明する。 The display panel substrate and the exposure method using the substrate according to the first to third embodiments will be further described with reference to FIGS.
図11は、実施形態1~3に係る露光方法において、表示領域への露光中の状態を示す斜視模式図である。実施形態1~3に係る基板の露光方法は、いわゆる「走査(スキャン)露光」と呼ばれる方式を用いている。図11に示すように、スリット状の透光部が形成されたマスク50を用い、このマスク50の透光部を通じて、マザーガラス基板10の表面に紫外線を照射しつつマザーガラス基板10を移動させるものである。図11中の矢印が、マザーガラス基板10の移動方向を示している。実施形態1~3に係る露光方法は、マザーガラス基板10に形成される配向膜に対して、光配向処理を施す工程に適用される。 FIG. 11 is a schematic perspective view showing a state during exposure of the display area in the exposure methods according to the first to third embodiments. The substrate exposure methods according to the first to third embodiments use a so-called “scanning exposure” method. As shown in FIG. 11, a mother glass substrate 10 is moved while irradiating ultraviolet rays onto the surface of the mother glass substrate 10 through the light transmitting portion of the mask 50 using a mask 50 in which a slit-like light transmitting portion is formed. Is. An arrow in FIG. 11 indicates the moving direction of the mother glass substrate 10. The exposure methods according to the first to third embodiments are applied to a step of performing a photo-alignment process on the alignment film formed on the mother glass substrate 10.
マザーガラス基板は、液晶表示パネルのアレイ基板又はカラーフィルタ基板を製造するためのものであり、1枚のマザーガラス基板から6枚のアレイ基板又はカラーフィルタ基板を切り出すことができる。なお、本実施形態では、表示パネル用基板としてマザーガラス基板10を例にとって説明するが、本発明の表示パネル用基板は、単体のアレイ基板、単体のカラーフィルタ基板であってもよい。 The mother glass substrate is for manufacturing an array substrate or a color filter substrate of a liquid crystal display panel, and six array substrates or color filter substrates can be cut out from one mother glass substrate. In this embodiment, the mother glass substrate 10 is described as an example of the display panel substrate. However, the display panel substrate of the present invention may be a single array substrate or a single color filter substrate.
マザーガラス基板10には、各アレイ基板又はカラーフィルタ基板に対応して、6つの表示領域11が設けられている。アレイ基板に対応する表示領域では、互いに交差するソース信号線及びゲート信号線が網目状に形成されており、ソース信号線及びゲート信号線により区画された各絵素領域に、薄膜トランジスタ及び絵素電極が形成されている。カラーフィルタ基板に対応する表示領域では、ブラックマトリックスが網目状に形成されており、ブラックマトリックスにより区画された各絵素領域に、カラーフィルタが形成されている。そして、マザーガラス基板10の表面には光配向処理が適用可能な配向膜が形成されている。 The mother glass substrate 10 is provided with six display areas 11 corresponding to each array substrate or color filter substrate. In the display region corresponding to the array substrate, the source signal lines and the gate signal lines intersecting each other are formed in a mesh pattern, and the thin film transistor and the pixel electrode are formed in each pixel region partitioned by the source signal line and the gate signal line. Is formed. In the display area corresponding to the color filter substrate, a black matrix is formed in a mesh shape, and a color filter is formed in each pixel area partitioned by the black matrix. An alignment film to which a photo-alignment process can be applied is formed on the surface of the mother glass substrate 10.
マザーガラス基板10の外周領域(額縁領域)には、アライメントマーク13が設けられている。このアライメントマーク13は、本実施形態に係る露光方法の実施において、表示領域11への露光を開始する前に、基板10の位置及び向きに応じて、予めマスク50の位置及び向きを調整するためのものである。そのような調整により、表示領域11に対して露光を開始する時点においてマスク50が急激に大きく変位することがなく、露光位置の精度の向上を図ることができ、露光ムラの発生を防止できる。また、表示領域11内のパターンは複雑であるため、表示領域11への露光開始時に表示領域11内の所定の追従用パターンを認識し損ないやすいが、額縁領域内の所定の位置に配置されたアライメントマーク13により事前調整がなされることで、追従用パターンの捕捉精度を向上させることができる。 An alignment mark 13 is provided in the outer peripheral region (frame region) of the mother glass substrate 10. This alignment mark 13 is used to adjust the position and orientation of the mask 50 in advance in accordance with the position and orientation of the substrate 10 before starting the exposure to the display area 11 in the execution of the exposure method according to the present embodiment. belongs to. By such adjustment, the mask 50 is not suddenly largely displaced at the time of starting exposure on the display area 11, the accuracy of the exposure position can be improved, and the occurrence of exposure unevenness can be prevented. Also, since the pattern in the display area 11 is complicated, it is easy to fail to recognize a predetermined follow-up pattern in the display area 11 at the start of exposure to the display area 11, but it is arranged at a predetermined position in the frame area. Preliminary adjustment by the alignment mark 13 can improve the tracking pattern capture accuracy.
図12は、実施形態1~3に係る露光機の要部の構成を概念的に示した側方図である。露光機は、基板10に紫外線を照射する露光ユニット51と、基板10を載置して移動させるためのステージ55とを備える。 FIG. 12 is a side view conceptually showing the structure of the main part of the exposure apparatus according to the first to third embodiments. The exposure machine includes an exposure unit 51 that irradiates the substrate 10 with ultraviolet rays, and a stage 55 for placing and moving the substrate 10.
露光ユニット51は、紫外線を発する紫外線光源を備え、マスク50を介して基板10の表面に対して所定の照射角で紫外線を照射できるように構成される。光源は、照射対象に応じて適宜選択すればよく、可視光線を発する光源であってもよい。 The exposure unit 51 includes an ultraviolet light source that emits ultraviolet light, and is configured to irradiate the surface of the substrate 10 with ultraviolet light at a predetermined irradiation angle via the mask 50. What is necessary is just to select a light source suitably according to irradiation object, and the light source which emits visible light may be sufficient.
また、各露光ユニット51は、カメラ(撮像手段)53と、記憶手段と、照合手段と、マスク移動手段とを備える。カメラ53は、基板10の表面を撮影できる。例えばCCDカメラ等が適用できる。記憶手段は、露光の位置合わせの基準となる基準画像を記憶しておくことができる。照合手段は、カメラ53が撮影した画像と基準画像とを比較照合して、実際に露光している位置と露光すべき位置とのズレを算出する。マスク移動手段は、照合手段によるズレの算出結果に基づいて、マスク50の位置及び/又は角度を補正する。なお、照合手段は、基準画像を用いる代わりに、基板10を撮像した結果とマスク50を撮像した結果とを比較照合する方法によっても、同様にマスク50の位置及び角度を補正することができる。 Each exposure unit 51 includes a camera (imaging unit) 53, a storage unit, a collating unit, and a mask moving unit. The camera 53 can photograph the surface of the substrate 10. For example, a CCD camera or the like can be applied. The storage means can store a reference image serving as a reference for exposure alignment. The collating unit compares and collates the image captured by the camera 53 with the reference image, and calculates a difference between the position where the exposure is actually performed and the position where the exposure is to be performed. The mask moving unit corrects the position and / or angle of the mask 50 based on the shift calculation result by the collating unit. The collating means can similarly correct the position and angle of the mask 50 by a method of comparing and collating the result of imaging the substrate 10 and the result of imaging the mask 50 instead of using the reference image.
マスク50は、例えば板状の部材であり、所定の箇所に所定の寸法形状の透光部が設けられる。したがって、基板10が搬送されてマスク50の直下を通過すると、マスク50の透光部の直下を通過した領域のみが露光される。この結果、基板10の表面の所定の細長い線状の領域が露光される。透光部としては、光(本実施形態では紫外線)を透過することができれば特に限定されず、例えば、マスクに設けた開口であってもよいし、透明な膜が形成された部分であってもよい。 The mask 50 is, for example, a plate-like member, and a light-transmitting portion having a predetermined dimension is provided at a predetermined location. Therefore, when the substrate 10 is transported and passes directly under the mask 50, only the region that has passed directly under the light transmitting portion of the mask 50 is exposed. As a result, a predetermined elongated linear area on the surface of the substrate 10 is exposed. The light transmitting portion is not particularly limited as long as it can transmit light (ultraviolet rays in the present embodiment). For example, the light transmitting portion may be an opening provided in a mask or a portion where a transparent film is formed. Also good.
また、図11に示したように、露光機は、複数のマスク50(言い換えれば、露光ユニット51)を備える。そして、露光ユニット51が基板10の進行方向に対して垂直に並べられる。これにより、基板10の全幅に亘って1回の走査で露光できる。なお、各露光ユニット51は、それぞれ独立して上記の動作を行うことができる。 As shown in FIG. 11, the exposure apparatus includes a plurality of masks 50 (in other words, exposure units 51). Then, the exposure units 51 are arranged perpendicular to the traveling direction of the substrate 10. Thereby, it can expose by one scan over the full width of the board | substrate 10. FIG. Each exposure unit 51 can perform the above operation independently.
次に、露光機を用いて、実施形態1~3に係る基板に対し、本発明の実施形態に係る露光方法を実施する動作について説明する。 Next, an operation of performing the exposure method according to the embodiment of the present invention on the substrate according to Embodiments 1 to 3 using an exposure machine will be described.
まず、ステージ55上に基板10を載置する。このとき、アライメントマーク13が、ステージ55による基板10の進行方向(図11中の矢印が指す方向)の最も前方に位置するように、基板10を置く。 First, the substrate 10 is placed on the stage 55. At this time, the substrate 10 is placed so that the alignment mark 13 is positioned in the forefront in the traveling direction of the substrate 10 by the stage 55 (the direction indicated by the arrow in FIG. 11).
ステージ55による基板10の搬送が開始されると、まず基板10の表面に形成されたアライメントマーク13が各露光ユニット51のカメラ53の視野に入り、カメラ53はこれを撮影する。照合手段は、カメラ53が撮影したアライメントマーク13の画像と、記憶手段が記憶している基準画像とを比較照合し、露光すべき位置と、実際に露光している位置とのズレを算出する。そして補正手段は、この算出結果に基づいて、マスク50の位置(特に、基板10の進行方向に対して直角方向の位置)や角度(特に、基板10の進行方向に対する角度)を補正する。 When the conveyance of the substrate 10 by the stage 55 is started, first, the alignment mark 13 formed on the surface of the substrate 10 enters the field of view of the camera 53 of each exposure unit 51, and the camera 53 takes an image thereof. The collating unit compares and collates the image of the alignment mark 13 photographed by the camera 53 with the reference image stored in the storage unit, and calculates a deviation between the position to be exposed and the actually exposed position. . The correcting means corrects the position of the mask 50 (particularly, the position perpendicular to the traveling direction of the substrate 10) and the angle (particularly the angle relative to the traveling direction of the substrate 10) based on the calculation result.
アライメントマーク13がカメラ53によって撮影可能な位置に達した時点においては、基板10の表示領域11は、マスク50の直下には達していない。すなわち、まだ露光が開始されない。したがって、アライメントマーク13を用いた補正によってマスク50が大きく移動したとしても、表示領域11に対する露光には何らの影響を及ぼさない。 When the alignment mark 13 reaches a position where it can be photographed by the camera 53, the display area 11 of the substrate 10 does not reach directly below the mask 50. That is, the exposure is not yet started. Therefore, even if the mask 50 is largely moved by the correction using the alignment mark 13, the exposure on the display area 11 is not affected at all.
基板10がさらに進行すると、基板10の表示領域11がカメラ53の視野に入る。そうすると、カメラ53は表示領域11に形成される追従用のパターンを撮影できるようになり、この追従用のパターンに基づいてマスク50の位置及び角度の補正が行われる。また、それとほぼ同時に、基板10の表示領域11が露光される位置に達する。上記のとおり、基板10がこの位置に達するまでに、アライメントマーク13によるマスク50の位置及び角度の補正が行われている。したがって、この位置に達した時点では、マスク50の位置及び角度が大きく変化することがない。この結果、表示領域11に対する露光の開始位置の近傍において、露光位置の精度の向上を図ることができ、露光ムラの発生を防止できる。 As the substrate 10 further advances, the display area 11 of the substrate 10 enters the field of view of the camera 53. Then, the camera 53 can photograph the follow-up pattern formed in the display area 11, and the position and angle of the mask 50 are corrected based on the follow-up pattern. At almost the same time, the display area 11 of the substrate 10 reaches a position where it is exposed. As described above, the position and angle of the mask 50 are corrected by the alignment mark 13 until the substrate 10 reaches this position. Therefore, when this position is reached, the position and angle of the mask 50 do not change significantly. As a result, it is possible to improve the accuracy of the exposure position in the vicinity of the exposure start position with respect to the display area 11, and to prevent the occurrence of exposure unevenness.
以降、基板10を搬送しつつ、表示領域11に形成された追従用のパターンの撮影と、撮影した画像と基準画像との比較照合による露光位置のズレの算出、及び、算出結果に基づいたマスク50の位置及び角度の補正を継続的に行う。その結果、基板10の1回の搬送によって、所定の線状の箇所に露光を施すことができる。 Thereafter, while the substrate 10 is being transported, shooting of the follow-up pattern formed in the display area 11, calculation of an exposure position shift by comparison and collation between the shot image and the reference image, and a mask based on the calculation result 50 position and angle corrections are continuously performed. As a result, it is possible to expose a predetermined linear portion by carrying the substrate 10 once.
本実施形態に係る露光方法は、光配向処理を施す工程に適用されるものである。光配向処理は、さまざまな表示モードの液晶表示パネルに適用できるものであるが、なかでも、ねじれネマチック垂直配向(Vertical Alignment Twisted Nematic(VATN))モードの液晶表示パネルに好適である。以下では、図13~15を参照して、本実施形態に係る露光方法によりVATNモードの液晶表示パネルを作製する方法を説明する。 The exposure method according to this embodiment is applied to a step of performing a photo-alignment process. The photo-alignment treatment can be applied to liquid crystal display panels of various display modes, and is particularly suitable for a liquid crystal display panel of a twisted nematic vertical alignment (vertical alignment twisted nematic (VATN)) mode. Hereinafter, a method of manufacturing a VATN mode liquid crystal display panel by the exposure method according to the present embodiment will be described with reference to FIGS.
図13は、実施形態1~3に係る露光方法を用いたアレイ基板に対する光配向処理を模式的に示した図である。適用される絵素の構造は特に限定されるものではない。ここでは、ソース信号線19とゲート信号線17に囲まれる領域に絵素電極21が形成され、薄膜トランジスタにより絵素の駆動を制御するという、一般的な構成の絵素を例に用いて説明する。アレイ基板については、図13に示すように、各絵素内にその両側のソース信号線19の略中間(図中の線A)で二分されて形成される2つの領域を想定する。そしてそれぞれの領域に対して、絵素の面の法線に対して所定の角度θだけ傾斜した方向から紫外線を照射する。各領域に対する紫外線の照射の向きは、それぞれ照射される紫外線の光軸を絵素の面に投影した場合に、これらの投影した光軸がソース信号線19に平行でかつ互いに180°異なる向きとする。 FIG. 13 is a diagram schematically showing a photo-alignment process for the array substrate using the exposure method according to the first to third embodiments. The structure of the applied picture element is not particularly limited. Here, a pixel element 21 is formed in a region surrounded by the source signal line 19 and the gate signal line 17, and a pixel having a general configuration in which driving of the pixel is controlled by a thin film transistor will be described as an example. . As for the array substrate, as shown in FIG. 13, two regions formed by being divided into two in the middle of the source signal lines 19 on both sides (line A in the drawing) are assumed in each picture element. Then, each region is irradiated with ultraviolet rays from a direction inclined by a predetermined angle θ with respect to the normal of the surface of the picture element. The direction of the irradiation of ultraviolet rays with respect to each region is such that, when the optical axes of the irradiated ultraviolet rays are projected onto the surface of the picture element, the projected optical axes are parallel to the source signal lines 19 and differ from each other by 180 °. To do.
図14は、実施形態1~3に係る露光方法を用いたカラーフィルタ基板に対する光配向処理を模式的に示した図である。図14に示すように、カラーフィルタ基板には、ブラックマトリックス23が格子状に形成され、格子により区分された各絵素内にカラーフィルタ層が形成される。カラーフィルタ基板については、アレイ基板と貼り合わせた際にアレイ基板のゲート信号線17に平行となる、絵素の境界を構成する2辺の略中間(図中の線B)で二分されて形成される2つの領域を想定する。そしてそれぞれの領域に対して、絵素の面の法線に対して所定の角度θだけ傾斜した方向から紫外線を照射する。各領域に対する紫外線の照射の向きは、それぞれ照射される紫外線の光軸を絵素の面に投影した場合に、これらの投影した光軸が、アレイ基板のゲート信号線17に平行でかつ互いに180°異なる向きとする。 FIG. 14 is a view schematically showing a photo-alignment process for the color filter substrate using the exposure method according to the first to third embodiments. As shown in FIG. 14, on the color filter substrate, a black matrix 23 is formed in a lattice shape, and a color filter layer is formed in each picture element divided by the lattice. The color filter substrate is formed by being divided into two substantially at the middle (line B in the figure) of the two sides constituting the boundary of the picture element, which is parallel to the gate signal line 17 of the array substrate when bonded to the array substrate. Assume two regions to be used. Then, each region is irradiated with ultraviolet rays from a direction inclined by a predetermined angle θ with respect to the normal of the surface of the picture element. The direction of the irradiation of ultraviolet rays with respect to each region is such that, when the optical axes of the irradiated ultraviolet rays are projected onto the surface of the picture element, the projected optical axes are parallel to the gate signal lines 17 of the array substrate and 180 to each other. ° Different orientation.
図15は、図13に示したアレイ基板と図14に示したカラーフィルタ基板とを貼り合わせて構成した液晶表示パネルについて、各絵素内における液晶分子の配向方向を模式的に示した図である。上記のように配向処理が施された基板どうしを貼り合わせて液晶表示パネルを構成すると、図15に示すように、両基板の間に充填される液晶分子は、各基板の各領域に施された配向処理の向き、すなわち紫外線の照射方向にしたがって配向する。その結果、各絵素内には、液晶分子の配向の向きが互いに異なる複数のドメイン領域が形成される。図15中の矢印は、両基板面から等距離に位置する液晶分子の配向の向きを示している。 FIG. 15 is a diagram schematically showing the alignment direction of liquid crystal molecules in each pixel for a liquid crystal display panel formed by bonding the array substrate shown in FIG. 13 and the color filter substrate shown in FIG. is there. When the liquid crystal display panel is configured by bonding the substrates subjected to the alignment treatment as described above, the liquid crystal molecules filled between the two substrates are applied to each region of each substrate as shown in FIG. Alignment is performed according to the direction of the alignment treatment, that is, the irradiation direction of ultraviolet rays. As a result, a plurality of domain regions having different orientation directions of liquid crystal molecules are formed in each picture element. The arrows in FIG. 15 indicate the orientation directions of the liquid crystal molecules located at the same distance from both substrate surfaces.
図16は、実施形態1~3に係る露光方法に用いられるアレイ基板用フォトマスクの構成を示した平面模式図である。図17は、図16のフォトマスクとアレイ基板に形成されたパターンとの寸法及び位置の関係を示した図である。 FIG. 16 is a schematic plan view showing the configuration of an array substrate photomask used in the exposure methods according to the first to third embodiments. FIG. 17 is a diagram showing the relationship between the size and position of the photomask of FIG. 16 and the pattern formed on the array substrate.
図16に示すように、アレイ基板用フォトマスク60は、略長方形の板状の部材である。そして紫外線が通過できるスリット状の透光部61が、所定のピッチPxで複数平行に形成されている。ピッチPxは、図17に示すように、アレイ基板に形成されるソース信号線19のピッチに等しく設定される。また、透光部61の幅(短い側の寸法)Lxは、ソース信号線19のピッチの約1/2の寸法に設定される。 As shown in FIG. 16, the array substrate photomask 60 is a substantially rectangular plate-shaped member. A plurality of slit-like translucent portions 61 through which ultraviolet rays can pass are formed in parallel at a predetermined pitch Px. As shown in FIG. 17, the pitch Px is set equal to the pitch of the source signal lines 19 formed on the array substrate. Further, the width (dimension on the short side) Lx of the translucent portion 61 is set to a dimension that is approximately ½ of the pitch of the source signal lines 19.
図18は、実施形態1~3に係る露光方法に用いられるカラーフィルタ基板用フォトマスクと、カラーフィルタ基板に形成されたパターンとの寸法及び位置の関係を示した図である。 FIG. 18 is a diagram showing the relationship between the dimensions and positions of the color filter substrate photomask used in the exposure methods according to Embodiments 1 to 3 and the pattern formed on the color filter substrate.
カラーフィルタ基板用フォトマスク70は、アレイ基板用フォトマスク60とほぼ同一の構成を備える(図16参照)。すなわち、紫外線が通過できるスリット状の透光部71が、所定のピッチPyで複数平行に形成される。ピッチPyは、カラーフィルタ基板に形成されたブラックマトリックス23のピッチ(ここでは、アレイ基板と重ね合わせた場合に、アレイ基板のゲート信号線17に平行する辺のピッチ)と等しくなるように設定される。また、透光部71の幅(短い側の寸法)Lyは、ブラックマトリックス23のピッチの約1/2の寸法に設定される。 The color filter substrate photomask 70 has substantially the same configuration as the array substrate photomask 60 (see FIG. 16). That is, a plurality of slit-like light transmitting portions 71 through which ultraviolet rays can pass are formed in parallel at a predetermined pitch Py. The pitch Py is set to be equal to the pitch of the black matrix 23 formed on the color filter substrate (here, the pitch of the side parallel to the gate signal line 17 of the array substrate when superimposed on the array substrate). The Further, the width (dimension on the short side) Ly of the translucent part 71 is set to a dimension that is about ½ of the pitch of the black matrix 23.
このようなマスク60、70を用い、上述した露光方法によって、各基板を露光すると、各基板とも、各絵素の半分の領域が、基板の一回の移動により露光される。その後、露光位置を透光部の半ピッチ分ずらし、紫外線の照射の角度を変えて残りの半分の領域について露光する。この結果、各絵素の半分ずつの領域が互いに異なる方向に配向処理される。 When each substrate is exposed by the above-described exposure method using such masks 60, 70, half of each pixel is exposed by one movement of the substrate. After that, the exposure position is shifted by a half pitch of the translucent part, and the angle of ultraviolet irradiation is changed to expose the remaining half region. As a result, the half of each picture element is oriented in different directions.
上述の各実施形態は、本発明の技術的思想を逸脱しない範囲でさまざまな変更が施されてもよく、例えば、特定の実施形態に記載された構成を他の実施形態に記載された構成により置き換えてもよいし、各実施形態同士を組み合わせてもよい。 Various modifications may be made to the above-described embodiments without departing from the technical idea of the present invention. For example, a configuration described in a specific embodiment may be changed according to a configuration described in another embodiment. You may replace and you may combine each embodiment.
また、上述の各実施形態では、アレイ基板については、基板をソース信号線の延伸方向に移動させつつ露光する構成を示したが、ゲート信号線の延伸方向に移動させつつ露光する構成であってもよい。この場合、アライメントマークが形成される位置を変更し、上記説明における「ゲート信号線」と「ソース信号線」とを読み替えればよい。 In each of the above-described embodiments, the array substrate is exposed while moving the substrate in the extending direction of the source signal line. However, the array substrate is exposed while moving in the extending direction of the gate signal line. Also good. In this case, the position where the alignment mark is formed may be changed, and the “gate signal line” and the “source signal line” in the above description may be read.
上述の各実施形態では、光配向処理を施す工程を例示したが、本発明に係る表示パネル用基板、及び、その基板を用いた露光方法は、カラーフィルタ基板の作製、アレイ基板の作製に適用してもよい。それらの場合であっても、追従用のパターンに本発明を適用することで同様の効果を得ることができる。 In each of the above-described embodiments, the step of performing the photo-alignment process has been exemplified. However, the display panel substrate and the exposure method using the substrate according to the present invention are applied to the manufacture of a color filter substrate and the array substrate. May be. Even in those cases, the same effect can be obtained by applying the present invention to the follow-up pattern.
カラーフィルタ基板を作製する場合としては、例えば、ブラックマトリックスのパターンを形成するための露光、各色のカラーフィルタのパターンを形成するための露光が挙げられる。カラーフィルタの色は特に限定されず、赤色、緑色、青色の3色であってもよいし、赤色、緑色、青色、黄色の4色であってもよい。この場合、光の照射角度(θ)は特に限定されず、0°でよい。 Examples of producing a color filter substrate include exposure for forming a black matrix pattern and exposure for forming a color filter pattern of each color. The color of the color filter is not particularly limited, and may be three colors of red, green, and blue, or may be four colors of red, green, blue, and yellow. In this case, the light irradiation angle (θ) is not particularly limited, and may be 0 °.
なお、本願は、2010年12月2日に出願された日本国特許出願2010-269670号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。 The present application claims priority based on the Paris Convention or the laws and regulations in the country to which the transition is based on Japanese Patent Application No. 2010-269670 filed on Dec. 2, 2010. The contents of the application are hereby incorporated by reference in their entirety.
10 マザーガラス基板
11 表示領域
13 アライメントマーク
17 ゲート信号線
19 ソース信号線
21 絵素電極
23 ブラックマトリックス
50 マスク
51 露光ユニット
53 カメラ
55 ステージ
60 アレイ基板用フォトマスク
61 透光部
70 カラーフィルタ基板用フォトマスク
71 透光部
DESCRIPTION OF SYMBOLS 10 Mother glass substrate 11 Display area 13 Alignment mark 17 Gate signal line 19 Source signal line 21 Picture element electrode 23 Black matrix 50 Mask 51 Exposure unit 53 Camera 55 Stage 60 Array substrate photomask 61 Translucent part 70 Color filter substrate photo Mask 71 Translucent part

Claims (6)

  1. 複数の絵素が配列された表示領域を有する表示パネル用基板であって、
    前記表示領域内に、絵素の配列方向に沿って伸びるパターンを備え、
    前記パターンは、一定の幅を有する主部と他の部分とを含み、前記主部の両端に平行な線から±5μm以内の位置に角を有さない
    ことを特徴とする表示パネル用基板。
    A display panel substrate having a display area in which a plurality of picture elements are arranged,
    In the display area, comprising a pattern extending along the arrangement direction of the picture elements,
    The display panel substrate according to claim 1, wherein the pattern includes a main portion having a certain width and other portions, and has no corners within ± 5 μm from a line parallel to both ends of the main portion.
  2. 複数の絵素が配列された表示領域を有する表示パネル用基板であって、
    前記表示領域内に、絵素の配列方向に沿って伸びるパターンを備え、
    前記パターンは、一定の幅を有する主部と他の部分とを含み、前記主部は、前記絵素の長さに対して20%以上100%未満の長さを有する
    ことを特徴とする表示パネル用基板。
    A display panel substrate having a display area in which a plurality of picture elements are arranged,
    In the display area, comprising a pattern extending along the arrangement direction of the picture elements,
    The pattern includes a main part having a certain width and another part, and the main part has a length of 20% or more and less than 100% with respect to the length of the picture element. Panel substrate.
  3. 前記パターンは、配線からなることを特徴とする請求項1又は2に記載の表示パネル用基板。 The display panel substrate according to claim 1, wherein the pattern is made of wiring.
  4. 前記パターンは、ブラックマトリックスからなることを特徴とする請求項1又は2に記載の表示パネル用基板。 The display panel substrate according to claim 1, wherein the pattern is made of a black matrix.
  5. 前記表示パネル用基板は、液晶表示パネルに用いられる基板であり、配向膜を備えることを特徴とする請求項1~4のいずれかに記載の表示パネル用基板。 5. The display panel substrate according to claim 1, wherein the display panel substrate is a substrate used for a liquid crystal display panel, and includes an alignment film.
  6. 光源、フォトマスク、ステージ及びカメラを備える露光機により、前記ステージ上に載置した表示パネル用基板を走査露光する基板露光方法であって、
    前記表示パネル用基板は、複数の絵素が配列された表示領域を有し、かつ前記表示領域内に、絵素の配列方向に沿って伸びるパターンを備えるものであり、
    前記カメラの前記移動方向の分解能がXμmであり、前記カメラの前記移動方向とは垂直な方向の分解能がYμmであるときに、前記パターンは、一定の幅を有する主部と他の部分とを含み、前記主部の両端に平行な線から±2Yμm以内の位置に角を有さないものであるか、又は、前記主部の長さから前記他の部分の長さを引いた差が4Xμm以上であり、
    前記走査露光は、前記カメラによって読み取られた前記パターンの延伸方向と前記フォトマスクの移動方向とが平行を保ち続けるように、前記フォトマスクの位置及び/又は向きを調整しながら、前記表示パネル用基板及び前記フォトマスクの少なくとも一方を移動させつつ、前記フォトマスクに設けられた透光部を通じて、前記光源から放出された光を前記表示領域に照射するものであることを特徴とする基板露光方法。
     
    A substrate exposure method for scanning and exposing a display panel substrate placed on the stage by an exposure machine comprising a light source, a photomask, a stage and a camera,
    The display panel substrate has a display area in which a plurality of picture elements are arranged, and has a pattern extending along the arrangement direction of the picture elements in the display area.
    When the resolution in the moving direction of the camera is X μm and the resolution in the direction perpendicular to the moving direction of the camera is Y μm, the pattern includes a main portion having a certain width and another portion. The main part does not have a corner at a position within ± 2 Yμm from the line parallel to both ends of the main part, or the difference obtained by subtracting the length of the other part from the length of the main part is 4 × μm That's it,
    The scanning exposure is performed for the display panel while adjusting the position and / or orientation of the photomask so that the extending direction of the pattern read by the camera and the moving direction of the photomask are kept parallel. A substrate exposure method characterized by irradiating the display area with light emitted from the light source through a light transmitting portion provided in the photomask while moving at least one of the substrate and the photomask. .
PCT/JP2011/077158 2010-12-02 2011-11-25 Display panel substrate and substrate exposure method WO2012073811A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-269670 2010-12-02
JP2010269670 2010-12-02

Publications (1)

Publication Number Publication Date
WO2012073811A1 true WO2012073811A1 (en) 2012-06-07

Family

ID=46171749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077158 WO2012073811A1 (en) 2010-12-02 2011-11-25 Display panel substrate and substrate exposure method

Country Status (1)

Country Link
WO (1) WO2012073811A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227663A (en) * 1999-02-04 2000-08-15 Nikon Corp Exposure method and mask
JP2001154371A (en) * 1999-11-30 2001-06-08 Nikon Corp Method for manufacturing circuit device and display device and large-sized display device
JP2007041175A (en) * 2005-08-02 2007-02-15 Sharp Corp Substrate for display panel and exposing method for the substrate
WO2007113933A1 (en) * 2006-04-05 2007-10-11 Sharp Kabushiki Kaisha Exposure method and exposure device
JP2008076955A (en) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd Color filter and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227663A (en) * 1999-02-04 2000-08-15 Nikon Corp Exposure method and mask
JP2001154371A (en) * 1999-11-30 2001-06-08 Nikon Corp Method for manufacturing circuit device and display device and large-sized display device
JP2007041175A (en) * 2005-08-02 2007-02-15 Sharp Corp Substrate for display panel and exposing method for the substrate
WO2007113933A1 (en) * 2006-04-05 2007-10-11 Sharp Kabushiki Kaisha Exposure method and exposure device
JP2008076955A (en) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd Color filter and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5756813B2 (en) Substrate exposure method
JP5133239B2 (en) Exposure method and exposure apparatus
JP4754924B2 (en) Exposure equipment
KR101727773B1 (en) Exposure apparatus
US7812920B2 (en) Production method of substrate for liquid crystal display using image-capturing and reference position detection at corner of pixel present in TFT substrate
JP2009031561A (en) Projection exposure apparatus and division exposure method
TWI519900B (en) Exposure apparatus
JP4764237B2 (en) Exposure equipment
JP5145530B2 (en) Photomask and exposure method using the same
JP5235061B2 (en) Exposure equipment
JP4971835B2 (en) Exposure method and exposure apparatus
TWI525372B (en) Apparatus for and method of alignment processing
JP5495135B2 (en) Convex pattern forming method, exposure apparatus, and photomask
WO2012073811A1 (en) Display panel substrate and substrate exposure method
JP4822977B2 (en) Black matrix pattern forming method and exposure apparatus
JP5953512B2 (en) Photo-alignment exposure apparatus and photo-alignment exposure method
JP2007041175A (en) Substrate for display panel and exposing method for the substrate
TWI784097B (en) Exposure device and exposure method
JP2019028084A (en) Exposure device
JP5304133B2 (en) Color filter inspection method
JP5581017B2 (en) Exposure method and exposure apparatus
US9223195B2 (en) Exposure apparatus having blind and method of driving

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP