WO2012073754A1 - Patterned film manufacturing method, patterned film, color filter substrate, liquid crystal display device, and light-emitting device - Google Patents

Patterned film manufacturing method, patterned film, color filter substrate, liquid crystal display device, and light-emitting device Download PDF

Info

Publication number
WO2012073754A1
WO2012073754A1 PCT/JP2011/076867 JP2011076867W WO2012073754A1 WO 2012073754 A1 WO2012073754 A1 WO 2012073754A1 JP 2011076867 W JP2011076867 W JP 2011076867W WO 2012073754 A1 WO2012073754 A1 WO 2012073754A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
substrate
application
color filter
color
Prior art date
Application number
PCT/JP2011/076867
Other languages
French (fr)
Japanese (ja)
Inventor
敬太 片寄
中野 貴之
村上 泰敏
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012073754A1 publication Critical patent/WO2012073754A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present invention relates to a pattern film manufacturing method, a pattern film, a color filter substrate, a liquid crystal display device, and a light emitting device. More specifically, the present invention relates to a method for manufacturing a pattern film made of a color material from an ink containing the color material in a plurality of steps using an inkjet method, a pattern film, a color filter substrate, a liquid crystal display device, and a light emitting device.
  • the ink jet method is widely used in various applications as a method for efficiently producing a pattern film on a circuit board or the like. Among them, it is frequently used for the production of light emitters in self-luminous displays such as color filters, plasma panels and organic EL display devices in liquid crystal display panels and projection elements of projectors. Further, it may be widely applied to products in which a film can be formed by an inkjet device such as a thin film of an electronic component such as a solar cell, a printed matter such as a large poster or a large curtain, or a coating of a building material.
  • a pattern film is formed on an electronic device substrate by drawing a pattern by ejecting minute ink droplets from an ink jet apparatus and drying the pattern.
  • a pixel region of each color component is divided into a plurality of pixel regions partitioned by a plurality of partitions in an in-plane direction within a plane on the substrate.
  • a method of manufacturing a light emitting device including a method of forming a light emitting layer by sequentially applying each color component to a first coating solution in which a first color component is dissolved is applied to a pixel region of the first color component. And applying a second coating solution in which the second color component is dissolved to the pixel region of the second color component, wherein the first coating solution and the second coating solution contain at least one common solvent. And in the step of applying the coating liquid for each color component, the amount of the common solvent to be applied to the unit area from the coating liquid of the color component in which the amount of the common solvent to be applied to the unit area is relatively large. Relatively little color Performing the coating in the order of the coating liquid, a method of manufacturing a light emitting apparatus is disclosed (e.g., see Patent Document 1.).
  • Possible causes of this flicker are as follows. That is, (1) after forming the pattern film by drying the ink, the film thickness difference (liquid crystal) between RGB (between different color picture elements) and / or between the same color picture elements as shown in FIG. (Cell thickness difference in the display panel), and the alignment of the liquid crystal molecules is different between the picture elements due to the difference in film thickness, such as a portion in which the difference in film thickness is partially defective in alignment (2) In accordance with the above (1), the luminance changes between adjacent pixels and the screen flickers visually.
  • the film thickness difference liquid crystal
  • the obtained color filter substrate is between RGB and between pixels of the same color.
  • a film thickness difference of the color filter occurs.
  • the film thickness should be uniform when the light emitter is applied. Is required.
  • the method of manufacturing a pattern film using a color material from an ink containing the color material in a plurality of steps using the conventional inkjet method causes unevenness in the thickness of the pattern film, and this is caused by the unevenness. Since display quality deteriorates, there is room for improvement in terms of display quality.
  • the present invention has been made in view of the above situation, and provides a pattern film manufacturing method, a pattern film, a color filter substrate, a liquid crystal display device, and a light emitting device that can sufficiently improve display quality in a display device or a light emitting device. It is for the purpose.
  • the present inventors have made various studies on a liquid crystal display device and a light emitting device that can sufficiently improve the display quality of the display device or the light emitting device. Attention was paid to the fact that various problems occurred when applied to liquid crystal display devices and light-emitting devices due to the difference in thickness.
  • a difference in film thickness between RGB (between different picture elements) or between adjacent color pixels such as red and blue adjacent to each other gives rise to a cell thickness difference in the liquid crystal display panel. Since the difference also changes, a difference in response speed occurs, and as a result, a flicker is seen on the display image.
  • the display quality deteriorates due to a difference in film thickness in the light emitter itself.
  • the cause of the difference in film thickness is the difference in the drying history of each picture element in multiple drawing, that is, in the process of performing the first application, drying, second application, and drying in this order.
  • a pattern film for example, a color filter or a light emitter
  • the first coating part is dried twice
  • the second coating part is dried once, and in other words, the difference in drying time.
  • Different volumetric variation of wood contraction difference between the final thickness was found that had occurred.
  • the second coating amount is changed as compared with the first coating amount in accordance with the volume change such as the shrinkage of the coloring material due to drying, and the final film thickness of RGB is made uniform so that the display on the display device or the light emitting device It has been found that the display quality can be improved by suppressing the flicker, and the present invention has been achieved by conceiving that the above problems can be solved brilliantly.
  • the present invention is a method for producing a pattern film made of a color material from an ink containing the color material in a plurality of steps using an ink jet method, wherein the production method applies the ink using the ink jet method.
  • the ink applied by the second application step is a pattern film manufacturing method in which the mass of the color material is smaller than that of the ink applied by the first application step. is there.
  • the pattern film obtained by the manufacturing method of the present invention is applied to a display device of three primary colors (when used as a color filter of a liquid crystal display device, a light emitting layer of a light emitting device, etc.), three colors are applied by an ink jet device.
  • a uniform pattern film at the time when the three-color coating is completed by giving a liquid amount difference between the first coating amount and the second coating amount according to the volume change such as the shrinkage of the coloring material by the drying step. It can be made thick (color film thickness).
  • the amount of decrease in film thickness after the drying step for example, a heating step such as baking [baking]
  • the set film thickness can be changed according to each ink type.
  • the coating process may be performed before the first coating process, or the coating process may be performed before the first drying process.
  • the color material usually shrinks and the film thickness is reduced accordingly (for example, it is reduced by 5 to 7% by baking at 240 ° C. for 40 minutes depending on the type of color material) Will be).
  • the final film thickness after the completion of the drying step can be made uniform according to the above form.
  • the mass of the color material contained in the ink applied by the second application step is one drying step (first drying) with respect to the mass of the color material contained in the ink applied by the first application step. It is particularly preferable that the film thickness is reduced by the rate at which the film thickness decreases due to the shrinkage of the color material in the step).
  • the mass of the color material contained in the ink applied by the second application step Is reduced by 5 to 7% by mass with respect to 100% by mass of the color material contained in the ink in the first application step from the amount of the color material contained in the ink in the first application step.
  • a film thickness can be made more uniform.
  • the form with less mass of the color material in the present invention is usually a form with less ink application amount.
  • the effect of the present invention can also be exerted when the ink applied in the second application step has a smaller color material volume than the ink applied in the first application step.
  • the ink applied by the second application step forms the same color film, it is possible to simplify the present invention by using the same color material as the ink applied by the first application step. It is suitable at the point which can be applied to.
  • the change of the color film thickness in the panel is simpler than the photolithography method. Therefore, by changing the film thickness for each pixel, it is possible to increase the swing width for display control for each pixel. Therefore, it is possible to make a stereoscopic image stand out by the panel drive and the panel structure.
  • the pattern film and color filter substrate of the present invention can exhibit the above-described effects of the present invention in a liquid crystal display device including the same.
  • the present invention is also a light emitting device in which the pattern film of the present invention is provided as a light emitting element.
  • the present invention can be applied not only to liquid crystal panels but also to products for which films are formed by other display processes and ink jet devices such as organic EL display panels. That is, the pattern film of the present invention is a pattern for improving the display quality of a color filter of a liquid crystal display device, a light emitting body in a self-luminous display such as a plasma panel or an organic EL display device, or a projection element of a projector.
  • the present invention can be suitably applied to various uses that require uniformity of the film thickness.
  • the pattern film of the present invention is applied to the light-emitting body in the 3D light-emitting device.
  • the pattern film of the present invention can exhibit the above-described effects of the present invention in a light-emitting device including the pattern film.
  • the manufacturing process of the pattern film of the present invention can be used for thin film fixing of electronic parts such as solar cells, printed matter using an ink jet (large poster, large curtain, etc.), painting of building materials, and the like.
  • the structure of the pattern film manufacturing method, pattern film, color filter substrate, liquid crystal display device and light-emitting device of the present invention is particularly limited by other components as long as such components are formed as essential.
  • other methods ordinarily used in a pattern film manufacturing method, a pattern film, a color filter substrate, a liquid crystal display device, and a light-emitting device can be applied as appropriate.
  • the pattern film manufacturing method the pattern film, the color filter substrate, the liquid crystal display device and the light emitting device of the present invention, the display quality in the display device or the light emitting device can be sufficiently improved.
  • FIG. 3 is a schematic cross-sectional view of the substrate after each step of the method for manufacturing the color filter substrate of Embodiment 1.
  • FIG. 3 is a schematic plan view of a substrate showing ink applied in a staggered pattern during the first application in the first embodiment.
  • FIG. 3 is a schematic plan view of a substrate showing ink applied in a staggered pattern during the second application in the first embodiment.
  • 3 is a schematic plan view of a color filter substrate when ink application is completed in Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display device including a color filter substrate according to Embodiment 1.
  • FIG. 10 is a schematic cross-sectional view of a substrate after each step of a color filter substrate manufacturing method according to a modified example of Embodiment 1.
  • FIG. 6 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the first application in a modification of the first embodiment.
  • FIG. 6 is a schematic plan view of a substrate showing ink drawn in a stripe shape at the time of second application in a modification of the first embodiment.
  • FIG. 6 is a schematic plan view of a substrate when ink application is completed in a modification of the first embodiment.
  • FIG. 6 is a schematic cross-sectional view of a substrate after each step of the method for manufacturing a color filter substrate of Embodiment 2.
  • FIG. 6 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the first application in a modification of the first embodiment.
  • FIG. 6 is a schematic plan view of a substrate showing ink drawn in a stripe shape at the time of second application in
  • FIG. 6 is a schematic plan view of a substrate showing ink applied in a staggered pattern at the first application in Embodiment 2.
  • FIG. 6 is a schematic plan view of a substrate showing ink applied in a staggered pattern at the time of second application in Embodiment 2.
  • 6 is a schematic plan view of a color filter substrate when ink application is completed in Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view of a substrate after each step of a method for manufacturing a color filter substrate according to a modified example of Embodiment 2.
  • FIG. 10 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the first application in a modification of the second embodiment.
  • FIG. 10 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the second application in a modification of the second embodiment.
  • FIG. 10 is a schematic plan view of a substrate when ink application is completed in a modification of the second embodiment. It is a cross-sectional schematic diagram of the substrate after each step of the manufacturing method of the color filter substrate of Embodiment 3.
  • FIG. 6 is a schematic plan view of a substrate showing ink drawn in a stripe shape at the time of first application in Embodiment 3.
  • FIG. 10 is a schematic plan view of a substrate showing ink drawn in a stripe shape at the time of second application in Embodiment 3. 6 is a schematic plan view of a substrate when ink application is completed in Embodiment 3.
  • FIG. 10 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the second application in a modification of the second embodiment.
  • FIG. 10 is a schematic plan view of a substrate when ink application is completed in
  • the ink includes a color material, and may further include a solvent or the like for viscosity adjustment.
  • the color material may contain components such as an additive for forming a pattern film in addition to pigment and resin as essential components.
  • drying means volatilizing a volatile component such as a solvent in the ink and / or curing the resin component in the ink to solidify the ink.
  • a drying process means a baking (baking) process in this embodiment, the process (heating process etc.) for drying can be used suitably in this invention.
  • the pattern film is formed in the order of first application, first drying, second application, and second drying.
  • a pixel refers to the smallest unit that can realize a function necessary for display.
  • one pixel is constituted by a total of three dots of consecutive RGB.
  • a picture element is an element constituting each pixel and refers to a minimum unit that is independently driven. In the three-primary-color display device, it refers to one dot for each RGB.
  • FIG. 1 is a schematic cross-sectional view of a substrate after each step of the color filter substrate manufacturing method of Embodiment 1.
  • a substrate hereinafter also referred to as substrate 1 ⁇ / b> A. The same applies to other symbols
  • substrate 1 ⁇ / b> A on which the reference numeral (1 ⁇ / b> A) is written on the right side is applied by the ink jet method for the first time (first application step).
  • substrate just after performing is shown typically.
  • the substrate 1B schematically shows a cross section of the substrate immediately after the first drying (first drying step).
  • Substrate 1C changed the mass of the color material contained in the ink at the time of the first application by the inkjet method (in other words, the amount of ink itself was changed at the same rate).
  • coating process is shown typically.
  • FIG. 1 shows a state in which the application amount is reduced from the first time and G (green), R (red), B (blue), and G (green) are newly applied every other picture element from the left side. Yes.
  • the ratio at which the coating amount is reduced can be appropriately set according to the ratio at which the color material undergoes volume change such as shrinkage by one drying (firing).
  • Substrate 1D schematically shows a cross section of the color filter substrate after the second drying (second drying step). The black-colored portion represents the bank material of the color filter substrate. The same applies to other drawings.
  • the mass of the color material contained in the green ink newly applied on the substrate 1C is less than the mass of the color material contained in the green ink applied on the substrate 1A.
  • the mass of the color material contained in the green ink applied on the substrate 1A is 100% by mass, it is reduced by 5 to 7% by mass.
  • the ink applied on the substrate 1A goes through two drying steps, but the ink newly applied on the substrate 1C only goes through one drying step and is applied on the substrate 1A.
  • the color material of the pattern film formed from the green ink changes in volume more than the pattern film formed from the green ink applied on the substrate 1C. For example, it shrinks by 5-7%.
  • the film thickness (final film thickness) of the color filter is sufficiently uniform. Thereby, the flicker in the liquid crystal display panel can be sufficiently suppressed, and the display quality can be improved.
  • FIG. 2 is a schematic plan view of a substrate showing ink applied (drawn) in a staggered pattern at the first application (first inkjet drawing) in the first embodiment.
  • FIG. 3 is a schematic plan view of the substrate showing the ink applied in a staggered pattern during the second application in the first embodiment. In FIG. 3, ink applied at the first application is not shown.
  • FIG. 4 is a schematic plan view of the color filter substrate when ink application is completed in the first embodiment.
  • the ink is drawn in a staggered pattern, dried, and then applied to the remaining portions where the ink is not applied. This is dried to form a pattern film.
  • Examples of the flow for applying in a staggered pattern include, for example, the first inkjet drawing, the first firing (240 ° C., 40 minutes), the second inkjet drawing, and the second firing (240 ° C., 40 minutes). Can be performed in this order.
  • the ink drawn in the first ink jet drawing passes through the main baking twice, and is drawn in the second ink jet drawing. The ink that has been subjected to the main baking only once.
  • the amount of film thickness reduction due to the shrinkage of the color material varies depending on the type of ink, and the coating amount (that is, the amount of color material in the ink) can be adjusted as appropriate according to the amount of film thickness decrease.
  • the film thickness is reduced by 5% to 7% by one main firing.
  • the application amount of the second ink jet drawing is reduced by 5 to 7% by mass with respect to 100% by mass of the first application, although it depends on the type of ink.
  • the volume may decrease due to volatilization of the volatile component during the first drying (baking) of the applied ink.
  • the film thickness reduction amount does not include the volume reduction amount from the ink liquid to the pattern film due to the volatilization of the solvent, but means only the film thickness reduction amount due to the contraction of the color material.
  • the coating amount of the second drawing from about 5% to 7%, the first and second film thicknesses are sufficiently uniformed.
  • the set film thickness may be changed according to each ink type.
  • FIG. 5 is a schematic cross-sectional view of a liquid crystal display device including the color filter substrate according to the first embodiment. Since the film thickness is sufficiently uniformed, the cell thickness for each picture element is sufficiently uniformed. As a result, luminance variation between pixels can be sufficiently suppressed, and a liquid crystal display device excellent in display quality can be obtained.
  • FIG. 6 is a schematic cross-sectional view of the substrate after each step of the color filter substrate manufacturing method according to the modification of the first embodiment.
  • ink is applied in a staggered pattern using an inkjet method for each pixel.
  • substrate 1A' the substrate on the right side
  • a cross section of the substrate is schematically shown.
  • Substrate 1B ′ schematically shows a cross section of the substrate immediately after the first drying.
  • Substrate 1C ′ has a second application (first ink volume is changed at the same rate) by changing the mass of the color material contained in the ink at the first application by the inkjet method (in other words, the ink liquid amount itself is also changed at the same rate).
  • 2 schematically shows a cross section of the substrate immediately after performing the (2 coating step).
  • FIG. 6 shows a state in which the application amount is reduced from the first time and R (red), G (green), and B (blue) are newly applied from the left side.
  • the ratio at which the coating amount is reduced can be appropriately set according to the ratio at which the color material undergoes volume change such as shrinkage by one firing.
  • Substrate 1D ′ schematically shows a cross-section of the color filter substrate after the second drying.
  • FIG. 7 is a schematic plan view of a substrate showing ink drawn in a stripe shape at the first application (first inkjet drawing) in the modification of the first embodiment.
  • FIG. 8 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the second application in the modification of the first embodiment. In FIG. 8, ink applied at the first application is not shown.
  • FIG. 9 is a schematic plan view of the substrate when application of ink is completed in the modification of the first embodiment.
  • the ink is drawn in stripes, dried, and then applied to the remaining portions where the ink is not applied. This is dried to form a pattern film. Even in such a form, similarly to the first embodiment, the luminance variation can be sufficiently suppressed, and a liquid crystal display device excellent in display quality can be obtained.
  • FIG. 10 is a schematic cross-sectional view of a substrate after each step of the color filter substrate manufacturing method of Embodiment 2.
  • the substrate on which the symbol (2A) is written on the right side (hereinafter also referred to as substrate 2A. The same applies to other symbols) is the substrate immediately after the first application by the inkjet method.
  • the cross section of is schematically shown.
  • the substrate 2B schematically shows a cross section of the substrate immediately after the first drying.
  • the substrate 2C was subjected to the second application by changing the ink thickness (the amount of ink color material) compared to the ink thickness (the amount of ink color material) at the first application by the inkjet method.
  • substrate just after is shown typically.
  • FIG. 10 shows a state in which the application amount is reduced in the second time and G (green), Y (yellow), G (green), and Y (yellow) are newly applied every other picture element from the left side. .
  • the ratio at which the coating amount (the coating amount of the color material) is reduced can be appropriately set according to the ratio at which the color material undergoes volume change such as shrinkage by one firing.
  • the substrate 2D schematically shows a cross section of the color filter substrate after the second drying.
  • the amount of color material in the ink is decreasing.
  • the ink applied on the substrate 2A goes through two drying steps, but the ink newly applied on the substrate 2C only goes through one drying step and is applied on the substrate 2A.
  • the volume of the color material changes more in the ink than in the ink applied on the substrate 2C. For example, it shrinks by 5-7%.
  • the film thickness (final film thickness) of the color filter is sufficiently uniform. Thereby, the flicker in the liquid crystal display panel can be sufficiently suppressed, and the display quality can be improved.
  • FIG. 11 is a schematic plan view of a substrate showing ink applied (drawn) in a staggered pattern at the time of first application (inkjet drawing first time) in the second embodiment.
  • FIG. 12 is a schematic plan view of a substrate showing ink applied in a staggered pattern during the second application in the second embodiment. In FIG. 12, the ink applied at the first application is not shown.
  • FIG. 13 is a schematic plan view of the color filter substrate when ink application is completed in the second embodiment. As described above, in the second embodiment, in order to sufficiently prevent color mixture, the ink is drawn in a staggered pattern, dried, and then applied to the remaining portions where the ink is not applied. This is dried to form a pattern film.
  • the first inkjet drawing, the first firing (240 ° C., 40 minutes), the second inkjet drawing, the second firing, as in the first embodiment. (240 ° C., 40 minutes) can be performed in this order.
  • the ink drawn in the first ink jet drawing passes through the main baking twice, and is drawn in the second ink jet drawing. The ink that has been subjected to the main baking only once.
  • the amount of film thickness reduction due to color material shrinkage varies depending on the type of ink, and the amount of color material applied can be adjusted appropriately according to the amount of film thickness reduction.
  • the film thickness is reduced by 5% to 7% by one main firing.
  • the amount of the color material applied for the second ink jet drawing is 5% to 100% by mass of the first color material application amount, depending on the ink type. Reduce by 7%.
  • the coating amount of the second drawing by 5% to 7%, the first and second film thicknesses are sufficiently uniformed.
  • FIG. 14 is a schematic cross-sectional view of a substrate after each step of a color filter substrate manufacturing method according to a modification of the second embodiment.
  • ink is drawn in a stripe shape using an ink jet method.
  • a substrate (2A ′) written on the lower side thereof hereinafter also referred to as substrate 2A ′; the same applies to other symbols
  • substrate 2A ′ was applied for the first time by the ink jet method.
  • substrate just after is shown typically.
  • the substrate 2B ′ schematically shows a cross section of the substrate immediately after the first drying.
  • FIG. 15 is a schematic plan view of a substrate showing ink drawn in a stripe shape at the first application (inkjet drawing first time) in the modification of the second embodiment.
  • FIG. 16 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the second application in a modification of the second embodiment. In FIG. 16, the ink applied at the first application is not shown.
  • FIG. 17 is a schematic plan view of the substrate when the application of ink is completed in the modification of the second embodiment.
  • the ink is drawn in stripes, dried, and then applied to the remaining portions where the ink is not applied. This is dried to form a pattern film. Even in such a form, similarly to the second embodiment, the luminance variation can be sufficiently suppressed, and a liquid crystal display device excellent in display quality can be obtained.
  • FIG. 18 is a schematic cross-sectional view of a substrate after each step of the color filter substrate manufacturing method of Embodiment 3.
  • the substrate (3A) indicated below (hereinafter also referred to as substrate 3A. The same applies to other symbols) is provided immediately after the first application by the ink jet method.
  • substrate is shown typically.
  • the substrate 3B schematically shows a cross section of the substrate immediately after the first drying.
  • the substrate 3C was immediately after the second application with the ink thickness (amount of ink color material) and the ink thickness (amount of ink color material) changed at the first application by the inkjet method.
  • substrate is shown typically.
  • the coating amount is reduced at the second time, and G (green), M (magenta), C (cyan), G (green), M (magenta), C (cyan) are newly added every other picture element from the left side. ) Is shown.
  • the ratio at which the coating amount (the coating amount of the color material) is reduced can be appropriately set according to the ratio at which the color material undergoes volume change such as shrinkage by one firing.
  • Substrate 3D schematically shows a cross section of the color filter substrate after the second drying.
  • the green color newly applied on the substrate 3 ⁇ / b> C is larger than the color material amount of the red ink applied on the substrate 3 ⁇ / b> A, the color material amount of the blue ink, or the color material amount of the yellow ink.
  • the amount of the ink color material, the color material amount of the magenta ink, or the color material amount of the cyan ink is reduced.
  • the ink applied on the substrate 3A undergoes two drying steps, but the ink newly applied on the substrate 3C only passes one drying step and is applied on the substrate 3A.
  • the color material changes in volume more than the ink applied on the substrate 3C. For example, it shrinks by 5-7%.
  • the film thickness (final film thickness) of the color filter is sufficiently uniform. Thereby, the flicker in the liquid crystal display panel can be sufficiently suppressed, and the display quality can be improved.
  • FIG. 19 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the first application (inkjet drawing first time) in the third embodiment.
  • FIG. 20 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the second application in the third embodiment. In FIG. 20, ink applied at the first application is not shown.
  • FIG. 21 is a schematic plan view of a substrate when ink application is completed in the third embodiment.
  • the ink is drawn in stripes, dried, and then applied to the remaining portions where the ink is not applied.
  • the pattern film is formed by drying.
  • the flow of drawing in a stripe shape for example, the first ink jet drawing, the first firing (240 ° C., 40 minutes), the ink jet drawing, as in the flow of applying in a staggered pattern (staggered drawing) in the first embodiment.
  • the second and final firing (240 ° C., 40 minutes) can be performed in this order.
  • the ink drawn in the first ink jet drawing passes through the main baking twice and is drawn in the second ink jet drawing. The ink that has been subjected to the main baking only once.
  • the amount of film thickness reduction due to color material shrinkage varies depending on the type of ink, and the amount of color material applied can be adjusted appropriately according to the amount of film thickness reduction.
  • the film thickness is reduced by 5% to 7% by one main firing.
  • the amount of the color material applied for the second ink jet drawing is 5% with respect to 100% by mass of the color material applied for the first time, depending on the type of ink. Reduce by ⁇ 7%.
  • the first and second film thicknesses are sufficiently uniformed.
  • the cell thickness for each pixel is sufficiently uniformed as in the first embodiment.
  • luminance variation between pixels can be sufficiently suppressed, and a liquid crystal display device excellent in display quality can be obtained.
  • the ink applied in the second application process is different in mass of the color material from the ink applied in the first application process, but the non-volatile components in the ink are different. It can be said that the non-volatile component in the ink is different as described above.
  • the preferred forms such as the coating amount of the nonvolatile component in the present invention are the same as the preferred forms such as the coating amount of the coloring material in the present invention.
  • a flow for applying in a staggered pattern (drawing in a staggered pattern) and a flow for drawing in a stripe shape are preferable. These flows are suitable, but different colors of ink are vertically and horizontally adjacent to each application process. What is necessary is just to apply
  • the liquid crystal display device of the present embodiment includes a pair of substrates (circuit board and color filter substrate), a liquid crystal layer sandwiched between the pair of substrates, and polarized light disposed on the opposite side of the pair of substrates from the liquid crystal layer.
  • a normal liquid crystal display device such as a plate and a light source can be appropriately used.
  • the pattern film of the present invention is a projection of a self-luminous display such as a plasma panel or an organic EL or a projector. It can be applied to various uses using a film formed by an ink jet method, such as a light emitter in an element, and the display quality is sufficiently improved in display by a light emitting device by similarly suppressing luminance variation of the light emitter. Effect can be exerted.
  • the pattern film of the present embodiment can be appropriately applied to a liquid crystal display device or a light emitting device for 3D display.
  • Comparative Example 1 22 is a schematic cross-sectional view of the substrate after each step of the method for manufacturing the color filter substrate of Comparative Example 1.
  • FIG. 22 the substrate on which the symbol (a) is written on the right side (hereinafter also referred to as substrate a. The same applies to other symbols) is the substrate immediately after the first application by the inkjet method.
  • the cross section of is schematically shown.
  • substrate b shows typically the cross section of the board
  • substrate c shows typically the cross section of the board
  • Substrate 22 shows a state in which G (green), R (red), B (blue), and G (green) are newly applied every other picture element from the left side at the same application amount as the first time.
  • Substrate d schematically shows a cross section of the color filter substrate after the second drying.
  • the color material application amount of the green ink applied on the substrate a and the color material application amount of the green ink newly applied on the substrate c are the same amount.
  • the ink applied on the substrate a undergoes two drying steps, but the ink newly applied on the substrate c only passes one drying step, and is applied on the substrate a.
  • the color material contracts more in the ink than in the ink applied on the substrate c. For example, it shrinks by 5-7%.
  • the ink portion drawn at the first time undergoes the main baking twice, so that 2 Compared to the film thickness of the first drawing, for example, it is 5 to 7% thinner and non-uniform.
  • the film thickness (final film thickness) of the color filter is not sufficiently uniform and varies. As a result, flickering occurred in the liquid crystal display panel.
  • ink is drawn in a staggered pattern, dried, and then dried in the remaining portions where no ink is applied, as in the first embodiment. Ink is applied and dried to form a pattern film.
  • the flow of applying (staggered drawing) in a staggered pattern is the same as that described in Embodiment 1, for example.
  • FIG. 23 is a schematic cross-sectional view of a liquid crystal display device including a color filter substrate according to Comparative Example 1. Since the film thickness is not sufficiently uniformed, the cell thickness for each picture element is not sufficiently uniformed. As a result, luminance variation occurs between pixels, and the display quality of the liquid crystal display device is impaired.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides a patterned film manufacturing method, a patterned film, a color filter substrate, a liquid crystal display device, and a light-emitting device in which the display quality of a display device or light-emitting device is adequately improved. In this patterned film manufacturing method, a patterned film made of a color material is manufactured from ink containing the color material in a plurality of steps using an inkjet method. This manufacturing method comprises, in successive order, a first application step in which ink is applied using the inkjet method, a first drying step in which the ink applied in the first application step is dried, a second application step in which ink is applied using the inkjet method, and a second drying step in which the ink applied in the second application step is dried. In this patterned film manufacturing method, the ink applied in the second application step contains less color material in terms of mass than the ink applied in the first application step.

Description

パターン膜の製造方法、パターン膜、カラーフィルタ基板、液晶表示装置及び発光装置Pattern film manufacturing method, pattern film, color filter substrate, liquid crystal display device, and light emitting device
本発明は、パターン膜の製造方法、パターン膜、カラーフィルタ基板、液晶表示装置及び発光装置に関する。より詳しくは、インクジェット法を用いて、複数工程によって色材を含むインクから該色材によるパターン膜を製造する方法、パターン膜、カラーフィルタ基板、液晶表示装置及び発光装置に関するものである。 The present invention relates to a pattern film manufacturing method, a pattern film, a color filter substrate, a liquid crystal display device, and a light emitting device. More specifically, the present invention relates to a method for manufacturing a pattern film made of a color material from an ink containing the color material in a plurality of steps using an inkjet method, a pattern film, a color filter substrate, a liquid crystal display device, and a light emitting device.
インクジェット法は、回路基板等におけるパターン膜を効率的に作製することができる手法として種々の用途において広く用いられている。中でも、液晶表示パネルにおけるカラーフィルタ、プラズマパネル、有機EL表示装置等の自発光ディスプレイやプロジェクターの投影素子における発光体の作製のために多用されている。また、太陽電池等の電子部品の薄膜、大型ポスター、大型幕等の印刷物、建築資材の塗装等のインクジェット装置で膜を形成し得る商品に幅広く適用される可能性がある。 The ink jet method is widely used in various applications as a method for efficiently producing a pattern film on a circuit board or the like. Among them, it is frequently used for the production of light emitters in self-luminous displays such as color filters, plasma panels and organic EL display devices in liquid crystal display panels and projection elements of projectors. Further, it may be widely applied to products in which a film can be formed by an inkjet device such as a thin film of an electronic component such as a solar cell, a printed matter such as a large poster or a large curtain, or a coating of a building material.
一般的なインクジェット法によるパターン膜の形成は、インクジェット装置から微小なインク液滴を吐出させてパターンを描き、それを乾燥させることによって電子デバイス基板上にパターン膜を形成させるものである。
例えば、インクジェット法を用いて発光体が形成された発光装置の製造方法としては、基板上の平面内の面内方向に複数の隔壁によって区画された複数の画素領域について、各色成分の画素領域ごとに各色成分を順に塗布して発光層を形成する方法を含む発光素子を製造する方法であって、第1色成分を溶解した第1塗布液を前記第1色成分の画素領域に塗布するステップと、第2色成分を溶解した第2塗布液を前記第2色成分の画素領域に塗布するステップとを含み、前記第1塗布液と前記第2塗布液は、少なくとも一つの共通の溶媒を含むと共に、前記各色成分の塗布液を塗布するステップでは、単位面積に塗布する前記共通の溶媒の量が相対的に多い色成分の塗布液から、単位面積に塗布する前記共通の溶媒の量が相対的に少ない色成分の塗布液の順番に塗布を行う、発光装置を製造する方法が開示されている(例えば、特許文献1参照。)。
In the formation of a pattern film by a general ink jet method, a pattern film is formed on an electronic device substrate by drawing a pattern by ejecting minute ink droplets from an ink jet apparatus and drying the pattern.
For example, as a method for manufacturing a light-emitting device in which a light emitter is formed using an inkjet method, a pixel region of each color component is divided into a plurality of pixel regions partitioned by a plurality of partitions in an in-plane direction within a plane on the substrate. A method of manufacturing a light emitting device including a method of forming a light emitting layer by sequentially applying each color component to a first coating solution in which a first color component is dissolved is applied to a pixel region of the first color component. And applying a second coating solution in which the second color component is dissolved to the pixel region of the second color component, wherein the first coating solution and the second coating solution contain at least one common solvent. And in the step of applying the coating liquid for each color component, the amount of the common solvent to be applied to the unit area from the coating liquid of the color component in which the amount of the common solvent to be applied to the unit area is relatively large. Relatively little color Performing the coating in the order of the coating liquid, a method of manufacturing a light emitting apparatus is disclosed (e.g., see Patent Document 1.).
また、この他に、インクジェット法を用いて膜パターン、カラーフィルタ基板、表示装置等を得るための種々の方法が開示されている(例えば、特許文献2~5参照。)。 In addition to this, various methods for obtaining a film pattern, a color filter substrate, a display device, and the like using an inkjet method are disclosed (for example, see Patent Documents 2 to 5).
特開2009-277578号公報JP 2009-277578 A 特開2006-260779号公報JP 2006-26079 A 特開2007-103349号公報JP 2007-103349 A 特開2007-193090号公報JP 2007-193090 A 特開2008-89896号公報JP 2008-89896 A
ところで、インクジェット法によりパターン膜を形成する手法としては、複数回の塗布工程を行う方法が挙げられる。複数回の塗布工程を行い、塗布工程間に乾燥工程を入れて先に塗布されたインクを乾燥することにより、異なる塗布工程により形成された絵素間、発光素子間での混色を充分に防止することができる。このため、混色が発生するおそれがある隣接する絵素又は発光素子は、できるだけ異なる塗布工程により塗布することが望ましく、例えば、千鳥格子状にインクを塗布する塗布工程とすることが好適である。塗布工程間に乾燥工程を入れて先に塗布されたインクを乾燥することにより、隣接する絵素間、発光素子間での混色を充分に防止することができ、非常に有用である。 By the way, as a method of forming the pattern film by the ink jet method, there is a method of performing a plurality of coating steps. By performing the application process multiple times and drying the ink applied earlier by inserting a drying process between the application processes, color mixing between the pixels formed by different application processes and between the light emitting elements is sufficiently prevented. can do. Therefore, it is desirable to apply adjacent picture elements or light emitting elements that may cause color mixing by different application processes as much as possible. For example, it is preferable to use an application process in which ink is applied in a staggered pattern. . By putting a drying step between the coating steps and drying the ink that has been previously applied, color mixing between adjacent picture elements and light emitting elements can be sufficiently prevented, which is very useful.
しかしながら、従来のインクジェット法を用いて色材によるパターン膜を製造する方法において、インクの塗布を複数工程とした場合は、以下の不具合が発生することとなる。すなわち、当該製造方法により得られたパターン膜が設けられた液晶表示装置又は発光装置において、表示品位が低下する。例えば、カラーフィルタ(CF)用インクジェット装置にて千鳥格子状にインクを塗布し、カラーフィルタ基板を得る場合、液晶表示パネル/液晶表示モジュールで点灯確認をしたところ、画面上で表示のちらつきが発生する。 However, in the method of manufacturing a pattern film made of a color material using a conventional ink jet method, the following problems occur when the ink application is performed in a plurality of steps. That is, in the liquid crystal display device or the light emitting device provided with the pattern film obtained by the manufacturing method, the display quality is lowered. For example, when a color filter substrate is obtained by applying ink in a staggered pattern with an ink jet device for a color filter (CF), when flickering is confirmed on a liquid crystal display panel / liquid crystal display module, the display flickers. appear.
このちらつきの原因としては、以下が考えられる。すなわち、(1)インクを乾燥してパターン膜を形成した後にRGB間(異なる色の絵素間)、及び/又は、同色の絵素間で、図23に示されるように膜厚差(液晶表示パネルにおけるセル厚差)が発生し、膜厚差が大きい部分が部分的に配向不良となる等、膜厚差に起因して絵素間で液晶分子の配向が相違したこと、(2)上記(1)に伴い、隣り合う画素等で輝度が変わり、目視で画面がちらつく状態となったこと。 Possible causes of this flicker are as follows. That is, (1) after forming the pattern film by drying the ink, the film thickness difference (liquid crystal) between RGB (between different color picture elements) and / or between the same color picture elements as shown in FIG. (Cell thickness difference in the display panel), and the alignment of the liquid crystal molecules is different between the picture elements due to the difference in film thickness, such as a portion in which the difference in film thickness is partially defective in alignment (2) In accordance with the above (1), the luminance changes between adjacent pixels and the screen flickers visually.
例えば、図23に示した3原色(R〔赤〕G〔緑〕B〔青〕)のカラーフィルタ基板においては、得られたカラーフィルタ基板は、RGB間、及び、同色の絵素間で、カラーフィルタの膜厚差が発生する。そして、液晶表示パネルを作製した際に、図中に示されるように、当該液晶表示パネルにおけるセル厚(液晶層厚)の差が存在することとなり、これに起因して画素間の輝度ばらつきが生じる。 For example, in the color filter substrate of the three primary colors shown in FIG. 23 (R [red] G [green] B [blue]), the obtained color filter substrate is between RGB and between pixels of the same color. A film thickness difference of the color filter occurs. When the liquid crystal display panel is manufactured, as shown in the figure, there is a difference in cell thickness (liquid crystal layer thickness) in the liquid crystal display panel, resulting in luminance variations between pixels. Arise.
また、プラズマパネル、有機EL表示装置等の自発光ディスプレイにおける発光素子やプロジェクターの投影素子についても、表示品位を優れたものとするためには、発光体の塗付時に均一な膜厚とすることが要求される。 In addition, for light emitting elements in self-luminous displays such as plasma panels and organic EL display devices and projection elements of projectors, in order to achieve excellent display quality, the film thickness should be uniform when the light emitter is applied. Is required.
以上のように、従来のインクジェット法を用いて、複数工程によって色材を含むインクから該色材によるパターン膜を製造する手法は、パターン膜の厚さにムラが生じ、当該ムラに起因して表示品位が低下することから、表示品位の点で工夫の余地があるものであった。 As described above, the method of manufacturing a pattern film using a color material from an ink containing the color material in a plurality of steps using the conventional inkjet method causes unevenness in the thickness of the pattern film, and this is caused by the unevenness. Since display quality deteriorates, there is room for improvement in terms of display quality.
本発明は、上記現状に鑑みてなされたものであり、表示装置又は発光装置における表示品位を充分に向上するパターン膜の製造方法、パターン膜、カラーフィルタ基板、液晶表示装置及び発光装置を提供することを目的とするものである。 The present invention has been made in view of the above situation, and provides a pattern film manufacturing method, a pattern film, a color filter substrate, a liquid crystal display device, and a light emitting device that can sufficiently improve display quality in a display device or a light emitting device. It is for the purpose.
本発明者らは、表示装置又は発光装置における表示品位を充分に向上する液晶表示装置及び発光装置について種々検討したところ、複数回描画の際にパターン膜の膜厚差が生じており、当該膜厚差に起因して、液晶表示装置及び発光装置に適用する際に種々の不具合が生じていたことに着目した。そして、液晶表示装置の場合は、RGB間(異なる絵素間)乃至隣接する赤同士、青同士等の同色絵素間による膜厚差が液晶表示パネルでのセル厚差を生み、充電率の差も変わることから、応答速度の差が生じ、その結果表示画像上にちらつきが見られること、発光装置の場合は、発光体自体に膜厚差が生じることに起因して表示品位が低下することを見いだすとともに、当該膜厚差が生じる原因が、複数回描画における各絵素における乾燥履歴の差であること、すなわち、1回目塗布、乾燥、2回目塗布、乾燥をこの順で行うプロセスにてパターン膜(例えば、カラーフィルタ又は発光体)を作製する際に、1回目塗布部は2度の乾燥、2回目塗布部は1度の乾燥、と乾燥回数の差、言い換えれば乾燥時間の差が存在し、これにより色材の色材収縮等の体積変化量が異なり、最終膜厚の差が発生していたことを見いだした。そして、乾燥による色材の収縮等の体積変化に応じて2回目塗布量を1回目塗布量と比べて変化させ、RGBの最終膜厚を均一にすることにより、表示装置又は発光装置における表示上のちらつきを抑制して表示品位を改善することができることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。 The present inventors have made various studies on a liquid crystal display device and a light emitting device that can sufficiently improve the display quality of the display device or the light emitting device. Attention was paid to the fact that various problems occurred when applied to liquid crystal display devices and light-emitting devices due to the difference in thickness. In the case of a liquid crystal display device, a difference in film thickness between RGB (between different picture elements) or between adjacent color pixels such as red and blue adjacent to each other gives rise to a cell thickness difference in the liquid crystal display panel. Since the difference also changes, a difference in response speed occurs, and as a result, a flicker is seen on the display image. In the case of a light emitting device, the display quality deteriorates due to a difference in film thickness in the light emitter itself. In addition, the cause of the difference in film thickness is the difference in the drying history of each picture element in multiple drawing, that is, in the process of performing the first application, drying, second application, and drying in this order. When producing a pattern film (for example, a color filter or a light emitter), the first coating part is dried twice, the second coating part is dried once, and in other words, the difference in drying time. Of the color material Different volumetric variation of wood contraction, difference between the final thickness was found that had occurred. Then, the second coating amount is changed as compared with the first coating amount in accordance with the volume change such as the shrinkage of the coloring material due to drying, and the final film thickness of RGB is made uniform so that the display on the display device or the light emitting device It has been found that the display quality can be improved by suppressing the flicker, and the present invention has been achieved by conceiving that the above problems can be solved brilliantly.
すなわち、本発明は、インクジェット法を用いて、複数工程によって色材を含むインクから該色材によるパターン膜を製造する方法であって、上記製造方法は、インクジェット法を用いてインクを塗布する第1塗布工程、上記第1塗布工程により塗布されたインクを乾燥させる第1乾燥工程、インクジェット法を用いてインクを塗布する第2塗布工程、及び、上記第2塗布工程により塗布されたインクを乾燥させる第2乾燥工程をこの順で含み、上記第2塗布工程により塗布されたインクは、該第1塗布工程により塗布されたインクと比べて、色材の質量がより少ないパターン膜の製造方法である。 That is, the present invention is a method for producing a pattern film made of a color material from an ink containing the color material in a plurality of steps using an ink jet method, wherein the production method applies the ink using the ink jet method. 1 application process, 1st drying process which dries the ink applied by the said 1st application process, 2nd application process which applies ink using the ink jet method, and the ink applied by the 2nd application process is dried In this order, the ink applied by the second application step is a pattern film manufacturing method in which the mass of the color material is smaller than that of the ink applied by the first application step. is there.
例えば、本発明の製造方法により得られたパターン膜を3原色の表示装置に適用する場合(液晶表示装置のカラーフィルタ、発光装置の発光層等として用いる場合)は、インクジェット装置で3色を塗布する工程で、乾燥工程による色材の収縮等の体積変化に応じて、1回目塗布量と2回目塗布量との液量差をつけることにより、3色塗布が完了した時点で均一なパターン膜厚(色膜厚)になるようにすることができる。
ここで、インク種類によっては乾燥工程(例えば、焼成〔ベーク〕等の加熱工程)後の膜厚減少量が異なるので、各インク種類にあわせて設定膜厚を変更することが可能である。
なお、本発明は、第1塗布工程の前に塗布工程を行うものであってもよく、第1乾燥工程の前に塗布工程を行うものであってもよい。
For example, when the pattern film obtained by the manufacturing method of the present invention is applied to a display device of three primary colors (when used as a color filter of a liquid crystal display device, a light emitting layer of a light emitting device, etc.), three colors are applied by an ink jet device. A uniform pattern film at the time when the three-color coating is completed by giving a liquid amount difference between the first coating amount and the second coating amount according to the volume change such as the shrinkage of the coloring material by the drying step. It can be made thick (color film thickness).
Here, since the amount of decrease in film thickness after the drying step (for example, a heating step such as baking [baking]) differs depending on the ink type, the set film thickness can be changed according to each ink type.
In the present invention, the coating process may be performed before the first coating process, or the coating process may be performed before the first drying process.
上記乾燥工程を経ることにより、通常は色材の収縮が起こり、その分だけ膜厚が減少する(色材の種類にもよるが、例えば、240℃、40分の焼成により5~7%減少する)ことになる。このとき、上記形態により、乾燥工程終了後の最終膜厚を均一にすることができる。
中でも、上記第2塗布工程により塗布されたインクに含まれる色材の質量は、第1塗布工程により塗布されたインクに含まれる色材の質量に対して、1回の乾燥工程(第1乾燥工程)で色材の収縮によって膜厚が減少する割合だけ、少ないことが特に好ましい。具体的には、例えば、色材の収縮に起因して、1回の本焼成で膜厚が5~7%減少する場合は、第2塗布工程により塗布されたインクに含まれる色材の質量は、第1塗布工程のインクに含まれる色材100質量%に対して、第1塗布工程のインクに含まれる色材量から5~7質量%減少させる。これにより、膜厚をより均一なものとすることができる。
なお、本発明における色材の質量がより少ない形態は、通常、インク塗布量がより少ない形態である。
Through the above drying process, the color material usually shrinks and the film thickness is reduced accordingly (for example, it is reduced by 5 to 7% by baking at 240 ° C. for 40 minutes depending on the type of color material) Will be). At this time, the final film thickness after the completion of the drying step can be made uniform according to the above form.
In particular, the mass of the color material contained in the ink applied by the second application step is one drying step (first drying) with respect to the mass of the color material contained in the ink applied by the first application step. It is particularly preferable that the film thickness is reduced by the rate at which the film thickness decreases due to the shrinkage of the color material in the step). Specifically, for example, when the film thickness is reduced by 5 to 7% by one main firing due to shrinkage of the color material, the mass of the color material contained in the ink applied by the second application step Is reduced by 5 to 7% by mass with respect to 100% by mass of the color material contained in the ink in the first application step from the amount of the color material contained in the ink in the first application step. Thereby, a film thickness can be made more uniform.
In addition, the form with less mass of the color material in the present invention is usually a form with less ink application amount.
上記第2塗布工程により塗布されたインクが、上記第1塗布工程により塗布されたインクと比べて、色材の体積が少ない形態とすることによっても、本発明の効果を発揮することができる。
また、上記第2塗布工程により塗布されたインクは、同じ色膜を形成する場合は、上記第1塗布工程により塗布されたインクと色材の種類を同じものとすることが、本発明を簡便に適用することができる点で好適である。
The effect of the present invention can also be exerted when the ink applied in the second application step has a smaller color material volume than the ink applied in the first application step.
In addition, when the ink applied by the second application step forms the same color film, it is possible to simplify the present invention by using the same color material as the ink applied by the first application step. It is suitable at the point which can be applied to.
本発明はまた、本発明のパターン膜の製造方法により得られるパターン膜でもある。本発明は更に、本発明のパターン膜がカラーフィルタとして設けられているカラーフィルタ基板でもあり、また、本発明のカラーフィルタ基板を備える液晶表示装置でもある。本発明は、3色のカラーフィルタ基板だけでなく、多色カラーフィルタ基板についても適用することができ、また、視野角コントロールを要する3Dパネルにも応用可能である。また、本発明の液晶表示装置は、例えば、3D(立体)を表示する3D用液晶表示装置においてカラーフィルタ基板のカラーフィルタとして用いることが特に好適である。3D画像とは、左右の眼で異なる画像を見ることにより脳内で立体感を際立たせる手法である。インクジェット法は、パネル内での色膜厚の変更がフォトリソグラフィー法に比べて簡便である。したがって、各画素ごとでの膜厚変更により、画素ごとで表示コントロールするための振り幅を大きくとることができる。したがって、パネル駆動とパネル構造とで立体像を際立たせることができる。
本発明のパターン膜及びカラーフィルタ基板は、これを備える液晶表示装置において、上述した本発明の効果を発揮することができる。
The present invention is also a pattern film obtained by the pattern film manufacturing method of the present invention. The present invention is also a color filter substrate in which the pattern film of the present invention is provided as a color filter, and also a liquid crystal display device including the color filter substrate of the present invention. The present invention can be applied not only to a three-color color filter substrate but also to a multicolor color filter substrate, and also to a 3D panel that requires viewing angle control. The liquid crystal display device of the present invention is particularly preferably used as a color filter of a color filter substrate in a 3D liquid crystal display device that displays 3D (three-dimensional), for example. A 3D image is a technique that makes a stereoscopic effect stand out in the brain by viewing different images with the left and right eyes. In the ink jet method, the change of the color film thickness in the panel is simpler than the photolithography method. Therefore, by changing the film thickness for each pixel, it is possible to increase the swing width for display control for each pixel. Therefore, it is possible to make a stereoscopic image stand out by the panel drive and the panel structure.
The pattern film and color filter substrate of the present invention can exhibit the above-described effects of the present invention in a liquid crystal display device including the same.
本発明はそして、本発明のパターン膜が発光素子として設けられている発光装置でもある。上述したように、液晶パネルだけでなく有機EL表示パネル等、他のディスプレイプロセスやインクジェット装置で膜を形成する商品にも、本発明を適用することができる。すなわち、本発明のパターン膜は、液晶表示装置のカラーフィルタ、又は、プラズマパネル、有機EL表示装置等の自発光ディスプレイにおける発光体若しくはプロジェクターの投影素子等、表示上の品位を向上するうえでパターン膜の膜厚の均一性が要求される種々の用途に好適に適用することが可能である。また、付言すれば、発光装置においても、本発明のパターン膜を3D用発光装置における発光体に適用する形態が好ましい。本発明のパターン膜は、これを備える発光装置において、上述した本発明の効果を発揮することができる。 The present invention is also a light emitting device in which the pattern film of the present invention is provided as a light emitting element. As described above, the present invention can be applied not only to liquid crystal panels but also to products for which films are formed by other display processes and ink jet devices such as organic EL display panels. That is, the pattern film of the present invention is a pattern for improving the display quality of a color filter of a liquid crystal display device, a light emitting body in a self-luminous display such as a plasma panel or an organic EL display device, or a projection element of a projector. The present invention can be suitably applied to various uses that require uniformity of the film thickness. In addition, in the light-emitting device, it is preferable that the pattern film of the present invention is applied to the light-emitting body in the 3D light-emitting device. The pattern film of the present invention can exhibit the above-described effects of the present invention in a light-emitting device including the pattern film.
なお、本発明のパターン膜の製造工程は、太陽電池等の電子部品の薄膜固着、インクジェットを使用する印刷物(大型ポスター、大型幕等)や建築資材の塗装等にも使用可能である。 In addition, the manufacturing process of the pattern film of the present invention can be used for thin film fixing of electronic parts such as solar cells, printed matter using an ink jet (large poster, large curtain, etc.), painting of building materials, and the like.
本発明のパターン膜の製造方法、パターン膜、カラーフィルタ基板、液晶表示装置及び発光装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではなく、パターン膜の製造方法、パターン膜、カラーフィルタ基板、液晶表示装置及び発光装置に通常用いられるその他の構成を適宜適用することができる。 The structure of the pattern film manufacturing method, pattern film, color filter substrate, liquid crystal display device and light-emitting device of the present invention is particularly limited by other components as long as such components are formed as essential. However, other methods ordinarily used in a pattern film manufacturing method, a pattern film, a color filter substrate, a liquid crystal display device, and a light-emitting device can be applied as appropriate.
上述した各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。 Each form mentioned above may be combined suitably in the range which does not deviate from the gist of the present invention.
本発明のパターン膜の製造方法、パターン膜、カラーフィルタ基板、液晶表示装置及び発光装置によれば、表示装置又は発光装置における表示品位を充分に向上することができる。 According to the pattern film manufacturing method, the pattern film, the color filter substrate, the liquid crystal display device and the light emitting device of the present invention, the display quality in the display device or the light emitting device can be sufficiently improved.
実施形態1のカラーフィルタ基板の製造方法の各工程後における基板の断面模式図である。3 is a schematic cross-sectional view of the substrate after each step of the method for manufacturing the color filter substrate of Embodiment 1. FIG. 実施形態1において1回目塗布時に千鳥格子状に塗布されるインクを示した基板の平面模式図である。FIG. 3 is a schematic plan view of a substrate showing ink applied in a staggered pattern during the first application in the first embodiment. 実施形態1において2回目塗布時に千鳥格子状に塗布されるインクを示した基板の平面模式図である。FIG. 3 is a schematic plan view of a substrate showing ink applied in a staggered pattern during the second application in the first embodiment. 実施形態1においてインクの塗布が完了した時のカラーフィルタ基板の平面模式図である。3 is a schematic plan view of a color filter substrate when ink application is completed in Embodiment 1. FIG. 実施形態1に係るカラーフィルタ基板を備える液晶表示装置の断面模式図である。1 is a schematic cross-sectional view of a liquid crystal display device including a color filter substrate according to Embodiment 1. FIG. 実施形態1の変形例のカラーフィルタ基板の製造方法の各工程後における基板の断面模式図である。FIG. 10 is a schematic cross-sectional view of a substrate after each step of a color filter substrate manufacturing method according to a modified example of Embodiment 1. 実施形態1の変形例において1回目塗布時にストライプ状に描画されるインクを示した基板の平面模式図である。FIG. 6 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the first application in a modification of the first embodiment. 実施形態1の変形例において2回目塗布時にストライプ状に描画されるインクを示した基板の平面模式図である。FIG. 6 is a schematic plan view of a substrate showing ink drawn in a stripe shape at the time of second application in a modification of the first embodiment. 実施形態1の変形例においてインクの塗布が完了した時の基板の平面模式図である。FIG. 6 is a schematic plan view of a substrate when ink application is completed in a modification of the first embodiment. 実施形態2のカラーフィルタ基板の製造方法の各工程後における基板の断面模式図である。FIG. 6 is a schematic cross-sectional view of a substrate after each step of the method for manufacturing a color filter substrate of Embodiment 2. 実施形態2において1回目塗布時に千鳥格子状に塗布されるインクを示した基板の平面模式図である。FIG. 6 is a schematic plan view of a substrate showing ink applied in a staggered pattern at the first application in Embodiment 2. 実施形態2において2回目塗布時に千鳥格子状に塗布されるインクを示した基板の平面模式図である。FIG. 6 is a schematic plan view of a substrate showing ink applied in a staggered pattern at the time of second application in Embodiment 2. 実施形態2においてインクの塗布が完了した時のカラーフィルタ基板の平面模式図である。6 is a schematic plan view of a color filter substrate when ink application is completed in Embodiment 2. FIG. 実施形態2の変形例のカラーフィルタ基板の製造方法の各工程後における基板の断面模式図である。FIG. 10 is a schematic cross-sectional view of a substrate after each step of a method for manufacturing a color filter substrate according to a modified example of Embodiment 2. 実施形態2の変形例において1回目塗布時にストライプ状に描画されるインクを示した基板の平面模式図である。FIG. 10 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the first application in a modification of the second embodiment. 実施形態2の変形例において2回目塗布時にストライプ状に描画されるインクを示した基板の平面模式図である。FIG. 10 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the second application in a modification of the second embodiment. 実施形態2の変形例においてインクの塗布が完了した時の基板の平面模式図である。FIG. 10 is a schematic plan view of a substrate when ink application is completed in a modification of the second embodiment. 実施形態3のカラーフィルタ基板の製造方法の各工程後における基板の断面模式図である。It is a cross-sectional schematic diagram of the substrate after each step of the manufacturing method of the color filter substrate of Embodiment 3. 実施形態3において1回目塗布時にストライプ状に描画されるインクを示した基板の平面模式図である。FIG. 6 is a schematic plan view of a substrate showing ink drawn in a stripe shape at the time of first application in Embodiment 3. 実施形態3において2回目塗布時にストライプ状に描画されるインクを示した基板の平面模式図である。FIG. 10 is a schematic plan view of a substrate showing ink drawn in a stripe shape at the time of second application in Embodiment 3. 実施形態3においてインクの塗布が完了した時の基板の平面模式図である。6 is a schematic plan view of a substrate when ink application is completed in Embodiment 3. FIG. 比較例1のカラーフィルタ基板の製造方法の各工程後における基板の断面模式図である。It is a cross-sectional schematic diagram of the board | substrate after each process of the manufacturing method of the color filter board | substrate of the comparative example 1. 比較例1に係るカラーフィルタ基板を備える液晶表示装置の断面模式図である。It is a cross-sectional schematic diagram of a liquid crystal display device provided with the color filter substrate which concerns on the comparative example 1.
本実施形態において、インクは、色材を含み、その他に粘度調整のために溶媒等を含んでいてもよい。色材とは、顔料と樹脂を必須成分として、その他にパターン膜を形成するための添加剤等の成分を含んでいてもよい。また、本明細書中、乾燥とは、インク中の溶媒等の揮発成分を揮発させること、及び/又は、インク中の樹脂成分を硬化させてインクを固化することを意味する。また、乾燥工程は、本実施形態では焼成(ベーク)工程を意味するが、本発明においては乾燥のための工程(加熱工程等)を適宜用いることができる。
なお、本実施形態では、すべて1回目の塗布、1回目の乾燥、2回目の塗布、2回目の乾燥の順でパターン膜を形成している。
In the present embodiment, the ink includes a color material, and may further include a solvent or the like for viscosity adjustment. The color material may contain components such as an additive for forming a pattern film in addition to pigment and resin as essential components. In the present specification, drying means volatilizing a volatile component such as a solvent in the ink and / or curing the resin component in the ink to solidify the ink. Moreover, although a drying process means a baking (baking) process in this embodiment, the process (heating process etc.) for drying can be used suitably in this invention.
In this embodiment, the pattern film is formed in the order of first application, first drying, second application, and second drying.
また、本明細書においては、画素は、表示に必要な機能を実現できる最小の単位をいう。例えば、RGBの3原色の表示装置では、連続したRGBの計3ドットで1画素を構成する。絵素は、各画素の構成する要素であって、個々に独立して駆動される最小単位をいい、上記3原色表示装置においては、RGB各1ドットずつをいう。
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
In this specification, a pixel refers to the smallest unit that can realize a function necessary for display. For example, in a display device of three primary colors of RGB, one pixel is constituted by a total of three dots of consecutive RGB. A picture element is an element constituting each pixel and refers to a minimum unit that is independently driven. In the three-primary-color display device, it refers to one dot for each RGB.
Embodiments will be described below, and the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited only to these embodiments.
実施形態1
図1は、実施形態1のカラーフィルタ基板の製造方法の各工程後における基板の断面模式図である。図1中、その右側に(1A)の符号が記載された基板(以下、基板1Aともいう。他の符号についても同様である。)は、インクジェット法により1回目の塗布(第1塗布工程)を行った直後の基板の断面を模式的に示す。基板1Bは、1回目の乾燥(第1乾燥工程)を行った直後の基板の断面を模式的に示す。基板1Cは、インクジェット法により1回目塗布時のインクに含まれる色材の質量を変化させた(付言すれば、インクの液量自体も同様の割合で変化させた)2回目の塗布(第2塗布工程)を行った直後の基板の断面を模式的に示す。図1では、1回目よりも塗布量を減量させて新たに左側から一絵素おきにG(緑)、R(赤)、B(青)、G(緑)を塗布した様子が示されている。塗布量を減量する割合は、1回の乾燥(焼成)により色材が収縮等の体積変化をする割合に応じて適宜設定することができる。基板1Dは、2回目の乾燥(第2乾燥工程)を行った後のカラーフィルタ基板の断面を模式的に示す。なお、黒く塗られた箇所はカラーフィルタ基板のバンク材を表す。他の図面においても同様である。
Embodiment 1
FIG. 1 is a schematic cross-sectional view of a substrate after each step of the color filter substrate manufacturing method of Embodiment 1. In FIG. 1, a substrate (hereinafter also referred to as substrate 1 </ b> A. The same applies to other symbols) on which the reference numeral (1 </ b> A) is written on the right side is applied by the ink jet method for the first time (first application step). The cross section of the board | substrate just after performing is shown typically. The substrate 1B schematically shows a cross section of the substrate immediately after the first drying (first drying step). Substrate 1C changed the mass of the color material contained in the ink at the time of the first application by the inkjet method (in other words, the amount of ink itself was changed at the same rate). The cross section of the board | substrate just after performing an application | coating process is shown typically. FIG. 1 shows a state in which the application amount is reduced from the first time and G (green), R (red), B (blue), and G (green) are newly applied every other picture element from the left side. Yes. The ratio at which the coating amount is reduced can be appropriately set according to the ratio at which the color material undergoes volume change such as shrinkage by one drying (firing). Substrate 1D schematically shows a cross section of the color filter substrate after the second drying (second drying step). The black-colored portion represents the bank material of the color filter substrate. The same applies to other drawings.
図1では、基板1Aにおいて塗布された緑色のインクに含まれる色材の質量よりも、基板1Cにおいて新たに塗布された緑色のインクに含まれる色材の質量の方が減っている。例えば、基板1Aにおいて塗布された緑色のインクに含まれる色材の質量を100質量%とすると、5~7質量%減っている。一方、基板1Aにおいて塗布されたインクは、2回の乾燥工程を経ることになるが、基板1Cにおいて新たに塗布されたインクは、1回の乾燥工程を経るだけであり、基板1Aにおいて塗布された緑色のインクから形成されたパターン膜の方が基板1Cにおいて塗布された緑色のインクから形成されたパターン膜よりも色材がより体積変化する。例えば、5~7%収縮する。以上より、実施形態1の製造方法により製造されたカラーフィルタ基板は、カラーフィルタの膜厚(最終膜厚)が充分に均一となる。これにより、液晶表示パネルでのちらつきを充分に抑制することができ、表示品位を優れたものとすることができる。 In FIG. 1, the mass of the color material contained in the green ink newly applied on the substrate 1C is less than the mass of the color material contained in the green ink applied on the substrate 1A. For example, when the mass of the color material contained in the green ink applied on the substrate 1A is 100% by mass, it is reduced by 5 to 7% by mass. On the other hand, the ink applied on the substrate 1A goes through two drying steps, but the ink newly applied on the substrate 1C only goes through one drying step and is applied on the substrate 1A. The color material of the pattern film formed from the green ink changes in volume more than the pattern film formed from the green ink applied on the substrate 1C. For example, it shrinks by 5-7%. As described above, in the color filter substrate manufactured by the manufacturing method of Embodiment 1, the film thickness (final film thickness) of the color filter is sufficiently uniform. Thereby, the flicker in the liquid crystal display panel can be sufficiently suppressed, and the display quality can be improved.
図2は、実施形態1において1回目塗布(インクジェット描画1回目)時に千鳥格子状に塗布(描画)されるインクを示した基板の平面模式図である。図3は、実施形態1において2回目塗布時に千鳥格子状に塗布されるインクを示した基板の平面模式図である。なお、図3では、1回目塗布時に塗布されるインクは示していない。図4は、実施形態1においてインクの塗布が完了した時のカラーフィルタ基板の平面模式図である。このように、実施形態1においては混色を充分に防止するために、インクを千鳥格子状に描画し、これを乾燥し、その後、インクが塗布されていない残りの箇所にインクを塗布し、これを乾燥してパターン膜を形成している。 FIG. 2 is a schematic plan view of a substrate showing ink applied (drawn) in a staggered pattern at the first application (first inkjet drawing) in the first embodiment. FIG. 3 is a schematic plan view of the substrate showing the ink applied in a staggered pattern during the second application in the first embodiment. In FIG. 3, ink applied at the first application is not shown. FIG. 4 is a schematic plan view of the color filter substrate when ink application is completed in the first embodiment. As described above, in the first embodiment, in order to sufficiently prevent color mixing, the ink is drawn in a staggered pattern, dried, and then applied to the remaining portions where the ink is not applied. This is dried to form a pattern film.
千鳥格子状に塗布(千鳥描画)するフローとしては、例えば、インクジェット描画1回目、本焼成1回目(240℃、40分)、インクジェット描画2回目、本焼成2回目(240℃、40分)をこの順で行うことができる。
なお、このような千鳥描画等の複数回の塗布工程を行う場合、上述したように、インクジェット描画1回目で描画されたインクは、本焼成を2回経ることになり、インクジェット2回目で描画されたインクは、本焼成を1回しか経ないことになる。
Examples of the flow for applying in a staggered pattern (staggered drawing) include, for example, the first inkjet drawing, the first firing (240 ° C., 40 minutes), the second inkjet drawing, and the second firing (240 ° C., 40 minutes). Can be performed in this order.
When performing a plurality of coating processes such as staggered drawing, as described above, the ink drawn in the first ink jet drawing passes through the main baking twice, and is drawn in the second ink jet drawing. The ink that has been subjected to the main baking only once.
また、色材の収縮による膜厚減少量は、インクの種類によって異なり、それぞれの膜厚減少量に応じて適宜塗布量(すなわち、インク中の色材量)を調整することができるが、例えば、上述したように、色材の収縮に起因して、1回の本焼成で膜厚が5%から7%減少する。千鳥描画等の複数回の塗布工程を行う場合、インク種にもよるが、2回目のインクジェット描画の塗布量は、1回目の塗布量100質量%に対して5~7質量%減少させる。なお、インクに顔料、樹脂以外の溶媒等の揮発成分が含まれる場合は、塗布されたインクの1回目乾燥(焼成)時に揮発成分の揮発に起因して体積が減少することがあるが、上記膜厚減少量とは、溶媒の揮発に起因するインク液からパターン膜への体積の減少量を加味したものではなく、色材の収縮に起因する膜厚減少量分だけを意味する。
このように2回目描画の塗布量を約5%から7%減らすことで、1回目、2回目の膜厚を充分に均一化する。なお、インク種類によっては乾燥後の膜厚減少量が異なるので、各インク種類にあわせて設定膜厚を変更してもよい。
Further, the amount of film thickness reduction due to the shrinkage of the color material varies depending on the type of ink, and the coating amount (that is, the amount of color material in the ink) can be adjusted as appropriate according to the amount of film thickness decrease. As described above, due to the shrinkage of the color material, the film thickness is reduced by 5% to 7% by one main firing. When performing a plurality of application processes such as staggered drawing, the application amount of the second ink jet drawing is reduced by 5 to 7% by mass with respect to 100% by mass of the first application, although it depends on the type of ink. When the ink contains a volatile component such as a solvent other than pigment and resin, the volume may decrease due to volatilization of the volatile component during the first drying (baking) of the applied ink. The film thickness reduction amount does not include the volume reduction amount from the ink liquid to the pattern film due to the volatilization of the solvent, but means only the film thickness reduction amount due to the contraction of the color material.
Thus, by reducing the coating amount of the second drawing from about 5% to 7%, the first and second film thicknesses are sufficiently uniformed. In addition, since the amount of film thickness reduction after drying differs depending on the ink type, the set film thickness may be changed according to each ink type.
図5は、実施形態1に係るカラーフィルタ基板を備える液晶表示装置の断面模式図である。膜厚が充分に均一化されたことにより、絵素ごとのセル厚が充分に均一化されている。その結果、画素間の輝度ばらつきを充分に抑制することができ、表示品位に優れた液晶表示装置とすることができる。 FIG. 5 is a schematic cross-sectional view of a liquid crystal display device including the color filter substrate according to the first embodiment. Since the film thickness is sufficiently uniformed, the cell thickness for each picture element is sufficiently uniformed. As a result, luminance variation between pixels can be sufficiently suppressed, and a liquid crystal display device excellent in display quality can be obtained.
図6は、実施形態1の変形例のカラーフィルタ基板の製造方法の各工程後における基板の断面模式図である。実施形態1の変形例では、画素ごとに、インクジェット法を用いて千鳥格子状にインクを塗布している。図6中、その右側に(1A′)の符号が記載された基板(以下、基板1A′ともいう。他の符号についても同様である。)は、インクジェット法により1回目の塗布を行った直後の基板の断面を模式的に示す。基板1B′は、1回目の乾燥を行った直後の基板の断面を模式的に示す。基板1C′は、インクジェット法により1回目塗布時のインクに含まれる色材の質量を変化させた(付言すれば、インクの液量自体も同様の割合で変化させた)2回目の塗布(第2塗布工程)を行った直後の基板の断面を模式的に示す。図6では、1回目よりも塗布量を減量させて新たに左側からR(赤)、G(緑)、B(青)を塗布した様子が示されている。塗布量を減量する割合は、1回の焼成により色材が収縮等の体積変化をする割合に応じて適宜設定することができる。基板1D′は、2回目の乾燥を行った後のカラーフィルタ基板の断面を模式的に示す。 FIG. 6 is a schematic cross-sectional view of the substrate after each step of the color filter substrate manufacturing method according to the modification of the first embodiment. In the modification of the first embodiment, ink is applied in a staggered pattern using an inkjet method for each pixel. In FIG. 6, the substrate (1A ') on the right side (hereinafter also referred to as substrate 1A'. The same applies to other symbols) immediately after the first application by the ink jet method. A cross section of the substrate is schematically shown. Substrate 1B ′ schematically shows a cross section of the substrate immediately after the first drying. Substrate 1C ′ has a second application (first ink volume is changed at the same rate) by changing the mass of the color material contained in the ink at the first application by the inkjet method (in other words, the ink liquid amount itself is also changed at the same rate). 2 schematically shows a cross section of the substrate immediately after performing the (2 coating step). FIG. 6 shows a state in which the application amount is reduced from the first time and R (red), G (green), and B (blue) are newly applied from the left side. The ratio at which the coating amount is reduced can be appropriately set according to the ratio at which the color material undergoes volume change such as shrinkage by one firing. Substrate 1D ′ schematically shows a cross-section of the color filter substrate after the second drying.
図7は、実施形態1の変形例において1回目塗布(インクジェット描画1回目)時にストライプ状に描画されるインクを示した基板の平面模式図である。図8は、実施形態1の変形例において2回目塗布時にストライプ状に描画されるインクを示した基板の平面模式図である。なお、図8では、1回目塗布時に塗布されるインクは示していない。図9は、実施形態1の変形例においてインクの塗布が完了した時の基板の平面模式図である。このように、実施形態1の変形例においては混色を充分に防止するために、インクをストライプ状に描画し、これを乾燥し、その後、インクが塗布されていない残りの箇所にインクを塗布し、これを乾燥してパターン膜を形成している。
このような形態によっても、実施形態1と同様に、輝度ばらつきを充分に抑制することができ、表示品位に優れた液晶表示装置とすることができる。
FIG. 7 is a schematic plan view of a substrate showing ink drawn in a stripe shape at the first application (first inkjet drawing) in the modification of the first embodiment. FIG. 8 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the second application in the modification of the first embodiment. In FIG. 8, ink applied at the first application is not shown. FIG. 9 is a schematic plan view of the substrate when application of ink is completed in the modification of the first embodiment. As described above, in the modification of the first embodiment, in order to sufficiently prevent color mixing, the ink is drawn in stripes, dried, and then applied to the remaining portions where the ink is not applied. This is dried to form a pattern film.
Even in such a form, similarly to the first embodiment, the luminance variation can be sufficiently suppressed, and a liquid crystal display device excellent in display quality can be obtained.
実施形態2
4色カラーフィルタの場合、図10のような複数回塗布で混色を防ぎつつ、色膜厚の均一化ができる。
図10は、実施形態2のカラーフィルタ基板の製造方法の各工程後における基板の断面模式図である。図10中、その右側に(2A)の符号が記載された基板(以下、基板2Aともいう。他の符号についても同様である。)は、インクジェット法により1回目の塗布を行った直後の基板の断面を模式的に示す。基板2Bは、1回目の乾燥を行った直後の基板の断面を模式的に示す。基板2Cは、インクジェット法により1回目塗布時のインクの厚さ(インクの色材の量)と比べてインクの厚さ(インクの色材の量)を変化させた2回目の塗布を行った直後の基板の断面を模式的に示す。図10では、2回目において塗布量を減量させて新たに左側から一絵素おきにG(緑)、Y(黄)、G(緑)、Y(黄)を塗布した様子が示されている。塗布量(色材の塗布量)を減量する割合は、1回の焼成により色材が収縮等の体積変化をする割合に応じて適宜設定することができる。基板2Dは、2回目の乾燥を行った後のカラーフィルタ基板の断面を模式的に示す。
Embodiment 2
In the case of a four-color filter, the color film thickness can be made uniform while preventing color mixing by applying multiple times as shown in FIG.
FIG. 10 is a schematic cross-sectional view of a substrate after each step of the color filter substrate manufacturing method of Embodiment 2. In FIG. 10, the substrate on which the symbol (2A) is written on the right side (hereinafter also referred to as substrate 2A. The same applies to other symbols) is the substrate immediately after the first application by the inkjet method. The cross section of is schematically shown. The substrate 2B schematically shows a cross section of the substrate immediately after the first drying. The substrate 2C was subjected to the second application by changing the ink thickness (the amount of ink color material) compared to the ink thickness (the amount of ink color material) at the first application by the inkjet method. The cross section of the board | substrate just after is shown typically. FIG. 10 shows a state in which the application amount is reduced in the second time and G (green), Y (yellow), G (green), and Y (yellow) are newly applied every other picture element from the left side. . The ratio at which the coating amount (the coating amount of the color material) is reduced can be appropriately set according to the ratio at which the color material undergoes volume change such as shrinkage by one firing. The substrate 2D schematically shows a cross section of the color filter substrate after the second drying.
図10では、上述したように、基板2Aにおいて塗布された赤色のインクの色材量又は青色のインクの色材量よりも、基板2Cにおいて新たに塗布された緑色のインクの色材量又は黄色のインクの色材量の方が減っている。一方、基板2Aにおいて塗布されたインクは、2回の乾燥工程を経ることになるが、基板2Cにおいて新たに塗布されたインクは、1回の乾燥工程を経るだけであり、基板2Aにおいて塗布されたインクの方が基板2Cにおいて塗布されたインクよりも色材がより体積変化をする。例えば、5~7%収縮する。以上より、実施形態2の製造方法により製造されたカラーフィルタ基板は、カラーフィルタの膜厚(最終膜厚)が充分に均一となる。これにより、液晶表示パネルでのちらつきを充分に抑制することができ、表示品位を優れたものとすることができる。 In FIG. 10, as described above, the amount of the color material of the green ink newly applied on the substrate 2 </ b> C or the yellow amount of the color material of the red ink applied on the substrate 2 </ b> A or the amount of the blue ink. The amount of color material in the ink is decreasing. On the other hand, the ink applied on the substrate 2A goes through two drying steps, but the ink newly applied on the substrate 2C only goes through one drying step and is applied on the substrate 2A. The volume of the color material changes more in the ink than in the ink applied on the substrate 2C. For example, it shrinks by 5-7%. As described above, in the color filter substrate manufactured by the manufacturing method of Embodiment 2, the film thickness (final film thickness) of the color filter is sufficiently uniform. Thereby, the flicker in the liquid crystal display panel can be sufficiently suppressed, and the display quality can be improved.
図11は、実施形態2において1回目塗布(インクジェット描画1回目)時に千鳥格子状に塗布(描画)されるインクを示した基板の平面模式図である。図12は、実施形態2において2回目塗布時に千鳥格子状に塗布されるインクを示した基板の平面模式図である。なお、図12では、1回目塗布時に塗布されるインクは示していない。図13は、実施形態2においてインクの塗布が完了した時のカラーフィルタ基板の平面模式図である。このように、実施形態2においては混色を充分に防止するために、インクを千鳥格子状に描画し、これを乾燥し、その後、インクが塗布されていない残りの箇所にインクを塗布し、これを乾燥してパターン膜を形成している。 FIG. 11 is a schematic plan view of a substrate showing ink applied (drawn) in a staggered pattern at the time of first application (inkjet drawing first time) in the second embodiment. FIG. 12 is a schematic plan view of a substrate showing ink applied in a staggered pattern during the second application in the second embodiment. In FIG. 12, the ink applied at the first application is not shown. FIG. 13 is a schematic plan view of the color filter substrate when ink application is completed in the second embodiment. As described above, in the second embodiment, in order to sufficiently prevent color mixture, the ink is drawn in a staggered pattern, dried, and then applied to the remaining portions where the ink is not applied. This is dried to form a pattern film.
千鳥格子状に塗布(千鳥描画)するフローとしては、実施形態1と同様に、例えば、インクジェット描画1回目、本焼成1回目(240℃、40分)、インクジェット描画2回目、本焼成2回目(240℃、40分)をこの順で行うことができる。
なお、このような千鳥描画等の複数回の塗布工程を行う場合、上述したように、インクジェット描画1回目で描画されたインクは、本焼成を2回経ることになり、インクジェット2回目で描画されたインクは、本焼成を1回しか経ないことになる。
As a flow for applying in a staggered pattern (staggered drawing), for example, the first inkjet drawing, the first firing (240 ° C., 40 minutes), the second inkjet drawing, the second firing, as in the first embodiment. (240 ° C., 40 minutes) can be performed in this order.
When performing a plurality of coating processes such as staggered drawing, as described above, the ink drawn in the first ink jet drawing passes through the main baking twice, and is drawn in the second ink jet drawing. The ink that has been subjected to the main baking only once.
また、色材の収縮による膜厚減少量は、インクの種類によって異なり、それぞれの膜厚減少量に応じて適宜色材の塗布量を調整することができるが、例えば、色材の収縮に起因して、1回の本焼成で膜厚が5%~7%減少する。千鳥描画等の複数回の塗布工程を行う場合、インク種にもよるが、2回目のインクジェット描画の色材の塗布量は、1回目の色材の塗布量100質量%に対して5%~7%減少させる。
このように2回目描画の塗布量を5%~7%減らすことで、1回目、2回目の膜厚を充分に均一化する。
In addition, the amount of film thickness reduction due to color material shrinkage varies depending on the type of ink, and the amount of color material applied can be adjusted appropriately according to the amount of film thickness reduction. Thus, the film thickness is reduced by 5% to 7% by one main firing. When performing a plurality of application processes such as staggered drawing, the amount of the color material applied for the second ink jet drawing is 5% to 100% by mass of the first color material application amount, depending on the ink type. Reduce by 7%.
Thus, by reducing the coating amount of the second drawing by 5% to 7%, the first and second film thicknesses are sufficiently uniformed.
膜厚が充分に均一化されたことにより、実施形態1と同様に、絵素ごとのセル厚が充分に均一化される。その結果、画素間の輝度ばらつきを充分に抑制することができ、表示品位に優れた液晶表示装置とすることができる。 As the film thickness is sufficiently uniformed, the cell thickness for each pixel is sufficiently uniformed as in the first embodiment. As a result, luminance variation between pixels can be sufficiently suppressed, and a liquid crystal display device excellent in display quality can be obtained.
図14は、実施形態2の変形例のカラーフィルタ基板の製造方法の各工程後における基板の断面模式図である。実施形態2の変形例では、インクジェット法を用いてインクをストライプ状に描画している。図14中、その下側に(2A′)の符号が記載された基板(以下、基板2A′ともいう。他の符号についても同様である。)は、インクジェット法により1回目の塗布を行った直後の基板の断面を模式的に示す。基板2B′は、1回目の乾燥を行った直後の基板の断面を模式的に示す。基板2C′は、インクジェット法により1回目塗布時のインクに含まれる色材の質量を変化させた(付言すれば、インクの液量自体も同様の割合で変化させた)2回目の塗布(第2塗布工程)を行った直後の基板の断面を模式的に示す。図14では、1回目よりも色材の塗布量を減量させて新たに左側からR(赤)、G(緑)、B(青)、Y(黄)を塗布した様子が示されている。色材の塗布量を減量する割合は、1回の焼成により色材が収縮等の体積変化をする割合に応じて適宜設定することができる。基板2D′は、2回目の乾燥を行った後のカラーフィルタ基板の断面を模式的に示す。 FIG. 14 is a schematic cross-sectional view of a substrate after each step of a color filter substrate manufacturing method according to a modification of the second embodiment. In the modification of the second embodiment, ink is drawn in a stripe shape using an ink jet method. In FIG. 14, a substrate (2A ′) written on the lower side thereof (hereinafter also referred to as substrate 2A ′; the same applies to other symbols) was applied for the first time by the ink jet method. The cross section of the board | substrate just after is shown typically. The substrate 2B ′ schematically shows a cross section of the substrate immediately after the first drying. Substrate 2C ′ was changed in the mass of the color material contained in the ink at the time of the first application by the ink jet method (in other words, the ink amount itself was changed at the same rate). 2 schematically shows a cross section of the substrate immediately after performing the (2 coating step). FIG. 14 shows a state in which R (red), G (green), B (blue), and Y (yellow) are newly applied from the left side by reducing the coating amount of the color material from the first time. The ratio of reducing the coating amount of the color material can be appropriately set according to the ratio at which the color material undergoes volume change such as shrinkage by one firing. The substrate 2D ′ schematically shows a cross section of the color filter substrate after the second drying.
図15は、実施形態2の変形例において1回目塗布(インクジェット描画1回目)時にストライプ状に描画されるインクを示した基板の平面模式図である。図16は、実施形態2の変形例において2回目塗布時にストライプ状に描画されるインクを示した基板の平面模式図である。なお、図16では、1回目塗布時に塗布されるインクは示していない。図17は、実施形態2の変形例においてインクの塗布が完了した時の基板の平面模式図である。このように、実施形態2の変形例においては混色を充分に防止するために、インクをストライプ状に描画し、これを乾燥し、その後、インクが塗布されていない残りの箇所にインクを塗布し、これを乾燥してパターン膜を形成している。
このような形態によっても、実施形態2と同様に、輝度ばらつきを充分に抑制することができ、表示品位に優れた液晶表示装置とすることができる。
FIG. 15 is a schematic plan view of a substrate showing ink drawn in a stripe shape at the first application (inkjet drawing first time) in the modification of the second embodiment. FIG. 16 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the second application in a modification of the second embodiment. In FIG. 16, the ink applied at the first application is not shown. FIG. 17 is a schematic plan view of the substrate when the application of ink is completed in the modification of the second embodiment. As described above, in the modification of the second embodiment, in order to sufficiently prevent color mixing, the ink is drawn in stripes, dried, and then applied to the remaining portions where the ink is not applied. This is dried to form a pattern film.
Even in such a form, similarly to the second embodiment, the luminance variation can be sufficiently suppressed, and a liquid crystal display device excellent in display quality can be obtained.
実施形態3
6色カラーフィルタの場合、図18のような複数回塗布で混色を防ぎつつ、色膜厚の均一化ができる。
図18は、実施形態3のカラーフィルタ基板の製造方法の各工程後における基板の断面模式図である。図18中、その下側に(3A)の符号が記載された基板(以下、基板3Aともいう。他の符号についても同様である。)は、インクジェット法により1回目の塗布を行った直後の基板の断面を模式的に示す。基板3Bは、1回目の乾燥を行った直後の基板の断面を模式的に示す。基板3Cは、インクジェット法により1回目塗布時のインクの厚さ(インクの色材の量)とインクの厚さ(インクの色材の量)を変化させた2回目の塗布を行った直後の基板の断面を模式的に示す。図18では、2回目において塗布量を減量させて新たに左側から一絵素おきにG(緑)、M(マゼンダ)、C(シアン)、G(緑)、M(マゼンダ)、C(シアン)を塗布した様子が示されている。塗布量(色材の塗布量)を減量する割合は、1回の焼成により色材が収縮等の体積変化をする割合に応じて適宜設定することができる。基板3Dは、2回目の乾燥を行った後のカラーフィルタ基板の断面を模式的に示す。
Embodiment 3
In the case of a 6-color filter, the color film thickness can be made uniform while preventing color mixing by applying multiple times as shown in FIG.
FIG. 18 is a schematic cross-sectional view of a substrate after each step of the color filter substrate manufacturing method of Embodiment 3. In FIG. 18, the substrate (3A) indicated below (hereinafter also referred to as substrate 3A. The same applies to other symbols) is provided immediately after the first application by the ink jet method. The cross section of a board | substrate is shown typically. The substrate 3B schematically shows a cross section of the substrate immediately after the first drying. The substrate 3C was immediately after the second application with the ink thickness (amount of ink color material) and the ink thickness (amount of ink color material) changed at the first application by the inkjet method. The cross section of a board | substrate is shown typically. In FIG. 18, the coating amount is reduced at the second time, and G (green), M (magenta), C (cyan), G (green), M (magenta), C (cyan) are newly added every other picture element from the left side. ) Is shown. The ratio at which the coating amount (the coating amount of the color material) is reduced can be appropriately set according to the ratio at which the color material undergoes volume change such as shrinkage by one firing. Substrate 3D schematically shows a cross section of the color filter substrate after the second drying.
図18では、上述したように、基板3Aにおいて塗布された赤色のインクの色材量、青色のインクの色材量又は黄色のインクの色材量よりも、基板3Cにおいて新たに塗布された緑色のインクの色材量、マゼンダ色のインクの色材量又はシアン色のインクの色材量の方が減っている。一方、基板3Aにおいて塗布されたインクは、2回の乾燥工程を経ることになるが、基板3Cにおいて新たに塗布されたインクは、1回の乾燥工程を経るだけであり、基板3Aにおいて塗布されたインクの方が基板3Cにおいて塗布されたインクよりも色材がより体積変化をする。例えば、5~7%収縮する。以上より、実施形態3の製造方法により製造されたカラーフィルタ基板は、カラーフィルタの膜厚(最終膜厚)が充分に均一となる。これにより、液晶表示パネルでのちらつきを充分に抑制することができ、表示品位を優れたものとすることができる。 In FIG. 18, as described above, the green color newly applied on the substrate 3 </ b> C is larger than the color material amount of the red ink applied on the substrate 3 </ b> A, the color material amount of the blue ink, or the color material amount of the yellow ink. The amount of the ink color material, the color material amount of the magenta ink, or the color material amount of the cyan ink is reduced. On the other hand, the ink applied on the substrate 3A undergoes two drying steps, but the ink newly applied on the substrate 3C only passes one drying step and is applied on the substrate 3A. The color material changes in volume more than the ink applied on the substrate 3C. For example, it shrinks by 5-7%. As described above, in the color filter substrate manufactured by the manufacturing method of Embodiment 3, the film thickness (final film thickness) of the color filter is sufficiently uniform. Thereby, the flicker in the liquid crystal display panel can be sufficiently suppressed, and the display quality can be improved.
図19は、実施形態3において1回目塗布(インクジェット描画1回目)時にストライプ状に描画されるインクを示した基板の平面模式図である。図20は、実施形態3において2回目塗布時にストライプ状に描画されるインクを示した基板の平面模式図である。なお、図20では、1回目塗布時に塗布されるインクは示していない。図21は、実施形態3においてインクの塗布が完了した時の基板の平面模式図である。このように、実施形態3においては混色を充分に防止するために、インクをストライプ状に描画し、これを乾燥し、その後、インクが塗布されていない残りの箇所にインクを塗布し、これを乾燥してパターン膜を形成している。 FIG. 19 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the first application (inkjet drawing first time) in the third embodiment. FIG. 20 is a schematic plan view of a substrate showing ink drawn in a stripe shape during the second application in the third embodiment. In FIG. 20, ink applied at the first application is not shown. FIG. 21 is a schematic plan view of a substrate when ink application is completed in the third embodiment. Thus, in the third embodiment, in order to sufficiently prevent color mixing, the ink is drawn in stripes, dried, and then applied to the remaining portions where the ink is not applied. The pattern film is formed by drying.
ストライプ状に描画するフローとしては、実施形態1における千鳥格子状に塗布(千鳥描画)するフローと同様に、例えば、インクジェット描画1回目、本焼成1回目(240℃、40分)、インクジェット描画2回目、本焼成2回目(240℃、40分)をこの順で行うことができる。
なお、このようなストライプ状描画等の複数回の塗布工程を行う場合、上述したように、インクジェット描画1回目で描画されたインクは、本焼成を2回経ることになり、インクジェット2回目で描画されたインクは、本焼成を1回しか経ないことになる。
As the flow of drawing in a stripe shape, for example, the first ink jet drawing, the first firing (240 ° C., 40 minutes), the ink jet drawing, as in the flow of applying in a staggered pattern (staggered drawing) in the first embodiment. The second and final firing (240 ° C., 40 minutes) can be performed in this order.
When performing a plurality of coating processes such as stripe drawing as described above, the ink drawn in the first ink jet drawing passes through the main baking twice and is drawn in the second ink jet drawing. The ink that has been subjected to the main baking only once.
また、色材の収縮による膜厚減少量は、インクの種類によって異なり、それぞれの膜厚減少量に応じて適宜色材の塗布量を調整することができるが、例えば、色材の収縮に起因して、1回の本焼成で膜厚が5%~7%減少する。ストライプ状描画等の複数回の塗布工程を行う場合、インク種にもよるが、2回目のインクジェット描画の色材の塗布量は、1回目の色材の塗布量100質量%に対して5%~7%減少させる。
このように2回目描画の塗布量を5%~7%減らすことで、1回目、2回目の膜厚を充分に均一化する。
In addition, the amount of film thickness reduction due to color material shrinkage varies depending on the type of ink, and the amount of color material applied can be adjusted appropriately according to the amount of film thickness reduction. Thus, the film thickness is reduced by 5% to 7% by one main firing. When performing a plurality of application processes such as stripe drawing, the amount of the color material applied for the second ink jet drawing is 5% with respect to 100% by mass of the color material applied for the first time, depending on the type of ink. Reduce by ~ 7%.
Thus, by reducing the coating amount of the second drawing by 5% to 7%, the first and second film thicknesses are sufficiently uniformed.
膜厚が充分に均一化されたことにより、実施形態1と同様に、絵素ごとのセル厚が充分に均一化される。その結果、画素間の輝度ばらつきを充分に抑制することができ、表示品位に優れた液晶表示装置とすることができる。 As the film thickness is sufficiently uniformed, the cell thickness for each pixel is sufficiently uniformed as in the first embodiment. As a result, luminance variation between pixels can be sufficiently suppressed, and a liquid crystal display device excellent in display quality can be obtained.
本実施形態では、第2塗布工程により塗布されたインクが、第1塗布工程により塗布されたインクと比べて、色材の質量が異なるものとするものであるが、インクにおける不揮発成分を異なるものとしているとも言え、このようにインクにおける不揮発成分を異なるものとする態様が好ましい。本発明における不揮発成分の塗布量等の好ましい形態は、本発明における色材の塗布量等の好ましい形態と同様である。
なお、本実施形態では、千鳥格子状に塗布(千鳥描画)するフロー、ストライプ状に描画するフローについて示し、これらのフローが好適であるが、それぞれの塗布工程において異なる色のインクが縦横隣り合う絵素に塗布されない様に塗布されるものであればよい。
In the present embodiment, the ink applied in the second application process is different in mass of the color material from the ink applied in the first application process, but the non-volatile components in the ink are different. It can be said that the non-volatile component in the ink is different as described above. The preferred forms such as the coating amount of the nonvolatile component in the present invention are the same as the preferred forms such as the coating amount of the coloring material in the present invention.
In the present embodiment, a flow for applying in a staggered pattern (drawing in a staggered pattern) and a flow for drawing in a stripe shape are preferable. These flows are suitable, but different colors of ink are vertically and horizontally adjacent to each application process. What is necessary is just to apply | coat so that it may not apply to a suitable picture element.
本実施形態では、パターン膜を液晶表示装置のカラーフィルタに適用した場合について説明した。なお、本実施形態の液晶表示装置としては、一対の基板(回路基板及びカラーフィルタ基板)、当該一対の基板により挟持される液晶層、一対の基板の液晶層と反対側にそれぞれ配置される偏光板、光源等の通常の液晶表示装置に用いられる部材を適宜用いることができる。 In the present embodiment, the case where the pattern film is applied to the color filter of the liquid crystal display device has been described. The liquid crystal display device of the present embodiment includes a pair of substrates (circuit board and color filter substrate), a liquid crystal layer sandwiched between the pair of substrates, and polarized light disposed on the opposite side of the pair of substrates from the liquid crystal layer. Members used for a normal liquid crystal display device such as a plate and a light source can be appropriately used.
また本実施形態では、パターン膜を液晶表示装置のカラーフィルタに適用した場合について説明したが、上述したように、本発明のパターン膜は、プラズマパネル、有機EL等の自発光ディスプレイやプロジェクターの投影素子における発光体等、インクジェット法により形成される膜を用いる種々の用途に適用することが可能であり、同様に発光体等の輝度ばらつきを抑制して発光装置による表示において表示品位を充分に向上させる効果を発揮することができる。
また、本実施形態のパターン膜は、3D表示用の液晶表示装置や発光装置に適宜適用することができる。
Further, in the present embodiment, the case where the pattern film is applied to the color filter of the liquid crystal display device has been described. However, as described above, the pattern film of the present invention is a projection of a self-luminous display such as a plasma panel or an organic EL or a projector. It can be applied to various uses using a film formed by an ink jet method, such as a light emitter in an element, and the display quality is sufficiently improved in display by a light emitting device by similarly suppressing luminance variation of the light emitter. Effect can be exerted.
In addition, the pattern film of the present embodiment can be appropriately applied to a liquid crystal display device or a light emitting device for 3D display.
比較例1
図22は、比較例1のカラーフィルタ基板の製造方法の各工程後における基板の断面模式図である。図22中、その右側に(a)の符号が記載された基板(以下、基板aともいう。他の符号についても同様である。)は、インクジェット法により1回目の塗布を行った直後の基板の断面を模式的に示す。基板bは、1回目の塗布を行った直後の基板の断面を模式的に示す。基板cは、インクジェット法により1回目塗布時の膜厚(インクの液の厚さ)と同じとなるように2回目の塗布を行った直後の基板の断面を模式的に示す。図22では、1回目と同じ塗布量で新たに左側から一絵素おきにG(緑)、R(赤)、B(青)、G(緑)を塗布した様子が示されている。基板dは、2回目の乾燥を行った後のカラーフィルタ基板の断面を模式的に示す。
Comparative Example 1
22 is a schematic cross-sectional view of the substrate after each step of the method for manufacturing the color filter substrate of Comparative Example 1. FIG. In FIG. 22, the substrate on which the symbol (a) is written on the right side (hereinafter also referred to as substrate a. The same applies to other symbols) is the substrate immediately after the first application by the inkjet method. The cross section of is schematically shown. The board | substrate b shows typically the cross section of the board | substrate just after performing the 1st application | coating. The board | substrate c shows typically the cross section of the board | substrate just after performing the 2nd application | coating so that it may become the same as the film thickness (thickness of the ink liquid) at the time of the 1st application | coating by the inkjet method. FIG. 22 shows a state in which G (green), R (red), B (blue), and G (green) are newly applied every other picture element from the left side at the same application amount as the first time. Substrate d schematically shows a cross section of the color filter substrate after the second drying.
図22では、上述したように、基板aにおいて塗布された緑色のインクの色材塗布量と、基板cにおいて新たに塗布された緑色のインクの色材塗布量とが同量である。一方、基板aにおいて塗布されたインクは、2回の乾燥工程を経ることになるが、基板cにおいて新たに塗布されたインクは、1回の乾燥工程を経るだけであり、基板aにおいて塗布されたインクの方が基板cにおいて塗布されたインクよりも色材がより収縮する。例えば、5~7%収縮する。言い換えれば、描画1回目と描画2回目とを同じ塗布量(色材の量が同じ)としたことにより、1回目で描画されたインク部分の方が、本焼成を2回経るために、2回目描画の膜厚と比較すると例えば5~7%薄くなり、不均一になる。以上より、比較例1の製造方法により製造されたカラーフィルタ基板は、カラーフィルタの膜厚(最終膜厚)が充分に均一とならず、ばらつくこととなる。これにより、液晶表示パネルにおいてちらつきが発生した。 In FIG. 22, as described above, the color material application amount of the green ink applied on the substrate a and the color material application amount of the green ink newly applied on the substrate c are the same amount. On the other hand, the ink applied on the substrate a undergoes two drying steps, but the ink newly applied on the substrate c only passes one drying step, and is applied on the substrate a. The color material contracts more in the ink than in the ink applied on the substrate c. For example, it shrinks by 5-7%. In other words, since the first drawing and the second drawing have the same application amount (the same amount of coloring material), the ink portion drawn at the first time undergoes the main baking twice, so that 2 Compared to the film thickness of the first drawing, for example, it is 5 to 7% thinner and non-uniform. As described above, in the color filter substrate manufactured by the manufacturing method of Comparative Example 1, the film thickness (final film thickness) of the color filter is not sufficiently uniform and varies. As a result, flickering occurred in the liquid crystal display panel.
なお、比較例1は、混色を充分に防止するために、実施形態1と同様に、インクを千鳥格子状に描画し、これを乾燥し、その後、インクが塗布されていない残りの箇所にインクを塗布し、これを乾燥してパターン膜を形成している。 In Comparative Example 1, in order to sufficiently prevent color mixing, ink is drawn in a staggered pattern, dried, and then dried in the remaining portions where no ink is applied, as in the first embodiment. Ink is applied and dried to form a pattern film.
千鳥格子状に塗布(千鳥描画)するフローとしては、例えば、実施形態1において上述したのと同様である。 The flow of applying (staggered drawing) in a staggered pattern is the same as that described in Embodiment 1, for example.
図23は、比較例1に係るカラーフィルタ基板を備える液晶表示装置の断面模式図である。膜厚が充分に均一化されないことにより、絵素ごとのセル厚が充分に均一化されていない。その結果、画素間に輝度ばらつきが生じることとなり、液晶表示装置における表示品位を損なうことになる。 FIG. 23 is a schematic cross-sectional view of a liquid crystal display device including a color filter substrate according to Comparative Example 1. Since the film thickness is not sufficiently uniformed, the cell thickness for each picture element is not sufficiently uniformed. As a result, luminance variation occurs between pixels, and the display quality of the liquid crystal display device is impaired.
上述した実施形態における各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。 Each form in embodiment mentioned above may be combined suitably in the range which does not deviate from the summary of this invention.
なお、本願は、2010年11月29日に出願された日本国特許出願2010-265615号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。 This application claims priority based on the Paris Convention or the laws and regulations of the country to which the transition is based on Japanese Patent Application No. 2010-265615 filed on November 29, 2010. The contents of the application are hereby incorporated by reference in their entirety.
1A、1B、1C、1A′、1B′、1C′、2A、2B、2C、2A′、2B′、2C′、3A、3B、3C、a、b、c:基板
1D、1D′、2D、2D′、3D、d:カラーフィルタ基板
R:赤
G:緑 
B:青 
Y:黄
1A, 1B, 1C, 1A ′, 1B ′, 1C ′, 2A, 2B, 2C, 2A ′, 2B ′, 2C ′, 3A, 3B, 3C, a, b, c: substrates 1D, 1D ′, 2D, 2D ′, 3D, d: Color filter substrate R: Red G: Green
B: Blue
Y: Yellow

Claims (5)

  1. インクジェット法を用いて、複数工程によって色材を含むインクから該色材によるパターン膜を製造する方法であって、
    該製造方法は、インクジェット法を用いてインクを塗布する第1塗布工程、
    該第1塗布工程により塗布されたインクを乾燥させる第1乾燥工程、
    インクジェット法を用いてインクを塗布する第2塗布工程、及び、
    該第2塗布工程により塗布されたインクを乾燥させる第2乾燥工程
    をこの順で含み、
    該第2塗布工程により塗布されたインクは、該第1塗布工程により塗布されたインクと比べて、色材の質量がより少ない
    ことを特徴とするパターン膜の製造方法。
    A method of producing a pattern film made of a color material from an ink containing the color material by a plurality of steps using an inkjet method,
    The manufacturing method includes a first application step of applying ink using an inkjet method,
    A first drying step of drying the ink applied in the first application step;
    A second application step of applying ink using an inkjet method; and
    A second drying step for drying the ink applied in the second application step in this order;
    The method for producing a patterned film, wherein the ink applied in the second application step has a smaller mass of color material than the ink applied in the first application step.
  2. 請求項1に記載のパターン膜の製造方法により得られることを特徴とするパターン膜。 A pattern film obtained by the method for producing a pattern film according to claim 1.
  3. 請求項2に記載のパターン膜がカラーフィルタとして設けられていることを特徴とするカラーフィルタ基板。 A color filter substrate, wherein the pattern film according to claim 2 is provided as a color filter.
  4. 請求項3に記載のカラーフィルタ基板を備えることを特徴とする液晶表示装置。 A liquid crystal display device comprising the color filter substrate according to claim 3.
  5. 請求項2に記載のパターン膜が発光素子として設けられていることを特徴とする発光装置。 A light-emitting device, wherein the pattern film according to claim 2 is provided as a light-emitting element.
PCT/JP2011/076867 2010-11-29 2011-11-22 Patterned film manufacturing method, patterned film, color filter substrate, liquid crystal display device, and light-emitting device WO2012073754A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-265615 2010-11-29
JP2010265615 2010-11-29

Publications (1)

Publication Number Publication Date
WO2012073754A1 true WO2012073754A1 (en) 2012-06-07

Family

ID=46171696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076867 WO2012073754A1 (en) 2010-11-29 2011-11-22 Patterned film manufacturing method, patterned film, color filter substrate, liquid crystal display device, and light-emitting device

Country Status (1)

Country Link
WO (1) WO2012073754A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107231A (en) * 2001-09-27 2003-04-09 Seiko Epson Corp Manufacturing method for color filter, liquid crystal device equipped with the color filter, and electronic equipment
JP2004140004A (en) * 2000-11-28 2004-05-13 Seiko Epson Corp Manufacturing method of organic electroluminescent device, and organic electroluminescent device and electronic device
JP2004361428A (en) * 2003-05-30 2004-12-24 Seiko Epson Corp Method for manufacturing color filter, color filter substrate and its manufacturing method, electroluminescence substrate and its manufacturing method, electro-optic device and its manufacturing method, electronic appliance and its manufacturing method, and film forming method
JP2009277578A (en) * 2008-05-16 2009-11-26 Panasonic Corp Manufacturing method of light-emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140004A (en) * 2000-11-28 2004-05-13 Seiko Epson Corp Manufacturing method of organic electroluminescent device, and organic electroluminescent device and electronic device
JP2003107231A (en) * 2001-09-27 2003-04-09 Seiko Epson Corp Manufacturing method for color filter, liquid crystal device equipped with the color filter, and electronic equipment
JP2004361428A (en) * 2003-05-30 2004-12-24 Seiko Epson Corp Method for manufacturing color filter, color filter substrate and its manufacturing method, electroluminescence substrate and its manufacturing method, electro-optic device and its manufacturing method, electronic appliance and its manufacturing method, and film forming method
JP2009277578A (en) * 2008-05-16 2009-11-26 Panasonic Corp Manufacturing method of light-emitting device

Similar Documents

Publication Publication Date Title
US9188718B2 (en) Color filter substrate comprising a first filter block having an area less than an area of a colorful filter block and liquid crystal display
US9107274B2 (en) Color display element manufacturing method and color display element
JP4592448B2 (en) Substrate for display device
US11678525B2 (en) Display substrate, manufacturing method thereof, and display device
US8619220B2 (en) Liquid crystal display panel and color filter
KR101281877B1 (en) Color filter array panel and Fabricating method thereof
US7952660B2 (en) Method of fabricating black matrices of color filter
US8059234B2 (en) Color filter and black matrix thereof
TWI453505B (en) Pixel unit of full-color display panel and method of fabricating color filter layer of full-color display panel
WO2014176904A1 (en) Display device, color film substrate and manufacturing method thereof
KR20070077677A (en) Flatness method with height gap of color filter in tft-lcd and color filter board
WO2012073754A1 (en) Patterned film manufacturing method, patterned film, color filter substrate, liquid crystal display device, and light-emitting device
WO2015182098A1 (en) Substrate and method for producing panel
JP2007034250A (en) Method for manufacturing color filter
JP5941044B2 (en) Color filter substrate manufacturing method, display device manufacturing method, color filter substrate, and display device
US20090195574A1 (en) Method for Jetting Color Ink
JP4893017B2 (en) PRINTED MATERIAL MANUFACTURING METHOD, COLOR FILTER MANUFACTURING METHOD, AND PATTERN FORMING METHOD
JP2006162706A (en) Color filter, display panel, display device, and manufacturing method of color filter
US8144291B2 (en) Display device and production method thereof
TWI644154B (en) Color display panel and method for preparing the same
KR20120045360A (en) Method for inkjet printing
JP2007094312A (en) Print and its manufacturing method
JP2007279081A (en) Method for manufacturing color filter
JP2002122728A (en) Color filter, method for manufacturing the same and liquid crystal element
TWI394988B (en) Method of forming color filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP