WO2012073735A1 - Transmission control device - Google Patents

Transmission control device Download PDF

Info

Publication number
WO2012073735A1
WO2012073735A1 PCT/JP2011/076771 JP2011076771W WO2012073735A1 WO 2012073735 A1 WO2012073735 A1 WO 2012073735A1 JP 2011076771 W JP2011076771 W JP 2011076771W WO 2012073735 A1 WO2012073735 A1 WO 2012073735A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
engine
target torque
clutch
target
Prior art date
Application number
PCT/JP2011/076771
Other languages
French (fr)
Japanese (ja)
Inventor
年雄 水野
Original Assignee
ダイムラー・アクチェンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイムラー・アクチェンゲゼルシャフト filed Critical ダイムラー・アクチェンゲゼルシャフト
Publication of WO2012073735A1 publication Critical patent/WO2012073735A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • F16H59/52Inputs being a function of the status of the machine, e.g. position of doors or safety belts dependent on the weight of the machine, e.g. change in weight resulting from passengers boarding a bus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/688Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches

Definitions

  • the present invention relates to a shift control device that controls a shift operation of an automatic transmission.
  • an automatic transmission that includes a speed change mechanism having a rotating element that rotates with a transmission torque from an engine (internal combustion engine) and a plurality of friction engagement elements.
  • DCT dual clutch type automatic transmission
  • the gear set is divided into two systems of even and odd stages and each gear set is provided with a clutch (friction engagement element)
  • one clutch is released while the other clutch Is engaged to change the gear ratio (see, for example, Patent Document 1).
  • a smooth speed change operation is achieved by cooperatively controlling the operation of the two clutches and switching them.
  • an automatic transmission (torque type AT) that combines a planetary gear mechanism composed of a plurality of rotating elements and a torque converter
  • a clutch or brake (friction engaging element) that restrains and releases the rotating operation of each rotating element
  • the gear ratio is changed by changing the combination of connection and disconnection (see, for example, Patent Document 2).
  • a smooth speed change operation can be expected by synchronizing the operation of the brake for releasing the rotating element and the operation of the brake to be engaged.
  • a control phase such as a torque phase and an inertia phase is set, and a smooth shift operation is realized.
  • the torque phase is a phase in which torque is transferred from one friction engagement element to the other friction engagement element without changing the engine speed input to the automatic transmission.
  • the engagement-side friction engagement element is gradually engaged, and at the same time, the release-side friction engagement element is gradually released.
  • the torque transmission destination is switched from one input shaft connected to the frictional engagement element on the release side to the other input shaft, and the output shaft torque of the automatic transmission is reduced without any load acting on the engine. To do.
  • the inertia phase is a phase in which the input rotational speed of the automatic transmission is synchronized with the rotational speed of the frictional engagement element on the engagement side.
  • the release-side frictional engagement element is almost completely released to cut off torque transmission, and the engagement-side frictional engagement element is further engaged to transmit torque.
  • the inertia (inertia) on the input side of the automatic transmission changes due to the engagement of the frictional engagement element on the engagement side, and the engine speed also changes. Therefore, in the inertia phase, the engagement shock is engaged more slowly than in the torque phase, and the shift shock is suppressed.
  • the torque delivered to the input shaft on the engagement side is covered by the decrease in torque input to the release side. That is, if the torque is properly transferred from one input shaft to the other input shaft, the engine speed does not change.
  • the magnitude of the torque input to the automatic transmission is a torque obtained by subtracting the torque consumed to increase the engine speed from the engine torque actually generated by the engine.
  • the torque capacity of the frictional engagement element on the engagement side exceeds the engine torque
  • the torque that should be consumed to increase the engine speed flows into the automatic transmission, and the engine speed does not increase.
  • a change in acceleration caused by torsion of drive system components of the automatic transmission or an increase in output shaft torque occurs, and a shock may occur before and after the transition from the torque phase to the inertia phase.
  • the conventional shift control of the automatic transmission has a problem that it is difficult to optimize the engagement-side torque capacity at the time of switching the friction engagement elements.
  • the present invention has been devised in view of the above-described problems, and an object thereof is to provide a shift control device capable of suppressing a torque shock during a shift operation by suitable control of the engagement side torque capacity.
  • the present invention is not limited to this purpose, and is a function and effect derived from each configuration shown in the embodiments for carrying out the invention described later, and other effects of the present invention are to obtain a function and effect that cannot be obtained by conventional techniques. Can be positioned.
  • a shift control device disclosed herein is connected to an output shaft of an engine mounted on a vehicle, and releases at least one of a plurality of friction engagement elements and engages at least one other.
  • An automatic transmission that performs a shift operation and vehicle weight detection means that detects a vehicle weight of the vehicle are provided.
  • a setting unit configured to set a target torque of the friction engagement element according to the vehicle weight detected by the vehicle weight detection unit; and the automatic transmission based on the target torque set by the setting unit.
  • the setting means sets the first target torque as the target torque when the vehicle weight is equal to or less than a predetermined weight, and the vehicle weight is larger than the predetermined weight It is preferable to have a second setting means for setting a second target torque as the target torque separately from the first target torque set by the first setting means.
  • said 1st setting means sets the said 1st target torque to the value below the driver request torque requested
  • the difference between the driver request torque and the first target torque is referred to as margin torque.
  • the said 1st setting means increases the difference of the said driver request torque and the said 1st target torque, so that the said driver request torque is large. That is, it is preferable that the first setting means increases the margin torque as the driver request torque is larger.
  • the said 1st setting means increases the difference of the said driver request torque and said 1st target torque, so that the said vehicle weight is small. That is, it is preferable that the first setting means increases the margin torque as the vehicle weight is smaller. (6) Moreover, it is preferable that said 2nd setting means sets the said 2nd target torque to the same value as the said driver request torque.
  • a detection means for detecting an engine output torque input to the automatic transmission via the output shaft.
  • the engine output torque detected by the detection means is calculated as an engine rotation speed increase torque that is used to increase the engine rotation speed, and the torque between the engine output torque and the engine rotation speed increase torque is calculated.
  • first calculation means for calculating the difference as engine unused torque.
  • the second setting means can set the second target torque based on the engine unused torque calculated by the first calculation means.
  • said 2nd setting means sets a 2nd target torque to the value more than said 1st target torque.
  • said gear position detecting means for detecting a gear position of the automatic transmission.
  • the setting means can set the target torque in accordance with the shift speed detected by the shift speed detection means and the vehicle weight detected by the vehicle weight detection means.
  • the shift control device of the first aspect by setting the target torque of the friction engagement element according to the vehicle weight, the shift shock allowable amount considering the inertial force of the vehicle and the damping effect can be obtained. Accordingly, the engagement state of the friction engagement element can be controlled. Accordingly, the friction engagement element can be quickly engaged while suppressing the shift shock.
  • the predetermined weight is set to the threshold value by setting different target torques when the vehicle weight is equal to or less than the predetermined weight and when the vehicle weight is larger than the predetermined weight.
  • the friction engagement element on the engagement side can be made smaller than the engine output torque.
  • the friction engagement element on the engagement side can be made smaller than the engine output torque.
  • the torque capacity of the frictional engagement element on the engagement side is surely made smaller than the engine output torque by increasing the marginal torque as the driver request torque increases.
  • the shift shock can be further reduced.
  • the vehicle stability can be improved and the shift shock can be suppressed by increasing the margin torque as the inertial force of the vehicle is smaller.
  • the shift control device of the sixth aspect by setting the target torque to the same value as the driver request torque, it is possible to improve the power performance and the fuel consumption performance in a state where the shift shock is unlikely to occur. it can.
  • the torque capacity of the engagement side frictional engagement element is controlled by controlling the engagement state of the engagement side frictional engagement element based on the engine unused torque. It is possible to provide a margin for the rotational speed increase torque. As a result, fluctuations in engine speed and fluctuations in output shaft torque due to excessive coupling of frictional engagement elements on the engagement side can be suppressed, and shift shocks can be reduced. In addition, since the torque capacity of the clutch on the engagement side has a margin for the engine rotational speed increase torque, individual differences of the clutches and control operation errors can be absorbed, and controllability can be improved.
  • the shift control device of the eighth aspect by increasing the target torque of the frictional engagement element when the inertial force of the vehicle is large, a shock at the time of the shift is made using the inertial force of the vehicle. Can be reduced. Further, since the target torque of the frictional engagement element is small when the inertia force of the vehicle is small, the torque capacity of the frictional engagement element on the engagement side can be made smaller than the engine output torque. As a result, fluctuations in engine speed and fluctuations in output shaft torque due to excessive coupling of frictional engagement elements on the engagement side can be suppressed, and shift shocks can be reduced. Furthermore, since there is a margin in the torque capacity of the clutch on the engagement side, individual differences between the clutches and control operation errors can be absorbed, and controllability can be improved.
  • FIG. 1 It is a figure showing typically the whole gear shift control device composition concerning one embodiment. It is a figure which illustrates the map of the target torque memorize
  • 2 is a flowchart illustrating an example of control performed by the transmission control device of FIG. 1. 2 is a graph illustrating a control action during a shift-up shift by the shift control device of FIG. 1, (a) showing a change with time in engine speed, (b) showing a change with time in clutch drive current, and (c). Indicates fluctuations in the output shaft torque of the automatic transmission. It is a figure which shows typically the whole structure of the transmission control apparatus which concerns on a 1st modification.
  • the transmission control device 10 of the present embodiment is applied to a vehicle equipped with the engine (internal combustion engine) 11 shown in FIG.
  • the engine 11 is a multi-cylinder diesel engine equipped with a common rail fuel injection system.
  • Each cylinder of the engine 11 is provided with a piezo-type injector 19, and the fuel injection amount, injection timing, and the like are electrically controlled.
  • FIG. 1 one of the plurality of injectors 19 is shown.
  • the injector 19 is connected to a common rail that stores high-pressure fuel pressurized by a fuel supply pump (supply pump) (not shown).
  • the common rail distributes and supplies fuel to the injectors 19 of each cylinder.
  • a fine tube in which piezoelectric elements (ceramic piezoelectric elements) are laminated with a slight gap therebetween is provided inside the injector 19, and high-pressure fuel is sealed inside the fine tube.
  • the injector 19 operates to receive a drive signal transmitted from an engine ECU 2 to be described later, deform the piezo element, and push high pressure fuel out of the micropipe to inject and supply it into the combustion chamber of each cylinder.
  • the engine 11 is provided with an engine speed sensor 14 (engine speed detecting means) for detecting the engine speed Ne.
  • the engine speed Ne detected here is transmitted to the engine ECU 2 and a transmission ECU 1 described later.
  • the sensing target of the engine speed sensor 14 may be not only the rotation angle and angular velocity of the crankshaft of the engine 11 but also the angular velocity of the output shaft 11a of the engine 11.
  • the angular speed of the camshaft that rotates in synchronization with the crankshaft may be the sensing target of the engine speed sensor 14.
  • An accelerator opening sensor 15 (accelerator operation amount detecting means) for detecting an accelerator opening ⁇ AC corresponding to the amount of depression of the accelerator pedal, and a vehicle weight W (or loading) are provided at an arbitrary position of the vehicle on which the engine 11 is mounted. And a weight sensor 16 for detecting the weight of the object.
  • the accelerator opening ⁇ AC detected by the accelerator opening sensor 15 is transmitted to the engine ECU 2, and the vehicle weight W detected by the weight sensor 16 is transmitted to the engine ECU 2 and the transmission ECU 1.
  • the accelerator opening ⁇ AC is a parameter corresponding to the driver's acceleration request, in other words, a parameter correlated with the load of the engine 11.
  • the weight W of the vehicle is a parameter corresponding to the inertial mass, and it can be said that this is also a parameter correlated with the load of the engine 11.
  • a specific method for obtaining the vehicle weight W in the weight sensor 16 is arbitrary, and may be detected based on, for example, the weight or pressure acting on the vehicle body frame, tire, or suspension, or may be detected based on engine torque, vehicle speed, or the like. It is good also as what is grasped
  • the automatic transmission 9 is connected to the output shaft 11a of the engine 11.
  • This automatic transmission 9 includes a dual clutch transmission (DCT, Dual Clutch) in which the transmission unit 4 is divided into two systems of even and odd stages and each transmission unit 4 is provided with a clutch 3 (friction engagement element). Transmission).
  • DCT Dual Clutch
  • the first power transmission path 5 ⁇ / b> A and the second power transmission path 5 ⁇ / b> B that are power transmission paths of the automatic transmission 9 are connected in parallel to the output shaft 11 a of the engine 11.
  • the speed change operation of the automatic transmission 9 is achieved by releasing the clutch 3a or 3b interposed on any one of the power transmission paths and engaging the other clutch 3b or 3a.
  • the first clutch 3a and the first transmission unit 4a are provided on the first power transmission path 5A, and the second clutch 3b and the second transmission unit 4b are provided on the second power transmission path 5B.
  • the first clutch 3a and the second clutch 3b move a pair of friction plates in a separating direction or an approaching direction by separating and contacting a plurality of friction plates in a case in which ATF (Automatic Transmission Transmission Fluid) is enclosed.
  • a wet multi-plate clutch that controls the engagement state.
  • the first clutch 3a is responsible for power transmission to the first transmission unit 4a via the first power transmission path 5A
  • the second clutch 3b is directed to the second transmission unit 4b via the second power transmission path 5B. It is responsible for power transmission.
  • Each of the first clutch 3a and the second clutch 3b is provided with hydraulic cylinders 18A and 18B for driving the friction plates in the separation / contact direction.
  • a first oil passage 6A and a second oil passage 6B that guide hydraulic fluid discharged from the hydraulic pump 7 are connected to the hydraulic cylinders 18A and 18B.
  • a first control valve 8A and a second control valve 8B are interposed in each of the first oil passage 6A and the second oil passage 6B.
  • the first control valve 8A and the second control valve 8B are controlled to an opening degree corresponding to the drive current output from the transmission ECU 1, and the respective hydraulic oil flow rates of the first oil passage 6A and the second oil passage 6B are controlled. It is an electromagnetic proportional valve to control.
  • the hydraulic pump 7 is a hydraulic oil pump that discharges hydraulic oil (or ATF) supplied to the hydraulic cylinders 18A and 18B.
  • the first transmission unit 4a and the second transmission unit 4b are transmission mechanisms that house a plurality of gears (gears) in a case lubricated with gear oil, and change the gear ratio (deceleration) by changing the combination of meshing gears. Ratio) in multiple stages.
  • the speed change operation of these speed change units 4a and 4b is controlled by the transmission ECU1.
  • a hydraulic circuit for controlling the speed change operation of these speed change units 4a and 4b is not shown.
  • each of the first transmission unit 4a and the second transmission unit 4b is provided with a first gear sensor 17a and a second gear sensor 17b (shift stage detecting means) for detecting the shift stage G (gear stage).
  • Each gear stage G detected by these gear sensors 17 is transmitted to the transmission ECU 1.
  • the power shafts output from each of the first transmission unit 4a and the second transmission unit 4b are joined to one output shaft 9a.
  • the driving force of the output shaft 9a is transmitted to the driving wheel side provided downstream thereof.
  • odd-numbered stages (1, 3, 5, 7th speed, etc.) of the shift stages G realized by the automatic transmission 9 are shared by the first transmission unit 4a, and even-numbered stages (2, 4, 6, 6). 8th speed etc.) is shared by the second transmission unit 4b.
  • the driving force is transmitted only on the first power transmission path 5A side where the first transmission unit 4a is interposed, and the second power transmission path 5B is not operating.
  • the speed stage G of the second speed change unit 4b is switched to a desired speed stage and is set in a standby state in advance.
  • the friction plate of the first clutch 3a is driven in the releasing direction and the second clutch 3b is driven in the engaging direction, and the power transmission destination of the engine 11 is on the first power transmission path 5A side.
  • the driving force is transmitted only through the second power transmission path 5B in which the second transmission unit 4b is interposed.
  • the transmission ECU 1 controls the switching operation of the clutch 3 during such a shift.
  • the vehicle is equipped with the engine ECU 2 (Engine-Electronic Control Unit) and the transmission ECU 1 (Electronic Control Unit) as electronic control devices.
  • These electronic control devices are configured, for example, as LSI devices or embedded electronic devices in which a microprocessor, ROM, RAM, and the like are integrated, and are connected to each other via a communication line of an in-vehicle network.
  • the engine ECU 2 is an electronic control unit that comprehensively controls a wide range of systems related to driving of the engine 11 such as a fuel system, an intake / exhaust system, and a valve system. Information detected by at least each of the engine speed sensor 14, the accelerator opening sensor 15, and the weight sensor 16 is input here. Other specific information input to the engine ECU 2 includes intake air flow rate, intake manifold pressure (intake pressure), supercharging pressure (turbo pressure), intake air temperature (supply air temperature), outside air temperature, vehicle speed, and the like. However, in this embodiment, the description about these is omitted.
  • the engine ECU 2 includes a driver request torque calculation unit 2a and a fuel injection amount calculation unit 2b.
  • the driver request torque calculation unit 2a (second arithmetic means) are those based on the engine speed Ne and the accelerator opening theta AC, driver (driver) is set or calculating a driver request torque T DRI that required by the engine 11 It is.
  • the driver request torque T DRI is set or calculated based on a preset control map or calculation formula.
  • the information about the driver request torque TDRI obtained here is transmitted to the fuel injection amount calculation unit 2b and also to the transmission ECU1.
  • the fuel injection amount calculation unit 2b determines the fuel injection amount into each cylinder of the engine 11 and outputs a drive signal transmitted to each injector 19. First, the fuel injection amount calculation unit 2b, the driver request torque calculation unit other calculated driver's requested torque T DRI at 2a, the peripheral equipment required in addition to the engine body in order to operate the auxiliary machines (engines 11 of the engine 11
  • the target engine output torque T ENGT is determined in consideration of various external required torques such as torque consumed by the engine, engine friction torque, torque due to mechanical constraints of the drive system, and torque required to ensure vehicle stability. Calculate. There are various ways to calculate the target engine output torque T ENGT . For example, information such as the intake air flow rate, intake manifold pressure, supercharging pressure, intake air temperature (supply air temperature), outside air temperature, vehicle speed, etc. May be calculated.
  • the fuel injection amount calculation unit 2 b determines the fuel injection amount to be supplied to each cylinder based on the target engine output torque T ENGT and transmits a drive signal to each injector 19. For example, a map or mathematical expression that defines the relationship between the target engine output torque T ENGT and the drive signal of the injector 19 is stored in advance in the fuel injection amount calculation unit 2b and transmitted to the injector 19 using this map or mathematical expression.
  • the drive signal may be determined.
  • the fuel injection amount calculation unit 2b calculates an engine output torque T ENG that is expected to be actually input to the automatic transmission 9 from the output shaft 11a of the engine 11 based on the fuel injection amount. Information on the engine output torque T ENG calculated here is transmitted to the transmission ECU 1.
  • the fuel injection amount calculation unit 2b functions as a fuel injection amount detection unit that detects the fuel injection amount of the engine 11, and also functions as a detection unit that detects the engine output torque T ENG input to the automatic transmission 9. Moreover, each function of said driver request torque calculating part 2a and fuel injection amount calculating part 2b may be implement
  • the transmission ECU 1 is an electronic control device that controls the operation of the automatic transmission 9. Information detected by the sensors of the engine speed sensor 14, the weight sensor 16, and the gear sensor 17 is calculated by the engine ECU 2. The information on the required driver torque T DRI and the information on the engine output torque T ENG are input.
  • the transmission ECU 1 performs changeover control in which the first clutch 3a and the second clutch 3b are cooperatively operated during the shift operation of the automatic transmission 9, and the other clutch 3 is engaged while releasing one clutch 3. carry out.
  • the transmission ECU 1 is provided with an engine rotation speed increase torque calculation unit 1a, an engine unused torque calculation unit 1b, a first setting unit 12, a second setting unit 1c, and a control unit 1g.
  • the engine rotation speed increase torque calculation unit 1a calculates the engine rotation speed increase torque T ZOU that is consumed to increase the rotation speed of the engine 11 out of the engine output torque T ENG. .
  • the engine speed increase torque T ZOU is given by the product of the time differential value of the engine speed Ne and the engine inertia Ie, as shown in the following Expression 1.
  • the information of the engine speed increase torque T ZOU calculated here is transmitted to the engine unused torque calculation unit 1b.
  • the engine rotation speed increase torque T ZOU is used only when the value is smaller than the driver request torque T DRI . Therefore, for example, an operation for clipping the upper limit value of the engine rotational speed increase torque T ZOU to the value of the driver request torque T DRI at that time may be added. Alternatively, the engine speed increase torque T ZOU may be calculated only when the engine speed Ne is increasing. ... Formula 1
  • the engine unused torque calculation unit 1b calculates a torque difference between the engine output torque T ENG and the engine rotation speed increase torque T ZOU as the engine unused torque T MIS . For example, in a state where the engine speed Ne tends to increase, the engine unused torque TMIS is calculated as a value smaller than the engine output torque TENG . The information of the engine unused torque TMIS calculated here is transmitted to the second setting unit 1c. ... Formula 2
  • the first setting unit 12 sets the first target torque T TGT1 when the automatic transmission 9 is shifted . Based on the vehicle weight W detected by the weight sensor 16 and the gear stage G detected by the gear sensor 17, the first setting unit 12 calculates a target torque T TGT (target clutch transmission torque) of the clutch 3 on the engagement side. Set as the first target torque TTGT1 .
  • the first setting unit 12 includes a vehicle weight determination unit 12a that determines the first target torque T TGT1 by condition determination based on the vehicle weight W, and a gear stage that determines the first target torque T TGT1 by condition determination based on the gear stage G.
  • a determination unit 12b is provided. The first setting unit 12 determines the final first target torque T TGT1 in consideration of both the settings in the vehicle weight determination unit 12a and the gear position determination unit 12b.
  • the torque T TGT1 is determined based on the same map. Therefore, the first setting unit 12 determines the first set by either the vehicle weight determination unit 12a or the gear stage determination unit 12b when both the vehicle weight W condition and the gear stage G condition are satisfied.
  • the target torque T TGT1 is set as the final first target torque T TGT1 .
  • the vehicle weight determination unit 12a sets the first target torque T TGT (target clutch transmission torque) of the engagement side clutch 3 when the vehicle weight W is equal to or less than the predetermined weight W 0. It is.
  • the first target torque T TGT1 when the vehicle weight W is equal to or less than the predetermined weight W 0 is set smaller than the driver request torque T DRI at that time.
  • the predetermined weight W 0 here is set in a range that is larger than the vehicle weight (weight when not loaded) and smaller than the total vehicle weight (maximum weight of the entire vehicle including cargo). For example, in the case of a truck vehicle, the predetermined weight W 0 is set in a range that is larger than the weight when there is no load and smaller than the weight when a load with the maximum load capacity is loaded.
  • the first setting unit 12 has a map that defines two types of relationships (a relationship indicated by a solid line and a relationship indicated by a broken line) between the first target torque T TGT1 and the driver request torque T DRI ( Shock reduction map) and mathematical expressions are stored in advance.
  • a graph indicated by a broken line in the shock reduction map of FIG. 2 is a graph (reference and control graph) showing characteristics when the first target torque T TGT1 is equal to the driver request torque T DRI .
  • the driver requested torque T DRI coincides with the broken line of the graph in a range of less than the predetermined torque T 0, than the driver request torque T DRI driver request torque T DRI is at a predetermined torque T 0 at over It is set to take a small value.
  • the vehicle weight determination unit 12a sets the first target torque T TGT1 to be smaller than the driver request torque T DRI using the relationship of the solid line graph when the vehicle weight W is equal to or less than the predetermined weight W 0.
  • the vertical interval (distance) between the broken line graph and the solid line graph is referred to as margin torque T YOY .
  • the margin torque T YOY is 0 when the driver request torque T DRI is less than the predetermined torque T 0 . Further, when the driver request torque T DRI is equal to or larger than the predetermined torque T 0 is the set that also increases torque reserve T YOY higher the driver request torque T DRI.
  • gear determining unit 12b sets when transmission speed G is the predetermined speed G 0, the first target torque T TGT1 clutch 3 engagement side (target clutch transmission torque) Is.
  • the first target torque T TGT1 is set to be greater than the driver required torque T DRI using the relationship of the solid line graph when the shift stage G is the predetermined stage G 0. Set smaller.
  • the predetermined stage G 0 here may be a single gear stage may be a plurality of shift speeds.
  • a starting stage having a relatively large driving torque for example, a low-speed gear stage such as 1st to 3rd speeds
  • a predetermined stage G 0 the speed stage after the shift during the upshift of the automatic transmission 9
  • the gear stage G to be detected is, for example, an engagement side gear stage (gear stage of the transmission unit 4 provided downstream of the clutch 3 to be engaged).
  • a gear stage having a relatively smaller driving torque than the starting stage (a gear stage having a low gear ratio, for example, a medium to high speed gear stage such as 4 to 8 speeds) is called a traveling stage.
  • the second setting unit 1c uses a method different from that of the first setting unit 12 under the condition that the first target torque T TGT1 is not set by the first setting unit 12, and uses the clutch on the engagement side.
  • No. 3 target torque T TGT target clutch transmission torque
  • the second setting unit 1c sets the second target torque T TGT2 when the vehicle weight W is larger than the predetermined weight W 0 or when the gear stage G is not the predetermined stage G 0 .
  • the second target torque T TGT2 is a target value different from the first target torque T TGT1 set by the first setting unit 12.
  • the second target torque T TGT2 is set in a range equal to or smaller than the engine output torque T ENG based on the driver request torque T DRI and the engine unused torque T MIS .
  • the second setting unit 1c functions to prohibit the setting of the first target torque T TGT1 by the first setting unit 12 and to set the second target torque T TGT2 according to the driver request torque T DRI .
  • the second target torque T TGT2 is preferably set to have a value equal to or greater than the first target torque T TGT1 .
  • the first target torque T TGT1 obtained from the driver request torque T DRI at that time and the shock reduction map of FIG. 2 is set as the minimum value of the second target torque T TGT2 at that time. That is, when the inertia of the vehicle is large, the torque capacity is not given more than necessary, and the torque is reduced using the vehicle inertia. Thereby, suppression of excessive target torque is prevented.
  • the second setting unit 1c sets the driver request torque T DRI calculated by the driver request torque calculation unit 2a as it is as the second target torque T TGT2 . . That is, the second target torque T TGT2 is set based on the engine speed Ne and the accelerator opening ⁇ AC .
  • the second setting unit 1c performs a calculation to reflect the engine unused torque T MIS at a predetermined ratio with respect to the second target torque T TGT2 .
  • the second setting unit 1c is set with a predetermined weight coefficient k which means a reflection rate of the engine unused torque T MIS with respect to the second target torque T TGT2 .
  • the weight coefficient k is a fixed value set in advance within a range of 0 ⁇ k ⁇ 1.
  • the value of the weighting factor k may be a variable that is set according to the operating state of the engine 11 or the like instead of using a preset constant. Or it is good also as a value arbitrarily set by a driver.
  • the second setting unit 1c is provided with a first weighting unit 1d, a second weighting unit 1e, and an adding unit 1f.
  • the first weighting unit 1d calculates a first multiplication value A obtained by multiplying the driver request torque TDRI by a value obtained by subtracting the weighting factor k from 1 as shown in the following Expression 5. is there.
  • the first multiplication value A corresponds to the amount of torque reflected on the second target torque T TGT2 of the driver request torque T DRI . ... Formula 5
  • the second weighting unit 1e sets the smaller one of the driver required torque T DRI and the engine unused torque T MIS as the minimum value Z, as shown in the following equations 6 and 7.
  • the second multiplication value B is calculated by selecting and multiplying the minimum value Z by a weighting factor. For example, a minimum function is used to select the minimum value Z.
  • Second multiplication value B corresponds to the torque reflection component of the second target torque T TGT2 engine unused torque T MIS. ... Formula 6 ... Formula 7
  • the adding unit 1f adds the first multiplication value A set by the first weighting unit 1d and the second multiplication value B set by the second weighting unit 1e, and sets this as the second target torque T TGT2 .
  • the second multiplication value B is a value obtained by multiplying the weight coefficient k by the driver request torque T DRI.
  • the driver request torque TDRI corresponds to the driver request torque TDRI .
  • the driver request torque T DRI is larger than the engine unused torque T MIS is the second target torque T TGT2 depending on the ratio and the weight coefficient k of the engine unused torque T MIS to the driver requested torque T DRI It is set to be smaller than the driver request torque TDRI .
  • the first target torque T TGT1 and the second target torque T TGT2 set by the first setting unit 12 and the second setting unit 1c are both torques less than or equal to the driver request torque T DRI and It acts to engage 3 slightly slowly.
  • the margin torque T YOY that is the difference between the first target torque T TGT1 set by the first setting unit 12 and the driver request torque T DRI is a value corresponding to the driver request torque T DRI as shown in FIG. It can be understood as a function of a driver request. Therefore, the first setting unit 12 can be considered to have a function of suppressing torque fluctuation at the time of shifting by underestimating the driver's request.
  • the difference between the engine unused torque T MIS is the second target torque T TGT2
  • the driver's requested torque T DRI set in the second setting unit 1c is one having a value corresponding to the engine speed Ne, It can be understood as a function of the operating state of the engine 11. Therefore, it can be considered that the second setting unit 1c has a function of suppressing torque fluctuation at the time of shifting by underestimating the output of the engine 11.
  • the control unit 1g (control means) is a first target torque T TGT1 in which the torque transmitted by the clutch 3 on the engagement side during the shift of the automatic transmission 9 is set by the first setting unit 12, or the second setting unit.
  • the engagement state (clutch transmission torque) of the clutch 3 is controlled so as to be the second target torque T TGT2 set in (1).
  • one of the first target torque T TGT1 and the second target torque T TGT2 is set by the condition determination based on the vehicle weight W and the gear stage G.
  • the clutch transmission torque used for the actual control of the clutch 3 by the control unit 1g is also simply referred to as a target torque TTGT .
  • the control unit 1g stores in advance a map, a mathematical formula, and the like that define the relationship between the target torque T TGT and the drive current that controls the opening of the first control valve 8A and the second control valve 8B.
  • the control unit 1g functions to control the connection / disconnection operation of the clutch 3 by controlling the drive current to the first control valve 8A and the second control valve 8B.
  • the degree of engagement of the clutch 3 may be controlled using information such as the temperature and viscosity of the ATF, the hydraulic pressure of the first oil passage 6A and the second oil passage 6B, and the like.
  • the engine rotation speed increase torque calculating unit 1a the engine unused torque calculating unit 1b, the first setting unit 12, the second setting unit 1c, the first weighting unit 1d, the second weighting unit 1e, the adding unit 1f, and the control.
  • Each function of the unit 1g may be realized by an electronic circuit (hardware). Alternatively, it may be programmed as software, a part of these functions may be provided as hardware, and the other part may be software.
  • FIG. 4 is a flowchart illustrating an example of control related to the shift operation of the automatic transmission 9. This flow is repeatedly performed at a predetermined cycle inside the transmission ECU 1.
  • step A10 the value of the driver request torque T DRI and the value of the engine output torque T ENG calculated by the engine ECU 2 are read into the transmission ECU 1.
  • step A13 the information on the gear stage G detected by the gear sensor 17 and the information on the vehicle weight W detected by the weight sensor 16 are read into the transmission ECU 1.
  • step A15 the vehicle weight determination section 12a, the vehicle weight W is equal to or less than a predetermined weight W 0 is determined.
  • the condition determined in this step can be said to be a condition for determining whether or not the inertial force of the vehicle is small with respect to a shock (torque fluctuation) that may occur at the time of shifting.
  • the vehicle weight W advances to step A16. If it is less than the predetermined weight W 0, the process proceeds to step A20 is larger than the predetermined weight W 0.
  • step A16 the gear determining unit 12b, transmission speed G is whether the predetermined speed G 0 is determined.
  • transmission speed G is low gear, when a start gear
  • step A20 Proceed to
  • Step A85 is a step that is performed when both the condition relating to the vehicle weight W and the condition relating to the gear stage G are satisfied.
  • the first setting torque T TGT1 is set in the first setting unit 12. That is, when the driver request torque T DRI is less than the predetermined torque T 0 , the driver request torque T DRI is set as the first target torque T TGT1 as it is, and when the driver request torque T DRI is equal to or greater than the predetermined torque T 0 , The one target torque T TGT1 is set to a value smaller than the driver request torque T DRI .
  • the first target torque T TGT1 set here is a value obtained by subtracting the margin torque T YOY from the driver request torque T DRI (see the solid line characteristic in FIG. 2).
  • step A90 the control unit 1g drives the first control valve 8A and the second control valve 8B so that the first target torque T TGT1 (target torque T TGT ) can be obtained by the clutch 3 on the engagement side.
  • Current is output.
  • the engagement-side clutch 3 is the first clutch 3a
  • a drive current is output to the first control valve 8A.
  • a drive current for driving the friction plate of the second clutch 3b in the releasing direction is output to the second control valve 8B, and the switching control of the clutch 3 is performed.
  • step A15 when the vehicle weight W is larger than the predetermined weight W 0 at step A15, or when the gear stage G is not the predetermined stage G 0 at step A16 (in this example, the gear stage G is a traveling stage, that is, a medium-high speed gear).
  • the process proceeds to step A20, where the second target torque T TGT2 is set in the second setting unit 1c.
  • step A20 information on the engine speed Ne, the engine inertia Ie, and the weight coefficient k detected by the engine speed sensor 14 is read into the transmission ECU1.
  • step A30 the engine rotation speed increase torque calculating unit 1a calculates the engine rotation speed increase torque T ZOU .
  • the calculation formula of the engine rotation speed increase torque T ZOU calculated here is Expression 1.
  • the engine rotation speed increase torque T ZOU is calculated based on the engine rotation speed Ne and the engine inertia Ie at that time. As the increase speed of the engine speed Ne increases, the engine speed increase torque T ZOU increases.
  • the engine unused torque calculating unit 1b calculates the engine unused torque TMIS .
  • the equation at engine unused torque T MIS that is calculated here a Equation 2, the engine unused torque T MIS based on the engine rotational speed increases torque T ZOU obtained in the engine output torque T ENG and before step Calculated. Higher rate of increase of the engine rotational speed Ne is high, the engine unused torque T MIS is reduced.
  • the first multiplication value A is calculated by the first weighting unit 1d.
  • the arithmetic expression of the first multiplication value A calculated here is Expression 5, and the first multiplication value A is calculated based on the driver request torque TDRI and the weighting coefficient k. As the weight coefficient k is smaller, the ratio of the reflection of the driver request torque T DRI to the second target torque T TGT2 increases.
  • the second weighting unit 1e selects a smaller one of the driver request torque T DRI and the engine unused torque T MIS as the minimum value Z. For example, if the engine speed Ne is increasing and the engine unused torque T MIS is smaller than the engine output torque T ENG (if the engine speed increasing torque T ZOU is a positive value), the engine unused torque T MIS becomes the minimum value Z.
  • the first weighting value B is calculated by the second weighting unit 1e.
  • the second multiplication value B calculated here is given by Expression 6 and Expression 7, and the second multiplication value B is calculated based on the minimum value Z and the weighting coefficient k obtained in the previous step. As the weight coefficient k increases, the ratio of the reflection of the minimum value Z to the second target torque T TGT2 increases.
  • the first multiplication value A and the second multiplication value B are added by the adding unit 1f, and the second target torque T TGT2 is set.
  • the second target torque T TGT2 is a target value of the clutch transmission torque that is desired to be transmitted to the clutch 3 on the engagement side during the shift operation of the automatic transmission 9.
  • step A90 the control unit 1g drives the first control valve 8A and the second control valve 8B so that the second target torque T TGT2 (target torque T TGT ) can be obtained by the clutch 3 on the engagement side.
  • Current is output.
  • the engagement-side clutch 3 is the first clutch 3a
  • a drive current is output to the first control valve 8A.
  • a drive current for driving the friction plate of the second clutch 3b in the releasing direction is output to the second control valve 8B, and the switching control of the clutch 3 is performed.
  • FIGS. 5A and 5B show the behavior of the vehicle during the shift-up with the accelerator on, where FIG. 5A shows the change over time in the engine speed, FIG. 5B shows the change over time in the clutch drive current, and FIG. This is a change with time in the output shaft torque output from the machine 9.
  • FIG. 5A shows the change over time in the engine speed
  • FIG. 5B shows the change over time in the clutch drive current
  • FIG. This is a change with time in the output shaft torque output from the machine 9.
  • a description will be given of an example of a shift operation from an even number to an odd number.
  • the accelerator pedal Before the start of the shifting operation, the accelerator pedal is depressed, and the engine speed Ne gradually increases as shown by the solid line in FIG.
  • the driving current to the first control valve 8A of the engagement side is output, play elimination of the first clutch 3a is To be implemented.
  • the control as soon as the drive current to the first control valve 8A is somewhat weakened, the driving current of the open side to the second control valve 8B is reduced gradually Is done.
  • the torque phase is started from this time, and the switching control from the second clutch 3b to the first clutch 3a is performed so that the load related to the speed change operation does not act on the engine 11.
  • the driver request torque T DRI is set as the target torque T TGT of the first clutch 3a on the engagement side as it is.
  • the first clutch 3a on the engagement side is connected too much (the degree of engagement is too strong or the engagement speed is too high)
  • the torque capacity of the first clutch 3a becomes excessive, and the first power transmission path 5A and
  • the second power transmission path 5B is in a double-engaged state in which the second power transmission path 5B is simultaneously engaged.
  • the amount of output shaft torque drop in the torque phase increases, which causes a torque shock as indicated by the symbol X in FIG. 5 (c).
  • more connecting too of the first clutch 3a of the engagement side torque capacity of the first clutch 3a may also be considered to outweigh the engine output torque T ENG, for example time t 3.
  • the increase in the engine speed Ne is suppressed before the start of the inertia phase, and the torque that should be consumed to increase the engine speed Ne is transferred to the drive system. There is a risk of inflow.
  • a torque larger than the torque that should be originally input is transmitted to the automatic transmission 9, and the acceleration change due to the torsion of the drive system components and the increase of the output shaft torque is likely to occur.
  • a shock may occur before and after the transition from the torque phase to the inertia phase.
  • a part of the engine output torque T ENG is consumed as the engine rotational speed increase torque T ZOU , and thus the torque capacity of the first clutch 3a. Tends to exceed the engine output torque T ENG .
  • the first optimization method is the setting of the first target torque T TGT1 in the first setting unit 12
  • the second optimization method is the setting of the second target torque T TGT2 in the second setting unit 1c. is there.
  • a target torque T TGT is set by subtracting a margin torque T YOY from the driver request torque T DRI . That is, the target torque T TGT of the first clutch 3a is corrected in the decreasing direction by the margin torque T YOY , and the torque capacity of the first clutch 3a does not exceed the engine output torque T ENG . Therefore, the engine rotational speed increase torque T ZOU in the engine output torque T ENG is secured, and the engine rotational speed Ne increases until time t 4 as shown by the solid line in FIG.
  • the engine unused torque T MIS obtained by subtracting the engine rotational speed increasing torque T ZOU from the engine output torque T ENG. Is set to the target torque T TGT of the engagement-side first clutch 3a. That is, the target torque T TGT of the first clutch 3a is corrected in a decreasing direction according to the engine speed increase torque T ZOU, and the torque capacity of the first clutch 3a does not exceed the engine output torque T ENG. . Therefore, the engine rotational speed increase torque T ZOU in the engine output torque T ENG is secured, and the engine rotational speed Ne increases until time t 4 as shown by the solid line in FIG.
  • the target torque T TGT of the first clutch 3a is set to be smaller than the driver required torque T DRI , the drive current transmitted to the first control valve 8A in the torque phase is indicated by a broken line in FIG. It is corrected in a decreasing direction from that shown, and the engaging force of the first clutch 3a is reduced. Thereby, occurrence of double biting such that the first power transmission path 5A and the second power transmission path 5B are simultaneously engaged is also prevented. Therefore, as shown by a solid line in FIG. 5C, fluctuations in the output shaft torque in the torque phase and the inertia phase are suppressed, and a smooth speed change operation is realized.
  • the time t 4 after starting the inertia phase as indicated by a chain line in FIG. 5 (b), the supply of the drive current to the second control valve 8B is blocked, the second clutch 3b is released.
  • the engagement-side first clutch 3a gradually increases its engagement state and transmits torque. Thus, it decreases the engine speed Ne as indicated by the solid line in FIG. 5 (a), the inertia phase is completed at time t 5.
  • the target torque T TGT (first target torque T TGT1 ) of the engagement-side clutch 3 at the time of shifting with the vehicle weight W equal to or less than the predetermined weight W 0 is smaller than the driver required torque T DRI .
  • the torque capacity of the clutch 3 on the mating side can be made smaller than the engine output torque T ENG .
  • the first target torque TTGT1 there is a margin in the torque capacity of the clutch 3 on the engagement side, so that individual differences of the clutch 3 and operation errors in control can be absorbed, and controllability is improved. be able to.
  • the setting of the first target torque T TGT1 as the target torque T TGT of the clutch 3 on the engagement side is prohibited. It is set separately from the second target torque T TGT2 the target torque T TGT1.
  • the first target torque T TGT1 is not used in a state where it is difficult for a shock to occur, and the second target torque T TGT2 is used instead.
  • the shock that can occur during gear shifting can be blunted using the damping action caused by the inertial force of the vehicle, and the gear shifting shock can be suppressed.
  • the second target torque TTGT2 based on the driver request torque, it is possible to secure the torque capacity of the clutch 3 on the engagement side, and to reduce the power performance and fuel consumption performance due to the clutch 3 slipping. Can be kept to a minimum.
  • the vehicle weight W is equal to or greater than the predetermined weight W 0.
  • the second target torque T TGT2 surely increases. Accordingly, the target torque is not suppressed more than necessary, and a damping effect utilizing the inertial force of the vehicle can always be obtained, and torque shock can be reduced while maintaining power performance and the like. .
  • a shock reduction map as shown in FIG. 2 is stored in the first setting unit 12 of the shift control device 10 described above.
  • the first target torque T TGT1 is set to be equal to or less than the driver request torque T DRI at that time. Further, in a range driver request torque T DRI is equal to or larger than the predetermined torque T 0, the first target torque T TGT1 is set so as surplus torque T YOY large driver request torque T DRI is increased.
  • the target torque T TGT of the clutch 3 on the engagement side can be reliably set within the range of the engine output torque T ENG or less, and the fluctuations in the engine speed Ne and the fluctuations in the output shaft torque are effectively suppressed. be able to.
  • the shock reduction map shown in FIG. 2 has a configuration in which the target torque T TGT is reduced from the driver request torque T DRI only in the range of T DRI ⁇ T 0 .
  • the margin torque T YOY only in the region where the torque capacity of the clutch 3 on the engagement side is likely to be excessive, it is possible to avoid a situation where the torque capacity exceeds the engine output torque while satisfying the driver's request. It is possible to achieve both driving feeling, power performance and fuel efficiency.
  • the target torque T TGT when the target torque T TGT is set by the first setting unit 12, a surplus torque T YOY is generated in the torque capacity of the clutch 3 on the engagement side.
  • the engine unused torque T MIS is a torque difference between the engine output torque T ENG and the engine rotation speed increase torque T ZOU, and therefore , when the target torque T TGT is set in the second setting unit 1c, the engine rotation speed increase torque is set. You can afford T ZOU . Accordingly, individual differences of the clutch 3 and control operation errors can be absorbed by the torque of these margins, and controllability can be improved.
  • the engagement-side clutch 3 is set according to the first target torque T TGT1 and the second target torque T TGT2 set based on the surplus torque T YOY and the engine unused torque T MIS. Since the engagement state is controlled, fluctuations in the engine speed Ne and fluctuations in the output shaft torque due to excessive engagement of the clutch 3 at the time of shifting can be suppressed, and shift shocks can be reduced.
  • the torque capacity of the clutch 3 on the engagement side has a margin for the surplus torque T YOY or a margin for the engine rotation speed increase torque T ZOU, so individual differences of the clutch 3 and operation errors in control. Can be absorbed and controllability can be improved.
  • the torque capacity of the engagement side clutch 3 is reduced to the engine output torque T ENG. Can be made smaller. Thereby, the shift shock can be effectively reduced.
  • the engagement state is controlled using a smaller one of the driver request torque TDRI and the engine unused torque TMIS . That is, when the driver request torque T DRI is equal to or less than the engine unused torque T MIS , the driver request torque T DRI is used, and conversely, when the driver request torque T DRI is greater than the engine unused torque T MIS , Engine unused torque TMIS is used. This prevents the target torque T TGT from exceeding the engine output torque T ENG even when the engine speed Ne is decreasing, for example. Torque fluctuations can be reliably suppressed.
  • the target torque T TGT of the engagement-side clutch 3 is reliably set within the range of the engine output torque T ENG or less, fluctuations in the engine speed Ne and fluctuations in the output shaft torque Can be effectively suppressed.
  • the clutch transmission torque transmitted by the clutch 3 on the engagement side does not exceed the engine output torque T ENG during the shift-up when the accelerator is on, a shock does not occur and the riding comfort can be improved.
  • the durability of the drive system components can be improved.
  • the gear change control device 10 described above, giving the reflection rate of the engine unused torque T MIS with respect to the target torque T TGT using a weighting coefficient k.
  • a weighting coefficient k giving the reflection rate of the engine unused torque T MIS with respect to the target torque T TGT using a weighting coefficient k.
  • the value of the weighting factor k is set small, the target torque T TGT is set to a value closer to the driver request torque T DRI than the engine unused torque T MIS, so a sporty operation feeling corresponding to the accelerator operation Can be realized.
  • the value of the weighting factor k can be set according to the performance to be prioritized, and the behavior during shifting can be changed flexibly. Is possible.
  • the present shift control device 10 when the present shift control device 10 is applied to a plurality of different vehicle types, it is possible to carry out optimal control for each vehicle type by changing only the weighting factor k, and it is extremely versatile. There are also advantages.
  • torque shock that may occur at the time of speed change of a vehicle equipped with a dual clutch transmission can be reliably suppressed by controlling only the clutch 3 on the engagement side, and the power characteristics And driving feeling can be made compatible.
  • the above-described shift control device 10 can optimize the engagement-side torque capacity when the clutch 3 is switched, and can suppress a shock during the shift operation.
  • the second setting unit 1c exemplifies that the second target torque T TGT2 is set based on the engine unused torque T MIS .
  • the calculation method of the second target torque T TGT2 is not limited to this.
  • FIG. 6 shows a transmission ECU 20 provided with a second setting unit 21 that sets the second target torque T TGT2 based only on the driver request torque T DRI instead of the second setting unit 1c.
  • symbol is attached
  • the second setting unit 21 (second setting means). Otherwise, the target torque T TGT is set based on the driver request torque T DRI .
  • the target torque T TGT may be set to a value equal to the driver request torque T DRI .
  • the inertial force of the vehicle is large, and even if a torque shock occurs, it is difficult to shake against the shock and has a strong damping action that attenuates the shock. Furthermore, since transmission speed G is the driving torque is relatively small when not the predetermined speed G 0, the torque shock hardly occur. Therefore, by engaging the target torque T TGT and the driver request torque T DRI under the above conditions, the engagement clutch 3 is engaged with an engagement force (or torque capacity) that meets the driver's request; To do.
  • step A5 the driver request torque TDRI calculated by the engine ECU 2 is read into the transmission ECU 20.
  • step A13 the gear stage G detected by the gear sensor 17 and the vehicle weight W detected by the weight sensor 16 are read into the transmission ECU 20.
  • step A15 the vehicle weight determination section 12a, the vehicle weight W is equal to or less than a predetermined weight W 0 is determined.
  • the condition determined in this step is a condition for determining whether or not the inertial force of the vehicle is small with respect to a shock (torque fluctuation) that may occur at the time of shifting.
  • the vehicle weight W advances to step A16. If it is less than the predetermined weight W 0, the process proceeds to step A86 is larger than the predetermined weight W 0.
  • step A16 the gear determining unit 12b, transmission speed G is whether the predetermined speed G 0 is determined.
  • the process proceeds to Step A85, and when it is not the predetermined stage G 0 , the process proceeds to Step A86.
  • the first setting torque T TGT1 is set in the first setting unit 12. That is, when the driver request torque T DRI is less than the predetermined torque T 0 , the driver request torque T DRI is set as the first target torque T TGT1 as it is, and when the driver request torque T DRI is equal to or greater than the predetermined torque T 0 , The one target torque T TGT1 is set to a value smaller than the driver request torque T DRI .
  • the first target torque T TGT1 set here is a value obtained by subtracting the margin torque T YOY from the driver request torque T DRI as in the above-described embodiment.
  • step A90 the control unit 1g drives the first control valve 8A and the second control valve 8B so that the first target torque T TGT1 (target torque T TGT ) can be obtained by the clutch 3 on the engagement side.
  • Current is output.
  • the engagement-side clutch 3 is the first clutch 3a
  • a drive current is output to the first control valve 8A.
  • a drive current for driving the friction plate of the second clutch 3b in the releasing direction is output to the second control valve 8B, and the switching control of the clutch 3 is performed.
  • step A86 the process proceeds to step A86 and the second setting unit 21 sets the second target.
  • Torque T TGT2 is set as a value equal to driver request torque T DRI .
  • the control unit 1g drives the first control valve 8A and the second control valve 8B so that the second target torque T TGT2 (target torque T TGT ) can be obtained by the clutch 3 on the engagement side. Current is output. That is, the target torque T TGT which gear position G is set when a predetermined speed G 0 is always equal to the target torque T TGT following values are set when transmission speed G is not a predetermined speed G 0.
  • the second target torque T TGT2 of the clutch 3 on the engagement side is set to the same value as the driver request torque T DRI .
  • the driving torque of the automatic transmission 9 is a relatively low traveling speed (medium / high speed gear speed)
  • the shock is not likely to occur, and the damping action is strong.
  • power performance and fuel efficiency can be further improved.
  • the torque capacity of the engagement-side clutch 3 can be ensured by setting the target torque TTGT of the engagement-side clutch 3 based on the driver request torque TDRI . As a result, it is possible to improve driving feeling in a state where shift shock is unlikely to occur.
  • FIG. 8 illustrates a transmission ECU 30 in which the above-described gear stage determination unit 12b is omitted.
  • the first setting unit 31 (setting means) of the transmission ECU 30 sets the first target torque T TGT1 based only on the vehicle weight W detected by the weight sensor 16 when the automatic transmission 9 is shifted. .
  • the vehicle weight determination unit 12a (first setting means) of the first setting unit 31 when the vehicle weight W is equal to or less than a predetermined weight W 0 , for example, according to a shock reduction map shown in FIG.
  • a first target torque T TGT1 having a value corresponding to the torque T DRI is set.
  • the first target torque T TGT1 set here is transmitted to the control unit 1g.
  • step A15 An example of the control related to the shift operation of the automatic transmission 9 by the transmission ECU 30 is shown in the flowchart of FIG. This flow corresponds to the information read in step A13 in the flowchart of FIG. 4 described in the above embodiment only in the vehicle weight W (step A14) and the condition determination in step A16 is omitted. That is, the condition for setting the first target torque T TGT1 in step A85 is only the condition relating to the vehicle weight W in step A15.
  • the target torque TTGT can be surely lowered in advance against a shock that may occur due to excessive clutch engagement regardless of the state of the gear stage G. It becomes possible.
  • torque control based on the engine unused torque T MIS is possible as in the above-described embodiment.
  • the transmission ECU 40 includes a first setting unit 41 (setting unit) having a vehicle weight determination unit 12a (first setting unit), a second setting unit 42 (second setting unit), and a control unit 1g. It is done.
  • the vehicle weight determination unit 12a (first setting means) of the first setting unit 41, when the vehicle weight W is equal to or less than a predetermined weight W 0 , for example, according to the shock reduction map shown in FIG.
  • a first target torque T TGT1 having a value corresponding to the torque T DRI is set.
  • the first target torque T TGT1 set here is transmitted to the control unit 1g.
  • the second setting unit 42 is for the vehicle weight W detected by the weight sensor 16 is larger than a predetermined weight W 0, sets the target torque T TGT based on the driver requested torque T DRI.
  • the target torque T TGT may be set to a value equal to the driver request torque T DRI .
  • step A14 An example of the control related to the shift operation of the automatic transmission 9 by the transmission ECU 40 is shown in the flowchart of FIG.
  • This flow corresponds to the information read in step A13 of the flowchart of FIG. 7 described in the first modification example only in the vehicle weight W (step A14) and the condition determination in step A16 is omitted. Accordingly, when the vehicle weight W is equal to or less than the predetermined weight W 0 , the target torque T TGT can be reduced to effectively suppress the fluctuations in the engine speed and the output shaft torque effectively. Can be suppressed.
  • the first setting unit 12 has been illustrated which sets the first target torque T TGT using shock reduction map as shown in FIG. 2, the first target torque T TGT
  • the map and arithmetic expression used for setting are not limited to this.
  • the more accurate first target torque T TGT may be set using a plurality of other parameters.
  • a plurality of shock reduction maps may be created in advance for each state having different parameter values, and the first target torque TTGT may be set using these shock reduction map groups.
  • the vehicle weight W is taken into account, the smaller the vehicle weight W, the smaller the inertial force of the vehicle. Therefore, as shown by the symbol M in FIG. 12, the amount of decrease of the first target torque T TGT1 from the driver request torque T DRI ( That is, the characteristics may be such that the surplus torque T YOY ) is increased.
  • the first target torque T TGT1 is set when the vehicle weight W is equal to or less than the predetermined weight W 0 and the gear stage G is the predetermined stage G 0 .
  • the condition for setting the first target torque T TGT1 is not limited to this.
  • a configuration in which the first target torque T TGT1 is set when the vehicle weight W is equal to or less than the predetermined weight W 0 or the gear stage G is the predetermined stage G 0 is also conceivable.
  • An example of control in this case is shown in the flowcharts of FIGS.
  • the flowchart shown in FIG. 13 is obtained by moving Step A16 of the flowchart of FIG. 4 in the above-described embodiment onto the route on the No side of Step A15. Further, the flowchart shown in FIG. 14 is obtained by moving Step A16 of the flowchart of FIG. 7 in the first modified example above to the route on the No side of Step A15.
  • step A85 the process proceeds to step A85. That is, as compared with the control of the above-described embodiment, the process can easily proceed to step A85, and the setting of the first target torque T TGT1 using the shock reduction map can be facilitated.
  • Such a control configuration may be applied, for example, when it is desired to emphasize the influence of the inertial force of the vehicle (or to emphasize control with the first target torque T TGT1 ).
  • both the vehicle weight determination unit 12a and the gear stage determination unit 12b are configured to set the first target torque T TGT1 using the same shock reduction map as shown in FIG.
  • Various specific target torque calculation and setting methods are conceivable. For example, it is possible to set the first target torque T TGT1 separately in each of the vehicle weight determination unit 12a and the gear stage determination unit 12b and use a smaller one of them or a configuration using an average value. It is. You may change suitably according to the characteristic of the automatic transmission 9, the characteristic of a vehicle, etc.
  • the gear stage 17 of the transmission unit 4 is detected using the gear sensor 17, but the rotational speed of the output shaft 9 a of the automatic transmission 9 and the power shaft of each transmission unit 4 are used instead of the gear sensor 17. It is good also as a structure which detects the gear ratio of each transmission unit 4 from this rotational speed. In this case, it is conceivable that the first setting unit 12 sets the target torque T TGT when the gear ratio is equal to or higher than the predetermined gear ratio (when the drive torque is relatively large).
  • the same effect as that of the above-described embodiment can be obtained by using this to perform control according to the gear ratio.
  • the detection target of these shift speeds and gear ratios may be related to either the engagement side gear stage or the release side gear stage.
  • the target torque T TGT when the target torque T TGT is set by the second setting unit 1c, the smaller one of the driver request torque T DRI and the engine unused torque T MIS is selected as the minimum value Z.
  • the target torque T TGT is made equal to or less than the driver request torque T DRI . That is, the driver requested torque T DRI is used to ensure that the target torque T TGT is within the engine output torque T ENG or less.
  • the calculation method for controlling the target torque T TGT to be equal to or lower than the engine output torque T ENG is not limited to this.
  • the driver request torque T DRI For example, performs a comparison operation between the driver request torque T DRI and engine unused torque T MIS, the driver request torque T DRI only if greater than the engine unused torque T MIS, the target torque T engine unused torque T MIS May be set to TGT . Even in such a calculation, even if the engine unused torque T MIS exceeds the engine output torque T ENG when the engine rotational speed increase torque T ZOU is a negative value, for example, the target torque T TGT is The output torque T ENG can be prevented from exceeding.
  • the value of the weighting factor k is a fixed value set in advance, but may be a variable set according to the operating state of the engine 11, the driver's preference, and the like.
  • an input device for setting power performance and driving feeling such as “sport mode” and “stable mode” is provided on the instrument panel of the vehicle, and the weight coefficient k is changed according to the input information.
  • the predetermined gear G 0 determined by the first setting unit 12 and the second setting unit 1c is exemplified as a starting gear (for example, a low gear such as 1st to 3rd gears).
  • setting the predetermined stage G 0 is arbitrary.
  • each of the fifth and lower gears may be set to the predetermined gear G 0
  • each of the second to fourth gears may be set to the predetermined gear G 0 .
  • the transmission control device 10 is connected to a diesel engine.
  • the combustion type of the engine is arbitrary and can be applied to a drive system of a gasoline engine or other internal combustion engine. is there.
  • the engine to which the shift control device 10 is applied is not limited to an in-vehicle engine mounted on a vehicle such as an automobile, a bus, or a truck.
  • a vehicle such as an automobile, a bus, or a truck.
  • fluctuations in the engine speed Ne and fluctuations in the output shaft torque during shifting of the automatic transmission 9 can be suppressed, and shift shocks can be reduced. it can.
  • a dual clutch transmission is exemplified as the automatic transmission 9.
  • the type of transmission to which the transmission control device 10 is applied is not limited to this.
  • it can be applied to a torque converter type automatic transmission (torque type AT) combining a planetary gear mechanism composed of a plurality of rotating elements and a torque converter.
  • the torque converter AT has built-in clutches and brakes that restrict and release the rotational movements of the rotating elements that make up the planetary gear mechanism. By changing the combination of these clutches and brakes, the gear ratio can be adjusted. It changes (for example, refer patent document 2). Therefore, by controlling the switching operation of the torque converter AT clutch and brake instead of the clutch 3 of the automatic transmission 9 described above, the same effects as those of the above-described embodiment can be obtained.

Abstract

Provided is a transmission control device that detects the vehicle weight (W) of a vehicle by using a vehicle weight detection means (16) and sets a target torque for a frictional engagement element (3) based on the vehicle weight (W) by using a setting means (21), during transmission control of an automatic transmission (9) connected to an engine mounted in a vehicle. The engagement status of the frictional engagement element (3) on the engagement side during gear shift operation by the automatic transmission (9) is controlled by the control means (23), based on said target torque.

Description

変速制御装置Shift control device
 本発明は、自動変速機の変速動作を制御する変速制御装置に関する。 The present invention relates to a shift control device that controls a shift operation of an automatic transmission.
 従来、エンジン(内燃機関)からの伝達トルクで回転する回転要素と複数の摩擦係合要素とを有する変速機構を備えた自動変速機が知られている。
 ギヤセットを偶数段及び奇数段の二系統に分離してそれぞれのギヤセットにクラッチ(摩擦係合要素)を設けたデュアルクラッチ式の自動変速機(DCT)では、一方のクラッチを解放しつつ他方のクラッチを係合させることによって変速比が変更される(例えば、特許文献1参照)。この場合、二つのクラッチの動作を協調的に制御して掛け替えることにより、なめらかな変速動作が達成される。
2. Description of the Related Art Conventionally, there is known an automatic transmission that includes a speed change mechanism having a rotating element that rotates with a transmission torque from an engine (internal combustion engine) and a plurality of friction engagement elements.
In a dual clutch type automatic transmission (DCT) in which the gear set is divided into two systems of even and odd stages and each gear set is provided with a clutch (friction engagement element), one clutch is released while the other clutch Is engaged to change the gear ratio (see, for example, Patent Document 1). In this case, a smooth speed change operation is achieved by cooperatively controlling the operation of the two clutches and switching them.
 また、複数の回転要素からなる遊星歯車機構とトルクコンバータとを組み合わせた自動変速機(トルコン式AT)では、個々の回転要素の回転動作を拘束,解放するクラッチやブレーキ(摩擦係合要素)の断接の組み合わせを変更することによって変速比が変更される(例えば、特許文献2参照)。この場合も、回転要素を解放するブレーキの動作と係合させるブレーキの動作とを同期させることにより、スムーズな変速動作が期待できる。 Also, in an automatic transmission (torque type AT) that combines a planetary gear mechanism composed of a plurality of rotating elements and a torque converter, a clutch or brake (friction engaging element) that restrains and releases the rotating operation of each rotating element is used. The gear ratio is changed by changing the combination of connection and disconnection (see, for example, Patent Document 2). Also in this case, a smooth speed change operation can be expected by synchronizing the operation of the brake for releasing the rotating element and the operation of the brake to be engaged.
 ところで、一般的な自動変速機の変速過程では、トルクフェーズやイナーシャフェーズといった制御フェーズ(制御段階)が設定されて、円滑な変速動作が実現される。
 トルクフェーズとは、自動変速機に入力されるエンジン回転数を変化させることなく一方の摩擦係合要素から他方の摩擦係合要素へとトルクを受け渡すフェーズである。このトルクフェーズでは、係合側の摩擦係合要素が徐々に係合されると同時に解放側の摩擦係合要素が徐々に解放される。これにより、トルクの伝達先が解放側の摩擦係合要素に接続された一方の入力軸から他方の入力軸へと掛け替えられ、エンジンに負荷が作用しない状態で自動変速機の出力軸トルクが減少する。
By the way, in a shift process of a general automatic transmission, a control phase (control stage) such as a torque phase and an inertia phase is set, and a smooth shift operation is realized.
The torque phase is a phase in which torque is transferred from one friction engagement element to the other friction engagement element without changing the engine speed input to the automatic transmission. In this torque phase, the engagement-side friction engagement element is gradually engaged, and at the same time, the release-side friction engagement element is gradually released. As a result, the torque transmission destination is switched from one input shaft connected to the frictional engagement element on the release side to the other input shaft, and the output shaft torque of the automatic transmission is reduced without any load acting on the engine. To do.
 また、イナーシャフェーズとは、自動変速機の入力回転数と係合側の摩擦係合要素の回転数とを同期させるフェーズである。このイナーシャフェーズでは、解放側の摩擦係合要素がほぼ完全に解放されてトルク伝達を遮断するとともに、係合側の摩擦係合要素がさらに係合されトルクを伝達するようになる。このとき、係合側の摩擦係合要素の係合によって自動変速機の入力側の慣性(イナーシャ)が変化し、エンジン回転数も変化する。そのため、イナーシャフェーズではトルクフェーズよりもゆっくりと係合側の摩擦係合要素を係合させて、変速ショックを抑制している。 Also, the inertia phase is a phase in which the input rotational speed of the automatic transmission is synchronized with the rotational speed of the frictional engagement element on the engagement side. In this inertia phase, the release-side frictional engagement element is almost completely released to cut off torque transmission, and the engagement-side frictional engagement element is further engaged to transmit torque. At this time, the inertia (inertia) on the input side of the automatic transmission changes due to the engagement of the frictional engagement element on the engagement side, and the engine speed also changes. Therefore, in the inertia phase, the engagement shock is engaged more slowly than in the torque phase, and the shift shock is suppressed.
特開2009-257408号公報JP 2009-257408 A 特開2007-99221号公報JP 2007-99221 A
 トルクフェーズでは、係合側の入力軸に受け渡されるトルクが解放側に入力されるトルクの減少分で賄われる。つまり、一方の入力軸から他方の入力軸へのトルクの受け渡しが適切に行われれば、エンジン回転数は変化しないことになる。 In the torque phase, the torque delivered to the input shaft on the engagement side is covered by the decrease in torque input to the release side. That is, if the torque is properly transferred from one input shaft to the other input shaft, the engine speed does not change.
 しかしながら、このトルクフェーズの過程で解放側の摩擦係合要素を介したトルク伝達が途切れるよりも前に係合側の摩擦係合要素のトルク容量が過大になると、二つの摩擦係合要素のそれぞれに接続された入力軸の両方が係合した二重噛みの状態となる。つまり、係合側の摩擦係合要素の係合度合いが強すぎると、係合側へ流れ込むトルクが急激に増加し、トルクフェーズ中にショックが発生しかねない。 However, if the torque capacity of the frictional engagement element on the engagement side becomes excessive before the torque transmission through the frictional engagement element on the release side is interrupted in the course of this torque phase, each of the two friction engagement elements In this state, both input shafts connected to each other are engaged with each other. That is, if the degree of engagement of the engagement-side frictional engagement element is too strong, the torque flowing into the engagement side increases rapidly, and a shock may occur during the torque phase.
 また、アクセルオンのシフトアップ方向への変速時におけるトルクフェーズでは、通常エンジン回転数が徐々に増加する。このとき、自動変速機に入力されるトルクの大きさは、実際にエンジンで発生したエンジントルクから、エンジン回転数を上昇させるために消費されるトルクを差し引いた大きさのトルクとなる。 Also, in the torque phase during shifting in the accelerator-up shift-up direction, the normal engine speed gradually increases. At this time, the magnitude of the torque input to the automatic transmission is a torque obtained by subtracting the torque consumed to increase the engine speed from the engine torque actually generated by the engine.
 一方、係合側の摩擦係合要素のトルク容量がそのエンジントルクを上回ると、エンジン回転数を上昇させるために消費されるべきトルクが自動変速機側に流れ込み、エンジン回転数が上昇しない状態となる。この場合、自動変速機の駆動系構成部品のねじりや出力軸トルクの増加に起因する加速度変化が生じ、トルクフェーズからイナーシャフェーズへ移行する前後でショックが発生する場合がある。
 このように、従来の自動変速機の変速制御では、摩擦係合要素の切り換え時における係合側トルク容量の適正化が難しいという課題がある。
On the other hand, when the torque capacity of the frictional engagement element on the engagement side exceeds the engine torque, the torque that should be consumed to increase the engine speed flows into the automatic transmission, and the engine speed does not increase. Become. In this case, a change in acceleration caused by torsion of drive system components of the automatic transmission or an increase in output shaft torque occurs, and a shock may occur before and after the transition from the torque phase to the inertia phase.
As described above, the conventional shift control of the automatic transmission has a problem that it is difficult to optimize the engagement-side torque capacity at the time of switching the friction engagement elements.
 本件は、上記のような課題に鑑み創案されたもので、係合側トルク容量の好適な制御により変速動作時のトルクショックを抑制することができるようにした変速制御装置を提供することを目的とする。
 なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的として位置づけることができる。
The present invention has been devised in view of the above-described problems, and an object thereof is to provide a shift control device capable of suppressing a torque shock during a shift operation by suitable control of the engagement side torque capacity. And
The present invention is not limited to this purpose, and is a function and effect derived from each configuration shown in the embodiments for carrying out the invention described later, and other effects of the present invention are to obtain a function and effect that cannot be obtained by conventional techniques. Can be positioned.
 (1)ここで開示する変速制御装置は、車両に搭載されたエンジンの出力軸に接続され、複数の摩擦係合要素の少なくとも一つを解放するとともに少なくとも他の一つを係合させることによって変速動作を行う自動変速機と、前記車両の車両重量を検出する車両重量検出手段と、を備える。
 また、前記車両重量検出手段で検出された前記車両重量に応じて、前記摩擦係合要素の目標トルクを設定する設定手段と、前記設定手段で設定された前記目標トルクに基づき、前記自動変速機の変速動作時における係合側の前記摩擦係合要素の係合状態を制御する制御手段と、を備える。
(1) A shift control device disclosed herein is connected to an output shaft of an engine mounted on a vehicle, and releases at least one of a plurality of friction engagement elements and engages at least one other. An automatic transmission that performs a shift operation and vehicle weight detection means that detects a vehicle weight of the vehicle are provided.
A setting unit configured to set a target torque of the friction engagement element according to the vehicle weight detected by the vehicle weight detection unit; and the automatic transmission based on the target torque set by the setting unit. Control means for controlling the engagement state of the frictional engagement element on the engagement side during the shifting operation.
 (2)また、前記設定手段が、前記車両重量が所定重量以下であるときの前記目標トルクとしての第一目標トルクを設定する第一設定手段と、前記車両重量が前記所定重量よりも大きいときの前記目標トルクとしての第二目標トルクを、前記第一設定手段で設定される前記第一目標トルクとは別に設定する第二設定手段とを有することが好ましい。 (2) When the setting means sets the first target torque as the target torque when the vehicle weight is equal to or less than a predetermined weight, and the vehicle weight is larger than the predetermined weight It is preferable to have a second setting means for setting a second target torque as the target torque separately from the first target torque set by the first setting means.
 (3)また、前記第一設定手段が、前記第一目標トルクを前記エンジンに要求されるドライバ要求トルク以下の値に設定することが好ましい。
 なお、前記ドライバ要求トルクと前記第一目標トルクとの差を余裕トルクと呼ぶ。
 (4)また、前記第一設定手段が、前記ドライバ要求トルクが大きいほど、前記ドライバ要求トルクと前記第一目標トルクとの差を増大させることが好ましい。
 つまり、前記第一設定手段が、前記ドライバ要求トルクが大きいほど、余裕トルクを増大させることが好ましい。
(3) Moreover, it is preferable that said 1st setting means sets the said 1st target torque to the value below the driver request torque requested | required of the said engine.
The difference between the driver request torque and the first target torque is referred to as margin torque.
(4) Moreover, it is preferable that the said 1st setting means increases the difference of the said driver request torque and the said 1st target torque, so that the said driver request torque is large.
That is, it is preferable that the first setting means increases the margin torque as the driver request torque is larger.
 (5)また、前記第一設定手段が、前記車両重量が小さいほど、前記ドライバ要求トルクと前記第一目標トルクとの差を増大させることが好ましい。
 つまり、前記第一設定手段が、前記車両重量が小さいほど前記余裕トルクを増大させることが好ましい。
 (6)また、前記第二設定手段が、前記第二目標トルクを前記ドライバ要求トルクと同一値に設定することが好ましい。
(5) Moreover, it is preferable that the said 1st setting means increases the difference of the said driver request torque and said 1st target torque, so that the said vehicle weight is small.
That is, it is preferable that the first setting means increases the margin torque as the vehicle weight is smaller.
(6) Moreover, it is preferable that said 2nd setting means sets the said 2nd target torque to the same value as the said driver request torque.
 (7)さらに、前記出力軸を介して前記自動変速機に入力されるエンジン出力トルクを検出する検出手段を備えることが好ましい。
 また、前記検出手段で検出された前記エンジン出力トルクのうち前記エンジンの回転速度の上昇に供されるエンジン回転速度増加トルクを演算するとともに、前記エンジン出力トルクと前記エンジン回転速度増加トルクとのトルク差をエンジン未使用トルクとして演算する第一演算手段を備えることが好ましい。
 この場合、前記第二設定手段が、前記第一演算手段で演算された前記エンジン未使用トルクに基づいて前記第二目標トルクを設定することができる。
(7) Furthermore, it is preferable to provide a detection means for detecting an engine output torque input to the automatic transmission via the output shaft.
The engine output torque detected by the detection means is calculated as an engine rotation speed increase torque that is used to increase the engine rotation speed, and the torque between the engine output torque and the engine rotation speed increase torque is calculated. It is preferable to provide first calculation means for calculating the difference as engine unused torque.
In this case, the second setting means can set the second target torque based on the engine unused torque calculated by the first calculation means.
 (8)また、前記第二設定手段が、第二目標トルクを前記第一目標トルク以上の値に設定することが好ましい。
 (9)また、前記自動変速機の変速段を検出する変速段検出手段を備えることが好ましい。
 この場合、前記設定手段が、前記変速段検出手段で検出された前記変速段と前記車両重量検出手段で検出された前記車両重量とに応じて、前記目標トルクを設定することができる。
(8) Moreover, it is preferable that said 2nd setting means sets a 2nd target torque to the value more than said 1st target torque.
(9) Moreover, it is preferable to provide a gear position detecting means for detecting a gear position of the automatic transmission.
In this case, the setting means can set the target torque in accordance with the shift speed detected by the shift speed detection means and the vehicle weight detected by the vehicle weight detection means.
 (1)請求項1に記載の変速制御装置によれば、車両重量に応じて摩擦係合要素の目標トルクを設定することで、車両の慣性力を考慮した変速ショックの許容量やダンピング効果に応じて摩擦係合要素の係合状態を制御することが可能となる。これにより、変速ショックを抑制しつつ、迅速に摩擦係合要素を係合させることができる。 (1) According to the shift control device of the first aspect, by setting the target torque of the friction engagement element according to the vehicle weight, the shift shock allowable amount considering the inertial force of the vehicle and the damping effect can be obtained. Accordingly, the engagement state of the friction engagement element can be controlled. Accordingly, the friction engagement element can be quickly engaged while suppressing the shift shock.
 (2)請求項2に記載の変速制御装置によれば、車両重量が所定重量以下であるときと所定重量よりも大きいときとで別の目標トルクを設定することで、所定重量をしきい値とした簡素な設定により、車両の慣性力を考慮した変速ショックの許容量やダンピング効果に応じて摩擦係合要素の係合状態を容易に制御することができる。 (2) According to the shift control device of the second aspect, the predetermined weight is set to the threshold value by setting different target torques when the vehicle weight is equal to or less than the predetermined weight and when the vehicle weight is larger than the predetermined weight. With this simple setting, it is possible to easily control the engagement state of the friction engagement element in accordance with the allowable amount of shift shock and the damping effect in consideration of the inertial force of the vehicle.
 (3)請求項3に記載の変速制御装置によれば、車両重量が所定重量以上のときに設定される目標トルクをドライバ要求トルクよりも小さく設定することで、係合側の摩擦係合要素のトルク容量をエンジン出力トルクよりも小さくすることができる。これにより、係合側のつなぎ過ぎによる不適切なエンジン回転数の変動や出力軸トルクの変動を抑制することができ、変速ショックを低減することができる。
 また、係合側のクラッチのトルク容量に余裕が生じるため、クラッチの個体差や制御上の作動誤差を吸収することができ、制御性を高めることができる。
(3) According to the shift control device of the third aspect, by setting the target torque set when the vehicle weight is equal to or greater than the predetermined weight to be smaller than the driver request torque, the friction engagement element on the engagement side Can be made smaller than the engine output torque. As a result, inappropriate engine speed fluctuations and output shaft torque fluctuations due to excessive coupling on the engagement side can be suppressed, and shift shocks can be reduced.
Further, since there is a margin in the torque capacity of the clutch on the engagement side, individual differences between the clutches and control operation errors can be absorbed, and controllability can be improved.
 (4)請求項4に記載の変速制御装置によれば、ドライバ要求トルクが大きいほど余裕トルクを増大させることで、確実に係合側の摩擦係合要素のトルク容量をエンジン出力トルクよりも小さくすることができ、より変速ショックを低減することができる。 (4) According to the transmission control device of the fourth aspect, the torque capacity of the frictional engagement element on the engagement side is surely made smaller than the engine output torque by increasing the marginal torque as the driver request torque increases. Thus, the shift shock can be further reduced.
 (5)請求項5に記載の変速制御装置によれば、車両の慣性力が小さいほど余裕トルクを増大させることで、車両安定性を向上させることができ、変速ショックを抑制することができる。
 (6)請求項6に記載の変速制御装置によれば、目標トルクをドライバ要求トルクと同一値に設定することで、変速ショックが発生しにくい状態での動力性能,燃費性能を向上させることができる。
(5) According to the shift control device of the fifth aspect, the vehicle stability can be improved and the shift shock can be suppressed by increasing the margin torque as the inertial force of the vehicle is smaller.
(6) According to the shift control device of the sixth aspect, by setting the target torque to the same value as the driver request torque, it is possible to improve the power performance and the fuel consumption performance in a state where the shift shock is unlikely to occur. it can.
 (7)請求項7に記載の変速制御装置によれば、エンジン未使用トルクに基づく係合側摩擦係合要素の係合状態の制御により、係合側の摩擦係合要素のトルク容量にエンジン回転速度増加トルク分の余裕を持たせることができる。これにより、係合側の摩擦係合要素のつなぎ過ぎによるエンジン回転数の変動や出力軸トルクの変動を抑制することができ、変速ショックを低減することができる。また、係合側のクラッチのトルク容量にエンジン回転速度増加トルク分の余裕が生じるため、クラッチの個体差や制御上の作動誤差を吸収することができ、制御性を高めることができる。 (7) According to the shift control device of the seventh aspect, the torque capacity of the engagement side frictional engagement element is controlled by controlling the engagement state of the engagement side frictional engagement element based on the engine unused torque. It is possible to provide a margin for the rotational speed increase torque. As a result, fluctuations in engine speed and fluctuations in output shaft torque due to excessive coupling of frictional engagement elements on the engagement side can be suppressed, and shift shocks can be reduced. In addition, since the torque capacity of the clutch on the engagement side has a margin for the engine rotational speed increase torque, individual differences of the clutches and control operation errors can be absorbed, and controllability can be improved.
 (8)請求項8に記載の変速制御装置によれば、車両の慣性力が大きいときに摩擦係合要素の目標トルクを大きくすることで、車両の慣性力を利用して変速時のショックを軽減することができる。また、車両の慣性力が小さいときには摩擦係合要素の目標トルクが小さくなるため、係合側の摩擦係合要素のトルク容量をエンジン出力トルクよりも小さくすることができる。これにより、係合側の摩擦係合要素のつなぎ過ぎによるエンジン回転数の変動や出力軸トルクの変動を抑制することができ、変速ショックを低減することができる。
 さらに、係合側のクラッチのトルク容量に余裕が生じるため、クラッチの個体差や制御上の作動誤差を吸収することができ、制御性を高めることができる。
(8) According to the shift control device of the eighth aspect, by increasing the target torque of the frictional engagement element when the inertial force of the vehicle is large, a shock at the time of the shift is made using the inertial force of the vehicle. Can be reduced. Further, since the target torque of the frictional engagement element is small when the inertia force of the vehicle is small, the torque capacity of the frictional engagement element on the engagement side can be made smaller than the engine output torque. As a result, fluctuations in engine speed and fluctuations in output shaft torque due to excessive coupling of frictional engagement elements on the engagement side can be suppressed, and shift shocks can be reduced.
Furthermore, since there is a margin in the torque capacity of the clutch on the engagement side, individual differences between the clutches and control operation errors can be absorbed, and controllability can be improved.
 (9)請求項9に記載の変速制御装置によれば、自動変速機の変速段と車両重量とに基づいて目標トルクを設定することで、自動変速機の駆動トルクに応じた摩擦係合要素のトルク容量の調整が可能となり、変速ショックをより適切に抑制することができる。 (9) According to the shift control device of the ninth aspect, by setting the target torque based on the shift stage of the automatic transmission and the vehicle weight, the friction engagement element corresponding to the drive torque of the automatic transmission Torque capacity can be adjusted, and the shift shock can be more appropriately suppressed.
一実施形態に係る変速制御装置の全体構成を模式的に示す図である。It is a figure showing typically the whole gear shift control device composition concerning one embodiment. 図1の変速制御装置に記憶された目標トルクのマップを例示する図である。It is a figure which illustrates the map of the target torque memorize | stored in the transmission control apparatus of FIG. 図1の変速制御装置に記憶された目標トルクとクラッチ駆動電流との関係を例示するグラフである。3 is a graph illustrating the relationship between target torque and clutch drive current stored in the transmission control device of FIG. 1. 図1の変速制御装置で実施される制御を例示するフローチャートである。2 is a flowchart illustrating an example of control performed by the transmission control device of FIG. 1. 図1の変速制御装置によるシフトアップ変速時の制御作用を例示するグラフであり、(a)はエンジン回転数の経時変動を示し、(b)はクラッチ駆動電流の経時変動を示し、(c)は自動変速機の出力軸トルクの変動を示す。2 is a graph illustrating a control action during a shift-up shift by the shift control device of FIG. 1, (a) showing a change with time in engine speed, (b) showing a change with time in clutch drive current, and (c). Indicates fluctuations in the output shaft torque of the automatic transmission. 第一変形例に係る変速制御装置の全体構成を模式的に示す図である。It is a figure which shows typically the whole structure of the transmission control apparatus which concerns on a 1st modification. 図6の変速制御装置で実施される制御を例示するフローチャートである。It is a flowchart which illustrates the control implemented with the speed-change control apparatus of FIG. 第二変形例に係る変速制御装置の全体構成を模式的に示す図である。It is a figure which shows typically the whole structure of the speed-change control apparatus which concerns on a 2nd modification. 図8の変速制御装置で実施される制御を例示するフローチャートである。It is a flowchart which illustrates the control implemented with the speed-change control apparatus of FIG. 第三変形例に係る変速制御装置の全体構成を模式的に示す図である。It is a figure which shows typically the whole structure of the transmission control apparatus which concerns on a 3rd modification. 図10の変速制御装置で実施される制御を例示するフローチャートである。It is a flowchart which illustrates the control implemented with the speed-change control apparatus of FIG. 図1の変速制御装置が記憶する目標トルクのマップの変形例を示す図である。It is a figure which shows the modification of the map of the target torque which the transmission control apparatus of FIG. 1 memorize | stores. 図1の変速制御装置で実施される制御の変形例を示すフローチャートである。6 is a flowchart showing a modification of control performed by the transmission control device of FIG. 1. 図6の変速制御装置で実施される制御の変形例を示すフローチャートである。It is a flowchart which shows the modification of the control implemented with the transmission control apparatus of FIG.
 以下、図面を参照して開示の変速制御装置について説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。 Hereinafter, the disclosed shift control device will be described with reference to the drawings. Note that the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described in the following embodiment.
 [1.装置構成]
 本実施形態の変速制御装置10は、図1に示すエンジン(内燃機関)11を搭載した車両に適用される。このエンジン11は、コモンレール式燃料噴射システムを具備した多気筒ディーゼルエンジンである。エンジン11の各気筒にはピエゾ式のインジェクタ19が設けられ、燃料噴射量や噴射タイミング等が電気的に制御されている。なお、図1中では、複数のインジェクタ19のうちの一つを示している。
[1. Device configuration]
The transmission control device 10 of the present embodiment is applied to a vehicle equipped with the engine (internal combustion engine) 11 shown in FIG. The engine 11 is a multi-cylinder diesel engine equipped with a common rail fuel injection system. Each cylinder of the engine 11 is provided with a piezo-type injector 19, and the fuel injection amount, injection timing, and the like are electrically controlled. In FIG. 1, one of the plurality of injectors 19 is shown.
 インジェクタ19には、図示しない燃料供給ポンプ(サプライポンプ)で加圧された高圧燃料を蓄えるコモンレールが接続される。コモンレールは、各気筒のインジェクタ19に燃料を分配供給するものである。また、インジェクタ19の内部には、僅かに間隔を開けてピエゾ素子(セラミック圧電素子)を積層した微細管が設けられ、この微細管の内部に高圧燃料が封入されている。インジェクタ19は、後述するエンジンECU2から伝達される駆動信号を受けてピエゾ素子を変形させ、高圧燃料を微細管から押し出すことによって、各気筒の燃焼室内に噴射供給するように作動する。 The injector 19 is connected to a common rail that stores high-pressure fuel pressurized by a fuel supply pump (supply pump) (not shown). The common rail distributes and supplies fuel to the injectors 19 of each cylinder. In addition, a fine tube in which piezoelectric elements (ceramic piezoelectric elements) are laminated with a slight gap therebetween is provided inside the injector 19, and high-pressure fuel is sealed inside the fine tube. The injector 19 operates to receive a drive signal transmitted from an engine ECU 2 to be described later, deform the piezo element, and push high pressure fuel out of the micropipe to inject and supply it into the combustion chamber of each cylinder.
 エンジン11には、エンジン回転数Neを検出するエンジン回転数センサ14(エンジン回転数検出手段)が設けられる。ここで検出されたエンジン回転数Neは、エンジンECU2及び後述する変速機ECU1に伝達される。なお、エンジン回転数センサ14のセンシング対象は、エンジン11のクランクシャフトの回転角や角速度だけでなく、エンジン11の出力軸11aの角速度としてもよい。あるいは、クランクシャフトと同期回転するカムシャフトの角速度をエンジン回転数センサ14のセンシング対象としてもよい。 The engine 11 is provided with an engine speed sensor 14 (engine speed detecting means) for detecting the engine speed Ne. The engine speed Ne detected here is transmitted to the engine ECU 2 and a transmission ECU 1 described later. The sensing target of the engine speed sensor 14 may be not only the rotation angle and angular velocity of the crankshaft of the engine 11 but also the angular velocity of the output shaft 11a of the engine 11. Alternatively, the angular speed of the camshaft that rotates in synchronization with the crankshaft may be the sensing target of the engine speed sensor 14.
 エンジン11を搭載した車両の任意の位置には、アクセルペダルの踏み込み量に対応するアクセル開度θACを検出するアクセル開度センサ15(アクセル操作量検出手段)と、車両の重量W(あるいは積載物の重量)を検出する重量センサ16とが設けられる。アクセル開度センサ15で検出されたアクセル開度θACはエンジンECU2に伝達され、重量センサ16で検出された車両重量WはエンジンECU2及び変速機ECU1に伝達される。 An accelerator opening sensor 15 (accelerator operation amount detecting means) for detecting an accelerator opening θ AC corresponding to the amount of depression of the accelerator pedal, and a vehicle weight W (or loading) are provided at an arbitrary position of the vehicle on which the engine 11 is mounted. And a weight sensor 16 for detecting the weight of the object. The accelerator opening θ AC detected by the accelerator opening sensor 15 is transmitted to the engine ECU 2, and the vehicle weight W detected by the weight sensor 16 is transmitted to the engine ECU 2 and the transmission ECU 1.
 なお、アクセル開度θACは運転者の加速要求に対応するパラメータであり、言い換えるとエンジン11の負荷に相関するパラメータである。また、車両の重量Wは慣性質量に対応するパラメータであり、これもエンジン11の負荷に相関するパラメータであるといえる。 The accelerator opening θ AC is a parameter corresponding to the driver's acceleration request, in other words, a parameter correlated with the load of the engine 11. Further, the weight W of the vehicle is a parameter corresponding to the inertial mass, and it can be said that this is also a parameter correlated with the load of the engine 11.
 重量センサ16における車両重量Wの具体的な取得方法は任意であり、例えば車体フレームやタイヤ,サスペンションに作用する重量や圧力に基づいて検出されるものとしてもよいし、あるいはエンジントルクや車速等に基づいて車両の運動状態を把握し、その運動状態に基づいて演算されるものとしてもよい。例えば、車両の実加速度の時間変化に伴う負荷抵抗の時間変化量から車両重量Wを演算することが考えられる。つまり、圧力センサやエンジントルクセンサ,車速センサ,加速度センサなどは、ここでいう重量センサ16として機能しうる。 A specific method for obtaining the vehicle weight W in the weight sensor 16 is arbitrary, and may be detected based on, for example, the weight or pressure acting on the vehicle body frame, tire, or suspension, or may be detected based on engine torque, vehicle speed, or the like. It is good also as what is grasped | ascertained based on the movement state of a vehicle based on the movement state based on that. For example, it is conceivable to calculate the vehicle weight W from the time change amount of the load resistance accompanying the time change of the actual acceleration of the vehicle. That is, a pressure sensor, an engine torque sensor, a vehicle speed sensor, an acceleration sensor, or the like can function as the weight sensor 16 here.
 エンジン11の出力軸11aには、自動変速機9が接続される。この自動変速機9は、変速ユニット4を偶数段及び奇数段の二系統に分離してそれぞれの変速ユニット4にクラッチ3(摩擦係合要素)を設けたデュアルクラッチ式のトランスミッション(DCT,Dual Clutch Transmission)である。 The automatic transmission 9 is connected to the output shaft 11a of the engine 11. This automatic transmission 9 includes a dual clutch transmission (DCT, Dual Clutch) in which the transmission unit 4 is divided into two systems of even and odd stages and each transmission unit 4 is provided with a clutch 3 (friction engagement element). Transmission).
 図1では、自動変速機9の動作原理を明示すべく、その構造を簡素化して表現している。自動変速機9の動力伝達経路である第一動力伝達経路5A及び第二動力伝達経路5Bは、エンジン11の出力軸11aに対して並列に接続される。自動変速機9の変速動作は、何れか一方の動力伝達経路上に介装されたクラッチ3a又は3bを解放するとともに他方のクラッチ3b又は3aを係合させることによって達成される。 In FIG. 1, in order to clarify the operating principle of the automatic transmission 9, the structure is simplified. The first power transmission path 5 </ b> A and the second power transmission path 5 </ b> B that are power transmission paths of the automatic transmission 9 are connected in parallel to the output shaft 11 a of the engine 11. The speed change operation of the automatic transmission 9 is achieved by releasing the clutch 3a or 3b interposed on any one of the power transmission paths and engaging the other clutch 3b or 3a.
 第一動力伝達経路5A上には、第一クラッチ3a及び第一変速ユニット4aが設けられ、第二動力伝達経路5B上には、第二クラッチ3b及び第二変速ユニット4bが設けられる。第一クラッチ3a及び第二クラッチ3bは、ATF(Automatic Transmission Fluid)が封入されたケース内で複数の摩擦板を離接させて(例えば、一対の摩擦板を離間方向や接近方向へと移動させることによって)係合状態を制御する湿式多板クラッチである。第一クラッチ3aは、第一動力伝達経路5Aを介した第一変速ユニット4aへの動力伝達を担っており、第二クラッチ3bは、第二動力伝達経路5Bを介した第二変速ユニット4bへの動力伝達を担っている。 The first clutch 3a and the first transmission unit 4a are provided on the first power transmission path 5A, and the second clutch 3b and the second transmission unit 4b are provided on the second power transmission path 5B. The first clutch 3a and the second clutch 3b move a pair of friction plates in a separating direction or an approaching direction by separating and contacting a plurality of friction plates in a case in which ATF (Automatic Transmission Transmission Fluid) is enclosed. A wet multi-plate clutch that controls the engagement state. The first clutch 3a is responsible for power transmission to the first transmission unit 4a via the first power transmission path 5A, and the second clutch 3b is directed to the second transmission unit 4b via the second power transmission path 5B. It is responsible for power transmission.
 第一クラッチ3a及び第二クラッチ3bのそれぞれには、摩擦板を離接方向に駆動する油圧シリンダ18A,18Bが併設される。また、各々の油圧シリンダ18A,18Bには、油圧ポンプ7から吐出される作動油を導く第一油路6A及び第二油路6Bが接続される。 Each of the first clutch 3a and the second clutch 3b is provided with hydraulic cylinders 18A and 18B for driving the friction plates in the separation / contact direction. In addition, a first oil passage 6A and a second oil passage 6B that guide hydraulic fluid discharged from the hydraulic pump 7 are connected to the hydraulic cylinders 18A and 18B.
 さらに、第一油路6A及び第二油路6Bのそれぞれには、第一制御弁8A及び第二制御弁8Bが介装される。第一制御弁8A及び第二制御弁8Bは、変速機ECU1から出力される駆動電流に応じた開度に制御されて、第一油路6A及び第二油路6Bのそれぞれの作動油流量を制御する電磁比例弁である。なお、油圧ポンプ7は、油圧シリンダ18A,18Bに供給される作動油(又はATF)を吐出する作動油ポンプである。 Furthermore, a first control valve 8A and a second control valve 8B are interposed in each of the first oil passage 6A and the second oil passage 6B. The first control valve 8A and the second control valve 8B are controlled to an opening degree corresponding to the drive current output from the transmission ECU 1, and the respective hydraulic oil flow rates of the first oil passage 6A and the second oil passage 6B are controlled. It is an electromagnetic proportional valve to control. The hydraulic pump 7 is a hydraulic oil pump that discharges hydraulic oil (or ATF) supplied to the hydraulic cylinders 18A and 18B.
 例えば、第一制御弁8Aの弁開度の開放(弁開度を大きくすること)により第一油路6Aの作動油圧が上昇すると、油圧シリンダ18Aが伸張方向に駆動され、第一クラッチ3aの摩擦板が係合方向に移動する。一方、第一制御弁8Aの弁開度の閉鎖(弁開度を小さくすること)により第一油路6Aの作動油圧が下降すると、図示しないスプリングの作用で第一クラッチ3aの摩擦板が解放方向に移動する。第二クラッチ3bの動作についても第一クラッチ3aと同様である。したがって、第一クラッチ3a及び第二クラッチ3bのそれぞれの係合状態は、変速機ECU1からの駆動電流に応じたものとなる。言い換えると、第一クラッチ3a及び第二クラッチ3bのそれぞれで伝達されるクラッチ伝達トルクは、変速機ECU1からの駆動電流に応じて制御される。 For example, when the operating oil pressure of the first oil passage 6A is increased by opening the valve opening of the first control valve 8A (increasing the valve opening), the hydraulic cylinder 18A is driven in the extending direction, and the first clutch 3a The friction plate moves in the engagement direction. On the other hand, when the hydraulic pressure of the first oil passage 6A is lowered by closing the valve opening of the first control valve 8A (reducing the valve opening), the friction plate of the first clutch 3a is released by the action of a spring (not shown). Move in the direction. The operation of the second clutch 3b is the same as that of the first clutch 3a. Therefore, the engagement states of the first clutch 3a and the second clutch 3b are in accordance with the drive current from the transmission ECU 1. In other words, the clutch transmission torque transmitted by each of the first clutch 3a and the second clutch 3b is controlled according to the drive current from the transmission ECU1.
 第一変速ユニット4a及び第二変速ユニット4bは、ギヤオイルで潤滑されたケース内に複数のギヤ(歯車)を収容する変速機構であり、歯合するギヤの組み合わせを変更することで変速比(減速比)を多段階に変更する。これらの変速ユニット4a,4bの変速動作は、変速機ECU1によって制御される。なお、図1ではこれらの変速ユニット4a,4bの変速動作を制御する油圧回路の図示が省略されている。 The first transmission unit 4a and the second transmission unit 4b are transmission mechanisms that house a plurality of gears (gears) in a case lubricated with gear oil, and change the gear ratio (deceleration) by changing the combination of meshing gears. Ratio) in multiple stages. The speed change operation of these speed change units 4a and 4b is controlled by the transmission ECU1. In FIG. 1, a hydraulic circuit for controlling the speed change operation of these speed change units 4a and 4b is not shown.
 また、第一変速ユニット4a及び第二変速ユニット4bのそれぞれには、変速段G(ギヤ段)を検出する第一ギヤセンサ17a及び第二ギヤセンサ17b(変速段検出手段)が設けられる。これらのギヤセンサ17で検出されたそれぞれの変速段Gは、変速機ECU1に伝達される。なお、これらの第一変速ユニット4a及び第二変速ユニット4bのそれぞれから出力される動力軸は一本の出力軸9aに合流している。出力軸9aの駆動力は、その下流に設けられる駆動輪側へと伝達される。 Also, each of the first transmission unit 4a and the second transmission unit 4b is provided with a first gear sensor 17a and a second gear sensor 17b (shift stage detecting means) for detecting the shift stage G (gear stage). Each gear stage G detected by these gear sensors 17 is transmitted to the transmission ECU 1. The power shafts output from each of the first transmission unit 4a and the second transmission unit 4b are joined to one output shaft 9a. The driving force of the output shaft 9a is transmitted to the driving wheel side provided downstream thereof.
 本実施形態では、自動変速機9で実現される変速段Gのうち奇数段(1,3,5,7速など)が第一変速ユニット4aに分担され、偶数段(2,4,6,8速など)が第二変速ユニット4bに分担される。例えば、車両が3速で走行している状態では第一変速ユニット4aが介装された第一動力伝達経路5A側のみで駆動力が伝達され、第二動力伝達経路5Bは動作していない。ただし、変速動作の開始前には第二変速ユニット4bの変速段Gが所望の変速段に切り換えられ、予めスタンバイした状態とされる。 In the present embodiment, odd-numbered stages (1, 3, 5, 7th speed, etc.) of the shift stages G realized by the automatic transmission 9 are shared by the first transmission unit 4a, and even-numbered stages (2, 4, 6, 6). 8th speed etc.) is shared by the second transmission unit 4b. For example, when the vehicle is traveling at the third speed, the driving force is transmitted only on the first power transmission path 5A side where the first transmission unit 4a is interposed, and the second power transmission path 5B is not operating. However, before the start of the speed change operation, the speed stage G of the second speed change unit 4b is switched to a desired speed stage and is set in a standby state in advance.
 続いて変速動作が始まると、第一クラッチ3aの摩擦板が解放方向に駆動されるとともに第二クラッチ3bが係合方向に駆動され、エンジン11の動力の伝達先が第一動力伝達経路5A側から第二動力伝達経路5B側へと掛け替えられる。そして変速動作の終了後には、第二変速ユニット4bが介装された第二動力伝達経路5Bのみで駆動力が伝達される状態となる。変速機ECU1は、このような変速時におけるクラッチ3の切り換え動作を制御する。 Subsequently, when the speed change operation is started, the friction plate of the first clutch 3a is driven in the releasing direction and the second clutch 3b is driven in the engaging direction, and the power transmission destination of the engine 11 is on the first power transmission path 5A side. To the second power transmission path 5B side. After the shift operation is completed, the driving force is transmitted only through the second power transmission path 5B in which the second transmission unit 4b is interposed. The transmission ECU 1 controls the switching operation of the clutch 3 during such a shift.
 [2.制御構成]
 上述のように、この車両には、電子制御装置として、エンジンECU2(Engine - Electronic Control Unit,エンジン電子制御装置)と変速機ECU1(Electronic Control Unit,電子制御装置)とが搭載される。これらの電子制御装置は、例えばマイクロプロセッサやROM,RAM等を集積したLSIデバイスや組み込み電子デバイスとして構成され、車載ネットワーク網の通信ラインを介して互いに接続される。
[2. Control configuration]
As described above, the vehicle is equipped with the engine ECU 2 (Engine-Electronic Control Unit) and the transmission ECU 1 (Electronic Control Unit) as electronic control devices. These electronic control devices are configured, for example, as LSI devices or embedded electronic devices in which a microprocessor, ROM, RAM, and the like are integrated, and are connected to each other via a communication line of an in-vehicle network.
  [2-1.エンジンECU]
 エンジンECU2は、燃料系,吸排気系及び動弁系といったエンジン11の駆動に関する広汎なシステムを統括制御する電子制御装置である。ここには、少なくともエンジン回転数センサ14,アクセル開度センサ15及び重量センサ16の各センサで検出された情報が入力される。なお、エンジンECU2に入力されるその他の具体的な情報としては、吸入空気流量やインテークマニホールド圧(吸気圧),過給圧(ターボ圧),吸気温度(給気温度),外気温,車速等が考えられるが、本実施形態ではこれらに関する説明を省略する。
[2-1. Engine ECU]
The engine ECU 2 is an electronic control unit that comprehensively controls a wide range of systems related to driving of the engine 11 such as a fuel system, an intake / exhaust system, and a valve system. Information detected by at least each of the engine speed sensor 14, the accelerator opening sensor 15, and the weight sensor 16 is input here. Other specific information input to the engine ECU 2 includes intake air flow rate, intake manifold pressure (intake pressure), supercharging pressure (turbo pressure), intake air temperature (supply air temperature), outside air temperature, vehicle speed, and the like. However, in this embodiment, the description about these is omitted.
 このエンジンECU2には、ドライバ要求トルク演算部2a及び燃料噴射量演算部2bが設けられる。
 ドライバ要求トルク演算部2a(第二演算手段)は、エンジン回転数Neとアクセル開度θACとに基づき、ドライバ(運転者)がエンジン11に要求するドライバ要求トルクTDRIを設定又は演算するものである。ここでは、例えば予め設定された制御マップや演算式に基づいてドライバ要求トルクTDRIが設定又は演算される。ここで得られたドライバ要求トルクTDRIの情報は、燃料噴射量演算部2bに伝達されるほか、変速機ECU1にも伝達される。
The engine ECU 2 includes a driver request torque calculation unit 2a and a fuel injection amount calculation unit 2b.
The driver request torque calculation unit 2a (second arithmetic means) are those based on the engine speed Ne and the accelerator opening theta AC, driver (driver) is set or calculating a driver request torque T DRI that required by the engine 11 It is. Here, for example, the driver request torque T DRI is set or calculated based on a preset control map or calculation formula. The information about the driver request torque TDRI obtained here is transmitted to the fuel injection amount calculation unit 2b and also to the transmission ECU1.
 燃料噴射量演算部2b(検出手段,燃料噴射量検出手段)は、エンジン11の各筒内への燃料噴射量を決定し、各インジェクタ19に伝達される駆動信号を出力するものである。
 まず、燃料噴射量演算部2bは、ドライバ要求トルク演算部2aで演算されたドライバ要求トルクTDRIのほか、エンジン11の補機類(エンジン11を稼動させるためにエンジン本体以外に必要な周辺機器)で消費されるトルク,エンジンフリクショントルク,駆動系の機械的制約によるトルク,車両安定性を確保するために要求されるトルクといった様々な外部要求トルクを考慮して、目標エンジン出力トルクTENGTを演算する。なお、具体的な目標エンジン出力トルクTENGTの演算手法は多様に考えられ、例えば吸入空気流量やインテークマニホールド圧,過給圧,吸気温度(給気温度),外気温,車速等の情報を併用して演算してもよい。
The fuel injection amount calculation unit 2b (detection means, fuel injection amount detection means) determines the fuel injection amount into each cylinder of the engine 11 and outputs a drive signal transmitted to each injector 19.
First, the fuel injection amount calculation unit 2b, the driver request torque calculation unit other calculated driver's requested torque T DRI at 2a, the peripheral equipment required in addition to the engine body in order to operate the auxiliary machines (engines 11 of the engine 11 The target engine output torque T ENGT is determined in consideration of various external required torques such as torque consumed by the engine, engine friction torque, torque due to mechanical constraints of the drive system, and torque required to ensure vehicle stability. Calculate. There are various ways to calculate the target engine output torque T ENGT . For example, information such as the intake air flow rate, intake manifold pressure, supercharging pressure, intake air temperature (supply air temperature), outside air temperature, vehicle speed, etc. May be calculated.
 また、燃料噴射量演算部2bは目標エンジン出力トルクTENGTに基づいて、各気筒に供給すべき燃料噴射量を決定し、各インジェクタ19に駆動信号を伝達する。例えば、目標エンジン出力トルクTENGTとインジェクタ19の駆動信号との関係を規定したマップや数式等を予め燃料噴射量演算部2bに記憶させておき、このマップや数式を用いてインジェクタ19に伝達する駆動信号を決定してもよい。 Further, the fuel injection amount calculation unit 2 b determines the fuel injection amount to be supplied to each cylinder based on the target engine output torque T ENGT and transmits a drive signal to each injector 19. For example, a map or mathematical expression that defines the relationship between the target engine output torque T ENGT and the drive signal of the injector 19 is stored in advance in the fuel injection amount calculation unit 2b and transmitted to the injector 19 using this map or mathematical expression. The drive signal may be determined.
 さらに、燃料噴射量演算部2bは上記の燃料噴射量に基づいて、実際にエンジン11の出力軸11aから自動変速機9に入力されるものと見込まれるエンジン出力トルクTENGを演算する。ここで演算されたエンジン出力トルクTENGの情報は、変速機ECU1に伝達される。 Further, the fuel injection amount calculation unit 2b calculates an engine output torque T ENG that is expected to be actually input to the automatic transmission 9 from the output shaft 11a of the engine 11 based on the fuel injection amount. Information on the engine output torque T ENG calculated here is transmitted to the transmission ECU 1.
 なお、燃料噴射量演算部2bはエンジン11の燃料噴射量を検出する燃料噴射量検出手段として機能するとともに、自動変速機9に入力されるエンジン出力トルクTENGを検出する検出手段として機能する。また、上記のドライバ要求トルク演算部2a及び燃料噴射量演算部2bの各機能は、電子回路(ハードウェア)によって実現してもよく、ソフトウェアとしてプログラミングされたものとしてもよい。あるいは、これらの機能のうちの一部をハードウェアとして設け、他部をソフトウェアとしたものであってもよい。 The fuel injection amount calculation unit 2b functions as a fuel injection amount detection unit that detects the fuel injection amount of the engine 11, and also functions as a detection unit that detects the engine output torque T ENG input to the automatic transmission 9. Moreover, each function of said driver request torque calculating part 2a and fuel injection amount calculating part 2b may be implement | achieved by the electronic circuit (hardware), and may be programmed as software. Alternatively, a part of these functions may be provided as hardware and the other part may be software.
  [2-2.変速機ECU]
 変速機ECU1は、自動変速機9の動作を制御する電子制御装置であり、ここにはエンジン回転数センサ14,重量センサ16及びギヤセンサ17の各センサで検出された情報と、エンジンECU2で演算されたドライバ要求トルクTDRIの情報及びエンジン出力トルクTENGの情報とが入力される。変速機ECU1は、自動変速機9の変速動作時に、第一クラッチ3a及び第二クラッチ3bを協調的に作動させて、一方のクラッチ3を解放しつつ他方のクラッチ3を係合させる掛け替え制御を実施する。
[2-2. Transmission ECU]
The transmission ECU 1 is an electronic control device that controls the operation of the automatic transmission 9. Information detected by the sensors of the engine speed sensor 14, the weight sensor 16, and the gear sensor 17 is calculated by the engine ECU 2. The information on the required driver torque T DRI and the information on the engine output torque T ENG are input. The transmission ECU 1 performs changeover control in which the first clutch 3a and the second clutch 3b are cooperatively operated during the shift operation of the automatic transmission 9, and the other clutch 3 is engaged while releasing one clutch 3. carry out.
 本実施形態では、掛け替え制御のうち、係合側のクラッチ3の係合状態の制御機能に着目してこれを詳述する。変速機ECU1には、エンジン回転速度増加トルク演算部1a,エンジン未使用トルク演算部1b,第一設定部12,第二設定部1c及び制御部1gが設けられる。 This embodiment will be described in detail focusing on the control function of the engagement state of the clutch 3 on the engagement side in the switching control. The transmission ECU 1 is provided with an engine rotation speed increase torque calculation unit 1a, an engine unused torque calculation unit 1b, a first setting unit 12, a second setting unit 1c, and a control unit 1g.
 エンジン回転速度増加トルク演算部1a(第一演算手段)は、エンジン出力トルクTENGのうち、エンジン11の回転速度を上昇させるのに消費されるエンジン回転速度増加トルクTZOUを演算するものである。エンジン回転速度増加トルクTZOUは、以下の式1に示すように、エンジン回転数Neの時間微分値とエンジンイナーシャIeとの積で与えられる。ここで演算されたエンジン回転速度増加トルクTZOUの情報は、エンジン未使用トルク演算部1bに伝達される。 The engine rotation speed increase torque calculation unit 1a (first calculation means) calculates the engine rotation speed increase torque T ZOU that is consumed to increase the rotation speed of the engine 11 out of the engine output torque T ENG. . The engine speed increase torque T ZOU is given by the product of the time differential value of the engine speed Ne and the engine inertia Ie, as shown in the following Expression 1. The information of the engine speed increase torque T ZOU calculated here is transmitted to the engine unused torque calculation unit 1b.
 ただし、エンジン回転速度増加トルクTZOUは、その値がドライバ要求トルクTDRIよりも小さい値である場合にのみ使用される。したがって、例えばエンジン回転速度増加トルクTZOUの上限値をその時のドライバ要求トルクTDRIの値にクリップするような演算を付加してもよい。あるいは、エンジン回転数Neが増加しているときに限ってエンジン回転速度増加トルクTZOUを演算することとしてもよい。
Figure JPOXMLDOC01-appb-M000001
  …式1
However, the engine rotation speed increase torque T ZOU is used only when the value is smaller than the driver request torque T DRI . Therefore, for example, an operation for clipping the upper limit value of the engine rotational speed increase torque T ZOU to the value of the driver request torque T DRI at that time may be added. Alternatively, the engine speed increase torque T ZOU may be calculated only when the engine speed Ne is increasing.
Figure JPOXMLDOC01-appb-M000001
... Formula 1
 エンジン未使用トルク演算部1b(第一演算手段)は、エンジン出力トルクTENGとエンジン回転速度増加トルクTZOUとのトルク差をエンジン未使用トルクTMISとして演算するものである。例えば、エンジン回転数Neが増加傾向にある状態では、エンジン未使用トルクTMISがエンジン出力トルクTENGよりも小さい値として演算される。ここで演算されたエンジン未使用トルクTMISの情報は、第二設定部1cに伝達される。
Figure JPOXMLDOC01-appb-M000002
  …式2
The engine unused torque calculation unit 1b (first calculation means) calculates a torque difference between the engine output torque T ENG and the engine rotation speed increase torque T ZOU as the engine unused torque T MIS . For example, in a state where the engine speed Ne tends to increase, the engine unused torque TMIS is calculated as a value smaller than the engine output torque TENG . The information of the engine unused torque TMIS calculated here is transmitted to the second setting unit 1c.
Figure JPOXMLDOC01-appb-M000002
... Formula 2
 第一設定部12(設定手段)は、自動変速機9の変速時に第一目標トルクTTGT1を設定するものである。第一設定部12は、重量センサ16で検出された車両重量Wとギヤセンサ17で検出された変速段Gとに基づいて、係合側のクラッチ3の目標トルクTTGT(目標クラッチ伝達トルク)を第一目標トルクTTGT1として設定する。 The first setting unit 12 (setting means) sets the first target torque T TGT1 when the automatic transmission 9 is shifted . Based on the vehicle weight W detected by the weight sensor 16 and the gear stage G detected by the gear sensor 17, the first setting unit 12 calculates a target torque T TGT (target clutch transmission torque) of the clutch 3 on the engagement side. Set as the first target torque TTGT1 .
 この第一設定部12には、車両重量Wに基づく条件判定によって第一目標トルクTTGT1を定める車両重量判定部12aと、変速段Gに基づく条件判定によって第一目標トルクTTGT1を定めるギヤ段判定部12bが設けられる。第一設定部12は、これらの車両重量判定部12a及びギヤ段判定部12bでの両方の設定を考慮して、最終的な第一目標トルクTTGT1を決定する。 The first setting unit 12 includes a vehicle weight determination unit 12a that determines the first target torque T TGT1 by condition determination based on the vehicle weight W, and a gear stage that determines the first target torque T TGT1 by condition determination based on the gear stage G. A determination unit 12b is provided. The first setting unit 12 determines the final first target torque T TGT1 in consideration of both the settings in the vehicle weight determination unit 12a and the gear position determination unit 12b.
 本実施形態では、車両重量Wに係る条件成立時に車両重量判定部12aで設定される第一目標トルクTTGT1と、変速段Gに係る条件成立時にギヤ段判定部12bで設定される第一目標トルクTTGT1とが同一のマップに基づいて定められるように構成されている。そこで、第一設定部12は、車両重量Wに係る条件と変速段Gに係る条件とがともに成立した場合に、車両重量判定部12a,ギヤ段判定部12bの何れかで定められた第一目標トルクTTGT1を最終的な第一目標トルクTTGT1とする。 In the present embodiment, the first target torque T TGT1 set by the vehicle weight determination unit 12a when the condition relating to the vehicle weight W is satisfied, and the first target set by the gear step determination unit 12b when the condition relating to the shift stage G is satisfied. The torque T TGT1 is determined based on the same map. Therefore, the first setting unit 12 determines the first set by either the vehicle weight determination unit 12a or the gear stage determination unit 12b when both the vehicle weight W condition and the gear stage G condition are satisfied. The target torque T TGT1 is set as the final first target torque T TGT1 .
 車両重量判定部12a(第一設定手段)は、車両重量Wが所定重量W0以下であるときに、係合側のクラッチ3の第一目標トルクTTGT(目標クラッチ伝達トルク)を設定するものである。ここでは、車両重量Wが所定重量W0以下であるときの第一目標トルクTTGT1が、その時点でのドライバ要求トルクTDRIよりも小さく設定される。ここでいう所定重量W0は、車両重量(無積載時の重量)よりも大きく、車両総重量(積み荷を含む車両全体の最大重量)よりも小さい範囲で設定される。例えばトラック車両の場合には、積載物が何もないときの重さよりも大きく最大積載量の荷物を積んだときの重さよりも小さい範囲で、所定重量W0が設定される。 The vehicle weight determination unit 12a (first setting means) sets the first target torque T TGT (target clutch transmission torque) of the engagement side clutch 3 when the vehicle weight W is equal to or less than the predetermined weight W 0. It is. Here, the first target torque T TGT1 when the vehicle weight W is equal to or less than the predetermined weight W 0 is set smaller than the driver request torque T DRI at that time. The predetermined weight W 0 here is set in a range that is larger than the vehicle weight (weight when not loaded) and smaller than the total vehicle weight (maximum weight of the entire vehicle including cargo). For example, in the case of a truck vehicle, the predetermined weight W 0 is set in a range that is larger than the weight when there is no load and smaller than the weight when a load with the maximum load capacity is loaded.
 第一設定部12には、例えば図2に示すように、第一目標トルクTTGT1とドライバ要求トルクTDRIとの二種類の関係(実線で示す関係と破線で示す関係)を規定したマップ(ショック低減マップ)や数式等が予め記憶されている。図2のショック低減マップ中に破線で示すグラフは、第一目標トルクTTGT1がドライバ要求トルクTDRIと等しい値であるときの特性を示すグラフ(参照用,対照用のグラフ)である。一方、実線で示すグラフは、ドライバ要求トルクTDRIが所定トルクT0未満の範囲では破線のグラフと一致し、ドライバ要求トルクTDRIが所定トルクT0以上の範囲でドライバ要求トルクTDRIよりも小さい値をとるように設定されたものである。 For example, as shown in FIG. 2, the first setting unit 12 has a map that defines two types of relationships (a relationship indicated by a solid line and a relationship indicated by a broken line) between the first target torque T TGT1 and the driver request torque T DRI ( Shock reduction map) and mathematical expressions are stored in advance. A graph indicated by a broken line in the shock reduction map of FIG. 2 is a graph (reference and control graph) showing characteristics when the first target torque T TGT1 is equal to the driver request torque T DRI . On the other hand, the graph shown by the solid line, the driver requested torque T DRI coincides with the broken line of the graph in a range of less than the predetermined torque T 0, than the driver request torque T DRI driver request torque T DRI is at a predetermined torque T 0 at over It is set to take a small value.
 このような対応関係に基づき、車両重量判定部12aは車両重量Wが所定重量W0以下であるときに実線グラフの関係を用いて第一目標トルクTTGT1をドライバ要求トルクTDRIよりも小さく設定する。ここで、破線グラフと実線グラフとの間の縦方向の間隔(距離)のことを余裕トルクTYOYと呼ぶ。余裕トルクTYOYは、ドライバ要求トルクTDRIが所定トルクT0未満のときに0である。また、ドライバ要求トルクTDRIが所定トルクT0以上のときには、ドライバ要求トルクTDRIが大きいほど余裕トルクTYOYも増大するような設定とされている。 Based on this correspondence, the vehicle weight determination unit 12a sets the first target torque T TGT1 to be smaller than the driver request torque T DRI using the relationship of the solid line graph when the vehicle weight W is equal to or less than the predetermined weight W 0. To do. Here, the vertical interval (distance) between the broken line graph and the solid line graph is referred to as margin torque T YOY . The margin torque T YOY is 0 when the driver request torque T DRI is less than the predetermined torque T 0 . Further, when the driver request torque T DRI is equal to or larger than the predetermined torque T 0 is the set that also increases torque reserve T YOY higher the driver request torque T DRI.
 また、ギヤ段判定部12b(第一設定手段)は、変速段Gが所定段G0であるときに、係合側のクラッチ3の第一目標トルクTTGT1(目標クラッチ伝達トルク)を設定するものである。ここでは、例えば図2のショック低減マップのような対応関係に基づき、変速段Gが所定段G0のときに実線グラフの関係を用いて第一目標トルクTTGT1をドライバ要求トルクTDRIよりも小さく設定する。 Also, gear determining unit 12b (first setting means) sets when transmission speed G is the predetermined speed G 0, the first target torque T TGT1 clutch 3 engagement side (target clutch transmission torque) Is. Here, for example, based on the correspondence relationship such as the shock reduction map of FIG. 2, the first target torque T TGT1 is set to be greater than the driver required torque T DRI using the relationship of the solid line graph when the shift stage G is the predetermined stage G 0. Set smaller.
 なお、ここでいう所定段G0は、単一の変速段であってもよいし、複数の変速段であってもよい。本実施形態では、駆動トルクが比較的大きい発進段(例えば、1速~3速といった低速ギヤ段)のことを所定段G0と呼び、自動変速機9のアップシフト時における変速後の変速段Gが所定段G0であるときに、係合側のクラッチ3の第一目標トルクTTGT1を設定する。検出対象となる変速段Gは、例えば係合側ギヤ段(これから係合しようとしているクラッチ3の下流に設けられた変速ユニット4のギヤ段)とする。また、発進段よりも駆動トルクが比較的小さいギヤ段(変速比の低いギヤ段であって、例えば4~8速といった中高速ギヤ段)のことを走行段と呼ぶ。 The predetermined stage G 0 here may be a single gear stage may be a plurality of shift speeds. In the present embodiment, a starting stage having a relatively large driving torque (for example, a low-speed gear stage such as 1st to 3rd speeds) is referred to as a predetermined stage G 0, and the speed stage after the shift during the upshift of the automatic transmission 9 When G is the predetermined stage G 0 , the first target torque T TGT1 of the engagement side clutch 3 is set. The gear stage G to be detected is, for example, an engagement side gear stage (gear stage of the transmission unit 4 provided downstream of the clutch 3 to be engaged). A gear stage having a relatively smaller driving torque than the starting stage (a gear stage having a low gear ratio, for example, a medium to high speed gear stage such as 4 to 8 speeds) is called a traveling stage.
 第一設定部12で設定される第一目標トルクTTGT1とドライバ要求トルクTDRIとの関係をまとめると以下の式3,式4の通りとなる。ここで設定された第一目標トルクTTGT1の情報は、制御部1gに伝達される。
Figure JPOXMLDOC01-appb-M000003
 かつ、変速段Gが所定段G0であるとき、
     
Figure JPOXMLDOC01-appb-I000004
  …式3
     
Figure JPOXMLDOC01-appb-I000005
  …式4
When the relationship between the first target torque T TGT1 and the driver request torque T DRI set by the first setting unit 12 is summarized, the following equations 3 and 4 are obtained. Information on the first target torque T TGT1 set here is transmitted to the control unit 1g.
Figure JPOXMLDOC01-appb-M000003
And when the shift stage G is the predetermined stage G 0 ,

Figure JPOXMLDOC01-appb-I000004
... Formula 3

Figure JPOXMLDOC01-appb-I000005
... Formula 4
 第二設定部1c(第二設定手段)は、第一設定部12で第一目標トルクTTGT1が設定されない条件下で、第一設定部12とは異なる手法を用いて、係合側のクラッチ3の目標トルクTTGT(目標クラッチ伝達トルク)を第二目標トルクTTGT2として設定するものである。本実施形態では、車両重量Wが所定重量W0よりも大きい場合、又は、変速段Gが所定段G0でないときに、第二設定部1cが第二目標トルクTTGT2を設定する。第二目標トルクTTGT2は、第一設定部12で設定される第一目標トルクTTGT1とは別の目標値である。 The second setting unit 1c (second setting means) uses a method different from that of the first setting unit 12 under the condition that the first target torque T TGT1 is not set by the first setting unit 12, and uses the clutch on the engagement side. No. 3 target torque T TGT (target clutch transmission torque) is set as the second target torque T TGT2 . In the present embodiment, the second setting unit 1c sets the second target torque T TGT2 when the vehicle weight W is larger than the predetermined weight W 0 or when the gear stage G is not the predetermined stage G 0 . The second target torque T TGT2 is a target value different from the first target torque T TGT1 set by the first setting unit 12.
 ここでは、ドライバ要求トルクTDRIとエンジン未使用トルクTMISとに基づいて、第二目標トルクTTGT2がエンジン出力トルクTENG以下の範囲で設定される。第二設定部1cは、第一設定部12での第一目標トルクTTGT1の設定を禁止するとともに、ドライバ要求トルクTDRIに応じた第二目標トルクTTGT2を設定するように機能する。 Here, the second target torque T TGT2 is set in a range equal to or smaller than the engine output torque T ENG based on the driver request torque T DRI and the engine unused torque T MIS . The second setting unit 1c functions to prohibit the setting of the first target torque T TGT1 by the first setting unit 12 and to set the second target torque T TGT2 according to the driver request torque T DRI .
 なお、第二目標トルクTTGT2は、第一目標トルクTTGT1以上の値を持つように設定されることが好ましい。例えば、その時点でのドライバ要求トルクTDRIと図2のショック低減マップとから得られる第一目標トルクTTGT1を、その時点での第二目標トルクTTGT2の最小値とすることが考えられる。つまり、車両の慣性が大きい状態ではトルク容量に必要以上の余裕を持たせず、車両慣性を利用してトルクショックを低減することとする。これにより、過剰な目標トルクの抑制が防止される。 The second target torque T TGT2 is preferably set to have a value equal to or greater than the first target torque T TGT1 . For example, it is conceivable that the first target torque T TGT1 obtained from the driver request torque T DRI at that time and the shock reduction map of FIG. 2 is set as the minimum value of the second target torque T TGT2 at that time. That is, when the inertia of the vehicle is large, the torque capacity is not given more than necessary, and the torque is reduced using the vehicle inertia. Thereby, suppression of excessive target torque is prevented.
 まず、ドライバ要求トルクTDRIがエンジン未使用トルクTMIS以下の場合、第二設定部1cはドライバ要求トルク演算部2aで演算されたドライバ要求トルクTDRIをそのまま第二目標トルクTTGT2として設定する。つまり、エンジン回転数Neとアクセル開度θACとに基づいて第二目標トルクTTGT2が設定される。 First, when the driver request torque T DRI is equal to or less than the engine unused torque T MIS , the second setting unit 1c sets the driver request torque T DRI calculated by the driver request torque calculation unit 2a as it is as the second target torque T TGT2 . . That is, the second target torque T TGT2 is set based on the engine speed Ne and the accelerator opening θ AC .
 一方、ドライバ要求トルクTDRIがエンジン未使用トルクTMISよりも大きい場合、第二設定部1cは第二目標トルクTTGT2に対してエンジン未使用トルクTMISを所定の割合で反映させる演算を行う。第二設定部1cには、第二目標トルクTTGT2に対するエンジン未使用トルクTMISの反映率を意味する所定の重み係数kが設定されている。本実施形態では、重み係数kが0<k≦1の範囲内で予め設定された固定値とする。 On the other hand, when the driver request torque T DRI is larger than the engine unused torque T MIS , the second setting unit 1c performs a calculation to reflect the engine unused torque T MIS at a predetermined ratio with respect to the second target torque T TGT2 . . The second setting unit 1c is set with a predetermined weight coefficient k which means a reflection rate of the engine unused torque T MIS with respect to the second target torque T TGT2 . In the present embodiment, the weight coefficient k is a fixed value set in advance within a range of 0 <k ≦ 1.
 なお、重み係数kの値を予め設定された定数とする代わりに、エンジン11の運転状態等に応じて設定される変数としてもよい。あるいは、ドライバによって任意に設定される値としてもよい。
 このような条件判定及び条件に応じた第二目標トルクTTGT2の設定のための手段として、第二設定部1cには第一重み付け部1d,第二重み付け部1e及び加算部1fが設けられる。
Note that the value of the weighting factor k may be a variable that is set according to the operating state of the engine 11 or the like instead of using a preset constant. Or it is good also as a value arbitrarily set by a driver.
As a means for determining the condition and setting the second target torque T TGT2 according to the condition, the second setting unit 1c is provided with a first weighting unit 1d, a second weighting unit 1e, and an adding unit 1f.
 第一重み付け部1d(第一重み付け手段)は、以下の式5に示すように、1から重み係数kを減じた値をドライバ要求トルクTDRIに乗算した第一乗算値Aを演算するものである。第一乗算値Aは、ドライバ要求トルクTDRIの第二目標トルクTTGT2へのトルク反映分に相当する。
Figure JPOXMLDOC01-appb-M000006
  …式5
The first weighting unit 1d (first weighting means) calculates a first multiplication value A obtained by multiplying the driver request torque TDRI by a value obtained by subtracting the weighting factor k from 1 as shown in the following Expression 5. is there. The first multiplication value A corresponds to the amount of torque reflected on the second target torque T TGT2 of the driver request torque T DRI .
Figure JPOXMLDOC01-appb-M000006
... Formula 5
 第二重み付け部1e(第二重み付け手段)は、以下の式6,式7に示すように、ドライバ要求トルクTDRIとエンジン未使用トルクTMISとのうちの何れか小さい一方を最小値Zとして選択し、その最小値Zに重み係数を乗算した第二乗算値Bを演算するものである。最小値Zの選択には例えばミニマム関数が用いられる。第二乗算値Bは、エンジン未使用トルクTMISの第二目標トルクTTGT2へのトルク反映分に相当する。
Figure JPOXMLDOC01-appb-M000007
  …式6
   
Figure JPOXMLDOC01-appb-I000008
  …式7
The second weighting unit 1e (second weighting means) sets the smaller one of the driver required torque T DRI and the engine unused torque T MIS as the minimum value Z, as shown in the following equations 6 and 7. The second multiplication value B is calculated by selecting and multiplying the minimum value Z by a weighting factor. For example, a minimum function is used to select the minimum value Z. Second multiplication value B corresponds to the torque reflection component of the second target torque T TGT2 engine unused torque T MIS.
Figure JPOXMLDOC01-appb-M000007
... Formula 6

Figure JPOXMLDOC01-appb-I000008
... Formula 7
 加算部1fは、第一重み付け部1dで設定された第一乗算値Aと第二重み付け部1eで設定された第二乗算値Bとを加算し、これを第二目標トルクTTGT2として設定するものである。ドライバ要求トルクTDRIがエンジン未使用トルクTMIS以下の場合には、第二乗算値Bが重み係数kにドライバ要求トルクTDRIを乗じた値になるため、加算部1fで演算される加算値はドライバ要求トルクTDRIに一致する。一方、ドライバ要求トルクTDRIがエンジン未使用トルクTMISよりも大きい場合には、ドライバ要求トルクTDRIに対するエンジン未使用トルクTMISの比率と重み係数kとに応じて第二目標トルクTTGT2がドライバ要求トルクTDRIよりも小さめに設定される。 The adding unit 1f adds the first multiplication value A set by the first weighting unit 1d and the second multiplication value B set by the second weighting unit 1e, and sets this as the second target torque T TGT2 . Is. When the driver request torque T DRI is equal to or less than the engine unused torque T MIS , the second multiplication value B is a value obtained by multiplying the weight coefficient k by the driver request torque T DRI. Corresponds to the driver request torque TDRI . On the other hand, when the driver request torque T DRI is larger than the engine unused torque T MIS is the second target torque T TGT2 depending on the ratio and the weight coefficient k of the engine unused torque T MIS to the driver requested torque T DRI It is set to be smaller than the driver request torque TDRI .
 例えば、k=1であればエンジン未使用トルクTMISがそのまま第二目標トルクTTGT2として設定され、k=0.5であればエンジン未使用トルクTMISが50%反映され、残りの50%にドライバ要求トルクTDRIが反映された第二目標トルクTTGT2が設定される。ドライバ要求トルクTDRI及びエンジン未使用トルクTMISの大小関係と、そのときの第二目標トルクTTGT2の値とをまとめると以下の式8,式9の通りとなる。ここで設定された第二目標トルクTTGT2の情報は制御部1gに伝達される。
Figure JPOXMLDOC01-appb-M000009
 又は、変速段Gが所定段G0でないとき、
      
Figure JPOXMLDOC01-appb-I000010
  …式8
      
Figure JPOXMLDOC01-appb-I000011
  …式9
For example, if k = 1, the engine unused torque T MIS is set as the second target torque T TGT2 as it is, and if k = 0.5, the engine unused torque T MIS is reflected by 50%, and the remaining 50% is driver A second target torque T TGT2 that reflects the required torque T DRI is set. When the magnitude relationship between the driver required torque T DRI and the engine unused torque T MIS and the value of the second target torque T TGT2 at that time are summarized, the following equations 8 and 9 are obtained. Information on the second target torque T TGT2 set here is transmitted to the control unit 1g.
Figure JPOXMLDOC01-appb-M000009
Or, when the shift stage G is not the predetermined stage G 0

Figure JPOXMLDOC01-appb-I000010
... Formula 8

Figure JPOXMLDOC01-appb-I000011
... Formula 9
 なお、第一設定部12及び第二設定部1cで設定される第一目標トルクTTGT1,第二目標トルクTTGT2はともにドライバ要求トルクTDRI以下のトルクであり、ドライバの要求に対してクラッチ3をやや緩慢に係合させるように作用する。一方、これらの第一目標トルクTTGT1,第二目標トルクTTGT2とドライバ要求トルクTDRIとのトルク差に着目すると、第一設定部12及び第二設定部1cのそれぞれで設定されるトルクの性質の違いが見出される。 The first target torque T TGT1 and the second target torque T TGT2 set by the first setting unit 12 and the second setting unit 1c are both torques less than or equal to the driver request torque T DRI and It acts to engage 3 slightly slowly. On the other hand, paying attention to the torque difference between the first target torque T TGT1 , the second target torque T TGT2 and the driver request torque T DRI , the torques set by the first setting unit 12 and the second setting unit 1c respectively. Differences in properties are found.
 例えば、第一設定部12で設定される第一目標トルクTTGT1とドライバ要求トルクTDRIとの差である余裕トルクTYOYは、図2に示すように、ドライバ要求トルクTDRIに応じた値を持つものであり、ドライバ要求の関数だと捉えることができる。したがって、第一設定部12は、ドライバの要求を過小評価することで変速時のトルク変動を抑制する機能を持つと考えることができる。 For example, the margin torque T YOY that is the difference between the first target torque T TGT1 set by the first setting unit 12 and the driver request torque T DRI is a value corresponding to the driver request torque T DRI as shown in FIG. It can be understood as a function of a driver request. Therefore, the first setting unit 12 can be considered to have a function of suppressing torque fluctuation at the time of shifting by underestimating the driver's request.
 一方、第二設定部1cで設定される第二目標トルクTTGT2とドライバ要求トルクTDRIとの差であるエンジン未使用トルクTMISは、エンジン回転数Neに応じた値を持つものであり、エンジン11の運転状態の関数だと捉えることができる。したがって、第二設定部1cは、エンジン11の出力を過小評価することで変速時のトルク変動を抑制する機能を持つと考えることができる。 On the other hand, the difference between the engine unused torque T MIS is the second target torque T TGT2 the driver's requested torque T DRI set in the second setting unit 1c is one having a value corresponding to the engine speed Ne, It can be understood as a function of the operating state of the engine 11. Therefore, it can be considered that the second setting unit 1c has a function of suppressing torque fluctuation at the time of shifting by underestimating the output of the engine 11.
 制御部1g(制御手段)は、自動変速機9の変速時における係合側のクラッチ3で伝達されるトルクが第一設定部12で設定された第一目標トルクTTGT1、又は第二設定部で設定された第二目標トルクTTGT2になるように、そのクラッチ3の係合状態(クラッチ伝達トルク)を制御するものである。なお、本実施形態では、車両重量W及び変速段Gに基づく条件判定によって、第一目標トルクTTGT1,第二目標トルクTTGT2の何れか一方が設定されることになる。以下、制御部1gでの実際のクラッチ3の制御に用いられるクラッチ伝達トルクのことを単に目標トルクTTGTともいう。 The control unit 1g (control means) is a first target torque T TGT1 in which the torque transmitted by the clutch 3 on the engagement side during the shift of the automatic transmission 9 is set by the first setting unit 12, or the second setting unit. The engagement state (clutch transmission torque) of the clutch 3 is controlled so as to be the second target torque T TGT2 set in (1). In the present embodiment, one of the first target torque T TGT1 and the second target torque T TGT2 is set by the condition determination based on the vehicle weight W and the gear stage G. Hereinafter, the clutch transmission torque used for the actual control of the clutch 3 by the control unit 1g is also simply referred to as a target torque TTGT .
 制御部1gには、図3に示すように、目標トルクTTGTと第一制御弁8A及び第二制御弁8Bの開度を制御する駆動電流との関係を規定したマップや数式等が予め記憶されている。前述の通り、駆動電流とクラッチ3の係合状態との間には相関が認められる。したがって、制御部1gは、第一制御弁8A及び第二制御弁8Bへの駆動電流を制御することでクラッチ3の断接動作を制御するように機能する。なお、ATFの温度や粘度,第一油路6A及び第二油路6Bの作動油圧等の情報を併用してクラッチ3の係合度合いを制御してもよい。 As shown in FIG. 3, the control unit 1g stores in advance a map, a mathematical formula, and the like that define the relationship between the target torque T TGT and the drive current that controls the opening of the first control valve 8A and the second control valve 8B. Has been. As described above, a correlation is recognized between the drive current and the engagement state of the clutch 3. Therefore, the control unit 1g functions to control the connection / disconnection operation of the clutch 3 by controlling the drive current to the first control valve 8A and the second control valve 8B. The degree of engagement of the clutch 3 may be controlled using information such as the temperature and viscosity of the ATF, the hydraulic pressure of the first oil passage 6A and the second oil passage 6B, and the like.
 また、上記のエンジン回転速度増加トルク演算部1a,エンジン未使用トルク演算部1b,第一設定部12,第二設定部1c,第一重み付け部1d,第二重み付け部1e,加算部1f及び制御部1gの各機能は、電子回路(ハードウェア)によって実現してもよい。あるいは、ソフトウェアとしてプログラミングされたものとしてもよいし、これらの機能のうちの一部をハードウェアとして設け、他部をソフトウェアとしたものであってもよい。 Further, the engine rotation speed increase torque calculating unit 1a, the engine unused torque calculating unit 1b, the first setting unit 12, the second setting unit 1c, the first weighting unit 1d, the second weighting unit 1e, the adding unit 1f, and the control. Each function of the unit 1g may be realized by an electronic circuit (hardware). Alternatively, it may be programmed as software, a part of these functions may be provided as hardware, and the other part may be software.
 [3.フローチャート]
 図4は、自動変速機9の変速動作に係る制御の一例を示すフローチャートである。このフローは、変速機ECU1の内部にて所定周期で繰り返し実施される。
 ステップA10では、エンジンECU2で演算されたドライバ要求トルクTDRIの値とエンジン出力トルクTENGの値とが変速機ECU1に読み込まれる。また、ステップA13では、ギヤセンサ17で検出された変速段Gの情報と重量センサ16で検出された車両重量Wの情報とが変速機ECU1に読み込まれる。
[3. flowchart]
FIG. 4 is a flowchart illustrating an example of control related to the shift operation of the automatic transmission 9. This flow is repeatedly performed at a predetermined cycle inside the transmission ECU 1.
In step A10, the value of the driver request torque T DRI and the value of the engine output torque T ENG calculated by the engine ECU 2 are read into the transmission ECU 1. In step A13, the information on the gear stage G detected by the gear sensor 17 and the information on the vehicle weight W detected by the weight sensor 16 are read into the transmission ECU 1.
 ステップA15では、車両重量判定部12aにおいて、車両重量Wが所定重量W0以下であるか否かが判定される。このステップで判定される条件は、例えば変速時に生じうるショック(トルク変動)に対して車両の慣性力が小さい状態であるか否かを判断するための条件といえる。ここで車両重量Wが所定重量W0以下である場合にはステップA16へ進み、所定重量W0よりも大きい場合にはステップA20へ進む。 In step A15, the vehicle weight determination section 12a, the vehicle weight W is equal to or less than a predetermined weight W 0 is determined. The condition determined in this step can be said to be a condition for determining whether or not the inertial force of the vehicle is small with respect to a shock (torque fluctuation) that may occur at the time of shifting. Here the vehicle weight W advances to step A16. If it is less than the predetermined weight W 0, the process proceeds to step A20 is larger than the predetermined weight W 0.
 ステップA16では、ギヤ段判定部12bにおいて、変速段Gが所定段G0であるか否かが判定される。ここで、変速段Gが所定段G0である場合(この例では、変速段Gが低速ギヤ段,発進段である場合)にはステップA85へ進み、所定段G0でない場合にはステップA20へ進む。 In step A16, the gear determining unit 12b, transmission speed G is whether the predetermined speed G 0 is determined. Here, (in this example, transmission speed G is low gear, when a start gear) when the gear stage G is the predetermined speed G 0 proceeds to step A85 to, if not a predetermined speed G 0 Step A20 Proceed to
 ステップA85は、車両重量Wに係る条件と変速段Gに係る条件とがともに成立した場合に実施されるステップである。このステップA85では、式3,式4に示すように、第一設定部12において第一目標トルクTTGT1が設定される。すなわち、ドライバ要求トルクTDRIが所定トルクT0未満であるときにはそのドライバ要求トルクTDRIがそのまま第一目標トルクTTGT1として設定され、ドライバ要求トルクTDRIが所定トルクT0以上であるときには、第一目標トルクTTGT1がドライバ要求トルクTDRIよりも小さい値に設定される。ここで設定される第一目標トルクTTGT1は、ドライバ要求トルクTDRIから余裕トルクTYOYを減算した値となる(図2中の実線特性参照)。 Step A85 is a step that is performed when both the condition relating to the vehicle weight W and the condition relating to the gear stage G are satisfied. In Step A85, as shown in Expressions 3 and 4, the first setting torque T TGT1 is set in the first setting unit 12. That is, when the driver request torque T DRI is less than the predetermined torque T 0 , the driver request torque T DRI is set as the first target torque T TGT1 as it is, and when the driver request torque T DRI is equal to or greater than the predetermined torque T 0 , The one target torque T TGT1 is set to a value smaller than the driver request torque T DRI . The first target torque T TGT1 set here is a value obtained by subtracting the margin torque T YOY from the driver request torque T DRI (see the solid line characteristic in FIG. 2).
 その後、ステップA90では、係合側のクラッチ3でその第一目標トルクTTGT1(目標トルクTTGT)が得られるように、制御部1gから第一制御弁8A及び第二制御弁8Bへと駆動電流が出力される。例えば、係合側のクラッチ3が第一クラッチ3aである場合には、第一制御弁8Aに駆動電流が出力される。なおこのとき、第二制御弁8Bには第二クラッチ3bの摩擦板を解放方向に駆動するための駆動電流が出力され、クラッチ3の掛け替え制御が遂行される。 Thereafter, in step A90, the control unit 1g drives the first control valve 8A and the second control valve 8B so that the first target torque T TGT1 (target torque T TGT ) can be obtained by the clutch 3 on the engagement side. Current is output. For example, when the engagement-side clutch 3 is the first clutch 3a, a drive current is output to the first control valve 8A. At this time, a drive current for driving the friction plate of the second clutch 3b in the releasing direction is output to the second control valve 8B, and the switching control of the clutch 3 is performed.
 一方、ステップA15で車両重量Wが所定重量W0よりも大きい場合、又は、ステップA16で変速段Gが所定段G0でない場合(この例では、変速段Gが走行段、すなわち、中高速ギヤ段である場合)にはステップA20へ進み、第二設定部1cにおいて第二目標トルクTTGT2の設定がなされる。 On the other hand, when the vehicle weight W is larger than the predetermined weight W 0 at step A15, or when the gear stage G is not the predetermined stage G 0 at step A16 (in this example, the gear stage G is a traveling stage, that is, a medium-high speed gear). In the case of a step, the process proceeds to step A20, where the second target torque T TGT2 is set in the second setting unit 1c.
 このステップA20では、エンジン回転数センサ14で検出されたエンジン回転数Ne,エンジンイナーシャIe及び重み係数kの情報が変速機ECU1に読み込まれる。
 ステップA30では、エンジン回転速度増加トルク演算部1aでエンジン回転速度増加トルクTZOUが演算される。ここで演算されるエンジン回転速度増加トルクTZOUの演算式は式1であり、その時点でのエンジン回転数NeとエンジンイナーシャIeとに基づいてエンジン回転速度増加トルクTZOUが演算される。エンジン回転数Neの増加速度が速いほど、エンジン回転速度増加トルクTZOUは大きくなる。
In step A20, information on the engine speed Ne, the engine inertia Ie, and the weight coefficient k detected by the engine speed sensor 14 is read into the transmission ECU1.
In step A30, the engine rotation speed increase torque calculating unit 1a calculates the engine rotation speed increase torque T ZOU . The calculation formula of the engine rotation speed increase torque T ZOU calculated here is Expression 1. The engine rotation speed increase torque T ZOU is calculated based on the engine rotation speed Ne and the engine inertia Ie at that time. As the increase speed of the engine speed Ne increases, the engine speed increase torque T ZOU increases.
 ステップA40では、エンジン未使用トルク演算部1bでエンジン未使用トルクTMISが演算される。ここで演算されるエンジン未使用トルクTMISの演算式は式2であり、エンジン出力トルクTENGと前ステップで得られたエンジン回転速度増加トルクTZOUとに基づいてエンジン未使用トルクTMISが演算される。エンジン回転数Neの増加速度が速いほど、エンジン未使用トルクTMISは小さくなる。 In Step A40, the engine unused torque calculating unit 1b calculates the engine unused torque TMIS . The equation at engine unused torque T MIS that is calculated here a Equation 2, the engine unused torque T MIS based on the engine rotational speed increases torque T ZOU obtained in the engine output torque T ENG and before step Calculated. Higher rate of increase of the engine rotational speed Ne is high, the engine unused torque T MIS is reduced.
 ステップA50では、第一重み付け部1dで第一乗算値Aが演算される。ここで演算される第一乗算値Aの演算式は式5であり、ドライバ要求トルクTDRIと重み係数kとに基づいて第一乗算値Aが演算される。重み係数kが小さいほど第二目標トルクTTGT2に対するドライバ要求トルクTDRIの反映の割合が増大する。 In step A50, the first multiplication value A is calculated by the first weighting unit 1d. The arithmetic expression of the first multiplication value A calculated here is Expression 5, and the first multiplication value A is calculated based on the driver request torque TDRI and the weighting coefficient k. As the weight coefficient k is smaller, the ratio of the reflection of the driver request torque T DRI to the second target torque T TGT2 increases.
 ステップA60では、第二重み付け部1eにおいて、ドライバ要求トルクTDRIとエンジン未使用トルクTMISと小さい一方が最小値Zとして選択される。例えば、エンジン回転数Neの増加中であってエンジン未使用トルクTMISがエンジン出力トルクTENGよりも小さければ(エンジン回転速度増加トルクTZOUが正の値であれば)、エンジン未使用トルクTMISが最小値Zとなる。 In Step A60, the second weighting unit 1e selects a smaller one of the driver request torque T DRI and the engine unused torque T MIS as the minimum value Z. For example, if the engine speed Ne is increasing and the engine unused torque T MIS is smaller than the engine output torque T ENG (if the engine speed increasing torque T ZOU is a positive value), the engine unused torque T MIS becomes the minimum value Z.
 続くステップA70では、第二重み付け部1eで第一乗算値Bが演算される。ここで演算される第二乗算値Bは式6,式7で与えられ、前ステップで得られた最小値Zと重み係数kとに基づいて第二乗算値Bが演算される。重み係数kが大きいほど第二目標トルクTTGT2に対する最小値Zの反映の割合が増大する。
 ステップA80では、加算部1fで第一乗算値Aと第二乗算値Bとが加算され、第二目標トルクTTGT2が設定される。この第二目標トルクTTGT2は、自動変速機9の変速動作時における係合側のクラッチ3に伝達させたいクラッチ伝達トルクの目標値となる。
In subsequent step A70, the first weighting value B is calculated by the second weighting unit 1e. The second multiplication value B calculated here is given by Expression 6 and Expression 7, and the second multiplication value B is calculated based on the minimum value Z and the weighting coefficient k obtained in the previous step. As the weight coefficient k increases, the ratio of the reflection of the minimum value Z to the second target torque T TGT2 increases.
In Step A80, the first multiplication value A and the second multiplication value B are added by the adding unit 1f, and the second target torque T TGT2 is set. The second target torque T TGT2 is a target value of the clutch transmission torque that is desired to be transmitted to the clutch 3 on the engagement side during the shift operation of the automatic transmission 9.
 その後、ステップA90では、係合側のクラッチ3でその第二目標トルクTTGT2(目標トルクTTGT)が得られるように、制御部1gから第一制御弁8A及び第二制御弁8Bへと駆動電流が出力される。例えば、係合側のクラッチ3が第一クラッチ3aである場合には、第一制御弁8Aに駆動電流が出力される。なおこのとき、第二制御弁8Bには第二クラッチ3bの摩擦板を解放方向に駆動するための駆動電流が出力され、クラッチ3の掛け替え制御が遂行される。 Thereafter, in step A90, the control unit 1g drives the first control valve 8A and the second control valve 8B so that the second target torque T TGT2 (target torque T TGT ) can be obtained by the clutch 3 on the engagement side. Current is output. For example, when the engagement-side clutch 3 is the first clutch 3a, a drive current is output to the first control valve 8A. At this time, a drive current for driving the friction plate of the second clutch 3b in the releasing direction is output to the second control valve 8B, and the switching control of the clutch 3 is performed.
 [4.作用]
 図5は、アクセルオンでのシフトアップ中における上記車両の挙動を示すものであり、(a)はエンジン回転数の経時変動、(b)はクラッチ駆動電流の経時変動、(c)は自動変速機9から出力される出力軸トルクの経時変動である。ここでは、偶数段から奇数段への変速動作例を説明する。
[4. Action]
FIGS. 5A and 5B show the behavior of the vehicle during the shift-up with the accelerator on, where FIG. 5A shows the change over time in the engine speed, FIG. 5B shows the change over time in the clutch drive current, and FIG. This is a change with time in the output shaft torque output from the machine 9. Here, a description will be given of an example of a shift operation from an even number to an odd number.
 変速動作の開始前にはアクセルペダルが踏み込まれており、図5(a)に実線で示すように、エンジン回転数Neが徐々に上昇している。時刻t1に所定の変速開始条件が成立すると、図5(b)に実線で示すように、係合側の第一制御弁8Aへの駆動電流が出力され、第一クラッチ3aのガタ詰めが実施される。また、ガタ詰め動作が完了する時刻t2になると、第一制御弁8Aへの駆動電流がやや弱められると同時に、開放側の第二制御弁8Bへの駆動電流が徐々に減少するように制御される。このときからトルクフェーズが開始され、変速動作に係る負荷がエンジン11に作用しないように、第二クラッチ3bから第一クラッチ3aへの掛け替え制御が実施される。 Before the start of the shifting operation, the accelerator pedal is depressed, and the engine speed Ne gradually increases as shown by the solid line in FIG. When a predetermined shift start conditions at time t 1 is satisfied, as shown by the solid line in FIG. 5 (b), the driving current to the first control valve 8A of the engagement side is output, play elimination of the first clutch 3a is To be implemented. Further, when eliminating the backlash operation is completed time t 2, the control as soon as the drive current to the first control valve 8A is somewhat weakened, the driving current of the open side to the second control valve 8B is reduced gradually Is done. The torque phase is started from this time, and the switching control from the second clutch 3b to the first clutch 3a is performed so that the load related to the speed change operation does not act on the engine 11.
 トルクフェーズでは、第二制御弁8Bの駆動電流を徐々に減少させつつ〔図5(b)中の一点鎖線〕、第一制御弁8Aの駆動電流を徐々に増加させて〔図5(b)中の実線〕、解放側から係合側へのトルクの受け渡しがなされる。これにより、図5(c)に実線で示すように、出力軸トルクが減少方向に推移する。 In the torque phase, the drive current of the first control valve 8A is gradually increased while gradually decreasing the drive current of the second control valve 8B [FIG. 5B] (FIG. 5B). Middle solid line], torque is transferred from the release side to the engagement side. As a result, as shown by the solid line in FIG. 5C, the output shaft torque changes in the decreasing direction.
 ここで、図5(b)に破線で示すように、ドライバ要求トルクTDRIがそのまま係合側の第一クラッチ3aの目標トルクTTGTとして設定された場合を想定する。一般に、係合側の第一クラッチ3aをつなぎ過ぎる(係合度合いが強すぎる、又は、係合速度が速すぎる)と、第一クラッチ3aのトルク容量が過大となり、第一動力伝達経路5A及び第二動力伝達経路5Bが同時に係合した二重噛みの状態となる可能性がある。この場合、図5(c)に破線で示すように、トルクフェーズでの出力軸トルクの落ち込み量が増大し、図5(c)中に符号Xで示すようなトルクショックの要因となる。 Here, as shown by a broken line in FIG. 5B, it is assumed that the driver request torque T DRI is set as the target torque T TGT of the first clutch 3a on the engagement side as it is. Generally, if the first clutch 3a on the engagement side is connected too much (the degree of engagement is too strong or the engagement speed is too high), the torque capacity of the first clutch 3a becomes excessive, and the first power transmission path 5A and There is a possibility that the second power transmission path 5B is in a double-engaged state in which the second power transmission path 5B is simultaneously engaged. In this case, as indicated by a broken line in FIG. 5 (c), the amount of output shaft torque drop in the torque phase increases, which causes a torque shock as indicated by the symbol X in FIG. 5 (c).
 また、係合側の第一クラッチ3aのつなぎ過ぎにより、例えば時刻t3に第一クラッチ3aのトルク容量がエンジン出力トルクTENGを上回ってしまう場合も考えられる。この場合、図5(a)に破線で示すように、イナーシャフェーズの開始前にエンジン回転数Neの上昇が抑制され、エンジン回転数Neを上昇させるために消費されるべきトルクが駆動系へと流れ込むおそれが生じる。 Further, more connecting too of the first clutch 3a of the engagement side torque capacity of the first clutch 3a may also be considered to outweigh the engine output torque T ENG, for example time t 3. In this case, as indicated by a broken line in FIG. 5A, the increase in the engine speed Ne is suppressed before the start of the inertia phase, and the torque that should be consumed to increase the engine speed Ne is transferred to the drive system. There is a risk of inflow.
 つまり、本来入力されるはずのトルクよりも大きなトルクが自動変速機9に伝達されることになり、駆動系構成部品のねじりや出力軸トルクの増加に起因する加速度変化が生じやすくなる。これにより、図5(c)中に符号Yで示すように、トルクフェーズからイナーシャフェーズへ移行する前後でショックが発生しかねない。
 特に、エンジン回転数Neを上昇させながら変速動作を行うような場合には、エンジン出力トルクTENGの一部がエンジン回転速度増加トルクTZOUとして消費されてしまうため、第一クラッチ3aのトルク容量がエンジン出力トルクTENGを上回りやすい。
That is, a torque larger than the torque that should be originally input is transmitted to the automatic transmission 9, and the acceleration change due to the torsion of the drive system components and the increase of the output shaft torque is likely to occur. As a result, as indicated by symbol Y in FIG. 5C, a shock may occur before and after the transition from the torque phase to the inertia phase.
In particular, when the speed change operation is performed while increasing the engine speed Ne, a part of the engine output torque T ENG is consumed as the engine rotational speed increase torque T ZOU , and thus the torque capacity of the first clutch 3a. Tends to exceed the engine output torque T ENG .
 これに対し、本変速制御装置10では、目標トルクTTGTの適正化によってこのようなショックが抑制される。第一の適正化手法は、第一設定部12での第一目標トルクTTGT1の設定であり、第二の適正化手法は、第二設定部1cでの第二目標トルクTTGT2の設定である。 On the other hand, in the present speed change control device 10, such a shock is suppressed by optimizing the target torque TTGT . The first optimization method is the setting of the first target torque T TGT1 in the first setting unit 12, and the second optimization method is the setting of the second target torque T TGT2 in the second setting unit 1c. is there.
 すなわち、重量センサ16で検出された車両重量Wが所定重量W0以下であり、かつ、ギヤセンサ17で検出された変速段Gが所定段G0であるときには、図2に示すようなショック低減マップに基づき、ドライバ要求トルクTDRIから余裕トルクTYOY分のトルクを減じた目標トルクTTGTが設定される。
 つまり、第一クラッチ3aの目標トルクTTGTが余裕トルクTYOY分だけ減少方向に補正されることになり、第一クラッチ3aのトルク容量がエンジン出力トルクTENGを上回ることがなくなる。したがって、エンジン出力トルクTENG中のエンジン回転速度増加トルクTZOUが確保され、図5(a)に実線で示すように、エンジン回転数Neは時刻t4まで上昇する。
That is, when the vehicle weight W detected by the weight sensor 16 is equal to or less than the predetermined weight W 0 and the gear stage G detected by the gear sensor 17 is the predetermined stage G 0 , the shock reduction map as shown in FIG. Based on the above, a target torque T TGT is set by subtracting a margin torque T YOY from the driver request torque T DRI .
That is, the target torque T TGT of the first clutch 3a is corrected in the decreasing direction by the margin torque T YOY , and the torque capacity of the first clutch 3a does not exceed the engine output torque T ENG . Therefore, the engine rotational speed increase torque T ZOU in the engine output torque T ENG is secured, and the engine rotational speed Ne increases until time t 4 as shown by the solid line in FIG.
 あるいは、車両重量Wが所定重量W0よりも大きいとき、又は、変速段Gが所定段G0でないときには、エンジン出力トルクTENGからエンジン回転速度増加トルクTZOUを減じたエンジン未使用トルクTMISに基づいて係合側の第一クラッチ3aの目標トルクTTGTが設定される。つまり、第一クラッチ3aの目標トルクTTGTがエンジン回転速度増加トルクTZOUに応じて減少方向に補正されることになり、第一クラッチ3aのトルク容量がエンジン出力トルクTENGを上回ることがなくなる。したがって、エンジン出力トルクTENG中のエンジン回転速度増加トルクTZOUが確保され、図5(a)に実線で示すように、エンジン回転数Neは時刻t4まで上昇する。 Alternatively, when the vehicle weight W is larger than the predetermined weight W 0 or when the gear stage G is not the predetermined stage G 0 , the engine unused torque T MIS obtained by subtracting the engine rotational speed increasing torque T ZOU from the engine output torque T ENG. Is set to the target torque T TGT of the engagement-side first clutch 3a. That is, the target torque T TGT of the first clutch 3a is corrected in a decreasing direction according to the engine speed increase torque T ZOU, and the torque capacity of the first clutch 3a does not exceed the engine output torque T ENG. . Therefore, the engine rotational speed increase torque T ZOU in the engine output torque T ENG is secured, and the engine rotational speed Ne increases until time t 4 as shown by the solid line in FIG.
 また、第一クラッチ3aの目標トルクTTGTはドライバ要求トルクTDRIよりも小さめに設定されるため、トルクフェーズで第一制御弁8Aに伝達される駆動電流は、図5(b)に破線で示すものよりも減少方向に補正され、第一クラッチ3aの係合力が低下する。これにより、第一動力伝達経路5A及び第二動力伝達経路5Bが同時に係合するような二重噛みの発生も防止される。したがって、図5(c)に実線で示すように、トルクフェーズ及びイナーシャフェーズでの出力軸トルクの変動が抑制され、滑らかな変速動作が実現される。 Further, since the target torque T TGT of the first clutch 3a is set to be smaller than the driver required torque T DRI , the drive current transmitted to the first control valve 8A in the torque phase is indicated by a broken line in FIG. It is corrected in a decreasing direction from that shown, and the engaging force of the first clutch 3a is reduced. Thereby, occurrence of double biting such that the first power transmission path 5A and the second power transmission path 5B are simultaneously engaged is also prevented. Therefore, as shown by a solid line in FIG. 5C, fluctuations in the output shaft torque in the torque phase and the inertia phase are suppressed, and a smooth speed change operation is realized.
 なお、イナーシャフェーズを開始する時刻t4以降は、図5(b)に一点鎖線で示すように、第二制御弁8Bへの駆動電流の供給が遮断され、第二クラッチ3bが解放される。一方、係合側の第一クラッチ3aは徐々に係合状態が強められてトルクを伝達する。これにより、図5(a)に実線で示すようにエンジン回転数Neが低下し、時刻t5にイナーシャフェーズが完了する。 Incidentally, the time t 4 after starting the inertia phase, as indicated by a chain line in FIG. 5 (b), the supply of the drive current to the second control valve 8B is blocked, the second clutch 3b is released. On the other hand, the engagement-side first clutch 3a gradually increases its engagement state and transmits torque. Thus, it decreases the engine speed Ne as indicated by the solid line in FIG. 5 (a), the inertia phase is completed at time t 5.
 [5.効果]
 このように、上記の変速制御装置10では、第一目標トルクTTGT1や第二目標トルクTTGT2の設定に際し、車両重量Wを条件としてそれらの値を設定することで、車両の慣性力を考慮した変速ショックの許容量やダンピング効果に応じてクラッチ3の係合状態を制御することが可能となる。これにより、変速ショックを抑制しつつ、適正な係合圧でクラッチを係合させることができる。
[5. effect]
As described above, in the shift control device 10 described above, when the first target torque T TGT1 and the second target torque T TGT2 are set, these values are set on the condition of the vehicle weight W, so that the inertial force of the vehicle is taken into consideration. The engagement state of the clutch 3 can be controlled in accordance with the allowable shift shock amount and the damping effect. Thus, the clutch can be engaged with an appropriate engagement pressure while suppressing a shift shock.
 また、上記の変速制御装置10では、車両重量Wが所定重量W0以下であるときと所定重量W0よりも大きいときとで別の目標トルクが設定される。これにより、所定重量W0をしきい値とした簡素な設定で、車両の慣性力を考慮した変速ショックの許容量やダンピング効果に応じた摩擦係合要素の係合状態を容易に制御することができる。 In the shift control device 10 described above, different target torques are set when the vehicle weight W is equal to or less than the predetermined weight W 0 and when the vehicle weight W is larger than the predetermined weight W 0 . This makes it possible to easily control the engagement state of the friction engagement element according to the allowable amount of the shift shock and the damping effect in consideration of the inertia force of the vehicle with a simple setting with the predetermined weight W 0 as a threshold value. Can do.
 特に、車両重量Wが所定重量W0以下の状態での変速時における係合側のクラッチ3の目標トルクTTGT(第一目標トルクTTGT1)がドライバ要求トルクTDRIよりも小さくなるため、係合側のクラッチ3のトルク容量をエンジン出力トルクTENGよりも小さくすることができる。これにより、不適切なエンジン回転数の変動や出力軸トルクの変動を効果的に抑制することができ、変速ショックを抑制することができる。
 また、第一目標トルクTTGT1を小さくすることで係合側のクラッチ3のトルク容量に余裕が生じるため、クラッチ3の個体差や制御上の作動誤差を吸収することができ、制御性を高めることができる。
In particular, since the target torque T TGT (first target torque T TGT1 ) of the engagement-side clutch 3 at the time of shifting with the vehicle weight W equal to or less than the predetermined weight W 0 is smaller than the driver required torque T DRI , The torque capacity of the clutch 3 on the mating side can be made smaller than the engine output torque T ENG . As a result, inappropriate engine speed fluctuations and output shaft torque fluctuations can be effectively suppressed, and shift shocks can be suppressed.
Further, by reducing the first target torque TTGT1 , there is a margin in the torque capacity of the clutch 3 on the engagement side, so that individual differences of the clutch 3 and operation errors in control can be absorbed, and controllability is improved. be able to.
 逆に、車両重量Wが所定重量W0よりも大きい(車両が重い)場合には、係合側のクラッチ3の目標トルクTTGTとしての第一目標トルクTTGT1の設定が禁止され、第一目標トルクTTGT1とは別に第二目標トルクTTGT2が設定される。つまり、ショックが発生しにくい状態では第一目標トルクTTGT1が使用されず、代わりに第二目標トルクTTGT2が使用される。これにより、車両の慣性力によるダンピング作用を利用して、変速時に発生しうるショックを鈍らせることができ、変速ショックを抑制することができる。また、ドライバ要求トルクに基づいて第二目標トルクTTGT2を設定することで、係合側のクラッチ3のトルク容量を確保することができるとともに、クラッチ3が滑ることによる動力性能及び燃費性能の低下を最小限に留めることができる。 On the contrary, when the vehicle weight W is larger than the predetermined weight W 0 (the vehicle is heavy), the setting of the first target torque T TGT1 as the target torque T TGT of the clutch 3 on the engagement side is prohibited. It is set separately from the second target torque T TGT2 the target torque T TGT1. In other words, the first target torque T TGT1 is not used in a state where it is difficult for a shock to occur, and the second target torque T TGT2 is used instead. As a result, the shock that can occur during gear shifting can be blunted using the damping action caused by the inertial force of the vehicle, and the gear shifting shock can be suppressed. Further, by setting the second target torque TTGT2 based on the driver request torque, it is possible to secure the torque capacity of the clutch 3 on the engagement side, and to reduce the power performance and fuel consumption performance due to the clutch 3 slipping. Can be kept to a minimum.
 また、上記の変速制御装置10の第二設定部1cで第二目標トルクTTGT2が第一目標トルクTTGT1以上の大きさとなるように設定した場合、車両重量Wが所定重量W0以上であるときには確実に第二目標トルクTTGT2が大きくなる。したがって、必要以上に目標トルクが抑制されるようなことがなくなるとともに、車両の慣性力を利用したダンピング効果を常に獲得することができ、動力性能等を維持したままトルクショックを低減することができる。 Further, when the second target torque T TGT2 is set to be greater than or equal to the first target torque T TGT1 by the second setting unit 1c of the transmission control device 10 described above, the vehicle weight W is equal to or greater than the predetermined weight W 0. Sometimes, the second target torque T TGT2 surely increases. Accordingly, the target torque is not suppressed more than necessary, and a damping effect utilizing the inertial force of the vehicle can always be obtained, and torque shock can be reduced while maintaining power performance and the like. .
 また、上記の変速制御装置10の第一設定部12には、例えば図2に示すようなショック低減マップが記憶されている。このマップでは、第一目標トルクTTGT1がその時点のドライバ要求トルクTDRI以下になるように設定される。さらに、ドライバ要求トルクTDRIが所定トルクT0以上の範囲では、ドライバ要求トルクTDRIが大きいほど余裕トルクTYOYが増大するように第一目標トルクTTGT1が設定される。 Further, for example, a shock reduction map as shown in FIG. 2 is stored in the first setting unit 12 of the shift control device 10 described above. In this map, the first target torque T TGT1 is set to be equal to or less than the driver request torque T DRI at that time. Further, in a range driver request torque T DRI is equal to or larger than the predetermined torque T 0, the first target torque T TGT1 is set so as surplus torque T YOY large driver request torque T DRI is increased.
 これにより、係合側のクラッチ3の目標トルクTTGTを確実にエンジン出力トルクTENG以下の範囲で設定することができ、エンジン回転数Neの変動や出力軸トルクの変動を効果的に抑制することができる。また、マップを用いることで、ドライバ要求トルクTDRIに対するクラッチ3の目標トルクTTGTを任意に変更することが容易となる。これにより、例えば変速時の動力性能を優先するか、それともフィーリングを優先するかを容易に設定することができる。 As a result, the target torque T TGT of the clutch 3 on the engagement side can be reliably set within the range of the engine output torque T ENG or less, and the fluctuations in the engine speed Ne and the fluctuations in the output shaft torque are effectively suppressed. be able to. Moreover, it becomes easy to arbitrarily change the target torque T TGT of the clutch 3 with respect to the driver request torque T DRI by using the map. Thereby, for example, it is possible to easily set whether to give priority to power performance at the time of shifting or to give priority to feeling.
 また、図2に示すショック低減マップでは、TDRI≧T0の範囲でのみ目標トルクTTGTをドライバ要求トルクTDRIよりも減少させる構成となっている。つまり、係合側のクラッチ3のトルク容量が過大になりやすい領域のみで余裕トルクTYOYを設定することで、ドライバの要求を満足させつつトルク容量がエンジン出力トルクを超えるような事態を回避することができ、運転フィーリングと動力性能,燃費性能とを両立させることができる。 Further, the shock reduction map shown in FIG. 2 has a configuration in which the target torque T TGT is reduced from the driver request torque T DRI only in the range of T DRI ≧ T 0 . In other words, by setting the margin torque T YOY only in the region where the torque capacity of the clutch 3 on the engagement side is likely to be excessive, it is possible to avoid a situation where the torque capacity exceeds the engine output torque while satisfying the driver's request. It is possible to achieve both driving feeling, power performance and fuel efficiency.
 なお、第一設定部12での目標トルクTTGTの設定では、係合側のクラッチ3のトルク容量に余裕トルクTYOY分の余力ができることになる。また、エンジン未使用トルクTMISはエンジン出力トルクTENGとエンジン回転速度増加トルクTZOUとのトルク差であるから、第二設定部1cでの目標トルクTTGTの設定では、エンジン回転速度増加トルクTZOU分の余裕ができることになる。したがって、クラッチ3の個体差や制御上の作動誤差をこれらの余裕分のトルクで吸収することができ、制御性を高めることができる。 Note that, when the target torque T TGT is set by the first setting unit 12, a surplus torque T YOY is generated in the torque capacity of the clutch 3 on the engagement side. Further, the engine unused torque T MIS is a torque difference between the engine output torque T ENG and the engine rotation speed increase torque T ZOU, and therefore , when the target torque T TGT is set in the second setting unit 1c, the engine rotation speed increase torque is set. You can afford T ZOU . Accordingly, individual differences of the clutch 3 and control operation errors can be absorbed by the torque of these margins, and controllability can be improved.
 また、上記の変速制御装置10では、余裕トルクTYOYやエンジン未使用トルクTMISに基づいて設定される第一目標トルクTTGT1及び第二目標トルクTTGT2に応じて、係合側のクラッチ3の係合状態が制御されるため、変速時におけるクラッチ3のつなぎ過ぎによるエンジン回転数Neの変動や出力軸トルクの変動を抑制することができ、変速ショックを低減することができる。また、係合側のクラッチ3のトルク容量に、余裕トルクTYOY分の余裕が生じ、あるいは、エンジン回転速度増加トルクTZOU分の余裕が生じるため、クラッチ3の個体差や制御上の作動誤差を吸収することができ、制御性を高めることができる。 In the shift control device 10 described above, the engagement-side clutch 3 is set according to the first target torque T TGT1 and the second target torque T TGT2 set based on the surplus torque T YOY and the engine unused torque T MIS. Since the engagement state is controlled, fluctuations in the engine speed Ne and fluctuations in the output shaft torque due to excessive engagement of the clutch 3 at the time of shifting can be suppressed, and shift shocks can be reduced. In addition, the torque capacity of the clutch 3 on the engagement side has a margin for the surplus torque T YOY or a margin for the engine rotation speed increase torque T ZOU, so individual differences of the clutch 3 and operation errors in control. Can be absorbed and controllability can be improved.
 また、自動変速機9の駆動トルクの大きい低速ギヤ段での変速時における係合側のクラッチ3の目標トルクTTGTが小さくなるため、係合側のクラッチ3のトルク容量をエンジン出力トルクTENGよりも小さくすることができる。これにより、効果的に変速ショックを低減することができる。 Further, since the target torque T TGT of the engagement side clutch 3 at the time of shifting at the low speed gear stage where the driving torque of the automatic transmission 9 is large, the torque capacity of the engagement side clutch 3 is reduced to the engine output torque T ENG. Can be made smaller. Thereby, the shift shock can be effectively reduced.
 また、上記の変速制御装置10の第二設定部1cによれば、ドライバ要求トルクTDRIとエンジン未使用トルクTMISとのうちの小さい一方を用いて係合状態が制御される。つまり、ドライバ要求トルクTDRIがエンジン未使用トルクTMIS以下の場合には、ドライバ要求トルクTDRIが使用され、逆にドライバ要求トルクTDRIがエンジン未使用トルクTMISよりも大きい場合には、エンジン未使用トルクTMISが使用される。
 これにより、例えばエンジン回転数Neが低下しているような運転状態であっても、目標トルクTTGTがエンジン出力トルクTENGを上回るようなことを防止でき、エンジン回転数Neの変動や出力軸トルクの変動を確実に抑制することができる。
Further, according to the second setting unit 1c of the transmission control device 10 described above, the engagement state is controlled using a smaller one of the driver request torque TDRI and the engine unused torque TMIS . That is, when the driver request torque T DRI is equal to or less than the engine unused torque T MIS , the driver request torque T DRI is used, and conversely, when the driver request torque T DRI is greater than the engine unused torque T MIS , Engine unused torque TMIS is used.
This prevents the target torque T TGT from exceeding the engine output torque T ENG even when the engine speed Ne is decreasing, for example. Torque fluctuations can be reliably suppressed.
 なお、上記の変速制御装置10では、係合側のクラッチ3の目標トルクTTGTが確実にエンジン出力トルクTENG以下の範囲で設定されるため、エンジン回転数Neの変動や出力軸トルクの変動を効果的に抑制することができる。
 特に、アクセルオンでのシフトアップ中に係合側のクラッチ3で伝達されるクラッチ伝達トルクがエンジン出力トルクTENGを上回ることがないため、ショックが発生せず乗り心地をよくすることができる。さらに、変速時に駆動系構成部品に入力されるねじりや加速度変化も抑制されるため、駆動系構成部品の耐久性を向上させることができる。
In the shift control device 10 described above, since the target torque T TGT of the engagement-side clutch 3 is reliably set within the range of the engine output torque T ENG or less, fluctuations in the engine speed Ne and fluctuations in the output shaft torque Can be effectively suppressed.
Particularly, since the clutch transmission torque transmitted by the clutch 3 on the engagement side does not exceed the engine output torque T ENG during the shift-up when the accelerator is on, a shock does not occur and the riding comfort can be improved. Furthermore, since the torsion and acceleration changes input to the drive system components during shifting are also suppressed, the durability of the drive system components can be improved.
 また、上記の変速制御装置10では、重み係数kを用いて目標トルクTTGTに対するエンジン未使用トルクTMISの反映率を与えている。これにより、変速時の動力性能を優先するか、それともフィーリングを優先するかを容易に設定することができる。
 例えば、重み係数kの値を大きく設定すれば、目標トルクTTGTがドライバ要求トルクTDRIよりもエンジン未使用トルクTMISの影響を受けやすくなり、係合側クラッチの係合力が低下する。
Further, the gear change control device 10 described above, giving the reflection rate of the engine unused torque T MIS with respect to the target torque T TGT using a weighting coefficient k. Thereby, it is possible to easily set whether to give priority to the power performance at the time of shifting or to give priority to feeling.
For example, if the value of the weight coefficient k is set to be large, the target torque T TGT becomes more susceptible to the engine unused torque T MIS than the driver request torque T DRI , and the engagement force of the engagement side clutch decreases.
 したがって、自動変速機9の出力軸トルクの変動が小さくなり、変速ショックを抑制することができる。逆に、重み係数kの値を小さく設定すれば、目標トルクTTGTがエンジン未使用トルクTMISよりもドライバ要求トルクTDRIに近い値に設定されるため、アクセル操作に応じたスポーティーな操作感を実現することができる。
 また、クラッチ滑りによる動力伝達ロスが少なくなるため、燃費性能を向上させることも可能である。したがって、運転フィーリング,動力性能,燃費性能といったさまざまな特性を考慮したうえで、優先したい性能に応じて重み係数kの値を設定することができ、変速時の挙動を柔軟に変更することが可能である。
Therefore, the fluctuation of the output shaft torque of the automatic transmission 9 is reduced, and the shift shock can be suppressed. On the contrary, if the value of the weighting factor k is set small, the target torque T TGT is set to a value closer to the driver request torque T DRI than the engine unused torque T MIS, so a sporty operation feeling corresponding to the accelerator operation Can be realized.
In addition, since power transmission loss due to clutch slippage is reduced, it is possible to improve fuel efficiency. Therefore, after considering various characteristics such as driving feeling, power performance, and fuel consumption performance, the value of the weighting factor k can be set according to the performance to be prioritized, and the behavior during shifting can be changed flexibly. Is possible.
 また、例えば複数の異なる車種に対して本変速制御装置10を適用する場合に、重み係数kのみの変更でそれぞれの車種に最適な制御を実施することが可能であり、極めて汎用性が高いという利点もある。
 また、本変速制御装置10によれば、デュアルクラッチ式のトランスミッションを搭載した車両の変速時に発生しうるトルクショックを、係合側のクラッチ3のみの制御で確実に抑制することができ、動力特性と運転フィーリングとを両立させることができる。
Further, for example, when the present shift control device 10 is applied to a plurality of different vehicle types, it is possible to carry out optimal control for each vehicle type by changing only the weighting factor k, and it is extremely versatile. There are also advantages.
In addition, according to the present speed change control device 10, torque shock that may occur at the time of speed change of a vehicle equipped with a dual clutch transmission can be reliably suppressed by controlling only the clutch 3 on the engagement side, and the power characteristics And driving feeling can be made compatible.
 このように、上記の変速制御装置10は、クラッチ3の切り換え時における係合側トルク容量を適正化することができ、変速動作時のショックを抑制することができる。 Thus, the above-described shift control device 10 can optimize the engagement-side torque capacity when the clutch 3 is switched, and can suppress a shock during the shift operation.
 [6.変形例]
 上述した実施形態に関わらず、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。本実施形態の各構成は、必要に応じて取捨選択することができ、あるいは適宜組み合わせてもよい。
[6. Modified example]
Regardless of the embodiment described above, various modifications can be made without departing from the spirit of the invention. Each structure of this embodiment can be selected as needed, or may be combined appropriately.
  [6-1.第一変形例]
 上述の実施形態では、第二設定部1cがエンジン未使用トルクTMISに基づいて第二目標トルクTTGT2を設定するものを例示したが、第二目標トルクTTGT2の演算手法はこれに限定されない。上述の第二設定部1cの代わりに、ドライバ要求トルクTDRIのみに基づいて第二目標トルクTTGT2を設定する第二設定部21が設けられた変速機ECU20を図6に示す。なお、以下の変形例における上述の実施形態と同一の要素には同一の符号を付して説明を省略する。
[6-1. First modification]
In the above-described embodiment, the second setting unit 1c exemplifies that the second target torque T TGT2 is set based on the engine unused torque T MIS . However, the calculation method of the second target torque T TGT2 is not limited to this. . FIG. 6 shows a transmission ECU 20 provided with a second setting unit 21 that sets the second target torque T TGT2 based only on the driver request torque T DRI instead of the second setting unit 1c. In addition, the same code | symbol is attached | subjected to the element same as the above-mentioned embodiment in the following modifications, and description is abbreviate | omitted.
 この第二設定部21(第二設定手段)は、重量センサ16で検出された車両重量Wが所定重量W0よりも大きい場合、又は、ギヤセンサ17で検出された変速段Gが所定段G0でないときに、ドライバ要求トルクTDRIに基づいて目標トルクTTGTを設定するものである。例えば、目標トルクTTGTをドライバ要求トルクTDRIに等しい値とすることが考えられる。 When the vehicle weight W detected by the weight sensor 16 is larger than the predetermined weight W 0 , or when the gear stage G detected by the gear sensor 17 is the predetermined stage G 0, the second setting unit 21 (second setting means). Otherwise, the target torque T TGT is set based on the driver request torque T DRI . For example, the target torque T TGT may be set to a value equal to the driver request torque T DRI .
 車両重量Wが所定重量W0よりも大きい場合には車両の慣性力が大きく、仮にトルクショックが発生したとしてもそのショックに対して揺れにくく、かつショックを減衰させるダンピング作用が強い。また、変速段Gが所定段G0でないときには駆動トルクが比較的小さいため、トルクショックが発生しにくい。そこで、上記の条件下で目標トルクTTGTとドライバ要求トルクTDRIとを一致させることにより、ドライバの要求に見合った係合力(もしくはトルク容量)で係合側のクラッチ3を係合させることとする。 When the vehicle weight W is greater than the predetermined weight W 0 , the inertial force of the vehicle is large, and even if a torque shock occurs, it is difficult to shake against the shock and has a strong damping action that attenuates the shock. Furthermore, since transmission speed G is the driving torque is relatively small when not the predetermined speed G 0, the torque shock hardly occur. Therefore, by engaging the target torque T TGT and the driver request torque T DRI under the above conditions, the engagement clutch 3 is engaged with an engagement force (or torque capacity) that meets the driver's request; To do.
 このような変速機ECU20による自動変速機9の変速動作に係る制御の一例を図7のフローチャートに示す。このフローは、変速機ECU20の内部にて所定周期で繰り返し実施される。
 ステップA5では、エンジンECU2で演算されたドライバ要求トルクTDRIが変速機ECU20に読み込まれる。また、ステップA13では、ギヤセンサ17で検出された変速段Gと重量センサ16で検出された車両重量Wとが変速機ECU20に読み込まれる。
An example of the control related to the shift operation of the automatic transmission 9 by the transmission ECU 20 is shown in the flowchart of FIG. This flow is repeatedly performed at a predetermined cycle inside the transmission ECU 20.
In step A5, the driver request torque TDRI calculated by the engine ECU 2 is read into the transmission ECU 20. In step A13, the gear stage G detected by the gear sensor 17 and the vehicle weight W detected by the weight sensor 16 are read into the transmission ECU 20.
 ステップA15では、車両重量判定部12aにおいて、車両重量Wが所定重量W0以下であるか否かが判定される。このステップで判定される条件は、例えば変速時に生じうるショック(トルク変動)に対して車両の慣性力が小さい状態であるか否かを判断するための条件である。ここで車両重量Wが所定重量W0以下である場合にはステップA16へ進み、所定重量W0よりも大きい場合にはステップA86へ進む。 In step A15, the vehicle weight determination section 12a, the vehicle weight W is equal to or less than a predetermined weight W 0 is determined. The condition determined in this step is a condition for determining whether or not the inertial force of the vehicle is small with respect to a shock (torque fluctuation) that may occur at the time of shifting. Here the vehicle weight W advances to step A16. If it is less than the predetermined weight W 0, the process proceeds to step A86 is larger than the predetermined weight W 0.
 ステップA16では、ギヤ段判定部12bにおいて、変速段Gが所定段G0であるか否かが判定される。ここで、変速段Gが所定段G0である場合にはステップA85へ進み、所定段G0でない場合にはステップA86へ進む。 In step A16, the gear determining unit 12b, transmission speed G is whether the predetermined speed G 0 is determined. Here, when the shift stage G is the predetermined stage G 0 , the process proceeds to Step A85, and when it is not the predetermined stage G 0 , the process proceeds to Step A86.
 ステップA85では、第一設定部12において第一目標トルクTTGT1の設定がなされる。すなわち、ドライバ要求トルクTDRIが所定トルクT0未満であるときにはそのドライバ要求トルクTDRIがそのまま第一目標トルクTTGT1として設定され、ドライバ要求トルクTDRIが所定トルクT0以上であるときには、第一目標トルクTTGT1がドライバ要求トルクTDRIよりも小さい値に設定される。ここで設定される第一目標トルクTTGT1は、上述の実施形態と同様に、ドライバ要求トルクTDRIから余裕トルクTYOYを減算した値となる。 In step A85, the first setting torque T TGT1 is set in the first setting unit 12. That is, when the driver request torque T DRI is less than the predetermined torque T 0 , the driver request torque T DRI is set as the first target torque T TGT1 as it is, and when the driver request torque T DRI is equal to or greater than the predetermined torque T 0 , The one target torque T TGT1 is set to a value smaller than the driver request torque T DRI . The first target torque T TGT1 set here is a value obtained by subtracting the margin torque T YOY from the driver request torque T DRI as in the above-described embodiment.
 その後、ステップA90では、係合側のクラッチ3でその第一目標トルクTTGT1(目標トルクTTGT)が得られるように、制御部1gから第一制御弁8A及び第二制御弁8Bへと駆動電流が出力される。例えば、係合側のクラッチ3が第一クラッチ3aである場合には、第一制御弁8Aに駆動電流が出力される。なおこのとき、第二制御弁8Bには第二クラッチ3bの摩擦板を解放方向に駆動するための駆動電流が出力され、クラッチ3の掛け替え制御が遂行される。 Thereafter, in step A90, the control unit 1g drives the first control valve 8A and the second control valve 8B so that the first target torque T TGT1 (target torque T TGT ) can be obtained by the clutch 3 on the engagement side. Current is output. For example, when the engagement-side clutch 3 is the first clutch 3a, a drive current is output to the first control valve 8A. At this time, a drive current for driving the friction plate of the second clutch 3b in the releasing direction is output to the second control valve 8B, and the switching control of the clutch 3 is performed.
 一方、ステップA15で車両重量Wが所定重量W0よりも大きい場合、又は、ステップA16で変速段Gが所定段G0でない場合には、ステップA86へ進み、第二設定部21において第二目標トルクTTGT2がドライバ要求トルクTDRIに等しい値として設定される。その後、ステップA90では、係合側のクラッチ3でその第二目標トルクTTGT2(目標トルクTTGT)が得られるように、制御部1gから第一制御弁8A及び第二制御弁8Bへと駆動電流が出力される。つまり、変速段Gが所定段G0であるときに設定される目標トルクTTGTは、常に、変速段Gが所定段G0でないときに設定される目標トルクTTGT以下の値となる。 On the other hand, if the vehicle weight W is larger than the predetermined weight W 0 in step A15, or if the gear stage G is not the predetermined stage G 0 in step A16, the process proceeds to step A86 and the second setting unit 21 sets the second target. Torque T TGT2 is set as a value equal to driver request torque T DRI . Thereafter, in step A90, the control unit 1g drives the first control valve 8A and the second control valve 8B so that the second target torque T TGT2 (target torque T TGT ) can be obtained by the clutch 3 on the engagement side. Current is output. That is, the target torque T TGT which gear position G is set when a predetermined speed G 0 is always equal to the target torque T TGT following values are set when transmission speed G is not a predetermined speed G 0.
 このように、上記の制御では係合側のクラッチ3の第二目標トルクTTGT2がドライバ要求トルクTDRIと同一値に設定される。一方、自動変速機9の駆動トルクが比較的小さい走行段(中高速ギヤ段)であるときには変速ショックが発生しにくくダンピング作用が強いため、フィーリングが損なわれるおそれがなく、むしろドライバの要求を優先することで動力性能,燃費性能をさらに向上させることができる。 Thus, in the above control, the second target torque T TGT2 of the clutch 3 on the engagement side is set to the same value as the driver request torque T DRI . On the other hand, when the driving torque of the automatic transmission 9 is a relatively low traveling speed (medium / high speed gear speed), the shock is not likely to occur, and the damping action is strong. By giving priority, power performance and fuel efficiency can be further improved.
 また、係合側のクラッチ3の目標トルクTTGTをドライバ要求トルクTDRIに基づいて設定することで、係合側のクラッチ3のトルク容量を確保することができる。これにより、変速ショックが発生しにくい状態での運転フィーリングを向上させることができる。 In addition, the torque capacity of the engagement-side clutch 3 can be ensured by setting the target torque TTGT of the engagement-side clutch 3 based on the driver request torque TDRI . As a result, it is possible to improve driving feeling in a state where shift shock is unlikely to occur.
  [6-2.第二変形例]
 上述の実施形態では、第一設定部の内部で第一目標トルクTTGT1を設定するための手段として、車両重量判定部12a及びギヤ段判定部12bを備えたものを例示したが、少なくとも上記の車両重量判定部12aに対応する手段を備えたものであればよい。上述のギヤ段判定部12bを省略した変速機ECU30を図8に例示する。
[6-2. Second modification]
In the above-described embodiment, as the means for setting the first target torque T TGT1 inside the first setting unit, the vehicle weight determination unit 12a and the gear stage determination unit 12b are exemplified. What is necessary is just to provide the means corresponding to the vehicle weight determination part 12a. FIG. 8 illustrates a transmission ECU 30 in which the above-described gear stage determination unit 12b is omitted.
 変速機ECU30の第一設定部31(設定手段)は、自動変速機9の変速時において、重量センサ16で検出された車両重量Wのみに基づいて第一目標トルクTTGT1を設定するものである。第一設定部31の車両重量判定部12a(第一設定手段)では、車両重量Wが所定重量以下W0であるときに、例えば図2に示すショック低減マップにしたがって、その時点でのドライバ要求トルクTDRIに応じた値の第一目標トルクTTGT1が設定される。また、ここで設定された第一目標トルクTTGT1は制御部1gに伝達される。 The first setting unit 31 (setting means) of the transmission ECU 30 sets the first target torque T TGT1 based only on the vehicle weight W detected by the weight sensor 16 when the automatic transmission 9 is shifted. . In the vehicle weight determination unit 12a (first setting means) of the first setting unit 31, when the vehicle weight W is equal to or less than a predetermined weight W 0 , for example, according to a shock reduction map shown in FIG. A first target torque T TGT1 having a value corresponding to the torque T DRI is set. The first target torque T TGT1 set here is transmitted to the control unit 1g.
 このような変速機ECU30による自動変速機9の変速動作に係る制御の一例を図9のフローチャートに示す。このフローは、上述の実施形態で説明した図4のフローチャートのステップA13で読み込まれる情報を車両重量Wのみとし(ステップA14)、ステップA16の条件判定を省略したものに対応する。つまり、ステップA85で第一目標トルクTTGT1を設定するための条件が、ステップA15の車両重量Wに係る条件のみとなる。 An example of the control related to the shift operation of the automatic transmission 9 by the transmission ECU 30 is shown in the flowchart of FIG. This flow corresponds to the information read in step A13 in the flowchart of FIG. 4 described in the above embodiment only in the vehicle weight W (step A14) and the condition determination in step A16 is omitted. That is, the condition for setting the first target torque T TGT1 in step A85 is only the condition relating to the vehicle weight W in step A15.
 これにより、車両重量Wが所定重量W0以下の場合には、変速段Gの状態に関わらず、クラッチの繋ぎすぎによって生じうるショックに対して確実に予め目標トルクTTGTを下げておくことが可能となる。一方、車両重量Wが所定重量W0よりも大きい場合には、上述の実施形態と同様に、エンジン未使用トルクTMISに基づくトルク制御が可能となる。 As a result, when the vehicle weight W is less than or equal to the predetermined weight W 0 , the target torque TTGT can be surely lowered in advance against a shock that may occur due to excessive clutch engagement regardless of the state of the gear stage G. It becomes possible. On the other hand, when the vehicle weight W is larger than the predetermined weight W 0 , torque control based on the engine unused torque T MIS is possible as in the above-described embodiment.
  [6-3.第三変形例]
 上記の第二変形例では、上述の実施形態からギヤ段判定部12bを省略したものを説明したが、例えば図10に示すように、上記の第一変形例からギヤ判定部12bを取り除いた変速機ECU40を用いることも考えられる。この変速機ECU40には、車両重量判定部12a(第一設定手段)を有する第一設定部41(設定手段)と、第二設定部42(第二設定手段)と、制御部1gとが設けられる。
[6-3. Third modification]
In the second modified example, the gear stage determining unit 12b is omitted from the above-described embodiment. However, for example, as illustrated in FIG. 10, a gear shift in which the gear determining unit 12b is removed from the first modified example. It is also conceivable to use the machine ECU 40. The transmission ECU 40 includes a first setting unit 41 (setting unit) having a vehicle weight determination unit 12a (first setting unit), a second setting unit 42 (second setting unit), and a control unit 1g. It is done.
 第一設定部41の車両重量判定部12a(第一設定手段)では、車両重量Wが所定重量以下W0であるときに、例えば図2に示すショック低減マップにしたがって、その時点でのドライバ要求トルクTDRIに応じた値の第一目標トルクTTGT1が設定される。また、ここで設定された第一目標トルクTTGT1は制御部1gに伝達される。
 また、第二設定部42は、重量センサ16で検出された車両重量Wが所定重量W0よりも大きい場合に、ドライバ要求トルクTDRIに基づいて目標トルクTTGTを設定するものである。例えば、目標トルクTTGTをドライバ要求トルクTDRIに等しい値とすることが考えられる。
In the vehicle weight determination unit 12a (first setting means) of the first setting unit 41, when the vehicle weight W is equal to or less than a predetermined weight W 0 , for example, according to the shock reduction map shown in FIG. A first target torque T TGT1 having a value corresponding to the torque T DRI is set. The first target torque T TGT1 set here is transmitted to the control unit 1g.
The second setting unit 42 is for the vehicle weight W detected by the weight sensor 16 is larger than a predetermined weight W 0, sets the target torque T TGT based on the driver requested torque T DRI. For example, the target torque T TGT may be set to a value equal to the driver request torque T DRI .
 このような変速機ECU40による自動変速機9の変速動作に係る制御の一例を図11のフローチャートに示す。このフローは、第一変形例で説明した図7のフローチャートのステップA13で読み込まれる情報を車両重量Wのみとし(ステップA14)、ステップA16の条件判定を省略したものに対応する。したがって、車両重量Wが所定重量W0以下の場合に目標トルクTTGTを減少させて、不適切なエンジン回転数の変動や出力軸トルクの変動を効果的に抑制することができ、変速ショックを抑制することができる。 An example of the control related to the shift operation of the automatic transmission 9 by the transmission ECU 40 is shown in the flowchart of FIG. This flow corresponds to the information read in step A13 of the flowchart of FIG. 7 described in the first modification example only in the vehicle weight W (step A14) and the condition determination in step A16 is omitted. Accordingly, when the vehicle weight W is equal to or less than the predetermined weight W 0 , the target torque T TGT can be reduced to effectively suppress the fluctuations in the engine speed and the output shaft torque effectively. Can be suppressed.
  [6-4.ショック低減マップの変形例]
 上述の実施形態及び変形例では、第一設定部12が、図2に示すようなショック低減マップを用いて第一目標トルクTTGTを設定するものを例示したが、第一目標トルクTTGTの設定に用いられるマップや演算式はこれに限定されない。例えば、ドライバ要求トルクTDRIのみを用いて第一目標トルクTTGTを設定するのではなく、他の複数のパラメータを用いてより正確な第一目標トルクTTGTを設定してもよい。具体的な他のパラメータとしては、車両重量Wやギヤ段Gを用いることが考えられる。なお、ショック低減マップを多次元化することで、複数のパラメータに基づく第一目標トルクTTGTを一意に設定することが可能である。
[6-4. Modified example of shock reduction map]
In the embodiments and modifications described above, the first setting unit 12, has been illustrated which sets the first target torque T TGT using shock reduction map as shown in FIG. 2, the first target torque T TGT The map and arithmetic expression used for setting are not limited to this. For example, instead of setting the first target torque T TGT using only the driver request torque T DRI, the more accurate first target torque T TGT may be set using a plurality of other parameters. As other specific parameters, it is conceivable to use the vehicle weight W or the gear stage G. Note that by making the shock reduction map multidimensional, it is possible to uniquely set the first target torque T TGT based on a plurality of parameters.
 あるいは、図12に示すように、パラメータ値が異なる状態毎に複数のショック低減マップを予め作成しておき、これらのショック低減マップ群を用いて第一目標トルクTTGTを設定してもよい。車両重量Wを加味する場合、車両重量Wが小さいほど車両の慣性力が小さいため、図12中に符号Mで示すように、第一目標トルクTTGT1のドライバ要求トルクTDRIからの減少量(すなわち余裕トルクTYOY)を増大させた特性にしてもよい。 Alternatively, as shown in FIG. 12, a plurality of shock reduction maps may be created in advance for each state having different parameter values, and the first target torque TTGT may be set using these shock reduction map groups. When the vehicle weight W is taken into account, the smaller the vehicle weight W, the smaller the inertial force of the vehicle. Therefore, as shown by the symbol M in FIG. 12, the amount of decrease of the first target torque T TGT1 from the driver request torque T DRI ( That is, the characteristics may be such that the surplus torque T YOY ) is increased.
 逆に、車両重量Wが大きいほど車両の慣性力が大きいため、図12中に符号Lで示すように、第一目標トルクTTGT1のドライバ要求トルクTDRIからの減少量を小さくした特性としてもよい。
 このような設定により、上述の実施形態及び変形例と比較して変速ショックの抑制効果をさらに高めることができ、車両安定性や乗り心地を向上させることができる。
On the contrary, since the inertial force of the vehicle increases as the vehicle weight W increases, as shown by the symbol L in FIG. 12, the reduction amount of the first target torque T TGT1 from the driver required torque T DRI can be reduced. Good.
By such setting, the effect of suppressing the shift shock can be further enhanced as compared with the above-described embodiment and modification examples, and vehicle stability and riding comfort can be improved.
  [6-5.条件の変形例]
 上述の実施形態の第一設定部12では、車両重量Wが所定重量W0以下であり、かつ、変速段Gが所定段G0であるときに、第一目標トルクTTGT1を設定しているが、第一目標トルクTTGT1を設定するための条件はこれに限定されない。例えば、車両重量Wが所定重量W0以下であるか、又は、変速段Gが所定段G0であるときに、第一目標トルクTTGT1を設定する構成も考えられる。この場合の制御例を図13及び図14のフローチャートに示す。
[6-5. Modified example of conditions]
In the first setting unit 12 of the above-described embodiment, the first target torque T TGT1 is set when the vehicle weight W is equal to or less than the predetermined weight W 0 and the gear stage G is the predetermined stage G 0 . However, the condition for setting the first target torque T TGT1 is not limited to this. For example, a configuration in which the first target torque T TGT1 is set when the vehicle weight W is equal to or less than the predetermined weight W 0 or the gear stage G is the predetermined stage G 0 is also conceivable. An example of control in this case is shown in the flowcharts of FIGS.
 図13に示すフローチャートは、上述の実施形態における図4のフローチャートのステップA16をステップA15のNo側のルート上に移動させたものである。また、図14に示すフローチャートは、上記の第一変形例における図7のフローチャートのステップA16をステップA15のNo側のルート上に移動させたものである。 The flowchart shown in FIG. 13 is obtained by moving Step A16 of the flowchart of FIG. 4 in the above-described embodiment onto the route on the No side of Step A15. Further, the flowchart shown in FIG. 14 is obtained by moving Step A16 of the flowchart of FIG. 7 in the first modified example above to the route on the No side of Step A15.
 これらのフローチャートでは、たとえステップA15で車両重量Wが所定重量W0以下でない場合であっても、変速段Gが所定段G0であればステップA85へ進むことになる。つまり、上述の実施形態の制御と比較すると、ステップA85へ進みやすくすることができ、ショック低減マップを用いた第一目標トルクTTGT1の設定を実施しやすくすることができる。このような制御構成は、例えば車両の慣性力の影響を重視したい場合(又は、第一目標トルクTTGT1での制御を重視したい)に適用することが考えられる。 In these flowcharts, even if the vehicle weight W is not less than or equal to the predetermined weight W 0 in step A15, if the shift stage G is the predetermined stage G 0 , the process proceeds to step A85. That is, as compared with the control of the above-described embodiment, the process can easily proceed to step A85, and the setting of the first target torque T TGT1 using the shock reduction map can be facilitated. Such a control configuration may be applied, for example, when it is desired to emphasize the influence of the inertial force of the vehicle (or to emphasize control with the first target torque T TGT1 ).
  [6-6.その他]
 上述の実施形態では、車両重量判定部12a及びギヤ段判定部12bの双方が、図2に示すような同一のショック低減マップを用いて第一目標トルクTTGT1を設定する構成となっているが、具体的な目標トルクの演算,設定手法は種々に考えられる。例えば、車両重量判定部12a及びギヤ段判定部12bのそれぞれで別個に第一目標トルクTTGT1を設定し、それらのうちの小さい方を用いる構成としたり、平均値を用いる構成とすることも可能である。自動変速機9の特性や車両の特性等に応じて、適宜変更してもよい。
[6-6. Others]
In the above-described embodiment, both the vehicle weight determination unit 12a and the gear stage determination unit 12b are configured to set the first target torque T TGT1 using the same shock reduction map as shown in FIG. Various specific target torque calculation and setting methods are conceivable. For example, it is possible to set the first target torque T TGT1 separately in each of the vehicle weight determination unit 12a and the gear stage determination unit 12b and use a smaller one of them or a configuration using an average value. It is. You may change suitably according to the characteristic of the automatic transmission 9, the characteristic of a vehicle, etc.
 上述の実施形態では、ギヤセンサ17を用いて変速ユニット4の変速段Gを検出する構成としたが、ギヤセンサ17の代わりに自動変速機9の出力軸9aの回転速度や各変速ユニット4の動力軸の回転速度から、各変速ユニット4の変速比を検出する構成としてもよい。この場合、変速比が所定変速比以上である場合(駆動トルクが比較的大きい場合)に、第一設定部12が目標トルクTTGTを設定する構成とすることが考えられる。 In the above-described embodiment, the gear stage 17 of the transmission unit 4 is detected using the gear sensor 17, but the rotational speed of the output shaft 9 a of the automatic transmission 9 and the power shaft of each transmission unit 4 are used instead of the gear sensor 17. It is good also as a structure which detects the gear ratio of each transmission unit 4 from this rotational speed. In this case, it is conceivable that the first setting unit 12 sets the target torque T TGT when the gear ratio is equal to or higher than the predetermined gear ratio (when the drive torque is relatively large).
 一般に、変速段と変速比との間には一定の相関関係があるため、これを利用して変速比に応じた制御とすることで、上述の実施形態と同様の効果を奏することができる。これらの変速段,変速比の検出対象は、係合側ギヤ段,解放側ギヤ段の何れに係るものであってもよい。 Generally, since there is a certain correlation between the gear position and the gear ratio, the same effect as that of the above-described embodiment can be obtained by using this to perform control according to the gear ratio. The detection target of these shift speeds and gear ratios may be related to either the engagement side gear stage or the release side gear stage.
 また、上述の実施形態では、第二設定部1cでの目標トルクTTGTの設定時に、ドライバ要求トルクTDRIとエンジン未使用トルクTMISとのうちの何れか小さい一方を最小値Zとして選択し、最小値Zに重み係数kを乗算するとともにドライバ要求トルクTDRIに係数(1-k)を乗算することによって、目標トルクTTGTがドライバ要求トルクTDRI以下にしている。つまり、ドライバ要求トルクTDRIを用いて、目標トルクTTGTがエンジン出力トルクTENG以下の範囲に収まることを保証している。しかし、目標トルクTTGTをエンジン出力トルクTENG以下に制御するための演算手法はこれに限定されない。 Further, in the above-described embodiment, when the target torque T TGT is set by the second setting unit 1c, the smaller one of the driver request torque T DRI and the engine unused torque T MIS is selected as the minimum value Z. By multiplying the minimum value Z by the weighting coefficient k and multiplying the driver request torque T DRI by the coefficient (1-k), the target torque T TGT is made equal to or less than the driver request torque T DRI . That is, the driver requested torque T DRI is used to ensure that the target torque T TGT is within the engine output torque T ENG or less. However, the calculation method for controlling the target torque T TGT to be equal to or lower than the engine output torque T ENG is not limited to this.
 例えば、ドライバ要求トルクTDRIとエンジン未使用トルクTMISとの比較演算を行い、ドライバ要求トルクTDRIがエンジン未使用トルクTMISよりも大きい場合にのみ、エンジン未使用トルクTMISを目標トルクTTGTに設定してもよい。このような演算でも、例えばエンジン回転速度増加トルクTZOUが負の値となる状態でエンジン未使用トルクTMISがエンジン出力トルクTENGを上回ってしまう場合であっても、目標トルクTTGTがエンジン出力トルクTENG以上になることを防止できる。 For example, performs a comparison operation between the driver request torque T DRI and engine unused torque T MIS, the driver request torque T DRI only if greater than the engine unused torque T MIS, the target torque T engine unused torque T MIS May be set to TGT . Even in such a calculation, even if the engine unused torque T MIS exceeds the engine output torque T ENG when the engine rotational speed increase torque T ZOU is a negative value, for example, the target torque T TGT is The output torque T ENG can be prevented from exceeding.
 また、上述の実施形態では、重み係数kの値を予め設定された固定値としたが、エンジン11の運転状態やドライバの嗜好等に応じて設定される変数としてもよい。例えば、車両のインストルメントパネルに「スポーツモード」や「安定モード」といった動力性能,運転フィーリングを設定するための入力装置を設け、入力情報に応じて重み係数kを変更する構成とする。ドライバによる制御内容のカスタマイズを可能とすることで、車両のユーザビリティをさらに向上させることができる。 In the above-described embodiment, the value of the weighting factor k is a fixed value set in advance, but may be a variable set according to the operating state of the engine 11, the driver's preference, and the like. For example, an input device for setting power performance and driving feeling such as “sport mode” and “stable mode” is provided on the instrument panel of the vehicle, and the weight coefficient k is changed according to the input information. By enabling customization of the control content by the driver, the usability of the vehicle can be further improved.
 また、上述の実施形態では、第一設定部12及び第二設定部1cで判定される所定段G0が発進段(例えば、1速~3速といった低速ギヤ段)であるものを例示したが、所定段G0の設定は任意である。例えば、5速以下の各変速段を所定段G0としてもよいし、2速~4速の各変速段を所定段G0としてもよい。 In the above-described embodiment, the predetermined gear G 0 determined by the first setting unit 12 and the second setting unit 1c is exemplified as a starting gear (for example, a low gear such as 1st to 3rd gears). , setting the predetermined stage G 0 is arbitrary. For example, each of the fifth and lower gears may be set to the predetermined gear G 0 , and each of the second to fourth gears may be set to the predetermined gear G 0 .
 また、上述の実施形態では、変速制御装置10をディーゼルエンジンに接続したものを例示したが、エンジンの燃焼形式は任意であり、ガソリンエンジンやその他の内燃機関の駆動系に適用することが可能である。 In the above-described embodiment, the transmission control device 10 is connected to a diesel engine. However, the combustion type of the engine is arbitrary and can be applied to a drive system of a gasoline engine or other internal combustion engine. is there.
 また、変速制御装置10の適用対象となるエンジンは、自動車やバス,トラック等の車両に搭載される車載エンジンに限定されない。例えば、工場や家屋内に固定される産業用エンジンや船舶用エンジンであって、その出力軸に自動変速機9を備えたものに適用することも考えられる。変速制御装置10の適用対象となるエンジンの種類に関わらず、自動変速機9の変速時におけるエンジン回転数Neの変動や出力軸トルクの変動を抑制することができ、変速ショックを低減することができる。 Further, the engine to which the shift control device 10 is applied is not limited to an in-vehicle engine mounted on a vehicle such as an automobile, a bus, or a truck. For example, it is also conceivable to apply to an industrial engine or marine engine fixed in a factory or a house and having an automatic transmission 9 on its output shaft. Regardless of the type of engine to which the shift control device 10 is applied, fluctuations in the engine speed Ne and fluctuations in the output shaft torque during shifting of the automatic transmission 9 can be suppressed, and shift shocks can be reduced. it can.
 なお、上述の実施形態では、自動変速機9としてデュアルクラッチ式のトランスミッションを例示したが、本変速制御装置10の適用対象となる変速機の種類もこれに限定されない。例えば、複数の回転要素からなる遊星歯車機構とトルクコンバータとを組み合わせたトルコン式オートマチックトランスミッション(トルコン式AT)に適用することが考えられる。 In the above-described embodiment, a dual clutch transmission is exemplified as the automatic transmission 9. However, the type of transmission to which the transmission control device 10 is applied is not limited to this. For example, it can be applied to a torque converter type automatic transmission (torque type AT) combining a planetary gear mechanism composed of a plurality of rotating elements and a torque converter.
 トルコン式ATには、遊星歯車機構を構成する複数の回転要素の回転動作を拘束,解放するクラッチ,ブレーキが内蔵されており、これらのクラッチ,ブレーキの断接の組み合わせを切り換えることで変速比を変更する(例えば、特許文献2参照)。したがって、上述の自動変速機9のクラッチ3の代わりにトルコン式ATのクラッチ,ブレーキの切り換え動作を制御することで、上述の実施形態と同様の効果を奏するものとなる。 The torque converter AT has built-in clutches and brakes that restrict and release the rotational movements of the rotating elements that make up the planetary gear mechanism. By changing the combination of these clutches and brakes, the gear ratio can be adjusted. It changes (for example, refer patent document 2). Therefore, by controlling the switching operation of the torque converter AT clutch and brake instead of the clutch 3 of the automatic transmission 9 described above, the same effects as those of the above-described embodiment can be obtained.
1 変速機ECU
 1a エンジン回転速度増加トルク演算部(第一演算手段)
 1b エンジン未使用トルク演算部(第一演算手段)
 12 第一設定部(設定手段)
  12a 車両重量判定部(第一設定手段)
  12b ギヤ段判定部(第二設定手段)
 1c 第二設定部
 1d 第一重み付け部(第一重み付け手段)
 1e 第二重み付け部(第二重み付け手段)
 1f 加算部
 1g 制御部(制御手段)
2 エンジンECU
 2a ドライバ要求トルク演算部(第二演算手段)
 2b 燃料噴射量演算部(検出手段,燃料噴射量検出手段)
3 クラッチ
9 自動変速機
10 変速制御装置
11 エンジン
14 エンジン回転数センサ(エンジン回転数検出手段)
15 アクセル開度センサ(アクセル操作量検出手段)
16 重量センサ(車両重量検出手段)
17 ギヤセンサ
 17a 第一ギヤセンサ(変速段検出手段)
 17b 第二ギヤセンサ(変速段検出手段)
1 Transmission ECU
1a Engine rotation speed increase torque calculation section (first calculation means)
1b Engine unused torque calculator (first calculator)
12 First setting section (setting means)
12a Vehicle weight determination unit (first setting means)
12b Gear stage determination unit (second setting means)
1c 2nd setting part 1d 1st weighting part (1st weighting means)
1e Second weighting unit (second weighting means)
1f Adder 1g Control unit (control means)
2 Engine ECU
2a Driver required torque calculation unit (second calculation means)
2b Fuel injection amount calculation unit (detection means, fuel injection amount detection means)
3 Clutch 9 Automatic transmission 10 Shift control device 11 Engine 14 Engine speed sensor (Engine speed detection means)
15 Accelerator opening sensor (accelerator operation amount detection means)
16 Weight sensor (vehicle weight detection means)
17 Gear sensor 17a First gear sensor (shift speed detecting means)
17b Second gear sensor (shift stage detecting means)

Claims (9)

  1.  車両に搭載されたエンジンの出力軸に接続され、複数の摩擦係合要素の少なくとも一つを解放するとともに少なくとも他の一つを係合させることによって変速動作を行う自動変速機と、
     前記車両の車両重量を検出する車両重量検出手段と、
     前記車両重量検出手段で検出された前記車両重量に応じて、前記摩擦係合要素の目標トルクを設定する設定手段と、
     前記設定手段で設定された前記目標トルクに基づき、前記自動変速機の変速動作時における係合側の前記摩擦係合要素の係合状態を制御する制御手段と、を備えた
    ことを特徴とする、変速制御装置。
    An automatic transmission that is connected to an output shaft of an engine mounted on a vehicle and that performs a shifting operation by releasing at least one of a plurality of friction engagement elements and engaging at least one of the other friction engagement elements;
    Vehicle weight detection means for detecting the vehicle weight of the vehicle;
    Setting means for setting a target torque of the friction engagement element in accordance with the vehicle weight detected by the vehicle weight detection means;
    Control means for controlling the engagement state of the frictional engagement element on the engagement side during the shift operation of the automatic transmission based on the target torque set by the setting means. , Transmission control device.
  2.  前記設定手段が、
     前記車両重量が所定重量以下であるときの前記目標トルクとしての第一目標トルクを設定する第一設定手段と、
     前記車両重量が前記所定重量よりも大きいときの前記目標トルクとしての第二目標トルクを、前記第一設定手段で設定される前記第一目標トルクとは別に設定する第二設定手段とを有する
    ことを特徴とする、請求項1記載の変速制御装置。
    The setting means is
    First setting means for setting a first target torque as the target torque when the vehicle weight is equal to or less than a predetermined weight;
    Second setting means for setting a second target torque as the target torque when the vehicle weight is larger than the predetermined weight, separately from the first target torque set by the first setting means; The shift control apparatus according to claim 1, wherein:
  3.  前記第一設定手段が、前記第一目標トルクを前記エンジンに要求されるドライバ要求トルク以下の値に設定する
    ことを特徴とする、請求項2記載の変速制御装置。
    The speed change control device according to claim 2, wherein the first setting means sets the first target torque to a value equal to or less than a driver required torque required for the engine.
  4.  前記第一設定手段が、前記ドライバ要求トルクが大きいほど、前記ドライバ要求トルクと前記第一目標トルクとの差を増大させる
    ことを特徴とする、請求項3記載の変速制御装置。
    The speed change control device according to claim 3, wherein the first setting means increases the difference between the driver required torque and the first target torque as the driver required torque increases.
  5.  前記第一設定手段が、前記車両重量が小さいほど、前記ドライバ要求トルクと前記第一目標トルクとの差を増大させる
    ことを特徴とする、請求項3又は4記載の変速制御装置。
    5. The shift control device according to claim 3, wherein the first setting unit increases the difference between the driver request torque and the first target torque as the vehicle weight is smaller.
  6.  前記第二設定手段が、前記第二目標トルクを前記ドライバ要求トルクと同一値に設定する
    ことを特徴とする、請求項2~5の何れか1項に記載の変速制御装置。
    6. The speed change control device according to claim 2, wherein the second setting means sets the second target torque to the same value as the driver required torque.
  7.  前記出力軸を介して前記自動変速機に入力されるエンジン出力トルクを検出する検出手段と、
     前記検出手段で検出された前記エンジン出力トルクのうち前記エンジンの回転速度の上昇に供されるエンジン回転速度増加トルクを演算するとともに、前記エンジン出力トルクと前記エンジン回転速度増加トルクとのトルク差をエンジン未使用トルクとして演算する第一演算手段と、を備え、
     前記第二設定手段が、前記第一演算手段で演算された前記エンジン未使用トルクに基づいて前記第二目標トルクを設定する
    ことを特徴とする、請求項2~5の何れか1項に記載の変速制御装置。
    Detecting means for detecting engine output torque input to the automatic transmission via the output shaft;
    Of the engine output torque detected by the detection means, an engine rotation speed increase torque used for increasing the engine rotation speed is calculated, and a torque difference between the engine output torque and the engine rotation speed increase torque is calculated. First calculating means for calculating as engine unused torque,
    6. The method according to claim 2, wherein the second setting means sets the second target torque based on the engine unused torque calculated by the first calculation means. Shift control device.
  8.  前記第二設定手段が、第二目標トルクを前記第一目標トルク以上の値に設定する
    ことを特徴とする、請求項2~7の何れか1項に記載の変速制御装置。
    The shift control device according to any one of claims 2 to 7, wherein the second setting means sets the second target torque to a value equal to or greater than the first target torque.
  9.  前記自動変速機の変速段を検出する変速段検出手段を備え、
     前記設定手段が、前記変速段検出手段で検出された前記変速段と前記車両重量検出手段で検出された前記車両重量とに応じて、前記目標トルクを設定する
    ことを特徴とする、請求項1~8の何れか1項に記載の変速制御装置。
    Shift stage detecting means for detecting the shift stage of the automatic transmission;
    2. The target torque is set according to the shift speed detected by the shift speed detection means and the vehicle weight detected by the vehicle weight detection means. The shift control device according to any one of 1 to 8.
PCT/JP2011/076771 2010-11-30 2011-11-21 Transmission control device WO2012073735A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010267153A JP2012117596A (en) 2010-11-30 2010-11-30 Transmission control device
JP2010-267153 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073735A1 true WO2012073735A1 (en) 2012-06-07

Family

ID=46171679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076771 WO2012073735A1 (en) 2010-11-30 2011-11-21 Transmission control device

Country Status (2)

Country Link
JP (1) JP2012117596A (en)
WO (1) WO2012073735A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304124A (en) * 1999-04-22 2000-11-02 Komatsu Ltd Gear shift control device for working vehicle
JP2001187963A (en) * 1999-10-18 2001-07-10 Toyota Autom Loom Works Ltd Clutch control method and clutch control device for industrial vehicle
JP2002295664A (en) * 2001-04-02 2002-10-09 Komatsu Ltd Speed change control method of construction vehicle
JP2007051764A (en) * 2005-07-20 2007-03-01 Kanzaki Kokyukoki Mfg Co Ltd Working vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304124A (en) * 1999-04-22 2000-11-02 Komatsu Ltd Gear shift control device for working vehicle
JP2001187963A (en) * 1999-10-18 2001-07-10 Toyota Autom Loom Works Ltd Clutch control method and clutch control device for industrial vehicle
JP2002295664A (en) * 2001-04-02 2002-10-09 Komatsu Ltd Speed change control method of construction vehicle
JP2007051764A (en) * 2005-07-20 2007-03-01 Kanzaki Kokyukoki Mfg Co Ltd Working vehicle

Also Published As

Publication number Publication date
JP2012117596A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
EP2557012B1 (en) Control device for a vehicle
JP4678444B2 (en) Vehicle control device
US20080004159A1 (en) Driving force control apparatus and control method for a vehicle
US9267574B2 (en) Dual clutch transmission control method, dual clutch transmission, and vehicle mounted therewith
US8210985B2 (en) Vehicular power transmission control apparatus
EP3287670B1 (en) Control device for vehicle, and control method for vehicle
WO2013168226A1 (en) Shift control device for vehicle
US10479182B2 (en) Shift control system for vehicle
WO2013168225A1 (en) Shift control device for vehicle
JP2013245590A (en) Vehicle transmission control system
JP2012107706A (en) Shift control device
WO2012073735A1 (en) Transmission control device
JP4770363B2 (en) Control device for multiple clutch transmission
JP2018017319A (en) Control device of automatic transmission
JP4457094B2 (en) Start control device and start control method for twin clutch transmission
JP4702429B2 (en) Drive source control device
JP2012107707A (en) Shift control device
JP4872985B2 (en) Drive source control device
JP6003599B2 (en) Vehicle shift control device
JP5451437B2 (en) Control device for automatic transmission
US10274079B2 (en) Control device for vehicle and control method for vehicle
JP2004352244A (en) Transmission control unit for automobile
JP5082883B2 (en) Powertrain control device
JP2009243284A (en) Control device of drive source
Lee et al. Control of multi-plate torque converter clutch with an aggressive schedule in an automatic transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844865

Country of ref document: EP

Kind code of ref document: A1