WO2012069752A1 - Dispositif de detection d'une contamination fongique - Google Patents

Dispositif de detection d'une contamination fongique Download PDF

Info

Publication number
WO2012069752A1
WO2012069752A1 PCT/FR2011/052720 FR2011052720W WO2012069752A1 WO 2012069752 A1 WO2012069752 A1 WO 2012069752A1 FR 2011052720 W FR2011052720 W FR 2011052720W WO 2012069752 A1 WO2012069752 A1 WO 2012069752A1
Authority
WO
WIPO (PCT)
Prior art keywords
vocs
target
fungal
module
detection
Prior art date
Application number
PCT/FR2011/052720
Other languages
English (en)
Inventor
Stéphane MOULARAT
Yaël JOBLIN
Enric Robine
Original Assignee
Centre Scientifique Et Technique Du Batiment (Cstb)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Scientifique Et Technique Du Batiment (Cstb) filed Critical Centre Scientifique Et Technique Du Batiment (Cstb)
Priority to JP2013539324A priority Critical patent/JP5882350B2/ja
Priority to ES11799764T priority patent/ES2571354T3/es
Priority to CA2817135A priority patent/CA2817135C/fr
Priority to EP11799764.3A priority patent/EP2643472B1/fr
Priority to DK11799764.3T priority patent/DK2643472T3/en
Publication of WO2012069752A1 publication Critical patent/WO2012069752A1/fr
Priority to US13/892,939 priority patent/US10227628B2/en
Priority to HRP20160441TT priority patent/HRP20160441T1/hr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0073Control unit therefor
    • G01N33/0075Control unit therefor for multiple spatially distributed sensors, e.g. for environmental monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56961Plant cells or fungi
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • G01N2030/085Preparation using an enricher using absorbing precolumn
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array

Definitions

  • the present invention relates to a device for detecting a fungal contamination in an indoor environment, its use and a method for detecting a fungal contamination in an indoor environment using such a device.
  • Indoor environment refers to a confined space within a building that is aerated in a non-continuous manner. Examples of indoor environments can be found in dwellings, museums, churches, cellars, historic monuments, administrative buildings, schools and hospitals. The presence of mold in indoor environments is not without health consequences. Indeed, many studies have shown the appearance of symptoms in the occupants of premises with molds, and also their role in the degradation of both materials and structures that they colonize. Indeed, the enzymes and / or acids produced by the fungi also cause the deterioration of their support.
  • VOCs Volatile Organic Compounds
  • Fungi emit from the beginning of their development volatile molecules (Volatile Organic Compounds, VOCs) resulting either from their metabolism or from the degradation of the material on which they develop by the enzymes or acids they produce.
  • VOCs diffuse through the walls and can be detected in the air even in the case of hidden contaminations.
  • VOCs present in an indoor environment can also come from other sources such as building materials, household products or even human activity. Concentrations of fungal VOCs, especially at an early stage of contamination, appear to be relatively low compared to all VOCs present in indoor environments.
  • the patent application FR 2913501 proposes a method for detecting fungal contamination in an indoor environment by determining a fungal contamination index based on the analysis of VOC present in the ambient air.
  • This method allows the detection of a fungal development at an early stage of its development even in case of hidden contamination but implements conventional methods of analysis, such as chromatography in phase gas coupled to a mass spectrometer. These methods require the collection of a sample that must be reported to the laboratory where it will undergo long stages of concentration, separation and analysis. These steps for the detection of fungal contamination in an indoor environment require the intervention of a qualified technician and are relatively long and expensive. These analysis techniques therefore do not allow rapid and continuous measurement. Chemical sensors are commonly used for the continuous measurement of organic pollutants. However, such sensors are not sensitive enough to detect levels of VOCs emitted during fungal development, nor sufficiently selective to differentiate these fungal VOCs from other VOCs from other biological sources or construction .
  • the applicant company has managed to develop a device for detecting fungal contamination in an indoor environment allowing a rapid in situ analysis of the ambient air with a short measurement time, and thus the detection of contamination in continued.
  • the device of the invention also has the advantage of being able to be used without the intervention of a specialized technician.
  • the present invention relates to a device for detecting fungal contamination in an indoor environment comprising:
  • a separation module comprising a chromatrographic microcolumn
  • a detection module comprising a matrix of sensors.
  • the presence or absence of mold in an indoor environment can not be inferred from the detection of a single fungal VOC.
  • the present inventors have therefore devised a device that uses a principle of detection of a fungal contamination based on the detection of certain target VOCs.
  • the device of the invention therefore allows in particular the detection of the presence or absence of target VOCs chosen from a range of target VOCs that may result from the development of a fungal contamination.
  • Target VOCs include:
  • VOCs that are emitted independently of the fungal species and their carrier and that are released only by fungal species, such as 1-octen-3-ol, 1,3-octadiene and methyl- 2-ethylhexanoate;
  • VOCs that are emitted independently of the fungal species and carrier, but which may also have other biological origins, such as 2-methylfuran, 3-methylfuran, 3-methyl-1-butanol, 2-methyl-1-butanol and -pinene;
  • VOCs that are released based on the fungal species and / or carrier such as 2-heptene, dimethylsulfide, 4-heptanone, 2 (5H) -furanone, 3-heptanol and methoxybenzene.
  • Targeted VOCs may also include VOCs that do not fall into categories (1), (2) or (3) but are involved in assessing the presence of fungal contamination, such as 2-ethylhexanol.
  • the preconcentration module of the device according to the invention allows a concentration of target VOCs present in the ambient air to a detectable concentration by the detection module.
  • the concentration of VOCs can be achieved by any method known to those skilled in the art, in particular the accumulation on an adsorbent material.
  • the preconcentration module therefore advantageously comprises an adsorbent material allowing the accumulation of target VOCs.
  • the structure of the adsorbent material typically has a shape to optimize its specific surface area.
  • the adsorbent material is in the form of particles typically having a size of 50 to 200 ⁇ m, a specific surface area of 20 to 50 m 2 / g, a porosity of 1 to 5 cm 3 / g and an average pore size of 50 to 500 nm.
  • the adsorbent material is preferably selected from active charcoal, silica gel, zeolites and porous synthetic resins, such as those marketed under the tradename Tenax®, Carbograph® or Chromosorb®.
  • the preconcentration module advantageously further comprises a heating system for the desorption of adsorbed VOCs on the adsorbent material.
  • the preconcentration module comprises a micro-preconcentrator.
  • a micro-preconcentrator typically has a useful volume of 0.1 to 1 cm 3 , preferably 0.1 to 0.5 cm 3 , more preferably 0.1 to 0.3 cm 3 .
  • the micro-preconcentrator consists of a substrate plate, such as a silicon wafer, on the surface of which grooves are engraved in which the adsorbent material is located.
  • the substrate plate typically has an area of 5 to 20 cm 2 .
  • the grooves advantageously have a length of 3 to 10 cm, a width of 200 to 1000 pm, a depth of 200 to 1000 pm, and a section of 0.04 to 1 mm 2 .
  • the section of the grooves may have various shapes such as rectangular, semicircular or circular.
  • the preconcentration module also comprises a forced circulation system for forcing the passage of ambient air through the preconcentration module.
  • the separation module comprises a chromatographic micro-column advantageously having a cross section of 0.01 to 0.25 mm 2 .
  • the length of the micro-column should also be chosen so as to optimize the separation of VOCs. It is advantageously greater than 1 m, preferably between 1 and 50 m. The choice of a long length makes it possible to improve the efficiency of the column and thus to obtain a better separation of the VOCs.
  • the micro ⁇ column comprises a stationary phase that the skilled person will choose to optimize the separation of VOCs. This advantageously belongs to the family of polysiloxanes (for example dimethylpolysiloxane (PDMS)). Different stationary phases can also be used.
  • PDMS dimethylpolysiloxane
  • the micro-column comprises for example a substrate plate, such as a silicon wafer, on whose surface is etched a groove in which the stationary phase is located.
  • the substrate plate typically has an area of 5 to 20 cm 2 .
  • the groove advantageously has a length of more than 1 m, preferably 1 to 50 m, a width of 100 to 500 ⁇ m, a depth of 100 to 500 ⁇ m, and a section of 0.01 to 0.25 mm 2 .
  • the section of the grooves may have various shapes such as rectangular, semicircular or circular.
  • the groove can be arranged in different ways so as to minimize the size and therefore the size of the structure, for example in parallel laces (coil).
  • the separation module also comprises a target VOC selection system preferably comprising a solenoid valve and a programmable unit for controlling said solenoid valve.
  • This selection system is directly connected to the output of the micro-column.
  • the retention time for a stationary phase and a given micro-column length is specific for each VOC.
  • the programmable unit may be preprogrammed so that the selection system selectively directs the corresponding eluate portions to the retention times of each target VOC to the detection module, the remainder of the eluate being removed from the analysis circuit.
  • Said eluate portions may be sent one after the other to the detection module, as the elution progresses, they are stored and sent together in the detection module.
  • Target VOCs consisting mainly of fungal VOCs, have very low concentrations compared to the total concentrations of all VOCs present in the ambient air.
  • this selective separation of the target VOCs makes it possible to prevent the formation of a background noise and / or the hysteresis and / or saturation phenomena of the sensors of the detection module that would be pre-limeable to the detection of the target VOCs.
  • the detection module of the device comprises a matrix of sensors advantageously chosen from electrochemical sensors of the polymer or metal oxide type.
  • the sensors preferably comprise a polymer or polymer blend layer having fungal VOC affinity.
  • the polymer may be chosen from polypyrroles, polythiophenes, polyanilines and their derivatives.
  • polybifluorene, sodium poly (3,4-ethylenedioxythiophene) / poly (styrene sulfonate) (PEDOT-PSS), sodium polypyrrole / octane sulfonate and lithium polypyrrole / perchlorate has been demonstrated.
  • VOCs can be classified into different families according to their chemical nature: aliphatic VOCs, alcohols, ketones, esters, ethers, aldehydes, aromatic VOCs, chlorinated VOCs, nitrogen VOCs or sulfur VOCs.
  • the sensor array includes sensors specific to each VOC family.
  • the response of the sensor array makes it possible to conclude on the presence or absence of a VOC in a given eluate portion, but is not sufficient on its own to determine the nature of the VOC detected.
  • the response of the sensor matrix makes it possible to determine which family (s) belong to the detected VOC and the knowledge of the retention time of the portion of eluate considered makes it possible to know which target VOC may be present in said portion of eluate.
  • it is possible to deduce the presence or absence of each target VOC by combining the information provided by the retention time and the sensor array.
  • the matrix comprises a set of sensors making it possible to obtain a global footprint specific to each target VOC.
  • global footprint is meant the combination of the responses of all the sensors of the matrix.
  • each sensor in the array is not specific to a single target VOC, the combined response of multiple sensors specifically identifies each target VOC.
  • the sensor array includes sensors specific to each target VOC.
  • the sensor matrix comprises as many sensors as target VOCs and the response of each specific sensor allows to conclude individually on the presence or absence of the target VOC for which it is specific.
  • the detection module also comprises a confinement chamber enclosing the matrix of sensors.
  • This chamber allows the confinement of the sensitive layers of the sensors in order to expose them only to the samples to be analyzed.
  • the confinement chamber is made in a non-emissive or low-emission VOC material under the analysis conditions, such as stainless steel or polytetrafluoroethylene (PTFE), in order to avoid contamination of the sample at analyze.
  • the device of the invention further comprises an information processing module.
  • This one is able to interpret the signals emitted by each sensor and to deduce the presence or absence of each target VOC.
  • the information processing module determines the presence or absence of a fungal contamination. This determination can be done for example by calculating a fungal contamination index as defined in the patent application FR 2913501.
  • the device of the invention therefore has an advantage as regards its size and its autonomy, which makes it possible to considerably reduce the time interval between the successive measurements and / or the response time of the measurement.
  • the duration of a measurement with the device of the invention is typically 10 to 180 min, preferably 30 to 120 min.
  • Such a device therefore offers the possibility of setting up an effective strategy for monitoring fungal contaminations with a small time interval between measurements. Thus an alert procedure can be considered in order to find and treat contaminations in their early stages of development.
  • the ambient air control systems such as VMC, may be slaved to the device of the invention to prevent or limit fungal development.
  • the present invention also relates to a method for detecting a fungal contamination in an indoor environment implemented by the device of the invention and comprising:
  • the method of the invention comprises taking a sample of VOCs in the indoor environment.
  • the device of the invention is disposed in the indoor environment and the sample is taken by contact between the preconcentration module and the air ambient.
  • the sample is taken by natural convection of the ambient air.
  • the collection of the sample then lasts between 60 and 300 min.
  • the sample is taken by forced convection causing the passage of ambient air through the preconcentration module.
  • the flow rate of the ambient air passing through the sampling module is, for example, from 10 to 1000 ml / min.
  • the collection of the sample then lasts between 5 and 60 min.
  • the sample is preferably taken by adsorption of the VOCs on an adsorbent material.
  • the process of the invention also comprises a desorption step of the adsorbed VOCs. This is carried out by thermo-desorption under conditions well known to those skilled in the art.
  • the method of the invention also includes separation of the VOCs taken. The separated VOCs are separated by the separation module. In particular, the VOCs collected are separated by elution on a micro ⁇ chromatographic column. Optimum separation parameters such as the temperature of the column or the flow rate of the mobile phase are determined according to the techniques well known to those skilled in the art depending on the geometry of the column, the nature of the stationary phase and the vector gas.
  • the method of the invention also includes the detection of VOCs present. As elution proceeds, the eluate is directed to the detection module where detection of the VOCs present is performed by analyzing the eluate by the sensor array. In a preferred embodiment, the method of the invention comprises:
  • target VOCs are selected from the VOCs taken by the separation module. This step is performed by the selection system during the elution of the sample on the chromatographic microcolumn. To do this, proceed as follows. Each target VOC elutes at a different known rate for a given chromatographic system. Therefore, a given retention time is assigned to a target VOC. The selection system is programmed with these values. The selection system is then able to select the portions of eluate having a retention time corresponding to the target VOCs. These portions of eluate are then sent selectively to the detection module. The portions of eluate not corresponding to the preprogrammed values are eliminated. Therefore, only the presence or absence of the target VOCs is detected by the detection module.
  • the target VOCs are preferably selected from the group consisting of 1-octen-3-ol, 1,3-octadiene, 2-methylhexanoate, 2-methylfuran, 3-methylfuran, 3-methyl- 1-butanol, 2-methyl-1-butanol, -pinene 2-heptene, dimethylsulfide, 4- heptanone, 2 (5H) -furanone, 3-heptanol, methoxybenzene and 2-ethylhexanol, and mixtures thereof.
  • the method of the invention also comprises the determination of a fungal contamination index, for example using the method as defined in the patent application FR 2913501.
  • the process according to the invention is preferably used continuously.
  • the duration of a measuring cycle is 10 to 180 min, preferably 30 to 120 min.
  • the present invention also relates to the use of the device according to the invention for detecting fungal contamination in an indoor environment.
  • the device of the invention can also be used in a system for controlling ambient air, such as a VMC.
  • the preconcentration module comprises a micro-preconcentrator engraved on a silicon wafer by a DRIE method.
  • the micro-preconcentrator is composed of 20 grooves 6 cm long, rectangular in section 500 ⁇ m wide and 400 ⁇ m long, and has a working volume of 0.25 m 2 .
  • the grooves are filled with resin particles based on 2,6-diphenyl oxide marketed under the TENAX® TA name having an average diameter of 120 ⁇ m, a specific surface area of 35 m 2 / g, a porosity of 2.4 cm 3 / g and a mean pore size of 200 nm.
  • the micro-preconcentrator is closed by a silicon wafer bonded to the surface comprising the grooves of the first plate.
  • a chromatographic micro-column was etched on a silicon wafer by a DRIE method.
  • the micro-column is composed of a furrow 5 m long, rectangular in section 150 ⁇ m wide and 200 ⁇ m in length.
  • the groove is arranged in the form of parallel laces (or coil) with elbows in the form of an arc to avoid the formation of blind spots.
  • a stationary phase of PDMS, dimethylpolysiloxane (Sylgard® 184, Dow corning), is present inside the microcolumn.
  • the micro-column is closed with a second silicon wafer adhered to the surface including the groove of the first wafer.
  • the detection module comprises a sensor array composed of 4 polymer sensors.
  • Polymer sensors with affinity for fungal VOCs (respectively PEDOT-PSS, polypyrrole / sodium octane sulfonate, polypyrrole / lithium perchlorate and polybifluorene) deposited on interdigitated electrode pairs.
  • the sensor array is disposed in a PTFE containment chamber.
  • the different elements are connected to each other and to the circulation system via NanoPort TM connectors.
  • Target VOC samples were run in the micro-column to determine the retention times for each target VOC.
  • the retention times of each target VOC are listed in Table 2.
  • Example 1 The device of Example 1, comprising a matrix of sensors, has been placed in different healthy indoor environments or with fungal contamination at different stages of development. VOC removal in the indoor environment was accomplished by forced convection of ambient air through the preconcentration module at a rate of 100 mL / min for 15 minutes.
  • the total duration of the measurements is 20 min.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Combustion & Propulsion (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mycology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La présente invention concerne un dispositif de détection d'une contamination fongique dans un environnement intérieur, son utilisation ainsi qu'un procédé de détection d'une contamination fongique dans un environnement intérieur mettant en œuvre un tel dispositif.

Description

Dispositif de détection d' une contamination fongique
La présente invention concerne un dispositif de détection d'une contamination fongique dans un environnement intérieur, son utilisation ainsi qu'un procédé de détection d'une contamination fongique dans un environnement intérieur mettant en œuvre un tel dispositif.
Par environnement intérieur on entend un espace confiné à l'intérieur d'un bâtiment qui est aéré de façon non continu. Des exemples d'environnements intérieurs peuvent être trouvés dans les habitations, les musées, les églises, les caves, les monuments historiques, les bâtiments administratifs, les écoles et les hôpitaux. La présence de moisissures dans les environnements intérieurs n'est pas sans conséquences sanitaires. En effet, de nombreuses études ont démontré l'apparition de symptômes chez les occupants de locaux comportant des moisissures, et également leur rôle dans la dégradation à la fois des matériaux et des ouvrages qu'elles colonisent. En effet, les enzymes et/ou les acides produits par les champignons provoquent également la détérioration de leur support.
Les techniques de détection de présence de moisissures dans les environnements intérieurs reposant sur la reconnaissance visuelle d'un développement fongique et la mise en culture de conidies prélevées dans l'air ou sur les surfaces ne permettent pas de déceler efficacement les contaminations « cachées » ni de détecter les contaminations assez tôt pour prévenir efficacement la détérioration de leurs supports. En effet, cette détérioration est généralement déjà avancée lorsque la contamination est détectable par reconnaissance visuelle. De plus, le temps de réponse de ces techniques de mesure est long puisqu'il est nécessaire d'attendre la croissance en laboratoire des microorganismes prélevés avant de pouvoir réaliser l'analyse. Par conséquent, il existe, en particulier pour certains domaines sensibles comme la préservation des œuvres artistiques ou historiques, une demande pour une solution permettant une détection précoce et une surveillance en continu des contaminations fongiques.
Les champignons émettent dès le début de leur développement des molécules volatiles (Composés Organiques Volatils, COV) issues soit de leur métabolisme, soit de la dégradation du matériau sur lequel ils se développent par les enzymes ou les acides qu'ils produisent. Les COV diffusent à travers les parois et peuvent être détectés dans l'air même dans le cas de contaminations cachées. Cependant, les COV présents dans un environnement intérieur peuvent également provenir d'autres sources telles que les matériaux de construction, les produits ménagers ou encore l'activité humaine. Les concentrations des COV d'origine fongique, notamment à un stade précoce de contamination, s'avèrent être relativement faibles comparées à l'ensemble des COV présents dans un environnement intérieur. La demande de brevet FR 2913501 propose un procédé de détection d'une contamination fongique dans un environnement intérieur par la détermination d'un indice de contamination fongique basée sur l'analyse des COV présents dans l'air ambiant. Ce procédé permet la détection d'un développement fongique à un stade précoce de son développement même en cas de contamination cachée mais met en œuvre des méthodes classiques d'analyse, comme la chromatographie en phase gazeuse couplée à un spectromètre de masse. Ces méthodes nécessitent la collecte d'un échantillon qui doit être rapporté au laboratoire où il subira de longues étapes de concentration, de séparation et d'analyse. Ces étapes pour la détection d'une contamination fongique dans un environnement intérieur nécessitent l'intervention d'un technicien qualifié et se révèlent relativement longues et coûteuses. Ces techniques d'analyse ne permettent donc pas une mesure rapide et en continu. Les capteurs chimiques sont couramment utilisés pour la mesure en continu des polluants organiques. Cependant, de tels capteurs ne sont pas suffisamment sensibles pour détecter les niveaux de concentrations en COV émis lors d'un développement fongique, ni suffisamment sélectifs pour différencier ces COV d'origine fongique des autres COV provenant d'autres sources biologiques ou des matériaux de construction .
Les solutions disponibles à ce jour ne permettent donc pas de répondre à la demande de détection précoce et de surveillance en continu des contaminations fongiques.
La société demanderesse a quant à elle réussi à mettre au point un dispositif de détection d'une contamination fongique dans un environnement intérieur permettant une analyse rapide in situ de l'air ambiant avec un faible temps de mesure, et donc la détection de contamination en continu. Le dispositif de l'invention présente de plus l'avantage de pouvoir être utilisé sans l'intervention d'un technicien spécialisé . Ainsi, la présente invention concerne un dispositif de détection d'une contamination fongique dans un environnement intérieur comprenant :
- un module de préconcentration ;
- un module de séparation comprenant une micro-colonne chromâtographique ; et
- un module de détection comprenant une matrice de capteurs .
La présence ou l'absence de moisissure dans un environnement intérieur ne peut pas être déduite à partir de la détection d'un seul COV d'origine fongique. Les présents inventeurs ont donc conçu un dispositif qui utilise un principe de détection d'une contamination fongique reposant sur la détection de certains COV cibles. Le dispositif de l'invention permet donc en particulier la détection de la présence ou l'absence de COV cibles choisis parmi une palette de COV cibles pouvant résulter du développement d'une contamination fongique. Les COV cibles comprennent notamment :
(1) les COV qui sont émis indépendamment de l'espèce fongique et de leur support et qui ne sont émis que par des espèces fongiques, tels que le l-octèn-3-ol , le 1 , 3-octadiène et le méthyl-2-éthylhexanoate ;
(2) les COV qui sont émis indépendamment de l'espèce fongique et du support, mais qui peuvent également avoir d'autres origines biologiques, tels que le 2- méthylfurane, le 3-méthylfurane, le 3-méthyl-l-butanol , le 2- méthyl-l-butanol et le -pinène ;
(3) les COV qui sont émis en fonction de l'espèce fongique et/ou du support, tels que le 2-heptène, le diméthylsulfure, le 4-heptanone, le 2 ( 5H) -furanone, le 3-heptanol et le méthoxybenzène . Les COV cibles peuvent également comprendre des COV n'appartenant pas aux catégories (1), (2) ou (3) mais intervenant dans l'appréciation de la présence d'une contamination fongique, tel que le 2-éthylhexanol . Le module de préconcentration du dispositif selon l'invention permet une concentration des COV cibles présents dans l'air ambiant jusqu'à une concentration détectable par le module de détection. La concentration des COV peut être réalisée par toute méthode connue de l'homme du métier, en particulier l'accumulation sur un matériau adsorbant. Le module de préconcentration comprend donc avantageusement un matériau adsorbant permettant l'accumulation des COV cibles. La structure du matériau adsorbant possède typiquement une forme permettant d'optimiser sa surface spécifique. De préférence, le matériau adsorbant est sous forme de particules ayant typiquement une taille de 50 à 200 pm, une surface spécifique de 20 à 50 m2/g, une porosité de 1 à 5 cm3/g et une taille de pores moyenne de 50 à 500 nm. Le matériau adsorbant est préfèrentiellement choisi parmi le charbon actif, le gel de silice, les zéolithes et les résines synthétiques poreuses, tels ceux commercialisés sous la marque Tenax®, Carbograph® ou Chromosorb®. Le module de préconcentration comprend avantageusement en outre un système de chauffage permettant la désorption des COV adsorbés sur le matériau adsorbant.
Selon un mode de réalisation particulier du dispositif de l'invention, le module de préconcentration comprend un micro-préconcentrateur. Un tel micro-préconcentrateur présente typiquement un volume utile de 0,1 à 1 cm3, de préférence 0,1 à 0,5 cm3, plus préfèrentiellement de 0,1 à 0,3 cm3. Le micro-préconcentrateur est constitué d'une plaque de substrat, telle qu'une plaque de silicium, sur la surface duquel sont gravés des sillons dans lesquels se trouve le matériau adsorbant. Une seconde plaque, d'un matériau identique ou différent du substrat (tel qu'une plaque de verre) , collée sur la surface de la plaque de substrat gravée comportant les sillons, referme le micro- préconcentrateur. La plaque de substrat a typiquement une surface de 5 à 20 cm2. Les sillons ont avantageusement une longueur de 3 à 10 cm, une largeur de 200 à 1000 pm, une profondeur de 200 à 1000 pm, et une section de 0,04 à 1 mm2. La section des sillons peut présenter diverses formes telles que rectangulaire, semi-circulaire ou circulaire.
Avantageusement, le module de préconcentration comprend également un système de circulation forcée permettant de forcer le passage de l'air ambiant à travers le module de préconcentration.
Le module de séparation comprend une micro-colonne chromatographique ayant avantageusement une section de 0,01 à 0,25 mm2. La longueur de la micro-colonne doit être également choisie de sorte à optimiser la séparation des COV. Elle est avantageusement supérieure à 1 m, de préférence comprise entre 1 et 50 m. Le choix d'une longueur importante permet d'améliorer l'efficacité de la colonne et donc d'obtenir une meilleure séparation des COV. La micro¬ colonne comprend une phase stationnaire que l'homme du métier saura choisir de sorte à optimiser la séparation des COV. Celle-ci appartient avantageusement à la famille des polysiloxanes (par exemple le diméthylpolysiloxane (PDMS)). Différentes phases stationnaires peuvent également être utilisées. Ces phases peuvent être des hydrocarbures ramifiés, des polyéthylène glycols et polypropylène glycols, des polyesters, des sulfones de polyaryléthers , ou encore des phases stationnaires à sélectivités spécifiques. La micro-colonne comprend par exemple une plaque de substrat, tel qu'une plaque de silicium, sur la surface duquel est gravé un sillon dans lequel se trouve la phase stationnaire . Une seconde plaque, d'un matériau identique ou différent du substrat (telle qu'une plaque de verre), collée sur la surface de la plaque de substrat gravée comportant le sillon, referme la micro-colonne. La plaque de substrat a typiquement une surface de 5 à 20 cm2. Le sillon a avantageusement une longueur de plus de 1 m, de préférence de 1 à 50 m, une largeur de 100 à 500 pm, une profondeur de 100 à 500 pm, et une section de 0,01 à 0,25 mm2. La section des sillons peut présenter diverses formes telles que rectangulaire, semi-circulaire ou circulaire. Le sillon peut être agencé de différentes manières de sorte à minimiser l'encombrement et donc la taille de la structure, par exemple en lacets parallèles (serpentin).
Selon un autre mode de réalisation du dispositif de l'invention, le module de séparation comprend également un système de sélection des COV cibles comprenant de préférence une électrovanne et une unité programmable permettant le contrôle de ladite électrovanne. Ce système de sélection est directement connecté à la sortie de la micro-colonne. Le temps de rétention, pour une phase stationnaire et une longueur de micro-colonne données, est spécifique pour chaque COV. Ainsi, en renseignant les temps de rétention de chaque COV cible, l'unité programmable peut être préprogrammée de sorte que le système de sélection dirige sélectivement les portions d'éluât correspondantes aux temps de rétention de chaque COV cible vers le module de détection, le reste de l'éluât étant évacué du circuit d'analyse. Lesdites portions d'éluât peuvent être soit envoyées les unes après les autres au module de détection, au fur et à mesure de l'élution, soit stockées puis envoyées ensemble dans le module de détection.
Les COV cibles, comprenant principalement des COV d'origine fongique, ont des concentrations très faibles comparées aux concentrations totales de l'ensemble des COV présents dans l'air ambiant. Ainsi, cette séparation sélective des COV cibles permet d'empêcher la formation d'un bruit de fond et/ou les phénomènes d'hystérésis et/ou de saturation des capteurs du module de détection qui seraient pré udiciables à la détection des COV cibles.
Le module de détection du dispositif selon l'invention comprend une matrice de capteurs avantageusement choisis parmi les capteurs électrochimiques de type polymère ou de type oxyde métallique. Les capteurs comprennent de préférence une couche de polymère ou de mélange de polymères ayant une affinité avec les COV d'origine fongique. Le polymère peut être choisi parmi les polypyrroles , les polythiophènes , les polyanilines , et leurs dérivés. En particulier, la sensibilité du polybifluorène, du poly (3, 4- éthylènedioxythiophène ) /poly ( styrène sulfonate) de sodium (PEDOT-PSS), du polypyrrole/octane sulfonate de sodium et du polypyrrole/perchlorate de lithium à un environnement fongique a été démontrée.
Les COV peuvent être classés en différentes familles selon leur nature chimique : les COV aliphatiques , les alcools, les cétones, les esters, les éthers, les aldéhydes, les COV aromatiques, les COV chlorés, les COV azotés ou les COV soufrés. Il existe des capteurs chimiques permettant la détection de composés possédant un groupe fonctionnel déterminé. De tels capteurs permettent de détecter et d'identifier la présence d'un COV appartenant à une famille déterminée mais ne permettent pas de différencier des COV appartenant à une même famille.
Dans un mode de réalisation particulier, la matrice de capteurs comprend des capteurs spécifiques à chaque famille de COV. Dans ce cas, la réponse de la matrice de capteurs permet de conclure sur la présence ou l'absence d'un COV dans une portion d'éluât donnée, mais ne suffit pas à elle seule à déterminer la nature du COV détecté. En revanche, la réponse de la matrice de capteurs permet de déterminer à quelle (s) famille (s) appartient le COV détecté et la connaissance du temps de rétention de la portion d'éluât considérée permet de savoir quel COV cible peut être présent dans ladite portion d'éluât. Ainsi, il est possible de déduire la présence ou l'absence de chaque COV cibles en combinant les informations fournies par le temps de rétention et la matrice de capteurs.
Dans un autre mode de réalisation, la matrice comprend un ensemble de capteurs permettant l'obtention d'une empreinte globale spécifique à chaque COV cible. Par empreinte globale, on entend la combinaison des réponses de l'ensemble des capteurs de la matrice. Dans ce cas, bien que chaque capteur de la matrice ne soit pas spécifique à un seul COV cible, la réponse combinée de plusieurs capteurs permet d'identifier de manière spécifique chaque COV cible. Ainsi, il est possible de déduire la présence ou l'absence de chaque COV cible à partir des informations fournies par la matrice de capteurs.
Dans un autre mode de réalisation, la matrice de capteurs comprend des capteurs spécifiques à chaque COV cible. Dans ce cas, la matrice de capteurs comprend autant de capteurs que de COV cibles et la réponse de chaque capteur spécifique permet de conclure individuellement sur la présence ou l'absence du COV cible dont il est spécifique .
Avantageusement, le module de détection comprend également une chambre de confinement enfermant la matrice de capteurs. Cette chambre permet le confinement des couches sensibles des capteurs afin de les exposer uniquement aux échantillons à analyser. Avantageusement, la chambre de confinement est réalisée dans un matériau non émissif ou peu émissif de COV dans les conditions d'analyse, tel que le l'acier inoxydable ou le polytétrafluoroéthylène (PTFE) , afin d'éviter la contamination de l'échantillon à analyser.
Dans un mode de réalisation particulier, le dispositif de l'invention comprend en outre un module de traitement de l'information. Celui-ci est capable d'interpréter les signaux émis par chaque capteur et de déduire la présence ou l'absence de chaque COV cible. De préférence, le module de traitement de l'information détermine la présence ou non d'une contamination fongique. Cette détermination peut se faire par exemple par le calcul d'un indice de contamination fongique tel que défini dans la demande de brevet FR 2913501.
Les méthodes classiques de détection et/ou d'identification mettent en œuvre des appareillages complexes tels que des spectromètres de masse, des spectromètres infrarouge, des détecteurs à ionisation de flamme ou des détecteurs à conductivité thermique qui sont difficiles à miniaturiser. L'originalité du dispositif de l'invention réside dans le couplage d'une micro-colonne chromatographique avec des capteurs chimiques. Ce dispositif a l'avantage de pouvoir être miniaturisé et de pouvoir être utilisé sans l'intervention d'un technicien spécialisé.
Le dispositif de l'invention présente donc un avantage quant à sa taille et à son autonomie, ce qui permet de réduire considérablement l'intervalle de temps entre les mesures successives et/ou le temps de réponse de la mesure. La durée d'une mesure avec le dispositif de l'invention est typiquement de 10 à 180 min, de préférence 30 à 120 min. Un tel dispositif offre donc la possibilité de mettre en place une stratégie efficace de surveillance des contaminations fongiques avec un intervalle de temps faible entre les mesures. Ainsi une procédure d'alerte peut être envisagée afin de rechercher et traiter les contaminations à leurs premiers stades de développement. De plus, les systèmes de contrôle de l'air ambiant, tels que les VMC, peuvent être asservis au dispositif de l'invention pour empêcher ou limiter le développement fongique.
La présente invention concerne également un procédé de détection d'une contamination fongique dans un environnement intérieur mis en œuvre par le dispositif de l'invention et comprenant :
- le prélèvement d'un échantillon de COV dans l'environnement intérieur ;
- la séparation des COV prélevés ; et
- la détection des COV présents.
Le procédé de l'invention comprend le prélèvement d'un échantillon de COV dans l'environnement intérieur. Pour ce faire, le dispositif de l'invention est disposé dans l'environnement intérieur et le prélèvement est effectué par contact entre le module de préconcentration et l'air ambiant. Dans une première alternative, le prélèvement est effectué par convection naturelle de l'air ambiant. Le prélèvement de l'échantillon dure alors entre 60 et 300 min. Dans une alternative préférée, le prélèvement est effectué par convection forcée provoquant le passage de l'air ambiant au travers du module de préconcentration. Le débit de l'air ambiant passant au travers du module de prélèvement est par exemple de 10 à 1000 mL/min. Le prélèvement de l'échantillon dure alors entre 5 et 60 min. Le prélèvement est de préférence effectué par adsorption des COV sur un matériau adsorbant. Dans ce cas, le procédé de l'invention comprend également une étape de désorption des COV adsorbés. Celle-ci est effectuée par thermo-désorption dans des conditions bien connues de l'homme du métier. Le procédé de l'invention comprend également la séparation des COV prélevés. La séparation des COV prélevés est effectuée par le module de séparation. En particulier, les COV prélevés sont séparés par élution sur une micro¬ colonne chromatographique . Les paramètres optimums de séparation comme la température de la colonne ou le débit de la phase mobile, sont déterminés selon les techniques bien connues de l'homme du métier en fonction de la géométrie de la colonne, de la nature de la phase stationnaire et du gaz vecteur . Le procédé de l'invention comprend également la détection des COV présents. Au fur et à mesure de 1 'élution, l'éluât est dirigé vers le module de détection où la détection des COV présents est effectuée grâce à l'analyse de l'éluât par la matrice de capteurs. Dans un mode de réalisation préféré, le procédé de l'invention comprend:
- le prélèvement d'un échantillon de COV dans l'environnement intérieur ;
- la séparation des COV prélevés ;
- la sélection de COV cibles ; et
- la détection des COV cibles présents. Dans ce mode de réalisation du procédé selon l'invention, on sélectionne des COV cibles parmi les COV prélevés par le module de séparation. Cette étape est effectuée par le système de sélection au cours de l'élution de l'échantillon sur la micro-colonne chromatographique . Pour ce faire, on procède de la façon suivante. Chaque COV cible élue à une vitesse différente connue pour un système chromatographique donné. On attribue donc un temps de rétention donné à un COV cible. On programme le système de sélection avec ces valeurs. Le système de sélection est alors capable de sélectionner les portions d'éluât ayant un temps de rétention correspondant aux COV cibles. Ces portions d'éluât sont alors envoyées sélectivement vers le module de détection. Les portions d'éluât ne correspondant pas aux valeurs préprogrammées sont éliminées. Par conséquent, seules sont détectées par le module de détection la présence ou l'absence des COV cibles.
Le reste de l'éluât étant évacué du circuit d'analyse, cela permet d'éviter les phénomènes d'hystérésis et/ou de saturation des capteurs du module de détection que pourrait provoquer la présence des COV non cibles qui ont généralement une concentration bien supérieure à celle des COV d'origine fongique.
Les COV cibles sont de préférence choisis dans le groupe consistant en le l-octèn-3-ol , le 1 , 3-octadiène, le méthyl-2-éthylhexanoate, le 2-méthylfurane, le 3- méthylfurane, le 3-méthyl-l-butanol , le 2- méthyl-l-butanol , le -pinène le 2-heptène, le diméthylsulfure, le 4- heptanone, le 2 ( 5H) -furanone, le 3-heptanol, le méthoxybenzène et le 2-éthylhexanol , et leurs mélanges.
Avantageusement, le procédé de l'invention comprend également la détermination d'un indice de contamination fongique, par exemple en utilisant le procédé comme défini dans la demande de brevet FR 2913501.
Le procédé selon l'invention est de préférence utilisé en continu. Avantageusement, la durée d'un cycle de mesure est de 10 à 180 min, de préférence 30 à 120 min.
La présente invention concerne également l'utilisation du dispositif selon l'invention pour détecter une contamination fongique dans un environnement intérieur.
Le dispositif de l'invention peut être également utilisé dans un système de contrôle de l'air ambiant, tel qu'une VMC .
Les exemples de réalisation suivants illustrent la présente invention, sans en limiter en aucune façon la portée.
EXEMPLE 1 : Réalisation du dispositif
Le module de préconcentration comprend un micro- préconcentrateur gravé sur une plaque de silicium par un procédé DRIE. Le micro-préconcentrateur est composée de 20 sillons de 6 cm de long, de section rectangulaire de 500 pm de largeur et 400 pm de longueur, et présente un volume utile de 0,25 m2. Les sillons sont remplis de particules de résine à base d'oxyde de 2 , 6-diphényle commercialisé sous le nom TENAX® TA ayant un diamètre moyen de 120 pm, une surface spécifique de 35 m2/g, une porosité de 2,4 cm3/g et une taille de pores moyenne de 200 nm. Le micro-préconcentrateur est refermé par une plaque de silicium collée sur la surface comportant les sillons de la première plaque.
Une micro-colonne chromatographique a été gravée sur une plaque de silicium par un procédé DRIE. La micro-colonne est composée d'un sillon de 5 m de long, de section rectangulaire de 150 pm de largeur et 200 pm de longueur. Le sillon est agencé sous forme de lacets parallèles (ou serpentin) présentant des coudes sous forme d'arc de cercle afin d'éviter la formation d'angles morts. Une phase stationnaire de PDMS, diméthylpolysiloxane (Sylgard® 184, Dow corning) , est présente à l'intérieur de la micro- colonne. La micro-colonne est refermée avec une seconde plaque de silicium collée sur la surface comportant le sillon de la première plaque.
Le module de détection comprend une matrice de capteurs composée de 4 capteurs polymères. Les capteurs polymères ayant une affinité avec les COV d'origine fongique (respectivement le PEDOT-PSS, le polypyrrole/octane sulfonate de sodium, le polypyrrole/perchlorate de lithium et le polybifluorène) déposé sur des paires d'électrodes interdigitées . La matrice de capteurs est disposée dans une chambre de confinement en PTFE .
Les différents éléments sont reliés entre eux et au système de circulation par des connecteurs NanoPort™.
EXEMPLE 2 : Etalonnage de la micro-colonne Pour l'étalonnage, la matrice de capteurs du dispositif de l'exemple 1 a été remplacée par un spectromètre de masse.
Les paramètres expérimentaux de la chaîne d'analyse sont rassemblés dans le tableau 1.
Tableau 1 : Caractéristiques du GC/MS
Paramètres Conditions analytiques
Turbomatrix ATD (Perkin
Thermo-désorbeur Elmer )
Température de
désorption 370 °C
Débit de désorption 50 mL/min Azote N50
Durée de désorption 15 min
Température du piège
froid -30 °C
(Tenax TA)
Température d'injection 300 °C
(40°C/s)
Température de la ligne
de transfert 220 °C
Chromatographe gaz / Autosystem XL / Turbomass
Spectromètre de masse (Perkin Elmer)
Microcolonne Sylgard 184
Gaz vecteur Hélium N60
Pression constante 37,5 psi
40 °C pendant 2 min
l°C/min. jusqu'à 41°C
Plateau de 2 min
Cycle de température 0,3°C/min. jusqu'à 44°C pendant 2 min
l°C/min. jusqu'à 47°C
Plateau de 2 min
Paramètres du Quadripôle mode El,
spectromètre de balayage
masse (33-400)
Des échantillons des COV cibles ont été passés dans la micro-colonne afin de déterminer les temps de rétention de chaque COV cible. Les temps de rétention de chaque COV cible sont répertoriés dans le tableau 2.
Tableau 2
Figure imgf000018_0001
EXEMPLE 3 : Détection d'une contamination fongique
Le dispositif de l'exemple 1, comprenant une matrice de capteurs, a été placé dans différents environnements intérieurs sains ou présentant une contamination fongique à différents stades de développement. Le prélèvement de COV dans l'environnement intérieur a été réalisé par convection forcée de l'air ambiant au travers du module de préconcentration à un débit de 100 mL/min pendant 15 minutes.
Les paramètres expérimentaux concernant la micro- colonne sont identiques à ceux de l'exemple 2.
La durée totale des mesures est de 20 min.
Les réponses de la matrice de capteurs a permis de détecter la présence ou l'absence de COV cible et un indice de contamination fongique tel que défini dans la demande brevet FR 2913501 a également pu être calculé.

Claims

REVENDICATIONS
1. Dispositif de détection d'une contamination fongique dans un environnement intérieur comprenant :
- un module de préconcentration ;
- un module de séparation comprenant une micro-colonne chromâtographique ; et
- un module de détection comprenant une matrice de capteurs .
2. Dispositif selon la revendication 1, caractérisé en ce que le module de préconcentration comprend un matériau adsorbant .
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que la micro-colonne a une longueur comprise entre 1 et 50 m.
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la matrice de capteur comprend au moins un polymère ayant une affinité avec les COV d'origine fongique .
5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le module de séparation comprend en outre un système de sélection de COV (Composés Organiques Volatils) cibles.
6. Procédé de détection d'une contamination fongique dans un environnement intérieur mis en œuvre par le dispositif tel que défini dans les revendications 1 à 5 et comprenant:
- le prélèvement d'un échantillon de COV dans l'environnement ;
- la séparation des COV prélevés ; et
- la détection des COV présents.
7. Procédé selon la revendication 6, comprenant:
- le prélèvement d'un échantillon de COV dans l'environnement intérieur ;
- la séparation des COV prélevés ;
- la sélection de COV cibles ; et
- la détection des COV cibles présents.
8. Procédé selon la revendication 7, caractérisé en ce que les COV cibles sont choisis parmi le groupe constant en le l-octèn-3-ol , le 1 , 3-octadiène, le méthyl-2-éthylhexanoate, le 2-méthylfurane, le 3-méthylfurane, le 3-méthyl-l-butanol , le 2- méthyl-l-butanol , le -pinène le 2-heptène, le diméthylsulfide, le 4-heptanone, le 2 ( 5H) -furanone, le 3- heptanol, le méthoxybenzène et le 2-éthylhexanol , et leurs mélanges .
9. Procédé selon l'une quelconque des revendications 7 à 8, caractérisé en ce que la détermination de la contamination fongique se fait en continu.
10. Utilisation du dispositif tel que défini dans les revendications 1 à 5 pour détecter une contamination fongique dans un environnement intérieur.
PCT/FR2011/052720 2010-11-23 2011-11-22 Dispositif de detection d'une contamination fongique WO2012069752A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013539324A JP5882350B2 (ja) 2010-11-23 2011-11-22 真菌汚染を検出するためのデバイス
ES11799764T ES2571354T3 (es) 2010-11-23 2011-11-22 Dispositivo de detección de una contaminación fúngica
CA2817135A CA2817135C (fr) 2010-11-23 2011-11-22 Dispositif de detection d'une contamination fongique
EP11799764.3A EP2643472B1 (fr) 2010-11-23 2011-11-22 Dispositif de detection d'une contamination fongique
DK11799764.3T DK2643472T3 (en) 2010-11-23 2011-11-22 Device for detecting a fungal contamination
US13/892,939 US10227628B2 (en) 2010-11-23 2013-05-13 Device for detecting a fungal contamination
HRP20160441TT HRP20160441T1 (hr) 2010-11-23 2016-04-25 Uređaj za otkrivanje fungalne kontaminacije

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1059636A FR2967692B1 (fr) 2010-11-23 2010-11-23 Dispositif de detection d'une contamination fongique
FR1059636 2010-11-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/892,939 Continuation-In-Part US10227628B2 (en) 2010-11-23 2013-05-13 Device for detecting a fungal contamination

Publications (1)

Publication Number Publication Date
WO2012069752A1 true WO2012069752A1 (fr) 2012-05-31

Family

ID=44010136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/052720 WO2012069752A1 (fr) 2010-11-23 2011-11-22 Dispositif de detection d'une contamination fongique

Country Status (11)

Country Link
US (1) US10227628B2 (fr)
EP (1) EP2643472B1 (fr)
JP (1) JP5882350B2 (fr)
CA (1) CA2817135C (fr)
DK (1) DK2643472T3 (fr)
ES (1) ES2571354T3 (fr)
FR (1) FR2967692B1 (fr)
HR (1) HRP20160441T1 (fr)
HU (1) HUE028951T2 (fr)
PL (1) PL2643472T3 (fr)
WO (1) WO2012069752A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528300A (ja) * 2012-09-12 2015-09-28 ザトーリウス ステディム ビオテーク ゲーエムベーハー 組み合わせたフィルター

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3385710B1 (fr) * 2017-04-05 2021-12-01 InsightAir Europe Prévention de contamination dans un bâtiment
US10760804B2 (en) 2017-11-21 2020-09-01 Emerson Climate Technologies, Inc. Humidifier control systems and methods
EP3781879A4 (fr) 2018-04-20 2022-01-19 Emerson Climate Technologies, Inc. Systèmes et procédés avec seuils d'atténuation variable
US11421901B2 (en) 2018-04-20 2022-08-23 Emerson Climate Technologies, Inc. Coordinated control of standalone and building indoor air quality devices and systems
US11371726B2 (en) 2018-04-20 2022-06-28 Emerson Climate Technologies, Inc. Particulate-matter-size-based fan control system
US11486593B2 (en) 2018-04-20 2022-11-01 Emerson Climate Technologies, Inc. Systems and methods with variable mitigation thresholds
US11994313B2 (en) 2018-04-20 2024-05-28 Copeland Lp Indoor air quality sensor calibration systems and methods
WO2019204779A1 (fr) 2018-04-20 2019-10-24 Emerson Climate Technologies, Inc. Systèmes et procédés de surveillance de la qualité de l'air intérieur et de l'occupant
CN109329588B (zh) * 2018-10-24 2022-02-08 浙江海洋大学 深水网箱养殖用的海水鱼配合饲料
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125770A1 (fr) * 2007-03-05 2008-10-23 Centre Scientifique Et Technique Du Batiment (Cstb) Procede de detection d'une contamination fongique

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600559A (en) * 1982-03-26 1986-07-15 The United States Of America As Represented By The Administrator Environmental Protection Agency Vacuum extractor with cryogenic concentration and capillary interface
US5047073A (en) * 1990-02-27 1991-09-10 Transducer Research, Inc. Sorption separation apparatus and methods
US20040141955A1 (en) * 2001-04-16 2004-07-22 Strobel Gary A. Compositions related to a novel endophytic fungi and methods of use
KR101260631B1 (ko) * 2007-10-10 2013-05-06 엠케이에스 인스트루먼츠, 인코포레이티드 사중극 또는 비행시간형 질량 분석기를 이용한 화학적 이온화 반응 또는 양자 전이 반응 질량 분석법
US8707760B2 (en) * 2009-07-31 2014-04-29 Tricorntech Corporation Gas collection and analysis system with front-end and back-end pre-concentrators and moisture removal
US20120270330A1 (en) * 2009-09-14 2012-10-25 Arizona Board Of Regents For And On Behalf Of Arizona State University Hybrid Separation and Detection Device for Chemical Detection and Analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125770A1 (fr) * 2007-03-05 2008-10-23 Centre Scientifique Et Technique Du Batiment (Cstb) Procede de detection d'une contamination fongique

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "( BW)(CA-ELECTRONIC-SENSOR) zNose, an `Eye in the Kingdom of the Blind' for the Chemical World", 7 November 2001 (2001-11-07), pages 1 - 2, XP002638662, Retrieved from the Internet <URL:http://www.estcal.com/press_releases/articles/zNose%20Eye%20for%20Blind_files/f_headline.htm> [retrieved on 20110524] *
CASALINUOVO I A ET AL: "Experimental use of a new surface acoustic wave sensor for the rapid identification of bacteria and yeasts.", LETTERS IN APPLIED MICROBIOLOGY JAN 2006 LNKD- PUBMED:16411915, vol. 42, no. 1, January 2006 (2006-01-01), pages 24 - 29, XP002638661, ISSN: 0266-8254 *
JOBLIN Y ET AL: "Detection of moulds by volatile organic compounds: Application to heritage conservation", INTERNATIONAL BIODETERIORATION AND BIODEGRADATION, vol. 64, no. 3, 1 June 2010 (2010-06-01), ELSEVIER LTD, GB, pages 210 - 217, XP026990854, ISSN: 0964-8305, [retrieved on 20100220] *
JONAS HOLME: "Detection, assessment and eva luation of mould in buildings in relation to indoor environment and effects on human health", October 2006 (2006-10-01), pages FP,1 - 40, XP002638663, ISSN: 0801-6461, Retrieved from the Internet <URL:http://www.sintef-group.com/upload/Byggforsk/Publikasjoner/Prrapp%20406.pdf> [retrieved on 20110524] *
S. HAMILTON A ET AL: "Detection of Serpula lacrymans infestation with a polypyrrole sensor array", SENSORS AND ACTUATORS B, vol. 113, no. 2, 27 February 2006 (2006-02-27), pages 989 - 997, XP002638664, DOI: 10.1016/j.snb.2005.04.014 *
STAPLES EJ: "The zNose: A New Electronic Nose Using Acoustic Technology", THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, no. Paper No: 2aEA4, December 2000 (2000-12-01), City of Publication: Publishing organization; 2000, pages 1 - 8, XP002638660, Retrieved from the Internet <URL:http://www.aromako.co.kr/aroma/tech/pdf/asa2000.pdf> [retrieved on 20110524] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528300A (ja) * 2012-09-12 2015-09-28 ザトーリウス ステディム ビオテーク ゲーエムベーハー 組み合わせたフィルター
US9963668B2 (en) 2012-09-12 2018-05-08 Sartorius Stedim Biotech Gmbh Combined filter

Also Published As

Publication number Publication date
EP2643472A1 (fr) 2013-10-02
US10227628B2 (en) 2019-03-12
EP2643472B1 (fr) 2016-03-02
ES2571354T3 (es) 2016-05-24
HRP20160441T1 (hr) 2016-07-15
FR2967692A1 (fr) 2012-05-25
JP5882350B2 (ja) 2016-03-09
FR2967692B1 (fr) 2016-02-05
CA2817135C (fr) 2018-05-01
PL2643472T3 (pl) 2016-09-30
CA2817135A1 (fr) 2012-05-31
HUE028951T2 (en) 2017-02-28
US20130323781A1 (en) 2013-12-05
DK2643472T3 (en) 2016-05-30
JP2013544095A (ja) 2013-12-12

Similar Documents

Publication Publication Date Title
EP2643472B1 (fr) Dispositif de detection d&#39;une contamination fongique
US9725751B2 (en) Development of a detection microsystem
EP3185011B1 (fr) Capteur de gaz microelectromecanique ou nanoelectromecanique
EP2130043B1 (fr) Procédé de détection d&#39;une contamination fongique
Lin et al. Novel BOD optical fiber biosensor based on co-immobilized microorganisms in ormosils matrix
CA2964817C (fr) Procede de detection d&#39;une contamination a la merule
AU2014240738A1 (en) Method and apparatus for bacterial monitoring
EP3320109A1 (fr) Procede de detection d&#39;une presence ou d&#39;une absence d&#39;au moins une premiere zone d&#39;inhibition
Mendes et al. Headspace membrane introduction mass spectrometry for trace level analysis of VOCs in soil and other solid matrixes
Usachev et al. Surface plasmon resonance–based real‐time bioaerosol detection
EP3161145B1 (fr) Procede de detection d&#39;une presence ou d&#39;une absence de particules biologiques
Anton et al. A new approach to detect early or hidden fungal development in indoor environments
Valdman et al. Bioluminescent sensor for naphthalene in air: Cell immobilization and evaluation with a dynamic standard atmosphere generator
WO2004040004A1 (fr) Biocapteur conductimetrique ou potentiometrique multi-enzymatique a algues unicellulaires, procede de detection mettant en oeuvre un tel biocapteur
RU2207377C2 (ru) Биосенсорная система для определения 2,4-динитрофенола и ионов нитрита и биосенсоры для этой системы
Huang et al. Gondola-shaped tetra-rhenium metallacycles modified evanescent wave infrared chemical sensors for selective determination of volatile organic compounds
Davis et al. Ultra-sensitive determination of pesticides via cholinesterase-based sensors for environmental analysis
Anton et al. Fungal biodetector: a real-time indoor air quality monitoring
FR2730812A1 (fr) Capteur biochimique
WO2006005732A1 (fr) Dispositif amplificateur de concentration d&#39;analytes presents dans une atmosphere et systeme de detection associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11799764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2817135

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011799764

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013539324

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE