WO2013035570A1 - Method of manufacturing display device - Google Patents

Method of manufacturing display device Download PDF

Info

Publication number
WO2013035570A1
WO2013035570A1 PCT/JP2012/071583 JP2012071583W WO2013035570A1 WO 2013035570 A1 WO2013035570 A1 WO 2013035570A1 JP 2012071583 W JP2012071583 W JP 2012071583W WO 2013035570 A1 WO2013035570 A1 WO 2013035570A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
support substrate
partition
light emitting
Prior art date
Application number
PCT/JP2012/071583
Other languages
French (fr)
Japanese (ja)
Inventor
合田 匡志
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013035570A1 publication Critical patent/WO2013035570A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing

Definitions

  • organic EL element an organic electroluminescence element
  • This display device is arranged at equal intervals along the first direction X between the support substrate, the partition wall 17 composed of a plurality of partition wall members 20 extending in the first direction, and the partition wall member 20.
  • a plurality of organic EL elements are included (see FIG. 4).
  • the organic EL element is configured by laminating the first electrode 12, one or more functional layers, and the second electrode in this order from the support substrate side.
  • the functional layer can be formed by a coating method.
  • the functional layer can be formed by supplying ink containing a material for the functional layer to the concave portion between the partition wall member 20 and the partition wall member 20 and further solidifying the ink.
  • the ink is supplied by a nozzle printing method.
  • a plurality of organic EL elements can be formed on the support substrate by further forming the upper electrode by a predetermined method (see, for example, Patent Document 1).
  • FIG. 4 is a plan view schematically showing a part of the display device
  • FIG. 5 is a cross-sectional view of the display device.
  • FIG. 4 the arrows schematically show the path of the nozzle 4 of the nozzle printing apparatus.
  • ink is applied with a single stroke.
  • FIG. 5 no matter how the operation of the nozzle printing apparatus is set, as shown in FIG. 5, the present inventors have shown that the shape of the functional layer after drying may not be symmetrical between the partition members.
  • the organic EL element having the functional layer formed asymmetrically between the partition members may have lower light emission characteristics than the organic EL element having the functional layer formed symmetrically.
  • an object of the present invention is to provide a light emitting device capable of suppressing a decrease in light emission characteristics of an organic EL element and a method for manufacturing the same when producing a display device by a nozzle printing method.
  • the present invention provides the following [1] and [2].
  • a partition comprising a plurality of partition members provided on the insulating film, each partition member being disposed between organic EL elements adjacent in the second direction and extending in the first direction
  • a display device comprising: Each partition member is arranged such that the center position of the partition member in the second direction is shifted from the center of the width between the openings adjacent in the second direction in one of the second directions. .
  • a partition wall comprising an insulating film having openings at positions corresponding to the plurality of organic EL elements, and a plurality of partition wall members provided on the insulation film, each partition member being the second
  • a method of manufacturing a display device including a partition wall disposed between organic EL elements adjacent to each other in a direction and extending in a first direction, providing a support substrate provided with i) pixel electrodes of the plurality of organic EL elements, and ii) an insulating film having an opening at a position corresponding to the pixel electrodes; Providing a partition by forming a plurality of partition members on the insulating film; and Forming a predetermined functional layer of the organic EL element on the pixel electrode by supplying a predetermined ink to the region between the partition members by a nozzle printing method and solidifying the ink;
  • the present invention it is possible to provide a light emitting device capable of suppressing a decrease in the light emission characteristics of the organic EL element and a method for manufacturing the same when producing a display device by a nozzle printing method.
  • FIG. 1 is a plan view schematically showing a light emitting device 21 according to an embodiment of the present invention.
  • FIG. 2 is a sectional view schematically showing the light emitting device 21 in an enlarged manner.
  • FIG. 3 is a diagram exaggerating the shape of the functional layer and the like with respect to the cross section of the light emitting device 21.
  • FIG. 4 is a diagram schematically showing an operation when applying ink by the nozzle printing method.
  • FIG. 5 is a diagram showing exaggerated shapes of functional layers and the like in the cross section of the light emitting device 21.
  • the display device of the present invention includes a support substrate, and a plurality of organic EL elements arranged on the support substrate in a first direction and in a second direction intersecting the first direction with a predetermined interval, respectively. And an insulating film provided on the support substrate and having openings at positions corresponding to the plurality of organic EL elements, and each organic EL element individually defined by the openings, and a plurality of the insulating films provided on the insulating film
  • Each of the partition members is provided between the organic EL elements adjacent to each other in the second direction and extends in the first direction. The center position of the partition member in the second direction is shifted from the center of the width between the openings adjacent in the second direction in one of the second directions.
  • the display device mainly includes an active matrix drive type device and a passive matrix drive type device.
  • an active matrix drive type device and a passive matrix drive type device.
  • the present invention may be applied to both types of display devices, in this embodiment, a light emitting device applied to an active matrix drive type display device will be described as an example.
  • FIG. 1 is a plan view schematically showing the light emitting device 21 of this embodiment
  • FIG. 2 is a cross-sectional view schematically showing the light emitting device 21 in an enlarged manner.
  • the light emitting device 21 mainly includes a support substrate 11 and a plurality of organic EL elements 22 provided on the support substrate.
  • the plurality of organic EL elements 22 are arranged in a matrix on the support substrate 11 with predetermined intervals in the first direction X and the second direction Y intersecting with the first direction X, respectively. Be placed.
  • the organic EL elements 22 are arranged at equal intervals in the first direction X, and are also arranged at equal intervals in the second direction Y.
  • the first direction X and the second direction Y are perpendicular to the thickness direction Z of the support substrate 11.
  • the first direction X and the second direction Y are perpendicular to each other.
  • the thickness direction Z of the support substrate 11 may be simply referred to as the thickness direction Z.
  • An insulating film 15 that individually defines each organic EL element 22 is provided on the support substrate.
  • the insulating film 15 has openings at positions corresponding to the plurality of organic EL elements.
  • Each organic EL element 22 is provided at a position corresponding to the opening of the insulating film 15 when viewed from one side in the thickness direction Z (hereinafter also referred to as “plan view”).
  • the functional layer constituting the organic EL element is formed to be continuous with the organic EL element 22 adjacent in the first direction X, and is physically continuous.
  • the organic EL element 22 adjacent in the first direction X is electrically insulated by the insulating film 15.
  • the insulating film 15 Since the openings of the insulating film 15 are formed at positions corresponding to the organic EL elements 22, they are arranged in a matrix like the organic EL elements 22. Thus, the insulating film 15 has a matrix-like opening. In other words, the insulating film 15 is formed in a lattice shape in plan view. The opening of the insulating film 15 is formed so as to substantially coincide with a pixel electrode 12 to be described later in plan view, and is formed in, for example, a substantially rectangular shape, a substantially circular shape, a substantially elliptical shape, or the like.
  • the lattice-like insulating film 15 is mainly formed in a region excluding the pixel electrode 12 in plan view. A part of the lattice-like insulating film 15 is formed to cover the periphery of the pixel electrode 12.
  • the partition wall 17 composed of a plurality of partition wall members 20 is provided on the insulating film 15.
  • Each partition member 20 is disposed between organic EL elements adjacent in the second direction Y.
  • Each partition member 20 also extends in the first direction X.
  • the so-called stripe-shaped partition wall 17 is provided on the insulating film 15.
  • the organic EL element 22 is provided in a section defined by the partition wall 17.
  • the plurality of organic EL elements 22 are provided in a region between the partition members 20 adjacent to each other in the second direction Y (that is, the recess 18), and in the region between the partition members 20 in the first direction X. They are arranged at a predetermined interval.
  • the organic EL elements 22 do not have to be physically separated from each other, and may be electrically insulated so that they can be individually driven. Therefore, some layers (electrodes and functional layers) constituting the organic EL element may be physically connected to other organic EL elements.
  • the organic EL element 22 is configured by arranging the first electrode 12, the functional layers 13 and 14, and the second electrode 16 in this order from the support substrate 11 side.
  • the first electrode 12 is referred to as a pixel electrode 12
  • the second electrode 16 is referred to as an upper electrode 16.
  • the pixel electrode 12 and the upper electrode 16 constitute a pair of electrodes composed of an anode and a cathode. That is, one of the pixel electrode 12 and the upper electrode 16 is provided as an anode, and the other is provided as a cathode.
  • the pixel electrode 12 is disposed closer to the support substrate 11, and the upper electrode 16 is disposed farther from the support substrate 11 than the pixel electrode 12.
  • the organic EL element 22 includes one or more functional layers.
  • the functional layer means all layers sandwiched between the pixel electrode 12 and the upper electrode 16.
  • the organic EL element 22 includes at least one light emitting layer as a functional layer.
  • a predetermined layer is provided between the electrodes as needed without being limited to the light emitting layer.
  • Examples of the functional layer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • Examples of the functional layer provided between the light emitting layer and the cathode include a hole blocking layer, an electron transporting layer, and an electron injecting layer.
  • the organic EL element 22 of this embodiment includes a hole injection layer 13 as a functional layer between the pixel electrode 12 and the light emitting layer 14.
  • a pixel electrode 12 that functions as an anode, a hole injection layer 13, a light emitting layer 14, and an upper electrode 16 that functions as a cathode are included in this order from the support substrate 11 side.
  • the organic EL element 22 will be described.
  • the light-emitting device 21 of the present embodiment is an active matrix type device, and the pixel electrode 12 is individually provided for each organic EL element 22 so that each organic EL element 22 can be driven individually. That is, the same number of pixel electrodes 12 as the number of organic EL elements 22 are provided on the support substrate 11.
  • the pixel electrode 12 has a thin film shape and is formed in a substantially rectangular shape in plan view.
  • the plurality of pixel electrodes 12 are provided in a matrix form on the support substrate 11 corresponding to the positions where each organic EL element is provided.
  • the plurality of pixel electrodes 12 are arranged at predetermined intervals in the first direction X and at predetermined intervals in the second direction Y.
  • the pixel electrode 12 is provided in a region between the partition members 20 adjacent in the second direction Y in a plan view, and is disposed between the partition members 20 with a predetermined interval in the first direction X.
  • the lattice-like insulating film 15 is mainly formed in a region excluding the pixel electrode 12 in a plan view, and a part thereof is formed so as to cover the periphery of the pixel electrode 12. That is, an opening is formed in the insulating film 15 at a position corresponding to the pixel electrode 12, and the surface of the pixel electrode 12 is exposed from the insulating film 15 through this opening.
  • the hole injection layer 13 extends in the first direction X in the region between the partition members 20. That is, the hole injection layer 13 is formed in a strip shape in the recess 18 defined by the partition wall member 20 adjacent in the second direction Y, and continuously over the organic EL elements 22 adjacent in the first direction X. Is formed.
  • the light emitting layer 14 extends in the first direction X in the region between the partition members 20. That is, the light emitting layer 14 is formed in a strip shape in the recess 18 defined by the partition member 20 adjacent in the second direction Y, and is continuously formed over the organic EL elements adjacent in the first direction X. Yes.
  • the band-shaped light emitting layer 14 is laminated on the band-shaped hole injection layer 13.
  • a color display device will be described as an example in this embodiment.
  • three types of organic EL elements that emit light of any one of red, green, and blue are provided on the support substrate 11.
  • the color display device can be realized, for example, by repeatedly arranging the following rows (I), (II), and (III) in the second direction Y in this order.
  • a light emitting layer having a different emission color is usually provided for each type of element.
  • the following rows (i), (ii), and (iii) are repeatedly arranged in the second direction Y in this order.
  • the upper electrode 16 is provided on the light emitting layer 14.
  • the upper electrode 16 is continuously formed across the plurality of organic EL elements 22 and provided as a common electrode for the plurality of organic EL elements.
  • the upper electrode 16 is formed not only on the light emitting layer 14 but also on the partition wall 17, and is formed on one surface so that the electrode on the light emitting layer 14 and the electrode on the partition wall 17 are connected.
  • FIG. 3 is a diagram showing exaggerated shapes of functional layers and the like with respect to the cross section of the light emitting device 21.
  • the pixel electrode 12 and the upper electrode 16 are not shown for easy understanding.
  • Each partition member 20 is arranged such that the center position of the partition member 20 in the second direction Y is shifted to one of the second directions from the center of the width between the openings adjacent to the second direction Y. Yes. That is, the insulating film 15 is formed between the openings adjacent in the second direction Y, and the center position of the partition member 20 in the second direction Y is in the center of the second direction Y of the insulating film 15. Rather than aligning, the partition member 20 is arranged along one side of the insulating film 15 in the second direction Y. Referring to FIG. 3, the trapezoidal partition wall member 20 is arranged on the rectangular insulating film 15 so as to be shifted from the center in the second direction Y to the left.
  • the shift width M in the second direction Y between the center position of the partition wall member 20 in the second direction Y and the center position of the width between the openings adjacent to the second direction Y depends on the shape of the functional layer. You may set suitably. In one embodiment, when the distance (width) between openings adjacent to each other in the second direction Y is W, it is preferable that the relationship of the following formula (1) is satisfied.
  • b is preferably 0.2, more preferably 0.1.
  • c is preferably 0.02, and more preferably 0.05.
  • the functional layer is formed asymmetrically between the partition members 20 as described above.
  • the shift width M is set so that the position where the thickness of the functional layer is minimized coincides with the center of the opening in the second direction.
  • a position A at which the thickness of the functional layer is minimized is expressed by the following equation (2) It is preferable to satisfy the relationship.
  • a is preferably 0.2, and more preferably 0.1.
  • the partition wall member 20 when the section H1 between the one partition wall member 20 in the second direction Y and the surface of the functional layer is compared with the section H2 between the other partition wall member 20 and the surface of the functional layer, It is preferable to arrange the partition wall member 20 so that the center position of the partition wall member 20 in the second direction Y is shifted to the higher section.
  • Symbols H1 and H2 represent heights from the support substrate 11, respectively.
  • the center position of the partition member 20 in the second direction Y is the width between the openings adjacent to the second direction Y. It is preferable to shift to the left rather than the center position.
  • the shift width M in the second direction Y between the center position of the partition wall member 20 in the second direction Y and the center position of the width between the openings adjacent to the second direction Y and the direction of the shift are as follows. It can be determined according to the method. That is, the partition member 20 is actually formed on the support substrate 11 as a prototype, and a thin film is formed in a region between the partition members 20. Then, the relationship between H1 and H2 can be grasped, and based on this relationship, the shift width M and the direction in which it can be shifted can be determined.
  • the functional layer can be formed substantially symmetrically in the second direction Y within the opening. Accordingly, an organic EL element that emits light substantially uniformly in the opening in a plan view can be realized, and the light emission characteristics of the organic EL element can be improved.
  • the manufacturing method of the light-emitting device of the present invention includes a support substrate and a plurality of the substrate arranged at predetermined intervals in the first direction and the second direction intersecting the first direction on the support substrate.
  • a partition comprising an organic EL element, an insulating film having openings at positions corresponding to the plurality of organic EL elements, and a plurality of partition members provided on the insulating film, each partition member being the second partition
  • a display device comprising a partition wall disposed between organic EL elements adjacent to each other in a direction extending in a first direction, i) pixel electrodes of the plurality of organic EL elements, and ii)
  • each partition member has a center position of the partition member in the second direction, and a center of the width between the openings adjacent to the second direction is set to one of the second directions.
  • the present invention relates to a manufacturing method of a display device which is formed by shifting.
  • a support substrate 11 is prepared in which i) pixel electrodes 12 of a plurality of organic EL elements and ii) an insulating film 15 having openings at positions corresponding to the pixel electrodes 12 are provided thereon.
  • a substrate on which circuits for individually driving a plurality of organic EL elements are formed in advance may be used as the support substrate 11.
  • a substrate on which a TFT (Thin Film Transistor), a capacitor, and the like are formed in advance may be used as the support substrate.
  • the support substrate 11 on which the pixel electrode 12 and the insulating film 15 are provided may be prepared by forming the pixel electrode 12 in this step as follows.
  • the support substrate 11 may be prepared by obtaining from the market a support substrate 11 on which the pixel electrode 12 and the insulating film 15 are previously provided.
  • a plurality of pixel electrodes 12 are formed on a support substrate 11 in a matrix.
  • the pixel electrode 12 is formed, for example, by forming a conductive thin film on one surface of the support substrate 11 and patterning it in a matrix by a photolithography method. Further, for example, a mask having an opening at a predetermined portion is disposed on the support substrate 11, and the pixel electrode 12 is patterned by selectively depositing a conductive material on the predetermined portion on the support substrate 11 through the mask. May be. The material of the pixel electrode 12 will be described later.
  • the insulating film 15 is made of an organic material or an inorganic material.
  • the organic material constituting the insulating film 15 include resins such as acrylic resin, phenol resin, and polyimide resin.
  • the insulating film 15 made of an inorganic material for example, a thin film made of an inorganic material is formed on one surface by a plasma CVD method, a sputtering method, or the like, and then a predetermined portion is removed to form the lattice-shaped insulating film 15.
  • the predetermined part is removed by, for example, a photolithography method.
  • the insulating film 15 made of an organic material first, for example, a positive or negative photosensitive resin is applied to one surface, and a predetermined portion is exposed and developed. Further, by curing this, a lattice-like insulating film 15 is formed. Note that a photoresist may be used as the photosensitive resin.
  • the partition wall 17 is formed. That is, a plurality of partition members 20 are formed on the insulating film 15 to provide the partition walls 17. In this step, each partition member is formed by shifting the center position of the partition member 20 in the second direction to one of the second directions from the center of the width between the openings adjacent in the second direction. .
  • the partition wall 17 can be formed in a stripe shape in the same manner as the method of forming the insulating film 15 using, for example, the material exemplified as the material of the insulating film 15.
  • the partition wall 17 is preferably made of an organic material.
  • the partition wall In order to retain the ink supplied to the recess 18 surrounded by the partition wall 17 in the recess 18, the partition wall preferably exhibits liquid repellency.
  • an organic material has a liquid repellency with respect to ink rather than an inorganic material. Therefore, by forming a partition wall with an organic material, the ability to retain ink in the recess 18 can be enhanced.
  • the shape of the partition wall 17 and the arrangement thereof may be appropriately set according to the specifications of the display device such as the number of pixels and resolution, the ease of manufacturing, and the like.
  • the width L1 of the partition member 20 in the second direction Y is about 5 ⁇ m to 50 ⁇ m
  • the height L2 of the partition member 20 in the thickness direction Z is about 0.5 ⁇ m to 5 ⁇ m
  • the second direction of the recess 18 The width L3 of Y is about 10 ⁇ m to 200 ⁇ m.
  • the width of the pixel electrode 12 in the first direction X and the second direction Y is about 10 ⁇ m to 400 ⁇ m, respectively.
  • a predetermined functional layer of the organic EL element is formed on the pixel electrode by supplying a predetermined ink to the region between the partition members by a nozzle printing method and solidifying the ink.
  • the predetermined ink means an ink containing a material that becomes a functional layer (in this embodiment, a hole injection layer and a light emitting layer).
  • a nozzle printing method when a plurality of functional layers are provided, at least one layer is formed by a nozzle printing method.
  • an ink containing a material that becomes the hole injection layer 13 only in the region between the partition members 20 (hereinafter referred to as “hole injection layer”).
  • the ink for the hole injection layer may be supplied to the entire surface.
  • the ink for the hole injection layer may be provided in any way for this.
  • the ink for the hole injection layer can be supplied by a coating method such as a spin coating method, a slit coating method, an ink jet printing method, a nozzle printing method, a relief printing method, and an intaglio printing method.
  • a method for supplying the hole injection layer ink a method capable of supplying the hole injection layer ink uniformly in a short time is preferable. From such a viewpoint, a spin coating method, a slit coating method or a nozzle printing method is preferable.
  • the hole injection layer ink When the hole injection layer ink is applied to the entire surface, the hole injection layer may be formed even on the partition wall depending on the properties of the partition wall surface. In order to avoid this, it may be preferable to supply the hole injection layer ink only to the recess 18.
  • the hole injection layer ink is supplied by a coating method that can selectively supply the hole injection layer ink only to the recesses 18.
  • the hole injection layer ink is supplied by a nozzle printing method as a coating method capable of selectively supplying the hole injection layer ink.
  • FIG. 4 is a diagram schematically showing the operation when applying ink by the nozzle printing method. Note that FIG. 4 uses the same figure as cited in the problem section, but the arrangement of the partition members is different between the display device of the present embodiment and the conventional display apparatus described in the problem section.
  • the ink for the hole injection layer is supplied to each row (each concave portion 18) with a single stroke. That is, the nozzle 4 is reciprocated in the first direction X while the liquid columnar hole injection layer ink is ejected from the nozzle disposed above the support substrate 11. Then, when the nozzle 4 is turned back and forth, the support substrate is moved by a predetermined distance in the second direction Y, whereby the hole injection layer ink is supplied to each row. For example, when the reciprocating movement of the nozzle 4 is turned back, the hole injection layer ink can be supplied to all rows by moving the support substrate by one row in the second direction Y.
  • each partition member has the center position in the second direction of the partition member, and the center of the width between the openings adjacent in the second direction is one of the second directions. It is arranged to shift to.
  • a light emitting layer is formed.
  • the material of the light emitting layer for each row.
  • red ink containing a material that emits red light green ink containing a material that emits green light
  • blue ink containing a material that emits blue light respectively. It is necessary to apply in the direction Y of 2 with an interval of 2 rows. By sequentially applying the red ink, the green ink, and the blue ink to predetermined rows, each light emitting layer can be coated and formed.
  • any method may be used as long as the ink can be selectively supplied to the region between the partition members.
  • ink can be supplied by an ink jet printing method, a nozzle printing method, a relief printing method, an intaglio printing method, or the like.
  • a method for supplying ink a method capable of supplying ink uniformly in a short time is preferable. From such a viewpoint, the nozzle printing method is preferable.
  • ink is supplied by a nozzle printing method as in the method for forming the hole injection layer described above.
  • green ink and blue ink are respectively provided in the region (concave portion 18) between the partition members 20 with an interval of two rows in the second direction Y. Can be supplied.
  • each ink may contain a polymerizable compound that can be polymerized by applying energy.
  • a red ink, a green ink, or a blue ink containing a light emitting material having a polymerizable group that can be polymerized by applying energy as a polymerizable compound may be used.
  • Examples of the polymerizable group include a vinyl group, an ethynyl group, a butenyl group, an acryloyl group, an acryloylamino group, a methacryloyl group, a methacryloylamino group, a vinyloxy group, a vinylamino group, a silanol group, a cyclopropyl group, a cyclobutyl group, and an epoxy group.
  • polymerizable compound examples include a PDA (N, N′-tetraphenyl-1,4-phenylenediamine) derivative having a polymerizable group and a TPD (N, N′-bis (3- Methylphenyl) -N, N′-bis (phenyl) -benzidine) derivative, NPD (N, N′-bis (naphthalen-1-yl) -N, N′-bis (phenyl)-) having a polymerizable group Benzidine) derivatives, triphenylamine acrylate, triphenylenediamine acrylate, phenylene acrylate, bisphenoxyethanol full orange acrylate (trade name BPEF-A manufactured by Osaka Gas Chemical Company), dipentaerythritol hexaacrylate (KAYARD DPHA manufactured by Nippon Kayaku), Trispentaerythritol octaacrylate (Guangei Chemical) 1 1,4-butanediol
  • each partition member has the center position in the second direction of the partition member, and the center of the width between the openings adjacent in the second direction is one of the second directions. It is arranged to shift to.
  • a predetermined organic layer or inorganic layer is formed by a predetermined method as necessary. These may be formed using a predetermined coating method such as a printing method, an ink jet method, a nozzle printing method, or a predetermined dry method.
  • an upper electrode is formed. As described above, in this embodiment, the upper electrode is formed on the entire surface of the support substrate. Thereby, a plurality of organic EL elements can be formed on the substrate.
  • each partition member has the center position in the second direction of the partition member, and the center of the width between the openings adjacent in the second direction is the second direction. They are shifted to one side.
  • the partition wall member 20 By disposing the partition wall member 20 in this manner, the hole injection layer and the light emitting layer can be formed substantially symmetrically in the second direction Y within the opening. Accordingly, an organic EL element that emits light substantially uniformly in the opening in a plan view can be realized, and the light emission characteristics of the organic EL element can be improved.
  • the organic EL element can have various layer configurations.
  • the layer structure of the organic EL element, the configuration of each layer, and the method of forming each layer will be described in more detail.
  • the organic EL element includes a pair of electrodes (pixel electrode and upper electrode) composed of an anode and a cathode, and one or more functional layers provided between the electrodes. As a layer, at least one light emitting layer is provided.
  • the organic EL element may include a layer containing an inorganic substance and an organic substance, an inorganic layer, and the like.
  • the organic substance constituting the organic layer may be a low molecular compound or a high molecular compound, or a mixture of a low molecular compound and a high molecular compound.
  • the organic layer preferably contains a polymer compound, and preferably contains a polymer compound having a polystyrene-equivalent number average molecular weight of 10 3 to 10 8 .
  • Examples of the functional layer provided between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the layer close to the cathode is called an electron injection layer
  • the layer close to the light emitting layer is called an electron transport layer.
  • Examples of the functional layer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • a layer close to the anode is referred to as a hole injection layer
  • a layer close to the light emitting layer is referred to as a hole transport layer.
  • anode / light emitting layer / cathode b) anode / hole injection layer / light emitting layer / cathode c) anode / hole injection layer / light emitting layer / electron injection layer / cathode d) anode / hole injection layer / light emitting layer / Electron transport layer / cathode e) anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode f) anode / hole transport layer / light emitting layer / cathode g) anode / hole transport layer / light emitting layer / Electron injection layer / cathode h) anode / hole transport layer / light emitting layer / electron transport layer / cathode i) anode / hole transport layer / light emitting layer / light emitting layer /
  • the organic EL element of the present embodiment may have two or more light emitting layers.
  • the configuration of the organic EL device having two light emitting layers is as follows.
  • the layer configuration shown in the following q) can be given.
  • the two (structural unit A) layer structures may be the same or different.
  • Anode / (structural unit A) / charge generating layer / (structural unit A) / cathode If “(structural unit A) / charge generating layer” is “structural unit B”, it has three or more light emitting layers.
  • r anode / (structural unit B) x / (structural unit A) / cathode
  • x represents an integer of 2 or more
  • (structural unit B) x is a stack in which the structural unit B is stacked in x stages. Represents the body.
  • a plurality of (structural units B) may have the same or different layer structure.
  • the charge generation layer is a layer that generates holes and electrons by applying an electric field.
  • Examples of the charge generation layer may include a thin film made of vanadium oxide, indium tin oxide (abbreviated as ITO), molybdenum oxide, or the like.
  • the organic EL element may be provided on the support substrate with the anode disposed closer to the support substrate than the cathode, or may be provided on the support substrate with the cathode disposed closer to the support substrate than the anode.
  • each layer may be laminated on the support substrate in order from the right side to constitute an organic EL element, or each layer may be laminated on the support substrate in order from the left side to constitute an organic EL element. May be.
  • the order of the layers to be laminated, the number of layers, and the thickness of each layer may be set as appropriate in consideration of light emission efficiency and element lifetime.
  • a light transmissive electrode is used for the anode.
  • the light transmissive electrode for example, a thin film of metal oxide, metal sulfide, metal, or the like may be used. Among these, a thin film having high electrical conductivity and high light transmittance is preferably used. Specifically, thin films made of indium oxide, zinc oxide, tin oxide, ITO, indium zinc oxide (abbreviated as IZO), gold, platinum, silver, copper, and the like are used. Among these, ITO, IZO Or a thin film made of tin oxide is preferably used.
  • Examples of the method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Further, as the anode, an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used.
  • the film thickness of the anode may be appropriately set in consideration of the required characteristics and the simplicity of the film forming process.
  • the thickness is 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • a material for the cathode is preferably a material having a low work function, easy electron injection into the light emitting layer, and high electrical conductivity. Further, in the organic EL element configured to extract light from the anode side, a material having a high reflectivity with respect to visible light is preferable as the cathode material in order to reflect light emitted from the light emitting layer to the anode side by the cathode.
  • a material having a high reflectivity with respect to visible light is preferable as the cathode material in order to reflect light emitted from the light emitting layer to the anode side by the cathode.
  • an alkali metal, an alkaline earth metal, a transition metal, a Group 13 metal of the periodic table, or the like may be used.
  • cathode materials include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, and ytterbium.
  • One or more alloys; or graphite or graphite intercalation compounds are used.
  • alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, calcium-aluminum alloys, and the like.
  • a transparent conductive electrode made of a conductive metal oxide, a conductive organic material, or the like may be used.
  • the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, and IZO.
  • the conductive organic substance include polyaniline or a derivative thereof, polythiophene or a derivative thereof, and the like. Can be mentioned.
  • the cathode may be composed of a laminate in which two or more layers are laminated.
  • the electron injection layer may be used as a cathode.
  • the film thickness of the cathode may be appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm. .
  • Examples of the method for producing the cathode include a vacuum deposition method, a sputtering method, and a laminating method in which a metal thin film is thermocompression bonded.
  • ⁇ Hole injection layer Examples of the hole injection material constituting the hole injection layer include oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine compounds, starburst amine compounds, phthalocyanine compounds, Examples thereof include amorphous carbon, polyaniline, and polythiophene derivatives.
  • the thickness of the hole injection layer may be appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the hole transport material constituting the hole transport layer examples include polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a pyrazoline derivative, an arylamine derivative, a stilbene. Derivative, triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, or poly (2,5-thienylene vinylene) ) Or a derivative thereof.
  • the film thickness of the hole transport layer is set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. .
  • the light emitting layer is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance.
  • the dopant is added, for example, in order to improve the luminous efficiency and change the emission wavelength.
  • the organic substance constituting the light emitting layer may be a low molecular compound or a high molecular compound.
  • a light emitting layer contains a high molecular compound.
  • the number average molecular weight in terms of polystyrene of the polymer compound constituting the light emitting layer is, for example, about 10 3 to 10 8 .
  • Examples of the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
  • dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, coumarin derivatives, and the like.
  • Metal complex materials examples include rare earth metals (eg, Tb, Eu, Dy, etc.), metals such as Al, Zn, Be, Ir, and Pt as central metals, oxadiazole, thiadiazole, phenylpyridine, phenyl A metal complex having a benzimidazole, quinoline structure, or the like as a ligand can be given.
  • rare earth metals eg, Tb, Eu, Dy, etc.
  • metals such as Al, Zn, Be, Ir, and Pt as central metals
  • oxadiazole thiadiazole
  • phenylpyridine phenyl
  • phenyl A metal complex having a benzimidazole, quinoline structure, or the like as a ligand can be given.
  • a metal complex having light emission from a triplet excited state such as an iridium complex, a platinum complex, an aluminum quinolinol complex, a benzoquinolinol beryllium complex, a benzoxazolyl zinc complex, a benzothiazole zinc complex, an azomethyl zinc complex, A porphyrin zinc complex, a phenanthroline europium complex, etc. can be mentioned.
  • Polymer material examples include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, and the above-described dye materials and metal complex light emitting materials. Can be mentioned.
  • the thickness of the light emitting layer is usually about 2 nm to 200 nm.
  • Electrode transporting material constituting the electron transporting layer known materials can be used.
  • the thickness of the electron transport layer may be appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. It is.
  • an optimum material may be appropriately selected according to the type of the light emitting layer.
  • one or more of alkali metals, alkaline earth metals, alkali metals, and alkaline earth metals may be selected. Alloys, alkali metal or alkaline earth metal oxides, halides, and carbonates; and mixtures thereof.
  • alkali metals, alkali metal oxides, halides, and carbonates include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, and potassium fluoride.
  • alkaline earth metal, alkaline earth metal oxides, halides and carbonates include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, barium oxide, Examples thereof include barium fluoride, strontium oxide, strontium fluoride, and magnesium carbonate.
  • An electron injection layer may be comprised by the laminated body which laminated
  • the thickness of the electron injection layer is preferably about 1 nm to 1 ⁇ m.
  • the coating method it is preferable to form all the functional layers by using the coating method. At least one of the plurality of functional layers may be formed by a coating method, and the other functional layers may be formed by a method different from the coating method. Even when a plurality of functional layers are formed by a coating method, the plurality of functional layers may be formed by a coating method with a different specific method. For example, in this embodiment, the hole injection layer and the light emitting layer are formed by a nozzle printing method, but the hole injection layer may be formed by a spin coating method and the light emitting layer may be formed by a nozzle printing method.
  • the functional layer is formed by coating and forming an ink containing an organic EL material to be each functional layer.
  • the solvent for the ink used in this case include chlorine solvents such as chloroform, methylene chloride, and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; acetone, methyl ethyl ketone, and the like.
  • Examples include ketone solvents; ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate; and water.
  • the functional layer may be formed by a method different from the coating method.
  • the functional layer may be formed by a vacuum deposition method, a sputtering method, a CVD method, a lamination method, or the like.

Abstract

The purpose of the present invention is to provide a light-emitting device, and a manufacturing method thereof, capable of suppressing degradation of light emission properties of organic electroluminescence elements during manufacture of display devices by the nozzle printing method. This display device is provided with: a support substrate; multiple organic electroluminescence elements arranged on the support substrate with prescribed spaces in a first direction and in a second direction intersecting the first direction; an insulation film which is provided on the support substrate, has openings in positions corresponding to the organic electroluminescence elements, and individually defines each organic electroluminescence element by said opening; and a separating wall comprising multiple separating wall members provided on the insulation film, said separating wall members extending in the first direction and arranged between the organic electroluminescence elements adjacent in the second direction, wherein the center position in the second direction of each separating wall member is arranged to one side in the second direction, shifted from the center between openings that are adjacent in the second direction.

Description

表示装置の製造方法Manufacturing method of display device
 表示装置には種々のタイプのものがある。そのひとつに、有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう。)を画素の光源として用いた表示装置がある。この表示装置は、支持基板と、第1の方向に延在する複数本の隔壁部材20からなる隔壁17と、隔壁部材20間において第1の方向Xに沿って等間隔をあけて配置される複数の有機EL素子とを含んで構成される(図4参照)。 There are various types of display devices. One example is a display device using an organic electroluminescence element (hereinafter also referred to as “organic EL element”) as a light source of a pixel. This display device is arranged at equal intervals along the first direction X between the support substrate, the partition wall 17 composed of a plurality of partition wall members 20 extending in the first direction, and the partition wall member 20. A plurality of organic EL elements are included (see FIG. 4).
 有機EL素子は、第1の電極12、1層以上の機能層、および第2の電極が、支持基板寄りからこの順序で積層されて構成される。 The organic EL element is configured by laminating the first electrode 12, one or more functional layers, and the second electrode in this order from the support substrate side.
 機能層は塗布法によって形成することができる。たとえば機能層は、当該機能層となる材料を含むインキを隔壁部材20と隔壁部材20との間の凹部に供給し、さらにこれを固化することにより形成できる。インキの供給はたとえばノズルプリンティング法によりおこなわれる。ノズルプリンティング法によって機能層を形成したのちに、さらに上部電極を所定の方法によって形成することで、支持基板上に複数の有機EL素子を形成することができる(たとえば特許文献1参照。)。 The functional layer can be formed by a coating method. For example, the functional layer can be formed by supplying ink containing a material for the functional layer to the concave portion between the partition wall member 20 and the partition wall member 20 and further solidifying the ink. For example, the ink is supplied by a nozzle printing method. After the functional layer is formed by the nozzle printing method, a plurality of organic EL elements can be formed on the support substrate by further forming the upper electrode by a predetermined method (see, for example, Patent Document 1).
特開2008-218250号公報JP 2008-218250 A
 図4は表示装置の一部を模式的に示す平面図であり、図5は表示装置の断面図である。 FIG. 4 is a plan view schematically showing a part of the display device, and FIG. 5 is a cross-sectional view of the display device.
 図4中、矢印はノズルプリンティング装置のノズル4の経路を模式的にあらわしている。このようにノズルプリンティング法では一筆書きでインキを塗布する。このような系ではノズルプリンティング装置の動作をどのように設定したとしても、図5に示すように、乾燥後の機能層の形状が隔壁部材間で対称にならないことがあることを本発明者等は見出した。隔壁部材間で非対称に形成された機能層を有する有機EL素子は、対称に形成された機能層を有する有機EL素子と比べると、その発光特性が低下することがある。 In FIG. 4, the arrows schematically show the path of the nozzle 4 of the nozzle printing apparatus. Thus, in the nozzle printing method, ink is applied with a single stroke. In such a system, no matter how the operation of the nozzle printing apparatus is set, as shown in FIG. 5, the present inventors have shown that the shape of the functional layer after drying may not be symmetrical between the partition members. Found. The organic EL element having the functional layer formed asymmetrically between the partition members may have lower light emission characteristics than the organic EL element having the functional layer formed symmetrically.
 したがって本発明の目的は、ノズルプリンティング法によって表示装置を作製する場合に、有機EL素子の発光特性の低下を抑制することが可能な発光装置およびその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a light emitting device capable of suppressing a decrease in light emission characteristics of an organic EL element and a method for manufacturing the same when producing a display device by a nozzle printing method.
 本発明は、下記[1]および[2]を提供する。
[1]支持基板と、
 当該支持基板上において、第1の方向および当該第1の方向と交差する第2の方向にそれぞれ所定の間隔をあけて配置される複数の有機EL素子と、
 前記支持基板上に設けられ、前記複数の有機EL素子に対応する位置に開口を有し、当該開口により各有機EL素子を個別に規定する絶縁膜と、
 前記絶縁膜上に設けられた複数本の隔壁部材からなる隔壁であって、各隔壁部材は前記第2の方向に隣り合う有機EL素子間に配置され、第1の方向に延在する、隔壁と
を備える表示装置であって、
 各隔壁部材は、当該隔壁部材の第2の方向の中心位置を、前記第2の方向に隣り合う開口間の幅の中心とは第2の方向の一方にずらして配置されている、表示装置。
The present invention provides the following [1] and [2].
[1] a support substrate;
On the support substrate, a plurality of organic EL elements disposed at predetermined intervals in a first direction and a second direction intersecting the first direction,
An insulating film provided on the support substrate, having openings at positions corresponding to the plurality of organic EL elements, and individually defining each organic EL element through the openings;
A partition comprising a plurality of partition members provided on the insulating film, each partition member being disposed between organic EL elements adjacent in the second direction and extending in the first direction A display device comprising:
Each partition member is arranged such that the center position of the partition member in the second direction is shifted from the center of the width between the openings adjacent in the second direction in one of the second directions. .
[2]支持基板と、当該支持基板上において第1の方向および当該第1の方向と交差する第2の方向にそれぞれ所定の間隔をあけて配置される複数の有機EL素子と、前記支持基板上に設けられ、前記複数の有機EL素子に対応する位置に開口を有する絶縁膜と、前記絶縁膜上に設けられた複数本の隔壁部材からなる隔壁であって、各隔壁部材は前記第2の方向に隣り合う有機EL素子間に配置され、第1の方向に延在する、隔壁とを備える表示装置の製造方法であって、
 i)前記複数の有機EL素子の画素電極と、ii)当該画素電極に対応する位置に開口を有する絶縁膜とが設けられた支持基板を用意する工程と、
 前記絶縁膜上に、複数本の隔壁部材を形成することにより、隔壁を設ける工程と、
 前記隔壁部材間の領域にノズルプリンティング法により所定のインキを供給し、これを固化することにより、前記画素電極上に有機EL素子の所定の機能層を形成する工程と、
 前記機能層上に上部電極を形成する工程とを有し、
 前記隔壁を設ける工程では、各隔壁部材は、当該隔壁部材の第2の方向の中心位置を、前記第2の方向に隣り合う開口間の幅の中心とは第2の方向の一方にずらして形成する、表示装置の製造方法。
[2] A support substrate, a plurality of organic EL elements arranged on the support substrate at predetermined intervals in a first direction and a second direction intersecting the first direction, and the support substrate A partition wall comprising an insulating film having openings at positions corresponding to the plurality of organic EL elements, and a plurality of partition wall members provided on the insulation film, each partition member being the second A method of manufacturing a display device including a partition wall disposed between organic EL elements adjacent to each other in a direction and extending in a first direction,
providing a support substrate provided with i) pixel electrodes of the plurality of organic EL elements, and ii) an insulating film having an opening at a position corresponding to the pixel electrodes;
Providing a partition by forming a plurality of partition members on the insulating film; and
Forming a predetermined functional layer of the organic EL element on the pixel electrode by supplying a predetermined ink to the region between the partition members by a nozzle printing method and solidifying the ink;
Forming an upper electrode on the functional layer,
In the step of providing the partition wall, each partition member shifts the center position of the partition member in the second direction to one of the second directions from the center of the width between the openings adjacent to the second direction. A method for manufacturing a display device.
 本発明によれば、ノズルプリンティング法によって表示装置を作製する場合に、有機EL素子の発光特性の低下を抑制することが可能な発光装置およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a light emitting device capable of suppressing a decrease in the light emission characteristics of the organic EL element and a method for manufacturing the same when producing a display device by a nozzle printing method.
図1は、本発明の一実施形態における発光装置21を模式的に示す平面図である。FIG. 1 is a plan view schematically showing a light emitting device 21 according to an embodiment of the present invention. 図2は、発光装置21を模式的に拡大して示す断面図である。FIG. 2 is a sectional view schematically showing the light emitting device 21 in an enlarged manner. 図3は、発光装置21の断面について機能層等の形状を誇張して示す図である。FIG. 3 is a diagram exaggerating the shape of the functional layer and the like with respect to the cross section of the light emitting device 21. 図4は、ノズルプリンティング法でインキを塗布するときの動作を模式的に示す図である。FIG. 4 is a diagram schematically showing an operation when applying ink by the nozzle printing method. 図5は、発光装置21の断面について機能層等の形状を誇張して示す図である。FIG. 5 is a diagram showing exaggerated shapes of functional layers and the like in the cross section of the light emitting device 21.
 本発明の表示装置は、支持基板と、当該支持基板上において第1の方向および当該第1の方向と交差する第2の方向にそれぞれ所定の間隔をあけて配置される複数の有機EL素子と、前記支持基板上に設けられ、前記複数の有機EL素子に対応する位置に開口を有し、当該開口により各有機EL素子を個別に規定する絶縁膜と、前記絶縁膜上に設けられた複数本の隔壁部材からなる隔壁であって、各隔壁部材は前記第2の方向に隣り合う有機EL素子間に配置され、第1の方向に延在する、隔壁とを備え、各隔壁部材が、当該隔壁部材の第2の方向の中心位置を、前記第2の方向に隣り合う開口間の幅の中心とは第2の方向の一方にずらして配置されていることを特徴とする。 The display device of the present invention includes a support substrate, and a plurality of organic EL elements arranged on the support substrate in a first direction and in a second direction intersecting the first direction with a predetermined interval, respectively. And an insulating film provided on the support substrate and having openings at positions corresponding to the plurality of organic EL elements, and each organic EL element individually defined by the openings, and a plurality of the insulating films provided on the insulating film Each of the partition members is provided between the organic EL elements adjacent to each other in the second direction and extends in the first direction. The center position of the partition member in the second direction is shifted from the center of the width between the openings adjacent in the second direction in one of the second directions.
 表示装置には、主に、アクティブマトリクス駆動型の装置と、パッシブマトリクス駆動型の装置とがある。本発明は両方の型の表示装置に適用してよいが、本実施形態では一例としてアクティブマトリクス駆動型の表示装置に適用される発光装置について説明する。 The display device mainly includes an active matrix drive type device and a passive matrix drive type device. Although the present invention may be applied to both types of display devices, in this embodiment, a light emitting device applied to an active matrix drive type display device will be described as an example.
 <発光装置の構成>
 まず発光装置の構成について説明する。図1は本実施形態の発光装置21を模式的に示す平面図であり、図2は発光装置21を模式的に拡大して示す断面図である。発光装置21は主に支持基板11と、この支持基板上に設けられる複数の有機EL素子22とを備える。
<Configuration of light emitting device>
First, the structure of the light emitting device will be described. FIG. 1 is a plan view schematically showing the light emitting device 21 of this embodiment, and FIG. 2 is a cross-sectional view schematically showing the light emitting device 21 in an enlarged manner. The light emitting device 21 mainly includes a support substrate 11 and a plurality of organic EL elements 22 provided on the support substrate.
 本実施形態では、複数の有機EL素子22は、支持基板11上において、第1の方向Xおよび当該第1の方向Xと交差する第2の方向Yにそれぞれ所定の間隔をあけてマトリクス状に配置される。なお本実施形態では、有機EL素子22は、第1の方向Xに等しい間隔をあけて配置されるとともに、第2の方向Yにも等しい間隔をあけて配置される。 In the present embodiment, the plurality of organic EL elements 22 are arranged in a matrix on the support substrate 11 with predetermined intervals in the first direction X and the second direction Y intersecting with the first direction X, respectively. Be placed. In the present embodiment, the organic EL elements 22 are arranged at equal intervals in the first direction X, and are also arranged at equal intervals in the second direction Y.
 本実施形態では、第1の方向Xと第2の方向Yとは、支持基板11の厚み方向Zに対して垂直である。また本実施形態では、第1の方向Xと第2の方向Yとは、互いに垂直である。以下では、支持基板11の厚み方向Zをたんに厚み方向Zということがある。 In the present embodiment, the first direction X and the second direction Y are perpendicular to the thickness direction Z of the support substrate 11. In the present embodiment, the first direction X and the second direction Y are perpendicular to each other. Hereinafter, the thickness direction Z of the support substrate 11 may be simply referred to as the thickness direction Z.
 前記支持基板上には、各有機EL素子22を個別に規定する絶縁膜15が設けられる。
この絶縁膜15は、前記複数の有機EL素子に対応する位置に開口を有する。各有機EL素子22は、厚み方向Zの一方から見て(以下、「平面視」ともいう。)、絶縁膜15の開口に対応する位置に設けられる。後述するように有機EL素子を構成する機能層は、第1の方向Xに隣り合う有機EL素子22と連なるように形成されており、物理的には連続している。しかし、上記の絶縁膜15によって、第1の方向Xに隣り合う有機EL素子22は電気的に絶縁されている。
An insulating film 15 that individually defines each organic EL element 22 is provided on the support substrate.
The insulating film 15 has openings at positions corresponding to the plurality of organic EL elements. Each organic EL element 22 is provided at a position corresponding to the opening of the insulating film 15 when viewed from one side in the thickness direction Z (hereinafter also referred to as “plan view”). As will be described later, the functional layer constituting the organic EL element is formed to be continuous with the organic EL element 22 adjacent in the first direction X, and is physically continuous. However, the organic EL element 22 adjacent in the first direction X is electrically insulated by the insulating film 15.
 絶縁膜15の開口は、有機EL素子22に対応する位置に形成されるため、有機EL素子22と同様にマトリクス状に配置される。このように絶縁膜15はマトリクス状の開口を有する。換言すると絶縁膜15は平面視で格子状に形成される。絶縁膜15の開口は、平面視で、後述する画素電極12と略一致するように形成され、たとえば略矩形、略円形および略楕円形などに形成される。格子状の絶縁膜15は、平面視で、画素電極12を除く領域に主に形成される。格子状の絶縁膜15はまた、その一部が画素電極12の周縁を覆って形成されている。 Since the openings of the insulating film 15 are formed at positions corresponding to the organic EL elements 22, they are arranged in a matrix like the organic EL elements 22. Thus, the insulating film 15 has a matrix-like opening. In other words, the insulating film 15 is formed in a lattice shape in plan view. The opening of the insulating film 15 is formed so as to substantially coincide with a pixel electrode 12 to be described later in plan view, and is formed in, for example, a substantially rectangular shape, a substantially circular shape, a substantially elliptical shape, or the like. The lattice-like insulating film 15 is mainly formed in a region excluding the pixel electrode 12 in plan view. A part of the lattice-like insulating film 15 is formed to cover the periphery of the pixel electrode 12.
 本実施形態では、絶縁膜15上に、複数本の隔壁部材20から構成される隔壁17が設けられる。各隔壁部材20は、第2の方向Yに隣り合う有機EL素子間に配置される。各隔壁部材20はまた、第1の方向Xに延在する。このように本実施形態では、いわゆるストライプ状の隔壁17が絶縁膜15上に設けられる。 In this embodiment, the partition wall 17 composed of a plurality of partition wall members 20 is provided on the insulating film 15. Each partition member 20 is disposed between organic EL elements adjacent in the second direction Y. Each partition member 20 also extends in the first direction X. As described above, in this embodiment, the so-called stripe-shaped partition wall 17 is provided on the insulating film 15.
 有機EL素子22は隔壁17によって画定される区画に設けられる。本実施形態では、複数の有機EL素子22は、第2の方向Yに隣り合う隔壁部材20間の領域(すなわち凹部18)に設けられ、隔壁部材20間の領域において、第1の方向Xに所定の間隔をあけて配置されている。なお各有機EL素子22は物理的に離間している必要はなく、個別に駆動できるように電気的に絶縁されていればよい。そのため有機EL素子を構成する一部の層(電極や機能層)は他の有機EL素子と物理的につらなっていてもよい。 The organic EL element 22 is provided in a section defined by the partition wall 17. In the present embodiment, the plurality of organic EL elements 22 are provided in a region between the partition members 20 adjacent to each other in the second direction Y (that is, the recess 18), and in the region between the partition members 20 in the first direction X. They are arranged at a predetermined interval. The organic EL elements 22 do not have to be physically separated from each other, and may be electrically insulated so that they can be individually driven. Therefore, some layers (electrodes and functional layers) constituting the organic EL element may be physically connected to other organic EL elements.
 本実施形態では、有機EL素子22は、第1の電極12、機能層13,14、第2の電極16が支持基板11寄りからこの順に配置されて構成される。本明細書では、第1の電極12を画素電極12と記載し、第2の電極16を上部電極16と記載する。 In the present embodiment, the organic EL element 22 is configured by arranging the first electrode 12, the functional layers 13 and 14, and the second electrode 16 in this order from the support substrate 11 side. In the present specification, the first electrode 12 is referred to as a pixel electrode 12, and the second electrode 16 is referred to as an upper electrode 16.
 画素電極12および上部電極16は、陽極と陰極とからなる一対の電極を構成する。すなわち画素電極12および上部電極16のうちの一方が陽極として設けられ、他方が陰極として設けられる。また画素電極12が支持基板11寄りに配置され、上部電極16が、画素電極12よりも支持基板11から離間して配置される。 The pixel electrode 12 and the upper electrode 16 constitute a pair of electrodes composed of an anode and a cathode. That is, one of the pixel electrode 12 and the upper electrode 16 is provided as an anode, and the other is provided as a cathode. The pixel electrode 12 is disposed closer to the support substrate 11, and the upper electrode 16 is disposed farther from the support substrate 11 than the pixel electrode 12.
 有機EL素子22は1層以上の機能層を備える。なお機能層は、本明細書において、画素電極12と上部電極16とに挟持される全ての層を意味する。有機EL素子22は機能層として少なくとも1層以上の発光層を備える。また電極間には発光層に限らず、必要に応じて所定の層が設けられる。陽極と発光層との間に設けられる機能層としては、たとえば、正孔注入層、正孔輸送層、および電子ブロック層などが挙げられる。発光層と陰極との間に設けられる機能層としては、たとえば、正孔ブロック層、電子輸送層、および電子注入層などが挙げられる。 The organic EL element 22 includes one or more functional layers. In this specification, the functional layer means all layers sandwiched between the pixel electrode 12 and the upper electrode 16. The organic EL element 22 includes at least one light emitting layer as a functional layer. In addition, a predetermined layer is provided between the electrodes as needed without being limited to the light emitting layer. Examples of the functional layer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer. Examples of the functional layer provided between the light emitting layer and the cathode include a hole blocking layer, an electron transporting layer, and an electron injecting layer.
 本実施形態の有機EL素子22は、画素電極12と発光層14との間に、機能層として正孔注入層13を備える。 The organic EL element 22 of this embodiment includes a hole injection layer 13 as a functional layer between the pixel electrode 12 and the light emitting layer 14.
 以下、本発明の一実施形態として、陽極として機能する画素電極12と、正孔注入層13と、発光層14と、陰極として機能する上部電極16とを、支持基板11寄りからこの順番で含む有機EL素子22について説明する。 Hereinafter, as an embodiment of the present invention, a pixel electrode 12 that functions as an anode, a hole injection layer 13, a light emitting layer 14, and an upper electrode 16 that functions as a cathode are included in this order from the support substrate 11 side. The organic EL element 22 will be described.
 本実施形態の発光装置21はアクティブマトリクス型の装置であり、各有機EL素子22を個別に駆動することを可能にするために、各有機EL素子22について個別に画素電極12が設けられる。すなわち有機EL素子22の数と同数の画素電極12が支持基板11上に設けられる。たとえば画素電極12は薄膜状であって、平面視で略矩形状に形成される。複数の画素電極12は支持基板11上において、各有機EL素子が設けられる位置に対応して、マトリクス状に設けられる。複数の画素電極12は、第1の方向Xに所定の間隔をあけるとともに、第2の方向Yに所定の間隔をあけて配置される。なお画素電極12は平面視で、第2の方向Yに隣り合う隔壁部材20間の領域に設けられ、隔壁部材20間において、第1の方向Xに所定の間隔をあけて配置されている。 The light-emitting device 21 of the present embodiment is an active matrix type device, and the pixel electrode 12 is individually provided for each organic EL element 22 so that each organic EL element 22 can be driven individually. That is, the same number of pixel electrodes 12 as the number of organic EL elements 22 are provided on the support substrate 11. For example, the pixel electrode 12 has a thin film shape and is formed in a substantially rectangular shape in plan view. The plurality of pixel electrodes 12 are provided in a matrix form on the support substrate 11 corresponding to the positions where each organic EL element is provided. The plurality of pixel electrodes 12 are arranged at predetermined intervals in the first direction X and at predetermined intervals in the second direction Y. The pixel electrode 12 is provided in a region between the partition members 20 adjacent in the second direction Y in a plan view, and is disposed between the partition members 20 with a predetermined interval in the first direction X.
 前述したように格子状の絶縁膜15は、平面視で画素電極12を除く領域に主に形成され、その一部が画素電極12の周縁を覆って形成される。すなわち絶縁膜15には画素電極12に対応する位置に開口が形成されており、この開口によって画素電極12の表面は絶縁膜15から露出している。 As described above, the lattice-like insulating film 15 is mainly formed in a region excluding the pixel electrode 12 in a plan view, and a part thereof is formed so as to cover the periphery of the pixel electrode 12. That is, an opening is formed in the insulating film 15 at a position corresponding to the pixel electrode 12, and the surface of the pixel electrode 12 is exposed from the insulating film 15 through this opening.
 正孔注入層13は、隔壁部材20間の領域に第1の方向Xに延在して配置される。すなわち正孔注入層13は、第2の方向Yに隣り合う隔壁部材20によって画定される凹部18に、帯状に形成されており、第1の方向Xに隣り合う有機EL素子22にわたって連続して形成されている。 The hole injection layer 13 extends in the first direction X in the region between the partition members 20. That is, the hole injection layer 13 is formed in a strip shape in the recess 18 defined by the partition wall member 20 adjacent in the second direction Y, and continuously over the organic EL elements 22 adjacent in the first direction X. Is formed.
 発光層14は、隔壁部材20間の領域に第1の方向Xに延在して配置される。すなわち発光層14は、第2の方向Yに隣り合う隔壁部材20によって画定される凹部18に、帯状に形成されており、第1の方向Xに隣り合う有機EL素子にわたって連続して形成されている。帯状の発光層14は帯状の正孔注入層13上に積層される。 The light emitting layer 14 extends in the first direction X in the region between the partition members 20. That is, the light emitting layer 14 is formed in a strip shape in the recess 18 defined by the partition member 20 adjacent in the second direction Y, and is continuously formed over the organic EL elements adjacent in the first direction X. Yes. The band-shaped light emitting layer 14 is laminated on the band-shaped hole injection layer 13.
 本発明はモノクロ表示装置にも適用できるが、本実施形態では一例としてカラー表示装置について説明する。カラー表示装置の場合、赤色、緑色および青色のいずれか1色の光を放つ3種類の有機EL素子が支持基板11上に設けられる。カラー表示装置は、たとえば以下の(I)、(II)、および(III)の行を、この順序で、第2の方向Yに繰り返し配置することにより実現することができる。 Although the present invention can be applied to a monochrome display device, a color display device will be described as an example in this embodiment. In the case of a color display device, three types of organic EL elements that emit light of any one of red, green, and blue are provided on the support substrate 11. The color display device can be realized, for example, by repeatedly arranging the following rows (I), (II), and (III) in the second direction Y in this order.
(I)赤色の光を放つ複数の有機EL素子22Rが第1の方向Xに所定の間隔をあけて配置される行。
(II)緑色の光を放つ複数の有機EL素子22Gが第1の方向Xに所定の間隔をあけて配置される行。
(III)青色の光を放つ複数の有機EL素子22Bが第1の方向Xに所定の間隔をあけて配置される行。
(I) A row in which a plurality of organic EL elements 22R emitting red light are arranged in the first direction X with a predetermined interval.
(II) A row in which a plurality of organic EL elements 22G that emit green light are arranged in the first direction X at a predetermined interval.
(III) A row in which a plurality of organic EL elements 22B emitting blue light are arranged in the first direction X with a predetermined interval.
 このように発光色の異なる3種類の有機EL素子を形成する場合、通常は素子の種類ごとに発光色の異なる発光層が設けられる。本実施形態では以下の(i)、(ii)、および(iii)の行を、この順序で、第2の方向Yに繰り返し配置する。 Thus, when three types of organic EL elements having different emission colors are formed, a light emitting layer having a different emission color is usually provided for each type of element. In the present embodiment, the following rows (i), (ii), and (iii) are repeatedly arranged in the second direction Y in this order.
(i)赤色の光を放つ発光層14Rが設けられる行。
(ii)緑色の光を放つ発光層14Gが設けられる行。
(iii)青色の光を放つ発光層14Bが設けられる行。
(I) A row provided with a light emitting layer 14R that emits red light.
(Ii) A row in which the light emitting layer 14G emitting green light is provided.
(Iii) A row in which the light emitting layer 14B emitting blue light is provided.
 この場合、第1の方向Xに延在する帯状の3種類の発光層14R,14G,14Bが、それぞれ第2の方向Yに2行の間隔をあけて順次正孔注入層13上に積層される。 In this case, three types of strip-shaped light emitting layers 14R, 14G, and 14B extending in the first direction X are sequentially stacked on the hole injection layer 13 with two rows in the second direction Y, respectively. The
 上部電極16は発光層14上に設けられる。なお本実施形態では上部電極16は複数の有機EL素子22にまたがって連続して形成され、複数の有機EL素子に共通の電極として設けられる。上部電極16は、発光層14上だけでなく、隔壁17上にも形成され、発光層14上の電極と隔壁17上の電極とが連なるように一面に形成されている。 The upper electrode 16 is provided on the light emitting layer 14. In the present embodiment, the upper electrode 16 is continuously formed across the plurality of organic EL elements 22 and provided as a common electrode for the plurality of organic EL elements. The upper electrode 16 is formed not only on the light emitting layer 14 but also on the partition wall 17, and is formed on one surface so that the electrode on the light emitting layer 14 and the electrode on the partition wall 17 are connected.
 図3は、発光装置21の断面について機能層等の形状を誇張して示す図である。図3では、理解の容易のために、画素電極12、上部電極16の図示を省略している。 FIG. 3 is a diagram showing exaggerated shapes of functional layers and the like with respect to the cross section of the light emitting device 21. In FIG. 3, the pixel electrode 12 and the upper electrode 16 are not shown for easy understanding.
 各隔壁部材20は、当該隔壁部材20の第2の方向Yの中心位置を、前記第2の方向Yに隣り合う開口間の幅の中心とは第2の方向の一方にずらして配置されている。すなわち第2の方向Yに隣り合う開口間には、絶縁膜15が形成されており、この絶縁膜15の第2の方向Yの中心に、当該隔壁部材20の第2の方向Yの中心位置を合わせるのではなく、絶縁膜15の第2の方向Yの一方にかたよって隔壁部材20が配置される。図3に照らして説明すると、台形状の隔壁部材20は、矩形状の絶縁膜15上において、その第2の方向Yにおける中心から左にずれて配置されている。 Each partition member 20 is arranged such that the center position of the partition member 20 in the second direction Y is shifted to one of the second directions from the center of the width between the openings adjacent to the second direction Y. Yes. That is, the insulating film 15 is formed between the openings adjacent in the second direction Y, and the center position of the partition member 20 in the second direction Y is in the center of the second direction Y of the insulating film 15. Rather than aligning, the partition member 20 is arranged along one side of the insulating film 15 in the second direction Y. Referring to FIG. 3, the trapezoidal partition wall member 20 is arranged on the rectangular insulating film 15 so as to be shifted from the center in the second direction Y to the left.
 隔壁部材20の第2の方向Yの中心位置と、前記第2の方向Yに隣り合う開口間の幅の中心位置との第2の方向Yのずれ幅Mは、機能層の形状に応じて適宜設定してよい。一実施形態では、前記第2の方向Yに隣り合う開口間の距離(幅)をWとすると、次式(1)の関係を満たすことが好ましい。 The shift width M in the second direction Y between the center position of the partition wall member 20 in the second direction Y and the center position of the width between the openings adjacent to the second direction Y depends on the shape of the functional layer. You may set suitably. In one embodiment, when the distance (width) between openings adjacent to each other in the second direction Y is W, it is preferable that the relationship of the following formula (1) is satisfied.
 c<M/W≦b・・・式(1)
 上記式(1)において、bは0.2が好ましく、0.1がより好ましい。また上記式(1)において、cは、0.02が好ましく、0.05がより好ましい。
c <M / W ≦ b (1)
In the above formula (1), b is preferably 0.2, more preferably 0.1. In the above formula (1), c is preferably 0.02, and more preferably 0.05.
 機能層は、前述のとおり、隔壁部材20間において非対称に形成される。本発明では、機能層の厚みが最小になる位置が、開口の第2の方向の中心に一致するように、前記ずれ幅Mを設定することが好ましい。なお、開口の第2の方向の幅における或る位置をその一端からの距離であらわし、その他端までの距離をXとすると、機能層の厚みが最小になる位置Aは、次式(2)の関係を満たすことが好ましい。 The functional layer is formed asymmetrically between the partition members 20 as described above. In the present invention, it is preferable that the shift width M is set so that the position where the thickness of the functional layer is minimized coincides with the center of the opening in the second direction. In addition, when a certain position in the width in the second direction of the opening is represented by a distance from one end thereof and a distance to the other end is represented by X, a position A at which the thickness of the functional layer is minimized is expressed by the following equation (2) It is preferable to satisfy the relationship.
 |A/X-0.5|≦a・・・式(2)
 上記式(2)において、aは0.2が好ましく、0.1がより好ましい。
| A / X-0.5 | ≦ a (2)
In the above formula (2), a is preferably 0.2, and more preferably 0.1.
 また所定の凹部18において、第2の方向Yの一方の隔壁部材20と機能層の表面との切片H1と、他方の隔壁部材20と機能層の表面との切片H2とを比較したときに、切片の高い方に、隔壁部材20の第2の方向Yの中心位置がずれるように、隔壁部材20を配置することが好ましい。なお記号H1、H2は、それぞれ支持基板11からの高さを表す。このように隔壁部材20を配置することにより、たとえば上記式(2)の関係を満たすことができる。 Further, in the predetermined concave portion 18, when the section H1 between the one partition wall member 20 in the second direction Y and the surface of the functional layer is compared with the section H2 between the other partition wall member 20 and the surface of the functional layer, It is preferable to arrange the partition wall member 20 so that the center position of the partition wall member 20 in the second direction Y is shifted to the higher section. Symbols H1 and H2 represent heights from the support substrate 11, respectively. By arranging the partition member 20 in this way, for example, the relationship of the above formula (2) can be satisfied.
 たとえば図3に照らすと、左方の切片H1が、右方の切片H2よりも高いので、隔壁部材20の第2の方向Yの中心位置が、第2の方向Yに隣り合う開口間の幅の中心位置よりも、左方にずれる方が好ましい。 For example, referring to FIG. 3, since the left segment H1 is higher than the right segment H2, the center position of the partition member 20 in the second direction Y is the width between the openings adjacent to the second direction Y. It is preferable to shift to the left rather than the center position.
 なお隔壁部材20の第2の方向Yの中心位置と、前記第2の方向Yに隣り合う開口間の幅の中心位置との第2の方向Yのずれ幅Mおよびそのずれる向きは、以下の方法に従って決定することができる。すなわち、試作として実際に支持基板11上に隔壁部材20を形成し、隔壁部材20間の領域に薄膜を形成する。そして、H1、H2の関係を把握し、この関係をもとにずれ幅Mおよびそのずれる向きを決定することができる。 The shift width M in the second direction Y between the center position of the partition wall member 20 in the second direction Y and the center position of the width between the openings adjacent to the second direction Y and the direction of the shift are as follows. It can be determined according to the method. That is, the partition member 20 is actually formed on the support substrate 11 as a prototype, and a thin film is formed in a region between the partition members 20. Then, the relationship between H1 and H2 can be grasped, and based on this relationship, the shift width M and the direction in which it can be shifted can be determined.
 以上のように隔壁部材20を配置することにより、開口内では、第2の方向Yにおいて機能層を略対称に形成することができる。これによって平面視で開口内において略均一に発光する有機EL素子を実現することができ、有機EL素子の発光特性を向上することができる。 By arranging the partition member 20 as described above, the functional layer can be formed substantially symmetrically in the second direction Y within the opening. Accordingly, an organic EL element that emits light substantially uniformly in the opening in a plan view can be realized, and the light emission characteristics of the organic EL element can be improved.
 <発光装置の製造方法>
 つぎに発光装置の製造方法について説明する。
<Method for manufacturing light emitting device>
Next, a method for manufacturing the light emitting device will be described.
 本発明の発光装置の製造方法は、支持基板と、当該支持基板上において、第1の方向および当該第1の方向と交差する第2の方向にそれぞれ所定の間隔をあけて配置される複数の有機EL素子と、前記複数の有機EL素子に対応する位置に開口を有する絶縁膜と、前記絶縁膜上に設けられた複数本の隔壁部材からなる隔壁であって、各隔壁部材は前記第2の方向に隣り合う有機EL素子間に配置され、第1の方向に延在する、隔壁とを備える表示装置の製造方法であって、i)前記複数の有機EL素子の画素電極と、ii)当該画素電極に対応する位置に開口を有する絶縁膜とが設けられた支持基板を用意する工程と、前記絶縁膜上に複数本の隔壁部材を形成することにより隔壁を設ける工程と、前記隔壁部材間の領域にノズルプリンティング法により所定のインキを供給し、これを固化することにより、前記画素電極上に有機EL素子の所定の機能層を形成する工程と、前記機能層上に上部電極を形成する工程とを有し、前記隔壁を設ける工程では、各隔壁部材は、当該隔壁部材の第2の方向の中心位置を、前記第2の方向に隣り合う開口間の幅の中心とは第2の方向の一方にずらして形成する、表示装置の製造方法に関する。 The manufacturing method of the light-emitting device of the present invention includes a support substrate and a plurality of the substrate arranged at predetermined intervals in the first direction and the second direction intersecting the first direction on the support substrate. A partition comprising an organic EL element, an insulating film having openings at positions corresponding to the plurality of organic EL elements, and a plurality of partition members provided on the insulating film, each partition member being the second partition A display device comprising a partition wall disposed between organic EL elements adjacent to each other in a direction extending in a first direction, i) pixel electrodes of the plurality of organic EL elements, and ii) A step of providing a support substrate provided with an insulating film having an opening at a position corresponding to the pixel electrode, a step of providing a partition by forming a plurality of partition members on the insulating film, and the partition member Nozzle print in the area between A predetermined ink layer is supplied by solidification and solidified to form a predetermined functional layer of the organic EL element on the pixel electrode, and an upper electrode is formed on the functional layer. In the step of providing the partition, each partition member has a center position of the partition member in the second direction, and a center of the width between the openings adjacent to the second direction is set to one of the second directions. The present invention relates to a manufacturing method of a display device which is formed by shifting.
 (支持基板を用意する工程)
 本工程では、i)複数の有機EL素子の画素電極12と、ii)当該画素電極12に対応する位置に開口を有する絶縁膜15とがその上に設けられた支持基板11を用意する。アクティブマトリクス型の表示装置の場合、複数の有機EL素子を個別に駆動するための回路が予め形成された基板を、支持基板11として用いてよい。たとえばTFT(Thin Film Transistor)およびキャパシタなどが予め形成された基板を支持基板として用いてよい。なお画素電極12を以下のように本工程で形成することによって、画素電極12および絶縁膜15がその上に設けられた支持基板11を用意してもよい。あるいは、画素電極12および絶縁膜15が予めその上に設けられた支持基板11を市場から入手することにより支持基板11を用意してもよい。
(Process for preparing support substrate)
In this step, a support substrate 11 is prepared in which i) pixel electrodes 12 of a plurality of organic EL elements and ii) an insulating film 15 having openings at positions corresponding to the pixel electrodes 12 are provided thereon. In the case of an active matrix display device, a substrate on which circuits for individually driving a plurality of organic EL elements are formed in advance may be used as the support substrate 11. For example, a substrate on which a TFT (Thin Film Transistor), a capacitor, and the like are formed in advance may be used as the support substrate. The support substrate 11 on which the pixel electrode 12 and the insulating film 15 are provided may be prepared by forming the pixel electrode 12 in this step as follows. Alternatively, the support substrate 11 may be prepared by obtaining from the market a support substrate 11 on which the pixel electrode 12 and the insulating film 15 are previously provided.
 まず支持基板11上に複数の画素電極12をマトリクス状に形成する。画素電極12は、たとえば支持基板11上の一面に導電性薄膜を形成し、これをフォトリソグラフィ法によってマトリクス状にパターニングすることによって形成される。またたとえば所定の部位に開口を有するマスクを支持基板11上に配置し、このマスクを介して支持基板11上の所定の部位に導電性材料を選択的に堆積することにより画素電極12をパターン形成してもよい。画素電極12の材料については後述する。 First, a plurality of pixel electrodes 12 are formed on a support substrate 11 in a matrix. The pixel electrode 12 is formed, for example, by forming a conductive thin film on one surface of the support substrate 11 and patterning it in a matrix by a photolithography method. Further, for example, a mask having an opening at a predetermined portion is disposed on the support substrate 11, and the pixel electrode 12 is patterned by selectively depositing a conductive material on the predetermined portion on the support substrate 11 through the mask. May be. The material of the pixel electrode 12 will be described later.
 つぎに格子状の絶縁膜15を支持基板11上に形成する。絶縁膜15は有機物または無機物によって構成される。絶縁膜15を構成する有機物としては、たとえば、アクリル樹脂、フェノール樹脂、およびポリイミド樹脂などの樹脂を挙げることができる。また絶縁膜15を構成する無機物としては、たとえば、SiOやSiNなどを挙げることができる。 Next, a lattice-like insulating film 15 is formed on the support substrate 11. The insulating film 15 is made of an organic material or an inorganic material. Examples of the organic material constituting the insulating film 15 include resins such as acrylic resin, phenol resin, and polyimide resin. As the inorganic material which constitutes the insulating film 15, for example, and the like SiO x or SiN x.
 無機物からなる絶縁膜15を形成する場合、たとえば無機物からなる薄膜をプラズマCVD法やスパッタ法などによって一面に形成し、次に所定の部位を除去することにより格子状の絶縁膜15を形成する。所定の部位の除去は、たとえばフォトリソグラフィ法によって行われる。 When forming the insulating film 15 made of an inorganic material, for example, a thin film made of an inorganic material is formed on one surface by a plasma CVD method, a sputtering method, or the like, and then a predetermined portion is removed to form the lattice-shaped insulating film 15. The predetermined part is removed by, for example, a photolithography method.
 有機物からなる絶縁膜15を形成する場合、まずたとえばポジ型またはネガ型の感光性樹脂を一面に塗布し、所定の部位を露光、現像する。さらにこれを硬化することによって、格子状の絶縁膜15が形成される。なお感光性樹脂としてはフォトレジストを用いてよい。 When forming the insulating film 15 made of an organic material, first, for example, a positive or negative photosensitive resin is applied to one surface, and a predetermined portion is exposed and developed. Further, by curing this, a lattice-like insulating film 15 is formed. Note that a photoresist may be used as the photosensitive resin.
 つぎに隔壁17を形成する。すなわち前記絶縁膜15上に、複数本の隔壁部材20を形成し隔壁17を設ける。本工程では、各隔壁部材は、当該隔壁部材20の第2の方向の中心位置を、前記第2の方向に隣り合う開口間の幅の中心とは第2の方向の一方にずらして形成する。 Next, the partition wall 17 is formed. That is, a plurality of partition members 20 are formed on the insulating film 15 to provide the partition walls 17. In this step, each partition member is formed by shifting the center position of the partition member 20 in the second direction to one of the second directions from the center of the width between the openings adjacent in the second direction. .
 隔壁17は、たとえば絶縁膜15の材料として例示した材料を用いて、絶縁膜15を形成する方法と同様にしてストライプ状に形成することができる。 The partition wall 17 can be formed in a stripe shape in the same manner as the method of forming the insulating film 15 using, for example, the material exemplified as the material of the insulating film 15.
 なお隔壁17は有機物によって構成することが好ましい。隔壁17で囲まれた凹部18に供給されるインキを凹部18内で保持するためには、隔壁は撥液性を示すことが好ましい。一般に無機物よりも有機物の方がインキに対して撥液性を示すので、有機物によって隔壁を構成することにより、凹部18内にインキを保持する能力を高めることができる。 Note that the partition wall 17 is preferably made of an organic material. In order to retain the ink supplied to the recess 18 surrounded by the partition wall 17 in the recess 18, the partition wall preferably exhibits liquid repellency. In general, an organic material has a liquid repellency with respect to ink rather than an inorganic material. Therefore, by forming a partition wall with an organic material, the ability to retain ink in the recess 18 can be enhanced.
 隔壁17の形状、並びにその配置は、画素数および解像度などの表示装置の仕様や製造の容易さなどに応じて適宜設定してよい。たとえば隔壁部材20の第2の方向Yの幅L1は、5μm~50μm程度であり、隔壁部材20の厚み方向Zの高さL2は0.5μm~5μm程度であり、凹部18の第2の方向Yの幅L3は、10μm~200μm程度である。また画素電極12の第1の方向Xおよび第2の方向Yの幅はそれぞれ10μm~400μm程度である。 The shape of the partition wall 17 and the arrangement thereof may be appropriately set according to the specifications of the display device such as the number of pixels and resolution, the ease of manufacturing, and the like. For example, the width L1 of the partition member 20 in the second direction Y is about 5 μm to 50 μm, the height L2 of the partition member 20 in the thickness direction Z is about 0.5 μm to 5 μm, and the second direction of the recess 18 The width L3 of Y is about 10 μm to 200 μm. The width of the pixel electrode 12 in the first direction X and the second direction Y is about 10 μm to 400 μm, respectively.
 (機能層を形成する工程)
 本工程では、隔壁部材間の領域にノズルプリンティング法により所定のインキを供給し、これを固化することにより、画素電極上に有機EL素子の所定の機能層を形成する。なお所定のインキとは、機能層(本実施形態では正孔注入層および発光層)となる材料を含むインキを意味する。なお本工程では機能層が複数層設けられる場合、少なくとも1層をノズルプリンティング法によって形成する。
(Process for forming functional layer)
In this step, a predetermined functional layer of the organic EL element is formed on the pixel electrode by supplying a predetermined ink to the region between the partition members by a nozzle printing method and solidifying the ink. The predetermined ink means an ink containing a material that becomes a functional layer (in this embodiment, a hole injection layer and a light emitting layer). In this step, when a plurality of functional layers are provided, at least one layer is formed by a nozzle printing method.
 本実施形態では全ての有機EL素子に共通する正孔注入層13を形成するため、隔壁部材20間の領域に限って正孔注入層13となる材料を含むインキ(以下、「正孔注入層用インキ」ともいう。)を供給する必要はなく、全面に正孔注入層用インキを供給してもよい。そのためどのような方法で正孔注入層用インキを供給してもよい。たとえば、スピンコート法、スリットコート法、インクジェットプリント法、ノズルプリンティング法、凸版印刷法、凹版印刷法などの塗布法によって正孔注入層用インキを供給することができる。正孔注入層用インキの供給方法としては、短時間で均一に正孔注入層用インキを供給可能な方法が好ましい。このような観点からは、スピンコート法、スリットコート法またはノズルプリンティング法が好ましい。なお全面に正孔注入層用インキを塗布した場合、隔壁表面の性状によっては隔壁上にまで正孔注入層が形成されることがある。これを避けるために、凹部18にのみ正孔注入層用インキを供給することが好ましい場合もある。この場合、正孔注入層用インキを凹部18にのみ選択的に供給することが可能な塗布法によって正孔注入層用インキを供給する。本実施形態では正孔注入層用インキを選択的に供給することが可能な塗布法として、ノズルプリンティング法によって正孔注入層用インキを供給する。 In this embodiment, in order to form the hole injection layer 13 common to all organic EL elements, an ink containing a material that becomes the hole injection layer 13 only in the region between the partition members 20 (hereinafter referred to as “hole injection layer”). The ink for the hole injection layer may be supplied to the entire surface. The ink for the hole injection layer may be provided in any way for this. For example, the ink for the hole injection layer can be supplied by a coating method such as a spin coating method, a slit coating method, an ink jet printing method, a nozzle printing method, a relief printing method, and an intaglio printing method. As a method for supplying the hole injection layer ink, a method capable of supplying the hole injection layer ink uniformly in a short time is preferable. From such a viewpoint, a spin coating method, a slit coating method or a nozzle printing method is preferable. When the hole injection layer ink is applied to the entire surface, the hole injection layer may be formed even on the partition wall depending on the properties of the partition wall surface. In order to avoid this, it may be preferable to supply the hole injection layer ink only to the recess 18. In this case, the hole injection layer ink is supplied by a coating method that can selectively supply the hole injection layer ink only to the recesses 18. In the present embodiment, the hole injection layer ink is supplied by a nozzle printing method as a coating method capable of selectively supplying the hole injection layer ink.
 以下、図4を参照して本工程を説明する。図4はノズルプリンティング法でインキを塗布するときの動作を模式的に示す図である。なお本図4は、課題の項において引用した図と同じものを使用しているが、本実施形態の表示装置と課題の項において説明した従来の表示装置とは、隔壁部材の配置が異なる。 Hereinafter, this process will be described with reference to FIG. FIG. 4 is a diagram schematically showing the operation when applying ink by the nozzle printing method. Note that FIG. 4 uses the same figure as cited in the problem section, but the arrangement of the partition members is different between the display device of the present embodiment and the conventional display apparatus described in the problem section.
 ノズルプリンティング法では、一筆書きで各行(各凹部18)に正孔注入層用インキを供給する。すなわち支持基板11の上方に配置されるノズルから液柱状の正孔注入層用インキを吐出したまま、ノズル4を第1の方向Xに往復移動させる。そして、ノズル4の往復移動の折り返しの際に、支持基板を第2の方向Yに所定の距離だけ移動させることによって、各行に正孔注入層用インキを供給する。たとえばノズル4の往復移動の折り返しの際に、支持基板を第2の方向Yに1行分だけ移動することによって、全ての行に正孔注入層用インキを供給することができる。 In the nozzle printing method, the ink for the hole injection layer is supplied to each row (each concave portion 18) with a single stroke. That is, the nozzle 4 is reciprocated in the first direction X while the liquid columnar hole injection layer ink is ejected from the nozzle disposed above the support substrate 11. Then, when the nozzle 4 is turned back and forth, the support substrate is moved by a predetermined distance in the second direction Y, whereby the hole injection layer ink is supplied to each row. For example, when the reciprocating movement of the nozzle 4 is turned back, the hole injection layer ink can be supplied to all rows by moving the support substrate by one row in the second direction Y.
 より具体的にはノズル4から液柱状の正孔注入層用インキを吐出したまま、以下の(1)~(4)の工程をこの順序で繰り返すことにより、全ての隔壁部材20間の領域(凹部18)に正孔注入層用インキを供給することができる。
(1)ノズル4を第1の方向Xの一端から他端に移動する工程。
(2)支持基板11を第2の方向Yの一方に1行分だけ移動する工程。
(3)ノズル4を第1の方向Xの他端から一端に移動する工程。
(4)支持基板を第2の方向Yの一方に1行分だけ移動する工程。
More specifically, by repeating the following steps (1) to (4) in this order while discharging the liquid columnar hole injection layer ink from the nozzles 4, the region between all the partition members 20 ( The hole injection layer ink can be supplied to the recesses 18).
(1) A step of moving the nozzle 4 from one end to the other end in the first direction X.
(2) A step of moving the support substrate 11 in one direction in the second direction Y by one line.
(3) A step of moving the nozzle 4 from the other end in the first direction X to one end.
(4) A step of moving the support substrate by one line in one of the second directions Y.
 以上のようにノズルプリンティング法によって正孔注入層用インキを供給することにより、正孔注入層用インキからなる薄膜が形成される。 By supplying the ink for hole injection layer by the nozzle printing method as described above, a thin film made of the ink for hole injection layer is formed.
 前述したように、本実施形態では、各隔壁部材は、当該隔壁部材の第2の方向の中心位置を、前記第2の方向に隣り合う開口間の幅の中心とは第2の方向の一方にずらして配置されている。このように隔壁部材を配置することにより、ノズルプリンティング法でインキを塗布したとしても、図3に示すように、開口内では、第2の方向Yにおいて正孔注入層を略対称に形成することができる。 As described above, in this embodiment, each partition member has the center position in the second direction of the partition member, and the center of the width between the openings adjacent in the second direction is one of the second directions. It is arranged to shift to. By arranging the partition member in this way, even if ink is applied by the nozzle printing method, the hole injection layer is formed substantially symmetrically in the second direction Y in the opening as shown in FIG. Can do.
 (発光層を形成する工程)
 つぎに発光層を形成する。前述したようにカラー表示装置を作製する場合、3種類の有機EL素子を作製する必要がある。そのため発光層の材料を行ごとに塗りわける必要がある。たとえば3種類の発光層を行ごとに形成する場合、赤色の光を放つ材料を含む赤インキ、緑色の光を放つ材料を含む緑インキ、青色の光を放つ材料を含む青インキを、それぞれ第2の方向Yに2行の間隔をあけて塗布する必要がある。これら赤インキ、緑インキ、青インキを所定の行に順次塗布することによって、各発光層を塗布成膜することができる。
(Step of forming the light emitting layer)
Next, a light emitting layer is formed. As described above, when producing a color display device, it is necessary to produce three types of organic EL elements. Therefore, it is necessary to coat the material of the light emitting layer for each row. For example, when three types of light emitting layers are formed for each row, red ink containing a material that emits red light, green ink containing a material that emits green light, and blue ink containing a material that emits blue light, respectively. It is necessary to apply in the direction Y of 2 with an interval of 2 rows. By sequentially applying the red ink, the green ink, and the blue ink to predetermined rows, each light emitting layer can be coated and formed.
 赤インキ、緑インキ、青インキを所定の行に順次塗布する方法としては、隔壁部材間の領域にインキを選択的に供給することが可能な塗布法であればどのような方法でもよい。たとえば、インクジェットプリント法、ノズルプリンティング法、凸版印刷法、凹版印刷法などによってインキを供給することができる。インキの供給方法としては、短時間で均一にインキを供給可能な方法が好ましい。このような観点からはノズルプリンティング法が好ましい。本実施形態では前述した正孔注入層を形成する方法と同様に、ノズルプリンティング法によってインキを供給する。 As a method for sequentially applying the red ink, the green ink, and the blue ink to a predetermined line, any method may be used as long as the ink can be selectively supplied to the region between the partition members. For example, ink can be supplied by an ink jet printing method, a nozzle printing method, a relief printing method, an intaglio printing method, or the like. As a method for supplying ink, a method capable of supplying ink uniformly in a short time is preferable. From such a viewpoint, the nozzle printing method is preferable. In the present embodiment, ink is supplied by a nozzle printing method as in the method for forming the hole injection layer described above.
 より具体的にはノズル4から液柱状の赤インキを吐出したまま、以下の(1)~(4)の工程をこの順序で繰り返すことにより、第2の方向Yに2行の間隔をあけて隔壁部材20間の領域(凹部18)に赤インキを供給することができる。
(1)ノズル4を第1の方向Xの一端から他端に移動する工程。
(2)支持基板11を第2の方向Yの一方に3行分だけ移動する工程。
(3)ノズル4を第1の方向Xの他端から一端に移動する工程。
(4)支持基板を第2の方向Yの一方に3行分だけ移動する工程。
More specifically, the following steps (1) to (4) are repeated in this order while the liquid columnar red ink is being discharged from the nozzle 4, so that two rows are spaced in the second direction Y. Red ink can be supplied to the region between the partition members 20 (recessed portion 18).
(1) A step of moving the nozzle 4 from one end to the other end in the first direction X.
(2) A step of moving the support substrate 11 in one direction in the second direction Y by three rows.
(3) A step of moving the nozzle 4 from the other end in the first direction X to one end.
(4) A step of moving the support substrate in one direction in the second direction Y by three rows.
 上述の赤インキと同様にして緑インキ、青インキをそれぞれ供給することによって、第2の方向Yに2行の間隔をあけて隔壁部材20間の領域(凹部18)にそれぞれ緑インキ、青インキを供給することができる。 By supplying green ink and blue ink in the same manner as the red ink described above, green ink and blue ink are respectively provided in the region (concave portion 18) between the partition members 20 with an interval of two rows in the second direction Y. Can be supplied.
 なお赤インキ、緑インキ、青インキに使用される発光材料については後述する。なお各インキは、エネルギーを加えることによって重合可能な重合性化合物を含んでいてもよい。インキとしては、エネルギーを加えることによって重合可能な重合性基を有する発光材料を重合性化合物として含む赤インキ、緑インキ、青インキを使用してもよい。また、自身は重合しない発光材料と、この発光材料に加えて、重合可能な重合性基を有する重合性化合物とを含む赤インキ、緑インキ、青インキを使用してもよい。 The luminescent materials used for red ink, green ink, and blue ink will be described later. Each ink may contain a polymerizable compound that can be polymerized by applying energy. As the ink, a red ink, a green ink, or a blue ink containing a light emitting material having a polymerizable group that can be polymerized by applying energy as a polymerizable compound may be used. Moreover, you may use the red ink, green ink, and blue ink containing the luminescent material which does not superpose itself, and the polymeric compound which has the polymerizable group which can superpose | polymerize in addition to this luminescent material.
 重合性基としては、たとえば、ビニル基、エチニル基、ブテニル基、アクリロイル基、アクリロイルアミノ基、メタクリロイル基、メタクリロイルアミノ基、ビニルオキシ基、ビニルアミノ基、シラノール基、シクロプロピル基、シクロブチル基、エポキシ基、オキセタニル基、ジケテニル基、エピチオ基、ラクトニル基、及びラクタムニル基などがあげられる。 Examples of the polymerizable group include a vinyl group, an ethynyl group, a butenyl group, an acryloyl group, an acryloylamino group, a methacryloyl group, a methacryloylamino group, a vinyloxy group, a vinylamino group, a silanol group, a cyclopropyl group, a cyclobutyl group, and an epoxy group. Oxetanyl group, diketenyl group, epithio group, lactonyl group, lactamnyl group and the like.
 また重合性化合物としては、たとえば、重合性基を有するPDA(N,N’-テトラフェニル-1,4-フェニレンジアミン)の誘導体、重合性基を有するTPD(N,N’-ビス(3-メチルフェニル)-N,N’-ビス(フェニル)-ベンジジン)の誘導体、重合性基を有するNPD(N,N’-ビス(ナフタレン-1-イル)-N,N’-ビス(フェニル)-ベンジジン)の誘導体、トリフェニルアミンアクリレート、トリフェニレンジアミンアクリレート、フェニレンアクリレート、ビスフェノキシエタノールフルオレンジアクリレート(大阪ガスケミカル社製、商品名BPEF-A)、ジペンタエリスリトールヘキサアクリレート(日本化薬製KAYARD DPHA)、トリスペンタエリスリトールオクタアクリレート(広栄化学製)1,4-ブタンジオールジアクリレート(Alfa Aesar社製)、アロンオキセタン(OXT121;東亞合成製架橋剤)などをあげることができ、これらの中でもフェニルフルオレンアクリレートが好ましい。 Examples of the polymerizable compound include a PDA (N, N′-tetraphenyl-1,4-phenylenediamine) derivative having a polymerizable group and a TPD (N, N′-bis (3- Methylphenyl) -N, N′-bis (phenyl) -benzidine) derivative, NPD (N, N′-bis (naphthalen-1-yl) -N, N′-bis (phenyl)-) having a polymerizable group Benzidine) derivatives, triphenylamine acrylate, triphenylenediamine acrylate, phenylene acrylate, bisphenoxyethanol full orange acrylate (trade name BPEF-A manufactured by Osaka Gas Chemical Company), dipentaerythritol hexaacrylate (KAYARD DPHA manufactured by Nippon Kayaku), Trispentaerythritol octaacrylate (Guangei Chemical) 1 1,4-butanediol diacrylate (manufactured by Alfa Aesar Co.), ARON (OXT121; manufactured by Toagosei Co. crosslinking agent) can be mentioned, such as, phenyl fluorene acrylate is preferable among these.
 前述したように、本実施形態では、各隔壁部材は、当該隔壁部材の第2の方向の中心位置を、前記第2の方向に隣り合う開口間の幅の中心とは第2の方向の一方にずらして配置されている。このように隔壁部材を配置することにより、ノズルプリンティング法でインキを塗布したとしても、図3に示すように、開口内では、第2の方向Yにおいて発光層を略対称に形成することができる。 As described above, in this embodiment, each partition member has the center position in the second direction of the partition member, and the center of the width between the openings adjacent in the second direction is one of the second directions. It is arranged to shift to. By arranging the partition member in this way, even when ink is applied by the nozzle printing method, the light emitting layer can be formed substantially symmetrically in the second direction Y as shown in FIG. .
 発光層を形成した後、必要に応じて所定の有機層や無機層などを所定の方法によって形成する。これらは印刷法、インクジェット法、ノズルプリンティング法などの所定の塗布法、さらには所定の乾式法を用いて形成してもよい。 After forming the light emitting layer, a predetermined organic layer or inorganic layer is formed by a predetermined method as necessary. These may be formed using a predetermined coating method such as a printing method, an ink jet method, a nozzle printing method, or a predetermined dry method.
 (上部電極を形成する工程)
 つぎに上部電極を形成する。前述したように本実施形態では上部電極を支持基板上の全面に形成する。これによって複数の有機EL素子を基板上に形成することができる。
(Process of forming the upper electrode)
Next, an upper electrode is formed. As described above, in this embodiment, the upper electrode is formed on the entire surface of the support substrate. Thereby, a plurality of organic EL elements can be formed on the substrate.
 以上説明したように、本実施形態では、各隔壁部材は、当該隔壁部材の第2の方向の中心位置を、前記第2の方向に隣り合う開口間の幅の中心とは第2の方向の一方にずらして配置されている。隔壁部材20をこのように配置することにより、開口内では、第2の方向Yにおいて正孔注入層、発光層を略対称に形成することができる。これによって平面視で開口内において略均一に発光する有機EL素子を実現することができ、有機EL素子の発光特性を向上することができる。 As described above, in this embodiment, each partition member has the center position in the second direction of the partition member, and the center of the width between the openings adjacent in the second direction is the second direction. They are shifted to one side. By disposing the partition wall member 20 in this manner, the hole injection layer and the light emitting layer can be formed substantially symmetrically in the second direction Y within the opening. Accordingly, an organic EL element that emits light substantially uniformly in the opening in a plan view can be realized, and the light emission characteristics of the organic EL element can be improved.
 <有機EL素子の構成>
 前述したように有機EL素子は種々の層構成をとりうるが、以下では有機EL素子の層構造、各層の構成、および各層の形成方法についてさらに詳しく説明する。
<Configuration of organic EL element>
As described above, the organic EL element can have various layer configurations. Hereinafter, the layer structure of the organic EL element, the configuration of each layer, and the method of forming each layer will be described in more detail.
 前述したように有機EL素子は、陽極および陰極からなる一対の電極(画素電極および上部電極)と、該電極間に設けられる1または複数の機能層とを含んで構成され、1または複数の機能層として少なくとも1層の発光層を有する。なお有機EL素子は、無機物と有機物とを含む層、および無機層などを含んでいてもよい。有機層を構成する有機物としては、低分子化合物でも高分子化合物でもよく、また低分子化合物と高分子化合物との混合物でもよい。有機層は、高分子化合物を含むことが好ましく、ポリスチレン換算の数平均分子量が10~10である高分子化合物を含むことが好ましい。 As described above, the organic EL element includes a pair of electrodes (pixel electrode and upper electrode) composed of an anode and a cathode, and one or more functional layers provided between the electrodes. As a layer, at least one light emitting layer is provided. The organic EL element may include a layer containing an inorganic substance and an organic substance, an inorganic layer, and the like. The organic substance constituting the organic layer may be a low molecular compound or a high molecular compound, or a mixture of a low molecular compound and a high molecular compound. The organic layer preferably contains a polymer compound, and preferably contains a polymer compound having a polystyrene-equivalent number average molecular weight of 10 3 to 10 8 .
 陰極と発光層との間に設けられる機能層としては、たとえば、電子注入層、電子輸送層、正孔ブロック層などを挙げることができる。陰極と発光層との間に電子注入層と電子輸送層との両方の層が設けられる場合、陰極に近い層を電子注入層といい、発光層に近い層を電子輸送層という。陽極と発光層との間に設けられる機能層としては、たとえば、正孔注入層、正孔輸送層、電子ブロック層などを挙げることができる。正孔注入層と正孔輸送層との両方の層が設けられる場合、陽極に近い層を正孔注入層といい、発光層に近い層を正孔輸送層という。 Examples of the functional layer provided between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer. When both the electron injection layer and the electron transport layer are provided between the cathode and the light emitting layer, the layer close to the cathode is called an electron injection layer, and the layer close to the light emitting layer is called an electron transport layer. Examples of the functional layer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer. When both the hole injection layer and the hole transport layer are provided, a layer close to the anode is referred to as a hole injection layer, and a layer close to the light emitting layer is referred to as a hole transport layer.
 本実施の形態の有機EL素子のとりうる層構成の一例を以下に示す。
a)陽極/発光層/陰極
b)陽極/正孔注入層/発光層/陰極
c)陽極/正孔注入層/発光層/電子注入層/陰極
d)陽極/正孔注入層/発光層/電子輸送層/陰極
e)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
f)陽極/正孔輸送層/発光層/陰極
g)陽極/正孔輸送層/発光層/電子注入層/陰極
h)陽極/正孔輸送層/発光層/電子輸送層/陰極
i)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
j)陽極/正孔注入層/正孔輸送層/発光層/陰極
k)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
l)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
m)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
n)陽極/発光層/電子注入層/陰極
o)陽極/発光層/電子輸送層/陰極
p)陽極/発光層/電子輸送層/電子注入層/陰極
(ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。以下同じ。)
An example of a layer structure that can be taken by the organic EL element of the present embodiment is shown below.
a) anode / light emitting layer / cathode b) anode / hole injection layer / light emitting layer / cathode c) anode / hole injection layer / light emitting layer / electron injection layer / cathode d) anode / hole injection layer / light emitting layer / Electron transport layer / cathode e) anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode f) anode / hole transport layer / light emitting layer / cathode g) anode / hole transport layer / light emitting layer / Electron injection layer / cathode h) anode / hole transport layer / light emitting layer / electron transport layer / cathode i) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode j) anode / hole Injection layer / hole transport layer / light emitting layer / cathode k) anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode l) anode / hole injection layer / hole transport layer / light emitting layer / Electron transport layer / cathode m) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode n) anode / light emitting layer / electron injection layer / cathode o) anode / Photo layer / electron transport layer / cathode p) anode / light emitting layer / electron transport layer / electron injection layer / cathode (here, the symbol “/” indicates that the layers sandwiching the symbol “/” are stacked adjacent to each other) The same shall apply hereinafter.)
 本実施の形態の有機EL素子は2層以上の発光層を有していてもよい。上記a)~p)の層構成のうちのいずれか1つにおいて、陽極と陰極とに挟持された積層体を「構造単位A」とすると、2層の発光層を有する有機EL素子の構成として、たとえば、下記q)に示す層構成を挙げることができる。なお2つある(構造単位A)の層構成は互いに同じでも、異なっていてもよい。
q)陽極/(構造単位A)/電荷発生層/(構造単位A)/陰極
 また「(構造単位A)/電荷発生層」を「構造単位B」とすると、3層以上の発光層を有する有機EL素子の構成として、たとえば、下記r)に示す層構成を挙げることができる。
r)陽極/(構造単位B)x/(構造単位A)/陰極
 なお記号「x」は、2以上の整数を表し、(構造単位B)xは、構造単位Bがx段積層された積層体を表す。また複数ある(構造単位B)の層構成は同じでも、異なっていてもよい。
The organic EL element of the present embodiment may have two or more light emitting layers. In any one of the layer configurations of a) to p) above, when the laminate sandwiched between the anode and the cathode is referred to as “structural unit A”, the configuration of the organic EL device having two light emitting layers is as follows. For example, the layer configuration shown in the following q) can be given. Note that the two (structural unit A) layer structures may be the same or different.
q) Anode / (structural unit A) / charge generating layer / (structural unit A) / cathode If “(structural unit A) / charge generating layer” is “structural unit B”, it has three or more light emitting layers. As a structure of an organic EL element, the layer structure shown to the following r) can be mentioned, for example.
r) anode / (structural unit B) x / (structural unit A) / cathode The symbol “x” represents an integer of 2 or more, and (structural unit B) x is a stack in which the structural unit B is stacked in x stages. Represents the body. A plurality of (structural units B) may have the same or different layer structure.
 ここで、電荷発生層とは電界を印加することにより正孔と電子を発生する層である。電荷発生層としては、たとえば、酸化バナジウム、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、酸化モリブデンなどから成る薄膜を挙げることができる。 Here, the charge generation layer is a layer that generates holes and electrons by applying an electric field. Examples of the charge generation layer may include a thin film made of vanadium oxide, indium tin oxide (abbreviated as ITO), molybdenum oxide, or the like.
 有機EL素子は、陽極を陰極よりも支持基板寄りに配置して、支持基板に設けてもよく、また陰極を陽極よりも支持基板寄りに配置して、支持基板に設けてもよい。たとえば上記a)~r)において、右側から順に各層を支持基板上に積層して有機EL素子を構成してもよく、また左側から順に各層を支持基板上に積層して有機EL素子を構成してもよい。積層する層の順序、層数、および各層の厚さについては、発光効率や素子寿命を勘案して適宜設定してよい。 The organic EL element may be provided on the support substrate with the anode disposed closer to the support substrate than the cathode, or may be provided on the support substrate with the cathode disposed closer to the support substrate than the anode. For example, in the above a) to r), each layer may be laminated on the support substrate in order from the right side to constitute an organic EL element, or each layer may be laminated on the support substrate in order from the left side to constitute an organic EL element. May be. The order of the layers to be laminated, the number of layers, and the thickness of each layer may be set as appropriate in consideration of light emission efficiency and element lifetime.
 次に、有機EL素子を構成する各層の材料および形成方法についてより具体的に説明する。 Next, the material and forming method of each layer constituting the organic EL element will be described more specifically.
 <陽極>
 発光層から放たれる光が陽極を通って素子外に出射する構成の有機EL素子の場合、陽極には光透過性の電極が用いられる。光透過性の電極としては、たとえば、金属酸化物、金属硫化物および金属などの薄膜を用いてよい。中でも、電気伝導度および光透過率の高い薄膜が好適に用いられる。具体的には酸化インジウム、酸化亜鉛、酸化スズ、ITO、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、および銅などから成る薄膜が用いられ、これらの中でもITO、IZO、または酸化スズから成る薄膜が好適に用いられる。
<Anode>
In the case of an organic EL element configured to emit light emitted from the light emitting layer to the outside of the element through the anode, a light transmissive electrode is used for the anode. As the light transmissive electrode, for example, a thin film of metal oxide, metal sulfide, metal, or the like may be used. Among these, a thin film having high electrical conductivity and high light transmittance is preferably used. Specifically, thin films made of indium oxide, zinc oxide, tin oxide, ITO, indium zinc oxide (abbreviated as IZO), gold, platinum, silver, copper, and the like are used. Among these, ITO, IZO Or a thin film made of tin oxide is preferably used.
 陽極の作製方法としては、たとえば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法などを挙げることができる。また陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。 Examples of the method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Further, as the anode, an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used.
 陽極の膜厚は、求められる特性や成膜工程の簡易さなどを考慮して適宜設定してよい。たとえば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。 The film thickness of the anode may be appropriately set in consideration of the required characteristics and the simplicity of the film forming process. For example, the thickness is 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.
 <陰極>
 陰極の材料としては、仕事関数が小さく、発光層への電子注入が容易で、電気伝導度の高い材料が好ましい。また陽極側から光を取出す構成の有機EL素子では、発光層から放たれる光を陰極で陽極側に反射するために、陰極の材料としては可視光に対する反射率の高い材料が好ましい。陰極には、たとえばアルカリ金属、アルカリ土類金属、遷移金属および周期表の13族金属などを用いてよい。陰極の材料としては、たとえばリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどの金属;前記金属のうちの2種以上の合金;前記金属のうちの1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、および錫からなる群から選択される1種以上との合金;またはグラファイト若しくはグラファイト層間化合物などが用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金などを挙げることができる。また陰極としては導電性金属酸化物および導電性有機物などから成る透明導電性電極を用いてもよい。具体的には、導電性金属酸化物として、たとえば、酸化インジウム、酸化亜鉛、酸化スズ、ITO、およびIZOを挙げることができ、導電性有機物として、たとえば、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などを挙げることができる。なお陰極は、2層以上を積層した積層体で構成されていてもよい。なお電子注入層が陰極として用いられることもある。
<Cathode>
A material for the cathode is preferably a material having a low work function, easy electron injection into the light emitting layer, and high electrical conductivity. Further, in the organic EL element configured to extract light from the anode side, a material having a high reflectivity with respect to visible light is preferable as the cathode material in order to reflect light emitted from the light emitting layer to the anode side by the cathode. For the cathode, for example, an alkali metal, an alkaline earth metal, a transition metal, a Group 13 metal of the periodic table, or the like may be used. Examples of cathode materials include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, and ytterbium. A metal; two or more alloys of the metals; selected from the group consisting of one or more of the metals and gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin One or more alloys; or graphite or graphite intercalation compounds are used. Examples of alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, calcium-aluminum alloys, and the like. it can. As the cathode, a transparent conductive electrode made of a conductive metal oxide, a conductive organic material, or the like may be used. Specifically, examples of the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, and IZO. Examples of the conductive organic substance include polyaniline or a derivative thereof, polythiophene or a derivative thereof, and the like. Can be mentioned. The cathode may be composed of a laminate in which two or more layers are laminated. The electron injection layer may be used as a cathode.
 陰極の膜厚は、求められる特性や成膜工程の簡易さなどを考慮して適宜設定してよく、たとえば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。 The film thickness of the cathode may be appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm. .
 陰極の作製方法としては、たとえば、真空蒸着法、スパッタリング法、また金属薄膜を熱圧着するラミネート法などを挙げることができる。 Examples of the method for producing the cathode include a vacuum deposition method, a sputtering method, and a laminating method in which a metal thin film is thermocompression bonded.
 <正孔注入層>
 正孔注入層を構成する正孔注入材料としては、たとえば、酸化バナジウム、酸化モリブデン、酸化ルテニウム、および酸化アルミニウムなどの酸化物や、フェニルアミン系化合物、スターバースト型アミン系化合物、フタロシアニン系化合物、アモルファスカーボン、ポリアニリン、およびポリチオフェン誘導体などを挙げることができる。
<Hole injection layer>
Examples of the hole injection material constituting the hole injection layer include oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine compounds, starburst amine compounds, phthalocyanine compounds, Examples thereof include amorphous carbon, polyaniline, and polythiophene derivatives.
 正孔注入層の膜厚は、求められる特性および成膜工程の簡易さなどを考慮して適宜設定してよく、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The thickness of the hole injection layer may be appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
 <正孔輸送層>
 正孔輸送層を構成する正孔輸送材料としては、たとえば、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などを挙げることができる。
<Hole transport layer>
Examples of the hole transport material constituting the hole transport layer include polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a pyrazoline derivative, an arylamine derivative, a stilbene. Derivative, triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, or poly (2,5-thienylene vinylene) ) Or a derivative thereof.
 正孔輸送層の膜厚は、求められる特性および成膜工程の簡易さなどを考慮して設定され、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The film thickness of the hole transport layer is set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. .
 <発光層>
 発光層は、通常、主として蛍光及び/又はりん光を発光する有機物、または該有機物とこれを補助するドーパントとから形成される。ドーパントは、たとえば発光効率の向上や、発光波長を変化させるために加えられる。なお発光層を構成する有機物は、低分子化合物でも高分子化合物でもよい。塗布法によって発光層を形成する場合には、発光層は高分子化合物を含むことが好ましい。発光層を構成する高分子化合物のポリスチレン換算の数平均分子量は、たとえば10~10程度である。発光層を構成する発光材料としては、たとえば以下の色素系材料、金属錯体系材料、高分子系材料、ドーパント材料を挙げることができる。
<Light emitting layer>
The light emitting layer is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance. The dopant is added, for example, in order to improve the luminous efficiency and change the emission wavelength. The organic substance constituting the light emitting layer may be a low molecular compound or a high molecular compound. When forming a light emitting layer by the apply | coating method, it is preferable that a light emitting layer contains a high molecular compound. The number average molecular weight in terms of polystyrene of the polymer compound constituting the light emitting layer is, for example, about 10 3 to 10 8 . Examples of the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
 (色素系材料)
 色素系材料としては、たとえば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、クマリン誘導体などを挙げることができる。
(Dye material)
Examples of dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, coumarin derivatives, and the like.
 (金属錯体系材料)
 金属錯体系材料としては、たとえば希土類金属(たとえばTb、Eu、Dyなど)、Al、Zn、Be、Ir、およびPtなどの金属を中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、およびキノリン構造などを配位子に有する金属錯体を挙げることができる。具体的には、たとえばイリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体などを挙げることができる。
(Metal complex materials)
Examples of metal complex materials include rare earth metals (eg, Tb, Eu, Dy, etc.), metals such as Al, Zn, Be, Ir, and Pt as central metals, oxadiazole, thiadiazole, phenylpyridine, phenyl A metal complex having a benzimidazole, quinoline structure, or the like as a ligand can be given. Specifically, for example, a metal complex having light emission from a triplet excited state such as an iridium complex, a platinum complex, an aluminum quinolinol complex, a benzoquinolinol beryllium complex, a benzoxazolyl zinc complex, a benzothiazole zinc complex, an azomethyl zinc complex, A porphyrin zinc complex, a phenanthroline europium complex, etc. can be mentioned.
 (高分子系材料)
 高分子系材料としては、たとえば、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素系材料や金属錯体系発光材料を高分子化したものなどを挙げることができる。
(Polymer material)
Examples of the polymer material include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, and the above-described dye materials and metal complex light emitting materials. Can be mentioned.
 発光層の厚さは、通常約2nm~200nmである。 The thickness of the light emitting layer is usually about 2 nm to 200 nm.
 <電子輸送層>
 電子輸送層を構成する電子輸送材料としては、公知の材料を使用でき、たとえば、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアンスラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などを挙げることができる。
<Electron transport layer>
As the electron transporting material constituting the electron transporting layer, known materials can be used. For example, oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinones or derivatives thereof, tetra Cyanoanthraquinodimethane or derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof And so on.
 電子輸送層の厚さは、求められる特性や成膜工程の簡易さなどを考慮して適宜設定してよく、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The thickness of the electron transport layer may be appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. It is.
 <電子注入層>
 電子注入層を構成する材料としては、発光層の種類に応じて最適な材料を適宜選択してよく、たとえば、アルカリ金属、アルカリ土類金属、アルカリ金属およびアルカリ土類金属のうちの1種類以上を含む合金;アルカリ金属若しくはアルカリ土類金属の酸化物、ハロゲン化物、および炭酸塩;並びにこれらの混合物などを挙げることができる。アルカリ金属、アルカリ金属の酸化物、ハロゲン化物、および炭酸塩としては、たとえば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウムなどを挙げることができる。また、アルカリ土類金属、アルカリ土類金属の酸化物、ハロゲン化物、炭酸塩としては、たとえば、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウムなどを挙げることができる。電子注入層は、2層以上を積層した積層体で構成されてもよく、たとえばLiF/Caなどを挙げることができる。
<Electron injection layer>
As a material constituting the electron injection layer, an optimum material may be appropriately selected according to the type of the light emitting layer. For example, one or more of alkali metals, alkaline earth metals, alkali metals, and alkaline earth metals may be selected. Alloys, alkali metal or alkaline earth metal oxides, halides, and carbonates; and mixtures thereof. Examples of alkali metals, alkali metal oxides, halides, and carbonates include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, and potassium fluoride. , Rubidium oxide, rubidium fluoride, cesium oxide, cesium fluoride, lithium carbonate, and the like. Examples of alkaline earth metal, alkaline earth metal oxides, halides and carbonates include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, barium oxide, Examples thereof include barium fluoride, strontium oxide, strontium fluoride, and magnesium carbonate. An electron injection layer may be comprised by the laminated body which laminated | stacked two or more layers, for example, LiF / Ca etc. can be mentioned.
 電子注入層の厚さは、1nm~1μm程度が好ましい。 The thickness of the electron injection layer is preferably about 1 nm to 1 μm.
 機能層のうちで塗布法によって形成することが可能な機能層が複数ある場合には、全ての機能層を塗布法を用いて形成することが好ましいが、たとえば塗布法によって形成することが可能な複数の機能層のうちの少なくとも1層を塗布法を用いて形成し、他の機能層を塗布法とは異なる方法によって形成してもよい。また複数の機能層を塗布法で形成する場合であっても、具体的方法が異なる塗布法によって複数の機能層を形成してもよい。たとえば本実施形態では正孔注入層および発光層をノズルプリンティング法によって形成したが、正孔注入層をスピンコート法で形成し、発光層をノズルプリンティング法によって形成してもよい。 In the case where there are a plurality of functional layers that can be formed by a coating method among the functional layers, it is preferable to form all the functional layers by using the coating method. At least one of the plurality of functional layers may be formed by a coating method, and the other functional layers may be formed by a method different from the coating method. Even when a plurality of functional layers are formed by a coating method, the plurality of functional layers may be formed by a coating method with a different specific method. For example, in this embodiment, the hole injection layer and the light emitting layer are formed by a nozzle printing method, but the hole injection layer may be formed by a spin coating method and the light emitting layer may be formed by a nozzle printing method.
 なお塗布法では、各機能層となる有機EL材料を含むインキを塗布成膜することによって機能層を形成する。その際に使用されるインキの溶媒としては、たとえば、クロロホルム、塩化メチレン、ジクロロエタンなどの塩素系溶媒;テトラヒドロフランなどのエーテル系溶媒;トルエン、キシレンなどの芳香族炭化水素系溶媒;アセトン、メチルエチルケトンなどのケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル系溶媒;および水などが挙げられる。 In the coating method, the functional layer is formed by coating and forming an ink containing an organic EL material to be each functional layer. Examples of the solvent for the ink used in this case include chlorine solvents such as chloroform, methylene chloride, and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; acetone, methyl ethyl ketone, and the like. Examples include ketone solvents; ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate; and water.
 また塗布法とは異なる方法で機能層を形成してもよく、たとえば、真空蒸着法、スパッタリング法、CVD法、ラミネート法などによって機能層を形成してもよい。 Further, the functional layer may be formed by a method different from the coating method. For example, the functional layer may be formed by a vacuum deposition method, a sputtering method, a CVD method, a lamination method, or the like.
 4  ノズル
 11  支持基板
 12  画素電極
 13  正孔注入層
 14  発光層
 15  絶縁膜
 16  上部電極
 17  隔壁
 18  凹部
 20  隔壁部材
 21  発光装置
 22  有機EL素子
4 nozzle 11 support substrate 12 pixel electrode 13 hole injection layer 14 light emitting layer 15 insulating film 16 upper electrode 17 partition 18 recess 20 partition member 21 light emitting device 22 organic EL element

Claims (2)

  1.  支持基板と、
     当該支持基板上において、第1の方向および当該第1の方向と交差する第2の方向にそれぞれ所定の間隔をあけて配置される複数の有機EL素子と、
     前記支持基板上に設けられ、前記複数の有機エレクトロルミネッセンス素子に対応する位置に開口を有し、当該開口により各有機エレクトロルミネッセンス素子を個別に規定する絶縁膜と、
     前記絶縁膜上に設けられた複数本の隔壁部材からなる隔壁であって、各隔壁部材は前記第2の方向に隣り合う有機エレクトロルミネッセンス素子間に配置され、第1の方向に延在する、隔壁と
    を備える表示装置であって、
     各隔壁部材は、当該隔壁部材の第2の方向の中心位置を、前記第2の方向に隣り合う開口間の幅の中心とは第2の方向の一方にずらして配置されている、表示装置。
    A support substrate;
    On the support substrate, a plurality of organic EL elements disposed at predetermined intervals in a first direction and a second direction intersecting the first direction,
    An insulating film provided on the support substrate, having an opening at a position corresponding to the plurality of organic electroluminescence elements, and individually defining each organic electroluminescence element by the opening;
    A partition wall made of a plurality of partition wall members provided on the insulating film, each partition wall member being disposed between adjacent organic electroluminescence elements in the second direction and extending in the first direction. A display device comprising a partition,
    Each partition member is arranged such that the center position of the partition member in the second direction is shifted from the center of the width between the openings adjacent in the second direction in one of the second directions. .
  2.  支持基板と、当該支持基板上において第1の方向および当該第1の方向と交差する第2の方向にそれぞれ所定の間隔をあけて配置される複数の有機エレクトロルミネッセンス素子と、前記支持基板上に設けられ、前記複数の有機エレクトロルミネッセンス素子に対応する位置に開口を有する絶縁膜と、前記絶縁膜上に設けられた複数本の隔壁部材からなる隔壁であって、各隔壁部材は前記第2の方向に隣り合う有機エレクトロルミネッセンス素子間に配置され、第1の方向に延在する、隔壁とを備える表示装置の製造方法であって、
     i)前記複数の有機エレクトロルミネッセンス素子の画素電極と、ii)当該画素電極に対応する位置に開口を有する絶縁膜とが設けられた支持基板を用意する工程と、
     前記絶縁膜上に、複数本の隔壁部材を形成することにより、隔壁を設ける工程と、
     前記隔壁部材間の領域にノズルプリンティング法により所定のインキを供給し、該インキを固化することにより、前記画素電極上に有機エレクトロルミネッセンス素子の所定の機能層を形成する工程と、
     前記機能層上に上部電極を形成する工程とを有し、
     前記隔壁を設ける工程では、各隔壁部材は、当該隔壁部材の第2の方向の中心位置を、前記第2の方向に隣り合う開口間の幅の中心とは第2の方向の一方にずらして形成する、表示装置の製造方法。
    A support substrate, a plurality of organic electroluminescence elements disposed on the support substrate at predetermined intervals in a first direction and a second direction intersecting the first direction, and the support substrate; A partition wall including an insulating film having openings at positions corresponding to the plurality of organic electroluminescence elements, and a plurality of partition wall members provided on the insulating film, each partition member being the second A method of manufacturing a display device including a partition wall, which is disposed between organic electroluminescence elements adjacent in a direction and extends in a first direction,
    i) preparing a support substrate provided with pixel electrodes of the plurality of organic electroluminescence elements; and ii) an insulating film having an opening at a position corresponding to the pixel electrodes;
    Providing a partition by forming a plurality of partition members on the insulating film; and
    Supplying a predetermined ink to the region between the partition members by a nozzle printing method and solidifying the ink to form a predetermined functional layer of the organic electroluminescence element on the pixel electrode;
    Forming an upper electrode on the functional layer,
    In the step of providing the partition wall, each partition member shifts the center position of the partition member in the second direction to one of the second directions from the center of the width between the openings adjacent to the second direction. A method for manufacturing a display device.
PCT/JP2012/071583 2011-09-05 2012-08-27 Method of manufacturing display device WO2013035570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-192482 2011-09-05
JP2011192482A JP2013054923A (en) 2011-09-05 2011-09-05 Method for manufacturing display

Publications (1)

Publication Number Publication Date
WO2013035570A1 true WO2013035570A1 (en) 2013-03-14

Family

ID=47832020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071583 WO2013035570A1 (en) 2011-09-05 2012-08-27 Method of manufacturing display device

Country Status (3)

Country Link
JP (1) JP2013054923A (en)
TW (1) TW201320428A (en)
WO (1) WO2013035570A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159406A (en) * 2010-01-29 2011-08-18 Sumitomo Chemical Co Ltd Light-emitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159406A (en) * 2010-01-29 2011-08-18 Sumitomo Chemical Co Ltd Light-emitting device

Also Published As

Publication number Publication date
TW201320428A (en) 2013-05-16
JP2013054923A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP4775493B2 (en) Light emitting device
JP2009135053A (en) Electronic device, display device, and method of manufacturing electronic device
JP4849175B2 (en) Light emitting device and manufacturing method thereof
WO2011125950A1 (en) Light-emitting apparatus and method of manufacturing thereof
WO2011099391A1 (en) Method for producing light-emitting device
WO2010013641A1 (en) Method for manufacturing an organic electroluminescence element, light emitting device, and display device
JP2011154800A (en) Light-emitting device, and manufacturing method thereof
WO2011122445A1 (en) Light emitting device
WO2011105329A1 (en) Manufacturing method for light-emitting devices
JP6102064B2 (en) Display device
JP4893839B2 (en) Method for manufacturing light emitting device
JP5796422B2 (en) Light emitting device
WO2013035570A1 (en) Method of manufacturing display device
WO2011065288A1 (en) Manufacturing method of light emitting device
JP2010205528A (en) Manufacturing method of organic electroluminescent device
JP2013098149A (en) Substrate used in display device
JP2013157170A (en) Light-emitting device
JP2013157171A (en) Manufacturing method of light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830370

Country of ref document: EP

Kind code of ref document: A1