WO2012070795A2 - Ipomoea batatas-derived ibor-ins gene mutation, and use thereof - Google Patents

Ipomoea batatas-derived ibor-ins gene mutation, and use thereof Download PDF

Info

Publication number
WO2012070795A2
WO2012070795A2 PCT/KR2011/008671 KR2011008671W WO2012070795A2 WO 2012070795 A2 WO2012070795 A2 WO 2012070795A2 KR 2011008671 W KR2011008671 W KR 2011008671W WO 2012070795 A2 WO2012070795 A2 WO 2012070795A2
Authority
WO
WIPO (PCT)
Prior art keywords
plant
ibor
iborange
gene
ins
Prior art date
Application number
PCT/KR2011/008671
Other languages
French (fr)
Korean (ko)
Other versions
WO2012070795A3 (en
WO2012070795A9 (en
Inventor
곽상수
이행순
안영옥
정재철
김선하
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to CN2011800561532A priority Critical patent/CN103269578A/en
Publication of WO2012070795A2 publication Critical patent/WO2012070795A2/en
Publication of WO2012070795A3 publication Critical patent/WO2012070795A3/en
Publication of WO2012070795A9 publication Critical patent/WO2012070795A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Definitions

  • the present invention relates to IbOr-Ins gene variants derived from sweet potatoes and their use, and more particularly to IbOr-Ins gene variants in which IbOrange genes are artificially inserted into IbOrange genes derived from sweet potatoes ( Ipomoea batatas ).
  • Recombinant vector comprising, a host cell transformed with the recombinant vector, a method for producing a transformed plant having a high carotenoid content or salt stress resistance by transforming the recombinant vector into plant cells, the carotenoid content produced by the method or Transformed Plants with Increased Salt Stress Tolerance and Seeds thereof, Methods for Producing Transgenic Plants with Increased Salt Stress Resistance Using IbOrange Gene from Sweet Potato ( Ipomoea batatas ) To converting plants and their seeds.
  • Sweet potato ( Ipomoea batatas L. Lam) can be grown on relatively poor lands and is a representative root crop used for food and livestock feed with a yield of about 30 tonnes per hectare.
  • Colored sweet potatoes such as purple and yellow, contain various antioxidants, especially yellowish yellow sweet potatoes contain 14.7-20 mg / 100 g of beta-carotene, and purple sweet potatoes contain 2.28 g / 100 g of anthocyanin. It is an antioxidant that promotes aging and removes free radicals that cause various adult diseases.
  • sweet potato has been transformed by co-culturing Agrobacterium , and has developed a plant regeneration system by inducing embryogenic culture cells and somatic embryogenesis from apical and temporal meristems (Lim). et al. Mol Breeding 19, 227-239, 2007).
  • high molecular weight antioxidants such as carotenoids, anthocyanins and polyphenols. Therefore, the development of crops with complex stress tolerance and high production of low molecular weight antioxidants could contribute to solving the food, energy and environmental problems faced by humans in the 21st century.
  • Carotenoids are substances with high antioxidant activity and are known to play an important role not only in physiological activity but also in the defense mechanism against oxidative stress of the plant itself. Recently, carotenoid biosynthesis is influenced by Abs acid (ABA), one of the plant hormones. As it turned out, the need for research on these antioxidants and environmental stresses emerged. In many parts of the world, the high salinity of the soil has resulted in loss of crop yields of up to 70% or the inability to cultivate barren land. Therefore, the development of flame resistant varieties has emerged as an immediate problem to be solved urgently.
  • Abs acid ABA
  • Korean Patent No. 10-0813284 discloses a method of increasing the content of carotenoids by transforming a plant-derived phytoene biosynthetic enzyme gene from citrus fruits, and Korean Patent Publication No. 2010-0100097 discloses a sweet potato-derived MuS1 gene in plants. Methods of increasing salt stress tolerance by transformation are disclosed.
  • the present invention is derived from the above requirements, the present inventors are carotenoid content and salt stress resistance in plants transformed with sweet potato-derived IbOrange gene and IbOr-Ins gene variant that artificially inserted a specific sequence into the gene By confirming the increase of the present invention was completed.
  • the present invention provides an IbOr-Ins gene variant in which a specific sequence is artificially inserted into the IbOrange gene derived from sweet potato ( Ipomoea batatas ).
  • the present invention also provides a recombinant vector comprising the genetic variant.
  • the present invention also provides a host cell transformed with the recombinant vector.
  • the present invention provides a method for producing a transformed plant having a carotenoid content or salt stress resistance is increased by transforming the recombinant vector into plant cells.
  • the present invention also provides a transgenic plant and its seed having increased carotenoid content or salt stress resistance produced by the above method.
  • the present invention provides a method for producing a transgenic plant having increased salt stress resistance using IbOrange gene derived from sweet potato ( Ipomoea batatas ).
  • the present invention also provides a transgenic plant with increased salt stress tolerance produced by the above method and its seeds.
  • the present invention provides a composition for increasing the carotenoid content or salt stress resistance of plants, including IbOr-Ins gene variants in which a specific sequence is artificially inserted into the IbOrange gene derived from sweet potato ( Ipomoea batatas ).
  • the present invention provides a composition for increasing salt stress resistance of plants, including IbOrange gene derived from sweet potato ( Ipomoea batatas ).
  • carotenoid content and salt stress resistance were increased in plant cells transformed with IbOrange gene and IbOr-Ins gene variant, which was more effective in IbOr-Ins transformants. Therefore, the use of the IbOrange gene and the IbOr-Ins gene variant of the present invention is expected to be able to develop transgenic plants that are resistant to salt stress as well as functional enhancement.
  • Figure 1 shows the nucleotide sequence of the IbOr-Ins gene artificially mutated by using IbOrange derived from sweet potato (breed yellow rice), and the amino acid sequence inferred therefrom.
  • the boxed part is inserted with a specific sequence that makes -KSQNPNL- amino acid different from the existing IbOrange, and a total of 924 bp cDNA encodes 307 amino acids.
  • Figure 2 compares and confirms the amino acid sequence of sweet potato-derived IbOrange and the amino acid sequence of IbOr-Ins. The boxed part shows the difference.
  • Figure 3 shows the plant expression vector of sweet potato derived IbOrange gene and IbOr-Ins gene.
  • Figure 4 shows the yellow phenotype of sweet potato-derived IbOrange gene and IbOr-Ins gene-transformed sweet potato culture cells due to increased carotenoid content.
  • FIG. 6 shows the results of RT-PCR and electrophoresis of the expression patterns of carotenoid biosynthetic pathways in sweet potato-derived IbOrange gene and IbOr-Ins transgenic sweet potato cultured cells.
  • FIG. 7 shows the sweet potato cultured cells transformed with sweet potato-derived IbOrange gene and IbOr-Ins gene, treated with 150 and 200 mM of NaCl, and then subjected to DAB staining of the cultured cells (top) and oxidative stress received by the cultured cells. (Below).
  • WT Wild type ( Col-0 ).
  • FIG. 11 shows germination rates in media treated with 0, 50, 100 and 150 mM NaCl in Arabidopsis transgenic IbOrange and IbOr-Ins genes.
  • Figure 12 shows the bioweight of wild type and IbOrange and IbOr-Ins transgenic Arabidopsis control group treated with various concentrations of NaCl.
  • FIG. 13 compares the Arabidopsis transformed with IbOrange and IbOr-Ins genes under the 100 mM NaCl condition, and the root phenotype of the control wild type.
  • Figure 14 shows the results of measuring the relative moisture content of the Arabidopsis transformed IbOrange and IbOr-Ins genes and the wild type control group at 150 mM NaCl conditions.
  • the present invention provides an IbOr-Ins gene variant consisting of a nucleotide sequence of SEQ ID NO: 2 artificially inserted into the IbOrange gene derived from sweet potato ( Ipomoea batatas ).
  • the IbOr-Ins gene variant was prepared by inserting the KSQNPNL amino acid, but is not particularly limited as long as it is a variant capable of increasing carotenoid content or increasing flame resistance.
  • the present invention also provides a recombinant vector comprising the genetic variant.
  • recombinant refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a protein encoded by a peptide, a heterologous peptide, or a heterologous nucleic acid.
  • Recombinant cells can express genes or gene fragments that are not found in their natural form in either the sense or antisense form.
  • Recombinant cells can also express genes found in natural cells, but the genes are modified and reintroduced into cells by artificial means.
  • the IbOr-Ins gene variant sequence may be inserted into a recombinant expression vector.
  • recombinant expression vector means a bacterial plasmid, phage, yeast plasmid, plant cell virus, mammalian cell virus, or other vector. In principle, any plasmid and vector can be used as long as it can replicate and stabilize in the host.
  • An important feature of the expression vector is that it has a origin of replication, a promoter, a marker gene and a translation control element.
  • Expression vectors comprising an IbOr-Ins protein-encoding DNA sequence and appropriate transcriptional / translational control signals can be constructed by methods well known to those skilled in the art. Such methods include in vitro recombinant DNA techniques, DNA synthesis techniques, in vivo recombinant techniques, and the like. The DNA sequence can be effectively linked to a suitable promoter in the expression vector to drive mRNA synthesis. Expression vectors may also include ribosomal binding sites and transcription terminators as translation initiation sites.
  • Preferred examples of recombinant vectors of the invention are Ti-plasmid vectors capable of transferring part of themselves, the so-called T-region, to plant cells when present in a suitable host such as Agrobacterium tumerfaciens.
  • Another type of Ti-plasmid vector (see EP 0 116 718 B1) is currently used to transfer hybrid DNA sequences to protoplasts from which plant cells or new plants can be produced which properly insert hybrid DNA into the plant's genome. have.
  • a particularly preferred form of the Ti-plasmid vector is the so-called binary vector as claimed in EP 0 120 516 B1 and US Pat. No. 4,940,838.
  • viral vectors such as those which can be derived from double stranded plant viruses (eg CaMV) and single stranded viruses, gemini viruses, etc.
  • CaMV double stranded plant viruses
  • gemini viruses single stranded viruses
  • it may be selected from an incomplete plant viral vector.
  • the use of such vectors can be advantageous especially when it is difficult to properly transform a plant host.
  • the expression vector will preferably comprise one or more selectable markers.
  • the marker is typically a nucleic acid sequence having properties that can be selected by chemical methods, and all genes that can distinguish transformed cells from non-transformed cells. Examples include herbicide resistance genes such as glyphosate or phosphinothricin, kanamycin, G418, bleomycin, hygromycin, and chloramphenicol. Resistance genes include, but are not limited to.
  • the promoter may be, but is not limited to, CaMV 35S, actin, ubiquitin, pEMU, MAS or histone promoter.
  • the term “promoter” refers to a region of DNA upstream from a structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription.
  • a "plant promoter” is a promoter capable of initiating transcription in plant cells.
  • a “constitutive promoter” is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constitutive promoters may be preferred in the present invention because selection of the transformants may be made by various tissues at various stages. Thus, the constitutive promoter does not limit the possibility of selection.
  • terminators can be used, for example nopalin synthase (NOS), rice ⁇ -amylase RAmy1 A terminator, phaseoline terminator, Agrobacterium tumefaciens (Agrobacterium tumefaciens) Terminator of the octopine gene, but is not limited thereto.
  • NOS nopalin synthase
  • rice ⁇ -amylase RAmy1 A terminator phaseoline terminator
  • Agrobacterium tumefaciens Agrobacterium tumefaciens
  • Terminator of the octopine gene but is not limited thereto.
  • terminators such regions are generally known to increase the certainty and efficiency of transcription in plant cells. Therefore, the use of terminators is highly desirable in the context of the present invention.
  • the present invention also provides a host cell transformed with the recombinant vector of the present invention.
  • a host cell capable of continuously cloning and expressing the vector of the present invention in a prokaryotic cell while being stable can be used in any host cell known in the art, for example, E. coli JM109, E. coli BL21, E. coli RR1. , Bacillus genus strains, such as E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus thuringiensis, and Salmonella typhimurium, Serratia marcensons, and various Pseudomonas Enterobacteria such as species and strains.
  • yeast Saccharomyce cerevisiae
  • insect cells human cells (e.g., CHO cell line (Chinese hamster ovary), W138, BHK, COS-7, 293) as host cells.
  • human cells e.g., CHO cell line (Chinese hamster ovary), W138, BHK, COS-7, 293) as host cells.
  • HepG2, 3T3, RIN and MDCK cell lines and plant cells and the like can be used.
  • the host cell is preferably a plant cell.
  • the method of carrying the vector of the present invention into a host cell is performed by using the CaCl 2 method or one method (Hanahan, D., J. Mol. Biol., 166: 557-580 (1983)) when the host cell is a prokaryotic cell. And the electroporation method.
  • the vector may be injected into the host cell by microinjection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, DEAE-dextran treatment, gene bombardment, or the like. Can be.
  • Plant transformation refers to any method of transferring DNA to a plant. Such transformation methods do not necessarily have a period of regeneration and / or tissue culture. Transformation of plant species is now common for plant species, including both dicotyledonous plants as well as monocotyledonous plants. In principle, any transformation method can be used to introduce hybrid DNA according to the invention into suitable progenitor cells. Method is calcium / polyethylene glycol method for protoplasts (Krens, FA et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), protoplasts Electroporation (Shillito RD et al., 1985 Bio / Technol.
  • the present invention also provides a method for producing a transgenic plant having an increased carotenoid content, comprising overexpressing the IbOr-Ins gene variant by transforming the recombinant vector of the present invention into plant cells.
  • the present invention also provides a transgenic plant with increased carotenoid content produced by the above method and its seeds.
  • the plant may be a dicotyledonous plant, but is not limited thereto.
  • the dicotyledonous plants are Asteraceae (Dolaceae, Diapensiaceae), Asteraceae (Clethraceae), Pyrolaceae, Ericaceae, Myrsinaceae, Primaceae (Primulaceae), Plumbaginaceae, Persimmonaceae (Ebenaceae) , Styracaceae, Stink bug, Symplocaceae, Ash (Oleaceae), Loganiaceae, Gentianaceae, Menyanthaceae, Oleaceae, Apocynaceae , Asclepiadaceae, Rubiaceae, Polemoniaceae, Convolvulaceae, Boraginaceae, Verbenaceae, Labiatae, Solanaceae, Scrophulariaceae , Bignoniaceae, Acanthaceae, Sesame (Pedaliaceae), Fructose (Orobanchaceae).
  • Gesneriaceae Lentibulariaceae, Phrymaceae, Plantaginaceae, Caprifoliaceae, (Perox Adoxaceae), Valerianaceae, Dipsacaceae, Campanaceae ( Campanulaceae, Compositae, Myricaceae, Sapaceae, Juglandaceae, Salicaceae, Birchaceae, Beechaceae, Fagaceae, Elmaceae, Moraceae , Urticaceae, Santalaceae, Mistletoe, Lothanthaceae, Polygonaceae, Landaceae, Phytolaccaceae, Nyctaginaceae, Pomegranate, Azizaceae (Portulacaceae), Caryophyllaceae, Chinopodiaceae, Amaranthaceae, Cactaceae, Magnoliaceae, Illiciaceae, Lauraceae, Cassia family, Cecidiphyllaceae, Ranun
  • the present invention also provides a method for producing a transformed plant having increased salt stress resistance, comprising the step of transforming the recombinant vector of the present invention into plant cells, overexpressing the IbOr-Ins gene variant.
  • the present invention also provides a transgenic plant with increased salt stress tolerance produced by the above method and its seeds.
  • the plant may be a dicotyledonous plant, but is not limited thereto.
  • the dicotyledonous plants are as described above.
  • the present invention is to increase the salt stress resistance comprising the step of overexpressing the IbOrange gene by transforming the plant cell with a recombinant vector comprising the IbOrange gene from sweet potato ( Ipomoea batatas) consisting of the nucleotide sequence of SEQ ID NO: 1
  • a recombinant vector comprising the IbOrange gene from sweet potato ( Ipomoea batatas) consisting of the nucleotide sequence of SEQ ID NO: 1
  • sweet potato Ipomoea batatas
  • the present invention also provides a transgenic plant with increased salt stress tolerance produced by the above method and its seeds.
  • the plant may be a dicotyledonous plant, but is not limited thereto.
  • the dicotyledonous plants are as described above.
  • the present invention provides a composition for increasing the carotenoid content of the plant, comprising the IbOr-Ins gene variant artificially inserted into the IbOrange gene derived from sweet potato ( Ipomoea batatas) consisting of the nucleotide sequence of SEQ ID NO: 2 do.
  • the composition of the present invention comprises an IbOr-Ins gene variant consisting of the nucleotide sequence of SEQ ID NO: 2 as an active ingredient, by increasing the carotenoid content of the plant by transforming the gene variant in the plant.
  • the present invention comprises a nucleotide sequence of SEQ ID NO: 2, comprising a IbOr-Ins gene variant artificially inserted into the IbOrange gene derived from sweet potato ( Ipomoea batatas), a composition for increasing salt stress resistance of plants to provide.
  • the composition of the present invention comprises an IbOr-Ins gene variant consisting of the nucleotide sequence of SEQ ID NO: 2 as an active ingredient, it is possible to increase the salt stress resistance of the plant by transforming the gene variant in the plant.
  • the present invention provides a composition for increasing salt stress resistance of plants, comprising the IbOrange gene derived from sweet potato ( Ipomoea batatas) consisting of the nucleotide sequence of SEQ ID NO: 1.
  • the composition of the present invention comprises an IbOrange gene consisting of the nucleotide sequence of SEQ ID NO: 1 as an active ingredient, by increasing the salt stress resistance of the plant by transforming the gene variant in the plant.
  • PCR primers were prepared for cloning the Orange gene in sweet potatoes and the primer sequence was as follows: forward primer (5'-atggtatattcaggtagaatcttgtcgctc-3 '; SEQ ID NO: 3) and reverse primer (5'-ttaatcaaatgggtcaattcgtgggtcatg-3'; SEQ ID NO: 4 ).
  • the IbOr obtained therefrom was subjected to overlapping PCR with a template to carry out an artificial mutation of a specific nucleotide sequence of IbOr.
  • PCR primers were prepared to insert nucleotide sequences estimated to be -KSQNPNL- from amino acid 133 in the amino acid sequence of the IbOrange gene, and the primer sequences used were as follows: forward primer (5'- gaaaagcaagaaaataaacttaa atcccagaaccctaac -3 '; Number 5) and reverse primer (5′-aagatttgcggatgtcaggtt agggttctgggatttaag-3 ′; SEQ ID NO: 6).
  • a PCR product of about 921bp was obtained and cloned into pGEM-T-vector, and sequencing confirmed the mutation inserted into amino acid number 133 through -KSQNPNL- (FIG. 1).
  • PCR was performed using Clonetech's advantage2 polymerase, and the PCR product of the expected size was cloned using pGEMeasy cloning vector (Promega), followed by sequencing to confirm the entire nucleotide sequence.
  • the cDNA gene was named IbOr-Ins.
  • the total length of the IbOr-Ins gene of the present invention is that 924 bp cDNA encodes 307 amino acids (FIG. 1).
  • the isoelectric point (pI) and molecular weight (Mw) predicted by the amino acid sequence are 8.45 and 33.74 kDa, respectively.
  • the nucleotide sequence of the primer was added with an adapter sequence (upper case) at the 5 'end of the primer.
  • the base sequences are forward primers (5'- CAAAAAAGCAGGCTNN a tggtatattcaggtagaatcttgtcgctc-3 '; SEQ ID NO: 7) and reverse primers (5'- CAAGAAAGCTGGGTN ttaatcaaatgggtcaattcgtgggtcatg-3'; SEQ ID NO: 8).
  • the PCR product of the expected size was cloned using a pGEMeasy cloning vector (Promega), followed by sequencing to confirm the entire sequence.
  • the cDNA gene was named IbOr-Ins.
  • Yukmi cultured cells which are off-white sweet potatoes, were transformed through Agrobacterium mediated transformation of the plant expression vector of FIG. 3.
  • Agrobacterium mediated transformation of the plant expression vector of FIG. 3 As a result, in the case of Yumi, which is a non-transformant, there was no change in off-white color, whereas in IbOrange and IbOr-Ins transformed culture cells, the color was dark yellow, and in particular, IbOr-Ins was darker. 4).
  • the phenotypes of sweet potato cultured cells transformed with IbOrange and IbOr-Ins vectors showed off-white color for Yumi, a non-transformed cultured cell, whereas dark yellow for cultured cells transformed with IbOrange and IbOr-Ins. Phenotype is shown (FIG. 4).
  • the carotenoid content of each transformed sweet potato cultured cell was quantified by HPLC analysis. As a result, the total carotenoid content of IbOrange cultured cells increased more than four times than that of Yulmi cultured cells, and about 13 times more than that of IbOr-Ins.
  • IbOrange cultured cells increased about 4 times more than Yumi cultured cells, and IbOr-Ins increased 10 times or more.
  • IbOr-Ins cultured cells increased the total carotenoid more than three times, and beta-carotene more than two times increased (Fig. 5).
  • Two sweet potato transformed culture cells including Yumi were analyzed for carotenoid biosynthesis-related genes and IbOrange genes by RT-PCR.
  • the base sequences of the primers used in the analysis were forward (5'-atcttgtcgctctcgtcctccacgacg ccg-3 '; SEQ ID NO: 9) and reverse (5'-cgtgggtcatgctcgcttgccatagccatc-3'; SEQ ID NO: 10).
  • IbOr-Ins transformed cells expression of almost all genes except IbOrange gene showed similar expression pattern. But in IbOr-Ins transgenic cells, not only the IbOrange gene, LCY- ⁇ , CHY- ⁇ It was found that the expression was higher than Yumi and IbOrange transgenic culture cells (FIG. 6).
  • DAB (3 ', 3-diaminobenzidine) combines with intracellular H 2 O 2 to form a brown precipitate, the higher the oxidative stress, the browner the cells appear.
  • MS1D liquid medium containing 150 and 200 mM NaCl for 24 hours
  • oxidative stress received by the cultured cells was observed through DAB staining.
  • the degree of brown was severe as NaCl concentration increased, and the absorbance of DAB solution at 460 nm showed high oxidative stress, but IbOrange and IbOr-Ins transformed sweet potato cultured cells showed low oxidative stress. (FIG. 7). It was confirmed that IbOrange and IbOr-Ins transformed sweet potato cultured cells show resistance to NaCl.
  • the beta-carotene content in the leaf tissues of two transgenic Arabidopsis plants was measured at spectrophotometer at absorbance of 440 nm.
  • the control wild type and IbOrange transgenic Arabidopsis showed no significant difference
  • the IbOr-Ins transgenic Arabidopsis showed an increased beta-carotene content of about 1.5 times (Fig. 8).
  • the prolonged carotenoid biosynthesis pathway synthesizes a typical plant hormone, Apsis acid, which plays an important role in overcoming dry and cold stress as well as one of the important hormones for plant development such as seed germination, dormancy and seedling growth.
  • the expression of NCED was analyzed in order to determine whether abscitic acid is induced by increased carotenoid content in IbOrange transgenic Arabidopsis plants.
  • NCED has been reported with nine families and increased expression of abscidic acid content and stress (Rodrigo et al., 2006).
  • RT-PCR showed high expression of NCED1 in all three transformants and the control group.
  • IbOr-Ins transgenic Arabidopsis plants may be highly resistant to environmental stresses such as high abscidic acid content and salt, dehydration and osmotic stress (FIG. 10).
  • Example 8 Phenotypic analysis of IbOrange and IbOr-Ins transgenic Arabidopsis treated with NaCl
  • NaCl is the biggest stress factor in plant development and growth. Moisture stress and NaCl stress are understood to be the same mechanism because NaCl stress first causes cell dehydration and loss of swelling. However, NaCl stress actually shows greater dehydration effects than water stress in plant cells.
  • IbOrange and IbOr-Ins transgenic Arabidopsis plants were grown for 2 weeks in 1/2 MS solid medium containing 0, 50, 100 and 150 mM NaCl. Growing. After seeding in the medium, the germination rate was observed on the 7th day, but the transformants showed a high germination rate even though NaCl concentration was higher than that of the control group (FIG. 11). In addition, in the wild type control group, the biomass is also rapidly reduced as NaCl concentration is increased, but IbOrange and IbOr-Ins transgenic Arabidopsis showed higher bio weight compared to the control group (FIG. 12).
  • IbOrange and IbOr-Ins transgenic Arabidopsis at 100 mM NaCl had longer root roots than the control.
  • IbOr-Ins was about 2 times longer than the control group.
  • the long root root phenotype was observed in the high NaCl condition compared to the control (FIG. 13).
  • the control group has a water content of about 70% at 150 mM, whereas the IbOrange and IbOr-Ins transgenic Arabidopsis plants differ significantly from the untreated group. I didn't see it. Therefore, IbOrange and IbOr-Ins transgenic Arabidopsis plants have a high proportion of in vivo bound water at high salt conditions, and thus have a relatively high water content.

Abstract

The present invention relates to a method for producing: an IbOr-Ins gene mutation in which a certain sequence is artificially inserted into an Ipomoea batatas-derived IbOrange gene; a recombinant vector including the gene mutation; a host cell mutated by the recombinant vector; and a transformed plant body that has an improved carotenoid content and resistance to saline stress by means of the mutation of the recombinant vector in a plant cell. The present invention also relates to a method for producing a transformed plant body having increased resistance to saline stress using the transformed plant body or seeds thereof produced by the above method and having an improved carotenoid content and resistance to saline stress, and using an Ipomoea batatas-derived IbOrange gene. The invention also relates to a transformed plant body produced by the above method and having increased resistance to saline stress, and to the seeds thereof.

Description

고구마 유래의 IbOr-Ins 유전자 변이체 및 이의 용도Sweet potato-derived IvOr-kinase gene variants and uses thereof
본 발명은 고구마 유래의 IbOr-Ins 유전자 변이체 및 이의 용도에 관한 것으로서, 더욱 상세하게는 고구마(Ipomoea batatas) 유래의 IbOrange 유전자에 특정 염기서열을 인위적으로 삽입한 IbOr-Ins 유전자 변이체, 상기 유전자 변이체를 포함하는 재조합 벡터, 상기 재조합 벡터로 형질전환된 숙주세포, 상기 재조합 벡터를 식물세포에 형질전환시켜 카로티노이드 함량 또는 염 스트레스 내성이 증가된 형질전환 식물체의 제조 방법, 상기 방법에 의해 제조된 카로티노이드 함량 또는 염 스트레스 내성이 증가된 형질전환 식물체 및 이의 종자, 고구마(Ipomoea batatas) 유래의 IbOrange 유전자를 이용한 염 스트레스 내성이 증가된 형질전환 식물체의 제조 방법, 상기 방법에 의해 제조된 염 스트레스 내성이 증가된 형질전환 식물체 및 이의 종자에 관한 것이다.The present invention relates to IbOr-Ins gene variants derived from sweet potatoes and their use, and more particularly to IbOr-Ins gene variants in which IbOrange genes are artificially inserted into IbOrange genes derived from sweet potatoes ( Ipomoea batatas ). Recombinant vector comprising, a host cell transformed with the recombinant vector, a method for producing a transformed plant having a high carotenoid content or salt stress resistance by transforming the recombinant vector into plant cells, the carotenoid content produced by the method or Transformed Plants with Increased Salt Stress Tolerance and Seeds thereof, Methods for Producing Transgenic Plants with Increased Salt Stress Resistance Using IbOrange Gene from Sweet Potato ( Ipomoea batatas ) To converting plants and their seeds.
고구마(Ipomoea batatas L. Lam)는 비교적 척박한 땅에도 재배가 가능할 뿐 만 아니라 헥타르당 생산량이 약 30톤으로 식량과 가축 사료로 이용되는 대표적인 뿌리작물이다. 자색, 황색 등의 유색 고구마들은 다양한 항산화 물질을 포함하고 있는데, 특히 황색을 띄는 황색 고구마는 베타카로틴을 14.7 ~ 20 mg/100g 함유하며, 자색 고구마는 안토시아닌을 2.28 g/100g 내외 함유하고 있어 세포의 노화를 촉진시키고 각종 성인병의 원인이 되는 활성산소를 제거하는 항산화 작용이 탁월하다. 또한 고구마는 1990년대 이후 아그로박테리움(Agrobacterium) 공동배양을 통한 형질전환이 시도되었고, 정단 및 측아 분열조직으로부터 배발생 배양세포 유도 및 체세포배발생을 통한 식물체 재분화 형질전환시스템을 발전시켜왔다 (Lim et al. Mol Breeding 19, 227-239, 2007). 그러나 아직 카로티노이드, 안토시아닌, 폴리페놀과 같은 저분자 항산화 물질을 고생산하는 고구마는 보고된 바 없다. 따라서 복합 스트레스 내성을 가지고 저분자 항산화 물질까지 고생산하는 작물 개발은 21세기 인류가 당면한 식량, 에너지, 환경문제를 해결하는데 기여할 수 있을 것으로 사료된다. Sweet potato ( Ipomoea batatas L. Lam) can be grown on relatively poor lands and is a representative root crop used for food and livestock feed with a yield of about 30 tonnes per hectare. Colored sweet potatoes, such as purple and yellow, contain various antioxidants, especially yellowish yellow sweet potatoes contain 14.7-20 mg / 100 g of beta-carotene, and purple sweet potatoes contain 2.28 g / 100 g of anthocyanin. It is an antioxidant that promotes aging and removes free radicals that cause various adult diseases. In addition, since the 1990s, sweet potato has been transformed by co-culturing Agrobacterium , and has developed a plant regeneration system by inducing embryogenic culture cells and somatic embryogenesis from apical and temporal meristems (Lim). et al. Mol Breeding 19, 227-239, 2007). However, no sweet potatoes have been reported that produce high molecular weight antioxidants such as carotenoids, anthocyanins and polyphenols. Therefore, the development of crops with complex stress tolerance and high production of low molecular weight antioxidants could contribute to solving the food, energy and environmental problems faced by humans in the 21st century.
세계보건기구 (WHO)는 전 세계 1억 명 이상의 어린이들이 비타민A의 부족으로 고생하고 있으며 이로 인해 매년 50만 명 이상의 어린이들이 실명하고 있다고 발표하였다. 베타카로틴은 비타민A의 전구체로서 영양강화제, 식품보조제의 생리활성 기능을 가지고 있어 식품에서의 카로티노이드 축적에 관한 대사공학 연구는 영양학적 가치를 높이기 위한 필수 연구 대상이라 할 수 있다. 이러한 노력으로 카로티노이드 대사경로 관련 유전자들의 분자생물학적, 대사공학적 응용 등으로 작물의 영양적 가치를 높이려는 연구가 이루어지고 있다.The World Health Organization (WHO) has announced that more than 100 million children worldwide suffer from a lack of vitamin A, which causes more than half a million children to lose sight each year. Beta-carotene is a precursor of vitamin A, and has the physiologically active functions of nutrient enhancers and food supplements. Therefore, metabolic engineering studies on carotenoid accumulation in foods are essential subjects for enhancing nutritional value. Through these efforts, research is being conducted to increase the nutritional value of crops by applying molecular biological and metabolic engineering of carotenoid metabolic pathway related genes.
카로티노이드는 높은 항산화활성을 가진 물질로서 생리활성 기능뿐 아니라 식물 자체의 산화 스트레스에 대한 방어 기작에도 중요한 역할을 하는 것으로 알려져 있으며 최근 카로티노이드 생합성이 식물호르몬의 하나인 앱시스산(ABA)에 의해 영향을 받는 것이 밝혀짐으로써 이들 항산화 물질과 환경 스트레스에 대한 연구의 필요성이 대두 되었다. 세계 많은 지역이 토양의 높은 염도 때문에 작물의 생산성을 70% 이상까지 손실되거나 경작을 할 수 없는 불모지로 변하고 있다. 따라서 내염성 품종 개발은 시급히 해결해야 하는 당면 과제로 떠오르고 있다.Carotenoids are substances with high antioxidant activity and are known to play an important role not only in physiological activity but also in the defense mechanism against oxidative stress of the plant itself. Recently, carotenoid biosynthesis is influenced by Abs acid (ABA), one of the plant hormones. As it turned out, the need for research on these antioxidants and environmental stresses emerged. In many parts of the world, the high salinity of the soil has resulted in loss of crop yields of up to 70% or the inability to cultivate barren land. Therefore, the development of flame resistant varieties has emerged as an immediate problem to be solved urgently.
한국등록특허 제10-0813284호에는 감귤 유래 피토엔 생합성 효소 유전자를 식물체에 형질전환시켜 카로티노이드의 함량을 증가시키는 방법이 개시되어 있으며, 한국공개특허 제2010-0100097호에는 고구마 유래 MuS1 유전자를 식물체에 형질전환시켜 염 스트레스 내성을 증가시키는 방법이 개시되어 있다. Korean Patent No. 10-0813284 discloses a method of increasing the content of carotenoids by transforming a plant-derived phytoene biosynthetic enzyme gene from citrus fruits, and Korean Patent Publication No. 2010-0100097 discloses a sweet potato-derived MuS1 gene in plants. Methods of increasing salt stress tolerance by transformation are disclosed.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 고구마 유래의 IbOrange 유전자 및 상기 유전자에 특정 염기서열을 인위적으로 삽입한 IbOr-Ins 유전자 변이체를 형질전환시킨 식물체에서 카로티노이드 함량 및 염 스트레스 내성의 증가를 확인함으로써 본 발명을 완성하게 되었다.The present invention is derived from the above requirements, the present inventors are carotenoid content and salt stress resistance in plants transformed with sweet potato-derived IbOrange gene and IbOr-Ins gene variant that artificially inserted a specific sequence into the gene By confirming the increase of the present invention was completed.
상기 과제를 해결하기 위해, 본 발명은 고구마(Ipomoea batatas) 유래의 IbOrange 유전자에 특정 염기서열을 인위적으로 삽입한 IbOr-Ins 유전자 변이체를 제공한다. In order to solve the above problems, the present invention provides an IbOr-Ins gene variant in which a specific sequence is artificially inserted into the IbOrange gene derived from sweet potato ( Ipomoea batatas ).
또한, 본 발명은 상기 유전자 변이체를 포함하는 재조합 벡터를 제공한다. The present invention also provides a recombinant vector comprising the genetic variant.
또한, 본 발명은 상기 재조합 벡터로 형질전환된 숙주세포를 제공한다. The present invention also provides a host cell transformed with the recombinant vector.
또한, 본 발명은 상기 재조합 벡터를 식물세포에 형질전환시켜 카로티노이드 함량 또는 염 스트레스 내성이 증가된 형질전환 식물체의 제조 방법을 제공한다. In addition, the present invention provides a method for producing a transformed plant having a carotenoid content or salt stress resistance is increased by transforming the recombinant vector into plant cells.
또한, 본 발명은 상기 방법에 의해 제조된 카로티노이드 함량 또는 염 스트레스 내성이 증가된 형질전환 식물체 및 이의 종자를 제공한다.The present invention also provides a transgenic plant and its seed having increased carotenoid content or salt stress resistance produced by the above method.
또한, 본 발명은 고구마(Ipomoea batatas) 유래의 IbOrange 유전자를 이용한 염 스트레스 내성이 증가된 형질전환 식물체의 제조 방법을 제공한다. In addition, the present invention provides a method for producing a transgenic plant having increased salt stress resistance using IbOrange gene derived from sweet potato ( Ipomoea batatas ).
또한, 본 발명은 상기 방법에 의해 제조된 염 스트레스 내성이 증가된 형질전환 식물체 및 이의 종자를 제공한다. The present invention also provides a transgenic plant with increased salt stress tolerance produced by the above method and its seeds.
또한, 본 발명은 고구마(Ipomoea batatas) 유래의 IbOrange 유전자에 특정 염기서열을 인위적으로 삽입한 IbOr-Ins 유전자 변이체를 포함하는, 식물체의 카로티노이드 함량 또는 염 스트레스 내성 증가용 조성물을 제공한다. In another aspect, the present invention provides a composition for increasing the carotenoid content or salt stress resistance of plants, including IbOr-Ins gene variants in which a specific sequence is artificially inserted into the IbOrange gene derived from sweet potato ( Ipomoea batatas ).
또한, 본 발명은 고구마(Ipomoea batatas) 유래의 IbOrange 유전자를 포함하는, 식물체의 염 스트레스 내성 증가용 조성물을 제공한다. In addition, the present invention provides a composition for increasing salt stress resistance of plants, including IbOrange gene derived from sweet potato ( Ipomoea batatas ).
본 발명에 따르면, IbOrange 유전자 및 IbOr-Ins 유전자 변이체를 형질전환한 식물세포에서 카로티노이드 함량 및 염 스트레스 내성이 증가하였고, 이는 IbOr-Ins 형질전환체에서 그 효과가 더 뛰어났다. 따라서, 본 발명의 IbOrange 유전자 및 IbOr-Ins 유전자 변이체를 이용하면 기능성 향상뿐만 아니라 염 스트레스에 대해 내성이 강한 형질전환 식물체를 개발할 수 있을 것으로 기대된다.According to the present invention, carotenoid content and salt stress resistance were increased in plant cells transformed with IbOrange gene and IbOr-Ins gene variant, which was more effective in IbOr-Ins transformants. Therefore, the use of the IbOrange gene and the IbOr-Ins gene variant of the present invention is expected to be able to develop transgenic plants that are resistant to salt stress as well as functional enhancement.
도 1은 고구마(품종 신황미) 유래 IbOrange를 주형으로 하여 인위적으로 돌연변이한 IbOr-Ins 유전자의 염기서열 및 이로부터 추론한 아미노산 서열을 나타낸 것이다. 박스로 표시한 부분이 기존의 IbOrange와 다른 -KSQNPNL- 아미노산을 만드는 특정 염기서열이 삽입된 부분이며, 전체 924 bp의 cDNA가 307개의 아미노산을 코딩하고 있다.Figure 1 shows the nucleotide sequence of the IbOr-Ins gene artificially mutated by using IbOrange derived from sweet potato (breed yellow rice), and the amino acid sequence inferred therefrom. The boxed part is inserted with a specific sequence that makes -KSQNPNL- amino acid different from the existing IbOrange, and a total of 924 bp cDNA encodes 307 amino acids.
도 2는 고구마 유래 IbOrange의 아미노산 서열과 IbOr-Ins의 아미노산 서열을 비교 및 확인한 것이다. 박스로 표시한 부분이 차이를 나타내는 부분이다. Figure 2 compares and confirms the amino acid sequence of sweet potato-derived IbOrange and the amino acid sequence of IbOr-Ins. The boxed part shows the difference.
도 3은 고구마 유래 IbOrange 유전자 및 IbOr-Ins 유전자의 식물 발현 벡터를 나타낸 것이다.Figure 3 shows the plant expression vector of sweet potato derived IbOrange gene and IbOr-Ins gene.
도 4는 고구마 유래 IbOrange 유전자 및 IbOr-Ins 유전자 형질전환 고구마 배양세포가 카로티노이드 함량 증가로 인해 노란색의 표현형을 나타낸 결과이다.Figure 4 shows the yellow phenotype of sweet potato-derived IbOrange gene and IbOr-Ins gene-transformed sweet potato culture cells due to increased carotenoid content.
도 5는 형질전환 배양세포를 대상으로 HPLC 분석을 통해 베타카로틴 등 카로티노이드 함량을 분석한 결과이다.5 is a result of analyzing the carotenoid content such as beta carotene through the HPLC analysis of the transformed culture cells.
도 6은 고구마 유래 IbOrange 유전자 및 IbOr-Ins 유전자 형질전환 고구마 배양세포에서 카로티노이드 생합성 경로의 주요 유전자의 발현양상을 RT-PCR 및 전기영동을 수행하여 나타낸 결과이다.FIG. 6 shows the results of RT-PCR and electrophoresis of the expression patterns of carotenoid biosynthetic pathways in sweet potato-derived IbOrange gene and IbOr-Ins transgenic sweet potato cultured cells. FIG.
도 7은 고구마 유래 IbOrange 유전자 및 IbOr-Ins 유전자를 형질전환한 고구마 배양세포에 150 및 200 mM의 NaCl을 처리한 후, 배양세포를 DAB 염색한 표현형(위) 및 배양세포가 받는 산화 스트레스를 나타낸 것이다(아래).FIG. 7 shows the sweet potato cultured cells transformed with sweet potato-derived IbOrange gene and IbOr-Ins gene, treated with 150 and 200 mM of NaCl, and then subjected to DAB staining of the cultured cells (top) and oxidative stress received by the cultured cells. (Below).
도 8은 고구마 유래 IbOrange 유전자 및 IbOr-Ins 유전자를 형질전환한 애기장대의 종자 표현형(위) 및 잎에서 베타카로틴 함량을 분광광도계를 이용해 측정한 결과이다(아래). WT : 야생형(Col-0).8 is a result of measuring the beta carotene content in the seed phenotype (top) and leaves of Arabidopsis transformed with sweet potato-derived IbOrange gene and IbOr-Ins gene using a spectrophotometer (below). WT: Wild type ( Col-0 ).
도 9는 고구마 유래 IbOrange 유전자 및 IbOr-Ins 유전자를 형질전환한 애기장대에서 카로티노이드 생합성 관련 유전자, 애기장대 Orange 유전자 및 IbOrange 유전자의 발현양상을 RT-PCR 및 전기영동을 수행하여 나타낸 결과이다.9 shows the results of RT-PCR and electrophoresis of the expression patterns of carotenoid biosynthesis-related genes, Arabidopsis Orange gene and IbOrange gene in Arabidopsis transformed with sweet potato-derived IbOrange gene and IbOr-Ins gene.
도 10은 IbOrange 유전자 및 IbOr-Ins 유전자를 형질전환한 애기장대에서 스트레스 유도 유전자의 하나인 NCED의 발현양상을 RT-PCR 및 전기영동을 수행하여 나타낸 결과이다.10 shows the results of RT-PCR and electrophoresis of the expression patterns of NCED, one of the stress-inducing genes, in Arabidopsis transformed with IbOrange and IbOr-Ins genes.
도 11은 IbOrange 및 IbOr-Ins 유전자를 형질전환한 애기장대의 0, 50, 100 및 150 mM의 NaCl을 처리한 배지에서의 발아율을 나타낸 것이다.FIG. 11 shows germination rates in media treated with 0, 50, 100 and 150 mM NaCl in Arabidopsis transgenic IbOrange and IbOr-Ins genes.
도 12는 다양한 농도의 NaCl을 처리하였을 때, 대조군인 야생형과 IbOrange 및 IbOr-Ins 형질전환 애기장대의 생체중량을 나타낸 것이다. Figure 12 shows the bioweight of wild type and IbOrange and IbOr-Ins transgenic Arabidopsis control group treated with various concentrations of NaCl.
도 13은 100 mM NaCl 조건에서, IbOrange 및 IbOr-Ins 유전자를 형질전환한 애기장대와 대조군인 야생형의 뿌리 표현형을 비교한 것이다. FIG. 13 compares the Arabidopsis transformed with IbOrange and IbOr-Ins genes under the 100 mM NaCl condition, and the root phenotype of the control wild type.
도 14는 150 mM의 NaCl 조건에서, IbOrange 및 IbOr-Ins 유전자를 형질전환한 애기장대와 대조군인 야생형의 상대수분함량을 측정한 결과를 나타낸 것이다.Figure 14 shows the results of measuring the relative moisture content of the Arabidopsis transformed IbOrange and IbOr-Ins genes and the wild type control group at 150 mM NaCl conditions.
본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 2의 염기서열로 이루어진, 고구마(Ipomoea batatas) 유래의 IbOrange 유전자에 특정 염기서열을 인위적으로 삽입한 IbOr-Ins 유전자 변이체를 제공한다. 본 발명에서는 KSQNPNL 아미노산을 삽입하여 IbOr-Ins 유전자 변이체를 제조하였으나, 카로티노이드 함량을 증가시키거나 내염성을 증가시킬 수 있는 변이체이면 특별히 제한되지 않는다.In order to achieve the object of the present invention, the present invention provides an IbOr-Ins gene variant consisting of a nucleotide sequence of SEQ ID NO: 2 artificially inserted into the IbOrange gene derived from sweet potato ( Ipomoea batatas ). In the present invention, the IbOr-Ins gene variant was prepared by inserting the KSQNPNL amino acid, but is not particularly limited as long as it is a variant capable of increasing carotenoid content or increasing flame resistance.
또한, 본 발명은 상기 유전자 변이체를 포함하는 재조합 벡터를 제공한다. The present invention also provides a recombinant vector comprising the genetic variant.
용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.The term “recombinant” refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a protein encoded by a peptide, a heterologous peptide, or a heterologous nucleic acid. Recombinant cells can express genes or gene fragments that are not found in their natural form in either the sense or antisense form. Recombinant cells can also express genes found in natural cells, but the genes are modified and reintroduced into cells by artificial means.
본 발명에서, 상기 IbOr-Ins 유전자 변이체 서열은 재조합 발현 벡터 내로 삽입될 수 있다. 용어 "재조합 발현 벡터"는 세균 플라스미드, 파아지, 효모 플라스미드, 식물 세포 바이러스, 포유동물 세포 바이러스, 또는 다른 벡터를 의미한다. 대체로, 임의의 플라스미드 및 벡터는 숙주 내에서 복제 및 안정화할 수 있다면 사용될 수 있다. 상기 발현 벡터의 중요한 특성은 복제 원점, 프로모터, 마커 유전자 및 번역 조절 요소(translation control element)를 가지는 것이다.In the present invention, the IbOr-Ins gene variant sequence may be inserted into a recombinant expression vector. The term "recombinant expression vector" means a bacterial plasmid, phage, yeast plasmid, plant cell virus, mammalian cell virus, or other vector. In principle, any plasmid and vector can be used as long as it can replicate and stabilize in the host. An important feature of the expression vector is that it has a origin of replication, a promoter, a marker gene and a translation control element.
IbOr-Ins 단백질-암호화 DNA 서열 및 적당한 전사/번역 조절 신호를 포함하는 발현 벡터는 당업자에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관내 재조합 DNA 기술, DNA 합성 기술 및 생체내 재조합 기술 등을 포함한다. 상기 DNA 서열은 mRNA 합성을 이끌기 위해 발현 벡터 내의 적당한 프로모터에 효과적으로 연결될 수 있다. 또한 발현 벡터는 번역 개시 부위로서 리보좀 결합 부위 및 전사 터미네이터를 포함할 수 있다.Expression vectors comprising an IbOr-Ins protein-encoding DNA sequence and appropriate transcriptional / translational control signals can be constructed by methods well known to those skilled in the art. Such methods include in vitro recombinant DNA techniques, DNA synthesis techniques, in vivo recombinant techniques, and the like. The DNA sequence can be effectively linked to a suitable promoter in the expression vector to drive mRNA synthesis. Expression vectors may also include ribosomal binding sites and transcription terminators as translation initiation sites.
본 발명의 재조합 벡터의 바람직한 예는 아그로박테리움 투머파시엔스와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터 (EP 0 116 718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다. 본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다. Preferred examples of recombinant vectors of the invention are Ti-plasmid vectors capable of transferring part of themselves, the so-called T-region, to plant cells when present in a suitable host such as Agrobacterium tumerfaciens. Another type of Ti-plasmid vector (see EP 0 116 718 B1) is currently used to transfer hybrid DNA sequences to protoplasts from which plant cells or new plants can be produced which properly insert hybrid DNA into the plant's genome. have. A particularly preferred form of the Ti-plasmid vector is the so-called binary vector as claimed in EP 0 120 516 B1 and US Pat. No. 4,940,838. Other suitable vectors that can be used to introduce the DNA according to the invention into a plant host are viral vectors, such as those which can be derived from double stranded plant viruses (eg CaMV) and single stranded viruses, gemini viruses, etc. For example, it may be selected from an incomplete plant viral vector. The use of such vectors can be advantageous especially when it is difficult to properly transform a plant host.
발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 것이다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate) 또는 포스피노트리신(phosphinothricin)과 같은 제초제 저항성 유전자, 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니다.The expression vector will preferably comprise one or more selectable markers. The marker is typically a nucleic acid sequence having properties that can be selected by chemical methods, and all genes that can distinguish transformed cells from non-transformed cells. Examples include herbicide resistance genes such as glyphosate or phosphinothricin, kanamycin, G418, bleomycin, hygromycin, and chloramphenicol. Resistance genes include, but are not limited to.
본 발명의 재조합 벡터에서, 프로모터는 CaMV 35S, 액틴, 유비퀴틴, pEMU, MAS 또는 히스톤 프로모터일 수 있으나, 이에 제한되지 않는다. "프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "구성적(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 구성적 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 구성적 프로모터는 선택 가능성을 제한하지 않는다.In the recombinant vector of the present invention, the promoter may be, but is not limited to, CaMV 35S, actin, ubiquitin, pEMU, MAS or histone promoter. The term "promoter" refers to a region of DNA upstream from a structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells. A "constitutive promoter" is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constitutive promoters may be preferred in the present invention because selection of the transformants may be made by various tissues at various stages. Thus, the constitutive promoter does not limit the possibility of selection.
본 발명의 재조합 벡터에서, 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터 등이 있으나, 이에 한정되는 것은 아니다. 터미네이터의 필요성에 관하여, 그러한 영역이 식물 세포에서의 전사의 확실성 및 효율을 증가시키는 것으로 일반적으로 알려져 있다. 그러므로, 터미네이터의 사용은 본 발명의 내용에서 매우 바람직하다.In the recombinant vectors of the present invention, conventional terminators can be used, for example nopalin synthase (NOS), rice α-amylase RAmy1 A terminator, phaseoline terminator, Agrobacterium tumefaciens (Agrobacterium tumefaciens) Terminator of the octopine gene, but is not limited thereto. With regard to the need for terminators, such regions are generally known to increase the certainty and efficiency of transcription in plant cells. Therefore, the use of terminators is highly desirable in the context of the present invention.
본 발명은 또한, 본 발명의 재조합 벡터로 형질전환된 숙주세포를 제공한다. 본 발명의 벡터를 원핵세포에 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주세포는 당업계에 공지된 어떠한 숙주세포도 이용할 수 있으며, 예컨대, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있다.The present invention also provides a host cell transformed with the recombinant vector of the present invention. A host cell capable of continuously cloning and expressing the vector of the present invention in a prokaryotic cell while being stable can be used in any host cell known in the art, for example, E. coli JM109, E. coli BL21, E. coli RR1. , Bacillus genus strains, such as E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus thuringiensis, and Salmonella typhimurium, Serratia marcensons, and various Pseudomonas Enterobacteria such as species and strains.
또한, 본 발명의 벡터를 진핵 세포에 형질전환시키는 경우에는 숙주세포로서, 효모(Saccharomyce cerevisiae), 곤충세포, 사람세포 (예컨대, CHO 세포주 (Chinese hamster ovary), W138, BHK, COS-7, 293, HepG2, 3T3, RIN 및 MDCK 세포주) 및 식물세포 등이 이용될 수 있다. 숙주세포는 바람직하게는 식물세포이다.In addition, when transforming the vector of the present invention into eukaryotic cells, yeast ( Saccharomyce cerevisiae ), insect cells, human cells (e.g., CHO cell line (Chinese hamster ovary), W138, BHK, COS-7, 293) as host cells. , HepG2, 3T3, RIN and MDCK cell lines) and plant cells and the like can be used. The host cell is preferably a plant cell.
본 발명의 벡터를 숙주세포 내로 운반하는 방법은, 숙주 세포가 원핵 세포인 경우, CaCl2 방법, 하나한 방법 (Hanahan, D., J. Mol. Biol., 166:557-580(1983)) 및 전기천공 방법 등에 의해 실시될 수 있다. 또한, 숙주세포가 진핵세포인 경우에는, 미세주입법, 칼슘포스페이트 침전법, 전기천공법, 리포좀-매개 형질감염법, DEAE-덱스트란 처리법, 및 유전자 밤바드먼트 등에 의해 벡터를 숙주세포 내로 주입할 수 있다.The method of carrying the vector of the present invention into a host cell is performed by using the CaCl 2 method or one method (Hanahan, D., J. Mol. Biol., 166: 557-580 (1983)) when the host cell is a prokaryotic cell. And the electroporation method. In addition, when the host cell is a eukaryotic cell, the vector may be injected into the host cell by microinjection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, DEAE-dextran treatment, gene bombardment, or the like. Can be.
식물의 형질전환은 DNA를 식물에 전이시키는 임의의 방법을 의미한다. 그러한 형질전환 방법은 반드시 재생 및(또는) 조직 배양기간을 가질 필요는 없다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 잡종 DNA를 적당한 선조 세포로 도입시키는데 이용될 수 있다. 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens, F.A. et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), 원형질체의 전기천공법(Shillito R.D. et al., 1985 Bio/Technol. 3, 1099-1102), 식물 요소로의 현미주사법(Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179-185), 각종 식물 요소의 (DNA 또는 RNA-코팅된) 입자 충격법(Klein T.M. et al., 1987, Nature 327, 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 투머파시엔스 매개된 유전자 전이에서 (비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다. 본 발명에 따른 바람직한 방법은 아그로박테리움 매개된 DNA 전달을 포함한다. 특히 바람직한 것은 EP A 120 516호 및 미국 특허 제4,940,838호에 기재된 바와 같은 소위 이원 벡터 기술을 이용하는 것이다.Plant transformation refers to any method of transferring DNA to a plant. Such transformation methods do not necessarily have a period of regeneration and / or tissue culture. Transformation of plant species is now common for plant species, including both dicotyledonous plants as well as monocotyledonous plants. In principle, any transformation method can be used to introduce hybrid DNA according to the invention into suitable progenitor cells. Method is calcium / polyethylene glycol method for protoplasts (Krens, FA et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), protoplasts Electroporation (Shillito RD et al., 1985 Bio / Technol. 3, 1099-1102), microscopic injection into plant elements (Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179-185 ), (DNA or RNA-coated) particle bombardment of various plant elements (Klein TM et al., 1987, Nature 327, 70), Agrobacterium tumulopasis by plant infiltration or transformation of mature pollen or vesicles And infection with (incomplete) virus (EP 0 301 316) in en mediated gene transfer. Preferred methods according to the invention include Agrobacterium mediated DNA delivery. Especially preferred is the use of the so-called binary vector technology as described in EP A 120 516 and US Pat. No. 4,940,838.
또한, 본 발명은 본 발명의 재조합 벡터를 식물세포에 형질전환시켜 IbOr-Ins 유전자 변이체를 과발현하는 단계를 포함하는 카로티노이드 함량이 증가된 형질전환 식물체의 제조 방법을 제공한다. The present invention also provides a method for producing a transgenic plant having an increased carotenoid content, comprising overexpressing the IbOr-Ins gene variant by transforming the recombinant vector of the present invention into plant cells.
또한, 본 발명은 상기 방법에 의해 제조된 카로티노이드 함량이 증가된 형질전환 식물체 및 이의 종자를 제공한다. 상기 식물체는 쌍자엽 식물일 수 있으나, 이에 제한되지는 않는다. The present invention also provides a transgenic plant with increased carotenoid content produced by the above method and its seeds. The plant may be a dicotyledonous plant, but is not limited thereto.
상기 쌍자엽 식물은 암매과(돌매화나무과, Diapensiaceae), 매화오리나무과(Clethraceae), 노루발과(Pyrolaceae), 진달래과(Ericaceae), 자금우과(Myrsinaceae), 앵초과(Primulaceae), 갯질경이과 (Plumbaginaceae), 감나무과(Ebenaceae), 때죽나무과(Styracaceae), 노린재나무과, 회목과(Symplocaceae), 물푸레나무과(목서과, Oleaceae), 마전과(Loganiaceae), 용담과(Gentianaceae), 조름나물과(Menyanthaceae), 협죽도과(마삭나무과, Apocynaceae), 박주가리과(Asclepiadaceae), 꼭두서니과(Rubiaceae), 꽃고비과(Polemoniaceae), 메꽃과(Convolvulaceae), 지치과(Boraginaceae), 마편초과(Verbenaceae), 꿀풀과(Labiatae), 가지과(Solanaceae), 현삼과(Scrophulariaceae), 능소화과(Bignoniaceae), 쥐꼬리망초과(Acanthaceae), 참깨과(Pedaliaceae), 열당과 (Orobanchaceae). 제스네리아과(Gesneriaceae), 통발과(Lentibulariaceae), 파리풀과(Phrymaceae), 질경이과(Plantaginaceae), 인동과(Caprifoliaceae), (연복초과 Adoxaceae), 마타리과(Valerianaceae), 산토끼꽃과(Dipsacaceae), 초롱꽃과 (Campanulaceae), 국화과(Compositae), 소귀나무과(Myricaceae), 가래나무과 (Juglandaceae), 버드나무과(Salicaceae), 자작나무과(Betulaceae), 너도 밤나무과(참나무과, Fagaceae), 느릅나무과(Ulmaceae), 뽕나무과(Moraceae), 쐐기풀과 (Urticaceae), 단향과(Santalaceae), 겨우살이과(Loranthaceae), 마디풀과(여뀌과, Polygonaceae), 자리공과(상륙과, Phytolaccaceae), 분꽃과(Nyctaginaceae), 석류풀과(Aizoaceae), 쇠비름과(Portulacaceae), 석죽과(Caryophyllaceae), 명아주과 (Chenopodiaceae), 비름과(Amaranthaceae), 선인장과(Cactaceae), 목련과(Magnoliaceae), 붓순나무과(Illiciaceae), 녹나무과(Lauraceae), 계수나무과 (Cercidiphyllaceae), 미나리아재비과(Ranunculaceae), 매자나무과(Berberidaceae), 으름덩굴과(Lardizabalaceae), 새모래덩굴과(방기과, Menispermaceae), 수련과(Nymphaeaceae), 붕어마름과(Ceratophyllaceae), 어항마름과(Cabombaceae), 삼백초과(Saururaceae), 후추과(Piperaceae), 홀아비꽃대과(Chloranthaceae), 쥐방울덩굴과(Aristolochiaceae), 다래나무과(Actinidiaceae), 차나무과(동백나무과, Theaceae), 물레나물과(Guttiferae), 끈끈이주걱과(Droseraceae), 양귀비과(Papaveraceae), 풍접초과(Capparidaceae), 십자화과(겨자과, Cruciferae), 플라타너스과(버즘나무과, Platanaceae), 조록나무과(금루매과, Hamamelidaceae), 꿩의비름과(돌나물과, Crassulaceae), 범의귀과(Saxifragaceae), 두충과(Eucommiaceae), 돈나무과(Pittosporaceae), 장미과(Rosaceae), 콩과(Leguminosae), 괭이밥과(Oxalidaceae), 쥐손이풀과(Geraniaceae), 한련과(Tropaeolaceae), 남가새과(Zygophyllaceae), 아마과(Linaceae), 대극과(Euphorbiaceae), 별이끼과(Callitrichaceae), 운향과(Rutaceae), 소태나무과(Simaroubaceae), 멀구슬나무과(Meliaceae), 원지과(Polygalaceae), 옻나무과(Anacardiaceae), 단풍나무과(단풍과, Aceraceae), 무환자나무과(Sapindaceae), 칠엽수과(Hippocastanaceae), 나도 밤나무과(Sabiaceae), 봉선화과(물봉선과, Balsaminaceae), 감탕나무과(Aquifoliaceae), 노박덩굴과(화살나무과, Celastraceae), 고추나무과(Staphyleaceae), 회양목과 (Buxaceae), 시로미과(Empetraceae), 갈매나무과(Rhamnaceae), 포도과(Vitaceae), 담팔수과(Elaeocarpaceae), 피나무과(Tiliaceae), 아욱과(Malvaceae), 벽오동과 (Sterculiaceae), 팥꽃나무과(서향나무과, Thymelaeaceae), 보리수나무과 (Elaeagnaceae), 이나무과(Flacourtiaceae), 제비꽃과(Violaceae), 시계꽃과 (Passifloraceae), 위성류과(Tamaricaceae), 물별과(Elatinaceae), 베고니아과 (Begoniaceae), 박과(Cucurbitaceae), 부처꽃과(배롱나무과, Lythraceae), 석류나무과(Punicaceae), 바늘꽃과(Onagraceae), 개미탑과(Haloragaceae), 박쥐나무과 (Alangiaceae), 층층나무과(산수유나무과, Cornaceae), 두릅나무과(오갈피나무과, Araliaceae) 또는 산형과(미나리과)(Umbelliferae(Apiaceae))일 수 있으나, 이에 제한되지는 않는다.The dicotyledonous plants are Asteraceae (Dolaceae, Diapensiaceae), Asteraceae (Clethraceae), Pyrolaceae, Ericaceae, Myrsinaceae, Primaceae (Primulaceae), Plumbaginaceae, Persimmonaceae (Ebenaceae) , Styracaceae, Stink bug, Symplocaceae, Ash (Oleaceae), Loganiaceae, Gentianaceae, Menyanthaceae, Oleaceae, Apocynaceae , Asclepiadaceae, Rubiaceae, Polemoniaceae, Convolvulaceae, Boraginaceae, Verbenaceae, Labiatae, Solanaceae, Scrophulariaceae , Bignoniaceae, Acanthaceae, Sesame (Pedaliaceae), Fructose (Orobanchaceae). Gesneriaceae, Lentibulariaceae, Phrymaceae, Plantaginaceae, Caprifoliaceae, (Perox Adoxaceae), Valerianaceae, Dipsacaceae, Campanaceae ( Campanulaceae, Compositae, Myricaceae, Sapaceae, Juglandaceae, Salicaceae, Birchaceae, Beechaceae, Fagaceae, Elmaceae, Moraceae , Urticaceae, Santalaceae, Mistletoe, Lothanthaceae, Polygonaceae, Landaceae, Phytolaccaceae, Nyctaginaceae, Pomegranate, Azizaceae (Portulacaceae), Caryophyllaceae, Chinopodiaceae, Amaranthaceae, Cactaceae, Magnoliaceae, Illiciaceae, Lauraceae, Cassia family, Cecidiphyllaceae, Ranunculus eae), Berberidaceae, Lardizabalaceae, Bird breeze (Mentaceae, Menispermaceae), Nymphaeaceae, Ceratophyllaceae, Cabombaceae, Saururaceae , Piperaceae, Chloranthaceae, Aristolochiaceae, Actinidiaceae, Camellia, Theaceae, Guttaiferae, Droseraceae, Papaveraceae ), Capparidaceae, Cruciferaceae (Mustaceae, Cruciferae), Planeaceae (Plataceae, Platanaceae), Verruaceae, Hamamelidaceae, Pheasant (Snaphaceae, Crassulaceae), Panaxaceae (Saxifragaceae) Eucommiaceae, Pittosporaceae, Rosaceae, Leguminosae, Oxalidaceae, Geraniaceae, Tropaeolaceae, Zygophyllaceae, Linaceae Euphorbiaceae), star moss (Callitrichaceae), Rutaceae, Simaroubaceae, Meliaceae, Polygalaceae, Anacardiaceae, Mapleaceae, Aceraceae, Sapindaceae, Mapleaceae Hippocastanaceae, Sabiaceae, Balsam, Balsaminaceae, Aquifoliaceae, Nova, Celastraceae, Staphyleaceae, Buxaceae, Empetraceae, Rhamnaceae, Vitaceae, Elaeocarpaceae, Tiliaceae, Malvaceae, Sterculiaceae, Adenaceae, Thymelaeaceae, Eraeagnaceae (Flacourtiaceae), Violaceae, Passifloraceae, Tamaricanaceae, Elatinaceae, Begoniaceae, Cucurbitaceae, Buddha (Lythraceae), Pomegranate Punica ceae), Onnagraceae, Haloragaceae, Bataceae (Alangiaceae), Dogwood (Hornaceae, Cornaceae), Arboraceae (Agaraceae) or Umbelliferae (Apiaceae) It may be, but is not limited thereto.
또한, 본 발명은 본 발명의 재조합 벡터를 식물세포에 형질전환시켜 IbOr-Ins 유전자 변이체를 과발현하는 단계를 포함하는 염 스트레스 내성이 증가된 형질전환 식물체의 제조 방법을 제공한다. The present invention also provides a method for producing a transformed plant having increased salt stress resistance, comprising the step of transforming the recombinant vector of the present invention into plant cells, overexpressing the IbOr-Ins gene variant.
또한, 본 발명은 상기 방법에 의해 제조된 염 스트레스 내성이 증가된 형질전환 식물체 및 이의 종자를 제공한다. 상기 식물체는 쌍자엽 식물일 수 있으나, 이에 제한되지는 않는다. 상기 쌍자엽 식물은 전술한 바와 같다.The present invention also provides a transgenic plant with increased salt stress tolerance produced by the above method and its seeds. The plant may be a dicotyledonous plant, but is not limited thereto. The dicotyledonous plants are as described above.
또한, 본 발명은 서열번호 1의 염기서열로 이루어진, 고구마(Ipomoea batatas) 유래의 IbOrange 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환시켜 IbOrange 유전자를 과발현하는 단계를 포함하는 염 스트레스 내성이 증가된 형질전환 식물체의 제조 방법을 제공한다. In addition, the present invention is to increase the salt stress resistance comprising the step of overexpressing the IbOrange gene by transforming the plant cell with a recombinant vector comprising the IbOrange gene from sweet potato ( Ipomoea batatas) consisting of the nucleotide sequence of SEQ ID NO: 1 Provided are methods for producing a transgenic plant.
또한, 본 발명은 상기 방법에 의해 제조된 염 스트레스 내성이 증가된 형질전환 식물체 및 이의 종자를 제공한다. 상기 식물체는 쌍자엽 식물일 수 있으나, 이에 제한되지는 않는다. 상기 쌍자엽 식물은 전술한 바와 같다.The present invention also provides a transgenic plant with increased salt stress tolerance produced by the above method and its seeds. The plant may be a dicotyledonous plant, but is not limited thereto. The dicotyledonous plants are as described above.
또한, 본 발명은 서열번호 2의 염기서열로 이루어진, 고구마(Ipomoea batatas) 유래의 IbOrange 유전자에 특정 염기서열을 인위적으로 삽입한 IbOr-Ins 유전자 변이체를 포함하는, 식물체의 카로티노이드 함량 증가용 조성물을 제공한다. 본 발명의 조성물은 유효성분으로 서열번호 2의 염기서열로 이루어진 IbOr-Ins 유전자 변이체를 포함하며, 상기 유전자 변이체를 식물에 형질전환함으로써 식물체의 카로티노이드 함량을 증가시킬 수 있는 것이다.In another aspect, the present invention provides a composition for increasing the carotenoid content of the plant, comprising the IbOr-Ins gene variant artificially inserted into the IbOrange gene derived from sweet potato ( Ipomoea batatas) consisting of the nucleotide sequence of SEQ ID NO: 2 do. The composition of the present invention comprises an IbOr-Ins gene variant consisting of the nucleotide sequence of SEQ ID NO: 2 as an active ingredient, by increasing the carotenoid content of the plant by transforming the gene variant in the plant.
또한, 본 발명은 서열번호 2의 염기서열로 이루어진, 고구마(Ipomoea batatas) 유래의 IbOrange 유전자에 특정 염기서열을 인위적으로 삽입한 IbOr-Ins 유전자 변이체를 포함하는, 식물체의 염 스트레스 내성 증가용 조성물을 제공한다. 본 발명의 조성물은 유효성분으로 서열번호 2의 염기서열로 이루어진 IbOr-Ins 유전자 변이체를 포함하며, 상기 유전자 변이체를 식물에 형질전환함으로써 식물체의 염 스트레스 내성을 증가시킬 수 있는 것이다.In addition, the present invention comprises a nucleotide sequence of SEQ ID NO: 2, comprising a IbOr-Ins gene variant artificially inserted into the IbOrange gene derived from sweet potato ( Ipomoea batatas), a composition for increasing salt stress resistance of plants to provide. The composition of the present invention comprises an IbOr-Ins gene variant consisting of the nucleotide sequence of SEQ ID NO: 2 as an active ingredient, it is possible to increase the salt stress resistance of the plant by transforming the gene variant in the plant.
또한, 본 발명은 서열번호 1의 염기서열로 이루어진, 고구마(Ipomoea batatas) 유래의 IbOrange 유전자를 포함하는, 식물체의 염 스트레스 내성 증가용 조성물을 제공한다. 본 발명의 조성물은 유효성분으로 서열번호 1의 염기서열로 이루어진 IbOrange 유전자를 포함하며, 상기 유전자 변이체를 식물에 형질전환함으로써 식물체의 염 스트레스 내성을 증가시킬 수 있는 것이다.In another aspect, the present invention provides a composition for increasing salt stress resistance of plants, comprising the IbOrange gene derived from sweet potato ( Ipomoea batatas) consisting of the nucleotide sequence of SEQ ID NO: 1. The composition of the present invention comprises an IbOrange gene consisting of the nucleotide sequence of SEQ ID NO: 1 as an active ingredient, by increasing the salt stress resistance of the plant by transforming the gene variant in the plant.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.
실시예 1: IbOr-Ins 유전자의 클로닝 및 염기서열 분석Example 1 Cloning and Sequence Analysis of IbOr-Ins Genes
고구마에서 Orange 유전자를 클로닝하기 위한 PCR 프라이머를 제작하였고 프라이머 서열은 하기와 같다: 정방향 프라이머 (5'-atggtatattcaggtagaatcttgtcgctc-3'; 서열번호 3) 및 역방향 프라이머 (5'-ttaatcaaatgggtcaattcgtgggtcatg-3'; 서열번호 4). 이로부터 얻어진 IbOr를 주형으로 오버랩핑(overlapping) PCR을 수행하여 IbOr의 특정 염기서열의 인위적인 돌연변이를 수행하였다. IbOrange 유전자의 아미노산 서열 내의 133번 아미노산부터 -KSQNPNL-로 추정되는 염기서열을 삽입하기 위하여 PCR 프라이머를 제작하였고, 이때 사용한 프라이머 서열은 하기와 같다: 정방향 프라이머 (5'- gaaaagcaagaaaataaacttaa atcccagaaccctaac -3'; 서열번호 5) 및 역방향 프라이머 (5'- aagatttgcggatgtcaggtt agggttctgggatttaag -3'; 서열번호 6). 그 결과, 약 921bp의 PCR 산물을 얻어 pGEM-T-vector에 클로닝한 후 시퀀싱을 통하여 133번 아미노산부터 -KSQNPNL-로 삽입된 돌연변이를 확인하였다(도 1). Clonetech 사의 advantage2 중합효소를 이용하여 PCR을 수행하였고, 예상 크기의 PCR 산물을 pGEMeasy 클로닝 벡터(Promega)를 이용하여 클로닝한 후, 시퀀싱하여 전체 염기서열을 확인하였다. 이 cDNA 유전자의 이름을 IbOr-Ins이라고 명명하였다. 본 발명의 IbOr-Ins 유전자의 전체 길이는 924 bp의 cDNA가 307개의 아미노산을 코딩하고 있다(도 1). 아미노산 배열로 예측한 등전점 (pI)과 분자량 (Mw)은 각각 8.45 과 33.74 kDa 이다. PCR primers were prepared for cloning the Orange gene in sweet potatoes and the primer sequence was as follows: forward primer (5'-atggtatattcaggtagaatcttgtcgctc-3 '; SEQ ID NO: 3) and reverse primer (5'-ttaatcaaatgggtcaattcgtgggtcatg-3'; SEQ ID NO: 4 ). The IbOr obtained therefrom was subjected to overlapping PCR with a template to carry out an artificial mutation of a specific nucleotide sequence of IbOr. PCR primers were prepared to insert nucleotide sequences estimated to be -KSQNPNL- from amino acid 133 in the amino acid sequence of the IbOrange gene, and the primer sequences used were as follows: forward primer (5'- gaaaagcaagaaaataaacttaa atcccagaaccctaac -3 '; Number 5) and reverse primer (5′-aagatttgcggatgtcaggtt agggttctgggatttaag-3 ′; SEQ ID NO: 6). As a result, a PCR product of about 921bp was obtained and cloned into pGEM-T-vector, and sequencing confirmed the mutation inserted into amino acid number 133 through -KSQNPNL- (FIG. 1). PCR was performed using Clonetech's advantage2 polymerase, and the PCR product of the expected size was cloned using pGEMeasy cloning vector (Promega), followed by sequencing to confirm the entire nucleotide sequence. The cDNA gene was named IbOr-Ins. The total length of the IbOr-Ins gene of the present invention is that 924 bp cDNA encodes 307 amino acids (FIG. 1). The isoelectric point (pI) and molecular weight (Mw) predicted by the amino acid sequence are 8.45 and 33.74 kDa, respectively.
프라이머의 염기서열에는 Invitrogen의 gateway 발현 시스템을 이용하기 위해 상기 프라이머의 5' 말단에 어댑터 서열(대문자 표기)을 각각 추가하였다. 염기서열은 정방향 프라이머 (5'-CAAAAAAGCAGGCTNNa tggtatattcaggtagaatcttgtcgctc-3'; 서열번호 7) 및 역방향 프라이머 (5'-CAAGAAAGCTGGGTNttaatcaaatgggtcaattcgtgggtcatg-3'; 서열번호 8)이다. 먼저 상기 예상 크기의 PCR 산물을 pGEMeasy 클로닝 벡터 (Promega)를 이용하여 클로닝한 후, 시퀀싱하여 전체 염기서열을 확인하였다. 이 cDNA 유전자의 이름을 IbOr-Ins이라고 명명하였다. IbOrange 유전자와 IbOr-Ins 유전자가 클로닝되어 있는 두 개의 pGEMeasy 벡터를 각각 BP 반응시켜 pDONR207 벡터에 유전자를 클로닝하였다. 이후 pDONR207와 식물발현 벡터인 pGWB11 벡터와 LR 반응으로 클로닝한 IbOrange와 IbOr-Ins 유전자의 식물발현 벡터를 제작하였다 (도 3). In order to use the gateway expression system of Invitrogen, the nucleotide sequence of the primer was added with an adapter sequence (upper case) at the 5 'end of the primer. The base sequences are forward primers (5'- CAAAAAAGCAGGCTNN a tggtatattcaggtagaatcttgtcgctc-3 '; SEQ ID NO: 7) and reverse primers (5'- CAAGAAAGCTGGGTN ttaatcaaatgggtcaattcgtgggtcatg-3'; SEQ ID NO: 8). First, the PCR product of the expected size was cloned using a pGEMeasy cloning vector (Promega), followed by sequencing to confirm the entire sequence. The cDNA gene was named IbOr-Ins. Two pGEMeasy vectors, each of which had cloned IbOrange gene and IbOr-Ins gene, were cloned BP and cloned into pDONR207 vector. Then, plant expression vectors of IbOrange and IbOr-Ins genes cloned by pDONR207 and pGWB11 vectors, which are plant expression vectors, were subjected to LR reactions (FIG. 3).
실시예 2: IbOrange 및 IbOr-Ins 형질전환 고구마 배양세포 표현형 분석 Example 2: IbOrange and IbOr-Ins Transgenic Sweet Potato Cultured Cell Phenotyping
미색 고구마인 율미 배양세포에 도 3의 식물 발현 벡터를 아그로박테리움 매개 형질전환을 통해 형질전환 하였다. 그 결과, 비형질전환체인 율미의 경우 미색으로 변화가 없음에 반해, IbOrange 및 IbOr-Ins 형질전환 배양세포의 경우는 진한 노란색을 나타내었고, 특히 IbOr-Ins가 더 진한 것을 육안으로 확인할 수 있었다(도 4).Yukmi cultured cells, which are off-white sweet potatoes, were transformed through Agrobacterium mediated transformation of the plant expression vector of FIG. 3. As a result, in the case of Yumi, which is a non-transformant, there was no change in off-white color, whereas in IbOrange and IbOr-Ins transformed culture cells, the color was dark yellow, and in particular, IbOr-Ins was darker. 4).
실시예 3: IbOrange 및 IbOr-Ins 벡터를 형질전환한 고구마 배양세포에서의 카로티노이드 함량 분석 Example 3: Analysis of Carotenoid Content in Sweet Potato Cultured Cells Transformed with IbOrange and IbOr-Ins Vectors
IbOrange 및 IbOr-Ins벡터를 형질전환한 고구마 배양세포의 표현형을 관찰한 결과, 비형질전환 배양세포인 율미의 경우 미색을 띄는데 반해 IbOrange 및 IbOr-Ins을 형질전환한 배양세포의 경우 진한 노란색의 표현형을 나타내었다 (도 4). 실제로 각각의 형질전환 고구마 배양세포의 카로티노이드 함량을 HPLC 분석을 통해 정량하였다. 그 결과 IbOrange 배양세포는 율미 배양세포보다 전체 카로티노이드 함량이 약 4배 이상 증가하였고, IbOr-Ins의 경우 약 13배 이상 증가하였다. 특히, 베타카로틴의 경우 IbOrange 배양세포는 율미 배양세포보다 약 4배 이상 증가하였고, IbOr-Ins의 경우 10배 이상 증가하였다. 또한, IbOrange 배양세포에 비해 IbOr-Ins 배양세포는 전체 카로티노이드가 3배 이상 증가되었고, 베타카로틴의 경우도 2배 이상 증가되었다(도 5).The phenotypes of sweet potato cultured cells transformed with IbOrange and IbOr-Ins vectors showed off-white color for Yumi, a non-transformed cultured cell, whereas dark yellow for cultured cells transformed with IbOrange and IbOr-Ins. Phenotype is shown (FIG. 4). In fact, the carotenoid content of each transformed sweet potato cultured cell was quantified by HPLC analysis. As a result, the total carotenoid content of IbOrange cultured cells increased more than four times than that of Yulmi cultured cells, and about 13 times more than that of IbOr-Ins. In particular, in the case of beta carotene, IbOrange cultured cells increased about 4 times more than Yumi cultured cells, and IbOr-Ins increased 10 times or more. In addition, compared to IbOrange cultured cells, IbOr-Ins cultured cells increased the total carotenoid more than three times, and beta-carotene more than two times increased (Fig. 5).
실시예 4: 카로티노이드 생합성 관련 유전자 및 IbOrange 유전자 발현 분석 Example 4: Analysis of carotenoid biosynthesis related genes and IbOrange gene expression
율미를 포함한 두 개의 고구마 형질전환 배양세포들을 대상으로 RT-PCR을 통해 카로티노이드 생합성 관련 유전자 및 IbOrange 유전자의 발현을 분석하였다. 분석에 사용된 프라이머의 염기서열은 정방향 (5'-atcttgtcgctctcgtcctccacgacg ccg-3'; 서열번호 9) 및 역방향 (5'-cgtgggtcatgctcgcttgccatagccatc-3'; 서열번호 10)이다. 그 결과, 율미의 경우 PSY와 CHY-β를 제외한 나머지 카로티노이드 생합성 관련 유전자의 발현이 매우 약하거나 발현하지 않았고, IbOrange 형질전환 배양세포의 경우도 거의 발현하지 않았다. 그러나 IbOr-Ins 형질전환 배양세포의 경우 IbOrange 유전자의 과발현을 제외한 거의 모든 유전자의 발현이 율미와 비슷한 발현패턴을 보였다. 그러나 IbOr-Ins 형질전환 배양세포에서, IbOrange 유전자뿐만 아니라 LCY-β, CHY-β의 발현이 율미 및 IbOrange 형질전환 배양세포보다 높게 발현하는 것을 알 수 있었다 (도 6).Two sweet potato transformed culture cells including Yumi were analyzed for carotenoid biosynthesis-related genes and IbOrange genes by RT-PCR. The base sequences of the primers used in the analysis were forward (5'-atcttgtcgctctcgtcctccacgacg ccg-3 '; SEQ ID NO: 9) and reverse (5'-cgtgggtcatgctcgcttgccatagccatc-3'; SEQ ID NO: 10). As a result, in the case of Yumi, the expression of carotenoid biosynthesis related genes except for PSY and CHY-β was very weak or not expressed, and IbOrange transgenic cultured cells were hardly expressed. However, in IbOr-Ins transformed cells, expression of almost all genes except IbOrange gene showed similar expression pattern. But in IbOr-Ins transgenic cells, not only the IbOrange gene,LCY-β,CHY-β It was found that the expression was higher than Yumi and IbOrange transgenic culture cells (FIG. 6).
실시예 5: IbOrange 및 IbOr-Ins 형질전환 고구마 배양세포에서 염 스트레스 내성 분석 Example 5: Salt Stress Tolerance Analysis in IbOrange and IbOr-Ins Transgenic Sweet Potato Cultured Cells
DAB (3',3-diaminobenzidine)은 세포 내 H2O2와 결합하여 갈색의 침전물을 만들어 산화 스트레스가 높을수록 세포가 갈색으로 보인다. IbOrange 및 IbOr-Ins 형질전환 고구마 배양세포를 150 및 200 mM의 NaCl을 포함하는 MS1D 액체 배지에 24시간 동안 침지한 후, 배양세포가 받는 산화 스트레스를 DAB 염색을 통해 관찰하였다. 그 결과 율미의 경우 NaCl의 농도가 높아짐에 따라 갈색의 정도가 심하였고 460 nm에서 DAB 용액의 흡광도를 측정한 결과 높은 산화 스트레스를 나타내었지만, IbOrange 및 IbOr-Ins 형질전환 고구마 배양세포들은 낮은 산화 스트레스를 나타내었다 (도 7). 이를 통해 IbOrange 및 IbOr-Ins 형질전환 고구마 배양세포가 NaCl에 내성을 보임을 확인하였다.DAB (3 ', 3-diaminobenzidine) combines with intracellular H 2 O 2 to form a brown precipitate, the higher the oxidative stress, the browner the cells appear. After immersion of IbOrange and IbOr-Ins transformed sweet potato cultured cells in MS1D liquid medium containing 150 and 200 mM NaCl for 24 hours, oxidative stress received by the cultured cells was observed through DAB staining. As a result, in the case of Yulmi, the degree of brown was severe as NaCl concentration increased, and the absorbance of DAB solution at 460 nm showed high oxidative stress, but IbOrange and IbOr-Ins transformed sweet potato cultured cells showed low oxidative stress. (FIG. 7). It was confirmed that IbOrange and IbOr-Ins transformed sweet potato cultured cells show resistance to NaCl.
실시예 6: IbOrange 및 IbOr-Ins 형질전환 애기장대 분석Example 6: IbOrange and IbOr-Ins Transgenic Arabidopsis Assays
IbOrange 및 IbOr-Ins 벡터를 형질전환한 애기장대의 종자 표현형을 관찰하였다. 그 결과 비형질전환체인 야생형(Col-0)보다 형질전환체들이 노란 종피색을 띄는 것을 확인하였다(도 8).Seed phenotypes of Arabidopsis transformed with IbOrange and IbOr-Ins vectors were observed. As a result, it was confirmed that the transformants had a yellow bell color than the wild type (Col-0), which is a non-transformant (FIG. 8).
실제로 IbOrange 및 IbOr-Ins 형질전환 애기장대에서 카로티노이드 함량이 변화하는지를 알아보기 위해, 두 형질전환 애기장대 식물체의 잎 조직에서의 베타카로틴의 함량을 분광광도계를 통해 흡광도 440 nm에서 측정하였다. 그 결과 대조구인 야생형과 IbOrange 형질전환 애기장대의 경우 큰 차이를 보이지 않음에 반해, IbOr-Ins 형질전환 애기장대의 경우 약 1.5배 이상 증가된 베타카로틴 함량을 보였다(도 8). 그러나 보다 정확한 카로티노이드 함량을 측정하기 위해서는 sink로서 기능하는 조직의 비교가 필요할 것으로 사료된다.In order to determine whether the carotenoid content changes in IbOrange and IbOr-Ins transgenic Arabidopsis, the beta-carotene content in the leaf tissues of two transgenic Arabidopsis plants was measured at spectrophotometer at absorbance of 440 nm. As a result, the control wild type and IbOrange transgenic Arabidopsis showed no significant difference, while the IbOr-Ins transgenic Arabidopsis showed an increased beta-carotene content of about 1.5 times (Fig. 8). However, in order to measure more accurate carotenoid content, it is necessary to compare tissues that function as sinks.
또한 이들 형질전환체에서 카로티노이드 생합성관련 유전자의 발현양상을 RT-PCR을 통해 확인한 결과, 기존의 카로티노이드 생합성 관련 유전자와 애기장대 본래의 Orange 유전자의 발현에 큰 변화는 없었다. 그러나 삽입된 IbOrange의 발현은 형질전환체만 발현하였고 대조구인 야생형에서는 발현하지 않았다. 이를 통해 본 발명에서 사용한 프라이머가 고구마에 특이적임을 확인하였다 (도 9). In addition, as a result of confirming the expression pattern of carotenoid biosynthesis genes in these transformants through RT-PCR, there was no significant change in the expression of the existing carotenoid biosynthesis gene and Arabidopsis original orange gene. However, the expression of the inserted IbOrange was expressed only in the transformants and not in the control wild type. This confirmed that the primer used in the present invention is specific to sweet potatoes (FIG. 9).
실시예 7: IbOrange 및 IbOr-Ins 형질전환 애기장대에서 스트레스 유도성 유전자 NCED 발현 분석 Example 7: Analysis of Stress Inducible Gene NCED Expression in IbOrange and IbOr-Ins Transgenic Arabidopsis
카로티노이드 생합성 경로가 연장되면 대표적인 식물호르몬인 앱시스산을 합성하는데 앱시스산은 종자발아, 휴면, 유묘 생장 등과 같은 식물 발달에 중요한 호르몬의 하나일 뿐만 아니라 건조 스트레스, 저온 스트레스를 극복하는데 중요한 역할을 한다. 본 발명에서는 IbOrange 형질전환 애기장대 식물체에서 증가된 카로티노이드 함량에 의해 앱시스산이 유도되는지를 확인하기 위하여, NCED의 발현을 분석하였다. 애기장대에서 NCED는 9개의 패밀리(family)가 보고되어있고 앱시스산 함량과 스트레스에 발현이 증가된다고 보고되고 있다 (Rodrigo et al., 2006). RT-PCR 결과, 세 형질전환체와 대조군 모두 NCED1의 발현이 높았다. 그러나 NCED3, NCED6 및 NCED4의 경우, IbOr-Ins 형질전환 애기장대 식물체에서 대조군보다 더 높은 발현 패턴을 보였다. 따라서 이 결과를 바탕으로 IbOr-Ins 형질전환 애기장대 식물체들은 높은 앱시스산 함량과 염, 탈수 및 삼투압 스트레스와 같은 환경 스트레스에 높은 내성을 보일 것으로 사료된다 (도 10).The prolonged carotenoid biosynthesis pathway synthesizes a typical plant hormone, Apsis acid, which plays an important role in overcoming dry and cold stress as well as one of the important hormones for plant development such as seed germination, dormancy and seedling growth. In the present invention, the expression of NCED was analyzed in order to determine whether abscitic acid is induced by increased carotenoid content in IbOrange transgenic Arabidopsis plants. In Arabidopsis, NCED has been reported with nine families and increased expression of abscidic acid content and stress (Rodrigo et al., 2006). RT-PCR showed high expression of NCED1 in all three transformants and the control group. However, NCED3, NCED6 and NCED4 showed higher expression patterns in IbOr-Ins transgenic Arabidopsis plants than controls. Therefore, based on these results, IbOr-Ins transgenic Arabidopsis plants may be highly resistant to environmental stresses such as high abscidic acid content and salt, dehydration and osmotic stress (FIG. 10).
실시예 8: NaCl 처리시 IbOrange 및 IbOr-Ins 형질전환 애기장대의 표현형 분석 Example 8: Phenotypic analysis of IbOrange and IbOr-Ins transgenic Arabidopsis treated with NaCl
NaCl은 식물발달과 생장에 있어서 가장 큰 스트레스 원인으로, NaCl 스트레스를 받으면 먼저 세포의 탈수와 팽압의 상실을 가져오므로 수분 스트레스와 NaCl 스트레스는 같은 메커니즘으로 이해되었다. 그러나 NaCl 스트레스는 실제로 식물 세포에서 수분 스트레스보다 큰 탈수 효과를 나타낸다. 실제로 식물체 수준에서 IbOrange이 NaCl 스트레스에 내성을 보이는지를 확인하기 위하여 IbOrange 및 IbOr-Ins 형질전환 애기장대 식물체를 0, 50, 100 및 150 mM의 NaCl이 포함된 1/2 MS 고체 배지에서 2주 동안 생장시켰다. 배지에 seeding한 후, 7일째에 발아율을 관찰한 결과 형질전환체들은 대조군보다 NaCl 농도가 높아짐에도 불구하고 높은 발아율을 보였다(도 11). 또한 대조군인 야생형의 경우 NaCl 농도가 높아짐에 따라 생체중량도 급격히 저하되지만, IbOrange 및 IbOr-Ins 형질전환 애기장대의 경우 대조군과 비교하여 높은 생체중량을 보였다 (도 12). NaCl is the biggest stress factor in plant development and growth. Moisture stress and NaCl stress are understood to be the same mechanism because NaCl stress first causes cell dehydration and loss of swelling. However, NaCl stress actually shows greater dehydration effects than water stress in plant cells. To confirm that IbOrange is indeed resistant to NaCl stress at the plant level, IbOrange and IbOr-Ins transgenic Arabidopsis plants were grown for 2 weeks in 1/2 MS solid medium containing 0, 50, 100 and 150 mM NaCl. Growing. After seeding in the medium, the germination rate was observed on the 7th day, but the transformants showed a high germination rate even though NaCl concentration was higher than that of the control group (FIG. 11). In addition, in the wild type control group, the biomass is also rapidly reduced as NaCl concentration is increased, but IbOrange and IbOr-Ins transgenic Arabidopsis showed higher bio weight compared to the control group (FIG. 12).
또한 100mM NaCl 조건에서 IbOrange 및 IbOr-Ins 형질전환 애기장대들은 대조군보다 더 긴 원뿌리(primary root)가 관찰되었다. 특히 IbOr-Ins의 경우 대조군보다 약 2배 이상 더 길었다. IbOrange 형질전환 애기장대의 경우에도 높은 NaCl 조건에서 대조군과 비교하여 긴 원뿌리 표현형이 관찰되었다 (도 13). In addition, IbOrange and IbOr-Ins transgenic Arabidopsis at 100 mM NaCl had longer root roots than the control. In particular, IbOr-Ins was about 2 times longer than the control group. In the case of IbOrange transgenic Arabidopsis, the long root root phenotype was observed in the high NaCl condition compared to the control (FIG. 13).
또한 150 mM의 NaCl 농도에서의 상대수분함량을 측정한 결과, 대조군은 150 mM에서 70% 정도의 수분 함량을 가지고 있음에 반해 IbOrange 및 IbOr-Ins 형질전환 애기장대 식물체들은 무처리군과 크게 차이를 보이지 않았다. 따라서 IbOrange 및 IbOr-Ins 형질전환 애기장대 식물체들은 고염 조건에서 생체 내 결합수의 비율이 높아 상대적인 수분함량이 높으므로 외부의 고염 조건에도 잘 견디는 것으로 생각된다(도 14).In addition, as a result of measuring the relative moisture content at 150 mM NaCl concentration, the control group has a water content of about 70% at 150 mM, whereas the IbOrange and IbOr-Ins transgenic Arabidopsis plants differ significantly from the untreated group. I didn't see it. Therefore, IbOrange and IbOr-Ins transgenic Arabidopsis plants have a high proportion of in vivo bound water at high salt conditions, and thus have a relatively high water content.

Claims (18)

  1. 서열번호 2의 염기서열로 이루어진, 고구마(Ipomoea batatas) 유래의 IbOrange 유전자에 특정 염기서열을 인위적으로 삽입한 IbOr-Ins 유전자 변이체.IbOr-Ins gene variant comprising artificially inserting a specific base sequence into the IbOrange gene derived from sweet potato ( Ipomoea batatas ) consisting of the nucleotide sequence of SEQ ID NO: 2.
  2. 제1항의 유전자 변이체를 포함하는 재조합 벡터.Recombinant vector comprising the gene variant of claim 1.
  3. 제2항의 재조합 벡터로 형질전환된 숙주세포.A host cell transformed with the recombinant vector of claim 2.
  4. 제2항의 재조합 벡터를 식물세포에 형질전환시켜 IbOr-Ins 유전자 변이체를 과발현하는 단계를 포함하는 카로티노이드 함량이 증가된 형질전환 식물체의 제조 방법.A method for producing a transgenic plant having increased carotenoid content, comprising overexpressing IbOr-Ins gene variants by transforming the recombinant vector of claim 2 to plant cells.
  5. 제4항의 방법에 의해 제조된 카로티노이드 함량이 증가된 형질전환 식물체.Transgenic plant with increased carotenoid content produced by the method of claim 4.
  6. 제5항에 있어서, 상기 식물체는 쌍자엽 식물인 것을 특징으로 하는 형질전환 식물체.The transgenic plant of claim 5, wherein the plant is a dicotyledonous plant.
  7. 제5항에 따른 식물체의 종자.Seeds of plants according to claim 5.
  8. 제2항의 재조합 벡터를 식물세포에 형질전환시켜 IbOr-Ins 유전자 변이체를 과발현하는 단계를 포함하는 염 스트레스 내성이 증가된 형질전환 식물체의 제조 방법.A method for producing a transformed plant having increased salt stress resistance, comprising the step of transforming the recombinant vector of claim 2 into a plant cell to overexpress the IbOr-Ins gene variant.
  9. 제8항의 방법에 의해 제조된 염 스트레스 내성이 증가된 형질전환 식물체.A transgenic plant having increased salt stress resistance produced by the method of claim 8.
  10. 제9항에 있어서, 상기 식물체는 쌍자엽 식물인 것을 특징으로 하는 형질전환 식물체.10. The transgenic plant of claim 9, wherein the plant is a dicotyledonous plant.
  11. 제9항에 따른 식물체의 종자.Seeds of plants according to claim 9.
  12. 서열번호 1의 염기서열로 이루어진, 고구마(Ipomoea batatas) 유래의 IbOrange 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환시켜 IbOrange 유전자를 과발현하는 단계를 포함하는 염 스트레스 내성이 증가된 형질전환 식물체의 제조 방법.Preparation of a transgenic plant having increased salt stress resistance comprising the step of overexpressing the IbOrange gene by transforming a plant cell with a recombinant vector comprising an IbOrange gene derived from sweet potato ( Ipomoea batatas ) consisting of the nucleotide sequence of SEQ ID NO: 1 Way.
  13. 제12항의 방법에 의해 제조된 염 스트레스 내성이 증가된 형질전환 식물체.Transgenic plant with increased salt stress tolerance produced by the method of claim 12.
  14. 제13항에 있어서, 상기 식물체는 쌍자엽 식물인 것을 특징으로 하는 형질전환 식물체.The transforming plant according to claim 13, wherein the plant is a dicotyledonous plant.
  15. 제13항에 따른 식물체의 종자.Seeds of plants according to claim 13.
  16. 서열번호 2의 염기서열로 이루어진, 고구마(Ipomoea batatas) 유래의 IbOrange 유전자에 특정 염기서열을 인위적으로 삽입한 IbOr-Ins 유전자 변이체를 포함하는, 식물체의 카로티노이드 함량 증가용 조성물.Comprising the nucleotide sequence of SEQ ID NO: 2, comprising a IbOr-Ins gene variant artificially inserted into the IbOrange gene derived from sweet potato ( Ipomoea batatas ), carotenoid content of the plant.
  17. 서열번호 2의 염기서열로 이루어진, 고구마(Ipomoea batatas) 유래의 IbOrange 유전자에 특정 염기서열을 인위적으로 삽입한 IbOr-Ins 유전자 변이체를 포함하는, 식물체의 염 스트레스 내성 증가용 조성물.Comprising the nucleotide sequence of SEQ ID NO: 2, comprising a IbOr-Ins gene variant artificially inserted a specific base sequence into the IbOrange gene derived from sweet potato ( Ipomoea batatas ), a composition for increasing salt stress resistance of plants.
  18. 서열번호 1의 염기서열로 이루어진, 고구마(Ipomoea batatas) 유래의 IbOrange 유전자를 포함하는, 식물체의 염 스트레스 내성 증가용 조성물. Comprising the nucleotide sequence of SEQ ID NO: 1, comprising a IbOrange gene derived from sweet potato ( Ipomoea batatas ), a composition for increasing salt stress resistance of plants.
PCT/KR2011/008671 2010-11-22 2011-11-14 Ipomoea batatas-derived ibor-ins gene mutation, and use thereof WO2012070795A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800561532A CN103269578A (en) 2010-11-22 2011-11-14 Ibor-Ins gene mutant from ipomoea batatas and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0115965 2010-11-22
KR1020100115965A KR101281071B1 (en) 2010-11-22 2010-11-22 IbOr-Ins gene mutant from Ipomoea batatas and uses thereof

Publications (3)

Publication Number Publication Date
WO2012070795A2 true WO2012070795A2 (en) 2012-05-31
WO2012070795A3 WO2012070795A3 (en) 2012-10-11
WO2012070795A9 WO2012070795A9 (en) 2012-11-08

Family

ID=46146247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008671 WO2012070795A2 (en) 2010-11-22 2011-11-14 Ipomoea batatas-derived ibor-ins gene mutation, and use thereof

Country Status (3)

Country Link
KR (1) KR101281071B1 (en)
CN (1) CN103269578A (en)
WO (1) WO2012070795A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111448206A (en) * 2017-12-19 2020-07-24 韩国生命工学研究院 Ibor-R96H variants derived from sweet potatoes and uses thereof
CN117164686A (en) * 2022-05-11 2023-12-05 中国农业大学 Stress resistance related protein IbRCD1, related biological material and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359308B1 (en) * 2011-08-05 2014-02-10 한국생명공학연구원 Method for producing transgenic sweet potato plant accumulating carotenoid and anthocyanin at high level and the plant thereof
KR101478112B1 (en) * 2012-10-12 2014-12-31 한국생명공학연구원 IbOr-Ins gene increasing black rot resistance from Ipomoea batatas and uses thereof
CN108834803A (en) * 2018-07-12 2018-11-20 江苏徐淮地区徐州农业科学研究所(江苏徐州甘薯研究中心) A method of induction sweet potato buddings
KR102525540B1 (en) * 2021-03-05 2023-04-25 한국생명공학연구원 LCYB2 mutant from Daucus carota and uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990330B1 (en) * 2008-06-20 2010-10-29 한국생명공학연구원 IbOrange gene involved in carotenoid accumulation from Ipomoea batatas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138391B1 (en) 2005-12-07 2012-03-20 The United States Of America As Represented By The Secretary Of Agriculture Or gene and its use in manipulating carotenoid content and composition in plants and other organisms
KR100813284B1 (en) 2006-04-28 2008-03-13 제주대학교 산학협력단 Transgenic rape plants transformed phytoene synthase gene of a tangerine
KR20100100097A (en) * 2009-03-05 2010-09-15 화이젠 주식회사 Mus1 gene from sweetpotato and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990330B1 (en) * 2008-06-20 2010-10-29 한국생명공학연구원 IbOrange gene involved in carotenoid accumulation from Ipomoea batatas

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIRONORI MANO ET AL.: 'Isolation of a Regulatory Gene of Anthocyanin Biosynthesis in Tuberous Roots of Purple-Fleshed Sweet Potato' PLANT PHYSIOLOGY vol. 143, 2007, pages 1252 - 1268 *
MYOUNG DUCK KIM ET AL.: 'Selection of transgenic sweetpotato plants expressing 2-Cys peroxiredoxin with enhanced tolerance to oxidative stress' JOURNAL OF BIOTECHNOLOGY vol. 36, no. 1, 2009, pages 75 - 80 *
SALGADO-GARCIGLIA ET AL.: 'NaCl-resistant variant cells isolated from sweet potato cell suspensions' PLANT CELL TISSUE ORGAN CULTURE vol. 5, 1985, pages 3 - 12 *
SHAN LU ET AL.: 'The Cauliflower Or Gene Encodes a DnaJ Cysteine-Rich Doma in-Containing Protein That Mediates High Levels of b-Carotene Accumulation' THE PLANT CELL vol. 18, 2006, pages 3594 - 3605 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111448206A (en) * 2017-12-19 2020-07-24 韩国生命工学研究院 Ibor-R96H variants derived from sweet potatoes and uses thereof
CN111448206B (en) * 2017-12-19 2022-11-29 韩国生命工学研究院 IbOr-R96H variant derived from sweet potato and application thereof
CN117164686A (en) * 2022-05-11 2023-12-05 中国农业大学 Stress resistance related protein IbRCD1, related biological material and application thereof

Also Published As

Publication number Publication date
KR101281071B1 (en) 2013-07-09
WO2012070795A3 (en) 2012-10-11
KR20120054712A (en) 2012-05-31
WO2012070795A9 (en) 2012-11-08
CN103269578A (en) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2012070795A2 (en) Ipomoea batatas-derived ibor-ins gene mutation, and use thereof
US20180135067A1 (en) Plant body ideal for high-density planting and use thereof
WO2012047006A2 (en) Ggps gene for promotimg higher growth or biomass of plant and use thereof
KR101305277B1 (en) SDA1 gene from Arabidopsis thaliana and uses thereof
KR101175102B1 (en) OsABF2 gene from Oryza sativa and uses thereof
KR101622942B1 (en) Genes involved in controlling seed germination and chromatin structure and uses thereof
KR101281069B1 (en) SlFTR-c gene from Solanum lycopersicum and uses thereof
KR101270232B1 (en) PAC multiple expression gene increasing carotenoid content of plant and uses thereof
WO2013048035A2 (en) Method for increasing plant resistance against environmental stress using microrna
KR101328610B1 (en) AtEXPA7 gene from Arabidopsis thaliana and uses thereof
KR101350170B1 (en) Method for preparing transgenic plant with increased anthocyanin content and the plant thereof
KR101197465B1 (en) OsABF1 gene from Oryza sativa and uses thereof
KR101293453B1 (en) Method for producing transgenic plant with increased resistance to various environmental stresses using the atfkbp16-1 gene and the plant thereof
KR101315068B1 (en) SbtA gene from Synechocystis sp. PCC6803 and uses thereof
KR101260935B1 (en) A red pepper gene CaBI-1 confers stress-tolerance to plants
KR101261277B1 (en) IbLEA14 gene from a root of Ipomoea batatas and uses thereof
KR101315345B1 (en) Flowering gene XsFTs from Cocklebur and the uses thereof
KR101270231B1 (en) AtSZF2 gene increasing salt stress resistance of plant and uses thereof
KR101407336B1 (en) Plant transformed with a taxadiene synthase gene and the method for mass production of taxadiene using the transformed plant
KR101325046B1 (en) Jasmonates inducible cis-acting promoter element and uses thereof
WO2012165678A1 (en) Oshmb4 gene derived from oryza sativa, and use thereof
KR101315342B1 (en) Use of IbLEA14 gene as lignin biosynthesis regulator
KR101282408B1 (en) OsHMB4 gene from Oryza sativa and uses thereof
KR101293454B1 (en) Method for producing transgenic plant with increased resistance to environmental stresses and the plant thereof
KR20120084432A (en) Recombinant vector for transforming plant plastid and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843931

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843931

Country of ref document: EP

Kind code of ref document: A2