WO2012070324A1 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
WO2012070324A1
WO2012070324A1 PCT/JP2011/073492 JP2011073492W WO2012070324A1 WO 2012070324 A1 WO2012070324 A1 WO 2012070324A1 JP 2011073492 W JP2011073492 W JP 2011073492W WO 2012070324 A1 WO2012070324 A1 WO 2012070324A1
Authority
WO
WIPO (PCT)
Prior art keywords
bimetal
power supply
movable body
resistance layer
supply unit
Prior art date
Application number
PCT/JP2011/073492
Other languages
French (fr)
Japanese (ja)
Inventor
小谷謙一
神谷岳
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012545651A priority Critical patent/JP5573960B2/en
Publication of WO2012070324A1 publication Critical patent/WO2012070324A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5418Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting using cantilevered bimetallic snap elements

Definitions

  • the present invention relates to an actuator provided with a bimetal.
  • FIG. 1 is an exploded perspective view of the thermally responsive switch disclosed in Patent Document 1.
  • FIG. 1 is an exploded perspective view of the thermally responsive switch disclosed in Patent Document 1.
  • a bimetal 2 and a resistor 5 are housed in a case-like main body 1, and an upper portion is covered with a cover body 6.
  • the resistor 5, the insulating coating 3 and the electrode 4 associated therewith are all formed in a thin film shape and have flexibility, and are adhered to the surface of the bimetal 2.
  • the main body portion 1 has a storage portion 10 in which the bimetal 2, the resistor 5, and the like are stored.
  • a fixed contact 11 is provided at one end of the bottom surface of the storage portion 10, and the fixed contact 11 is directed outward from the side surface of the main body portion 1.
  • a connection surface 14 connected to one end of the bimetal 2 is provided at the other end of the bottom surface of the storage unit 10 and is electrically connected to the external connection 12b.
  • the bimetal 2 has an inversion portion 20 formed in a dome shape at the center, and when the temperature changes, the inversion portion 20 inverts and the bimetal 2 warps to the opposite side.
  • a movable contact 21 is formed on the lower surface of the distal end portion of the bimetal 2, and the movable contact 21 functions as a switch when it contacts and separates from the fixed contact 11 as the bimetal 2 is reversed.
  • the insulating coat 3 insulates the bimetal 2 and the electrode 4 from each other.
  • the electrode 4 is provided in a region of the bimetal 2 excluding the reversing portion 20 and is formed in a comb shape on both sides of the reversing portion 20, and the resistor 5 is disposed on the comb-shaped portion.
  • One end of the electrode 4 is electrically connected to the connection surface 14 via the bimetal 2, and the other end is brought into contact with the switching connection portion 13 provided in the cover body 6 when the bimetal 2 is reversed.
  • the cover body 6 is formed so as to cover the upper surface of the main body 1, and a switching connection portion 13 is provided at an end of the upper surface.
  • the switching connection portion 13 is electrically connected to the external connection portion 12 a on the fixed contact 11 side in a state where the cover body 6 is attached to the main body portion 1.
  • the thermally responsive switch of Patent Document 1 has the following problems to be solved.
  • Resistors are polymerized at the opposing portions of the comb-like electrodes. Therefore, heat is generated only at the gap portion of the comb-like electrode, the bimetal can be heated only locally, and the response of the bimetal thermal response is not high.
  • An insulator, an electrode, and a resistor are polymerized on the bimetal. Since these are relatively thick with respect to the bimetal, the operation of the bimetal is hindered. Moreover, since three layers are formed on the bimetal, the manufacturing cost increases.
  • the object of the present invention is to solve the above-mentioned problems, and in particular to provide an inexpensive actuator that is highly responsive to thermal response of bimetal and is suitable for low profile.
  • the present invention provides an actuator including a movable body, a base that supports the movable body, and a power feeding unit that feeds power from the base to the movable body.
  • the movable body includes a bimetal, an insulating layer formed on the bimetal, and a resistance layer insulated from the bimetal via the insulating layer, It is fixed by caulking the movable body and the base,
  • the power feeding means feeds power to the resistance layer while being insulated from the bimetal.
  • the bimetal has a convex surface on the first main surface and a concave surface on the second main surface when not heated, a concave surface on the first main surface and a convex surface on the second main surface when heated.
  • the curved plate preferably has a structure in which the convex surface and the concave surface are reversed by a snap operation when the resistance layer generates heat and when it does not generate heat. With this structure, an extruding operation can be performed when the movable body is cantilever-supported, and a retracting operation can be performed when the movable body is both-end-supporting.
  • the power supply means includes a first power supply unit and a second power supply unit, and the first power supply unit is provided in a support unit that supports the movable body, It is preferable that the two power feeding portions have a structure constituted by a movable contact provided on the movable body and a fixed contact provided on the base, which contacts the movable contact when the resistance layer does not generate heat. With this structure, power can be easily supplied without using a case or the like.
  • the bimetal When the bimetal is supported by the base in a double-sided structure, the bimetal has a concave first surface and a convex second surface when not heated, and a first principal surface when heated. It is preferable that the convex surface and the second main surface be a curved plate having a concave surface, and the convex surface and the concave surface are reversed by a snap operation when the resistance layer generates heat and does not generate heat. With this structure, an extrusion operation can be performed at the center of the movable body.
  • the power feeding means includes a first power feeding unit and a second power feeding unit, and the first power feeding unit and the second power feeding unit are provided in a region aligned along an outer periphery of the base,
  • the resistance layer may be formed in a pattern extending from the first power supply unit and the second power supply unit in a direction opposite to a region where the first power supply unit and the second power supply unit are provided.
  • the resistance layer is preferably formed by electroless plating. This can reduce the height.
  • the present invention has the following effects. (A) Since there is no electrode between the insulating film and the resistance film, the movable body can be formed thin, and since the high modulus electrode is not polymerized to the bimetal, the operation of the bimetal is not hindered, Equivalent operation with high responsiveness can be realized.
  • FIG. 1 is an exploded perspective view of the thermally responsive switch disclosed in Patent Document 1.
  • FIG. 2A and 2B are perspective views of the actuator 101 according to the first embodiment.
  • 3 (A) and 3 (B) are cross-sectional views taken along the line aa ′ in FIGS. 2 (A) and 2 (B).
  • FIG. 4 is an exploded perspective view of the actuator 101.
  • FIG. 5 is an exploded perspective view of the actuator 102 of the second embodiment.
  • 6A and 6B are perspective views of the actuator 103 according to the third embodiment.
  • FIGS. 7A and 7B are cross-sectional views taken along the line aa ′ in FIGS. 6A and 6B.
  • FIG. 8 is an exploded perspective view of the actuator 103.
  • FIGS. 9A and 9B are perspective views of the actuator 104 according to the fourth embodiment.
  • 10 (A) and 10 (B) are cross-sectional views taken along the line aa ′ in FIGS. 9 (A) and 9 (B).
  • FIG. 11 is an exploded perspective view of the actuator 104.
  • FIG. 12 is an exploded perspective view of the actuator 105 according to the fifth embodiment.
  • FIGS. 13A and 13B are perspective views of the actuator 106 according to the sixth embodiment.
  • FIG. 14A, FIG. 14B, and FIG. 14C are views showing a method for manufacturing the actuator according to the seventh embodiment.
  • FIG. 15A, FIG. 15B, and FIG. 15C are views showing a method for manufacturing the actuator according to the eighth embodiment.
  • FIGS. 2A and 2B are perspective views of the actuator 101.
  • FIG. 3 (A) and 3 (B) are cross-sectional views taken along the line aa ′ in FIGS. 2 (A) and 2 (B).
  • the actuator 101 includes a base 30 and a movable body 40.
  • FIGS. 2A and 3A show the state of the resistance layer, which will be described later, when no heat is generated, and FIGS. 2B and 3B show the movable body due to the thermal response of the bimetal due to the heat generation of the resistance layer. 40 is an inverted state.
  • FIG. 4 is an exploded perspective view of the actuator 101.
  • the base 30 includes a substrate 31 and power supply terminals 32 and 33 formed on the substrate 31, holes 34 and 35, and wiring patterns 36 and 37.
  • the movable body 40 includes a bimetal 41, an insulating layer 42, and a resistance layer 43. As will be described later, the movable body 40 is formed by punching an oval sheet material having an insulating layer formed on the surface of a bimetal and a resistance layer formed on the surface. Here, the movable body 40 is bent so that one main surface is a convex surface and the other main surface is a concave surface. Holes H1 and H2 are formed in the movable body 40.
  • a power supply conductor 51A is disposed around a hole 34 formed in the substrate 31, and an insulating support 51B is fitted into the power supply conductor 51A, the hole 34 of the substrate 31, and the hole H1 of the movable body 40 and caulked.
  • the power feeding conductor 51 ⁇ / b> A is electrically connected to both the wiring pattern 36 and the resistance layer 43.
  • a fixed contact 53 is inserted into the hole 35 formed in the substrate 31 and caulked. In this state, the fixed contact 53 is electrically connected to the wiring pattern 37.
  • the movable contact 52 is inserted into the hole H2 of the movable body and caulked. In this state, the movable contact 52 is electrically connected to the resistance layer 43.
  • the movable contact 52 is electrically connected to both the resistance layer 43 and the bimetal 41.
  • the power supply conductor 51A is conductive only to the resistance layer 43, the voltage is applied to the power supply terminals 32 and 33 on the base 30 side so that the resistance is increased. Only the layer 43 is energized.
  • the resistance layer 43 When the voltage is not applied to the power supply terminals 32 and 33, the resistance layer 43 does not generate heat, so the bimetal 41 is in an unheated state. At this time, as shown in FIG. 2A and FIG. 3A, the upper surface (first main surface) of the movable body 40 is convex, and the lower surface (second main surface) is concave.
  • the resistance layer 43 When a voltage is applied to the power supply terminals 32 and 33, the resistance layer 43 generates heat and the bimetal 41 is heated.
  • the temperature of the bimetal 41 exceeds the threshold value (operating temperature) in the temperature rising direction related to the thermally responsive deformation of the bimetal 41, the movable body 40 has an upper surface (first main surface) as shown in FIGS. 2 (B) and 3 (B).
  • the lower surface (second main surface) is a convex surface. That is, the convex surface and the concave surface of the movable body 40 are reversed by the snap operation when the resistance layer 43 generates heat and when it does not generate heat.
  • the movable contact 52 is separated from the fixed contact 53 by the reversal of the movable body 40 and the energization is terminated.
  • the resistance layer 43 does not generate heat, and the temperature of the bimetal 41 gradually decreases.
  • the movable body 40 has an upper surface (first main surface) as shown in FIGS. 2 (A) and 3 (A).
  • the convex surface and the lower surface (second main surface) are concave surfaces. That is, the convex surface and the concave surface of the movable body 40 are reversed by the snap operation when the resistance layer 43 generates heat and when it does not generate heat.
  • the reversing operation of the movable body 40 is repeated.
  • the voltage application to the power supply terminals 32 and 33 may be stopped by detecting that the movable contact 52 has moved away from the fixed contact 53 and the current has been cut off.
  • a timer circuit may be provided to apply a voltage to the power supply terminals 32 and 33 for a predetermined time.
  • the thickness of the bimetal 41 is 100 to 500 ⁇ m
  • the thickness of the insulating layer 42 is 1 to 10 ⁇ m
  • the thickness of the resistance layer 43 is 1 to 10 ⁇ m
  • the thickness of the insulating layer 42 and the resistance layer 43 is only 0 compared to the bimetal 41.
  • the movable body can be formed thin, and since the high elastic electrode is not superposed on the bimetal, the operation of the bimetal is not hindered, and an operation with high responsiveness equivalent to the state of the bimetal alone can be realized.
  • the resistance value between the power supply terminals 32 and 33 is about 1 to 150 ⁇ , and can be controlled with a lower drive current than when the bimetal is directly energized.
  • the bimetal 41 is exposed to the outside and the resistor 43 is laminated so as to be positioned on the base 30 side.
  • the resistor 43 is located on the base 30 side, heat dissipation when the resistor 43 generates heat can be prevented, and the resistor 43 can be operated more efficiently.
  • the actuator 101 can vibrate the target object by hitting the target object with the snap action of the movable body 40. Moreover, since the base 30 side is also vibrated by the snap operation of the movable body 40, the object may be vibrated by attaching the actuator 101 to the object.
  • a light transmission member such as an optical low-pass filter used in an imaging apparatus such as a digital camera can be considered. By vibrating the light transmissive member, which is an object, by the actuator 101, dust and foreign matters attached to the light transmissive member can be removed.
  • the actuator 101 has a caulking structure in which the movable body 40 and the base 31 are caulked by inserting the feeding conductor 51 into the hole H1 of the movable body 40 and the hole 34 of the base 31. It has become. Thereby, since the movable body 40 and the base 31 can be fixed without using an adhesive or the like, it is possible to provide a highly reliable actuator 101 by preventing deterioration of the fixed portion due to aging and repeated use. . Further, the movable body 40 and the base 31 can be fixed and the movable body 40 can be fed simultaneously. Further, when the power supply conductor 51 is fitted into each hole (hole H1 and hole 34), electrical connection with the wiring pattern 36 and the resistance layer 43 is obtained. For this reason, since conduction
  • FIG. 5 is an exploded perspective view of the actuator 102 of the second embodiment.
  • the first embodiment is different from the actuator shown in FIG. 4 in the structure of the portion that supports the movable body 40 and supplies power to the base 30.
  • the power supply conductor 51 is inserted into the hole 34 formed in the substrate 31 and the hole H1 of the movable body 40 and caulked. In this state, the power supply conductor 51 is electrically connected to the wiring pattern 36.
  • a fixed contact 53 is inserted into a hole 35 formed in the substrate 31 and caulked. In this state, the fixed contact 53 is electrically connected to the wiring pattern 37.
  • a power supply conductor 52A is disposed around a hole H2 formed in the movable body 40, and an insulating support 52B is inserted into the hole H2 of the power supply conductor 52A and the movable body 40 and caulked.
  • the power feeding conductor 52A is electrically connected to the resistance layer 43.
  • the power supply conductor 51 is electrically connected to both the resistance layer 43 and the bimetal 41, but the power supply conductor 52 ⁇ / b> A is electrically connected only to the resistance layer 43, so that a voltage is applied to the power supply terminals 32 and 33 on the base 30 side, whereby the resistance layer Only 43 is energized. In this way, electrical insulation between the power feeding unit and the bimetal 41 may be achieved on the movable contact side.
  • FIGS. 6A and 6B are perspective views of the actuator 103.
  • FIG. FIGS. 7A and 7B are cross-sectional views taken along the line aa ′ in FIGS. 6A and 6B.
  • the actuator 103 includes a base 30 and a movable body 40.
  • FIGS. 6A and 7A show the state when the resistance layer is not heated, which will be described later, and FIGS. 6B and 7B show the movable body due to the thermal response of the bimetal due to the heat generation of the resistance layer. 40 is an inverted state.
  • FIG. 8 is an exploded perspective view of the actuator 103.
  • the base 30 includes a substrate 31 and power supply terminals 32 and 33 formed on the substrate 31, holes 34 and 35, and wiring patterns 36 and 37.
  • the movable body 40 includes a bimetal 41, an insulating layer 42, a resistance layer 43, and an action member 44.
  • the movable body 40 has holes H1, H2, and H3.
  • the action member 44 is inserted into the hole H3.
  • Base-side contacts 54 and 55 are inserted into the holes 34 and 35 formed in the substrate 31, respectively, and are caulked. In this state, the base side contacts 54 and 55 are electrically connected to the wiring patterns 36 and 37.
  • the insulating support 56B is inserted into the hole H1 of the movable body and the power supply conductor 56A and caulked. In this state, the feeding conductor 56A is electrically connected to the resistance layer 43.
  • a movable body side contact 57 is inserted into the hole H2 of the movable body and caulked. The movable body side contact 57 is electrically connected to the resistance layer 43. Although this movable body side contact 57 is electrically connected to both the resistance layer 43 and the bimetal 41, since the power supply conductor 56A is only conductive to the resistance layer 43, by applying a voltage to the power supply terminals 32 and 33 on the base 30 side, Only the resistance layer 43 is energized.
  • the movable body 40 When the voltage is not applied to the power supply terminals 32 and 33, the resistance layer 43 does not generate heat, so the bimetal is in an unheated state. At this time, as shown in FIGS. 6A and 7A, the movable body 40 has a concave upper surface (first main surface) and a convex lower surface (second main surface). When a voltage is applied to the power supply terminals 32 and 33, the resistance layer 43 generates heat and the bimetal 41 is heated. When the temperature of the bimetal 41 exceeds the threshold value (operating temperature) in the temperature rising direction related to the thermally responsive deformation of the bimetal 41, the movable body 40 has an upper surface (first main surface) as shown in FIGS. 6 (B) and 7 (B).
  • the lower surface (second main surface) is a concave surface. That is, the convex surface and the concave surface of the movable body 40 are reversed by the snap operation when the resistance layer 43 generates heat and when it does not generate heat.
  • the actuator 103 of the third embodiment remains in contact with the base-side contacts 54 and 55 even when the movable body 40 is reversed. It is.
  • the amount of displacement due to the reversal of the movable body 40 can be determined by the size of the movable body 40 and the curvature of its curvature.
  • the action member 44 provided in the movable body 40 is held by a bearing that freely moves in the axial direction and regulates in the direction perpendicular to the axis.
  • the action member 44 is actuated in the axial direction by the reversal of the movable body 40.
  • the actuator 103 can be used, for example, as a valve actuator that narrows a flexible tube by pressing it from the outside.
  • FIGS. 9A and 9B are perspective views of the actuator 104.
  • FIG. 10 (A) and 10 (B) are cross-sectional views taken along the line aa ′ in FIGS. 9 (A) and 9 (B).
  • the actuator 104 includes a base 30 and a movable body 40.
  • FIGS. 9A and 10A show the state when the resistance layer is not heated, which will be described later, and FIGS. 9B and 10B show the movable body due to the thermal reaction of the bimetal due to the heat generation of the resistance layer. 40 is a warped state.
  • FIG. 11 is an exploded perspective view of the actuator 104.
  • the base 30 includes a substrate 31 and power supply terminals 32 and 33 formed on the substrate 31, holes 34 and 35, and wiring patterns 36 and 37.
  • the hole 34 is a double-sided through hole connected to the wiring pattern 36.
  • the movable body 40 includes a bimetal 41, an insulating layer 42, and a resistance layer 43. Holes H1 and H2 are formed in the movable body 40.
  • An insulating support 51B is inserted into the cylindrical power supply conductor 51A around the hole 34 formed in the substrate 31, and the insulating support 51B is inserted into the hole 34 of the substrate 31 and the hole H1 of the movable body 40. It is squeezed. In this state, the power supply conductor 51 ⁇ / b> A is pressed and sandwiched between the resistance layer 43 and the base 31 and is electrically connected to both the wiring pattern 36 and the resistance layer 43. A feeding conductor 58 is inserted and caulked into the hole 35 formed in the substrate 31 and the hole H2 of the movable body. In this state, the power supply conductor 58 is electrically connected to both the wiring pattern 37 and the resistance layer 43.
  • the power supply conductor 58 is electrically connected to both the resistance layer 43 and the bimetal 41, but the power supply conductor 51 ⁇ / b> A is electrically connected only to the resistance layer 43, so that a resistance is applied by applying a voltage to the power supply terminals 32 and 33 on the base 30 side. Only the layer 43 is energized.
  • the feeding conductor 51A corresponds to the first feeding portion
  • the feeding conductor 58 corresponds to the second feeding portion.
  • the movable body 40 has a rectangular plate shape, and a first power feeding unit and a second power feeding unit are provided side by side at a position along the vicinity of the first side of the movable body 40.
  • the resistance layer is formed in a pattern extending in a U shape from the first power supply unit and the second power supply unit in the direction of the second side opposite to the first side. Therefore, the energization path of the resistance layer can be secured long, and almost the entire surface of the bimetal 41 can be efficiently heated.
  • the resistance layer 43 When the voltage is not applied to the power supply terminals 32 and 33, the resistance layer 43 does not generate heat, so the bimetal is in an unheated state. At this time, the movable body 40 has a flat plate shape as shown in FIGS. 9 (A) and 10 (A).
  • the resistance layer 43 When a voltage is applied to the power supply terminals 32 and 33, the resistance layer 43 generates heat and the bimetal 41 enters a heated state, and the movable body 40 in FIGS. Thus, the shape is warped to the upper surface.
  • the displacement portion of the movable body 40 abuts on the object and displaces the object.
  • FIG. 12 is an exploded perspective view of the actuator 105 according to the fifth embodiment.
  • the fourth embodiment differs from the actuator shown in FIG. 11 in the structure of the movable body 40 and the structure of the portion that supports and feeds power to the base 30.
  • the lowermost layer of the movable body 40 is a bimetal 41, an insulating layer 42 is formed thereon, and a resistance layer 43 is further formed thereon.
  • the power feeding body 51A is fitted into the hole H1 of the bimetal 41 and the hole 34 of the base 30 and is caulked.
  • the insulating support 51B is designed such that the opening diameter at one end is smaller than the opening diameter at the other end, and one end is fitted into the hole H1 of the bimetal 41 and caulked. Therefore, the power supply conductor 51A is insulated from the bimetal 41 by the insulating support 51B and directly conducts to the resistance layer 43.
  • the power supply conductor 58 is fitted into the hole H2 of the bimetal 41 and the hole 35 of the base 31 and is caulked. Therefore, it conducts to the resistance layer 43 and the bimetal 41.
  • the resistance layer 43 may be on the outer surface side in this way.
  • FIGS. 13A and 13B are perspective views of the actuator 106 according to the sixth embodiment.
  • the actuator 106 includes a base 30, a movable body 40, and an action member 60.
  • the action member 60 is deformed by a snap operation when the displacement of the movable body 40 exceeds a threshold value.
  • FIG. 13A is before deformation
  • FIG. 13B is after deformation.
  • One end of the target member 70 is vibrated by the snap action of the action member 60.
  • the action member 60 returns again by the snap operation.
  • the basic configuration of the base 30 and the movable body 40 is the same as that of the actuator shown in the fourth embodiment or the fifth embodiment. However, the length of the base 30 and the position of the power supply terminal are different. Thus, the vibration applied to the object can be easily adjusted by designing the shape of the action member 60 not the shape of the movable body 40 so that it can be snapped.
  • FIG. 14A, FIG. 14B, and FIG. 14C are views showing a method for manufacturing the actuator according to the seventh embodiment.
  • the insulating layer 42 is formed on the surface of the bimetal while feeding the bimetal (bimetal roll) 141 wound in a roll shape by a roll-to-roll.
  • a bimetal roll with an insulating layer is formed by applying polyimide with a coater.
  • the resistance layer 43 is formed on the surface of the insulating layer while feeding the bimetal roll 142 with the insulating layer by a roll-to-roll.
  • a bimetal roll with a resistance layer is formed by forming Ni on the entire surface by electroless plating.
  • a plurality of movable bodies 40 are formed by punching the bimetal roll 143 with a resistance layer into elliptical pieces.
  • the holes (holes H1, H2 shown in the first embodiment and the like) of the movable body 40 are formed first by laser processing or punching and punched out. Alternatively, the holes may be processed simultaneously with the punching of the individual pieces.
  • the curved shape of the movable body 40 is formed by pressing. This molding may be performed simultaneously with the punching.
  • the movable body 40 separated into individual pieces is fitted with various power supply conductors and movable contacts, and the actuator is installed by inserting various power supply conductors and fixed contacts into holes in the base. assemble.
  • the insulating layer may be a metal oxide in addition to the resin material.
  • the insulating layer may be formed by spraying, dipping, jet coating, electrodeposition, plating, sputtering, vapor deposition, CVD, thermal spraying, etc. in addition to coating by a coater.
  • the resistance layer may be carbon other than a metal such as Ni.
  • the mixture of these conductors and resin may be sufficient.
  • the resistance layer may be formed by spraying, coating, dipping, jet coating, electrodeposition, sputtering, vapor deposition, CVD, thermal spraying, or the like.
  • the resistance layer 43 is preferably formed by electroless plating. When formed by electroless plating, the thin resistance layer 43 can be easily formed on the bimetal 41 via the insulating layer 42, and the height of the actuator can be reduced.
  • FIG. 15A, FIG. 15B, and FIG. 15C are views showing a method for manufacturing the actuator according to the eighth embodiment.
  • an insulating layer is formed on the surface of a sheet-like bimetal (bimetal sheet) 241.
  • a resistance layer is formed on the surface of the insulating layer of the bimetal sheet 242 with an insulating layer to create a bimetal sheet 243 with a resistance layer.
  • Ni is formed on the entire surface by electroless plating.
  • FIG. 15D a plurality of movable bodies 40 are formed by punching the bimetal root sheet 243 with a resistance layer into elliptical pieces.
  • the subsequent steps are the same as those shown in the seventh embodiment.
  • a movable body having an elliptical plate shape or a rectangular plate shape is used.
  • the movable body may have a disk shape or a diamond plate shape.
  • the base is not limited to a rectangular plate shape, and may be a disk shape or a rhombus shape.
  • the insulating layer can be formed extremely thin, the thermal resistance between the resistance layer and the bimetal is small, and the temperature difference between the resistance layer and the bimetal can be reduced. That is, the temperature rise rate of the bimetal is fast and the responsiveness is high.
  • the movable body 40 Since the movable body 40 is supported by caulking with a support such as a power supply conductor, it is not necessary to cover the upper part of the movable body with a cover for support and power supply, and the height can be reduced. In addition, since the cover is unnecessary, the usage is expanded. Furthermore, since the movable body and the base are fixed by caulking, the reliability of the fixed portion between the movable body and the base is improved as compared with the case where the movable body and the base are fixed.
  • the support part side or the movable contact side is composed of the power supply conductor and the insulating support, it is directly coupled to the bimetal as well as the resistance layer, so that the movable contact can be attached to the movable body or to the base This increases the reliability and durability of mounting the movable body.
  • the resistance layer since the resistance layer is in a position facing the base, the resistance layer generates heat in a space surrounded (sandwiched) by the base 30 and the movable body 40. Thus, there is no wasteful heat radiation to the outside, and the bimetal 41 can be efficiently heated. Therefore, further reduction in power consumption can be achieved.
  • H1, H2, H3 ... hole 30 ... base 31 ... substrate 32, 33 ... power supply terminals 34, 35 ... holes 36, 37 ... wiring pattern 40 ... movable body 41 ... bimetal 42 ... insulating layer 43 ... resistance layer 44 ... working member DESCRIPTION OF SYMBOLS 51 ... Feed conductor 51A ... Feed conductor 51B ... Insulation support 52 ... Movable contact 52A ... Feed support 52B ... Insulation support 53 ... Fixed contact 54, 55 ... Base side contact 56, 57 ... Movable body side contact 56A ... Feed conductor 56B ... Insulating support 58 ... Feeding conductor 60 ... Action member 70 ... Target members 101 to 106 ...

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermally Actuated Switches (AREA)

Abstract

A movable body (40) is provided by elliptically punching a sheet material, which has an insulating layer (42) formed on the surface of a bimetal (41), and a resistance layer (43) formed on the surface of the insulating layer. A power feed conductor (51A) is bonded to the circumference of a hole (34) formed in a substrate (31), and an insulating supporting body (51B) is fitted in the power feed conductor (51A). Furthermore, a fixed contact (53) is fitted in a hole (35) formed in the substrate (31). The insulating supporting body (51B) is fitted in a hole (H1) of the movable body. In such state, the power feed conductor (51A) is electrically connected to the resistance layer (43). A movable contact (52) is fitted in a hole (H2) of the movable body. When voltages are applied to power feed terminals (32, 33), the resistance layer (43) generates heat, and when the temperature of the bimetal (41) exceeds the operation temperature, the movable body (40) has the convex surface thereof and the concave surface thereof inverted by snap operation. Consequently, a low-cost actuator, which has high thermal response of the bimetal and is suitable for height reduction is configured.

Description

アクチュエータActuator
 本発明はバイメタルを備えたアクチュエータに関するものである。 The present invention relates to an actuator provided with a bimetal.
 バイメタルを備えた熱応動スイッチが特許文献1に開示されている。図1は特許文献1に示されている熱応動スイッチの分解斜視図である。この熱応動スイッチは、ケース状の本体部1にバイメタル2と抵抗体5が納められ、上方がカバー体6で覆われている。抵抗体5、それに付随する絶縁コート3及び電極4は、いずれも薄膜状に形成されて可堯性を有し、バイメタル2の表面に貼着されている。 A thermally responsive switch provided with a bimetal is disclosed in Patent Document 1. FIG. 1 is an exploded perspective view of the thermally responsive switch disclosed in Patent Document 1. FIG. In this thermally responsive switch, a bimetal 2 and a resistor 5 are housed in a case-like main body 1, and an upper portion is covered with a cover body 6. The resistor 5, the insulating coating 3 and the electrode 4 associated therewith are all formed in a thin film shape and have flexibility, and are adhered to the surface of the bimetal 2.
 本体部1は、バイメタル2や抵抗体5などを納める収納部10を有し、この収納部10の底面の一端部に固定接点11が設けられ、固定接点11は本体部1側面から外部に向かって突出する外部接続部12aと導通している。また、収納部10の底面の他端部には、バイメタル2の一端部と連結される接続面14が設けられていて外部接続部12bに導通している。 The main body portion 1 has a storage portion 10 in which the bimetal 2, the resistor 5, and the like are stored. A fixed contact 11 is provided at one end of the bottom surface of the storage portion 10, and the fixed contact 11 is directed outward from the side surface of the main body portion 1. Are electrically connected to the protruding external connection portion 12a. In addition, a connection surface 14 connected to one end of the bimetal 2 is provided at the other end of the bottom surface of the storage unit 10 and is electrically connected to the external connection 12b.
 バイメタル2は、中央部にドーム状に形成された反転部20を有し、温度が変化した際に反転部20が反転することで、バイメタル2が反対側に反る。バイメタル2の先端部下面には可動接点21が形成されていて、可動接点21がバイメタル2の反転動作に伴って固定接点11と接離することにより、スイッチとして機能する。 The bimetal 2 has an inversion portion 20 formed in a dome shape at the center, and when the temperature changes, the inversion portion 20 inverts and the bimetal 2 warps to the opposite side. A movable contact 21 is formed on the lower surface of the distal end portion of the bimetal 2, and the movable contact 21 functions as a switch when it contacts and separates from the fixed contact 11 as the bimetal 2 is reversed.
 絶縁コート3は、バイメタル2と電極4を絶縁する。電極4はバイメタル2の反転部20を除く領域に設けられると共に、反転部20を挟んだ両側において櫛歯状に形成されていて、この櫛歯状の部分に抵抗体5が配置されている。電極4の一端はバイメタル2を介して接続面14に導通し、他端はバイメタル2が反転動作した際に、カバー体6に設けられる切替接続部13に接触し導通する。 The insulating coat 3 insulates the bimetal 2 and the electrode 4 from each other. The electrode 4 is provided in a region of the bimetal 2 excluding the reversing portion 20 and is formed in a comb shape on both sides of the reversing portion 20, and the resistor 5 is disposed on the comb-shaped portion. One end of the electrode 4 is electrically connected to the connection surface 14 via the bimetal 2, and the other end is brought into contact with the switching connection portion 13 provided in the cover body 6 when the bimetal 2 is reversed.
 カバー体6は、本体部1の上面を覆うように形成されていて、上面の端部には切替接続部13が設けられている。切替接続部13は、カバー体6が本体部1に取付けられた状態で、固定接点11側の外部接続部12aと導通する。上述のようにバイメタル2が反転するとバイメタル2上に設けられた電極4の一端が切替接続部13と導通し通電される。この電流は切替接続部13を介して電極4及び抵抗体5側に流れて抵抗体5が発熱する。 The cover body 6 is formed so as to cover the upper surface of the main body 1, and a switching connection portion 13 is provided at an end of the upper surface. The switching connection portion 13 is electrically connected to the external connection portion 12 a on the fixed contact 11 side in a state where the cover body 6 is attached to the main body portion 1. When the bimetal 2 is inverted as described above, one end of the electrode 4 provided on the bimetal 2 is brought into conduction with the switching connection portion 13 and is energized. This current flows to the electrode 4 and the resistor 5 side through the switching connection portion 13 and the resistor 5 generates heat.
特開2007-35538号公報JP 2007-35538 A
 特許文献1の熱応動スイッチにおいては、次のような解決すべき課題があった。 The thermally responsive switch of Patent Document 1 has the following problems to be solved.
(1)櫛歯状電極の対向部に抵抗体が重合されている。そのため、櫛歯状電極のギャップ部分でのみ発熱し、バイメタルを局部的にしか加熱できず、バイメタル熱応動の応答性が高くない。
(2)バイメタル上に絶縁体、電極、および抵抗体が重合されている。これらはバイメタルに対して相対的に厚いためバイメタルの動作を妨げることになる。また、バイメタル上に三層も形成するので、製造コストが嵩む。
(1) Resistors are polymerized at the opposing portions of the comb-like electrodes. Therefore, heat is generated only at the gap portion of the comb-like electrode, the bimetal can be heated only locally, and the response of the bimetal thermal response is not high.
(2) An insulator, an electrode, and a resistor are polymerized on the bimetal. Since these are relatively thick with respect to the bimetal, the operation of the bimetal is hindered. Moreover, since three layers are formed on the bimetal, the manufacturing cost increases.
(3)バイメタルは本体部とカバーとで挟み込むことによって固定され、バイメタルに対して本体部またはカバーを通して給電されるため、構造が大型化する。 (3) Since the bimetal is fixed by being sandwiched between the main body portion and the cover, and power is supplied to the bimetal through the main body portion or the cover, the structure is enlarged.
 本発明は上述の課題を解決し、特にバイメタルの熱応動の応答性が高く、低背化に適した安価なアクチュエータを提供することを目的としている。 The object of the present invention is to solve the above-mentioned problems, and in particular to provide an inexpensive actuator that is highly responsive to thermal response of bimetal and is suitable for low profile.
(1)本発明は、可動体、この可動体を支持する基台、および前記基台から前記可動体へ給電する給電手段を備えたアクチュエータにおいて、
 前記可動体は、バイメタルと、このバイメタルに形成された絶縁層と、この絶縁層を介して前記バイメタルとは絶縁された抵抗層とを備え、
 前記可動体と前記基台とがかしめられることにより固定されており、
 前記給電手段は前記バイメタルとは絶縁状態で前記抵抗層へ給電することを特徴としている。
(1) The present invention provides an actuator including a movable body, a base that supports the movable body, and a power feeding unit that feeds power from the base to the movable body.
The movable body includes a bimetal, an insulating layer formed on the bimetal, and a resistance layer insulated from the bimetal via the insulating layer,
It is fixed by caulking the movable body and the base,
The power feeding means feeds power to the resistance layer while being insulated from the bimetal.
(2)対象物をスナップアクションさせる場合、前記バイメタルは、非加熱時に第1主面が凸面、第2主面が凹面であり、加熱時に第1主面が凹面、第2主面が凸面となる曲板であって、前記抵抗層の発熱時と非発熱時とで前記凸面と凹面がスナップ動作で反転する(前記バイメタルの熱応動変形にともなってスナップ動作する)構造であることが好ましい。
 この構造により、可動体が片持ち支持された場合には押し出し動作、両持ち支持の場合であれば引き込み動作ができる。
(2) In the case where the object is snap-action, the bimetal has a convex surface on the first main surface and a concave surface on the second main surface when not heated, a concave surface on the first main surface and a convex surface on the second main surface when heated. The curved plate preferably has a structure in which the convex surface and the concave surface are reversed by a snap operation when the resistance layer generates heat and when it does not generate heat.
With this structure, an extruding operation can be performed when the movable body is cantilever-supported, and a retracting operation can be performed when the movable body is both-end-supporting.
(3)電気的なスイッチ動作を行う場合には、前記給電手段は、第1給電部と第2給電部とを備え、第1給電部は前記可動体を支持する支持部に設けられ、第2給電部は前記可動体に設けられた可動接点およびこの可動接点が前記抵抗層の非発熱時に当接する、前記基台に設けられた固定接点で構成された構造であることが好ましい。
 この構造により、ケース等を用いなくても容易に給電を行うことができる。
(3) When performing an electrical switch operation, the power supply means includes a first power supply unit and a second power supply unit, and the first power supply unit is provided in a support unit that supports the movable body, It is preferable that the two power feeding portions have a structure constituted by a movable contact provided on the movable body and a fixed contact provided on the base, which contacts the movable contact when the resistance layer does not generate heat.
With this structure, power can be easily supplied without using a case or the like.
(4)前記バイメタルが両持ち構造で前記基台に支持されている場合、前記バイメタルは、非加熱時に第1主面が凹面、第2主面が凸面であり、加熱時に第1主面が凸面、第2主面が凹面となる曲板であって、前記抵抗層の発熱時と非発熱時とで前記凸面と凹面がスナップ動作で反転する構造であることが好ましい。
 この構造により、可動体の中央部で押し出し動作ができる。
(4) When the bimetal is supported by the base in a double-sided structure, the bimetal has a concave first surface and a convex second surface when not heated, and a first principal surface when heated. It is preferable that the convex surface and the second main surface be a curved plate having a concave surface, and the convex surface and the concave surface are reversed by a snap operation when the resistance layer generates heat and does not generate heat.
With this structure, an extrusion operation can be performed at the center of the movable body.
(5)前記給電手段は第1給電部と第2給電部とを備え、前記第1給電部および前記第2給電部は前記基台の外周に沿って並んだ領域に設けられており、前記抵抗層は、前記第1給電部および前記第2給電部が設けられた領域と対向する方向へ前記第1給電部および前記第2給電部から延びるパターンに形成されていてもよい。
 この構造により、抵抗層のパターンが形成される領域を長く広くすることができ、加熱効率が向上する。
(5) The power feeding means includes a first power feeding unit and a second power feeding unit, and the first power feeding unit and the second power feeding unit are provided in a region aligned along an outer periphery of the base, The resistance layer may be formed in a pattern extending from the first power supply unit and the second power supply unit in a direction opposite to a region where the first power supply unit and the second power supply unit are provided.
With this structure, the region where the pattern of the resistance layer is formed can be widened and the heating efficiency is improved.
(6)また、必要に応じて前記バイメタルの熱応動変形にともなって変位する可動体の位置に当接または連結する棒状の作用部材を設けてもよい。
 この構造により、可動体自体が対象物に接していなくてもよいので、作用部材の長さで距離を調整できる。そのため配置の自由度が向上する。
(6) Moreover, you may provide the rod-shaped action member which contact | abuts or connects to the position of the movable body which displaces according to the thermoresponsive deformation of the said bimetal as needed.
With this structure, since the movable body itself does not have to be in contact with the object, the distance can be adjusted by the length of the action member. As a result, the degree of freedom in arrangement is improved.
(7)バイメタルの熱応動による線形変位でスナップ動作を得るためには、前記バイメタルの変位を受けてスナップ動作で変形する作用部材を備えることが好ましい。
 この構造により、作用部材により対象物への加振を調整できるので、バイメタルが複雑な構造でなくてもよい。
(7) In order to obtain a snap operation by a linear displacement due to the thermal response of the bimetal, it is preferable to include an action member that receives the displacement of the bimetal and deforms by the snap operation.
With this structure, since the vibration to the object can be adjusted by the action member, the bimetal does not have to be a complicated structure.
(8)抵抗層は無電解めっきにより形成されることが好ましい。そのことにより低背化できる。 (8) The resistance layer is preferably formed by electroless plating. This can reduce the height.
 本発明によれば次のような効果を奏する。
(a)絶縁膜と抵抗膜の間に電極が存在しないので、可動体を薄く形成でき、また、弾性率の高い電極がバイメタルに重合されないのでバイメタルの動作が妨げられず、バイメタル単体の状態と同等の応答性の高い動作が実現できる。
The present invention has the following effects.
(A) Since there is no electrode between the insulating film and the resistance film, the movable body can be formed thin, and since the high modulus electrode is not polymerized to the bimetal, the operation of the bimetal is not hindered, Equivalent operation with high responsiveness can be realized.
(b)可動体の薄型化により、また可動体への給電を片面から行うことができ、給電および支持のためのカバーが不要であるので全体の低背化が実現できる。また、カバーが不要となるため、使用用途も広がる。さらに、可動体と基台とがかしめられることにより固定されているため、接着剤等を使用して固定した場合に比べて、可動体と基台との固定部分の信頼性が向上する。 (B) Since the movable body is made thinner, power can be supplied to the movable body from one side, and a cover for power supply and support is unnecessary, so that the overall height can be reduced. In addition, since the cover is unnecessary, the usage is expanded. Furthermore, since the movable body and the base are fixed by caulking, the reliability of the fixed portion between the movable body and the base is improved as compared with the case where the movable body and the base are fixed.
(c)抵抗層の全体が発熱してバイメタルが全面的に加熱されるので、応答性が高い。 (C) Since the entire resistance layer generates heat and the bimetal is entirely heated, the responsiveness is high.
(d)電極層を形成しないので製造費用が安くできる。 (D) Since no electrode layer is formed, the manufacturing cost can be reduced.
図1は特許文献1に示されている熱応動スイッチの分解斜視図である。FIG. 1 is an exploded perspective view of the thermally responsive switch disclosed in Patent Document 1. FIG. 図2(A)、図2(B)は第1の実施形態のアクチュエータ101の斜視図である。2A and 2B are perspective views of the actuator 101 according to the first embodiment. 図3(A)、図3(B)は、図2(A)、図2(B)におけるa-a′部分での断面図である。3 (A) and 3 (B) are cross-sectional views taken along the line aa ′ in FIGS. 2 (A) and 2 (B). 図4はアクチュエータ101の分解斜視図である。FIG. 4 is an exploded perspective view of the actuator 101. 図5は第2の実施形態のアクチュエータ102の分解斜視図である。FIG. 5 is an exploded perspective view of the actuator 102 of the second embodiment. 図6(A)、図6(B)は第3の実施形態のアクチュエータ103の斜視図である。6A and 6B are perspective views of the actuator 103 according to the third embodiment. 図7(A)、図7(B)は、図6(A)、図6(B)におけるa-a′部分での断面図である。FIGS. 7A and 7B are cross-sectional views taken along the line aa ′ in FIGS. 6A and 6B. 図8はアクチュエータ103の分解斜視図である。FIG. 8 is an exploded perspective view of the actuator 103. 図9(A)、図9(B)は第4の実施形態のアクチュエータ104の斜視図である。9A and 9B are perspective views of the actuator 104 according to the fourth embodiment. 図10(A)、図10(B)は、図9(A)、図9(B)におけるa-a′部分での断面図である。10 (A) and 10 (B) are cross-sectional views taken along the line aa ′ in FIGS. 9 (A) and 9 (B). 図11はアクチュエータ104の分解斜視図である。FIG. 11 is an exploded perspective view of the actuator 104. 図12は第5の実施形態のアクチュエータ105の分解斜視図である。FIG. 12 is an exploded perspective view of the actuator 105 according to the fifth embodiment. 図13(A)、図13(B)は第6の実施形態のアクチュエータ106の斜視図である。FIGS. 13A and 13B are perspective views of the actuator 106 according to the sixth embodiment. 図14(A)、図14(B)、図14(C)は第7の実施形態に係るアクチュエータの製造方法を示す図である。FIG. 14A, FIG. 14B, and FIG. 14C are views showing a method for manufacturing the actuator according to the seventh embodiment. 図15(A)、図15(B)、図15(C)は第8の実施形態に係るアクチュエータの製造方法を示す図である。FIG. 15A, FIG. 15B, and FIG. 15C are views showing a method for manufacturing the actuator according to the eighth embodiment.
《第1の実施形態》
 第1の実施形態のアクチュエータ101について図2~図4を参照して説明する。
 図2(A)、図2(B)はアクチュエータ101の斜視図である。図3(A)、図3(B)は、図2(A)、図2(B)におけるa-a′部分での断面図である。このアクチュエータ101は基台30と可動体40を備えている。図2(A)、図3(A)は、後に示す抵抗層の非発熱時の状態、図2(B)、図3(B)は、その抵抗層の発熱によるバイメタルの熱応動によって可動体40が反転した状態である。
<< First Embodiment >>
The actuator 101 according to the first embodiment will be described with reference to FIGS.
2A and 2B are perspective views of the actuator 101. FIG. 3 (A) and 3 (B) are cross-sectional views taken along the line aa ′ in FIGS. 2 (A) and 2 (B). The actuator 101 includes a base 30 and a movable body 40. FIGS. 2A and 3A show the state of the resistance layer, which will be described later, when no heat is generated, and FIGS. 2B and 3B show the movable body due to the thermal response of the bimetal due to the heat generation of the resistance layer. 40 is an inverted state.
 図4はアクチュエータ101の分解斜視図である。基台30は基板31と基板31に形成された給電端子32,33、孔34,35、および配線パターン36,37を備えている。可動体40はバイメタル41、絶縁層42および抵抗層43を備えている。後に示すように、この可動体40はバイメタルの表面に絶縁層が形成され、さらにその表面に抵抗層が形成されたシート材を楕円形に打ち抜いたものである。また、ここでは、可動体40は一方主面が凸面、他方主面が凹面となるような曲げ加工されている。可動体40には孔H1,H2が形成されている。 FIG. 4 is an exploded perspective view of the actuator 101. The base 30 includes a substrate 31 and power supply terminals 32 and 33 formed on the substrate 31, holes 34 and 35, and wiring patterns 36 and 37. The movable body 40 includes a bimetal 41, an insulating layer 42, and a resistance layer 43. As will be described later, the movable body 40 is formed by punching an oval sheet material having an insulating layer formed on the surface of a bimetal and a resistance layer formed on the surface. Here, the movable body 40 is bent so that one main surface is a convex surface and the other main surface is a concave surface. Holes H1 and H2 are formed in the movable body 40.
 基板31に形成された孔34の周囲には給電導体51Aが配置され、給電導体51A、基板31の孔34、可動体40の穴H1に絶縁支持体51Bが嵌入されて、かしめられている。その状態で給電導体51Aは、配線パターン36及び抵抗層43の両方に導通する。また、基板31に形成された孔35に固定接点53が嵌入されて、かしめられている。その状態で固定接点53は、配線パターン37と導通する。 A power supply conductor 51A is disposed around a hole 34 formed in the substrate 31, and an insulating support 51B is fitted into the power supply conductor 51A, the hole 34 of the substrate 31, and the hole H1 of the movable body 40 and caulked. In this state, the power feeding conductor 51 </ b> A is electrically connected to both the wiring pattern 36 and the resistance layer 43. A fixed contact 53 is inserted into the hole 35 formed in the substrate 31 and caulked. In this state, the fixed contact 53 is electrically connected to the wiring pattern 37.
 可動体の孔H2には可動接点52が嵌入されて、かしめられている。その状態で可動接点52は、抵抗層43と導通する。この可動接点52は抵抗層43とバイメタル41の両方に導通するが、給電導体51Aは抵抗層43にのみ導通するので、基台30側の給電端子32,33に電圧を印加することにより、抵抗層43にのみ通電されることになる。 The movable contact 52 is inserted into the hole H2 of the movable body and caulked. In this state, the movable contact 52 is electrically connected to the resistance layer 43. The movable contact 52 is electrically connected to both the resistance layer 43 and the bimetal 41. However, since the power supply conductor 51A is conductive only to the resistance layer 43, the voltage is applied to the power supply terminals 32 and 33 on the base 30 side so that the resistance is increased. Only the layer 43 is energized.
 給電端子32,33に電圧を印加していない状態では抵抗層43は発熱していないので、バイメタル41は非加熱状態である。このとき可動体40は図2(A)、図3(A)のように上面(第1主面)が凸面、下面(第2主面)が凹面である。給電端子32,33に電圧を印加すれば、抵抗層43は発熱してバイメタル41は加熱状態となる。バイメタル41の温度がバイメタル41の熱応動変形に関する昇温方向の閾値(動作温度)を超えたとき可動体40は図2(B)、図3(B)のように上面(第1主面)が凹面、下面(第2主面)が凸面となる。すなわち、抵抗層43の発熱時と非発熱時とで可動体40は凸面と凹面がスナップ動作で反転する。 When the voltage is not applied to the power supply terminals 32 and 33, the resistance layer 43 does not generate heat, so the bimetal 41 is in an unheated state. At this time, as shown in FIG. 2A and FIG. 3A, the upper surface (first main surface) of the movable body 40 is convex, and the lower surface (second main surface) is concave. When a voltage is applied to the power supply terminals 32 and 33, the resistance layer 43 generates heat and the bimetal 41 is heated. When the temperature of the bimetal 41 exceeds the threshold value (operating temperature) in the temperature rising direction related to the thermally responsive deformation of the bimetal 41, the movable body 40 has an upper surface (first main surface) as shown in FIGS. 2 (B) and 3 (B). Is a concave surface, and the lower surface (second main surface) is a convex surface. That is, the convex surface and the concave surface of the movable body 40 are reversed by the snap operation when the resistance layer 43 generates heat and when it does not generate heat.
 可動体40の反転によって可動接点52は固定接点53から離れて通電は終了する。これにより抵抗層43の発熱がなくなり、バイメタル41の温度は徐々に低下する。バイメタル41の温度がバイメタル41の熱応動変形に関する降温方向の閾値(復帰温度)を下回ったとき可動体40は図2(A)、図3(A)のように上面(第1主面)が凸面、下面(第2主面)が凹面となる。すなわち、抵抗層43の発熱時と非発熱時とで可動体40は凸面と凹面がスナップ動作で反転する。 The movable contact 52 is separated from the fixed contact 53 by the reversal of the movable body 40 and the energization is terminated. As a result, the resistance layer 43 does not generate heat, and the temperature of the bimetal 41 gradually decreases. When the temperature of the bimetal 41 falls below the threshold value (return temperature) in the temperature lowering direction related to the thermally responsive deformation of the bimetal 41, the movable body 40 has an upper surface (first main surface) as shown in FIGS. 2 (A) and 3 (A). The convex surface and the lower surface (second main surface) are concave surfaces. That is, the convex surface and the concave surface of the movable body 40 are reversed by the snap operation when the resistance layer 43 generates heat and when it does not generate heat.
 給電端子32,33への電圧印加を持続すれば、前記可動体40の反転動作を繰り返す。所定回数で反転動作を停止する場合には、可動接点52が固定接点53から離れて電流が遮断されたことを検知して給電端子32,33への電圧印加を停止すればよい。また、タイマー回路を備えて、給電端子32,33へ所定時間だけ電圧印加するようにしてもよい。 If the voltage application to the power supply terminals 32 and 33 is continued, the reversing operation of the movable body 40 is repeated. When the reversal operation is stopped a predetermined number of times, the voltage application to the power supply terminals 32 and 33 may be stopped by detecting that the movable contact 52 has moved away from the fixed contact 53 and the current has been cut off. Further, a timer circuit may be provided to apply a voltage to the power supply terminals 32 and 33 for a predetermined time.
 例えばバイメタル41の厚みは100~500μm、絶縁層42の厚みは1~10μm、抵抗層43の厚みは1~10μmであるので、絶縁層42と抵抗層43の厚みはバイメタル41に比べてわずか0.4~20%程度である。そのため、可動体を薄く形成でき、また、弾性率の高い電極がバイメタルに重合されないのでバイメタルの動作が妨げられず、バイメタル単体の状態と同等の応答性の高い動作が実現できる。また、給電端子32,33間の抵抗値は1~150Ω程度であり、バイメタルに直接通電する場合に比べて低い駆動電流で制御できる。 For example, since the thickness of the bimetal 41 is 100 to 500 μm, the thickness of the insulating layer 42 is 1 to 10 μm, and the thickness of the resistance layer 43 is 1 to 10 μm, the thickness of the insulating layer 42 and the resistance layer 43 is only 0 compared to the bimetal 41. About 4 to 20%. Therefore, the movable body can be formed thin, and since the high elastic electrode is not superposed on the bimetal, the operation of the bimetal is not hindered, and an operation with high responsiveness equivalent to the state of the bimetal alone can be realized. In addition, the resistance value between the power supply terminals 32 and 33 is about 1 to 150Ω, and can be controlled with a lower drive current than when the bimetal is directly energized.
 また、可動体40では、バイメタル41が外部に露出しており、抵抗体43が基台30側に位置するように積層されている方が好ましい。抵抗体43が基台30側に位置する方が、抵抗体43が発熱した時の放熱を妨げることができ、より効率的に動作させることができる。 In the movable body 40, it is preferable that the bimetal 41 is exposed to the outside and the resistor 43 is laminated so as to be positioned on the base 30 side. When the resistor 43 is located on the base 30 side, heat dissipation when the resistor 43 generates heat can be prevented, and the resistor 43 can be operated more efficiently.
 第1の実施形態のアクチュエータ101は可動体40のスナップ動作で対象物を叩くことによって、対象物を加振することができる。また、可動体40のスナップ動作で基台30側も加振されるので、このアクチュエータ101を対象物へ取り付けることによって、対象物を加振してもよい。対象物としては、例えば、ディジタルカメラ等の撮像用装置に用いられる光学ローパスフィルタ等の光透過部材が考えられる。対象物である光透過部材をアクチュエータ101により加振することにより、光透過部材に付着した塵埃や異物を除去することができる。 The actuator 101 according to the first embodiment can vibrate the target object by hitting the target object with the snap action of the movable body 40. Moreover, since the base 30 side is also vibrated by the snap operation of the movable body 40, the object may be vibrated by attaching the actuator 101 to the object. As the object, for example, a light transmission member such as an optical low-pass filter used in an imaging apparatus such as a digital camera can be considered. By vibrating the light transmissive member, which is an object, by the actuator 101, dust and foreign matters attached to the light transmissive member can be removed.
 また、第1の実施形態のアクチュエータ101は可動体40と基台31とが、可動体40の孔H1と基台31の孔34とに給電導体51を嵌入することによりかしめられたかしめ構造となっている。これにより、可動体40と基台31とを接着剤等を用いずに固定することができるため、経時変化及び繰り返しの使用による固定部分の劣化を防ぎ、信頼性の優れたアクチュエータ101を提供できる。また、可動体40と基台31との固定と可動体40への給電を同時に行うことができる。また、給電導体51が各孔(孔H1及び孔34)に嵌入される際に圧接されて配線パターン36及び抵抗層43と導通性が得られる。このため、はんだ付けや導電性ペースト等を用いずに導通が取れるため、接合信頼性が高い。 Further, the actuator 101 according to the first embodiment has a caulking structure in which the movable body 40 and the base 31 are caulked by inserting the feeding conductor 51 into the hole H1 of the movable body 40 and the hole 34 of the base 31. It has become. Thereby, since the movable body 40 and the base 31 can be fixed without using an adhesive or the like, it is possible to provide a highly reliable actuator 101 by preventing deterioration of the fixed portion due to aging and repeated use. . Further, the movable body 40 and the base 31 can be fixed and the movable body 40 can be fed simultaneously. Further, when the power supply conductor 51 is fitted into each hole (hole H1 and hole 34), electrical connection with the wiring pattern 36 and the resistance layer 43 is obtained. For this reason, since conduction | electrical_connection can be taken without using soldering, a conductive paste, etc., joining reliability is high.
《第2の実施形態》
 図5は第2の実施形態のアクチュエータ102の分解斜視図である。第1の実施形態で図4に示したアクチュエータと異なるのは、基台30に対する可動体40の支持および給電を行う部分の構造である。
<< Second Embodiment >>
FIG. 5 is an exploded perspective view of the actuator 102 of the second embodiment. The first embodiment is different from the actuator shown in FIG. 4 in the structure of the portion that supports the movable body 40 and supplies power to the base 30.
 基板31に形成された孔34と可動体40の孔H1に給電導体51が嵌入されて、かしめられている。その状態で給電導体51は、配線パターン36と導通する。基板31に形成された孔35に固定接点53が嵌入されて、かしめられている。その状態で固定接点53は、配線パターン37と導通する。 The power supply conductor 51 is inserted into the hole 34 formed in the substrate 31 and the hole H1 of the movable body 40 and caulked. In this state, the power supply conductor 51 is electrically connected to the wiring pattern 36. A fixed contact 53 is inserted into a hole 35 formed in the substrate 31 and caulked. In this state, the fixed contact 53 is electrically connected to the wiring pattern 37.
 可動体40に形成された孔H2の周囲には給電導体52Aが配置され、給電導体52A、可動体40の孔H2に絶縁支持体52Bが嵌入されて、かしめられている。その状態で給電導体52Aは、抵抗層43に導通する。給電導体51は抵抗層43とバイメタル41の両方に導通するが、給電導体52Aは抵抗層43にのみ導通するので、基台30側の給電端子32,33に電圧を印加することにより、抵抗層43にのみ通電されることになる。このように、可動接点側で給電部とバイメタル41との電気的絶縁を図ってもよい。 A power supply conductor 52A is disposed around a hole H2 formed in the movable body 40, and an insulating support 52B is inserted into the hole H2 of the power supply conductor 52A and the movable body 40 and caulked. In this state, the power feeding conductor 52A is electrically connected to the resistance layer 43. The power supply conductor 51 is electrically connected to both the resistance layer 43 and the bimetal 41, but the power supply conductor 52 </ b> A is electrically connected only to the resistance layer 43, so that a voltage is applied to the power supply terminals 32 and 33 on the base 30 side, whereby the resistance layer Only 43 is energized. In this way, electrical insulation between the power feeding unit and the bimetal 41 may be achieved on the movable contact side.
《第3の実施形態》
 第3の実施形態のアクチュエータ103について図6~図8を参照して説明する。
 図6(A)、図6(B)はアクチュエータ103の斜視図である。図7(A)、図7(B)は、図6(A)、図6(B)におけるa-a′部分での断面図である。このアクチュエータ103は基台30と可動体40を備えている。図6(A)、図7(A)は、後に示す抵抗層の非発熱時の状態、図6(B)、図7(B)は、その抵抗層の発熱によるバイメタルの熱応動によって可動体40が反転した状態である。
<< Third Embodiment >>
The actuator 103 according to the third embodiment will be described with reference to FIGS.
6A and 6B are perspective views of the actuator 103. FIG. FIGS. 7A and 7B are cross-sectional views taken along the line aa ′ in FIGS. 6A and 6B. The actuator 103 includes a base 30 and a movable body 40. FIGS. 6A and 7A show the state when the resistance layer is not heated, which will be described later, and FIGS. 6B and 7B show the movable body due to the thermal response of the bimetal due to the heat generation of the resistance layer. 40 is an inverted state.
 図8はアクチュエータ103の分解斜視図である。基台30は基板31と基板31に形成された給電端子32,33、孔34,35、および配線パターン36,37を備えている。可動体40はバイメタル41、絶縁層42、抵抗層43、および作用部材44を備えている。可動体40には孔H1,H2,H3が形成されている。孔H3に前記作用部材44が嵌入される。 FIG. 8 is an exploded perspective view of the actuator 103. The base 30 includes a substrate 31 and power supply terminals 32 and 33 formed on the substrate 31, holes 34 and 35, and wiring patterns 36 and 37. The movable body 40 includes a bimetal 41, an insulating layer 42, a resistance layer 43, and an action member 44. The movable body 40 has holes H1, H2, and H3. The action member 44 is inserted into the hole H3.
 基板31に形成された孔34,35には基台側接点54,55がそれぞれ嵌入されて、かしめられている。その状態で 基台側接点54、55は、配線パターン36、37と導通する。 Base- side contacts 54 and 55 are inserted into the holes 34 and 35 formed in the substrate 31, respectively, and are caulked. In this state, the base side contacts 54 and 55 are electrically connected to the wiring patterns 36 and 37.
 可動体の孔H1、給電導体56Aには絶縁支持体56Bが嵌入されて、かしめられる。その状態で給電導体56Aは抵抗層43に導通する。可動体の孔H2には可動体側接点57が嵌入されて、かしめられている。可動体側接点57は抵抗層43と導通する。この可動体側接点57は抵抗層43とバイメタル41の両方に導通するが、給電導体56Aは抵抗層43にのみ導通するので、基台30側の給電端子32,33に電圧を印加することにより、抵抗層43にのみ通電されることになる。 The insulating support 56B is inserted into the hole H1 of the movable body and the power supply conductor 56A and caulked. In this state, the feeding conductor 56A is electrically connected to the resistance layer 43. A movable body side contact 57 is inserted into the hole H2 of the movable body and caulked. The movable body side contact 57 is electrically connected to the resistance layer 43. Although this movable body side contact 57 is electrically connected to both the resistance layer 43 and the bimetal 41, since the power supply conductor 56A is only conductive to the resistance layer 43, by applying a voltage to the power supply terminals 32 and 33 on the base 30 side, Only the resistance layer 43 is energized.
 給電端子32,33に電圧を印加していない状態では抵抗層43は発熱していないので、バイメタルは非加熱状態である。このとき可動体40は図6(A)、図7(A)のように上面(第1主面)が凹面、下面(第2主面)が凸面である。給電端子32,33に電圧を印加すれば、抵抗層43は発熱してバイメタル41は加熱状態となる。バイメタル41の温度がバイメタル41の熱応動変形に関する昇温方向の閾値(動作温度)を超えたとき可動体40は図6(B)、図7(B)のように上面(第1主面)が凸面、下面(第2主面)が凹面となる。すなわち、抵抗層43の発熱時と非発熱時とで可動体40は凸面と凹面がスナップ動作で反転する。 When the voltage is not applied to the power supply terminals 32 and 33, the resistance layer 43 does not generate heat, so the bimetal is in an unheated state. At this time, as shown in FIGS. 6A and 7A, the movable body 40 has a concave upper surface (first main surface) and a convex lower surface (second main surface). When a voltage is applied to the power supply terminals 32 and 33, the resistance layer 43 generates heat and the bimetal 41 is heated. When the temperature of the bimetal 41 exceeds the threshold value (operating temperature) in the temperature rising direction related to the thermally responsive deformation of the bimetal 41, the movable body 40 has an upper surface (first main surface) as shown in FIGS. 6 (B) and 7 (B). Is a convex surface, and the lower surface (second main surface) is a concave surface. That is, the convex surface and the concave surface of the movable body 40 are reversed by the snap operation when the resistance layer 43 generates heat and when it does not generate heat.
 この第3の実施形態のアクチュエータ103は第1・第2の実施形態のアクチュエータと異なり、可動体40が反転しても、可動体側接点56,57は基台側接点54,55に接したままである。 Unlike the actuators of the first and second embodiments, the actuator 103 of the third embodiment remains in contact with the base- side contacts 54 and 55 even when the movable body 40 is reversed. It is.
 可動体40の反転による変位量は可動体40の大きさとその湾曲の曲率で定めることができる。可動体40に設けられている作用部材44は、軸方向に自在で軸に垂直方向には規制する軸受けで保持されている。可動体40の反転によって作用部材44は軸方向にアクチュエーションされる。このアクチュエータ103は例えば柔軟性のあるチューブを外部から押圧して狭窄させるバルブ用のアクチュエータとして用いることができる。 The amount of displacement due to the reversal of the movable body 40 can be determined by the size of the movable body 40 and the curvature of its curvature. The action member 44 provided in the movable body 40 is held by a bearing that freely moves in the axial direction and regulates in the direction perpendicular to the axis. The action member 44 is actuated in the axial direction by the reversal of the movable body 40. The actuator 103 can be used, for example, as a valve actuator that narrows a flexible tube by pressing it from the outside.
《第4の実施形態》
 第4の実施形態のアクチュエータ104について図9~図11を参照して説明する。
 図9(A)、図9(B)はアクチュエータ104の斜視図である。図10(A)、図10(B)は、図9(A)、図9(B)におけるa-a′部分での断面図である。このアクチュエータ104は基台30と可動体40を備えている。図9(A)、図10(A)は、後に示す抵抗層の非発熱時の状態、図9(B)、図10(B)は、その抵抗層の発熱によるバイメタルの熱応動によって可動体40が反った状態である。
<< Fourth Embodiment >>
The actuator 104 of the fourth embodiment will be described with reference to FIGS.
9A and 9B are perspective views of the actuator 104. FIG. 10 (A) and 10 (B) are cross-sectional views taken along the line aa ′ in FIGS. 9 (A) and 9 (B). The actuator 104 includes a base 30 and a movable body 40. FIGS. 9A and 10A show the state when the resistance layer is not heated, which will be described later, and FIGS. 9B and 10B show the movable body due to the thermal reaction of the bimetal due to the heat generation of the resistance layer. 40 is a warped state.
 図11はアクチュエータ104の分解斜視図である。基台30は基板31と基板31に形成された給電端子32,33、孔34,35、および配線パターン36,37を備えている。孔34は配線パターン36と接続する両面スルーホールとなっている。可動体40はバイメタル41、絶縁層42および抵抗層43を備えている。可動体40には孔H1,H2が形成されている。 FIG. 11 is an exploded perspective view of the actuator 104. The base 30 includes a substrate 31 and power supply terminals 32 and 33 formed on the substrate 31, holes 34 and 35, and wiring patterns 36 and 37. The hole 34 is a double-sided through hole connected to the wiring pattern 36. The movable body 40 includes a bimetal 41, an insulating layer 42, and a resistance layer 43. Holes H1 and H2 are formed in the movable body 40.
 基板31に形成された孔34の周囲には、絶縁支持体51Bが筒状の給電導体51Aに挿入されており、絶縁支持体51Bが基板31の孔34、可動体40の孔H1に嵌入されてかしめられている。その状態で給電導体51Aは抵抗層43及び基台31に圧接されて挟持されており、配線パターン36及び抵抗層43の両方に導通する。また、基板31に形成された孔35、可動体の孔H2に給電導体58が嵌入されてかしめられている。その状態で給電導体58は、配線パターン37及び抵抗層43の両方と導通する。 An insulating support 51B is inserted into the cylindrical power supply conductor 51A around the hole 34 formed in the substrate 31, and the insulating support 51B is inserted into the hole 34 of the substrate 31 and the hole H1 of the movable body 40. It is squeezed. In this state, the power supply conductor 51 </ b> A is pressed and sandwiched between the resistance layer 43 and the base 31 and is electrically connected to both the wiring pattern 36 and the resistance layer 43. A feeding conductor 58 is inserted and caulked into the hole 35 formed in the substrate 31 and the hole H2 of the movable body. In this state, the power supply conductor 58 is electrically connected to both the wiring pattern 37 and the resistance layer 43.
 この給電導体58は抵抗層43とバイメタル41の両方に導通するが、給電導体51Aは抵抗層43にのみ導通するので、基台30側の給電端子32,33に電圧を印加することにより、抵抗層43にのみ通電されることになる。前記給電導体51Aが第1給電部、給電導体58が第2給電部に相当する。可動体40は矩形板状であり、この可動体40の第1辺付近に沿った位置に第1給電部および第2給電部が並んで設けられている。前記抵抗層は前記第1辺に対向する第2辺の方向へ第1給電部および第2給電部からU字形状に延びるパターンに形成されている。そのため、抵抗層の通電経路を長く確保でき、且つバイメタル41のほぼ全面を効率よく加熱できる。 The power supply conductor 58 is electrically connected to both the resistance layer 43 and the bimetal 41, but the power supply conductor 51 </ b> A is electrically connected only to the resistance layer 43, so that a resistance is applied by applying a voltage to the power supply terminals 32 and 33 on the base 30 side. Only the layer 43 is energized. The feeding conductor 51A corresponds to the first feeding portion, and the feeding conductor 58 corresponds to the second feeding portion. The movable body 40 has a rectangular plate shape, and a first power feeding unit and a second power feeding unit are provided side by side at a position along the vicinity of the first side of the movable body 40. The resistance layer is formed in a pattern extending in a U shape from the first power supply unit and the second power supply unit in the direction of the second side opposite to the first side. Therefore, the energization path of the resistance layer can be secured long, and almost the entire surface of the bimetal 41 can be efficiently heated.
 給電端子32,33に電圧を印加していない状態では抵抗層43は発熱していないので、バイメタルは非加熱状態である。このとき可動体40は図9(A)、図10(A)のように平板状である。給電端子32,33に電圧を印加すれば、抵抗層43は発熱してバイメタル41は加熱状態となり、可動体40はバイメタル41の熱応動変形により、図9(B)、図10(B)のように上面へ反った形状となる。 When the voltage is not applied to the power supply terminals 32 and 33, the resistance layer 43 does not generate heat, so the bimetal is in an unheated state. At this time, the movable body 40 has a flat plate shape as shown in FIGS. 9 (A) and 10 (A). When a voltage is applied to the power supply terminals 32 and 33, the resistance layer 43 generates heat and the bimetal 41 enters a heated state, and the movable body 40 in FIGS. Thus, the shape is warped to the upper surface.
 第4の実施形態のアクチュエータ104は可動体40の変位部が対象物に当接して対象物を変位させる。 In the actuator 104 of the fourth embodiment, the displacement portion of the movable body 40 abuts on the object and displaces the object.
《第5の実施形態》
 図12は第5の実施形態のアクチュエータ105の分解斜視図である。第4の実施形態で図11に示したアクチュエータと異なるのは、可動体40の構造と、基台30に対する可動体40の支持および給電を行う部分の構造である。可動体40の最下層がバイメタル41であり、その上に絶縁層42、さらにその上に抵抗層43が形成されている。
<< Fifth Embodiment >>
FIG. 12 is an exploded perspective view of the actuator 105 according to the fifth embodiment. The fourth embodiment differs from the actuator shown in FIG. 11 in the structure of the movable body 40 and the structure of the portion that supports and feeds power to the base 30. The lowermost layer of the movable body 40 is a bimetal 41, an insulating layer 42 is formed thereon, and a resistance layer 43 is further formed thereon.
 給電体51Aはバイメタル41の孔H1と基台30の孔34とに嵌入されかしめられている。また、絶縁支持体51Bは一方端の開口径が他方端の開口径よりも小さくなるように設計されており、バイメタル41の孔H1に一方端が嵌入されかしめられている。したがって、給電導体51Aは絶縁支持体51Bでバイメタル41とは絶縁され、直接抵抗層43に導通する。給電導体58は、バイメタル41の孔H2と基台31の孔35に嵌入されかしめられている。したがって、抵抗層43およびバイメタル41に導通する。 The power feeding body 51A is fitted into the hole H1 of the bimetal 41 and the hole 34 of the base 30 and is caulked. The insulating support 51B is designed such that the opening diameter at one end is smaller than the opening diameter at the other end, and one end is fitted into the hole H1 of the bimetal 41 and caulked. Therefore, the power supply conductor 51A is insulated from the bimetal 41 by the insulating support 51B and directly conducts to the resistance layer 43. The power supply conductor 58 is fitted into the hole H2 of the bimetal 41 and the hole 35 of the base 31 and is caulked. Therefore, it conducts to the resistance layer 43 and the bimetal 41.
 アクチュエータ105を組み込み先に組み込んだ状態で、アクチュエータ105の周囲の構造によって抵抗層43の無駄な放熱が問題とならない場合にはこのように抵抗層43が外面側にあってもよい。 In the state where the actuator 105 is assembled at the assembly destination, if the useless heat dissipation of the resistance layer 43 is not a problem due to the structure around the actuator 105, the resistance layer 43 may be on the outer surface side in this way.
《第6の実施形態》
 図13(A)、図13(B)は第6の実施形態のアクチュエータ106の斜視図である。アクチュエータ106は基台30、可動体40および作用部材60を備えている。作用部材60は可動体40の変位が閾値を超えたときスナップ動作で変形する。図13(A)は変形前、図13(B)は変形後である。作用部材60のスナップ動作によって対象部材70の一端が加振される。可動体40の変形が元に戻ったとき、作用部材60は再びスナップ動作で復帰する。
<< Sixth Embodiment >>
FIGS. 13A and 13B are perspective views of the actuator 106 according to the sixth embodiment. The actuator 106 includes a base 30, a movable body 40, and an action member 60. The action member 60 is deformed by a snap operation when the displacement of the movable body 40 exceeds a threshold value. FIG. 13A is before deformation, and FIG. 13B is after deformation. One end of the target member 70 is vibrated by the snap action of the action member 60. When the deformation of the movable body 40 returns to the original state, the action member 60 returns again by the snap operation.
 基台30と可動体40の基本的な構成は第4の実施形態または第5の実施形態で示したアクチュエータと同じである。但し、基台30の長さと給電端子の位置は異なる。このように、可動体40の形状ではなく、作用部材60の形状をスナップ動作できるように設計することで、対象物へ与える振動を容易に調整するこができる。 The basic configuration of the base 30 and the movable body 40 is the same as that of the actuator shown in the fourth embodiment or the fifth embodiment. However, the length of the base 30 and the position of the power supply terminal are different. Thus, the vibration applied to the object can be easily adjusted by designing the shape of the action member 60 not the shape of the movable body 40 so that it can be snapped.
《第7の実施形態》
 図14(A)、図14(B)、図14(C)は第7の実施形態に係るアクチュエータの製造方法を示す図である。先ず図14(A)に示すように、ロール状に巻回されたバイメタル(バイメタルロール)141をロールtoロールで送りながら、バイメタルの表面に絶縁層42を形成する。例えばポリイミドをコーターで塗布することによって絶縁層付きバイメタルロールを作成する。次に、図14(B)に示すように、絶縁層付きバイメタルロール142をロールtoロールで送りながら、絶縁層の表面に抵抗層43を形成する。例えばNiを無電解めっきで全面に形成することによって抵抗層付きバイメタルロールを作成する。その後、図14(C)に示すように、抵抗層付きバイメタルロール143を楕円形の個片に打ち抜くことによって複数の可動体40を形成する。可動体40の孔(第1の実施形態等で示した孔H1,H2)等はレーザ加工やパンチ加工によって先に形成し、打ち抜く。または個片の打ち抜きと同時に孔を加工してもよい。さらに、可動体40の湾曲形状はプレス加工によって成形する。この成形は前記打ち抜きと同時に行ってもよい。
<< Seventh Embodiment >>
FIG. 14A, FIG. 14B, and FIG. 14C are views showing a method for manufacturing the actuator according to the seventh embodiment. First, as shown in FIG. 14A, the insulating layer 42 is formed on the surface of the bimetal while feeding the bimetal (bimetal roll) 141 wound in a roll shape by a roll-to-roll. For example, a bimetal roll with an insulating layer is formed by applying polyimide with a coater. Next, as shown in FIG. 14B, the resistance layer 43 is formed on the surface of the insulating layer while feeding the bimetal roll 142 with the insulating layer by a roll-to-roll. For example, a bimetal roll with a resistance layer is formed by forming Ni on the entire surface by electroless plating. After that, as shown in FIG. 14C, a plurality of movable bodies 40 are formed by punching the bimetal roll 143 with a resistance layer into elliptical pieces. The holes (holes H1, H2 shown in the first embodiment and the like) of the movable body 40 are formed first by laser processing or punching and punched out. Alternatively, the holes may be processed simultaneously with the punching of the individual pieces. Furthermore, the curved shape of the movable body 40 is formed by pressing. This molding may be performed simultaneously with the punching.
 その後は、個片に分離した可動体40に対して各実施形態で示したとおり、各種給電導体や可動接点を嵌入し、基台の孔に各種給電導体や固定接点を嵌入することによってアクチュエータを組み立てる。 After that, as shown in each embodiment, the movable body 40 separated into individual pieces is fitted with various power supply conductors and movable contacts, and the actuator is installed by inserting various power supply conductors and fixed contacts into holes in the base. assemble.
 前記絶縁層は樹脂材以外に金属酸化物であってもよい。絶縁層の形成はコーターによる塗布以外にスプレー、ディッピング、噴流塗布、電着、めっき、スパッタ、蒸着、CVD、溶射等で形成してもよい。また、前記抵抗層はNi等の金属以外にカーボンであってもよい。またこれらの導電体と樹脂との混合物であってもよい。抵抗層の形成はめっき以外に、スプレー、コーティング、ディッピング、噴流塗布、電着、スパッタ、蒸着、CVD、溶射等で形成してもよい。 The insulating layer may be a metal oxide in addition to the resin material. The insulating layer may be formed by spraying, dipping, jet coating, electrodeposition, plating, sputtering, vapor deposition, CVD, thermal spraying, etc. in addition to coating by a coater. Further, the resistance layer may be carbon other than a metal such as Ni. Moreover, the mixture of these conductors and resin may be sufficient. In addition to plating, the resistance layer may be formed by spraying, coating, dipping, jet coating, electrodeposition, sputtering, vapor deposition, CVD, thermal spraying, or the like.
 抵抗層43は無電解めっきにより形成することが好ましい。無電解めっきにより形成された場合、バイメタル41に対して絶縁層42を介して容易に薄層の抵抗層43を形成することができ、アクチュエータとして低背化が可能である。 The resistance layer 43 is preferably formed by electroless plating. When formed by electroless plating, the thin resistance layer 43 can be easily formed on the bimetal 41 via the insulating layer 42, and the height of the actuator can be reduced.
《第8の実施形態》
 図15(A)、図15(B)、図15(C)は第8の実施形態に係るアクチュエータの製造方法を示す図である。先ず図15(A)、図15(B)に示すように、シート状のバイメタル(バイメタルシート)241の表面に絶縁層を形成する。例えばポリイミドをコーターで塗布する。次に、図15(C)に示すように、絶縁層付きバイメタルシート242の絶縁層の表面に抵抗層を形成して抵抗層付きバイメタルシート243を作成する。例えばNiを無電解めっきで全面に形成する。その後、図15(D)に示すように、抵抗層付きバイメタルートシート243を楕円形の個片に打ち抜くことによって複数の可動体40を形成する。その後は第7の実施形態で示した工程と同じである。
<< Eighth Embodiment >>
FIG. 15A, FIG. 15B, and FIG. 15C are views showing a method for manufacturing the actuator according to the eighth embodiment. First, as shown in FIGS. 15A and 15B, an insulating layer is formed on the surface of a sheet-like bimetal (bimetal sheet) 241. For example, polyimide is applied with a coater. Next, as shown in FIG. 15C, a resistance layer is formed on the surface of the insulating layer of the bimetal sheet 242 with an insulating layer to create a bimetal sheet 243 with a resistance layer. For example, Ni is formed on the entire surface by electroless plating. Thereafter, as shown in FIG. 15D, a plurality of movable bodies 40 are formed by punching the bimetal root sheet 243 with a resistance layer into elliptical pieces. The subsequent steps are the same as those shown in the seventh embodiment.
 前記絶縁層および抵抗層の材料および形成方法に関するバリエーションは第7の実施形態で述べたとおりである。 The variations regarding the material and forming method of the insulating layer and the resistance layer are as described in the seventh embodiment.
《他の実施形態》
 以上に示した幾つか実施形態では楕円形板状または矩形板状の可動体を用いたが、この他に可動体は円板状や菱形板状であってもよい。基台についても矩形板状に限定されるものではなく、円板状や菱形板状であってもよい。
<< Other embodiments >>
In some embodiments described above, a movable body having an elliptical plate shape or a rectangular plate shape is used. However, the movable body may have a disk shape or a diamond plate shape. The base is not limited to a rectangular plate shape, and may be a disk shape or a rhombus shape.
 以上に示した各実施形態によれば次のような効果を奏する。
(1)絶縁層を極めて薄く形成できるので、抵抗層とバイメタルとの間の熱抵抗が小さく、抵抗層とバイメタルの温度差を少なくできる。すなわち、バイメタルの昇温スピードが速く、応答性が高い。
According to each embodiment shown above, there exist the following effects.
(1) Since the insulating layer can be formed extremely thin, the thermal resistance between the resistance layer and the bimetal is small, and the temperature difference between the resistance layer and the bimetal can be reduced. That is, the temperature rise rate of the bimetal is fast and the responsiveness is high.
(2)可動体40を給電導体等の支持体でかしめることによって支持する構造であるので、支持および給電のために可動体の上部をカバーで覆う必要がなく、低背化が図れる。また、カバーが不要となるため、使用用途も広がる。さらに、可動体と基台とがかしめられることにより固定されているため、接着剤等を使用して固定した場合に比べて、可動体と基台との固定部分の信頼性が向上する。 (2) Since the movable body 40 is supported by caulking with a support such as a power supply conductor, it is not necessary to cover the upper part of the movable body with a cover for support and power supply, and the height can be reduced. In addition, since the cover is unnecessary, the usage is expanded. Furthermore, since the movable body and the base are fixed by caulking, the reliability of the fixed portion between the movable body and the base is improved as compared with the case where the movable body and the base are fixed.
(3)支持部側または可動接点側を給電導体と絶縁支持体で構成することで、抵抗層だけでなく、バイメタルにも直接結合されるので、可動体への可動接点の取り付けまたは基台への可動体の取り付けの信頼性や耐久性が高まる。 (3) Since the support part side or the movable contact side is composed of the power supply conductor and the insulating support, it is directly coupled to the bimetal as well as the resistance layer, so that the movable contact can be attached to the movable body or to the base This increases the reliability and durability of mounting the movable body.
 また、第1~第4の実施形態によれば、抵抗層が基台に対面する位置にあるため、基台30と可動体40とで囲まれる(挟まれる)空間で抵抗層が発熱することにより、外部への無駄な放熱がなく、バイメタル41を効率よく加熱できる。そのため、さらなる低消費電力化が図れる。 Further, according to the first to fourth embodiments, since the resistance layer is in a position facing the base, the resistance layer generates heat in a space surrounded (sandwiched) by the base 30 and the movable body 40. Thus, there is no wasteful heat radiation to the outside, and the bimetal 41 can be efficiently heated. Therefore, further reduction in power consumption can be achieved.
H1,H2,H3…孔
30…基台
31…基板
32,33…給電端子
34,35…孔
36,37…配線パターン
40…可動体
41…バイメタル
42…絶縁層
43…抵抗層
44…作用部材
51…給電導体
51A…給電導体
51B…絶縁支持体
52…可動接点
52A…給電導体
52B…絶縁支持体
53…固定接点
54,55…基台側接点
56,57…可動体側接点
56A…給電導体
56B…絶縁支持体
58…給電導体
60…作用部材
70…対象部材
101~106…アクチュエータ
141…バイメタルロール
142…絶縁層付きバイメタルロール
143…抵抗層付きバイメタルロール
242…バイメタルシート
242…絶縁層付きバイメタルシート
243…抵抗層付きバイメタルートシート
H1, H2, H3 ... hole 30 ... base 31 ... substrate 32, 33 ... power supply terminals 34, 35 ... holes 36, 37 ... wiring pattern 40 ... movable body 41 ... bimetal 42 ... insulating layer 43 ... resistance layer 44 ... working member DESCRIPTION OF SYMBOLS 51 ... Feed conductor 51A ... Feed conductor 51B ... Insulation support 52 ... Movable contact 52A ... Feed support 52B ... Insulation support 53 ... Fixed contact 54, 55 ... Base side contact 56, 57 ... Movable body side contact 56A ... Feed conductor 56B ... Insulating support 58 ... Feeding conductor 60 ... Action member 70 ... Target members 101 to 106 ... Actuator 141 ... Bimetal roll 142 ... Bimetal roll 143 with insulation layer ... Bimetal roll 242 with resistance layer ... Bimetal sheet 242 ... Bimetal sheet with insulation layer 243 ... Bimetal route sheet with resistance layer

Claims (8)

  1.  可動体、この可動体を支持する基台、および前記基台から前記可動体へ給電する給電手段を備えたアクチュエータにおいて、
     前記可動体は、バイメタルと、このバイメタルに形成された絶縁層と、この絶縁層を介して前記バイメタルとは絶縁された抵抗層とを備え、
     前記可動体と前記基台とがかしめられることにより固定されており、
     前記給電手段は前記バイメタルとは絶縁状態で前記抵抗層へ給電することを特徴とするアクチュエータ。
    In an actuator including a movable body, a base that supports the movable body, and a power feeding unit that feeds power from the base to the movable body.
    The movable body includes a bimetal, an insulating layer formed on the bimetal, and a resistance layer insulated from the bimetal via the insulating layer,
    It is fixed by caulking the movable body and the base,
    The actuator, wherein the power feeding means feeds power to the resistance layer in an insulated state from the bimetal.
  2.  前記バイメタルは非加熱時に第1主面が凸面、第2主面が凹面であり、加熱時に第1主面が凹面、第2主面が凸面となる曲板であって、前記抵抗層の発熱時と非発熱時とで前記凸面と凹面がスナップ動作で反転する、請求項1に記載のアクチュエータ。 The bimetal is a curved plate in which the first main surface is a convex surface and the second main surface is a concave surface when not heated, the first main surface is a concave surface and the second main surface is a convex surface when heated, and the heat generation of the resistance layer 2. The actuator according to claim 1, wherein the convex surface and the concave surface are reversed by a snap action between time and non-heat generation.
  3.  前記給電手段は第1給電部と第2給電部とを備え、第1給電部は前記可動体を支持する支持部に設けられ、第2給電部は前記可動体に設けられた可動接点およびこの可動接点が前記抵抗層の非発熱時に当接する、前記基台に設けられた固定接点で構成された、請求項1または2に記載のアクチュエータ。 The power supply means includes a first power supply unit and a second power supply unit, the first power supply unit is provided on a support unit that supports the movable body, the second power supply unit is provided with a movable contact provided on the movable body, and The actuator according to claim 1, wherein the movable contact is configured by a fixed contact provided on the base that abuts when the resistance layer does not generate heat.
  4.  前記バイメタルは両持ち構造で前記基台に支持されていて、非加熱時に第1主面が凹面、第2主面が凸面であり、加熱時に第1主面が凸面、第2主面が凹面となる曲板であって、前記抵抗層の発熱時と非発熱時とで前記凸面と凹面がスナップ動作で反転する、請求項1に記載のアクチュエータ。 The bimetal is supported by the base in a double-sided structure, the first main surface is concave and the second main surface is convex when not heated, the first main surface is convex and the second main surface is concave when heated. 2. The actuator according to claim 1, wherein the convex surface and the concave surface are reversed by a snap operation when the resistance layer generates heat and does not generate heat.
  5.  前記給電手段は第1給電部と第2給電部とを備え、前記第1給電部および前記第2給電部は前記基台の外周に沿って並んだ領域に設けられており、前記抵抗層は、前記第1給電部および前記第2給電部が設けられた領域と対向する方向へ前記第1給電部および前記第2給電部から延びるパターンに形成されていることを特徴とする、請求項1に記載のアクチュエータ。 The power supply means includes a first power supply unit and a second power supply unit, and the first power supply unit and the second power supply unit are provided in a region aligned along an outer periphery of the base, and the resistance layer includes The first power supply unit and the second power supply unit are formed in a pattern extending from the first power supply unit and the second power supply unit in a direction opposite to a region where the first power supply unit and the second power supply unit are provided. Actuator.
  6.  前記バイメタルの熱応動変形にともなって変位する可動体の位置に当接または連結する棒状の作用部材を設けた請求項1~5のいずれかに記載のアクチュエータ。 The actuator according to any one of claims 1 to 5, further comprising a rod-like action member that comes into contact with or is connected to a position of a movable body that is displaced in accordance with a thermally responsive deformation of the bimetal.
  7.  前記バイメタルの変位を受けてスナップ動作で変形する作用部材を備えた、請求項1または5に記載のアクチュエータ。 The actuator according to claim 1 or 5, further comprising an action member that is deformed by a snap operation in response to the displacement of the bimetal.
  8.  前記抵抗層は無電解めっきにより形成されたことを特徴とする請求項1~7のいずれかに記載のアクチュエータ。 The actuator according to any one of claims 1 to 7, wherein the resistance layer is formed by electroless plating.
PCT/JP2011/073492 2010-11-26 2011-10-13 Actuator WO2012070324A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012545651A JP5573960B2 (en) 2010-11-26 2011-10-13 Actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-264413 2010-11-26
JP2010264413 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012070324A1 true WO2012070324A1 (en) 2012-05-31

Family

ID=46145682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073492 WO2012070324A1 (en) 2010-11-26 2011-10-13 Actuator

Country Status (2)

Country Link
JP (1) JP5573960B2 (en)
WO (1) WO2012070324A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027496A1 (en) * 2014-08-22 2016-02-25 株式会社 村田製作所 Actuator
WO2016027497A1 (en) * 2014-08-22 2016-02-25 株式会社 村田製作所 Switch
JP2017024477A (en) * 2015-07-17 2017-02-02 株式会社デンソー Vehicular collision detection device and method for inspecting the same
WO2021187129A1 (en) * 2020-03-18 2021-09-23 ボーンズ株式会社 Breaker, safety circuit, and secondary battery pack

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109243U (en) * 1979-01-29 1980-07-31
JPS5620913Y2 (en) * 1972-09-18 1981-05-18
JPS57185171A (en) * 1981-05-11 1982-11-15 Oki Electric Ind Co Ltd Thermal head
JPS58193483A (en) * 1982-03-03 1983-11-11 ポ−ル・レイモンド・グツドウイン Differential thermal expansion device, which can be heated electrically, and/or manufacture of said thermal expansion device and/of device using said thermal expansion device
JPH03194901A (en) * 1989-12-22 1991-08-26 Omron Corp Resistor and its manufacture
JP2002279877A (en) * 2001-03-19 2002-09-27 Texas Instr Japan Ltd Protector
JP2007035538A (en) * 2005-07-29 2007-02-08 Alps Electric Co Ltd Thermal switch

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620913Y2 (en) * 1972-09-18 1981-05-18
JPS55109243U (en) * 1979-01-29 1980-07-31
JPS57185171A (en) * 1981-05-11 1982-11-15 Oki Electric Ind Co Ltd Thermal head
JPS58193483A (en) * 1982-03-03 1983-11-11 ポ−ル・レイモンド・グツドウイン Differential thermal expansion device, which can be heated electrically, and/or manufacture of said thermal expansion device and/of device using said thermal expansion device
JPH03194901A (en) * 1989-12-22 1991-08-26 Omron Corp Resistor and its manufacture
JP2002279877A (en) * 2001-03-19 2002-09-27 Texas Instr Japan Ltd Protector
JP2007035538A (en) * 2005-07-29 2007-02-08 Alps Electric Co Ltd Thermal switch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027496A1 (en) * 2014-08-22 2016-02-25 株式会社 村田製作所 Actuator
WO2016027497A1 (en) * 2014-08-22 2016-02-25 株式会社 村田製作所 Switch
JP2017024477A (en) * 2015-07-17 2017-02-02 株式会社デンソー Vehicular collision detection device and method for inspecting the same
WO2021187129A1 (en) * 2020-03-18 2021-09-23 ボーンズ株式会社 Breaker, safety circuit, and secondary battery pack

Also Published As

Publication number Publication date
JP5573960B2 (en) 2014-08-20
JPWO2012070324A1 (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP4109992B2 (en) Switch and integrated circuit device
JP5967366B2 (en) Flat shape memory cable body and driving device using the same
US20190069350A1 (en) Layered heater system with honeycomb core structure
JP5573960B2 (en) Actuator
JP5040649B2 (en) Piezoelectric element
US9691964B2 (en) Piezoelectric element unit and driving device
JP2006509337A (en) Foil-type switching element having multilayer carrier foil
KR20230012628A (en) Heating assembly and aerosol forming device
JP6601075B2 (en) Push switch and manufacturing method of push switch
JP2006202675A (en) Method of manufacturing heater mirror, and heater mirror
WO2006009279A1 (en) Piezoelectric sound producing unit
JP5371728B2 (en) Piezoelectric parts
KR100840796B1 (en) A terminal for ceramic heater
JP2004274072A (en) Substrate for thermoelectric module, manufacturing method therefor, and the thermoelectric module
US10897004B2 (en) Piezoelectric drive device
JP6729015B2 (en) Piezoelectric element
EP2803417A1 (en) Electrostatic atomizer
JP2008098483A (en) Piezoelectric element
JP3122064B2 (en) Electrode connection structure of piezoelectric transformer
JP2007220827A (en) Electronic component
US20240110883A1 (en) Mems gas sensor and manufacturing method thereof
JP2012206273A (en) Thermal head
JP6726508B2 (en) Piezoelectric actuator
KR101283705B1 (en) Cameramodule piezoelectric autofocus actuator
JP4614566B2 (en) Piezoelectric transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843680

Country of ref document: EP

Kind code of ref document: A1