WO2012072829A1 - Torre de refrigeración y método de limpieza - Google Patents

Torre de refrigeración y método de limpieza Download PDF

Info

Publication number
WO2012072829A1
WO2012072829A1 PCT/ES2010/070781 ES2010070781W WO2012072829A1 WO 2012072829 A1 WO2012072829 A1 WO 2012072829A1 ES 2010070781 W ES2010070781 W ES 2010070781W WO 2012072829 A1 WO2012072829 A1 WO 2012072829A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
layers
cooling tower
layer
upper layer
Prior art date
Application number
PCT/ES2010/070781
Other languages
English (en)
French (fr)
Inventor
Ives Lefevre
Original Assignee
Zincobre Ingenieria, S.L.U.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zincobre Ingenieria, S.L.U. filed Critical Zincobre Ingenieria, S.L.U.
Priority to CN2010800703350A priority Critical patent/CN103261549A/zh
Priority to MX2013005890A priority patent/MX2013005890A/es
Priority to PCT/ES2010/070781 priority patent/WO2012072829A1/es
Publication of WO2012072829A1 publication Critical patent/WO2012072829A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H5/00Buildings or groups of buildings for industrial or agricultural purposes
    • E04H5/10Buildings forming part of cooling plants
    • E04H5/12Cooling towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/16Arrangements for preventing condensation, precipitation or mist formation, outside the cooler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention encompasses in the field of process fluid fluid cooling towers and, in particular, the improvements introduced in the filtering element of the outlet air.
  • the fluid that reaches the tower is distributed by spray nozzles or compartments that let the fluid pass down vertically through holes.
  • the air used for cooling the tower can be obtained in the following two ways: - By induced draft: in this type of towers there is a fan in the upper art of the tower that sucks the air.
  • This last type of towers presents the problem of the recirculation of hot and humid air.
  • the effect of the recirculation is shown in the unexpected increase in the wet bulb temperature of the air entering the cooling tower (above the wet bulb temperature of the ambient air) and a corresponding increase in the temperature of the liquid leaving of the tower.
  • the temperature of the cold water can be increased up to 5 degrees or more. This also causes the system to sometimes operate above the design parameters. All towers they present a risk of recirculation, the extent of this depends on the air inlet and outlet speeds. High input speeds increase the risk of recirculation, while high output speeds decrease it.
  • the fluid to be cooled is not water, but a fluid that contains suspended solids, such as the type of cooling towers used in the production processes of non-ferrous materials, the part of the tower corresponding to the filling is removed, As this element of the tower far from favoring the process of cooling the fluid behaves as an element of accumulation of solid particles that worsens the performance of the tower and increases its maintenance work exponentially at the time of operation of the tower.
  • the liquid to be cooled is taken into account, since the specific heat for the electrolyte solution is not the same as for water, since the electrolytic solution contains suspended solids.
  • the electrolyte is sprayed into the tower from the top to provide a counter-current where the cooling air flows upward against the electrolyte droplets that fall down.
  • fog eliminators are arranged to minimize the amount of acid emissions expelled into the atmosphere.
  • Non-uniform air flows caused by accumulations inside the tower, tend to overload the sections of the mist eliminator and cause excessive fluid loss, which increases product output while emitting greater pollutants into the atmosphere.
  • the traditional design of the cooling tower described has serious limitations when used in climates with long periods of high temperature and / or humidity.
  • the towers tend to be oversized to compensate for the poor cooling behavior derived from inefficient air flow and poor liquid distribution due to the accumulation of impurities inside the tower. If you add to this problem, the mandatory maintenance stops to remedy these problems, the costs of the cooling towers for acid processes in these locations, are very high.
  • Fog eliminators are generally used for the separation of liquid particles, carried by the gas stream in many industrial processes, leaving the gases free of particles greater than three microns (for the removal of particles less than three microns, one must resort to multifilament fiber mist removers or special types).
  • the fog eliminator is constituted with a structure of layers of knitted fabric, generally superimposed.
  • the principle of operation of a mist eliminator is based on the following points:
  • Another generally adopted solution is to address the cleaning of the fog eliminator section while it is placed in the tower.
  • the disadvantages of this system are, in addition to the stop time of the tower during the cleaning process and the accessibility to the mist eliminator so that a total cleaning of the same is achieved. Both factors are closely linked, as the difficult accessibility to the section causes prolonged downtime.
  • Another commonly accepted solution is the incorporation of an extra cooling tower into the cooling circuit so that one of the towers can be taken out of service at any time to carry out the cleaning as discussed above.
  • the object of the invention is to provide an improved liquid cooling installation in order to obtain a better performance in the cooling towers by incorporating more efficient outdoor air filtration systems and with lower maintenance costs than classic designs. of this type of facilities.
  • the cooling tower object of the invention, comprises:
  • An air inlet arranged at a lower end of said tower and configured to allow the entry of air from the outside into the tower
  • the fog eliminator comprises at least , an upper layer and a lower layer arranged in parallel.
  • the tower comprises lifting means that allow moving at least one of the layers, so that the lower and upper layer can be separated to allow the layers to be cleaned.
  • the layers may be separated a sufficient distance to allow the entry of an operator for cleaning.
  • the layers that form the fog eliminator are arranged in parallel. In a tower operating position, the layers are separated from each other a minimum distance, so that the height of the tower is reduced, thereby lowering assembly and manufacturing costs. For guidance purposes, this minimum distance can be 400mm.
  • the mist eliminator is formed by a lower layer, which is fixed to the cooling tower and an upper layer that is movable through lifting means, so that in the cleaning position, the layer upper is separated from the lower layer.
  • an operator through, for example, a walkway, can access the layers and proceed to clean the inner faces of the upper and lower layers. Inside faces are understood to be faces that, in the operating position, are close to each other.
  • the outer face of the top layer is exposed, so the operator can clean it without separating the layers.
  • the outer face of the lower layer is cleaned when Clean the inner face of the bottom layer.
  • the lower layer instead of being fixed to the tower can be movable with respect to the tower, so that the operator can clean said outer face through the gangway.
  • the lifting means configured to separate the upper layer from the lower layer, comprise support means that are attached to the tower and configured to support thrust means, which are attached to the upper layer and configured to allow separation of the upper layer from the lower one.
  • These thrust means comprise drive elements, which may be pneumatic, electric or hydraulic cylinders, and which are connected at a first end in the support means and, joined by a second end, to a support element integral with the layer. superior through joining means.
  • the support element can be a transverse beam joined at its ends to the rod of two consecutive cylinders, so that the extension of the stems causes the upper layer to rise with respect to the lower one.
  • the lower and upper layers can be constituted by independent modules, foldable and joined together, so that they can be replaced in case of a rapid degradation of them (as is the central part, rather than at the periphery of the tower), allowing the replacement of those that are in poor condition, with the consequent saving of time and money.
  • the invention also relates to a method for cleaning a cooling tower comprising:
  • An air inlet (1) disposed at a lower end of said tower and configured to allow the entry of air from the outside into the tower,
  • a fog eliminator (3) located at the air outlet, The method comprises the steps of: a) separating an upper layer and a lower layer of a fog eliminator through lifting means configured to move, by less, one of the layers, b) clean the layers once stage a)
  • the method may consist of moving the upper layer with respect to the lower layer, so that both layers are separated by a certain suitable distance so that an operator, through, for example, a walkway, can access the layers and proceed to the cleaning the inner faces of them.
  • Interior faces are understood to be faces that are close to each other.
  • Figure 1 Shows an elevation view of the cooling tower, object of the invention, in operation.
  • Figure 2. Shows an elevation view of the cooling tower, object of the invention, in a cleaning position.
  • Figure 3. Shows a plan view of figure 1.
  • Figure 4.- Shows a detailed view of the lifting means at rest.
  • Figure 5. Shows a detailed view of the activated lifting means.
  • FIG 1 there is a cooling tower comprising a circular air inlet (1), which is arranged at a lower end of the tower and which allows the entry of air from the outside into the tower , forcing its entry through a ventilation system (2).
  • the tower also comprises an air outlet that is at an upper end of the tower.
  • a mist eliminator (3) is arranged on the air outlet.
  • the tower is constituted by an enclosure that has an orthogonal cross-section, composed of panels (4), with an open top end, delimited by the fog eliminator (3) and one end bottom closed delimited by a tank (5) with prismatic or conical shape depending on the nature of the solution to be refrigerated.
  • the inner part of the panels (4) may have a non-stick plastic coating or an anti-abrasion layer.
  • the joining of said panels (4) can be done by sealing and / or welding, so as to ensure the tightness of the entire enclosure.
  • the mist eliminator (3) At the top of the tower and below the mist eliminator (3) is the atomizer system formed by a plurality of atomizing nozzles, not shown in the figures, where the fluid to be cooled is sprayed down.
  • the mist eliminator (3) comprises at least one upper layer (33) and one lower layer (34) arranged in parallel.
  • the tower comprises lifting means, which can move at least one of the layers (33) and (34), so that said layers (33) and (34) can be separated to allow cleaning of the same .
  • the lower layer (34) is fixed to the cooling tower, specifically, it is fixed to the panels (4) that make up the same, while the upper layer has the lifting means coupled to separate the layer upper (33) of the lower layer (34) and allow access to the mist eliminator (3) for cleaning.
  • the lifting means are activated, as seen in figures 2 and 5, so that an operator, through a walkway (6), can access the layers (33) and ( 34) and proceed to clean the inner faces of the upper (33) and lower (34) layers.
  • the outer face of the top layer (33) can be cleaned without separating the layers.
  • the outer face of the lower layer (34) is cleaned by cleaning the inner face thereof.
  • the lifting means comprise support means (38) attached to the tower and configured to support thrust means attached to the upper layer (33) and, configured to allow separation of the upper layer (33) from the lower layer (34).
  • the pushing means comprise drive elements (39), which can be pneumatic, electric or hydraulic cylinders and are connected, at a first end, to the support means (38) and joined, at a second end, to a support element (392) integral with the upper layer (33) through joining means (393).
  • the support elements (392) can be a transverse beam joined at its ends to the rod of two consecutive cylinders, so that the extension of the stems causes the upper layer (33) to rise above the lower one (34).
  • the upper (33) and lower (34) layers are constituted by a plurality of hinged modules (7) joined together, so that they can be replaced in case of degradation of the themselves allowing the replacement of those who are in poor condition, with the consequent saving of time and money.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Torre de refrigeración que comprende un eliminador de niebla que esta constituido por una capa superior y una capa inferior dispuestas en paralelo y que además comprende unos medios de elevación que pueden desplazar, al menos, una de las capas, de manera que las capas inferior y superior pueden quedar separadas para permitir la limpieza de las capas. El objeto de la invención es proporcionar una instalación mejorada de refrigeración que permita obtener un mayor rendimiento en la torres de refrigeración mediante la incorporación de un sistema de filtrado del aire al exterior más eficientes y con menor coste de mantenimiento que los diseños clásicos de este tipo de instalaciones.

Description

TORRE DE REFRIGERACION Y METODO DE LIMPIEZA
DESCRIPCIÓN CAMPO TÉCNICO DE LA INVENCIÓN
La invención se engloba en el campo de las torres de refrigeración de fluido de fluido de proceso y, en concreto, a las mejoras introducidas en el elemento de filtrado del aire de salida.
ANTECEDENTES DE LA INVENCIÓN
En las torres de tiro mecánico, el fluido que llega a la torre se distribuye mediante boquillas aspersoras o compartimientos que dejan pasar el fluido hacia abajo verticalmente a través de orificios.
El aire usado para el enfriamiento de la torre puede obtenerse de las dos maneras siguientes: - Mediante tiro inducido: en este tipo de torres se dispone de un ventilador en la arte superior de la torre que succiona el aire.
- Mediante tiro forzado: el aire es forzado al interior de la torre mediante un ventilador y se descarga por la parte superior.
Este último tipo de torres presentan la problemática de la recirculación del aire caliente y húmedo. El efecto de la recirculación se muestra en el inesperado aumento de la temperatura de bulbo húmedo del aire que entra a la torre de enfriamiento (por encima de la temperatura de bulbo húmedo del aire ambiente) y un correspondiente incremento en la temperatura del líquido que sale de la torre.
Dependiendo del grado de recirculación la temperatura del agua fría puede incrementarse hasta en 5 grados o más. Esto también ocasiona que algunas veces, el sistema opere por encima de los parámetros de diseño. Todas las torres presentan riesgo de recirculación, la extensión de esta depende de las velocidades de entrada y salida del aire. Las altas velocidades de entrada incrementan el riesgo de recirculación, mientras que las velocidades de salida elevadas lo disminuyen. En el caso de que el fluido a enfriar no sea agua, sino un fluido que contenga sólidos en suspensión, como el tipo de torres de refrigeración empleadas en los procesos productivos de materiales no ferrosos, se elimina la parte de la torre correspondiente al relleno, pues este elemento de la torre lejos de favorecer el proceso de enfriamiento del fluido se comporta como un elemento de acumulación de partículas sólidas que empeora el rendimiento de la torre y aumenta su labor de mantenimiento de forma exponencial al tiempo de funcionamiento de la torre.
Una disminución en la cantidad de aire que circule por el interior de la torre influye directamente sobre la temperatura del líquido incrementándola considerablemente.
En el diseño de este tipo de torres, se tiene en cuenta el líquido a refrigerar, ya que, el calor específico para la solución de electrolitos no es el mismo que para el agua, puesto que la solución electrolítica contiene sólidos en suspensión.
También se tiene en cuenta que los sólidos en suspensión son propensos a cristalizar en cualquier superficie. Por lo tanto, las tareas de mantenimiento pasan a ser cruciales en estas torres.
El electrolito se pulveriza en la torre desde la parte superior para proporcionar una contra-corriente en donde el aire de enfriamiento fluye ascendentemente contra las gotitas de electrolito que caen hacia abajo. Por encima de la sección pulverizadora, se disponen eliminadores de niebla para reducir al mínimo la cantidad de emisiones ácidas expulsadas a la atmósfera.
Durante el funcionamiento de estas torres de enfriamiento, precipitan impurezas sobre todas las zonas interiores de la torre, principalmente sobre las paredes, el suelo y el eliminador de niebla de la torre de enfriamiento. Estas precipitaciones se traducen en una pérdida de sección en la torre y como consecuencia en una disminución del rendimiento de la misma. Debido a esto, es habitual incorporar una torre de enfriamiento extra al circuito de enfriamiento de manera que, una de las torres se pueda poner fuera de servicio en cualquier momento para llevar a cabo la limpieza y en su lugar funcione la torre extra. Pero el sobrecoste de instalar una torre más de enfriamiento y su ubicación en la planta, plantean serios problemas a su instalación, por lo que la solución más comúnmente asumida es la realización de paradas programadas para llevar a cabo la limpieza de las partes internas de las torres y limpiarlas de incrustaciones que reduzcan el espacio efectivo de la torre.
Los flujos de aire no uniformes, provocados por las acumulaciones dentro de la torre tienden a sobrecargar las secciones del eliminador de niebla y causar una pérdida excesiva de fluido lo que aumenta la salida de producto al tiempo que se emiten mayores substancias contaminantes a la atmósfera. Igualmente el diseño tradicional de la torre de enfriamiento descrito, presenta serias limitaciones cuando se utiliza en climas con largos periodos de temperatura y/o humedad elevadas.
En estos climas más templados, las torres tienden a sobredimensionarse para compensar el pobre comportamiento de enfriamiento derivado de un flujo de aire ineficaz y de una pobre distribución del líquido debido a la acumulación de impurezas en el interior de la torre. Si se añade a esta problemática, las paradas obligadas de mantenimiento para subsanar dichos inconvenientes, los costes de la torres de refrigeración para procesos ácidos en estas ubicaciones, son muy elevados.
Los eliminadores de niebla se utilizan generalmente para la separación de partículas líquidas, arrastradas por la corriente gaseosa en muchos procesos industriales, dejando los gases libres de partículas superiores a tres mieras (para la eliminación de partículas inferiores a las tres mieras, se debe recurrir a los eliminadores de niebla de fibras multifilamento o tipos especiales) .
El eliminador de niebla se constituye con una estructura de capas de tejido tricotado, generalmente superpuestas. Existen diversos tipos de eliminadores basados en una combinación entre el diámetro del hilo empleado, el tipo del punto de malla y la profundidad de ondulación de las capas de tejido. El principio de funcionamiento de un eliminador de niebla se basa en los siguientes puntos:
- Debido al enfriamiento del líquido se desprende gas o vapor, con arrastre de pequeñas partículas del propio fluido.
- Estas partículas o gotas chocan contra el eliminador, aumentan su tamaño por acumulación y retroceden en forma de gotas de líquido.
- El gas que atraviesa el eliminador de niebla lo hace libre de partículas líquidas. Debido a este choque de las partículas líquidas contra el eliminador, algunas de ellas cristalizan sobre la superficie del mismo formando acumulaciones sólidas que disminuyen la sección de salida del vapor a la atmósfera, creando problemas de recirculación del aire en el interior de la torre y disminuyendo su eficiencia. Por ello, el problema común a todos los eliminadores es su limpieza. Las soluciones actuales al problema son numerosas.
En algunos casos se opta por la sustitución del elemento eliminador de niebla tupido por uno limpio, con el fin de disminuir lo más posible el tiempo de parada de la torre. Pero este cambio implica la utilización de grúas para su desalojo, lo que supone un coste importante, además de la necesidad de un espacio libre en las inmediaciones de la torre con el fin de albergar los dos eliminadores (el limpio y el tupido), lo que no siempre es posible, debido al tamaño que presentan dichos elementos (hasta 8 / 10 m de diámetro).
Otra solución generalmente adoptada es abordar la limpieza de la sección eliminadora de niebla estando esta colocada en la torre. Los inconvenientes de este sistema son, además del tiempo de parada de la torre durante el proceso de limpieza y la accesibilidad al eliminador de niebla de forma que se logre una limpieza total del mismo. Ambos factores van íntimamente ligados, pues la difícil accesibilidad a la sección provoca unos tiempos de parada prolongados. Por último, otra solución comúnmente aceptada es la incorporación de una torre de enfriamiento extra al circuito de enfriamiento de manera que una de las torres se pueda poner fuera de servicio en cualquier momento para llevar a cabo la limpieza como se ha comentado anteriormente.
Esta problemática ya ha sido tratada en diferentes documentos publicados, como son el ES 2 168 899 B1 y el WO 2007/ 096457 A2 abordando el tema tanto desde el punto de vista constructivo como de desarrollo del proceso. Incluyendo en las torres sistemas de aire y agua para la limpieza de las distintas zonas de acumulación (en el caso del documento ES 2 168 899 B1 ) y modificando la trayectoria de circulación del aire interior de la torre mediante salidas superiores laterales y la estructura del eliminador de niebla (en el caso del documento WO2007/096457). Esta última hace referencia a su vez a la publicación CA 2271424 A1 .
DESCRIPCIÓN DE LA INVENCIÓN
El objeto de la invención es proporcionar una instalación mejorada de refrigeración de líquido con el fin de obtener un mayor rendimiento en la torres de refrigeración mediante la incorporación de sistemas de filtrado del aire al exterior más eficientes y con menor coste de mantenimiento que los diseños clásicos de este tipo de instalaciones.
La torre de refrigeración, objeto de la invención, comprende:
- Una entrada de aire dispuesta en un extremo inferior de la citada torre y configurada para permitir la entrada de aire del exterior hacia el interior de la torre,
- una salida de aire dispuesta en un extremo superior de la torre y
- un eliminador de niebla, situado en la salida de aire. Para llevar a cabo la labor de limpieza del eliminador de gotas y partículas (eliminador de niebla), de forma óptima y eficaz, reduciendo de esta manera las labores de mantenimientos y, por tanto, los costes, el eliminador de niebla comprende, al menos, una capa superior y una capa inferior dispuestas en paralelo. Por otro lado, la torre comprende unos medios de elevación que permiten desplazar, al menos, una de las capas, de manera que la capa, inferior y superior, pueden quedar separadas para permitir la limpieza de las capas. Por ejemplo, las capas pueden quedar separadas una distancia suficiente para permitir la entrada de un operario para su limpieza.
Con esta configuración se facilita el acceso al eliminador de niebla para su limpieza acortando tiempos de mantenimiento y disminuyendo los tiempos de parada de la torre a causa de las mismas. Además, la utilización de capas eliminadoras de niebla, aumenta la eficacia de filtrado del aire saturado a la atmósfera, reduciéndose al mínimo los contaminantes y evitando problema de reflujo en las torres.
Como se ha comentado anteriormente, las capas que forman el eliminador de niebla están dispuestas en paralelo. En una posición de funcionamiento de la torre, las capas están separadas entre sí una distancia mínima, de manera que se reduce la altura de la torre, con lo cual se abaratan costes de montaje y fabricación. A titulo orientativo, esta distancia mínima puede ser de 400mm. En una realización preferente, el eliminador de niebla está formado por una capa inferior, que es fija a la torre de refrigeración y una capa superior que es desplazable a través de unos medios de elevación, de forma que en la posición de limpieza, la capa superior queda separada de la capa inferior. Al quedar la capa superior separada respecto de la inferior, un operario, a través de, por ejemplo, una pasarela, puede acceder a las capas y proceder a la limpieza de las caras interiores de la capa superior e inferior. Se entiende por caras interiores, las caras que, en posición de funcionamientos, están próximas entre sí. La cara exterior de la capa superior, está al descubierto, por lo que el operario puede limpiarla sin necesidad de separar las capas. Por otro lado, la cara exterior de la capa inferior, se limpia al limpiar la cara interior de capa inferior. Al pulverizar el agua en al cara interior de la capa inferior y, al tener las capas forma reticular, se limpia la cara exterior de la capa inferior. Sin embargo, para una mejor limpieza de esta cara exterior, la capa inferior en lugar de estar fija a la torre puede ser desplazable respecto a la torre de, manera que el operario, a través de la pasarela pueda limpiar la citada cara exterior.
Los medios de elevación configurados para separar la capa superior respecto a la inferior, comprenden unos medios de apoyo que están unidos a la torre y configurados para servir de apoyo a unos medios de empuje, que están unidos a la capa superior y configurados para permitir la separación de la capa superior respecto de la inferior. Estos medios de empuje comprenden unos elementos de accionamiento, que pueden ser, cilindros neumáticos, eléctricos o hidráulicos, y que están unidos por un primer extremo en los medios de apoyo y, unidos por un segundo extremo, a un elemento soporte solidario a la capa superior a través de unos medios de unión. El elemento soporte puede ser una viga transversal unida por sus extremos al vástago de dos cilindros consecutivos, de manera que, la extensión de los vástagos provoca la elevación de la capa superior respecto de la inferior.
Las capas inferior y superior pueden estar constituidas por módulos independientes, abatibles y unidos entre sí, de manera que puedan ser sustituidos en caso de una rápida degradación de las mismos (como es la parte central, más que en la periferia de la torre), permitiendo la sustitución de aquellos que se encuentren en malas condiciones, con el consiguiente ahorro de tiempo y dinero.
En resumen, con la torre, objeto de la invención se consiguen las ventajas citadas a continuación:
- reducir al máximos las pérdidas de gas que se pueden producir por las juntas de unión, puesto que la capa inferior fija y solidaria con la estructura de la torre. - reducir la altura de la torre al no existir casi espacio entre las dos capas del eliminador de niebla, manteniendo la eficiencia de la torre, por lo que disminuyen los costes de fabricación y montaje de la misma.
- limpieza de las capas de forma fácil y cómoda al interior del eliminador de niebla.
La invención también se refiere a un método para la limpieza de una torre de refrigeración que comprende:
- Una entrada (1 ) de aire dispuesta en un extremo inferior de la citada torre y configurada para permitir la entrada de aire del exterior hacia el interior de la torre,
- Una salida de aire dispuesta en un extremo superior de la torre,
- Un eliminador de niebla (3), situado en la salida de aire, El método comprende las etapas de: a) separar una capa superior y una capa inferior de un eliminador de niebla a través de unos medios de elevación configurados para desplazar, al menos, una de las capas, b) limpia las capas una vez realizada la etapa a)
El método puede consistir en desplazar la capa superior respecto a la capa inferior, de manera que ambas capas queden separadas una cierta distancia adecuada para que un operario, a través de, por ejemplo, una pasarela, puede acceder a las capas y proceder a la limpieza de las caras interiores de las mismas. Se entiende por caras interiores, las caras que están próximas entre sí.
DESCRIPCIÓN DE LOS DIBUJOS Para completar la descripción y con objeto de ayudar a una mejor compresión de las características de la invención, de acuerdo con un ejemplo preferente de la realización de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1 .- Muestra una vista en alzado de la torre de refrigeración, objeto de la invención, en funcionamiento.
Figura 2.- Muestra una vista en alzado de la torre de refrigeración, objeto de la invención, en posición de limpieza.
Figura 3.- Muestra una vista en planta de la figura 1 .
Figura 4.- Muestra una vista detallada de los medios de elevación en reposo.
Figura 5.- Muestra una vista detallada de los medios de elevación activados.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
En la figura 1 , se observa una torre de refrigeración que comprende una entrada (1 ), circular, de acceso de aire que está dispuesta en un extremo inferior de la torre y que permite la entrada de aire del exterior hacia el interior de la torre, forzando su entrada mediante un sistema de ventilación (2). La torre también comprende una salida de aire que está en un extremo superior de la torre. Sobre la salida de aire se dispone un eliminador de niebla (3).
Tal y como se ve en la figura 1 , la torre está constituida por un recinto que tiene una sección transversal tipo ortogonal, compuesta por paneles (4), con un extremo superior abierto, delimitado por el eliminador de niebla (3) y un extremos inferior cerrado delimitado por un depósito (5) con forma prismática o cónica dependiendo de la naturaleza de las solución a refrigerar. Aunque no se aprecia en las figuras, la parte interna de los paneles (4) puede presentar un recubrimiento plástico antiadherente o una capa antiabrasión. La unión de dichos paneles (4) puede realizarse mediante sellado y/o soldadura, de manera que se garantice la estanqueidad de todo el recinto.
En la parte superior de la torre y por debajo del eliminador de niebla (3) se sitúa el sistema atomizador formado por una pluralidad de boquillas atomizadoras, no mostradas en las figuras, donde el fluido a enfriar se pulveriza descendentemente. Como se puede observar en la figura 2 y 5, el eliminador de niebla (3) comprende, al menos, una capa superior (33) y una capa inferior (34) dispuestas en paralelo. La torre comprende unos medios de elevación, que pueden desplazar, al menos, una de las capas (33) y (34), de manera que las citadas capas (33) y (34) puedan quedar separadas para permitir la limpieza de las mismas. En una realización preferente, la capa inferior (34) es fija a la torre de refrigeración, en concreto, está fijada a los paneles (4) que conforman la misma, mientras que la capa superior tiene acoplados los medios de elevación para separar la capa superior (33) de la capa inferior (34) y permitir el acceso al eliminador de niebla (3) para proceder a su limpieza.
En la figura 1 y 4, es decir, cuando la torre de refrigeración está funcionando, se puede observar que las capas, superior (33) e inferior (34), están casi en contacto, de manera que se reduce la altura de la torre, con lo cual se abaratan costes de montaje y fabricación.
En la posición de limpieza, se activan los medios de elevación, tal y como se ve en la figura 2 y 5, de manera que un operario, a través de una pasarela (6), puede acceder a las capas (33) y (34) y proceder a la limpieza de la caras interiores de las capas superior (33) e inferior (34). La cara exterior de la capa superior (33) puede limpiarse sin necesidad de separar las capas. Por otro lado, la cara exterior de la capa inferior (34), se limpia al limpiar la cara interior de la misma. Al pulverizar el agua en la cara interior de la capa inferior (34) y, al tener las capas forma reticular, tal y como puede observarse en la figura 3, se limpia la cara exterior de la capa inferior (34). Como se ve en detalle en las figuras 4 y 5, los medios de elevación comprenden unos medios de apoyo (38) unidos a la torre y configurados para servir de apoyo a unos medios de empuje unidos a la capa superior (33) y, configurados para permitir la separación de la capa superior (33) respecto a la capa inferior (34).
Los medios de empuje comprenden unos elementos de accionamiento (39), que pueden ser, cilindros neumáticos, eléctricos o hidráulicos y que están unidos, por un primer extremo, a los medios de apoyo (38) y unidos, por un segundo extremo, a un elemento soporte (392) solidario a la capa superior (33) a través de unos medios de unión (393). El elementos soporte (392) puede ser una viga transversal unida por sus extremos al vástago de dos cilindros consecutivos, de manera que, la extensión de los vástagos provoca la elevación de la capa superior (33) respecto de la inferior (34).
En la figura 2 y 3, se observa que las capas, superior (33) e inferior (34), están constituidas por una pluralidad de módulos abatibles (7) unidos entre sí, de manera que puedan ser sustituidos en caso de degradación de las mismos permitiendo la sustitución de aquellos que se encuentren en malas condiciones, con el consiguiente ahorro de tiempo y dinero.

Claims

REIVINDICACIONES
1 . Torre de refrigeración que comprende:
-Una entrada (1 ) de aire dispuesta en un extremo inferior de la citada torre y configurada para permitir la entrada de aire del exterior hacia el interior de la torre,
-Una salida de aire dispuesta en un extremo superior de la torre,
-Un eliminador de niebla (3), situado en la salida de aire, caracterizada porque el eliminador de niebla (3) comprende, al menos, una capa superior (33) y una capa inferior (34) dispuestas en paralelo y porque la torre comprende unos medios de elevación que pueden desplazar, al menos, una de las capas (33) y (34), de manera que las citadas capas (33) y (34) pueden quedar separadas para permitir la limpieza de las capas (33) y (34).
2. Torre de refrigeración, según reivindicación 1 , caracterizada porque la capa inferior (34) es fija a la torre de refrigeración y la capa superior (33) es desplazable, a través de los medios de elevación.
3. Torre de refrigeración, según reivindicación 1 o 2, caracterizada porque los medios de elevación comprenden unos medios de apoyo (38) unidos a la torre y configurados para servir de apoyo a unos medios de empuje unidos a la capa superior (33) y configurados para permitir la separación de la capa superior (33) respecto a la capa inferior (34).
4. Torre de refrigeración, según la reivindicación 3, caracterizado porque los medios de empuje comprenden unos elementos de accionamiento (39) unidos por un primer extremo a los medios de apoyo (38) y unidos, por un segundo extremo, a un elemento soporte (392) solidario a la capa superior (33) a través de unos medios de unión (393).
5. Torre de refrigeración, según reivindicaciones 3 o 4, caracterizada porque los elementos de accionamiento (39) pueden ser cilindros neumáticos, eléctricos o hidráulicos.
6. Torre de refrigeración, según reivindicación 4 o 5, caracterizado porque el elemento soporte (392) puede ser una viga transversal unida por sus extremos al vástago de dos cilindros consecutivos, de manera que la extensión de los vástagos provoca la elevación de la capa superior respecto de la inferior (34).
7. Torre de refrigeración, según cualquiera de las reivindicaciones anteriores, caracterizada porque las capas, superior (33) e inferior (34), están compuestas por una pluralidad de módulos abatibles (7).
8. Método para la limpieza de una torre de refrigeración que comprende ,
- Una entrada (1 ) de aire dispuesta en un extremo inferior de la citada torre y configurada para permitir la entrada de aire del exterior hacia el interior de la torre,
-Una salida de aire dispuesta en un extremo superior de la torre, -Un eliminador de niebla (3), situado en la salida de aire, caracterizado porque comprende las etapas de: a) Separar una capa inferior (34) y una capa superior (33) del eliminador de niebla (3) a través de unos medios de elevación configurados para desplazar, al menos, una de las capas (33), (34), b) Limpiar la capa inferior (33) y superior (34), una vez realizada la etapa a)
PCT/ES2010/070781 2010-11-29 2010-11-29 Torre de refrigeración y método de limpieza WO2012072829A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800703350A CN103261549A (zh) 2010-11-29 2010-11-29 冷却塔及其清洗方法
MX2013005890A MX2013005890A (es) 2010-11-29 2010-11-29 Torre de refrigeracion y metodo de limpieza.
PCT/ES2010/070781 WO2012072829A1 (es) 2010-11-29 2010-11-29 Torre de refrigeración y método de limpieza

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070781 WO2012072829A1 (es) 2010-11-29 2010-11-29 Torre de refrigeración y método de limpieza

Publications (1)

Publication Number Publication Date
WO2012072829A1 true WO2012072829A1 (es) 2012-06-07

Family

ID=44625275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070781 WO2012072829A1 (es) 2010-11-29 2010-11-29 Torre de refrigeración y método de limpieza

Country Status (3)

Country Link
CN (1) CN103261549A (es)
MX (1) MX2013005890A (es)
WO (1) WO2012072829A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150276318A1 (en) * 2014-03-28 2015-10-01 Ronald J. Marks Cmu cooling tower and method of construction
US10107001B2 (en) 2014-03-28 2018-10-23 Syntech Towers, L.L.C. CMU cooling tower and method of construction
WO2021173178A1 (en) * 2020-02-27 2021-09-02 Infinite Cooling Inc. Systems, devices, and methods for collecting species from a gas stream
US11298706B2 (en) 2019-08-01 2022-04-12 Infinite Cooling Inc. Systems and methods for collecting fluid from a gas stream

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022593A (en) * 1975-05-05 1977-05-10 Lerner Bernard J Mist elimination
EP0330440A1 (en) * 1988-02-22 1989-08-30 Baltimore Aircoil Company, Inc. Cooling towers
CA2271424A1 (en) 1998-05-11 1999-11-11 John Albert Davis Improved cooling tower construction
WO2007096457A2 (en) 2006-02-23 2007-08-30 Outotec Oyj. Arrangement and method for cooling a solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022593A (en) * 1975-05-05 1977-05-10 Lerner Bernard J Mist elimination
EP0330440A1 (en) * 1988-02-22 1989-08-30 Baltimore Aircoil Company, Inc. Cooling towers
CA2271424A1 (en) 1998-05-11 1999-11-11 John Albert Davis Improved cooling tower construction
ES2168899B1 (es) 1998-05-11 2003-11-01 John Albert Davis Construccion mejorada de una torre de refrigeracion.
WO2007096457A2 (en) 2006-02-23 2007-08-30 Outotec Oyj. Arrangement and method for cooling a solution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150276318A1 (en) * 2014-03-28 2015-10-01 Ronald J. Marks Cmu cooling tower and method of construction
US10107001B2 (en) 2014-03-28 2018-10-23 Syntech Towers, L.L.C. CMU cooling tower and method of construction
US11298706B2 (en) 2019-08-01 2022-04-12 Infinite Cooling Inc. Systems and methods for collecting fluid from a gas stream
US11786915B2 (en) 2019-08-01 2023-10-17 Infinite Cooling Inc. Systems and methods for collecting fluid from a gas stream
WO2021173178A1 (en) * 2020-02-27 2021-09-02 Infinite Cooling Inc. Systems, devices, and methods for collecting species from a gas stream
US11123752B1 (en) 2020-02-27 2021-09-21 Infinite Cooling Inc. Systems, devices, and methods for collecting species from a gas stream

Also Published As

Publication number Publication date
MX2013005890A (es) 2013-12-06
CN103261549A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
ES2329831T3 (es) Convector para refrigeracion de un fluido que circula en una tuberia.
US20140026753A1 (en) Wet scrubber and a method of cleaning a process gas
WO2012072829A1 (es) Torre de refrigeración y método de limpieza
US20110139005A1 (en) Air Purifier Employing A Water Jet-Type Fan System, and Purification Method Thereof
ES2875876T3 (es) Dispositivo para producir un flujo de aire a través de un volumen de líquido
US20150260455A1 (en) Method for filtering an air flow in a grain dryer
CN206853353U (zh) 水膜式空气过滤器
JP5606706B2 (ja) 室外機用冷却装置
CN105202942A (zh) 节水消雾冷却塔
ES2714600T3 (es) Dispositivo de intercambio de calor por evaporación para enfriamiento del aire para sistemas de control de acondicionamiento y climatización para salas de servidores y similares
JP5842876B2 (ja) 塗装システムの集塵装置
CN203816401U (zh) 可喷淋清灰的气体过滤器
KR102258941B1 (ko) 초미세먼지 및 미세먼지 저감장치
JP6140492B2 (ja) 気体処理装置
CN204051300U (zh) 气体过滤器及气体过滤器的过滤元件清洗器
CN202143892U (zh) 一种风淋室
CN109210662B (zh) 一种加湿装置
KR102204943B1 (ko) 공기 청정 장치
KR101716003B1 (ko) 냉각탑
CN104190185A (zh) 车间除尘装置
US20190162430A1 (en) Air or spray washer for air conditioning units
CN201823457U (zh) 自然引风高效脱硫除尘装置
CN204923301U (zh) 雾化喷淋的冷风机
JP2013116235A (ja) 空気清浄ユニットおよび冷却システム
CN213831644U (zh) 一种自带风干装置的全自动洗车机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10814647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/005890

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 001285-2013

Country of ref document: PE

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10814647

Country of ref document: EP

Kind code of ref document: A1