WO2012070586A1 - Light emitting device and manufacturing method therefor - Google Patents

Light emitting device and manufacturing method therefor Download PDF

Info

Publication number
WO2012070586A1
WO2012070586A1 PCT/JP2011/076945 JP2011076945W WO2012070586A1 WO 2012070586 A1 WO2012070586 A1 WO 2012070586A1 JP 2011076945 W JP2011076945 W JP 2011076945W WO 2012070586 A1 WO2012070586 A1 WO 2012070586A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
electrodes
organic
emitting layer
Prior art date
Application number
PCT/JP2011/076945
Other languages
French (fr)
Japanese (ja)
Inventor
祥司 美馬
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012070586A1 publication Critical patent/WO2012070586A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/86Series electrical configurations of multiple OLEDs

Definitions

  • Embodiments of the present invention relate to a light emitting device and a manufacturing method thereof.
  • An organic electroluminescence element (hereinafter, “electroluminescence” may be referred to as “EL”) is a kind of light-emitting element that emits light when a voltage is applied thereto, and a pair of electrodes and a pair of electrodes. And a light emitting layer disposed on the substrate.
  • EL organic electroluminescence element
  • holes are injected from the anode and electrons are injected from the cathode. Light emission occurs when these holes and electrons are combined in the light emitting layer.
  • Patent Document 1 A light emitting device in which a plurality of such organic EL elements are connected in series has been proposed (see, for example, Patent Document 1).
  • FIG. 7 is a diagram schematically showing a light emitting device 2 in which a plurality (three in FIG. 7) of organic EL elements 1 are connected in series.
  • FIG. 7A is a plan view of the light-emitting device 2
  • FIG. 7B is a cross-sectional view of the light-emitting device 2.
  • the light emitting device 2 shown in FIGS. 7A and 7B includes three organic EL elements 1. These three organic EL elements 1 are arranged on the support substrate 3 along a predetermined arrangement direction X and are connected in series. Each organic EL element 1 includes a pair of electrodes 4 and 5 and a light emitting layer 6 provided between the electrodes.
  • a first electrode 4 one electrode disposed near the support substrate 3 out of the pair of electrodes 4 and 5 is referred to as a first electrode 4, and the other electrode disposed farther from the support substrate 3 than the first electrode 4. Is referred to as a second electrode 5.
  • a predetermined layer different from the light emitting layer may be provided between the first and second electrodes 4 and 5.
  • At least one of the first electrode 4 and the second electrode 5 is formed of a conductive thin film that exhibits optical transparency. This is because light generated in the light emitting layer 6 needs to be emitted to the outside of the organic EL element.
  • conductive thin films are usually indium tin oxide (Indium).
  • Metal oxide thin films such as Tin Oxide (abbreviated as ITO) and Indium Zinc Oxide (abbreviated as IZO) are used.
  • the first electrodes 4 of the organic EL elements 1 are discretely arranged at predetermined intervals in the arrangement direction X, and thus are not electrically connected to each other only by wiring.
  • the second electrodes 5 of each organic EL element 1 are arranged at a predetermined interval in the arrangement direction X, and therefore are not electrically connected to each other only by wiring.
  • the first electrode 4 and the second electrode 5 of the organic EL element 1 adjacent to each other in the arrangement direction X are connected in contact with each other and are electrically connected.
  • the plurality of organic EL elements 1 constitutes a series connection.
  • the first electrode 4 is one of the arrangement directions X (hereinafter, “one of the arrangement directions X” may be referred to as “left”, and “the other of the arrangement directions X” may be referred to as right). Up to a position where the end (hereinafter also referred to as the left end) overlaps the right end (hereinafter also referred to as the right end) of the second electrode 5 of the organic EL element 1 adjacent to the left.
  • the first electrode 4 is formed on the support substrate 3. Specifically, three first electrodes 4 are discretely formed on the support substrate 3 at predetermined intervals in the arrangement direction X (see FIG. 8A).
  • an ink containing a material that becomes the light emitting layer 6 is applied onto the support substrate 3 by a predetermined application method.
  • the coating method it is difficult for the coating method to selectively apply the ink pattern only to the intended portion, so that the ink is also applied to unnecessary portions such as between the first electrodes 4 (see FIG. 8B). Therefore, after applying the ink, a step of removing the ink applied to unnecessary portions is required (see FIG. 8C).
  • the ink can be removed by, for example, a method of wiping ink using a cloth or cotton swab containing a solvent in which the ink is soluble, a laser ablation method, or the like.
  • the second electrode 5 is patterned (see FIG. 8D).
  • a light emitting device 2 including three organic EL elements 1 connected in series can be manufactured.
  • the above-described conventional technique has a problem that the number of steps increases because a step of removing ink applied to unnecessary portions is required. Furthermore, when removing the ink applied to unnecessary portions, there is a possibility that foreign matters may be mixed into the light emitting layer.
  • the ITO thin film or IZO thin film used as an electrode exhibiting optical transparency does not necessarily have sufficient conductivity.
  • an object of the present invention is a structure that does not require a step of removing ink applied to an unnecessary portion when forming a light emitting layer by a coating method, and also in a large area organic EL element, light emission unevenness and heat generation. It is to provide a light emitting device with a small amount of light.
  • the light emitting device includes a plurality of first electrodes arranged on a support substrate, a light emitting layer covering the plurality of first electrodes, and arranged on the light emitting layer and facing each of the plurality of first electrodes.
  • a plurality of second electrodes wherein each organic electroluminescence element is constituted by a pair of the first and second electrodes sandwiching the light emitting layer
  • the first electrode includes a first body portion and And a first extending portion extending from the first body portion so as to protrude from the light emitting layer along a direction perpendicular to the arrangement direction of the first electrodes
  • the second electrode includes a second A main body portion, and a second extending portion extending from the main body portion so as to protrude from the light emitting layer along a direction perpendicular to an arrangement direction of the second electrodes
  • the first and second electrodes At least one of the two has a connection portion extending along the arrangement direction thereof.
  • connections the is connected to the other of the first and second electrodes, at least one of the first and second electrodes, characterized in that it is a mesh electrode (mesh-shaped translucent electrode).
  • mesh electrode mesh-shaped translucent electrode
  • the mesh electrode is preferably made of a mixture of a conductive filler and a resin, or only a conductive material.
  • the sheet resistance of the mesh electrode is preferably 5 ( ⁇ / sq.) Or less.
  • the light transmittance of the mesh electrode is 50% or more.
  • the first electrode includes another extension portion extending from the first main body portion in a direction opposite to the first extension portion so as to protrude from the light emitting layer.
  • the second electrode includes another extension portion extending from the second main body portion in a direction opposite to the second extension portion so as to protrude from the light emitting layer.
  • This manufacturing method is the method for manufacturing the light emitting device described above, wherein the ink containing the material to be the light emitting layer is continuously applied so as to cover the plurality of first electrodes, and the applied ink is solidified. A step of forming the light emitting layer.
  • the method for applying the ink is a cap coating method, a slit coating method, a spray coating method or a printing method.
  • the present invention is a structure that does not require a step of removing ink applied to an unnecessary part when forming a light emitting layer by a coating method, and even in a large-area organic EL element, light emission unevenness and heat generation are eliminated. A small number of light emitting devices can be realized.
  • FIG. 1A is a plan view showing the light emitting device 11 of the first embodiment
  • FIG. 1B is a longitudinal sectional view of the light emitting device 11.
  • FIG. 2 is a diagram for explaining a manufacturing process of the light emitting device 11.
  • FIG. 3 is a diagram for explaining a manufacturing process of the light emitting device 11.
  • FIG. 4 is a diagram schematically showing the light emitting device 31 of the second embodiment.
  • FIG. 5 is a diagram schematically showing the light emitting device 41 of the third embodiment.
  • FIG. 6 is a diagram illustrating a light emitting device 61 according to the fourth embodiment.
  • FIG. 7 schematically shows a light-emitting device 2 in which a plurality of organic EL elements 1 are connected in series.
  • FIG. 7A is a plan view of the light-emitting device 2
  • FIG. FIG. FIG. 8 is a diagram for explaining a manufacturing process of the light emitting device 2.
  • FIG. 9 is a plan view of a mesh electrode.
  • FIG. 10 is a longitudinal sectional view of the organic EL element.
  • FIG. 11 is a longitudinal sectional view of the organic EL element.
  • FIG. 12 is a longitudinal sectional view of the organic EL element.
  • FIG. 13 is a longitudinal sectional view of the organic EL element.
  • FIG. 14 is a longitudinal sectional view of the organic EL element.
  • FIG. 15 is a longitudinal sectional view of the organic EL element.
  • FIG. 16 is a longitudinal sectional view of the organic EL element.
  • FIG. 17 is a longitudinal sectional view of the organic EL element.
  • FIG. 18 is a block diagram of a power supply unit connected to the organic EL element.
  • an XYZ three-dimensional orthogonal coordinate system is set as shown.
  • the thickness direction of the substrate is the Z axis
  • the element arrangement direction is the X axis
  • the direction perpendicular to both is the Y axis.
  • FIG. 1A is a plan view schematically showing the light emitting device 11 of the first embodiment
  • FIG. 1B is a longitudinal sectional view of the light emitting device 11.
  • the light emitting device 11 includes a support substrate 12 and a plurality of organic EL elements 13 provided on the support substrate 12 and connected in series.
  • the predetermined arrangement direction X is set in a direction perpendicular to the thickness direction Z of the support substrate 12. That is, the arrangement direction X is set parallel to the main surface of the support substrate 12.
  • the plurality of organic EL elements 13 are arranged along a predetermined straight line (X), but may be arranged along a predetermined curve.
  • the arrangement direction corresponds to the tangential direction of the predetermined curve.
  • the number of organic EL elements 13 provided on the support substrate 12 is appropriately set according to the design.
  • a light emitting device 11 provided with three organic EL elements 13 will be described below.
  • Each organic EL element 13 includes a pair of electrodes 14 and 15, and a light emitting layer 16 provided between the electrodes 14 and 15 and covering the plurality of electrodes 14.
  • One of the pair of electrodes 14 and 15 functions as an anode of the organic EL element 13, and the other electrode functions as a cathode of the organic EL element 13.
  • an electrode disposed near the support substrate 12 is referred to as a first electrode 14, and the other electrode disposed apart from the support substrate 12 is referred to as a second electrode 15.
  • At least one light emitting layer 16 is provided between the first and second electrodes 14 and 15.
  • the 1st and 2nd electrodes 14 and 15 not only the one light emitting layer 16 but the layer different from a some light emitting layer and a light emitting layer may be provided as needed.
  • the light emitting layer 16 extends along the arrangement direction X across the plurality of organic EL elements 13.
  • the plurality of organic EL elements 13 connected in series, from the light emitting layer 16 of the organic EL element 13 provided at one end in the arrangement direction X (left end in FIG. 1), the other end in the arrangement direction X (in FIG. 1).
  • the light emitting layer extending along the arrangement direction X is continuously and integrally formed up to the light emitting layer 16 of the organic EL element 13 provided at the right end).
  • the predetermined layer extends along the arrangement direction X across the plurality of organic EL elements 13.
  • the organic EL elements 13 may be formed so as to be separated from each other.
  • the predetermined layer different from the light emitting layer 16 is arranged across the plurality of organic EL elements 13 like the light emitting layer 16. It preferably extends along the direction X. This is because, as will be described later, a step of removing a layer formed at an unnecessary portion can be omitted.
  • the first and second electrodes 14 and 15 have extending portions 17 and 18, respectively.
  • the extending portions 17 and 18 are viewed from the thickness direction Z (one direction) of the support substrate 12 (hereinafter sometimes referred to as “in plan view”), and the thickness direction Z and the arrangement direction X of the support substrate 12.
  • the main body portions (referred to as a first main body portion and a second main body portion) extend in the width direction Y perpendicular to the light emitting layer 16 so as to protrude from the light emitting layer 16.
  • the extension part 17 (17 a, 17 b) of the first electrode 14 is formed integrally with the main body part of the first electrode 14.
  • the extending portion 18 (18a, 18b) of the second electrode 15 is formed integrally with the main body portion of the second electrode 15.
  • the first electrode 14 and the second electrode 15 (a pair of electrodes) constituting each organic EL element 13 are not configured to be in contact with each other for each organic EL element 13, and in plan view (Z-axis)
  • the extending portion 17 of the first electrode 14 and the extending portion 18 of the second electrode 15 are arranged so as not to overlap each other.
  • the extending portion 17 of the first electrode 14 extends in the width direction Y from the left end portion (hereinafter also referred to as the left end portion) of the portion facing the second electrode 15 in the first electrode 14. Extend.
  • the extending portion 18 of the second electrode 15 extends in the width direction Y from the right end portion (hereinafter sometimes referred to as the right end portion) of the second electrode 15 facing the first electrode 14. Yes. Therefore, the extending portion 17 of the first electrode 14 and the extending portion 18 of the second electrode 15 do not overlap in a plan view and are not in direct contact.
  • One electrode of the first and second electrodes 14 and 15 has a connection portion.
  • This connecting portion extends from the extending portion to the other electrode of the organic EL element adjacent in the arrangement direction X in the arrangement direction X, and is connected to the other electrode.
  • the connecting portion is not limited to one electrode of the first and second electrodes 14 and 15 (out of the pair of electrodes), but the other electrode of the first and second electrodes 14 and 15 (out of the pair of electrodes). May also be included. That is, the other of the first and second electrodes 14 and 15 (of the pair of electrodes) also extends in the arrangement direction X from the extending portion to one electrode of the organic EL element adjacent in the arrangement direction X. You may have the connection part connected to this one electrode.
  • the first electrode 14 corresponding to one of the first and second electrodes 14 and 15 has a connection portion 19. That is, the first electrode 14 extends to the left from the extending portion 17 of the first electrode 14 to the extending portion 18 of the second electrode 15 (the other electrode) of the organic EL element disposed on the left side.
  • a connection unit 19 is provided. As described above, the connection portion 19 of the first electrode 14 overlaps with the extension portion 18 of the second electrode 15 (the other electrode) of the organic EL element disposed on the left side in a plan view, and directly at the overlapping portion. It is connected to the second electrode 15 (the other electrode).
  • the extending portion 18 extending in the width direction Y from the light emitting layer 16 in a plan view is provided in one or the other of the width directions Y, but is preferably provided in both the width directions Y. That is, the extended portions 17 and 18 protrude from the light emitting layer 16 in the width direction Y and the first extending portions 17a and 18a extending so as to protrude from the light emitting layer in one of the width directions in a plan view. It is preferable to include the second extending portions 17b and 18b extending so as to.
  • the first electrode 14 and the second electrode 15 of the adjacent organic EL element 13 are both in the width direction Y. Will be connected at the end.
  • the first electrode 14 of the organic EL element 13 arranged on the leftmost side and the second electrode 15 of the organic EL element 13 arranged on the rightmost side. are respectively connected to wirings electrically connected to the power supply unit EP (see FIG. 18).
  • the power supply unit EP As a result, power is supplied from the power supply unit EP to the plurality of organic EL elements 13 constituting the series connection, and each organic EL element emits light.
  • Each organic EL element 13 is supplied with power from the connecting portion.
  • the organic EL elements 13 are supplied with power from both ends in the width direction Y by providing the extending portions 17 and 18 extending in the width direction Y from the light emitting layer 16 in plan view.
  • the luminance decreases due to a voltage drop.
  • the luminance decreases due to the voltage drop. Since power is supplied from the end portion, the influence of the voltage drop can be suppressed as compared with the element configuration supplied from one end portion in the width direction Y, and thus luminance unevenness can be suppressed.
  • Organic EL elements include a bottom emission type configuration, a top emission type configuration, and a dual emission type configuration.
  • the bottom emission type organic EL element emits light to the outside through the support substrate
  • the top emission type organic EL element emits light to the outside from the side opposite to the support substrate
  • the double emission type organic EL element is Light is emitted to the outside from both the support substrate side and the opposite side of the support substrate.
  • any of a bottom emission type, a top emission type, and a double emission type organic EL element can be adopted.
  • the first electrode 14 is constituted by an electrode exhibiting optical transparency, and conversely, the second electrode 15 is usually constituted by an electrode that reflects light. Composed.
  • the second electrode 15 is composed of an electrode exhibiting optical transparency, and conversely, the first electrode 14 is usually composed of an electrode that reflects light. Composed.
  • both the first and second electrodes 14 and 15 are composed of electrodes exhibiting light transmittance.
  • the first and second electrodes 14 and 15 are configured by an electrode exhibiting optical transparency.
  • the electrode exhibiting optical transparency is used.
  • 14 (15) consists of a mesh-like translucent electrode (mesh electrode) configured by arranging conductors in a mesh pattern (see FIG. 9). That is, the mesh-like translucent electrode 14 (15) has a plurality of openings OP arranged two-dimensionally.
  • the mesh-like translucent electrode includes a conductor arranged in a mesh shape.
  • This conductor forms a network structure in a two-dimensional plane parallel to the main surface of the support substrate 12.
  • the network structure only needs to have a structure in which conductors are continuously formed in at least the two-dimensional plane and are electrically connected.
  • a regular structure such as a lattice structure or a honeycomb structure is used. It may have or may not have a regular structure.
  • the conductor of the mesh-like translucent electrode is preferably composed of a mixture of a conductive filler and a resin, or only a conductive material.
  • conductive filler metal fine particles made of Au, Ag, Al, carbon or the like, or a conductive wire made of Au, Ag, Al, carbon or the like can be used.
  • the resin mixed with the conductive filler may be a resin such as epoxy, acrylic, nylon, urethane, phenol, or a conductive resin such as 3,4-polyethylenedioxythiophene / polystyrene sulfonic acid. it can.
  • the conductive material constituting the conductor of the mesh-like translucent electrode can be made of Au, Ag, Al, Cu alone or an alloy containing one or more of these metals.
  • the mesh-like translucent electrode has a non-translucent portion made of a conductor that forms a mesh-like structure in a two-dimensional plane parallel to the main surface of the support substrate 12.
  • the light incident on the mesh-like translucent electrode is transmitted through the mesh-like translucent electrode through the remaining region (hereinafter also referred to as a translucent portion) excluding the non-translucent portion.
  • the mesh-like translucent electrode has a non-translucent portion, it has translucency as a whole when viewed macroscopically to the extent that it is visible to the human eye.
  • a transparent conductive layer may be laminated on one main surface or both main surfaces of the mesh-like translucent electrode in contact with the mesh-like translucent electrode. By laminating the transparent conductive layer in this manner, the conductivity of the light transmitting part can be increased, and further, the step between the light transmitting part and the non-light transmitting part can be reduced.
  • a transparent conductive layer a transparent conductive resin such as a metal oxide such as ITO or ZTO, polyaniline or a derivative thereof, or polythiophene or a derivative thereof can be used.
  • the transparent conductive resin has a lower refractive index than metal oxides such as ITO and ZTO, the light emitted from the light emitting layer can be emitted from the light emitting device even when the transparent conductive resin is laminated on the light transmitting portion. It can be taken out efficiently.
  • the transparent conductive layer can be formed by a vacuum deposition method, a sputtering method, an ion plating method, a printing method using ink, an ink jet method, or the like.
  • the sheet resistance of the mesh-like translucent electrode is preferably 10 ( ⁇ / sq.) Or less, and more preferably 5 ( ⁇ / sq.) From the viewpoint of improving the light emission efficiency of the organic EL element, reducing luminance unevenness and heat generation. .) Or less, more preferably 1 ( ⁇ / sq.) Or less.
  • the film thickness of the mesh-like translucent electrode is appropriately selected from the viewpoint of the conductivity of the mesh-like translucent electrode and the ease of production of the organic EL device, and is preferably 50 nm to 1 ⁇ m, more preferably 100 nm to 500 nm. preferable.
  • the aperture ratio of the mesh-like translucent electrode that is, the ratio of the translucent portion per unit area is appropriately selected in consideration of the conductivity and the light extraction efficiency, but is preferably 30 to 95%, and more preferably 50 to 90. % Is more preferable.
  • the line width of the conductors arranged in a mesh shape is appropriately selected in consideration of conductivity and light extraction efficiency, but is preferably 5 ⁇ m to 1 mm, more preferably 10 ⁇ m to 200 ⁇ m.
  • the area of each light-transmitting portion surrounded by the conductors arranged in a mesh shape is preferably 100 ⁇ m 2 to 4 mm 2 on average, and more preferably 400 ⁇ m 2 to 1 mm 2 .
  • the light transmittance of the mesh-like translucent electrode is preferably 30% or more, preferably 50% or more, and more preferably 70% or more.
  • the light transmittance in this specification means visible light transmittance.
  • the mesh-like translucent electrode may be formed by (1) first forming a conductive thin film made of the above-described conductor on one surface and further patterning this conductive thin film into a mesh shape by a predetermined method. (2) The above-described conductor may be directly patterned in a mesh shape.
  • a conductive thin film made of a conductor is formed on one surface by a vacuum deposition method, a sputtering method, an ion plating method, etc., and then the conductive thin film is patterned by a photolithography method.
  • a transparent electrode can be formed.
  • a coating liquid in which the conductive filler and the resin are dispersed in a predetermined dispersion medium is applied and formed by a predetermined application method, and this is patterned by a photolithography method to form a mesh-like translucent electrode. be able to.
  • a mesh-like translucent electrode is formed by forming the conductor in a mesh shape by a vacuum deposition method, a sputtering method, an ion plating method or the like using a mask having a predetermined pattern. Can be formed.
  • a network-like translucent electrode is patterned by applying a coating liquid in which the conductive filler and the resin are dispersed in a predetermined dispersion medium to form a coating liquid by a printing method, an ink-jet method, or the like. can do.
  • a mesh-like translucent electrode prepared in advance on a predetermined base different from the support substrate 12 is transferred onto the support substrate 12 by a laminating method, whereby the mesh-like translucent electrode is formed on the support substrate 12. May be formed.
  • the method for manufacturing a light-emitting device includes a support substrate and a plurality of organic electroluminescent elements provided on the support substrate along a predetermined arrangement direction and connected in series.
  • Each of the organic electroluminescence elements includes a pair of electrodes and a light emitting layer provided between the electrodes, the light emitting layer straddling the plurality of organic electroluminescence elements, the predetermined arrangement
  • Each of the pair of electrodes extends in a direction perpendicular to both the thickness direction of the support substrate and the arrangement direction when viewed from one thickness direction of the support substrate.
  • One of the pair of electrodes is the other of the organic electroluminescence elements adjacent in the arrangement direction.
  • a connecting portion extending from the extending portion to the other electrode in the arrangement direction and connected to the other electrode, wherein at least one of the pair of electrodes has a conductor mesh A method of manufacturing a light-emitting device that is a mesh-like translucent electrode that is arranged in the form of an ink containing a material that becomes the light-emitting layer, the predetermined arrangement direction across the plurality of organic EL elements And a step of forming a light-emitting layer by solidifying the applied coating.
  • FIGS. 2 to 5 (A) is a plan view and (B) is a cross-sectional view.
  • the support substrate 12 is prepared.
  • a support substrate 12 on which a drive circuit (not shown) for driving the organic EL element 13 is formed in advance may be prepared.
  • the first electrode 14 is patterned on the support substrate 12 (see FIGS. 2A and 2B).
  • a mesh-like translucent electrode configured by arranging the above-described conductors in the form of a mesh as the first electrode 14 is formed in a pattern on the support substrate 12. The method for forming this mesh-like translucent electrode is as described above.
  • the first electrode is a non-transparent electrode, for example, a conductor film is formed on the support substrate 12 by sputtering or vapor deposition, and then the conductor film is patterned into a predetermined shape by photolithography. By doing so, the first electrode 14 can be patterned.
  • the first electrode 14 may be pattern-formed only at a predetermined portion by a mask vapor deposition method or the like without performing a photolithography process.
  • the first electrode 14 may be formed by transferring a conductive thin film by a laminating method.
  • a support substrate 12 on which the first electrode 14 is formed in advance may be prepared.
  • the light emitting layer 16 is formed on the support substrate 12 (see FIGS. 3A and 3B).
  • the light emitting layer 16 may be formed by continuously applying an ink containing a material to be the light emitting layer 16 along the arrangement direction X across the plurality of organic EL elements 13 and solidifying the applied coating film. it can.
  • Examples of the ink application method include a cap coating method, a slit coating method, a spray coating method, a printing method, an ink jet method, and a nozzle printing method. Among these methods, a large area can be efficiently applied. Possible cap coating methods, slit coating methods, spray coating methods and printing methods are preferred.
  • the second electrode 15 is formed on the support substrate 12 (see FIGS. 1A and 1B).
  • the second electrode 15 is a light-transmitting electrode
  • a mesh-like translucent electrode configured by arranging the above-described conductors in the form of a mesh is formed on the light-emitting layer 16 as a pattern.
  • the method for forming this mesh-like translucent electrode is as described above.
  • the second electrode 15 is a non-translucent electrode, for example, a conductor film is formed on the support substrate 12 by sputtering or vapor deposition, and then the conductor film is formed into a predetermined shape by photolithography.
  • the second electrode 15 can be patterned by patterning. Note that the second electrode 15 may be patterned only on a predetermined portion by a mask vapor deposition method or the like without performing a photolithography process.
  • a predetermined layer different from the light emitting layer 16 may be provided between the first and second electrodes 14 and 15.
  • a predetermined layer different from the light emitting layer 16 is formed by a coating method
  • a predetermined layer different from 16 is formed.
  • a predetermined layer different from the light emitting layer is formed by a dry method such as vapor deposition
  • the predetermined layer different from the light emitting layer may be selectively formed only on the first electrode 14.
  • Examples of the ink application method include a cap coating method, a slit coating method, a spray coating method, a printing method, an ink jet method, and a nozzle printing method. Among these methods, a large area can be efficiently applied. Possible cap coating methods, slit coating methods, spray coating methods and printing methods are preferred.
  • the light emitting layer 16 not only the light emitting layer 16 but also a predetermined layer different from the light emitting layer 16 may be further provided between the first and second electrodes 14 and 15.
  • the first electrode 14 is an anode
  • the second electrode 15 is a cathode
  • examples of the layer provided between the cathode 15 and the light emitting layer 16 include an electron transport layer and a hole blocking layer.
  • the first electrode 14 will be described as the anode 14 and the second electrode 15 will be described as the cathode 15 as necessary. However, these arrangements can be replaced.
  • the hole blocking layer has a function of blocking hole transport.
  • these layers may also serve as the hole blocking layer.
  • Examples of the layer Y provided between the anode 14 and the light emitting layer 16 include a hole injection layer, a hole transport layer, and an electron block layer.
  • the organic EL element can include a predetermined layer in addition to the light emitting layer between the pair of electrodes as described above.
  • the organic EL layer 10 formed between the electrode (anode) 14 and the electrode (cathode) 15 formed on the support substrate 12 has the following structure.
  • the organic EL element has an organic layer Y between the electrode (anode) 14 and the light emitting layer 16 and an organic layer between the electrode (cathode) 15 and the light emitting layer 16. It can be set as the structure where the layer X interposes.
  • the organic EL element has a structure in which an organic layer Y is interposed between an electrode (anode) 14 and a light emitting layer 16, and an electrode 15 is formed directly on the light emitting layer 16. It can be set as a structure.
  • the organic EL element has a structure in which the organic layer X is interposed between the electrode (cathode) 15 and the light emitting layer 16 and the light emitting layer 16 is in direct contact with the electrode 14. It can be.
  • the organic layer X may be composed of two or more kinds of organic layers X1 and X2 as shown in FIG. 13, and the organic layer Y is composed of two or more kinds of organic layers Y1 and Y2 as shown in FIG. It may be.
  • only the light emitting layer 16 may be formed between the anode 14 and the cathode 15 as shown in FIG.
  • Examples of the layer X provided between the cathode 15 and the light emitting layer 16 include an electron injection layer, an electron transport layer, and a hole blocking layer. As shown in FIG. 13, when both the electron injection layer X1 and the electron transport layer X2 are provided between the cathode 15 and the light emitting layer 16, the layer in contact with the cathode 15 is referred to as the electron injection layer X1, The layer excluding the electron injection layer X1 is referred to as an electron transport layer X2.
  • the layer in contact with the anode 14 is defined as the hole injection layer.
  • the layer excluding the hole injection layer Y1 is referred to as Y1, and is referred to as a hole transport layer Y2.
  • the hole injection layer has a function of improving the hole injection efficiency from the anode.
  • the hole transport layer has a function of improving hole injection from a layer in contact with the surface on the anode side.
  • the electron blocking layer has a function of blocking electron transport. When the hole injection layer and / or the hole transport layer has a function of blocking electron transport, these layers may also serve as an electron blocking layer.
  • the electron injection layer and the hole injection layer may be collectively referred to as a charge injection layer, and the electron transport layer and the hole transport layer may be collectively referred to as a charge transport layer.
  • FIG. 17 Anode 14 / light emitting layer 16 / cathode 15 (see FIG. 17)
  • B Anode 14 / hole injection layer Y / light emitting layer 16 / cathode 15 (see FIG. 11)
  • C Anode 14 / hole injection layer Y / light emitting layer 16 / electron injection layer X / cathode 15 (see FIG. 10)
  • D Anode 14 / hole injection layer Y / light emitting layer 16 / electron transport layer X2 / electron injection layer X1 / cathode 15 (see FIGS.
  • the organic EL element of this embodiment may have two or more light emitting layers.
  • any one of the layer configurations (a) to (i) above if the laminate sandwiched between the anode and the cathode is “structural unit A”, an organic EL device having two light-emitting layers is obtained.
  • the layer configuration shown in the following (j) can be given. Note that the two (structural unit A) layer structures may be the same or different.
  • Anode 14 / structural unit A / charge generation layer Z / structural unit A / cathode 15 see FIG. 15
  • the charge generation layer Z is a layer that generates holes and electrons by applying an electric field.
  • Examples of the charge generation layer Z include vanadium oxide and indium tin oxide (Indium).
  • a thin film made of tin oxide (abbreviated as ITO), molybdenum oxide, or the like can be given.
  • structural unit A / charge generation layer Z is “structural unit B”
  • a layer configuration shown in the following (k) can be given as a configuration of an organic EL element having three or more light emitting layers.
  • Anode 14 / (structural unit B) x / (structural unit A) / cathode 15 see FIG. 16
  • (structural unit B) x represents a stacked body in which the structural unit B is stacked in x stages.
  • a plurality of (structural units B) may have the same or different layer structure.
  • an organic EL element in which a plurality of light emitting layers are directly stacked may be configured without providing the charge generation layer Z.
  • the support substrate 12 is preferably one that does not change chemically in the process of manufacturing the organic EL element.
  • glass, plastic, a polymer film, a silicon plate, and a laminate of these are used.
  • a drive substrate in which a drive circuit for driving the organic EL element is formed in advance may be used as the support substrate.
  • a substrate exhibiting light transmittance is used as the support substrate 12.
  • At least one of the anode and the cathode is composed of a translucent electrode.
  • the said translucent electrode is comprised by the mesh-like translucent electrode mentioned above.
  • an anode and a cathode are translucent electrodes, at least one should just be comprised from the said mesh-like translucent electrode, and the other may be comprised by the electrode which shows a light transmittance.
  • a transparent conductive resin such as metal oxide such as ITO or ZTO, polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used.
  • Such an electrode having optical transparency can be formed by a vacuum deposition method, a sputtering method, an ion plating method, a printing method using ink, an ink jet method, or the like.
  • An electrode exhibiting translucency may be used as one of the anode and the cathode, and the material of the electrode exhibiting such translucency is preferably a material having high electrical conductivity, such as visible light.
  • a highly reflective material is preferred.
  • Gold, silver, platinum, copper, aluminum, manganese, titanium, cobalt, nickel, tungsten, tin, or an alloy containing one or more, or graphite or a graphite intercalation compound is used for the electrode exhibiting light-impermeable properties. It is done.
  • the light-transmitting electrode may be formed of a stacked body in which two or more layers are stacked.
  • the film thickness of the non-translucent electrode is appropriately designed in consideration of required characteristics and process simplicity, and is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, more preferably 50 nm to 500 nm. It is.
  • Examples of a method for manufacturing an electrode having light-transmitting properties include a vacuum deposition method, a sputtering method, and a lamination method in which a metal thin film is thermocompression bonded.
  • hole injection material constituting the hole injection layer
  • metal oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide and aluminum oxide, phenylamine compounds, starburst amine compounds, phthalocyanines, amorphous carbon, Examples thereof include polyaniline and polythiophene derivatives.
  • Examples of the method for forming the hole injection layer include film formation from a solution containing a hole injection material.
  • a hole injection layer can be formed by coating a film containing a hole injection material by a predetermined coating method and solidifying the solution.
  • Solvents used for film formation from solution include chlorine solvents such as chloroform, methylene chloride and dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, and ketones such as acetone and methyl ethyl ketone. Examples thereof include solvents, ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate, and water.
  • chlorine solvents such as chloroform, methylene chloride and dichloroethane
  • ether solvents such as tetrahydrofuran
  • aromatic hydrocarbon solvents such as toluene and xylene
  • ketones such as acetone and methyl ethyl ketone. Examples thereof include solvents, ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate, and water.
  • the film thickness of the hole injection layer is appropriately set in consideration of required characteristics and process simplicity, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • ⁇ Hole transport layer> As the hole transport material constituting the hole transport layer, polyvinylcarbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a pyrazoline derivative, an arylamine derivative, a stilbene derivative, Triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, or poly (2,5-thienylene vinylene) or Examples thereof include derivatives thereof.
  • hole transport materials include polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, polysiloxane derivatives having aromatic amine compound groups in the side chain or main chain, polyaniline or derivatives thereof, polythiophene or derivatives thereof, poly Polymeric hole transport materials such as arylamine or derivatives thereof, poly (p-phenylene vinylene) or derivatives thereof, or poly (2,5-thienylene vinylene) or derivatives thereof are preferred, and polyvinylcarbazole or derivatives thereof are more preferred. , Polysilane or a derivative thereof, and a polysiloxane derivative having an aromatic amine in the side chain or main chain. In the case of a low-molecular hole transport material, it is preferably used by being dispersed in a polymer binder.
  • Examples of the method for forming the hole transport layer include film formation from a solution containing a hole transport material.
  • a hole transport layer can be formed by coating a film containing a hole transport material by a predetermined coating method and solidifying the solution.
  • a film may be formed using a solution in which a polymer binder is further mixed.
  • Solvents used for film formation from solution include, for example, chlorine solvents such as chloroform, methylene chloride, dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, and ketones such as acetone and methyl ethyl ketone.
  • Examples thereof include ester solvents such as system solvents, ethyl acetate, butyl acetate, and ethyl cellosolve acetate.
  • polystyrene examples include vinyl chloride and polysiloxane.
  • the film thickness of the hole transport layer is appropriately set in consideration of required characteristics and process simplicity, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm. .
  • the light emitting layer is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance. For example, a dopant is added in order to improve luminous efficiency and change the emission wavelength.
  • the organic substance contained in the light emitting layer may be a low molecular compound or a high molecular compound.
  • the light-emitting layer preferably contains a high molecular compound, and the number average molecular weight in terms of polystyrene as the high molecular compound Preferably contain from 10 3 to 10 8 compounds.
  • the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
  • dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, coumarin derivatives, and the like.
  • Metal complex materials examples include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Ir, Pt, etc. as a central metal, and oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline.
  • metal complexes having a structure as a ligand such as metal complexes having light emission from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, and benzoxazolyl zinc.
  • a complex, a benzothiazole zinc complex, an azomethylzinc complex, a porphyrin zinc complex, a phenanthroline europium complex, and the like can be given.
  • Polymer material As polymer materials, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinyl carbazole derivatives, the above dye materials and metal complex light emitting materials are polymerized. Things can be mentioned.
  • materials that emit blue light include distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, polyfluorene derivatives, and the like.
  • polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
  • examples of materials that emit green light include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.
  • Examples of materials that emit red light include coumarin derivatives, thiophene ring compounds, and polymers thereof, polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives. Among these, polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives are preferable.
  • Examples of the dopant material include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like. Note that the thickness of such a light emitting layer is usually about 2 nm to 200 nm.
  • the light emitting layer is formed, for example, by film formation from a solution.
  • a light emitting layer is formed by applying a solution containing a light emitting material by a predetermined application method and further solidifying the solution.
  • the solvent used for film formation from a solution include the same solvents as those used for forming a hole injection layer from the aforementioned solution.
  • an electron transport material constituting the electron transport layer an oxadiazole derivative, anthraquinodimethane or a derivative thereof, benzoquinone or a derivative thereof, naphthoquinone or a derivative thereof, anthraquinone or a derivative thereof, tetracyanoanthraquinodimethane or a derivative thereof, Fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof, and the like can be given.
  • Examples of the method for forming the electron transport layer include a vapor deposition method and a film formation method from a solution.
  • a polymer binder may be used in combination.
  • the film thickness of the electron transport layer is appropriately set in consideration of required characteristics and process simplicity, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the material constituting the electron injection layer includes alkali metal, alkaline earth metal, an alloy containing at least one of alkali metal and alkaline earth metal, oxide of alkali metal or alkaline earth metal, halide, carbonic acid A salt or a mixture of these substances can be used.
  • alkali metals, alkali metal oxides, halides, and carbonates include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, potassium fluoride , Rubidium oxide, rubidium fluoride, cesium oxide, cesium fluoride, lithium carbonate, and the like.
  • alkaline earth metals, alkaline earth metal oxides, halides and carbonates include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, barium oxide, Examples thereof include barium fluoride, strontium oxide, strontium fluoride, and magnesium carbonate.
  • An electron injection layer may be comprised by the laminated body which laminated
  • the electron injection layer is formed by vapor deposition, sputtering, printing, or the like.
  • the thickness of the electron injection layer is preferably about 1 nm to 1 ⁇ m.
  • the first electrode 14 and the second electrode 15 of the adjacent organic EL elements 13 are connected in a region protruding in the width direction Y from the region where the light emitting layer 16 is formed in plan view.
  • the adjacent organic EL elements 13 are connected in series, so that it is not necessary to connect the first electrode 14 and the second electrode 15 of the adjacent organic EL elements 13 in the region between the organic EL elements 13.
  • a light emitting layer or the like may be formed in a region between adjacent organic EL elements 13, whereby a light emitting layer formed in a region between adjacent organic EL elements 13 when forming a light emitting layer by a coating method.
  • the step of removing can be omitted. Therefore, even if it is a coating method such as a cap coat method that is relatively poor at applying a fine pattern, a plurality of organic EL elements 13 connected in series can be easily produced.
  • a light emitting device with little light emission unevenness and heat generation can be realized even if the light emitting area of the organic EL element is increased.
  • FIGS. 4A and 4B are diagrams schematically showing the light emitting device 31 of the second embodiment. Since the light emitting device 31 of the present embodiment is different from the light emitting device 11 of the first embodiment described above only in the shapes of the first electrode 14 and the second electrode 15, only the first electrode 14 and the second electrode 15 will be described. Parts corresponding to those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the second electrode 15 in addition to the first electrode 14, the second electrode 15 also has a connection portion 32. That is, the second electrode 15 has a connecting portion 32 that extends from the extending portion to the first electrode 14 of the organic EL element adjacent in the arranging direction X in the arranging direction X and is connected to the first electrode 15.
  • the connecting portion 19 extends to the left from the extending portion 17 of the first electrode 14 of the organic EL element 13 disposed on the right side, and the left side
  • the connecting portion 32 extends rightward from the extending portion 18 of the second electrode 15 of the organic EL element 13 disposed in the connecting portion 19 of the first electrode 14 and the connecting portion 32 of the second electrode 15.
  • the first electrode 14 and the second electrode 15 of the pair of adjacent organic EL elements 13 are connected.
  • FIG. 5 is a diagram schematically showing the light emitting device 41 of the third embodiment. Since the light emitting device 41 of the present embodiment is different from the light emitting device 11 of the first embodiment described above only in the shapes of the first electrode 14 and the second electrode 15, only the first electrode 14 and the second electrode 15 will be described. Parts corresponding to those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the first electrode 14 does not have the connection portion 19, and conversely, the second electrode 15 has the connection portion 42. That is, the second electrode 15 has a connecting portion 42 that extends from the extending portion to the first electrode 14 of the organic EL element adjacent in the arranging direction X in the arranging direction X and is connected to the first electrode 15.
  • the said connection parts 19, 32, and 42 are electrically connected by contacting the electrode or connection part which each opposes.
  • the first electrode 14 has the connection portion 19, and conversely, in the light emitting device 41 of the third embodiment shown in FIG. 5, only the second electrode 15 is connected. Part 42.
  • the first and second electrodes Of the electrodes 14 and 15 (a pair of electrodes)
  • it is preferable that only the electrode having the lower sheet resistance has the connection portion. That is, when the sheet resistance of the first electrode 14 is lower than the sheet resistance of the second electrode 15, it is preferable that only the first electrode 14 has the connection portion 19 as in the light emitting device 11 of the first embodiment shown in FIG. 1.
  • the sheet resistance of the second electrode 15 is lower than the sheet resistance of the first electrode 14, only the second electrode 15 may have the connection portion 42 as in the light emitting device 41 of the third embodiment shown in FIG. 5. preferable.
  • each embodiment mentioned above has shown the light-emitting device by which one series connection was comprised by the some organic EL element, even if it is a light-emitting device by which the some series connection was comprised by the some organic EL element, it implements.
  • a form of electrode structure can be employed.
  • the electrode structure of embodiment is employable.
  • FIG. 6 is a view showing a light emitting device 61 according to the fourth embodiment.
  • the light emitting device 61 of the present embodiment is a light emitting device having a configuration in which two rows of organic EL element groups ELA and ELB connected in series are connected in parallel. Each series connection includes three organic EL elements connected in series.
  • the configuration of the individual organic EL element groups ELA and ELB is the same as that of the first embodiment, but this can be replaced with that of the second to third embodiments.
  • Two rows of organic EL element groups ELA and ELB connected in series are electrically connected in parallel with each other at one end and the other end.
  • the voltage of a drive source that drives the elements increases as the number of organic EL elements increases.
  • the supply voltage required for the source can be moderately suppressed.
  • the light-emitting device includes (1) a plurality of organic electroluminescent elements that are provided on the support substrate along a predetermined arrangement direction and connected in series.
  • Each organic electroluminescence element includes a pair of electrodes and a light emitting layer provided between the electrodes, and (3) the light emitting layer includes the plurality of organic electroluminescence elements.
  • the electrode is a mesh-like translucent electrode configured by arranging conductors in a mesh shape.
  • the conductive material of the mesh-like translucent electrode is characterized by comprising only a mixture of a conductive filler and a resin, or a conductive material.
  • the sheet-like translucent electrode has a sheet resistance of 5 ( ⁇ / sq.) Or less.
  • the light transmittance of the mesh-like translucent electrode is 50% or more.
  • the plurality of extending portions extend from the light emitting layer so as to protrude from the light emitting layer to one side in the width direction, and protrude from the light emitting layer to the other in the width direction.
  • another extension part extending to the surface.
  • a method for manufacturing a light-emitting device includes (1) a support substrate and a plurality of organic electroluminescence elements that are provided on the support substrate along a predetermined arrangement direction and connected in series.
  • Each organic electroluminescence element includes a pair of electrodes and a light emitting layer provided between the electrodes, and (3) the light emitting layer is provided on the plurality of organic electroluminescence elements.
  • each of the pair of electrodes is seen in one of the thickness directions of the support substrate, either the thickness direction of the support substrate or the alignment direction.
  • one electrode of the pair of electrodes is adjacent to the array direction in the width direction perpendicular to the light emitting layer.
  • connection part extending from the extension part to the other electrode of the luminescence element in the arrangement direction and connected to the other electrode; (6) at least one electrode of the pair of electrodes Is a method for manufacturing a light-emitting device which is a mesh-like translucent electrode configured by arranging conductors in a mesh pattern, and (7) an ink containing a material to be the light-emitting layer is used as the plurality of organic EL elements. It is characterized by including a step of forming a light emitting layer by applying continuously along the predetermined arrangement direction across the element and solidifying the applied coating film.
  • the ink may be applied by a cap coating method, a slit coating method, or a slit coating method. It is characterized in that it is a coating method, a spray coating method or a printing method.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

This light emitting device is provided with a plurality of first electrodes arranged on a support substrate, a light emitting layer that covers the plurality of first electrodes, and a plurality of second electrodes arranged on the light emitting layer facing the plurality of first electrodes. The first and second electrodes each have a body section and an extended section. At least one electrode among each pair of first and second electrodes has a connection section that extends in the direction in which the electrodes are arranged, and the connection section is connected to the other electrode. Furthermore, at least one of the electrodes is a mesh electrode.

Description

発光装置及びその製造方法Light emitting device and manufacturing method thereof
 本発明の態様は、発光装置およびその製造方法に関する。 Embodiments of the present invention relate to a light emitting device and a manufacturing method thereof.
 有機エレクトロルミネッセンス素子(以下、「エレクトロルミネッセンス」を「EL」と記載することがある。)は、電圧を印加することによって発光する発光素子の一種であり、一対の電極と、この一対の電極間に配置される発光層とを含んで構成される。有機EL素子に電圧を印加すると、陽極から正孔が注入されるとともに陰極から電子が注入される。これら正孔と電子とが発光層において結合することにより発光が生じる。 An organic electroluminescence element (hereinafter, “electroluminescence” may be referred to as “EL”) is a kind of light-emitting element that emits light when a voltage is applied thereto, and a pair of electrodes and a pair of electrodes. And a light emitting layer disposed on the substrate. When a voltage is applied to the organic EL element, holes are injected from the anode and electrons are injected from the cathode. Light emission occurs when these holes and electrons are combined in the light emitting layer.
 このような有機EL素子を複数個直列に接続した発光装置が提案されている(たとえば特許文献1参照)。 A light emitting device in which a plurality of such organic EL elements are connected in series has been proposed (see, for example, Patent Document 1).
 図7は複数(図7では3個)の有機EL素子1が直列接続された発光装置2を模式的に示す図である。図7(A)は発光装置2の平面図であり、図7(B)は発光装置2の断面図である。 FIG. 7 is a diagram schematically showing a light emitting device 2 in which a plurality (three in FIG. 7) of organic EL elements 1 are connected in series. FIG. 7A is a plan view of the light-emitting device 2, and FIG. 7B is a cross-sectional view of the light-emitting device 2.
 図7(A)、図7(B)に示す発光装置2は3個の有機EL素子1を備える。これら3個の有機EL素子1は、所定の配列方向Xに沿って支持基板3上に配置され、直列接続されている。各有機EL素子1は一対の電極4,5と、この電極間に設けられる発光層6を備える。以下では一対の電極4,5のうちの支持基板3寄りに配置される一方の電極を第1電極4と記載し、第1電極4よりも支持基板3から離間して配置される他方の電極を第2電極5と記載する。なお製造工程の簡易性や素子特性などを勘案して、第1および第2電極4,5間には発光層6のみならず、発光層とは異なる所定の層が設けられることもある。また第1電極4および第2電極5のうちの少なくとも1つの電極は、光透過性を示す導電性薄膜によって構成される。発光層6で発生した光を有機EL素子の外界に出射させる必要があるからである。このような導電性薄膜には通常、インジウムスズ酸化物(Indium
Tin Oxide:略称ITO)やインジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)などの金属酸化物薄膜が用いられている。
The light emitting device 2 shown in FIGS. 7A and 7B includes three organic EL elements 1. These three organic EL elements 1 are arranged on the support substrate 3 along a predetermined arrangement direction X and are connected in series. Each organic EL element 1 includes a pair of electrodes 4 and 5 and a light emitting layer 6 provided between the electrodes. Hereinafter, one electrode disposed near the support substrate 3 out of the pair of electrodes 4 and 5 is referred to as a first electrode 4, and the other electrode disposed farther from the support substrate 3 than the first electrode 4. Is referred to as a second electrode 5. In consideration of the simplicity of the manufacturing process and device characteristics, not only the light emitting layer 6 but also a predetermined layer different from the light emitting layer may be provided between the first and second electrodes 4 and 5. In addition, at least one of the first electrode 4 and the second electrode 5 is formed of a conductive thin film that exhibits optical transparency. This is because light generated in the light emitting layer 6 needs to be emitted to the outside of the organic EL element. Such conductive thin films are usually indium tin oxide (Indium).
Metal oxide thin films such as Tin Oxide (abbreviated as ITO) and Indium Zinc Oxide (abbreviated as IZO) are used.
 図7に示すように各有機EL素子1の第1電極4は、互いに配列方向Xに所定の間隔を開けて離散的に配置されるため、配線のみによっては、互いに電気的に接続されていない。同様に各有機EL素子1の第2電極5は、互いに配列方向Xに所定の間隔をあけて配置されるため、配線のみによっては、相互に電気的に接続されていない。 As shown in FIG. 7, the first electrodes 4 of the organic EL elements 1 are discretely arranged at predetermined intervals in the arrangement direction X, and thus are not electrically connected to each other only by wiring. . Similarly, the second electrodes 5 of each organic EL element 1 are arranged at a predetermined interval in the arrangement direction X, and therefore are not electrically connected to each other only by wiring.
 他方、配列方向Xに隣り合う有機EL素子1の第1電極4と、第2電極5とは互いに接して接続されており、電気的に接続されている。これによって複数の有機EL素子1は直列接続を構成する。具体的には第1電極4は、配列方向Xの一方(以下、「配列方向Xの一方」を「左方」といい、「配列方向Xの他方」を右方ということがある。)の端部(以下、左端部ということがある。)が、左方に隣り合う有機EL素子1の第2電極5の右方の端部(以下、右端部ということがある。)に重なる位置まで延在するように形成され、左方に隣り合う有機EL素子1の第1電極4と接して接続されており、電気的に接続されている。このように配列方向Xに隣り合う有機EL素子1の第1電極4と第2電極5とが電気的に接続されることにより、複数の有機EL素子1が直列接続を構成する。 On the other hand, the first electrode 4 and the second electrode 5 of the organic EL element 1 adjacent to each other in the arrangement direction X are connected in contact with each other and are electrically connected. Thus, the plurality of organic EL elements 1 constitutes a series connection. Specifically, the first electrode 4 is one of the arrangement directions X (hereinafter, “one of the arrangement directions X” may be referred to as “left”, and “the other of the arrangement directions X” may be referred to as right). Up to a position where the end (hereinafter also referred to as the left end) overlaps the right end (hereinafter also referred to as the right end) of the second electrode 5 of the organic EL element 1 adjacent to the left. It is formed so as to extend, is connected in contact with the first electrode 4 of the organic EL element 1 adjacent to the left side, and is electrically connected. Thus, the 1st electrode 4 and the 2nd electrode 5 of the organic EL element 1 which adjoin the arrangement direction X are electrically connected, and the some organic EL element 1 comprises a serial connection.
 つぎに図8を参照して照明装置の製造方法を説明する。 Next, a method for manufacturing the lighting device will be described with reference to FIG.
 まず支持基板3上に第1電極4を形成する。具体的には支持基板3上に、配列方向Xに所定の間隔をあけて離散的に3つの第1電極4を形成する(図8(A)参照) First, the first electrode 4 is formed on the support substrate 3. Specifically, three first electrodes 4 are discretely formed on the support substrate 3 at predetermined intervals in the arrangement direction X (see FIG. 8A).
 つぎに発光層6となる材料を含むインキを、所定の塗布法によって支持基板3上に塗布する。一般に塗布法は意図する部位にのみ選択的にインキをパターン塗布することがむずかしいため、第1電極4間などの不要な部位にもインキが塗布される(図8(B)参照)。そのためインキを塗布した後に、不要な部位に塗布されたインキを除去する工程が必要となる(図8(C)参照)。インキの除去は、たとえばインキが可溶な溶剤を含ませた布や綿棒などを使ってインキを拭き取る方法や、レーザーアブレーション法などによっておこなうことができる。その後、第2電極5をパターン形成する(図8(D)参照)。これによって、直列接続された3個の有機EL素子1を備える発光装置2を作製することができる。 Next, an ink containing a material that becomes the light emitting layer 6 is applied onto the support substrate 3 by a predetermined application method. In general, it is difficult for the coating method to selectively apply the ink pattern only to the intended portion, so that the ink is also applied to unnecessary portions such as between the first electrodes 4 (see FIG. 8B). Therefore, after applying the ink, a step of removing the ink applied to unnecessary portions is required (see FIG. 8C). The ink can be removed by, for example, a method of wiping ink using a cloth or cotton swab containing a solvent in which the ink is soluble, a laser ablation method, or the like. Thereafter, the second electrode 5 is patterned (see FIG. 8D). As a result, a light emitting device 2 including three organic EL elements 1 connected in series can be manufactured.
特開2007-257855号公報JP 2007-257855 A
 上述の従来の技術では、不要な部位に塗布されたインキを除去する工程が必要となるため、工程数が増加するという問題がある。さらに不要な部位に塗布されたインキを除去する際に、発光層に異物が混入するおそれもある。 The above-described conventional technique has a problem that the number of steps increases because a step of removing ink applied to unnecessary portions is required. Furthermore, when removing the ink applied to unnecessary portions, there is a possibility that foreign matters may be mixed into the light emitting layer.
 また光透過性を示す電極として用いられるITO薄膜やIZO薄膜などは、導電性が必ずしも十分とはいえない。とくに大面積の有機EL素子を駆動する場合には電圧降下に起因する発光ムラが顕著になり、また発熱量が大きくなるという問題がある。 Also, the ITO thin film or IZO thin film used as an electrode exhibiting optical transparency does not necessarily have sufficient conductivity. In particular, when driving an organic EL element having a large area, there are problems that uneven light emission due to a voltage drop becomes remarkable and the amount of heat generation becomes large.
 したがって本発明の目的は、発光層を塗布法によって形成する際に不要な部位に塗布されたインキを除去する工程が不要な構造であるとともに、大面積の有機EL素子においても、発光ムラや発熱の少ない発光装置を提供することである。 Accordingly, an object of the present invention is a structure that does not require a step of removing ink applied to an unnecessary portion when forming a light emitting layer by a coating method, and also in a large area organic EL element, light emission unevenness and heat generation. It is to provide a light emitting device with a small amount of light.
 この発光装置は、支持基板上に配列した複数の第1電極と、複数の前記第1電極を被覆する発光層と、前記発光層上に配列し、複数の前記第1電極のそれぞれと対向する複数の第2電極と、を備え、前記発光層を挟む前記第1及び第2電極の対によって個々の有機エレクトロルミネッセンス素子が構成される発光装置において、前記第1電極は、第1本体部と、前記第1電極の配列方向に垂直な方向に沿って、前記発光層から突出するように、前記第1本体部から延びた第1延在部を有し、前記第2電極は、第2本体部と、前記第2電極の配列方向に垂直な方向に沿って、前記発光層から突出するように、前記本体部から延びた第2延在部を有し、前記第1及び第2電極の少なくとも一方は、その配列方向に沿って延びた接続部を有し、この接続部は、前記第1及び第2電極の他方に接続されており、前記第1及び第2電極の少なくとも一方は、網目電極(網目状透光性電極)であることを特徴とする。なお、それぞれの電極の配列方向は、一致していることが好ましいが、多少は異なっていてもよい。 The light emitting device includes a plurality of first electrodes arranged on a support substrate, a light emitting layer covering the plurality of first electrodes, and arranged on the light emitting layer and facing each of the plurality of first electrodes. A plurality of second electrodes, wherein each organic electroluminescence element is constituted by a pair of the first and second electrodes sandwiching the light emitting layer, wherein the first electrode includes a first body portion and And a first extending portion extending from the first body portion so as to protrude from the light emitting layer along a direction perpendicular to the arrangement direction of the first electrodes, and the second electrode includes a second A main body portion, and a second extending portion extending from the main body portion so as to protrude from the light emitting layer along a direction perpendicular to an arrangement direction of the second electrodes, and the first and second electrodes At least one of the two has a connection portion extending along the arrangement direction thereof. Connections, the is connected to the other of the first and second electrodes, at least one of the first and second electrodes, characterized in that it is a mesh electrode (mesh-shaped translucent electrode). In addition, although the arrangement direction of each electrode is preferably coincident, it may be slightly different.
 前記網目電極は、導電性フィラーと樹脂との混合物、または導電性材料のみからなることが好ましい。 The mesh electrode is preferably made of a mixture of a conductive filler and a resin, or only a conductive material.
 前記網目電極のシート抵抗が5(Ω/sq.)以下であることが好ましい。 The sheet resistance of the mesh electrode is preferably 5 (Ω / sq.) Or less.
 前記網目電極の光透過率が50%以上であることが、好ましい。 It is preferable that the light transmittance of the mesh electrode is 50% or more.
 前記第1電極は、前記発光層から突出するように、前記第1延在部とは逆方向に前記第1本体部から延びた別の延在部を備えることが好ましい。 Preferably, the first electrode includes another extension portion extending from the first main body portion in a direction opposite to the first extension portion so as to protrude from the light emitting layer.
 前記第2電極は、前記発光層から突出するように、前記第2延在部とは逆方向に前記第2本体部から延びた別の延在部を備えることが好ましい。 It is preferable that the second electrode includes another extension portion extending from the second main body portion in a direction opposite to the second extension portion so as to protrude from the light emitting layer.
 この製造方法は、上述の発光装置を製造する方法において、前記発光層となる材料を含むインキを、複数の前記第1電極を被覆するように連続的に塗布し、塗布したインキを固化することにより前記発光層を形成する工程を含むことを特徴とする。 This manufacturing method is the method for manufacturing the light emitting device described above, wherein the ink containing the material to be the light emitting layer is continuously applied so as to cover the plurality of first electrodes, and the applied ink is solidified. A step of forming the light emitting layer.
 前記インキを塗布する方法が、キャップコート法、スリットコート法、スプレーコート法または印刷法であることを特徴とする。 The method for applying the ink is a cap coating method, a slit coating method, a spray coating method or a printing method.
 本発明によれば、発光層を塗布法によって形成するさいに不要な部位に塗布されたインキを除去する工程が不要な構造であるとともに、大面積の有機EL素子においても、発光ムラや発熱の少ない発光装置を実現することができる。 According to the present invention, it is a structure that does not require a step of removing ink applied to an unnecessary part when forming a light emitting layer by a coating method, and even in a large-area organic EL element, light emission unevenness and heat generation are eliminated. A small number of light emitting devices can be realized.
図1(A)は、第1実施形態の発光装置11を示す平面図であり、図1(B)は発光装置11の縦断面図である。FIG. 1A is a plan view showing the light emitting device 11 of the first embodiment, and FIG. 1B is a longitudinal sectional view of the light emitting device 11. 図2は、発光装置11の製造工程を説明するための図である。FIG. 2 is a diagram for explaining a manufacturing process of the light emitting device 11. 図3は、発光装置11の製造工程を説明するための図である。FIG. 3 is a diagram for explaining a manufacturing process of the light emitting device 11. 図4は、第2実施形態の発光装置31を模式的に示す図である。FIG. 4 is a diagram schematically showing the light emitting device 31 of the second embodiment. 図5は、第3実施形態の発光装置41を模式的に示す図である。FIG. 5 is a diagram schematically showing the light emitting device 41 of the third embodiment. 図6は、第4実施形態の発光装置61を示す図である。FIG. 6 is a diagram illustrating a light emitting device 61 according to the fourth embodiment. 図7は、複数の有機EL素子1が直列接続された発光装置2を模式的に示しており、図7(A)は発光装置2の平面図であり、図7(B)は発光装置2の断面図である。FIG. 7 schematically shows a light-emitting device 2 in which a plurality of organic EL elements 1 are connected in series. FIG. 7A is a plan view of the light-emitting device 2, and FIG. FIG. 図8は、発光装置2の製造工程を説明するための図である。FIG. 8 is a diagram for explaining a manufacturing process of the light emitting device 2. 図9は、網目状の電極の平面図である。FIG. 9 is a plan view of a mesh electrode. 図10は、有機EL素子の縦断面図である。FIG. 10 is a longitudinal sectional view of the organic EL element. 図11は、有機EL素子の縦断面図である。FIG. 11 is a longitudinal sectional view of the organic EL element. 図12は、有機EL素子の縦断面図である。FIG. 12 is a longitudinal sectional view of the organic EL element. 図13は、有機EL素子の縦断面図である。FIG. 13 is a longitudinal sectional view of the organic EL element. 図14は、有機EL素子の縦断面図である。FIG. 14 is a longitudinal sectional view of the organic EL element. 図15は、有機EL素子の縦断面図である。FIG. 15 is a longitudinal sectional view of the organic EL element. 図16は、有機EL素子の縦断面図である。FIG. 16 is a longitudinal sectional view of the organic EL element. 図17は、有機EL素子の縦断面図である。FIG. 17 is a longitudinal sectional view of the organic EL element. 図18は、有機EL素子に接続された電力供給部のブロック図である。FIG. 18 is a block diagram of a power supply unit connected to the organic EL element.
 以下、図面を参照して発光装置の構成についてまず説明する。なお、同一要素には同一符号を用いることとし、重複する説明は省略する。また、以下の説明では、XYZ三次元直交座標系を図示の如く設定する。基板の厚み方向をZ軸とし、素子配列方向をX軸、これらの双方に垂直は方向をY軸とする。 Hereinafter, the configuration of the light emitting device will be described first with reference to the drawings. Note that the same reference numerals are used for the same elements, and redundant description is omitted. In the following description, an XYZ three-dimensional orthogonal coordinate system is set as shown. The thickness direction of the substrate is the Z axis, the element arrangement direction is the X axis, and the direction perpendicular to both is the Y axis.
 1)発光装置の構成
 本実施形態の発光装置はたとえば照明装置、液晶表示装置およびスキャナなどの光源に用いられる。図1(A)は第1実施形態の発光装置11を模式的に示す平面図であり、図1(B)は発光装置11の縦断面図である。発光装置11は、支持基板12と、この支持基板12上に設けられ、直列接続される複数の有機EL素子13とを備える。
1) Configuration of Light Emitting Device The light emitting device of the present embodiment is used for a light source such as an illumination device, a liquid crystal display device, and a scanner. FIG. 1A is a plan view schematically showing the light emitting device 11 of the first embodiment, and FIG. 1B is a longitudinal sectional view of the light emitting device 11. The light emitting device 11 includes a support substrate 12 and a plurality of organic EL elements 13 provided on the support substrate 12 and connected in series.
 所定の配列方向Xは支持基板12の厚み方向Zに垂直な方向に設定される。すなわち配列方向Xは支持基板12の主面に平行に設定される。本実施形態では図1に示すように複数の有機EL素子13は所定の直線(X)に沿って配列しているが、所定の曲線に沿って配列されていてもよい。なお所定の曲線に沿って複数の有機EL素子13が配列されている場合、配列方向は前記所定の曲線の接線方向に相当する。 The predetermined arrangement direction X is set in a direction perpendicular to the thickness direction Z of the support substrate 12. That is, the arrangement direction X is set parallel to the main surface of the support substrate 12. In the present embodiment, as shown in FIG. 1, the plurality of organic EL elements 13 are arranged along a predetermined straight line (X), but may be arranged along a predetermined curve. When a plurality of organic EL elements 13 are arranged along a predetermined curve, the arrangement direction corresponds to the tangential direction of the predetermined curve.
 支持基板12上に設けられる有機EL素子13の個数は設計に応じて適宜設定される。以下第1実施形態では3個の有機EL素子13が設けられた発光装置11について説明する。 The number of organic EL elements 13 provided on the support substrate 12 is appropriately set according to the design. In the first embodiment, a light emitting device 11 provided with three organic EL elements 13 will be described below.
 各有機EL素子13はそれぞれ一対の電極14,15と、この電極14,15間に設けられ、複数の電極14を被覆する発光層16を備える。一対の電極14,15のうちのいずれか一方の電極が有機EL素子13の陽極として機能し、いずれか他方の電極が有機EL素子13の陰極として機能する。以下一対の電極14,15のうちで支持基板12寄りに配置される電極を第1電極14と記載し、支持基板12から離間して配置される他方の電極を第2電極15と記載する。 Each organic EL element 13 includes a pair of electrodes 14 and 15, and a light emitting layer 16 provided between the electrodes 14 and 15 and covering the plurality of electrodes 14. One of the pair of electrodes 14 and 15 functions as an anode of the organic EL element 13, and the other electrode functions as a cathode of the organic EL element 13. Hereinafter, of the pair of electrodes 14 and 15, an electrode disposed near the support substrate 12 is referred to as a first electrode 14, and the other electrode disposed apart from the support substrate 12 is referred to as a second electrode 15.
 第1および第2電極14,15間には少なくとも1層の発光層16が設けられる。なお第1および第2電極14,15間には、1層の発光層16に限らず、複数の発光層や発光層とは異なる層が必要に応じて設けられることがある。 At least one light emitting layer 16 is provided between the first and second electrodes 14 and 15. In addition, between the 1st and 2nd electrodes 14 and 15, not only the one light emitting layer 16 but the layer different from a some light emitting layer and a light emitting layer may be provided as needed.
 発光層16は複数の有機EL素子13に跨って配列方向Xに沿って延在している。本実施形態では直列接続される複数の有機EL素子13において、配列方向Xの一端(図1では左端)に設けられる有機EL素子13の発光層16から、配列方向Xの他端(図1では右端)に設けられる有機EL素子13の発光層16まで、配列方向Xに沿って延在する発光層が連続して一体的に形成されている。発光層とは異なる所定の層が第1および第2電極14,15間に設けられる場合、この所定の層は、複数の有機EL素子13に跨って配列方向Xに沿って延在していてもよく、また有機EL素子13ごとに離間するように形成されていてもよい。 The light emitting layer 16 extends along the arrangement direction X across the plurality of organic EL elements 13. In the present embodiment, in the plurality of organic EL elements 13 connected in series, from the light emitting layer 16 of the organic EL element 13 provided at one end in the arrangement direction X (left end in FIG. 1), the other end in the arrangement direction X (in FIG. 1). The light emitting layer extending along the arrangement direction X is continuously and integrally formed up to the light emitting layer 16 of the organic EL element 13 provided at the right end). When a predetermined layer different from the light emitting layer is provided between the first and second electrodes 14 and 15, the predetermined layer extends along the arrangement direction X across the plurality of organic EL elements 13. Alternatively, the organic EL elements 13 may be formed so as to be separated from each other.
 さらに発光層16とは異なる所定の層が塗布法によって形成される場合には、この発光層16とは異なる所定の層は、発光層16と同様に、複数の有機EL素子13に跨って配列方向Xに沿って延在していることが好ましい。後述するように、不要な部位に形成された層を除去する工程が省略できるためである。 Further, when a predetermined layer different from the light emitting layer 16 is formed by a coating method, the predetermined layer different from the light emitting layer 16 is arranged across the plurality of organic EL elements 13 like the light emitting layer 16. It preferably extends along the direction X. This is because, as will be described later, a step of removing a layer formed at an unnecessary portion can be omitted.
 第1および第2電極14,15(一対の電極)はそれぞれ延在部17,18を有する。この延在部17,18は、支持基板12の厚み方向Z(の一方向)から見て(以下、「平面視で」ということがある。)、支持基板12の厚み方向Zおよび配列方向Xに垂直な幅方向Yに、発光層16から突出するように、それぞれの本体部(第1本体部、第2本体部とする)から、延在する。第1電極14の延在部17(17a、17b)は第1電極14の本体部に一体的に形成されている。また第2電極15の延在部18(18a,18b)は第2電極15の本体部に一体的に形成されている。各有機EL素子13を構成する第1電極14と第2電極15(一対の電極)とは、有機EL素子13ごとには互いに接触するようには構成されておらず、平面視で(Z軸方向から見て)、第1電極14の延在部17と第2電極15の延在部18とは重ならないように配置されている。本実施形態では第1電極14の延在部17は、第1電極14において、第2電極15と対向する部分の左方の端部(以下、左端部ということがある)から幅方向Yに延在する。第2電極15の延在部18は、第2電極15において、第1電極14との対向部の右方の端部(以下、右端部ということがある)から幅方向Yに延在している。そのため第1電極14の延在部17と第2電極15の延在部18とは平面視で重ならず、直接的接触はしていない。 The first and second electrodes 14 and 15 (a pair of electrodes) have extending portions 17 and 18, respectively. The extending portions 17 and 18 are viewed from the thickness direction Z (one direction) of the support substrate 12 (hereinafter sometimes referred to as “in plan view”), and the thickness direction Z and the arrangement direction X of the support substrate 12. The main body portions (referred to as a first main body portion and a second main body portion) extend in the width direction Y perpendicular to the light emitting layer 16 so as to protrude from the light emitting layer 16. The extension part 17 (17 a, 17 b) of the first electrode 14 is formed integrally with the main body part of the first electrode 14. Further, the extending portion 18 (18a, 18b) of the second electrode 15 is formed integrally with the main body portion of the second electrode 15. The first electrode 14 and the second electrode 15 (a pair of electrodes) constituting each organic EL element 13 are not configured to be in contact with each other for each organic EL element 13, and in plan view (Z-axis) When viewed from the direction, the extending portion 17 of the first electrode 14 and the extending portion 18 of the second electrode 15 are arranged so as not to overlap each other. In the present embodiment, the extending portion 17 of the first electrode 14 extends in the width direction Y from the left end portion (hereinafter also referred to as the left end portion) of the portion facing the second electrode 15 in the first electrode 14. Extend. The extending portion 18 of the second electrode 15 extends in the width direction Y from the right end portion (hereinafter sometimes referred to as the right end portion) of the second electrode 15 facing the first electrode 14. Yes. Therefore, the extending portion 17 of the first electrode 14 and the extending portion 18 of the second electrode 15 do not overlap in a plan view and are not in direct contact.
 第1および第2電極14,15(一対の電極)の一方の電極は接続部を有する。この接続部は、配列方向Xに隣り合う有機EL素子の他方の電極にまで延在部から配列方向Xに延在し、該他方の電極に接続される。なお接続部は、第1および第2電極14,15(一対の電極のうち)の一方の電極のみに限らず、第1および第2電極14,15(一対の電極のうち)の他方の電極も有していてもよい。すなわち第1および第2電極14,15(一対の電極のうち)の他方の電極も、配列方向Xに隣り合う有機EL素子の一方の電極にまで延在部から配列方向Xに延在し、該一方の電極に接続される接続部を有していてもよい。 One electrode of the first and second electrodes 14 and 15 (a pair of electrodes) has a connection portion. This connecting portion extends from the extending portion to the other electrode of the organic EL element adjacent in the arrangement direction X in the arrangement direction X, and is connected to the other electrode. The connecting portion is not limited to one electrode of the first and second electrodes 14 and 15 (out of the pair of electrodes), but the other electrode of the first and second electrodes 14 and 15 (out of the pair of electrodes). May also be included. That is, the other of the first and second electrodes 14 and 15 (of the pair of electrodes) also extends in the arrangement direction X from the extending portion to one electrode of the organic EL element adjacent in the arrangement direction X. You may have the connection part connected to this one electrode.
 本実施形態では第1および第2電極14,15(一対の電極)の一方の電極に相当する第1電極14が接続部19を有する。すなわち第1電極14は、左方に配置される有機EL素子の第2電極15(他方の電極)の延在部18にまで、第1電極14の延在部17から左方に延在する接続部19を備える。このように第1電極14の接続部19は、左方に配置される有機EL素子の第2電極15(他方の電極)の延在部18と平面視で重なり、この重なる部分で直接的に第2電極15(他方の電極)と接続される。 In the present embodiment, the first electrode 14 corresponding to one of the first and second electrodes 14 and 15 (a pair of electrodes) has a connection portion 19. That is, the first electrode 14 extends to the left from the extending portion 17 of the first electrode 14 to the extending portion 18 of the second electrode 15 (the other electrode) of the organic EL element disposed on the left side. A connection unit 19 is provided. As described above, the connection portion 19 of the first electrode 14 overlaps with the extension portion 18 of the second electrode 15 (the other electrode) of the organic EL element disposed on the left side in a plan view, and directly at the overlapping portion. It is connected to the second electrode 15 (the other electrode).
 平面視で発光層16から幅方向Yに延在する延在部18は、幅方向Yの一方または他方に設けられるが、幅方向Yの両方に設けられることが好ましい。すなわち延在部17,18は、平面視で、前記幅方向の一方に発光層から突出するように延在する第1延在部17a,18aと、幅方向Yの他方に発光層16から突出するように延在する第2延在部17b,18bとを含むことが好ましい。平面視で発光層16から幅方向Yの両方に延在する延在部17,18を備えることにより、隣り合う有機EL素子13の第1電極14と第2電極15とが幅方向Yの両方の端部で接続されることになる。 The extending portion 18 extending in the width direction Y from the light emitting layer 16 in a plan view is provided in one or the other of the width directions Y, but is preferably provided in both the width directions Y. That is, the extended portions 17 and 18 protrude from the light emitting layer 16 in the width direction Y and the first extending portions 17a and 18a extending so as to protrude from the light emitting layer in one of the width directions in a plan view. It is preferable to include the second extending portions 17b and 18b extending so as to. By providing the extending portions 17 and 18 extending in the width direction Y from the light emitting layer 16 in plan view, the first electrode 14 and the second electrode 15 of the adjacent organic EL element 13 are both in the width direction Y. Will be connected at the end.
 さらに直列接続を構成する複数の有機EL素子13のうちで、最も左方に配置される有機EL素子13の第1電極14と、最も右方に配置される有機EL素子13の第2電極15とは、電力供給部EP(図18参照)に電気的につながる配線にそれぞれ接続される。これによって電力供給部EPから、直列接続を構成する複数の有機EL素子13に電力が供給され、各有機EL素子が発光する。 Further, among the plurality of organic EL elements 13 constituting the series connection, the first electrode 14 of the organic EL element 13 arranged on the leftmost side and the second electrode 15 of the organic EL element 13 arranged on the rightmost side. Are respectively connected to wirings electrically connected to the power supply unit EP (see FIG. 18). As a result, power is supplied from the power supply unit EP to the plurality of organic EL elements 13 constituting the series connection, and each organic EL element emits light.
 各有機EL素子13は接続部から給電される。本実施形態では平面視で発光層16から幅方向Yの両方に延在する延在部17,18を備えることにより、各有機EL素子13は幅方向Yの両方の端部から給電される。有機EL素子13は、給電される部位から離間するほど、電圧降下のために輝度が低下する。本実施形態では延在部17,18から幅方向Yに離間するほど、すなわち幅方向Yの中央部ほど電圧低下のために輝度が低下するが、各有機EL素子13は幅方向Yの両方の端部から給電されるため、幅方向Yの一方の端部から給電される素子構成に比べると電圧降下の影響を抑制することができ、ひいては輝度ムラを抑制することができる。 Each organic EL element 13 is supplied with power from the connecting portion. In the present embodiment, the organic EL elements 13 are supplied with power from both ends in the width direction Y by providing the extending portions 17 and 18 extending in the width direction Y from the light emitting layer 16 in plan view. As the organic EL element 13 is further away from the site to be fed, the luminance decreases due to a voltage drop. In this embodiment, as the distance from the extending portions 17 and 18 in the width direction Y, that is, in the center portion in the width direction Y, the luminance decreases due to the voltage drop. Since power is supplied from the end portion, the influence of the voltage drop can be suppressed as compared with the element configuration supplied from one end portion in the width direction Y, and thus luminance unevenness can be suppressed.
 (網目状透光性電極)
 有機EL素子には、ボトムエミッション型の構成のものと、トップエミッション型の構成のものと、両面発光型の構成のものとがある。ボトムエミッション型の有機EL素子は支持基板を通して光を外界に出射し、トップエミッション型の有機EL素子は、支持基板とは反対側から光を外界に出射し、両面発光型の有機EL素子は、支持基板側および支持基板とは反対側の両方から光を外界に出射する。実施形態に係る有機EL素子は、ボトムエミッション型、トップエミッション型、および両面発光型の有機EL素子のいずれも採用することができる。
(Reticulated translucent electrode)
Organic EL elements include a bottom emission type configuration, a top emission type configuration, and a dual emission type configuration. The bottom emission type organic EL element emits light to the outside through the support substrate, the top emission type organic EL element emits light to the outside from the side opposite to the support substrate, and the double emission type organic EL element is Light is emitted to the outside from both the support substrate side and the opposite side of the support substrate. As the organic EL element according to the embodiment, any of a bottom emission type, a top emission type, and a double emission type organic EL element can be adopted.
 ボトムエミッション型の有機EL素子では、第1電極14を通して光が出射するため、第1電極14が光透過性を示す電極によって構成され、逆に第2電極15は通常、光を反射する電極によって構成される。またトップエミッション型の有機EL素子では第2電極15を通して光が出射するため、第2電極15が光透過性を示す電極によって構成され、逆に第1電極14は通常、光を反射する電極によって構成される。また両面発光型の有機EL素子では、第1および第2電極14,15の両方の電極が、光透過性を示す電極によって構成される。 In the bottom emission type organic EL element, since light is emitted through the first electrode 14, the first electrode 14 is constituted by an electrode exhibiting optical transparency, and conversely, the second electrode 15 is usually constituted by an electrode that reflects light. Composed. In the top emission type organic EL element, since light is emitted through the second electrode 15, the second electrode 15 is composed of an electrode exhibiting optical transparency, and conversely, the first electrode 14 is usually composed of an electrode that reflects light. Composed. In the double-sided light emitting organic EL element, both the first and second electrodes 14 and 15 are composed of electrodes exhibiting light transmittance.
 このように第1および第2電極14,15(一対の電極)のうちの少なくとも1つの電極は、光透過性を示す電極によって構成されるが、本実施形態では、この光透過性を示す電極14(15)が、導電体が網目状に配置されて構成される網目状透光性電極(網目電極)からなる(図9参照)。すなわち、網目状透光性電極14(15)は、二次元的に配置された複数の開口OPを有している。 As described above, at least one of the first and second electrodes 14 and 15 (a pair of electrodes) is configured by an electrode exhibiting optical transparency. In the present embodiment, the electrode exhibiting optical transparency is used. 14 (15) consists of a mesh-like translucent electrode (mesh electrode) configured by arranging conductors in a mesh pattern (see FIG. 9). That is, the mesh-like translucent electrode 14 (15) has a plurality of openings OP arranged two-dimensionally.
 網目状透光性電極は、網目状に配置される導電体を含む。この導電体は、支持基板12の主面に平行な2次元平面において網目状構造を形成している。網目状構造としては、少なくとも前記2次元平面において導電体が連続してつらなり、電気的に導通している構造を有していればよく、たとえば格子構造やハニカム構造のような規則的な構造を有していてもよく、また規則的な構造を有していなくてもよい。 The mesh-like translucent electrode includes a conductor arranged in a mesh shape. This conductor forms a network structure in a two-dimensional plane parallel to the main surface of the support substrate 12. The network structure only needs to have a structure in which conductors are continuously formed in at least the two-dimensional plane and are electrically connected. For example, a regular structure such as a lattice structure or a honeycomb structure is used. It may have or may not have a regular structure.
 網目状透光性電極の導電体は、導電性フィラーと樹脂との混合物、または導電性材料のみからなることが好ましい。 The conductor of the mesh-like translucent electrode is preferably composed of a mixture of a conductive filler and a resin, or only a conductive material.
 上記導電性フィラーには、AuやAg、Al、カーボンなどからなる金属微粒子、またはAuやAg、Al、カーボンなどからなる導電性ワイヤーなどを用いることができる。 As the conductive filler, metal fine particles made of Au, Ag, Al, carbon or the like, or a conductive wire made of Au, Ag, Al, carbon or the like can be used.
 また上記導電性フィラーが混合される樹脂には、エポキシやアクリル、ナイロン、ウレタン、フェノールなどの樹脂、さらには3,4-ポリエチレンジオキシチオフェン/ポリスチレンスルフォン酸などの導電性樹脂をもちいることができる。 The resin mixed with the conductive filler may be a resin such as epoxy, acrylic, nylon, urethane, phenol, or a conductive resin such as 3,4-polyethylenedioxythiophene / polystyrene sulfonic acid. it can.
 また網目状透光性電極の導電体を構成する上記導電性材料には、AuやAg、Al、Cuの単体またはこれらの金属を1種以上含む合金などをもちいることができる。 Further, the conductive material constituting the conductor of the mesh-like translucent electrode can be made of Au, Ag, Al, Cu alone or an alloy containing one or more of these metals.
 網目状透光性電極は、支持基板12の主面に平行な2次元平面において網目状構造を形成する導電体からなる非透光部を有する。網目状透光性電極に入射する光は、非透光部を除く残余の領域(以下、透光部ということがある)を通って網目状透光性電極を透過する。このように網目状透光性電極は非透光部を有するが、人間の目に視認される程度に巨視的に見れば、全体として透光性を有する。 The mesh-like translucent electrode has a non-translucent portion made of a conductor that forms a mesh-like structure in a two-dimensional plane parallel to the main surface of the support substrate 12. The light incident on the mesh-like translucent electrode is transmitted through the mesh-like translucent electrode through the remaining region (hereinafter also referred to as a translucent portion) excluding the non-translucent portion. Thus, although the mesh-like translucent electrode has a non-translucent portion, it has translucency as a whole when viewed macroscopically to the extent that it is visible to the human eye.
 網目状透光性電極の一方の主面または両方の主面には、当該網目状透光性電極に接して透過性導電層を積層してもよい。このように透過性導電層を積層することにより、透光部の導電性を高めることができ、さらには透光部と非透光部との段差を低減することができる。このような透過性導電層としては、ITO、ZTOなどの金属酸化物や、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの透明導電性樹脂をいることができる。また、透明導電性樹脂は、ITO、ZTOなどの金属酸化物と比較し屈折率が低いため、透光部に透明導電性樹脂を積層させた場合でも発光層から出射される光を発光装置の外部に効率的に取り出すことができる。透過性導電層は真空蒸着法、スパッタリング法、イオンプレーティング法、あるいはインキを用いた印刷法、インクジェット法などにより形成することができる。 A transparent conductive layer may be laminated on one main surface or both main surfaces of the mesh-like translucent electrode in contact with the mesh-like translucent electrode. By laminating the transparent conductive layer in this manner, the conductivity of the light transmitting part can be increased, and further, the step between the light transmitting part and the non-light transmitting part can be reduced. As such a transparent conductive layer, a transparent conductive resin such as a metal oxide such as ITO or ZTO, polyaniline or a derivative thereof, or polythiophene or a derivative thereof can be used. In addition, since the transparent conductive resin has a lower refractive index than metal oxides such as ITO and ZTO, the light emitted from the light emitting layer can be emitted from the light emitting device even when the transparent conductive resin is laminated on the light transmitting portion. It can be taken out efficiently. The transparent conductive layer can be formed by a vacuum deposition method, a sputtering method, an ion plating method, a printing method using ink, an ink jet method, or the like.
 網目状透光性電極のシート抵抗は有機EL素子の発光効率の向上、輝度ムラおよび発熱の低減の観点から、10(Ω/sq.)以下であることが好ましく、さらには5(Ω/sq.)以下であることが好ましく、さらには1(Ω/sq.)以下であることが好ましい。網目状透光性電極の膜厚は、網目状透光性電極の導電性や有機EL素子の作製のしやすさの観点から適宜選択され、50nm~1μmが好ましく、さらには100nm~500nmがより好ましい。網目状透光性電極の開口率、すなわち単位面積当たりの透光部の割合は、導電性や光取り出し効率などを勘案して適宜選択されるが、30~95%が好ましく、さらに50~90%がより好ましい。また網目状に配置される導電体の線幅は、導電性や光取り出し効率などを勘案して適宜選択されるが、5μm~1mmが好ましく、さらには10μm~200μmが好ましい。また網目状に配置される導電体に囲まれる各透光部の面積は、平均すると100μm~4mmが好ましく、さらには400μm~1mmが好ましい。また網目状透光性電極の光透過率は、30%以上が好ましく、50%以上が好ましく、70%以上がさらに好ましい。なお本明細書における光透過率は、可視光透過率を意味する。 The sheet resistance of the mesh-like translucent electrode is preferably 10 (Ω / sq.) Or less, and more preferably 5 (Ω / sq.) From the viewpoint of improving the light emission efficiency of the organic EL element, reducing luminance unevenness and heat generation. .) Or less, more preferably 1 (Ω / sq.) Or less. The film thickness of the mesh-like translucent electrode is appropriately selected from the viewpoint of the conductivity of the mesh-like translucent electrode and the ease of production of the organic EL device, and is preferably 50 nm to 1 μm, more preferably 100 nm to 500 nm. preferable. The aperture ratio of the mesh-like translucent electrode, that is, the ratio of the translucent portion per unit area is appropriately selected in consideration of the conductivity and the light extraction efficiency, but is preferably 30 to 95%, and more preferably 50 to 90. % Is more preferable. The line width of the conductors arranged in a mesh shape is appropriately selected in consideration of conductivity and light extraction efficiency, but is preferably 5 μm to 1 mm, more preferably 10 μm to 200 μm. In addition, the area of each light-transmitting portion surrounded by the conductors arranged in a mesh shape is preferably 100 μm 2 to 4 mm 2 on average, and more preferably 400 μm 2 to 1 mm 2 . Further, the light transmittance of the mesh-like translucent electrode is preferably 30% or more, preferably 50% or more, and more preferably 70% or more. In addition, the light transmittance in this specification means visible light transmittance.
 網目状透光性電極は、(1)まず上述の導電体からなる導電性薄膜を一面に形成して、さらにこの導電性薄膜を所定の方法によって網目状にパターニングすることによって形成してもよく、また(2)上述の導電体を網目状に直接パターン形成してもよい。 The mesh-like translucent electrode may be formed by (1) first forming a conductive thin film made of the above-described conductor on one surface and further patterning this conductive thin film into a mesh shape by a predetermined method. (2) The above-described conductor may be directly patterned in a mesh shape.
 たとえば上記(1)の方法として、まず真空蒸着法、スパッタリング法、イオンプレーティング法などにより導電体からなる導電性薄膜を一面に形成し、さらにフォトリソグラフィ法によって導電性薄膜をパターニングすることにより網目状透光性電極を形成することができる。また上記導電性フィラーと樹脂とを所定の分散媒に分散させた塗布液を所定の塗布法によって塗布成膜し、さらにこれをフォトリソグラフィ法によってパターニングすることによって網目状透光性電極を形成することができる。 For example, as the method of (1), first, a conductive thin film made of a conductor is formed on one surface by a vacuum deposition method, a sputtering method, an ion plating method, etc., and then the conductive thin film is patterned by a photolithography method. A transparent electrode can be formed. Further, a coating liquid in which the conductive filler and the resin are dispersed in a predetermined dispersion medium is applied and formed by a predetermined application method, and this is patterned by a photolithography method to form a mesh-like translucent electrode. be able to.
 またたとえば上記(2)の方法として、所定のパターンのマスクをもちいて、真空蒸着法、スパッタリング法、イオンプレーティング法などにより上記導電体を網目状に形成することによって網目状透光性電極を形成することができる。またたとえば上記導電性フィラーと樹脂とを所定の分散媒に分散させた塗布液を、印刷法、インクジェット法などによって網目状に塗布液を塗布成膜することによって網目状透光性電極をパターン形成することができる。 Further, for example, as a method of (2) above, a mesh-like translucent electrode is formed by forming the conductor in a mesh shape by a vacuum deposition method, a sputtering method, an ion plating method or the like using a mask having a predetermined pattern. Can be formed. In addition, for example, a network-like translucent electrode is patterned by applying a coating liquid in which the conductive filler and the resin are dispersed in a predetermined dispersion medium to form a coating liquid by a printing method, an ink-jet method, or the like. can do.
 さらには、支持基板12とは異なる所定の基台上にあらかじめ作製した網目状透光性電極を、ラミネート法によって支持基板12上に転写することにより、支持基板12上に網目状透光性電極を形成してもよい。 Furthermore, a mesh-like translucent electrode prepared in advance on a predetermined base different from the support substrate 12 is transferred onto the support substrate 12 by a laminating method, whereby the mesh-like translucent electrode is formed on the support substrate 12. May be formed.
 2)発光装置の製造方法
 本実施形態の発光装置の製造方法は、支持基板と、所定の配列方向に沿って前記支持基板上に設けられ、直列接続される複数の有機エレクトロルミネッセンス素子とを備える発光装置であり、各有機エレクトロルミネッセンス素子はそれぞれ、一対の電極と、該電極間に設けられる発光層とを備え、前記発光層は、前記複数の有機エレクトロルミネッセンス素子に跨って、前記所定の配列方向に沿って延在しており、前記一対の電極はそれぞれ、前記支持基板の厚み方向一方から見て、前記支持基板の厚み方向および前記配列方向のいずれにも垂直な幅方向に、発光層から突出するように延在する延在部を有し、前記一対の電極のうちの一方の電極は、前記配列方向に隣り合う有機エレクトロルミネッセンス素子の他方の電極にまで前記延在部から前記配列方向に延在し、該他方の電極に接続される接続部をさらに有し、前記一対の電極のうちの少なくとも1つの電極が、導電体が網目状に配置されて構成される網目状透光性電極である発光装置の製造方法であって、前記発光層となる材料を含むインキを、前記複数の有機EL素子に跨って前記所定の配列方向に沿って連続的に塗布し、塗布した塗膜を固化することにより発光層を形成する工程を含む。
2) Method for Manufacturing Light-Emitting Device The method for manufacturing a light-emitting device according to the present embodiment includes a support substrate and a plurality of organic electroluminescent elements provided on the support substrate along a predetermined arrangement direction and connected in series. Each of the organic electroluminescence elements includes a pair of electrodes and a light emitting layer provided between the electrodes, the light emitting layer straddling the plurality of organic electroluminescence elements, the predetermined arrangement Each of the pair of electrodes extends in a direction perpendicular to both the thickness direction of the support substrate and the arrangement direction when viewed from one thickness direction of the support substrate. One of the pair of electrodes is the other of the organic electroluminescence elements adjacent in the arrangement direction. A connecting portion extending from the extending portion to the other electrode in the arrangement direction and connected to the other electrode, wherein at least one of the pair of electrodes has a conductor mesh A method of manufacturing a light-emitting device that is a mesh-like translucent electrode that is arranged in the form of an ink containing a material that becomes the light-emitting layer, the predetermined arrangement direction across the plurality of organic EL elements And a step of forming a light-emitting layer by solidifying the applied coating.
 以下、図2および図3を参照して発光装置を製造する方法を説明する。なお、図2~図5において(A)は平面図、(B)は断面図を示す。まず支持基板12を用意する。本工程では有機EL素子13を駆動する駆動回路(不図示)があらかじめ形成されている支持基板12を用意してもよい。 Hereinafter, a method of manufacturing the light emitting device will be described with reference to FIGS. 2 to 5, (A) is a plan view and (B) is a cross-sectional view. First, the support substrate 12 is prepared. In this step, a support substrate 12 on which a drive circuit (not shown) for driving the organic EL element 13 is formed in advance may be prepared.
 つぎに支持基板12上に第1電極14をパターン形成する(図2(A),(B)参照)。第1電極が光透過性を示す電極である場合、支持基板12上には第1電極14として前述の導電体が網目状に配置されて構成される網目状透光性電極をパターン形成する。この網目状透光性電極の形成方法は上述のとおりである。 Next, the first electrode 14 is patterned on the support substrate 12 (see FIGS. 2A and 2B). When the first electrode is an electrode exhibiting optical transparency, a mesh-like translucent electrode configured by arranging the above-described conductors in the form of a mesh as the first electrode 14 is formed in a pattern on the support substrate 12. The method for forming this mesh-like translucent electrode is as described above.
 なお第1電極が非透光性の電極の場合、たとえばスパッタリング法または蒸着法によって、導電体膜を支持基板12上に成膜し、つぎにフォトリソグラフィ法によって導電体膜を所定の形状にパターニングすることによって、第1電極14をパターン形成することができる。なおフォトリソグラフィ工程をおこなうことなく、マスク蒸着法などによって所定の部位にのみ第1電極14をパターン形成してもよい。また塗布法により導電性材料を含むインキを塗布し、塗布した塗膜を固化することにより第1電極14を形成してもよい。またラミネート法により導電性薄膜を転写することにより第1電極14を形成してもよい。 When the first electrode is a non-transparent electrode, for example, a conductor film is formed on the support substrate 12 by sputtering or vapor deposition, and then the conductor film is patterned into a predetermined shape by photolithography. By doing so, the first electrode 14 can be patterned. Note that the first electrode 14 may be pattern-formed only at a predetermined portion by a mask vapor deposition method or the like without performing a photolithography process. Moreover, you may form the 1st electrode 14 by apply | coating the ink containing an electroconductive material with the apply | coating method, and solidifying the apply | coated coating film. Alternatively, the first electrode 14 may be formed by transferring a conductive thin film by a laminating method.
 なお本工程では第1電極14があらかじめ形成された支持基板12を用意してもよい。 In this step, a support substrate 12 on which the first electrode 14 is formed in advance may be prepared.
 つぎに支持基板12上に発光層16を形成する(図3(A),(B)参照)。たとえば発光層16となる材料を含むインキを、複数の有機EL素子13に跨って配列方向Xに沿って連続的に塗布し、塗布した塗膜を固化することにより発光層16を形成することができる。 Next, the light emitting layer 16 is formed on the support substrate 12 (see FIGS. 3A and 3B). For example, the light emitting layer 16 may be formed by continuously applying an ink containing a material to be the light emitting layer 16 along the arrangement direction X across the plurality of organic EL elements 13 and solidifying the applied coating film. it can.
 インキを塗布する方法としては、キャップコート法、スリットコート法、スプレーコート法、印刷法、インクジェット法、ノズルプリンティング法などをあげることができ、これらのなかでも大面積を効率的に塗布することが可能なキャップコート法、スリットコート法、スプレーコート法および印刷法が好ましい。 Examples of the ink application method include a cap coating method, a slit coating method, a spray coating method, a printing method, an ink jet method, and a nozzle printing method. Among these methods, a large area can be efficiently applied. Possible cap coating methods, slit coating methods, spray coating methods and printing methods are preferred.
 つぎに支持基板12上に第2電極15を形成する(図1(A),(B)参照)。第2電極15が光透過性を示す電極である場合、発光層16上には第2電極15として前述の導電体が網目状に配置されて構成される網目状透光性電極をパターン形成する。この網目状透光性電極の形成方法は上述のとおりである。 Next, the second electrode 15 is formed on the support substrate 12 (see FIGS. 1A and 1B). When the second electrode 15 is a light-transmitting electrode, a mesh-like translucent electrode configured by arranging the above-described conductors in the form of a mesh is formed on the light-emitting layer 16 as a pattern. . The method for forming this mesh-like translucent electrode is as described above.
 なお第2電極15が非透光性の電極の場合、たとえばスパッタリング法または蒸着法によって、導電体膜を支持基板12上に成膜し、つぎにフォトリソグラフィ法によって導電体膜を所定の形状にパターニングすることによって、第2電極15をパターン形成することができる。なおフォトリソグラフィ工程をおこなうことなく、マスク蒸着法などによって所定の部位にのみ第2電極15をパターン形成してもよい。また塗布法により導電性材料を含むインキを塗布し、塗布した塗膜を固化することにより第2電極15を形成してもよい。またラミネート法により導電性薄膜を転写することにより第2電極15を形成してもよい。 When the second electrode 15 is a non-translucent electrode, for example, a conductor film is formed on the support substrate 12 by sputtering or vapor deposition, and then the conductor film is formed into a predetermined shape by photolithography. The second electrode 15 can be patterned by patterning. Note that the second electrode 15 may be patterned only on a predetermined portion by a mask vapor deposition method or the like without performing a photolithography process. Moreover, you may form the 2nd electrode 15 by apply | coating the ink containing an electroconductive material with the apply | coating method, and solidifying the apply | coated coating film. Alternatively, the second electrode 15 may be formed by transferring a conductive thin film by a laminating method.
 なお前述したように第1および第2電極14,15間には発光層16とは異なる所定の層を設けることがある。発光層16とは異なる所定の層を塗布法によって形成する場合には、発光層16を形成する方法と同じ方法によって、発光層16とは異なる所定の層を形成することが好ましい。すなわち発光層16とは異なる所定の層となる材料を含むインキを、複数の有機EL素子13に跨って配列方向Xに沿って連続的に塗布し、塗布した塗膜を固化することにより発光層16とは異なる所定の層を形成することが好ましい。なお発光層とは異なる所定の層を蒸着法などの乾式法で形成する場合には、発光層とは異なる所定の層を第1電極14上にのみ選択的に形成してもよい。 As described above, a predetermined layer different from the light emitting layer 16 may be provided between the first and second electrodes 14 and 15. When a predetermined layer different from the light emitting layer 16 is formed by a coating method, it is preferable to form a predetermined layer different from the light emitting layer 16 by the same method as the method of forming the light emitting layer 16. That is, an ink containing a material that becomes a predetermined layer different from the light emitting layer 16 is continuously applied along the arrangement direction X across the plurality of organic EL elements 13, and the applied coating film is solidified to solidify the applied light emitting layer. Preferably, a predetermined layer different from 16 is formed. When a predetermined layer different from the light emitting layer is formed by a dry method such as vapor deposition, the predetermined layer different from the light emitting layer may be selectively formed only on the first electrode 14.
 インキを塗布する方法としては、キャップコート法、スリットコート法、スプレーコート法、印刷法、インクジェット法、ノズルプリンティング法などをあげることができ、これらのなかでも大面積を効率的に塗布することが可能なキャップコート法、スリットコート法、スプレーコート法および印刷法が好ましい。 Examples of the ink application method include a cap coating method, a slit coating method, a spray coating method, a printing method, an ink jet method, and a nozzle printing method. Among these methods, a large area can be efficiently applied. Possible cap coating methods, slit coating methods, spray coating methods and printing methods are preferred.
 以下支持基板12および有機EL素子13の構成についてさらに詳細に説明する。 Hereinafter, the configurations of the support substrate 12 and the organic EL element 13 will be described in more detail.
 前述したように第1および第2電極14,15間には発光層16のみならず、発光層16とは異なる所定の層がさらに設けられることがある。第1電極14を陽極、第2電極15を陰極とすると、陰極15と発光層16との間に設けられる層としては、電子輸送層、正孔ブロック層などを挙げることができる。なお、説明では、必要に応じて、第1電極14を陽極14として、第2電極15を陰極15として説明するが、これらの配置は置換することができる。 As described above, not only the light emitting layer 16 but also a predetermined layer different from the light emitting layer 16 may be further provided between the first and second electrodes 14 and 15. When the first electrode 14 is an anode and the second electrode 15 is a cathode, examples of the layer provided between the cathode 15 and the light emitting layer 16 include an electron transport layer and a hole blocking layer. In the description, the first electrode 14 will be described as the anode 14 and the second electrode 15 will be described as the cathode 15 as necessary. However, these arrangements can be replaced.
 正孔ブロック層は正孔の輸送を堰き止める機能を有する。なお電子注入層及び/又は電子輸送層が正孔の輸送を堰き止める機能を有する場合には、これらの層が正孔ブロック層を兼ねることがある。 The hole blocking layer has a function of blocking hole transport. In the case where the electron injection layer and / or the electron transport layer have a function of blocking hole transport, these layers may also serve as the hole blocking layer.
 陽極14と発光層16との間に設けられる層Yとしては、正孔注入層、正孔輸送層、電子ブロック層などをあげることができる。 Examples of the layer Y provided between the anode 14 and the light emitting layer 16 include a hole injection layer, a hole transport layer, and an electron block layer.
 有機EL素子は前述したように一対の電極間に発光層以外にも所定の層を備えうる。支持基板12上に形成された電極(陽極)14と電極(陰極)15との間に形成される有機EL層10としては、以下の構造が挙げられる。 The organic EL element can include a predetermined layer in addition to the light emitting layer between the pair of electrodes as described above. The organic EL layer 10 formed between the electrode (anode) 14 and the electrode (cathode) 15 formed on the support substrate 12 has the following structure.
 有機EL素子の構造としては、図10に示すように、電極(陽極)14と発光層16との間に有機層Yが介在すると共に、電極(陰極)15と発光層16との間に有機層Xが介在する構造とすることができる。 As shown in FIG. 10, the organic EL element has an organic layer Y between the electrode (anode) 14 and the light emitting layer 16 and an organic layer between the electrode (cathode) 15 and the light emitting layer 16. It can be set as the structure where the layer X interposes.
 有機EL素子の構造としては、図11に示すように、電極(陽極)14と発光層16との間に有機層Yが介在し、発光層16上には直接的に電極15が形成されている構造とすることができる。 As shown in FIG. 11, the organic EL element has a structure in which an organic layer Y is interposed between an electrode (anode) 14 and a light emitting layer 16, and an electrode 15 is formed directly on the light emitting layer 16. It can be set as a structure.
 有機EL素子の構造としては、図12に示すように、電極(陰極)15と発光層16との間に有機層Xが介在し、発光層16が直接的に電極14に接触している構造とすることができる。 As shown in FIG. 12, the organic EL element has a structure in which the organic layer X is interposed between the electrode (cathode) 15 and the light emitting layer 16 and the light emitting layer 16 is in direct contact with the electrode 14. It can be.
 有機層Xは、図13に示すように、2種類以上の有機層X1,X2からなることとしてもよく、有機層Yは、図14に示すように、2種類以上の有機層Y1,Y2からなることとしてもよい。 The organic layer X may be composed of two or more kinds of organic layers X1 and X2 as shown in FIG. 13, and the organic layer Y is composed of two or more kinds of organic layers Y1 and Y2 as shown in FIG. It may be.
 有機EL素子の構造としては、図17に示すように、陽極14と陰極15との間に発光層16のみが形成されていてもよい。 As the structure of the organic EL element, only the light emitting layer 16 may be formed between the anode 14 and the cathode 15 as shown in FIG.
 陰極15と発光層16との間に設けられる層Xとしては、電子注入層、電子輸送層、正孔ブロック層などをあげることができる。図13に示したように、陰極15と発光層16との間に電子注入層X1と電子輸送層X2との両方の層が設けられる場合、陰極15に接する層を電子注入層X1といい、この電子注入層X1を除く層を電子輸送層X2という。 Examples of the layer X provided between the cathode 15 and the light emitting layer 16 include an electron injection layer, an electron transport layer, and a hole blocking layer. As shown in FIG. 13, when both the electron injection layer X1 and the electron transport layer X2 are provided between the cathode 15 and the light emitting layer 16, the layer in contact with the cathode 15 is referred to as the electron injection layer X1, The layer excluding the electron injection layer X1 is referred to as an electron transport layer X2.
 図14に示したように、陽極14と発光層16との間に、正孔注入層Y1と正孔輸送層Y2との両方の層が設けられる場合、陽極14に接する層を正孔注入層Y1といい、この正孔注入層Y1を除く層を正孔輸送層Y2という。 As shown in FIG. 14, when both the hole injection layer Y1 and the hole transport layer Y2 are provided between the anode 14 and the light emitting layer 16, the layer in contact with the anode 14 is defined as the hole injection layer. The layer excluding the hole injection layer Y1 is referred to as Y1, and is referred to as a hole transport layer Y2.
 正孔注入層は陽極からの正孔注入効率を改善する機能を有する。正孔輸送層は陽極側の表面に接する層からの正孔注入を改善する機能を有する。電子ブロック層は電子の輸送を堰き止める機能を有する。なお正孔注入層及び/又は正孔輸送層が電子の輸送を堰き止める機能を有する場合には、これらの層が電子ブロック層を兼ねることがある。 The hole injection layer has a function of improving the hole injection efficiency from the anode. The hole transport layer has a function of improving hole injection from a layer in contact with the surface on the anode side. The electron blocking layer has a function of blocking electron transport. When the hole injection layer and / or the hole transport layer has a function of blocking electron transport, these layers may also serve as an electron blocking layer.
 なお電子注入層および正孔注入層を総称して電荷注入層ということがあり、電子輸送層および正孔輸送層を総称して電荷輸送層ということがある。 Note that the electron injection layer and the hole injection layer may be collectively referred to as a charge injection layer, and the electron transport layer and the hole transport layer may be collectively referred to as a charge transport layer.
 本実施形態の有機EL素子のとりうる層構成の一例を以下に示す。
(a)陽極14/発光層16/陰極15(図17参照)
(b)陽極14/正孔注入層Y/発光層16/陰極15(図11参照)
(c)陽極14/正孔注入層Y/発光層16/電子注入層X/陰極15(図10参照)
(d)陽極14/正孔注入層Y/発光層16/電子輸送層X2/電子注入層X1/陰極15(図10、図13参照)
(e)陽極14/正孔注入層Y1/正孔輸送層Y2/発光層16/陰極15(図11、図14参照)
(f)陽極14/正孔注入層Y1/正孔輸送層Y2/発光層16/電子注入層X/陰極15(図10、図14参照)
(g)陽極14/正孔注入層Y1/正孔輸送層Y2/発光層16/電子輸送層X2/電子注入層X1/陰極15(図10、図13、図14参照)
(h)陽極14/発光層16/電子注入層X/陰極15(図12参照)
(i)陽極14/発光層16/電子輸送層X2/電子注入層X1/陰極15(図12、図13参照)
(ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。以下同じ。)
An example of a layer structure that can be taken by the organic EL element of the present embodiment is shown below.
(A) Anode 14 / light emitting layer 16 / cathode 15 (see FIG. 17)
(B) Anode 14 / hole injection layer Y / light emitting layer 16 / cathode 15 (see FIG. 11)
(C) Anode 14 / hole injection layer Y / light emitting layer 16 / electron injection layer X / cathode 15 (see FIG. 10)
(D) Anode 14 / hole injection layer Y / light emitting layer 16 / electron transport layer X2 / electron injection layer X1 / cathode 15 (see FIGS. 10 and 13)
(E) Anode 14 / hole injection layer Y1 / hole transport layer Y2 / light emitting layer 16 / cathode 15 (see FIGS. 11 and 14)
(F) Anode 14 / hole injection layer Y1 / hole transport layer Y2 / light emitting layer 16 / electron injection layer X / cathode 15 (see FIGS. 10 and 14)
(G) Anode 14 / hole injection layer Y1 / hole transport layer Y2 / light-emitting layer 16 / electron transport layer X2 / electron injection layer X1 / cathode 15 (see FIGS. 10, 13, and 14)
(H) Anode 14 / light emitting layer 16 / electron injection layer X / cathode 15 (see FIG. 12)
(I) Anode 14 / light emitting layer 16 / electron transport layer X2 / electron injection layer X1 / cathode 15 (see FIGS. 12 and 13)
(Here, the symbol “/” indicates that the layers sandwiching the symbol “/” are adjacently stacked. The same applies hereinafter.)
 本実施形態の有機EL素子は2層以上の発光層を有していてもよい。上記(a)~(i)の層構成のうちのいずれか1つにおいて、陽極と陰極とに挟持された積層体を「構造単位A」とすると、2層の発光層を有する有機EL素子の構成として、以下の(j)に示す層構成をあげることができる。なお2つある(構造単位A)の層構成は互いに同じでも、異なっていてもよい。
j)陽極14/構造単位A/電荷発生層Z/構造単位A/陰極15(図15参照)
The organic EL element of this embodiment may have two or more light emitting layers. In any one of the layer configurations (a) to (i) above, if the laminate sandwiched between the anode and the cathode is “structural unit A”, an organic EL device having two light-emitting layers is obtained. As the configuration, the layer configuration shown in the following (j) can be given. Note that the two (structural unit A) layer structures may be the same or different.
j) Anode 14 / structural unit A / charge generation layer Z / structural unit A / cathode 15 (see FIG. 15)
 ここで電荷発生層Zとは、電界を印加することにより、正孔と電子を発生する層である。電荷発生層Zとしては、たとえば酸化バナジウム、インジウムスズ酸化物(Indium
Tin Oxide:略称ITO)、酸化モリブデンなどから成る薄膜をあげることができる。
Here, the charge generation layer Z is a layer that generates holes and electrons by applying an electric field. Examples of the charge generation layer Z include vanadium oxide and indium tin oxide (Indium).
A thin film made of tin oxide (abbreviated as ITO), molybdenum oxide, or the like can be given.
 また「構造単位A/電荷発生層Z」を「構造単位B」とすると、3層以上の発光層を有する有機EL素子の構成として、以下の(k)に示す層構成をあげることができる。
(k)陽極14/(構造単位B)x/(構造単位A)/陰極15(図16参照)
Further, when “structural unit A / charge generation layer Z” is “structural unit B”, a layer configuration shown in the following (k) can be given as a configuration of an organic EL element having three or more light emitting layers.
(K) Anode 14 / (structural unit B) x / (structural unit A) / cathode 15 (see FIG. 16)
 なお記号「x」は、2以上の整数を表し、(構造単位B)xは、構造単位Bがx段積層された積層体を表す。また複数ある(構造単位B)の層構成は同じでも、異なっていてもよい。 Note that the symbol “x” represents an integer of 2 or more, and (structural unit B) x represents a stacked body in which the structural unit B is stacked in x stages. A plurality of (structural units B) may have the same or different layer structure.
 なお電荷発生層Zを設けずに、複数の発光層を直接積層させた有機EL素子を構成してもよい。 Note that an organic EL element in which a plurality of light emitting layers are directly stacked may be configured without providing the charge generation layer Z.
 <支持基板>
 支持基板12は有機EL素子を製造する工程において化学的に変化しないものが好適に用いられ、たとえばガラス、プラスチック、高分子フィルム、およびシリコン板、並びにこれらを積層したものなどが用いられる。なお有機EL素子を駆動する駆動回路が予め形成されている駆動用基板を支持基板として用いてもよい。支持基板12を通して光が出射する構成のボトムエミッション型の有機EL素子を支持基板12に搭載する場合、支持基板12には光透過性を示す基板が用いられる。
<Support substrate>
The support substrate 12 is preferably one that does not change chemically in the process of manufacturing the organic EL element. For example, glass, plastic, a polymer film, a silicon plate, and a laminate of these are used. A drive substrate in which a drive circuit for driving the organic EL element is formed in advance may be used as the support substrate. When a bottom emission type organic EL element configured to emit light through the support substrate 12 is mounted on the support substrate 12, a substrate exhibiting light transmittance is used as the support substrate 12.
 <陽極および陰極>
 陽極および陰極(電極14,15)の少なくとも1つの電極は透光性電極から構成される。なお陰極および陽極のうちの1つの電極のみが透光性電極から構成される場合には、当該透光性電極は前述した網目状透光性電極によって構成される。また陽極および陰極が透光性電極である場合、少なくとも一方が前記網目状透光性電極から構成されればよく、他方は光透過性を示す電極によって構成されてもよい。光透過性を示す電極としては、ITO、ZTOなどの金属酸化物や、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの透明導電性樹脂を用いてもよい。このような光透過性を示す電極は真空蒸着法、スパッタリング法、イオンプレーティング法、あるいはインキを用いた印刷法、インクジェット法などにより形成することができる。
<Anode and cathode>
At least one of the anode and the cathode (electrodes 14 and 15) is composed of a translucent electrode. In addition, when only one electrode of a cathode and an anode is comprised from a translucent electrode, the said translucent electrode is comprised by the mesh-like translucent electrode mentioned above. Moreover, when an anode and a cathode are translucent electrodes, at least one should just be comprised from the said mesh-like translucent electrode, and the other may be comprised by the electrode which shows a light transmittance. As the electrode exhibiting light transmittance, a transparent conductive resin such as metal oxide such as ITO or ZTO, polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used. Such an electrode having optical transparency can be formed by a vacuum deposition method, a sputtering method, an ion plating method, a printing method using ink, an ink jet method, or the like.
 陽極および陰極のうちの1つの電極には不透光性を示す電極を用いてもよく、このような不透光性を示す電極の材料としては、電気伝導度の高い材料が好ましく、可視光反射率の高い材料が好ましい。不透光性を示す電極には、金、銀、白金、銅、アルミニウム、マンガン、チタン、コバルト、ニッケル、タングステン、錫の単体もしくは1種以上を含む合金、またはグラファイト若しくはグラファイト層間化合物などが用いられる。なお不透光性を示す電極は、2層以上の層を積層した積層体で構成されていてもよい。不透光性を示す電極の膜厚は、求められる特性および工程の簡易さなどを考慮して適宜設計され、たとえば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。不透光性を示す電極の作製方法としては、真空蒸着法、スパッタリング法、また金属薄膜を熱圧着するラミネート法などを挙げることができる。 An electrode exhibiting translucency may be used as one of the anode and the cathode, and the material of the electrode exhibiting such translucency is preferably a material having high electrical conductivity, such as visible light. A highly reflective material is preferred. Gold, silver, platinum, copper, aluminum, manganese, titanium, cobalt, nickel, tungsten, tin, or an alloy containing one or more, or graphite or a graphite intercalation compound is used for the electrode exhibiting light-impermeable properties. It is done. Note that the light-transmitting electrode may be formed of a stacked body in which two or more layers are stacked. The film thickness of the non-translucent electrode is appropriately designed in consideration of required characteristics and process simplicity, and is, for example, 10 nm to 10 μm, preferably 20 nm to 1 μm, more preferably 50 nm to 500 nm. It is. Examples of a method for manufacturing an electrode having light-transmitting properties include a vacuum deposition method, a sputtering method, and a lamination method in which a metal thin film is thermocompression bonded.
 <正孔注入層>
 正孔注入層を構成する正孔注入材料としては、酸化バナジウム、酸化モリブデン、酸化ルテニウムおよび酸化アルミニウムなどの金属酸化物や、フェニルアミン系化合物、スターバースト型アミン系化合物、フタロシアニン系、アモルファスカーボン、ポリアニリンおよびポリチオフェン誘導体などを挙げることができる。
<Hole injection layer>
As the hole injection material constituting the hole injection layer, metal oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide and aluminum oxide, phenylamine compounds, starburst amine compounds, phthalocyanines, amorphous carbon, Examples thereof include polyaniline and polythiophene derivatives.
 正孔注入層の成膜方法としては、たとえば正孔注入材料を含む溶液からの成膜を挙げることができる。たとえば所定の塗布法によって正孔注入材料を含む溶液を塗布成膜し、さらにこれを固化することによって正孔注入層を形成することができる。 Examples of the method for forming the hole injection layer include film formation from a solution containing a hole injection material. For example, a hole injection layer can be formed by coating a film containing a hole injection material by a predetermined coating method and solidifying the solution.
 溶液からの成膜に用いられる溶媒としては、クロロホルム、塩化メチレン、ジクロロエタンなどの塩素系溶媒、テトラヒドロフランなどのエーテル系溶媒、トルエン、キシレンなどの芳香族炭化水素系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル系溶媒、および水を挙げることができる。 Solvents used for film formation from solution include chlorine solvents such as chloroform, methylene chloride and dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, and ketones such as acetone and methyl ethyl ketone. Examples thereof include solvents, ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate, and water.
 正孔注入層の膜厚は、求められる特性および工程の簡易さなどを考慮して適宜設定され、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The film thickness of the hole injection layer is appropriately set in consideration of required characteristics and process simplicity, and is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
 <正孔輸送層>
 正孔輸送層を構成する正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などを挙げることができる。
<Hole transport layer>
As the hole transport material constituting the hole transport layer, polyvinylcarbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a pyrazoline derivative, an arylamine derivative, a stilbene derivative, Triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, or poly (2,5-thienylene vinylene) or Examples thereof include derivatives thereof.
 これらの中で正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などの高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。 Among these, hole transport materials include polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, polysiloxane derivatives having aromatic amine compound groups in the side chain or main chain, polyaniline or derivatives thereof, polythiophene or derivatives thereof, poly Polymeric hole transport materials such as arylamine or derivatives thereof, poly (p-phenylene vinylene) or derivatives thereof, or poly (2,5-thienylene vinylene) or derivatives thereof are preferred, and polyvinylcarbazole or derivatives thereof are more preferred. , Polysilane or a derivative thereof, and a polysiloxane derivative having an aromatic amine in the side chain or main chain. In the case of a low-molecular hole transport material, it is preferably used by being dispersed in a polymer binder.
 正孔輸送層の成膜方法としては、たとえば正孔輸送材料を含む溶液からの成膜を挙げることができる。たとえば所定の塗布法によって正孔輸送材料を含む溶液を塗布成膜し、さらにこれを固化することによって正孔輸送層を形成することができる。低分子の正孔輸送材料では、高分子バインダーをさらに混合した溶液を用いて成膜してもよい。 Examples of the method for forming the hole transport layer include film formation from a solution containing a hole transport material. For example, a hole transport layer can be formed by coating a film containing a hole transport material by a predetermined coating method and solidifying the solution. In the case of a low molecular hole transport material, a film may be formed using a solution in which a polymer binder is further mixed.
 溶液からの成膜に用いられる溶媒としては、たとえばクロロホルム、塩化メチレン、ジクロロエタンなどの塩素系溶媒、テトラヒドロフランなどのエーテル系溶媒、トルエン、キシレンなどの芳香族炭化水素系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル系溶媒などを挙げることができる。 Solvents used for film formation from solution include, for example, chlorine solvents such as chloroform, methylene chloride, dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, and ketones such as acetone and methyl ethyl ketone. Examples thereof include ester solvents such as system solvents, ethyl acetate, butyl acetate, and ethyl cellosolve acetate.
 混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収の弱いものが好適に用いられ、たとえばポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサンなどを挙げることができる。 As the polymer binder to be mixed, those that do not extremely inhibit charge transport are preferable, and those that weakly absorb visible light are preferably used. For example, polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, poly Examples thereof include vinyl chloride and polysiloxane.
 正孔輸送層の膜厚は、要求される特性および工程の簡易さなどを考慮して適宜設定され、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The film thickness of the hole transport layer is appropriately set in consideration of required characteristics and process simplicity, and is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm. .
 <発光層>
 発光層は、通常、主として蛍光及び/又はりん光を発光する有機物、または該有機物とこれを補助するドーパントとから形成される。たとえば発光効率の向上や、発光波長を変化させるためにドーパントは加えられる。なお発光層に含まれる有機物は、低分子化合物でも高分子化合物でもよい。低分子化合物よりも溶媒への溶解性が一般的に高い高分子化合物は塗布法に好適に用いられるため、発光層は高分子化合物を含むことが好ましく、高分子化合物としてポリスチレン換算の数平均分子量が10~10の化合物を含むことが好ましい。発光層を構成する発光材料としては、たとえば以下の色素系材料、金属錯体系材料、高分子系材料、ドーパント材料を挙げることができる。
<Light emitting layer>
The light emitting layer is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance. For example, a dopant is added in order to improve luminous efficiency and change the emission wavelength. The organic substance contained in the light emitting layer may be a low molecular compound or a high molecular compound. Since a high molecular compound having a generally higher solubility in a solvent than a low molecular compound is preferably used in the coating method, the light-emitting layer preferably contains a high molecular compound, and the number average molecular weight in terms of polystyrene as the high molecular compound Preferably contain from 10 3 to 10 8 compounds. Examples of the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
 (色素系材料)
 色素系材料としては、たとえば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、クマリン誘導体などを挙げることができる。
(Dye material)
Examples of dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, coumarin derivatives, and the like.
 (金属錯体系材料)
 金属錯体系材料としては、たとえばTb、Eu、Dyなどの希土類金属、またはAl、Zn、Be、Ir、Ptなどを中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを配位子に有する金属錯体を挙げることができ、たとえばイリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体などを挙げることができる。
(Metal complex materials)
Examples of the metal complex material include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Ir, Pt, etc. as a central metal, and oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline. Examples include metal complexes having a structure as a ligand, such as metal complexes having light emission from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, and benzoxazolyl zinc. A complex, a benzothiazole zinc complex, an azomethylzinc complex, a porphyrin zinc complex, a phenanthroline europium complex, and the like can be given.
 (高分子系材料)
 高分子系材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素系材料や金属錯体系発光材料を高分子化したものなどを挙げることができる。
(Polymer material)
As polymer materials, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinyl carbazole derivatives, the above dye materials and metal complex light emitting materials are polymerized. Things can be mentioned.
 上記発光性材料のうち、青色に発光する材料としては、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、およびそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体やポリフルオレン誘導体などが好ましい。 Among the luminescent materials described above, materials that emit blue light include distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
 また、緑色に発光する材料としては、キナクリドン誘導体、クマリン誘導体、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが好ましい。 In addition, examples of materials that emit green light include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.
 また、赤色に発光する材料としては、クマリン誘導体、チオフェン環化合物、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが好ましい。
(ドーパント材料)
 ドーパント材料としては、たとえばペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどを挙げることができる。なお、このような発光層の厚さは、通常約2nm~200nmである。
Examples of materials that emit red light include coumarin derivatives, thiophene ring compounds, and polymers thereof, polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives. Among these, polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives are preferable.
(Dopant material)
Examples of the dopant material include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like. Note that the thickness of such a light emitting layer is usually about 2 nm to 200 nm.
 発光層は、たとえば溶液からの成膜によって形成される。たとえば発光材料を含む溶液を所定の塗布法によって塗布し、さらにこれを固化することによって発光層は形成される。溶液からの成膜に用いる溶媒としては、前述の溶液から正孔注入層を成膜する際に用いられる溶媒と同様の溶媒を挙げることができる。 The light emitting layer is formed, for example, by film formation from a solution. For example, a light emitting layer is formed by applying a solution containing a light emitting material by a predetermined application method and further solidifying the solution. Examples of the solvent used for film formation from a solution include the same solvents as those used for forming a hole injection layer from the aforementioned solution.
 <電子輸送層>
 電子輸送層を構成する電子輸送材料としては、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアンスラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などを挙げることができる。
<Electron transport layer>
As an electron transport material constituting the electron transport layer, an oxadiazole derivative, anthraquinodimethane or a derivative thereof, benzoquinone or a derivative thereof, naphthoquinone or a derivative thereof, anthraquinone or a derivative thereof, tetracyanoanthraquinodimethane or a derivative thereof, Fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof, and the like can be given.
 電子輸送層の成膜法としては、たとえば蒸着法および溶液からの成膜法などをあげることができる。なお溶液から成膜する場合には高分子バインダーを併用してもよい。 Examples of the method for forming the electron transport layer include a vapor deposition method and a film formation method from a solution. In the case of forming a film from a solution, a polymer binder may be used in combination.
 電子輸送層の膜厚は、要求される特性および工程の簡易さなどを考慮して適宜設定され、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The film thickness of the electron transport layer is appropriately set in consideration of required characteristics and process simplicity, and is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
 <電子注入層>
 電子注入層を構成する材料としては、アルカリ金属、アルカリ土類金属、アルカリ金属およびアルカリ土類金属のうちの1種類以上を含む合金、アルカリ金属若しくはアルカリ土類金属の酸化物、ハロゲン化物、炭酸塩、またはこれらの物質の混合物などを挙げることができる。アルカリ金属、アルカリ金属の酸化物、ハロゲン化物、および炭酸塩の例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウムなどを挙げることができる。また、アルカリ土類金属、アルカリ土類金属の酸化物、ハロゲン化物、炭酸塩の例としては、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウムなどを挙げることができる。電子注入層は、2層以上を積層した積層体で構成されてもよく、たとえばLiF/Caなどを挙げることができる。電子注入層は、蒸着法、スパッタリング法、印刷法などにより形成される。電子注入層の膜厚としては、1nm~1μm程度が好ましい。
<Electron injection layer>
The material constituting the electron injection layer includes alkali metal, alkaline earth metal, an alloy containing at least one of alkali metal and alkaline earth metal, oxide of alkali metal or alkaline earth metal, halide, carbonic acid A salt or a mixture of these substances can be used. Examples of alkali metals, alkali metal oxides, halides, and carbonates include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, potassium fluoride , Rubidium oxide, rubidium fluoride, cesium oxide, cesium fluoride, lithium carbonate, and the like. Examples of alkaline earth metals, alkaline earth metal oxides, halides and carbonates include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, barium oxide, Examples thereof include barium fluoride, strontium oxide, strontium fluoride, and magnesium carbonate. An electron injection layer may be comprised by the laminated body which laminated | stacked two or more layers, for example, LiF / Ca etc. can be mentioned. The electron injection layer is formed by vapor deposition, sputtering, printing, or the like. The thickness of the electron injection layer is preferably about 1 nm to 1 μm.
 以上説明した発光装置11は、平面視で発光層16が形成される領域から幅方向Yに突出した領域において、隣り合う有機EL素子13の第1電極14と第2電極15とが接続されることにより隣り合う有機EL素子13が直列接続されるので、隣り合う有機EL素子13の第1電極14と第2電極15とを有機EL素子13間の領域において接続する必要がない。そのため隣り合う有機EL素子13間の領域に発光層などが形成されていてもよく、これによって塗布法で発光層を形成するさいに、隣り合う有機EL素子13間の領域に形成される発光層を除去する工程を省略することができる。したがって微細なパターン塗布が比較的不得手なキャップコート法などの塗布法であっても、直列接続される複数の有機EL素子13を簡便に作製することができる。 In the light emitting device 11 described above, the first electrode 14 and the second electrode 15 of the adjacent organic EL elements 13 are connected in a region protruding in the width direction Y from the region where the light emitting layer 16 is formed in plan view. As a result, the adjacent organic EL elements 13 are connected in series, so that it is not necessary to connect the first electrode 14 and the second electrode 15 of the adjacent organic EL elements 13 in the region between the organic EL elements 13. For this reason, a light emitting layer or the like may be formed in a region between adjacent organic EL elements 13, whereby a light emitting layer formed in a region between adjacent organic EL elements 13 when forming a light emitting layer by a coating method. The step of removing can be omitted. Therefore, even if it is a coating method such as a cap coat method that is relatively poor at applying a fine pattern, a plurality of organic EL elements 13 connected in series can be easily produced.
 また網目状透光性電極を用いることにより、たとえ有機EL素子の発光面積を大きくしたとしても、発光ムラや発熱の少ない発光装置を実現することができる。 In addition, by using a mesh-like translucent electrode, a light emitting device with little light emission unevenness and heat generation can be realized even if the light emitting area of the organic EL element is increased.
 図4(A)、(B)は第2実施形態の発光装置31を模式的に示す図である。本実施形態の発光装置31は前述の第1実施形態の発光装置11とは第1電極14および第2電極15の形状のみが異なるので、第1電極14および第2電極15についてのみ説明し、第1実施形態と対応する部分については同一の参照符号を付して、重複する説明を省略する。 FIGS. 4A and 4B are diagrams schematically showing the light emitting device 31 of the second embodiment. Since the light emitting device 31 of the present embodiment is different from the light emitting device 11 of the first embodiment described above only in the shapes of the first electrode 14 and the second electrode 15, only the first electrode 14 and the second electrode 15 will be described. Parts corresponding to those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態では第1電極14に加えて、第2電極15も接続部32を有する。すなわち第2電極15は、配列方向Xに隣り合う有機EL素子の第1電極14にまで延在部から配列方向Xに延在し、該第1電極15に接続される接続部32を有する。 In this embodiment, in addition to the first electrode 14, the second electrode 15 also has a connection portion 32. That is, the second electrode 15 has a connecting portion 32 that extends from the extending portion to the first electrode 14 of the organic EL element adjacent in the arranging direction X in the arranging direction X and is connected to the first electrode 15.
 従って配列方向Xに隣り合う一対の有機EL素子13において、右方に配置される有機EL素子13の第1電極14の延在部17から接続部19が左方に延在するとともに、左方に配置される有機EL素子13の第2電極15の延在部18から接続部32が右方に延在し、これら第1電極14の接続部19と、第2電極15の接続部32とが重なることによって隣り合う一対の有機EL素子13の第1電極14と第2電極15とが接続される。 Therefore, in the pair of organic EL elements 13 adjacent to each other in the arrangement direction X, the connecting portion 19 extends to the left from the extending portion 17 of the first electrode 14 of the organic EL element 13 disposed on the right side, and the left side The connecting portion 32 extends rightward from the extending portion 18 of the second electrode 15 of the organic EL element 13 disposed in the connecting portion 19 of the first electrode 14 and the connecting portion 32 of the second electrode 15. Are overlapped, the first electrode 14 and the second electrode 15 of the pair of adjacent organic EL elements 13 are connected.
 図5は第3実施形態の発光装置41を模式的に示す図である。本実施形態の発光装置41は前述の第1実施形態の発光装置11とは第1電極14および第2電極15の形状のみが異なるので、第1電極14および第2電極15についてのみ説明し、第1実施形態と対応する部分については同一の参照符号を付して、重複する説明を省略する。 FIG. 5 is a diagram schematically showing the light emitting device 41 of the third embodiment. Since the light emitting device 41 of the present embodiment is different from the light emitting device 11 of the first embodiment described above only in the shapes of the first electrode 14 and the second electrode 15, only the first electrode 14 and the second electrode 15 will be described. Parts corresponding to those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態では第1電極14が接続部19を有さず、逆に第2電極15が接続部42を有する。すなわち第2電極15は、配列方向Xに隣り合う有機EL素子の第1電極14にまで延在部から配列方向Xに延在し、該第1電極15に接続される接続部42を有する。なお、上記接続部19、32,42は、それぞれに対向する電極又は接続部と接触することで、電気的に接続される。 In the present embodiment, the first electrode 14 does not have the connection portion 19, and conversely, the second electrode 15 has the connection portion 42. That is, the second electrode 15 has a connecting portion 42 that extends from the extending portion to the first electrode 14 of the organic EL element adjacent in the arranging direction X in the arranging direction X and is connected to the first electrode 15. In addition, the said connection parts 19, 32, and 42 are electrically connected by contacting the electrode or connection part which each opposes.
 図1に示す第1実施形態の発光装置11では、第1電極14のみが接続部19を有し、逆に図5に示す第3実施形態の発光装置41では、第2電極15のみが接続部42を有する。第1および第2電極14,15のうちのいずれか一方のみが接続部を有する場合、いずれの電極が接続部を有するかは設計に応じて適宜選択すればよいが、第1および第2電極14,15(一対の電極)のうちでシート抵抗が低い方の電極のみが接続部を有することが好ましい。すなわち第2電極15のシート抵抗よりも第1電極14のシート抵抗が低い場合、図1に示す第1実施形態の発光装置11のように第1電極14のみが接続部19を有することが好ましい。逆に第1電極14のシート抵抗よりも第2電極15のシート抵抗が低い場合、図5に示す第3実施形態の発光装置41のように第2電極15のみが接続部42を有することが好ましい。 In the light emitting device 11 of the first embodiment shown in FIG. 1, only the first electrode 14 has the connection portion 19, and conversely, in the light emitting device 41 of the third embodiment shown in FIG. 5, only the second electrode 15 is connected. Part 42. When only one of the first and second electrodes 14 and 15 has a connection portion, which electrode has a connection portion may be appropriately selected according to the design, but the first and second electrodes Of the electrodes 14 and 15 (a pair of electrodes), it is preferable that only the electrode having the lower sheet resistance has the connection portion. That is, when the sheet resistance of the first electrode 14 is lower than the sheet resistance of the second electrode 15, it is preferable that only the first electrode 14 has the connection portion 19 as in the light emitting device 11 of the first embodiment shown in FIG. 1. . Conversely, when the sheet resistance of the second electrode 15 is lower than the sheet resistance of the first electrode 14, only the second electrode 15 may have the connection portion 42 as in the light emitting device 41 of the third embodiment shown in FIG. 5. preferable.
 なお前述した各実施形態では複数の有機EL素子によって1つの直列接続が構成された発光装置を示しているが、複数の有機EL素子によって複数の直列接続が構成された発光装置であっても実施形態の電極構造を採用することができる。また直列接続と並列接続とを併用して構成された発光装置であっても実施形態の電極構造を採用する適用することができる。 In addition, although each embodiment mentioned above has shown the light-emitting device by which one series connection was comprised by the some organic EL element, even if it is a light-emitting device by which the some series connection was comprised by the some organic EL element, it implements. A form of electrode structure can be employed. Moreover, even if it is a light-emitting device comprised using both serial connection and parallel connection, the electrode structure of embodiment is employable.
 図6は第4実施形態の発光装置61を示す図である。本実施形態の発光装置61は、2列の直列接続した有機EL素子群ELA,ELBを並列接続した構成の発光装置である。各直列接続は、3個の有機EL素子が直列接続されて構成される。個々の有機EL素子群ELA,ELBの構成は、第1実施形態のものと同一であるが、これは第2~第3実施形態のものと置換することもできる。2列の直列接続された有機EL素子群ELA、ELBは、それぞれの一端同士および他端同士が電気的に接続され、並列接続される。 FIG. 6 is a view showing a light emitting device 61 according to the fourth embodiment. The light emitting device 61 of the present embodiment is a light emitting device having a configuration in which two rows of organic EL element groups ELA and ELB connected in series are connected in parallel. Each series connection includes three organic EL elements connected in series. The configuration of the individual organic EL element groups ELA and ELB is the same as that of the first embodiment, but this can be replaced with that of the second to third embodiments. Two rows of organic EL element groups ELA and ELB connected in series are electrically connected in parallel with each other at one end and the other end.
 複数の有機EL素子によって1つの直列接続が構成された発光装置では、有機EL素子の数が増加するほど、素子を駆動する駆動源の電圧が高くなるが、並列接続を併用することによって、駆動源に要求される供給電圧を適度に抑制することができる。 In a light-emitting device in which one series connection is configured by a plurality of organic EL elements, the voltage of a drive source that drives the elements increases as the number of organic EL elements increases. The supply voltage required for the source can be moderately suppressed.
 以上、説明したように、本発明の一態様に係る発光装置は、(1)支持基板と、所定の配列方向に沿って前記支持基板上に設けられ、直列接続される複数の有機エレクトロルミネッセンス素子とを備える発光装置であって、(2)各有機エレクトロルミネッセンス素子はそれぞれ、一対の電極と、該電極間に設けられる発光層とを備え、(3)前記発光層は、前記複数の有機エレクトロルミネッセンス素子に跨って、前記所定の配列方向に沿って延在しており、(4)前記一対の電極はそれぞれ、前記支持基板の厚み方向一方から見て、前記支持基板の厚み方向および前記配列方向のいずれにも垂直な幅方向に、発光層から突出するように延在する延在部を有し、(5)前記一対の電極のうちの一方の電極は、前記配列方向に隣り合う有機エレクトロルミネッセンス素子の他方の電極にまで前記延在部から前記配列方向に延在し、該他方の電極に接続される接続部をさらに有し、(6)前記一対の電極のうちの少なくとも1つの電極が、導電体が網目状に配置されて構成される網目状透光性電極であることを特徴とする。 As described above, the light-emitting device according to one embodiment of the present invention includes (1) a plurality of organic electroluminescent elements that are provided on the support substrate along a predetermined arrangement direction and connected in series. (2) Each organic electroluminescence element includes a pair of electrodes and a light emitting layer provided between the electrodes, and (3) the light emitting layer includes the plurality of organic electroluminescence elements. Extending along the predetermined arrangement direction across the luminescence element, and (4) the pair of electrodes, respectively, as viewed from one thickness direction of the support substrate, and the thickness direction of the support substrate and the arrangement An extending portion extending from the light emitting layer in a width direction perpendicular to any of the directions, and (5) one electrode of the pair of electrodes is adjacent to the arrangement direction A connecting portion extending from the extending portion to the other electrode of the electroluminescence element in the arrangement direction and connected to the other electrode; (6) at least one of the pair of electrodes The electrode is a mesh-like translucent electrode configured by arranging conductors in a mesh shape.
 また、前記網目状透光性電極の導電体が、導電性フィラーと樹脂との混合物、または導電性材料のみからなることを特徴とする。 Further, the conductive material of the mesh-like translucent electrode is characterized by comprising only a mixture of a conductive filler and a resin, or a conductive material.
 また、前記網目状透光性電極のシート抵抗が、5(Ω/sq.)以下であることを特徴とする。 The sheet-like translucent electrode has a sheet resistance of 5 (Ω / sq.) Or less.
 また、前記網目状透光性電極の光透過率が、50%以上であることを特徴とする。 The light transmittance of the mesh-like translucent electrode is 50% or more.
 また、複数の延在部は、前記厚み方向一方から見て、前記幅方向の一方に発光層から突出するように延在する延在部と、前記幅方向の他方に発光層から突出するように延在する別の延在部とを含むことを特徴とする。 In addition, the plurality of extending portions, as viewed from one side in the thickness direction, extend from the light emitting layer so as to protrude from the light emitting layer to one side in the width direction, and protrude from the light emitting layer to the other in the width direction. And another extension part extending to the surface.
 また、本発明の一態様に係る発光装置の製造方法は、(1)支持基板と、所定の配列方向に沿って前記支持基板上に設けられ、直列接続される複数の有機エレクトロルミネッセンス素子とを備える発光装置であり、(2)各有機エレクトロルミネッセンス素子はそれぞれ、一対の電極と、該電極間に設けられる発光層とを備え、(3)前記発光層は、前記複数の有機エレクトロルミネッセンス素子に跨って、前記所定の配列方向に沿って延在しており、(4)前記一対の電極はそれぞれ、前記支持基板の厚み方向一方から見て、前記支持基板の厚み方向および前記配列方向のいずれにも垂直な幅方向に、発光層から突出するように延在する延在部を有し、(5)前記一対の電極のうちの一方の電極は、前記配列方向に隣り合う有機エレクトロルミネッセンス素子の他方の電極にまで前記延在部から前記配列方向に延在し、該他方の電極に接続される接続部をさらに有し、(6)前記一対の電極のうちの少なくとも1つの電極が、導電体が網目状に配置されて構成される網目状透光性電極である発光装置の製造方法であって、(7)前記発光層となる材料を含むインキを、前記複数の有機EL素子に跨って前記所定の配列方向に沿って連続的に塗布し、塗布した塗膜を固化することにより発光層を形成する工程を含むことを特徴とする。 In addition, a method for manufacturing a light-emitting device according to one embodiment of the present invention includes (1) a support substrate and a plurality of organic electroluminescence elements that are provided on the support substrate along a predetermined arrangement direction and connected in series. (2) Each organic electroluminescence element includes a pair of electrodes and a light emitting layer provided between the electrodes, and (3) the light emitting layer is provided on the plurality of organic electroluminescence elements. (4) each of the pair of electrodes is seen in one of the thickness directions of the support substrate, either the thickness direction of the support substrate or the alignment direction. (5) one electrode of the pair of electrodes is adjacent to the array direction in the width direction perpendicular to the light emitting layer. A connection part extending from the extension part to the other electrode of the luminescence element in the arrangement direction and connected to the other electrode; (6) at least one electrode of the pair of electrodes Is a method for manufacturing a light-emitting device which is a mesh-like translucent electrode configured by arranging conductors in a mesh pattern, and (7) an ink containing a material to be the light-emitting layer is used as the plurality of organic EL elements. It is characterized by including a step of forming a light emitting layer by applying continuously along the predetermined arrangement direction across the element and solidifying the applied coating film.
 また、上記発光装置の製造方法において、前記インキを塗布する方法が、キャップコート法(cap coating method)、スリットコート法slit
coating method)、スプレーコート法(spray coating method)または印刷法(printing method)であることを特徴とする。
In the method for manufacturing a light emitting device, the ink may be applied by a cap coating method, a slit coating method, or a slit coating method.
It is characterized in that it is a coating method, a spray coating method or a printing method.
 1…有機EL素子、2…発光装置、3…支持基板、4…第1電極、5…第2電極、6…発光層、11…発光装置、12…支持基板、13…有機EL素子、14…第1電極、15…第2電極、16…発光層、17,18…延在部、19…接続部、31…発光装置、32…接続部、41…発光装置、42…接続部、61…発光装置。
 
DESCRIPTION OF SYMBOLS 1 ... Organic EL element, 2 ... Light-emitting device, 3 ... Support substrate, 4 ... 1st electrode, 5 ... 2nd electrode, 6 ... Light-emitting layer, 11 ... Light-emitting device, 12 ... Support substrate, 13 ... Organic EL element, 14 ... 1st electrode, 15 ... 2nd electrode, 16 ... Light emitting layer, 17, 18 ... Extension part, 19 ... Connection part, 31 ... Light-emitting device, 32 ... Connection part, 41 ... Light-emitting device, 42 ... Connection part, 61 ... light emitting device.

Claims (8)

  1.  支持基板上に配列した複数の第1電極と、
     複数の前記第1電極を被覆する発光層と、
     前記発光層上に配列し、複数の前記第1電極のそれぞれと対向する複数の第2電極と、
    を備え、
     前記発光層を挟む前記第1及び第2電極の対によって個々の有機エレクトロルミネッセンス素子が構成される発光装置において、
     前記第1電極は、
     第1本体部と、
     前記第1電極の配列方向に垂直な方向に沿って、前記発光層から突出するように、前記第1本体部から延びた第1延在部を有し、
     前記第2電極は、
     第2本体部と、
     前記第2電極の配列方向に垂直な方向に沿って、前記発光層から突出するように、前記本体部から延びた第2延在部を有し、
     前記第1及び第2電極の少なくとも一方は、その配列方向に沿って延びた接続部を有し、この接続部は、前記第1及び第2電極の他方に接続されており、
     前記第1及び第2電極の少なくとも一方は、網目電極である、
    ことを特徴とする発光装置。
    A plurality of first electrodes arranged on a support substrate;
    A light emitting layer covering a plurality of the first electrodes;
    A plurality of second electrodes arranged on the light emitting layer and facing each of the plurality of first electrodes;
    With
    In the light emitting device in which each organic electroluminescence element is configured by the pair of the first and second electrodes sandwiching the light emitting layer,
    The first electrode is
    A first body portion;
    A first extending portion extending from the first body portion so as to protrude from the light emitting layer along a direction perpendicular to the arrangement direction of the first electrodes;
    The second electrode is
    A second body portion;
    A second extending portion extending from the main body so as to protrude from the light emitting layer along a direction perpendicular to the arrangement direction of the second electrodes;
    At least one of the first and second electrodes has a connection portion extending along the arrangement direction, and the connection portion is connected to the other of the first and second electrodes,
    At least one of the first and second electrodes is a mesh electrode;
    A light emitting device characterized by that.
  2.  前記網目電極は、導電性フィラーと樹脂との混合物、または導電性材料のみからなる請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the mesh electrode is made of only a mixture of a conductive filler and a resin, or a conductive material.
  3.  前記網目電極のシート抵抗が5(Ω/sq.)以下である請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the mesh electrode has a sheet resistance of 5 (Ω / sq.) Or less.
  4.  前記網目電極の光透過率が50%以上である請求項1に記載の発光装置。 The light-emitting device according to claim 1, wherein the light transmittance of the mesh electrode is 50% or more.
  5.  前記第1電極は、前記発光層から突出するように、前記第1延在部とは逆方向に前記第1本体部から延びた別の延在部を備えることを特徴とする請求項1に記載の発光装置。 The said 1st electrode is provided with another extension part extended from the said 1st main-body part in the reverse direction to the said 1st extension part so that it may protrude from the said light emitting layer. The light-emitting device of description.
  6.  前記第2電極は、前記発光層から突出するように、前記第2延在部とは逆方向に前記第2本体部から延びた別の延在部を備えることを特徴とする請求項1に記載の発光装置。 The said 2nd electrode is provided with another extension part extended from the said 2nd main-body part in the reverse direction to the said 2nd extension part so that it may protrude from the said light emitting layer. The light emitting device described.
  7.  請求項1に記載の発光装置を製造する方法において、
     前記発光層となる材料を含むインキを、複数の前記第1電極を被覆するように連続的に塗布し、塗布したインキを固化することにより前記発光層を形成する工程を含む発光装置の製造方法。
    The method for manufacturing the light emitting device according to claim 1,
    A method for manufacturing a light emitting device, comprising: continuously applying an ink containing a material to be the light emitting layer so as to cover the plurality of first electrodes, and forming the light emitting layer by solidifying the applied ink. .
  8.  前記インキを塗布する方法が、キャップコート法、スリットコート法、スプレーコート法または印刷法である請求項7に記載の発光装置の製造方法。
     
    The method for manufacturing a light-emitting device according to claim 7, wherein a method of applying the ink is a cap coating method, a slit coating method, a spray coating method, or a printing method.
PCT/JP2011/076945 2010-11-24 2011-11-22 Light emitting device and manufacturing method therefor WO2012070586A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010260923A JP2012113917A (en) 2010-11-24 2010-11-24 Light-emitting device
JP2010-260923 2010-11-24

Publications (1)

Publication Number Publication Date
WO2012070586A1 true WO2012070586A1 (en) 2012-05-31

Family

ID=46145927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076945 WO2012070586A1 (en) 2010-11-24 2011-11-22 Light emitting device and manufacturing method therefor

Country Status (3)

Country Link
JP (1) JP2012113917A (en)
TW (1) TW201230432A (en)
WO (1) WO2012070586A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520042A (en) * 2017-05-12 2020-07-02 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Organic light emitting diode display panel and device, driving method and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6415137B2 (en) * 2014-06-30 2018-10-31 日本信号株式会社 Display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085158A (en) * 1999-09-10 2001-03-30 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
JP2004014128A (en) * 2002-06-03 2004-01-15 Toyota Industries Corp Planar light emitting device
JP2007227073A (en) * 2006-02-22 2007-09-06 Matsushita Electric Works Ltd Organic electroluminescent panel
JP2008130449A (en) * 2006-11-22 2008-06-05 Alps Electric Co Ltd Light-emitting device and its manufacturing method
JP2009001784A (en) * 2007-05-18 2009-01-08 Semiconductor Energy Lab Co Ltd Material for organic device, and light-emitting element, light-emitting device, electronic device, field effect transistor and semiconductor device each using material for organic device
JP2010510626A (en) * 2006-11-17 2010-04-02 ゼネラル・エレクトリック・カンパニイ Large area lighting system and manufacturing method thereof
WO2010137633A1 (en) * 2009-05-27 2010-12-02 住友化学株式会社 Light emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085158A (en) * 1999-09-10 2001-03-30 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
JP2004014128A (en) * 2002-06-03 2004-01-15 Toyota Industries Corp Planar light emitting device
JP2007227073A (en) * 2006-02-22 2007-09-06 Matsushita Electric Works Ltd Organic electroluminescent panel
JP2010510626A (en) * 2006-11-17 2010-04-02 ゼネラル・エレクトリック・カンパニイ Large area lighting system and manufacturing method thereof
JP2008130449A (en) * 2006-11-22 2008-06-05 Alps Electric Co Ltd Light-emitting device and its manufacturing method
JP2009001784A (en) * 2007-05-18 2009-01-08 Semiconductor Energy Lab Co Ltd Material for organic device, and light-emitting element, light-emitting device, electronic device, field effect transistor and semiconductor device each using material for organic device
WO2010137633A1 (en) * 2009-05-27 2010-12-02 住友化学株式会社 Light emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520042A (en) * 2017-05-12 2020-07-02 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Organic light emitting diode display panel and device, driving method and manufacturing method thereof
US11374070B2 (en) 2017-05-12 2022-06-28 Boe Technology Group Co., Ltd. Organic light emitting diode display panel and apparatus having a connecting electrode in an electrode connecting region
JP7131757B2 (en) 2017-05-12 2022-09-06 京東方科技集團股▲ふん▼有限公司 Organic light emitting diode display panel and device, driving method and manufacturing method thereof

Also Published As

Publication number Publication date
TW201230432A (en) 2012-07-16
JP2012113917A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP4661971B2 (en) Light emitting device
JP5676867B2 (en) Organic electroluminescence device
EP3429315B1 (en) Lighting apparatus using organic light emitting diode and manufacturing method thereof
JP2009181856A (en) Transparent plate with transparent conductive film, and organic electroluminescent element
JP4849175B2 (en) Light emitting device and manufacturing method thereof
WO2011125950A1 (en) Light-emitting apparatus and method of manufacturing thereof
WO2011099391A1 (en) Method for producing light-emitting device
JP2011154800A (en) Light-emitting device, and manufacturing method thereof
WO2011122445A1 (en) Light emitting device
US9123682B2 (en) Light-emitting device
WO2012070574A1 (en) Light emitting device and method for producing light emitting device
WO2012070586A1 (en) Light emitting device and manufacturing method therefor
JP6102064B2 (en) Display device
JP5796422B2 (en) Light emitting device
JP5732735B2 (en) Light emitting device
JP4893839B2 (en) Method for manufacturing light emitting device
WO2012070587A1 (en) Light emitting device and manufacturing method therefor
JP2010160945A (en) Method for manufacturing organic electroluminescence device
WO2020226051A1 (en) Organic el light emitting device
WO2013035570A1 (en) Method of manufacturing display device
JP2013098149A (en) Substrate used in display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842490

Country of ref document: EP

Kind code of ref document: A1